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Resumo

Aprendizado de Máquina Automatizado (AutoML) tem o objetivo de selecionar e con-
figurar pipelines de aprendizado de máquina automaticamente, sem exigir conhecimentos
profundos do usuário. Métodos de AutoML utilizam um espaço de busca que contém pos-
síveis soluções e tentam encontrar o melhor pipeline para um problema de aprendizado
específico. Entretanto, pouco se sabe sobre quais são as características desses espaços de
busca e como elas afetam o desempenho de métodos de busca. Uma forma de descrever os
espaços de busca é por meio de Análise de Fitness Landscape (FLA), uma técnica muito
utilizada para descrever o espaço de busca de problemas de otimização combinatória. O
presente trabalho adapta métricas clássicas de FLA, tais como Neutralidade, Correlação
de Distância de Fitness (FDC) e Distância de Correlação ao contexto de AutoML, cu-
jos espaços de busca são complexos, uma vez que contêm variáveis discretas, contínuas,
categóricas e condicionais, de forma totalmente independente do método de busca uti-
lizado para explorar o espaço. Além disso, é feita uma avaliação de como as caracterís-
ticas do espaço de busca afetam o desempenho de dois métodos de busca baseados em
otimização Bayesiana: Tree-structured Parzen Estimator (TPE) e Sequential Model-based
Algorithm Configuration (SMAC). De forma a utilizar FLA no contexto de AutoML, nós
propomos uma representação em árvore para os pipelines de aprendizado de máquina ca-
paz de capturar sua semântica, uma definição de vizinhança baseada em um operador de
mutação e uma medida semântica de distância entre pipelines. Análises de Neutralidade
sugerem que espaços de busca maiores tendem a ter mais áreas com valores iguais, ou
quase iguais, de fitness, uma característica que pode melhorar a habilidade do TPE de
explorar o espaço e encontrar boas soluções. Espaços de busca maiores tendem a ser mais
enrugados, de acordo com a métrica de Distância de Correlação, e normalmente são mais
difíceis para os otimizadores. FDC se mostrou uma métrica pouco informativa em relação
à dificuldade do problema de encontrar o melhor pipeline de aprendizado de máquina.
Além disso, a utilização de ótimos locais para calcular a métrica pode levar a resultados
bastante diferentes em comparação ao uso do ótimo global, cujo cálculo é normalmente
inviável para problemas de AutoML. Por outro lado, desempenho do otimizador SMAC se
mostrou menos afetado por alterações nas características do espaço, quando comparado
ao TPE.

Palavras-chave: Análise de Fitness Landscape. Aprendizado de Máquina Automatizado.
Espaços de Busca. Otimização.



Abstract

Automated Machine Learning (AutoML) aims at automatically selecting and configur-
ing complete machine learning pipelines without requiring deep user expertise. AutoML
methods utilize a search space of possible solutions and try to find the best pipeline for
a given learning problem. However, there is little knowledge about the characteristics
of such spaces and how they relate to the performance of search methods. One way of
exploring them is using Fitness Landscape Analysis (FLA), a technique commonly used
to describe the landscape of combinatorial optimization problems. This work adapts
classic FLA measures, such as Neutrality, Fitness Distance Correlation (FDC) and Cor-
relation Length, to the context of the complex fitness landscape generated by AutoML
search spaces, which include discrete, continuous, categorical and conditional variables,
regardless of the methods used to explore the search spaces. It also evaluates how the
characteristics of the landscape affect the performance of two AutoML methods based on
Bayesian optimization: Tree-structured Parzen Estimator (TPE) and Sequential Model-
based Algorithm Configuration (SMAC). In order to use FLA in the context of AutoML,
we propose a tree-based representation for machine learning pipelines that is able to
capture their semantics, a neighborhood definition based on a mutation operator, and a
semantic distance metric between pipelines. Neutrality analyses suggest that larger land-
scapes tend to have more areas of equal or nearly equal fitness values, a feature that can
improve the ability of TPE to explore the search space and find good solutions. Larger
search spaces tend to be more rugged, as indicated by the Correlation Length measure,
and are often more challenging for the optimizers. FDC proved to be a weak measure in
describing problem difficulty. Furthermore, using local optima to calculate FDC can lead
to very different results when compared to using the global optimum, which is usually
unfeasible to calculate for AutoML problems. On the other hand, SMAC’s performance
seems less affected by changes in the characteristics of the landscape.

Keywords: Fitness Landscape Analysis. Automated Machine Learning. Search Spaces.
Optimization.
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Chapter 1

Introduction

The past few decades have seen tremendous development in the field of Machine Learning
(ML), which comprises methods that are able to learn from data, improve automatically
with experience and predict future events [51; 52]. ML has been used in a wide variety of
applications, such as image and speech recognition, self-driving vehicles, recommendation
systems, predictive maintenance in the industry, genetics and credit analysis, to cite a
few [20; 37; 43; 58; 94; 95].

In an ideal scenario, a machine learning task is performed by a practitioner who
has deep knowledge in statistics, ML algorithms and the mathematics behind them. She
obtains and treats the data, and then chooses an algorithm to solve the problem at
hand. Having chosen the model, she has to choose its hyperparameters, train it and
correctly evaluate the results. This process may have to be repeated several times until
a solution with desirable performance is found. As a consequence, the process of solving
an ML task is arduous, and human interference can lead to suboptimal solutions [95].
Furthermore, according to the Law Of Conservation of Generalization Performance for
learning problems [72] and the “No Free Lunch” theorems [91; 89; 90], there is no optimal
solution for all problems and all problem instances, so the process of building a machine
learning pipeline must be repeated for each new application.

The desire of the industry and researchers from other areas to be able to use ML
without a lot of investment gave rise to Automated Machine Learning (AutoML), which
aims to automate the process of creating complete ML pipelines (i.e., a sequence of tasks
to follow in order to perform data analysis) to any dataset without requiring deep user
knowledge [30]. Therefore, AutoML democratizes the application of machine learning
and data analysis to solve a wide range of research and real-world problems. Experienced
ML practitioners and domain experts, with little or no technical background, can both
benefit from AutoML. The former can automate tedious and time-consuming tasks, such
as tuning hyperparameters, and focus more on data quality and the interpretation of the
results, for example, while the latter becomes able to apply ML as a tool, without the
need to spend a lot of time learning statistics, mathematics and algorithms.

Several optimization methods have been proposed to solve the problem of automat-
ically selecting and configuring ML pipelines. Although each method tackles the problem
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in a different way, they frequently show very similar results [3; 17; 18; 95]. AutoML meth-
ods based on optimization techniques rely on two main components: a search space and
an optimization method. The search space comprises the main building blocks (i.e., data
manipulation and learning algorithms, along with their hyperparameters) from previously
designed ML pipelines. The optimization method is responsible for finding the best com-
binations of the building blocks to build the most effective solution according to a quality
metric to a given dataset.

There is still little knowledge on how the characteristics of the search space affect
the performance of AutoML optimizers. These search spaces are difficult to analyze,
as they include discrete, continuous, categorical and conditional variables [30]. A better
understanding of AutoML search spaces can help to explain the behavior of existing search
methods and lead to the development of new ones, specifically designed to explore the
peculiarities of such spaces [62]. One way to analyze the characteristics of the search space
is through fitness landscape analysis (FLA) [76]. The fitness landscape of a problem is
given by the fitness values (i.e., a measure of the quality of the solution) obtained by all
possible solutions present in the search space.

The idea of FLA methods is to gain a better understanding of algorithm perfor-
mance on a related set of problem instances, creating an intuitive understanding of how
a heuristic algorithm explores the fitness landscape. However, as AutoML search spaces
contain mixed types of variables, namely continuous, discrete, categorical and conditional,
performing FLA, in this case, is more challenging because the notion of neighborhood or
distance function needed by FLA metrics is not straightforward [13; 14; 48; 87].

1.1 Objectives

The main goal of this thesis is to describe and analyze the characteristics of Au-
toML search spaces and how these characteristics affect the performance of search meth-
ods.

Research Question 1 (Characteristics of the search space) What are the charac-
teristics of the search space of algorithms A and the hyperparameters λ(j) of each Aj ∈ A?

Research Question 2 (Optimizer performance) How do the characteristics of the
fitness landscape affect the performance of TPE and SMAC?
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1.2 Contributions

The first contribution of this work is the definition of the components of a fitness
landscape in the context of AutoML problems, namely:

• A tree-based representation of ML pipelines that is able to capture the semantics
of the pipeline;

• A definition of the probabilistic neighborhood for ML pipelines;

• A distance metric between pipelines that considers their semantics.

Furthermore, our previously published work [61] was the first to apply typical
fitness landscape metrics to analyze AutoML landscapes. We also give some initial in-
sights into how the characteristics of the search space impact the performance of AutoML
optimization algorithms.

1.3 Thesis organization

This thesis is organized as follows. Chapter 2 provides the formal definition of Au-
toML, presents the most well-known optimizers, defines Fitness Landscape Analysis and
presents works dealing with fitness landscape analysis of combinatorial optimization prob-
lems, neural networks, hyperparameter optimization, algorithm selection and AutoML.
Chapter 3 describes fitness landscape analysis in the context of AutoML, while Chapter 4
presents the experimental evaluation and results. Finally, Chapter 5 concludes the thesis
and presents possible directions for future research.
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Chapter 2

Background and Related Work

This chapter formally defines the problem of AutoML and discusses the main metrics
used for fitness landscape analysis. To conclude, it discusses related works that use FLA
to understand problem difficulty, including AutoML problems.

2.1 Problem definition

Before the area of AutoML was established, the problem of selecting the best
algorithm and its hyperparameters was already well-studied in the literature, both in the
context of machine learning and optimization problems [59].

For a given computational problem, including machine learning problems, there
may exist several different algorithms, using different approaches, which try to solve it [39].
In some specific scenarios, one algorithm can always yield better results than the others.
In most cases, however, no single algorithm outperforms all the others in all instances
of the problem, a phenomenon known as performance complementarity [38]. Choosing
the best algorithm for an instance of a computational problem is known as the algorithm
selection problem [69].

Given a set A = {A(1), A(2), . . . , A(n)} of algorithms, the algorithm selection prob-
lem aims to find the algorithm A∗ ∈ A with the best generalization performance. Given
a dataset D and a gain function G, algorithm selection in the context of machine learning
problems is given by Equation 2.1.

A∗ ∈ argmax
A∈A

1

k

k∑
i=1

G(A,D(i)
train,D

(i)
valid), (2.1)

where G(A,D(i)
train,D

(i)
valid) is the gain achieved when A is trained and validated on disjoint

training and validation sets D(i)
train and D(i)

valid, respectively, on each partition 1 ≤ i ≤ k of
a k-fold cross-validation procedure [78].
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However, even if the problem of selecting an algorithm is solved, the selected
algorithm may still have hyperparameters. Automatically setting these hyperparameters
is one of the most basic tasks in AutoML [30]. Hyperparameter optimization (HPO)
methods must deal with different types of hyperparameters, namely discrete, continuous,
categorical and conditional (i.e. parameters that need to be tuned depending on the value
of another parameter) [30; 93].

Let A denote a machine learning algorithm and Λ be the set of all possible combina-
tions λ ∈ Λ of hyperparameters for A. When algorithm A is tuned with hyperparameters
λ, it is denoted by Aλ. Given a dataset D and a gain function G, which measures the
quality of the solution, the definition of hyperparameter optimization, whose goal is to
find the best combination of hyperparameter values for the task at hand, is given by
Equation 2.2.

λ∗ ∈ argmax
λ∈Λ

1

k

k∑
i=1

G(Aλ,D(i)
train,D

(i)
valid), (2.2)

where G(Aλ,D(i)
train,D

(i)
valid) is the gain achieved when Aλ is trained and validated on disjoint

training and validation sets D(i)
train and D(i)

valid, respectively, on each partition 1 ≤ i ≤ k of
a k-fold cross-validation procedure [78].

If we consider algorithms as categorical hyperparameters of a machine learning
pipeline, AutoML can be formalized as a Combined Algorithm Selection and Hyperparam-
eter optimization (CASH) problem. Given a set A = {A(1), A(2), . . . , A(n)} of algorithms,
where each algorithm A(i) has a hyperparameter space Λ(i), CASH aims to find the best
parameterized algorithm A∗

λ∗ [23; 78]. In its original formulation, CASH is a minimization
problem. However, given the nature of classification algorithms, dealt with in this work,
and the fitness function used to evaluate them, we cast CASH as a maximization problem,
replacing the loss function with a gain function. Thus, our modified version of CASH is
given by Equation 2.3.

A∗
λ∗ ∈ argmax

A(i)∈A,λ∈Λ(i)

1

k

k∑
i=1

G(A(i)
λ ,D(i)

train,D
(i)
valid), (2.3)

The first objective of the current work (Research Question 1) is to analyze the
characteristics of the search space defined by A and Λ, regardless of the method employed
to solve the problem.

Figure 2.1 illustrates a basic framework followed by AutoML methods in order
to create complete machine learning pipelines for classification problems. The AutoML
method receives as input a classification dataset, composed of a set of features and a
class label. The AutoML method itself has two main components: a search space, which
defines the building blocks of all possible classification pipelines (i.e., the preprocessing
algorithms and the classifier, along with their hyperparameters, and some optional post-
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processing steps), and a search method, used to explore the search space. The output
of the AutoML method is a classification pipeline customized to the input dataset, ac-
cording to a classification metric, also called the fitness function. Finally, the customized
pipeline generates a complete classification model, including preprocessing and postpro-
cessing steps. Henceforth, we consider the classification pipeline as the final result of the
AutoML method.

Figure 2.1: Simple AutoML framework for classification problems.

Classification
dataset

AutoML method

OutputInput

Customized
classification

pipeline
Search method

Search space
  Complete

classification model
generated by
the pipeline

Classification
metric

Source: adapted from [18].

Machine Learning pipelines: An ML pipeline usually consists of optional preprocess-
ing steps (e.g., data cleaning, feature selection, and dimensionality reduction), a machine
learning model (e.g., a classifier or a regressor), and some optional postprocessing steps
which may be used to combine the results of several learning models, as done in Witten
et al. [88].

Several methods have been proposed to solve the problem of choosing the best
hyperparameter configuration or even generating complete machine learning pipelines [30;
37; 94; 95]. Such methods are usually based on Bayesian optimization (BO), evolutionary
search, multi-fidelity optimization, reinforcement learning, hierarchical planning, local
search and random search, among others. In this section, we focus on works from the
literature that use BO, evolutionary search and multi-fidelity optimization, which are the
most frequently used.

BO is a powerful framework for optimizing expensive black-box functions. The
framework consists of two main components: a probabilistic surrogate model, which tries
to approximate an expensive black-box function (e.g. a fitness function), and an acquisi-
tion function, which chooses the next point to be evaluated [30; 73; 75]. Bayesian optimiza-
tion can be formalized as Sequential Model-Based Optimization (SMBO), a framework
that takes turns fitting models and choosing other configurations to evaluate [29]. SMBO
is used in methods such as TPE and SMAC, which are the basis of AutoML frameworks
such as Hyperopt [5], Auto-WEKA [78] and AutoSKLearn [23], for example. TPE and
SMAC will be detailed later in Section 3.5.

Another popular approach is to employ population-based methods to evolve ML
pipelines and is used in AutoML frameworks such as TPOT, and RECIPE. TPOT [57] uses
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tree-based genetic programming to perform a global search on the search space, whereas
RECIPE [17] uses grammar-based genetic programming to overcome the common problem
of generating invalid pipelines.

Other types of methods include those based on multi-fidelity optimization, such as
the one proposed by Li et al. [41]. Hyperband uses a multi-armed bandit approach that
focuses on making random search more efficient by adaptively allocating computational
resources and performing early-stopping. Autoband [16] extends Hyperband to address
the problem of algorithm configuration. BOHB [22] combines Bayesian optimization and
Hyperband in order to achieve strong anytime performance and fast convergence to opti-
mal algorithm configurations.

2.2 Fitness Landscape Analysis

Among the previously proposed optimization methods introduced to solve the prob-
lem of automatically selecting and configuring machine learning pipelines, there is not a
single one that seems to outperform all the others [95]. This is in agreement with the
“No Free Lunch” theorem for search and optimization, which states that no single algo-
rithm is better than the others in all problem instances [91; 90]. However, on specific
problem instances, there may be an algorithm (or a complete machine learning pipeline)
that outperforms all the others [38]. Finding such a pipeline is the main goal of AutoML.
Thus, knowledge about the characteristics of the search space can help to explain the
performance of the algorithms or even lead to the development of better algorithms for a
given problem class [45; 50; 62].

One way to analyze the characteristics of the search space is through Fitness Land-
scape Analysis (FLA) [62; 45; 44]. The concept of fitness landscapes was first introduced
by Wright [92], in his seminal paper on genetic evolution. Although the definition lacked
mathematical formalism, it served as inspiration for the development of techniques to ex-
plain other complex systems, such as heuristic search methods for combinatorial optimiza-
tion problems. According to Stadler [76], a fitness landscape has three main components,
described below. Changing any of the components generates a different landscape.

1. A set X of configurations (in our case, sets of algorithms and hyperparameters of
AutoML pipelines, formally defined in Section 3.1);

2. A notion X of neighborhood or distance on X, and
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3. A fitness function f : X → R, which corresponds to the function being optimized
(e.g., classification accuracy, classification error or regression error).

The set X of configurations and the neighborhood definition X define the config-
uration space of the problem. Depending on X , one fitness function can be associated
with several different fitness landscapes for the same set of configurations [45; 62].

For very simple problems, fitness landscapes can be represented graphically and
compared visually. However, given the complexity of real-world problems, this approach
is usually not feasible [11; 19; 31]. Hence, several metrics have been proposed to describe
and compare fitness landscapes for different problems or neighborhood functions. These
metrics capture a number of features of optimization problems that may play a role in
the performance of search algorithms, such as modality, fitness distribution in the search
space, ruggedness, degree of variable interdependency, evolvability, neutrality, number and
size of basins of attraction and the correlation between fitness values and the distance to
the global optimum, among others [45; 62; 76].

In the present work, we focus on three FLA metrics, chosen according to their pop-
ularity and the possibility to be adapted to the AutoML context: Neutrality, Correlation
Length and Fitness Distance Correlation (FDC). The following sections describe each of
these metrics.

2.2.1 Neutrality

One of the most widely used FLA metrics is neutrality [2; 26; 45; 53; 85]. Neutrality
occurs when neighboring points on the landscape are neutral, i.e., they have the same
fitness value [45; 68; 82]. Formally, given a neighborhood N(S) of a solution S, the
neutral neighborhood N (S) of S is given by Equation 2.4.

N (S) = {S ′ ∈ N(S) | f(S ′) = f(S)} (2.4)

The cardinality of N (S) is called the neutrality degree of solution S, whereas the
neutrality ratio of S is given by |N (S)|/|N(S)|. The overall neutrality ratio of the landscape
is then given by the mean of the neutrality ratios of all possible solutions. In this work,
all references to neutrality consider the overall neutrality ratio.
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2.2.2 Correlation Length

Another feature of fitness landscapes that can greatly impact the performance of
search algorithms is ruggedness, which can be described as the number and distribution
of local optima [2; 45; 76]. Weinberger [86] proposed two metrics to quantify the rugged-
ness of a fitness landscape: Auto-correlation Function and Correlation Length. Auto-
correlation Function describes the correlation between fitness values of sequential points
of a random walk over the landscape, whereas Correlation Length measures the distance
after which points on the landscape become uncorrelated. The smaller the distance, the
more rugged the landscape.

Consider a random walk, described in Section 3.4.1, of length l over the landscape
with fitness values F = {f1, . . . , fl}. Each ft ∈ F is the fitness of the solution visited
at time t. The Auto-correlation Function ρ(s) of the landscape during this random walk
with step size s, as defined by Czech [15], is given by Equation 2.5:

ρ(s) =

∑l−s
t=1(ft − f)(ft+s − f)∑l

t=1(ft − f)2
(2.5)

where f is the mean of F .
Given this function, the Correlation Length l is a single value inversely proportional

to the ruggedness of the landscape [86] and is given by Equation 2.6:

ℓ = − 1

ln |ρ(1)|
(2.6)

2.2.3 Fitness Distance Correlation

The last FLA metric discussed in this work is Fitness Distance Correlation (FDC).
FDC was proposed in 1995 by Jones and Forrest [35] to give a global view of problem
difficulty for genetic algorithms, but has since been widely used to evaluate the fitness
landscape of various kinds of optimization problems [24; 42; 46; 53; 55].

In its original formulation, FDC measures the correlation between the fitness values
of the solutions and the distance to a global optimum. For maximization problems,
a correlation of -1 indicates that fitness increases as the distance to a global optimum
decreases, as one would hope. Given a sample of size n of the landscape with fitness
values F = {f1, . . . , fn} and a set D = {d1, . . . , dn}, where each di ∈ D corresponds to
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the distance from solution i to the global optimum, the formal definition of FDC is given
by Equation 2.7.

FDC =
1/n

∑n
i=1(fi − f)(di − d)

σFσD

, (2.7)

where σF and σD are the standard deviations and f and d are the means of F and D,
respectively.

2.2.4 Summary

Table 2.1 presents a summary of the FLA metrics used in this work, the charac-
teristic of the fitness landscapes to which they relate and their interpretations.

Table 2.1: Summary of FLA metrics and fitness landscape characteristics.

Metric Characteristic Interpretation

Neutrality
Ratio Neutrality

Higher ratios indicate the presence
of larger areas of equal fitness.
Lower ratios indicate smaller areas.

Correlation
Length Ruggedness

Smaller values indicate more rugged
landscapes, whereas larger values
indicate smoother landscapes.

FDC Deception with respect
to local search.

For maximization problems, values
close to -1 indicate easy landscapes,
values around 0 are hard and values
close to 1 are misleading.

2.3 Related Work

Since its introduction in 1932 [92], fitness landscape analysis went from being a
highly theoretical idea in evolutionary computing to being applied to a wide range of
optimization problems and machine learning [45; 44]. This chapter presents some works
from the literature that use fitness landscape analysis with the goal of understanding
problem difficulty. We begin by presenting works that studied the metrics described in
Section 2.2 for classic optimization problems and neural networks. We then turn our focus
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to works that present an overall evaluation of the complexity of AutoML-related problems,
such as algorithm selection, hyperparameter optimization and pipeline generation.

2.3.1 Optimization Problems

The first applications of FLA were in the field of evolutionary computing. In his
doctoral dissertation, Jones [34] presented an in-depth study about FDC for evolution-
ary algorithms. He showed that the metric correctly identified the difficulty of several
well-known optimization problems, including problems for which the behavior of genetic
algorithms surprised the researchers when they were first proposed, such as the Tanese
and the royal roads functions. In some cases, although the algorithms may require more
resources to solve more complicated problem instances, FDC does not show an increase in
problem difficulty, which can be counterintuitive. However, as an advocate of FDC, the
author argues that, even when the metric does not correlate well with problem difficulty,
it is very useful, because the correlation between fitness values is a necessary, but not
sufficient, condition for the landscape to be easily searchable. He concludes that FDC
should only be used as an indication of the expected difficulty of the problem. Vanneschi
et al. [82, 83] studied the neutrality of the landscapes of genetic programming (GP) for
the even parity and multiplexer problems. They found that problem difficulty depends on
the set of logical operators used by the GP. For neutral networks induced by the NAND
operator, higher neutrality levels are associated with lower fitness values and the GP is
unlikely to improve the quality of the solution by mutating individuals from regions with
good fitness, which is not observed for networks induced by the XOR and NOT operators,
for the even parity problem, or the IF operator, for the multiplexer problem. Furthermore,
they conclude the XOR, NOT, and IF operators generate more neutral landscapes, which
were easier for the GP, meaning that neutrality can be useful, especially when located in
good regions of the fitness landscape.

Another largely studied method is particle swarm optimization (PSO). Malan and
Engelbrecht [46] applied PSO to several benchmark problems and used FDC to evaluate
the ability of the search method to find solutions with increasing fitness on a particular
problem. The results for FDC and other searchability measures suggested that no single
measure can be used to predict algorithm performance, but they should be used together.
A studied performed by Harrison et al. [27] showed that FDC is highly dependent on
problem instances, showing great variations between different cases of the same problem.
The authors also concluded that larger search spaces tend to be more searchable, according
to FDC, and that many parameter configuration landscapes, although unimodal, are not
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necessarily easy to optimize. Engelbrecht et al. [21] analyzed how FDC correlates to PSO
performance on several minimization benchmark problems. They showed that PSO tends
to transition to an exploitation strategy faster for landscapes with higher FDC values1,
while it is slower to converge for lower FDC values, which indicate deceptive landscapes.
Furthermore, they showed that PSO tends to converge more slowly for more neutral
landscapes, but this effect was not significant. A recent work also used FDC to measure
the relationship between the fitness of a PSO solution and the optimal values [42]. The
authors proposed a method that uses FDC to balance the exploration and exploitation
abilities of the PSO algorithm.

Ochoa et al. [55] studied FDC, neutrality and correlation length to understand
the landscape for graph-based constructive hyper-heuristics for the timetabling problem,
which is a minimization problem. All metrics were calculated for the heuristics search
space, and not for the algorithm configuration space. They found moderate to high FDC
values, suggesting an easy and globally convex landscape, with several wide plateaus with
the same fitness. The correlation length was shown to be highly dependent on problem
instances, with half the instances showing very rugged landscapes. The smoother land-
scapes also showed higher levels of neutrality. Ochoa and Veerapen [54] evaluated the
neutrality of the landscapes of the iterated local search algorithm for the traveling sales-
person problem. Using local optima networks, the authors found high levels of neutrality,
but a thorough investigation of the impacts of neutrality was left for future work.

2.3.2 Artificial Neural Networks

More recently, fitness landscape analysis became a popular way of characterizing
neural network error landscapes and neural architecture search, a branch of AutoML,
spaces. Bosman et al. [8] studied different boundaries, i.e. different subsets, of the search
space of neural network architectures. FDC analysis showed that larger search spaces are
less searchable. The authors also demonstrated that more rugged regions of the landscape
are harder for search methods and regions identified as more searchable, according to FDC,
may be flatter. Given the sensitivity of FLA metrics to the bounds applied, the result
may not hold for the complete, unbounded space.

Rakitianskaia et al. [67] evaluated error landscapes of multi-layered neural networks
(NNs) for classification, using classification error (CE) and mean squared error (MSE) as
error functions. For MSE, FDC indicated easily searchable landscapes. When using CE,

1For minimization problems, high FDC values correspond to easy landscapes. This is in contrast to
the intuition given in Section 2.2.3, which considers maximization problems.
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on the other hand, FDC found less searchable spaces, being close to 0 or even negative,
indicating deceptive landscapes, for all problems considered. They conclude that using CE
to guide the search may be inefficient, due to the fact that the landscape generated by the
metric contains less useful information, and that FDC could be used to choose the most
promising NN architectures for a particular problem. van Aardt et al. [81] also studied
MSE error landscapes for NNs for classification problems. Using progressive random
walk samples of the landscape, the authors found that regions around the origin of the
MSE search space are usually more neutral when using a symmetric activation function.
Another study proposed bounded and unbounded progressive gradient walks to sample NN
error landscapes and find regions with good fitness [10]. Unbounded gradient walks found
areas of increased neutrality, a property of the landscape that was not captured by other
walks. However, these studies did not evaluate how neutrality affects the performance of
search algorithms.

Bosman et al. [9] evaluated error landscapes of weight-elimination of NNs. FDC
results indicated that the application of a penalty term simplifies the landscapes. How-
ever, these results proved to be misleading, because flatter landscapes lacked sufficient
gradient information for the NN training algorithm, back-propagation, to perform well.
The authors suggest that FDC may offer a global perspective on problem difficulty that
is not suitable for neural network error landscapes.

Some studies use fitness landscape analysis to evaluate neural architecture search
(NAS) search spaces, which is somewhat related to the focus of this dissertation, AutoML.
Nunes et al. [53] applied FLA measures to characterize the search space of NAS methods
for graph neural networks. The authors did not find high levels of neutrality, but the
correct interpretation of the results requires further investigation. FDC results indicated
that the problem is easy for search algorithms, a similar result to a study that evaluated
NAS spaces of convolutional neural networks (CNNs) for image classification [71]. Traoré
et al. [79] also studied CNNs for image classification. The correlation between fitness
and distance to the optimum was visually evaluated. During the first epochs of the NAS
algorithm training, they observed a positive correlation, indicating an easily searchable
landscape. In later epochs, the correlation decreased, indicating the presence of a plateau.

2.3.3 Hyperparameter Optimization, Algorithm Selection and

AutoML

In the previous sections, we presented works that studied the search spaces of opti-
mization problems and neural network architectures, which are not directly related to the
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problem of generating classic machine learning pipelines. The first study to address the
question of whether the automatic pipeline generation problem has some key characteris-
tics to be a reasonable research topic, such as the difference between the best result and
the average solution performance, the ability to find a small set of very good solutions and
the distribution of such solutions, for example, was done by Garciarena et al. [25]. They
used a subset of the search space considered by TPOT [57] and limited the pipeline length
to two algorithms (i.e., a preprocessor and a classifier or two stacked classifiers). The au-
thors compared TPOT, an optimizer that uses genetic programming as a search method,
to random search and a hill climbing algorithm. The results indicate there are several
regions of the search space containing good solutions, so a simple random search could
be enough. Additionally, the three search methods found many pipelines that performed
well in the training set, but failed to generalize to unseen data, although TPOT was less
affected by this problem than the other methods. Although this work did not evaluate
typical fitness landscape measures, it provided the basis for the tree-based pipeline rep-
resentation and neighborhood definition used in this work, which will be described in
Chapter 3. It also gave initial insight regarding the complexity of the AutoML task.

Pushak [63] and Pushak and Hoos [64] claim to have been the first to investigate
the properties of algorithm configuration landscapes. They evaluated the results of sev-
eral optimization problem solvers by varying individual numerical hyperparameters while
fixing the other hyperparameters at optimized values. The results indicate that most
parameters appear to have uni-modal and convex responses, although this may not be
the case for individual problem instances. FDC analyses support the hypothesis that
aggregate responses on problem sets are less rugged than the response on individual in-
stances. However, manual inspection revealed rugged areas that were not captured by
FDC. A follow-up work by the same authors builds on the evaluation of one-dimensional
hyperparameter slices in order to study multidimensional landscapes applied to AutoML
loss landscapes [65]. They showed that most multidimensional landscapes are even more
uni-modal than one and two-dimensional ones, but this must be due to hyperparameter
interactions. Using a simple optimization method that tunes each hyperparameter inde-
pendently, they showed that hyperparameter interactions do not greatly increase problem
complexity. They rejected convexity for all evaluated landscapes, but showed that most
hyperparameters yield convex responses when all other hyperparameters are fixed to their
optimal values. Finally, the authors demonstrated the FDC fails to reveal the simplic-
ity of most AutoML loss landscapes. Pushak and Hoos [66] proposed Golden Parameter
Search, an automated algorithm configurator that exploits the characteristics of the land-
scape and is able to find the best configurations in a fraction of the time required by
previous methods.

Traoré et al. [80] studied HPO in the context of AutoML to understand whether the
process used to evaluate individual configurations can affect the HPO landscape. Their
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results indicated the presence of large groups of solutions with the same low fitness, which
can be explained by the use of accuracy as the fitness metric, resulting in several majority
class predictors. Ruggedness analyses suggested that the problems are hard for local
search algorithms. FDC results showed no clear correlation between fitness and distance
to the global optimum, indicating hard landscapes.

Teixeira and Pappa [77] evaluated AutoML search spaces using local optima net-
works (LONs). LONs are directed graphs, in which the nodes represent local optima and
the edges are the possible weighted transitions between them [56]. Varying the size of
the neighborhood of each local optimum, the authors showed that larger neighborhoods
result in less rugged landscapes, which are usually easier to search. This result suggests
that, given the common desire of minimizing resource consumption, the problem seems
inherently difficult. However, even with big budgets, it was shown that increasing the size
of the neighborhood does not always make the landscape more searchable, due to differ-
ent datasets having different characteristics. They also showed that applying a mutation
operation several times and then performing a local search can help search methods to
escape from a basin of attraction.

To the best of our knowledge, our previously published work was the first to apply
classic fitness landscape analysis to AutoML search spaces. We also proposed a tree-based
representation that is able to capture the semantics of machine learning pipelines and a
measure of the distance between pipelines that exploits such semantics [61].
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Chapter 3

Fitness Landscape Analysis for
Automated Machine Learning

In this chapter, we discuss how the three components of a fitness landscape (namely
the set of configurations, a notion of neighborhood or distance between configurations,
and a fitness function [76]) can be defined in the context of AutoML. We also describe
some adaptations that must be made to typical fitness landscape analysis metrics in order
to apply them to the complex AutoML search spaces. Finally, we review two AutoML
optimizers, which will be analyzed from the point of view of FLA.

3.1 Search Spaces

The first component of a fitness landscape is a set X of configurations, also called
the search space. In the context of Automated Machine Learning, this set corresponds to
all valid machine learning pipelines that can be used to solve a given learning problem. A
machine learning pipeline can be defined as the sequence of methods that receive a dataset
(i.e., an input vector) and produces a model of the response variable (ou variables).

For the sake of simplicity, here we only consider classification pipelines composed
of up to three preprocessing steps (and an additional imputation algorithm, when neces-
sary) and one classifier, without any postprocessing steps. The pipelines are generated
by creating derivation trees by following the production rules of context-free grammars
(CFGs).

Formally, a grammar G is represented by a four-tuple <NT, T, PR, S>, where
NT represents a set of non-terminals, T a set of terminals, PR a set of production rules
and S (a member of NT ) the start symbol [74]. We will use a simplified version of the
Backus-Naur Form (BNF) to represent grammars. This means that each production rule
has, for instance, the following form: <Start>::= <A><B> | <C> d. This notation
means that a “<Start>” symbol can be translated to either “<A><B>” or “<C> d ”.
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Symbols wrapped in “<>” represent non-terminals, whereas terminals (such as d) are not
bounded by “< >”. The special symbol “|” represents a choice. Additionally, the symbol
“#” represents a comment in the grammar (i.e., it is ignored by the grammar parser). The
choice of one among all elements connected by “|” is made using a uniform probability
distribution.

In the context of AutoML, the set of non-terminals defines the overall structure of
the ML pipeline (i.e., the number and types of preprocessing algorithms and the type of
classification algorithm), the names of the algorithms themselves and the names of their
hyperparameters. The terminals define the names of the algorithms in a format that is
understood by the underlying implementation and the values of the hyperparameters.

One of the benefits of using CFGs to represent the AutoML search spaces is that
they organize prior knowledge (from specialists) about the problem, properly guiding the
optimization process. In addition, the grammar also gives flexibility in the definition of
the search space, as the grammar rules can be modified when necessary. Finally, the
grammar can introduce semantics along with its syntax, possibly allowing the evaluation
of the complexity of the search space.

The grammar defines the order of the preprocessing algorithms and guarantees a
classification algorithm is always present in a pipeline. For datasets with missing values,
it also guarantees that pipelines always begin with an imputation step. We propose three
search spaces of different sizes and characteristics (small, medium and large), as well as a
search space from the literature (auto-sklearn [23]), described below. The corresponding
CFGs are listed in Appendix A.

An example of a pipeline, derived from the grammar that defines the search space
large, described below, is shown in Figure 3.1. In the figure, algorithm names corre-
spond to tree nodes with sharp edges; hyperparameter names are represented as rounded
rectangles with dashed lines, and their values correspond to the ellipses. Pipelines are
initialized at random by uniformly choosing production rules from the grammar.

In this work, we explore four different search spaces of different sizes. In order
to make search space size estimations feasible, we made the simplification of always con-
sidering 100 values for continuous hyperparameters, regardless of the lower and upper
bounds of the distribution. Table 3.1 summarizes their main characteristics, which will
be presented in detail in the following sections. Figure 3.2 represents the search spaces
as Venn diagrams. Figure 3.2a shows algorithms, whereas Figure 3.2b show hyperparam-
eter distributions. Since search space small does not change hyperparameters, it is not
represented.
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Figure 3.1: Tree representation of a machine learning pipeline.

BernoulliNB <binarizer> <alpha> <fit_prior>

<imputation> <bernoulliNB>

<preprocessing> <classification>

<start>

0.5 3.7 TrueSimpleImputer

median

<strategy>

<simpleImputer>

Source: author.

Table 3.1: Search space sizes, where feat is the number of features in the dataset.

Search space # preprocessors # classifiers Size
small 26 25 4.22e4
medium 4 5 4.70e4× feat− 1.34e4
large 26 25 4.14e34× feat− 3.80e34
auto-sklearn 18 14 1.34e24× feat+ 6.47e23

3.1.1 Search space small

The search space small (Appendix A.1) is composed of 26 preprocessing algorithms
and 25 classifiers. All hyperparameters are set to their default values, generating a search
space with an estimated size of 4.22e4 possible combinations. For datasets with missing
values, we added a mandatory imputation algorithm, which does not alter the number of
combinations, considering that the hyperparameter values are fixed.
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3.1.2 Search space medium

In contrast with small, search space medium (Appendix A.2) has only four prepro-
cessing algorithms and five classifiers. However, hyperparameters are also tuned, resulting
in a search space of size 4.70e4× feat− 1.34e4, where feat is the number of features in
the dataset. The number of features is a hyperparameter of feature selection algorithms
and is used to define an upper bound to the number of features to be kept. There is
an alternative version for datasets with missing values, containing an additional imputa-
tion algorithm with three different values for its sole hyperparameter, which results in a
threefold increase in the size of the search space.

3.1.3 Search space large

Search space large (Appendix A.3) contains the same algorithms (i.e., processing
algorithms and classifiers) as small, but hyperparameters are also tuned. The distribu-
tions from which the values of the hyperparameters are selected are much broader than
those used for search space medium, resulting in a search space with an estimated size of
4.14e34× feat− 3.80e34 pipeline configurations. We also defined a version of this search
space for datasets with missing values, which is three times larger than the original search
space.

Figure 3.2: Venn diagrams of the search spaces (circle sizes do not reflect the size of the
sets).

(a) Preprocessing and classification algorithms.

small / large

auto-sklearn

medium

(b) Hyperparameter distributions.

 large

auto-sklearn

medium

Source: author.
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3.1.4 Search space auto-sklearn

The last search space (Appendix A.4) is based on the one used by auto-sklearn [23],
an AutoML system based on scikit-learn [60]. It comprises 18 preprocessing algorithms
and 14 classifiers, resulting in 1.34e24 × feat + 6.47e23 possible configurations. Search
space auto-sklearn always generates pipelines with an imputation algorithm, regardless
of the presence of missing values in the data.

3.2 Neighborhood and Distance Between Pipelines

The second component of a fitness landscape is a notion X of neighborhood or
a distance metric between the elements of the set X of configurations. Considering the
complexity of the AutoML search space, which contains categorical, discrete, continuous,
and conditional hyperparameters, and the lack of comprehensive literature on the analysis
of such spaces, we propose a simple but effective neighborhood definition and a distance
metric between our tree-based pipelines.

The neighborhood definition and the distance metric are two of the main contribu-
tions of this work and were presented at the 20th European Conference on Evolutionary
Computation in Combinatorial Optimisation (EvoCOP 2020) [61].

3.2.1 Neighborhood

Let S be a machine learning pipeline. The neighborhood N(S) of S is the set of
all pipelines that can be generated from S by randomly applying a mutation operator on
one of its nodes. The mutation operator selects a node and replaces the subtree rooted
at it with another subtree generated by the grammar [1]. Figure 3.3 repeats the pipeline
from Figure 3.1 (Figure 3.3a) and shows two of its neighbors (Figures 3.3b and 3.3c).
Gray-shaded nodes represent the subtree which was replaced by the mutation operator.

Figure 3.3b shows a pipeline with a single mutated hyperparameter, whereas the
pipeline in Figure 3.3c had the whole preprocessing subtree replaced. We note that the
impact of changing an algorithm, or even a complete subtree, may be much bigger than
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Figure 3.3: Two neighbors of the pipeline from Figure 3.1. Gray subtrees indicate muta-
tion points.

(a) Pipeline from Figure 3.1.

BernoulliNB <binarizer> <alpha> <fit_prior>

<imputation> <bernoulliNB>

<preprocessing> <classification>

<start>

0.5 3.7 TrueSimpleImputer

median

<strategy>

<simpleImputer>

(b) Value of the fit_prior hyperparam-
eter changed from True to False.

BernoulliNB <binarizer> <alpha> <fit_prior>

<imputation> <bernoulliNB>

<preprocessing> <classification>

<start>

0.5 3.7 FalseSimpleImputer

median

<strategy>

<simpleImputer>

(c) Whole preprocessing subtree mutated.

BernoulliNB <binarizer> <alpha> <fit_prior>

<bernoulliNB>

<preprocessing> <classification>

<start>

0.5 3.7 TrueSimpleImputer

most_frequent

<strategy>

<simpleImputer>

<imputation> <dimensionality>

<SelectKBest>

SelectKBest

5

<k>

Source: author.

the impact of changing the value of a single hyperparameter, so we define the probability
p(x) of choosing node x from pipeline S as the mutation point to be proportional to the
distance from the root of S. The exceptions to this rule are the leaves of the tree, which
represent algorithm names or hyperparameter values. Such nodes are only changed when
their parent node is selected as the mutation point. In order to do so, we give a weight
w(x) to each node that is directly proportional to the probability of choosing it, as defined
in Equation 3.1.

w(x) =

tree level if non-terminal symbol

0 if terminal symbol
(3.1)

The diamond shapes in Figure 3.4 show the weights of each symbol in the pipeline
from Figure 3.1. The tree root (<start> symbol) has a weight of one. The preprocessing
symbol has a weight of two, whereas the preprocessing subgroups and the classifica-
tion symbol, a weight of three. The non-terminals representing algorithm names have a
weight of four and those representing hyperparameter names have a weight of five. The
probability p(x) is then given by Equation 3.2. Considering this weighting scheme, the
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neighborhoods generated by the mutation operator focus more on exploitation, rather
than on exploration.

Figure 3.4: Pipeline with mutation weights.

Source: author.

p(x) =
w(x)∑
x∈S w(x)

(3.2)

This definition of neighborhood is an extension of the one proposed by Garciarena
et al. [25]. In their approach, two pipelines are neighbors if they differ in a single algorithm
or hyperparameter. On the other hand, our approach is more closely related to the
typical mutation operation used in grammar-based genetic programming [49]. In our
representation, there is a probability, albeit small, of selecting the root of the tree and,
thus, changing the whole pipeline. It is also possible to change all preprocessing steps of
a pipeline at once, for example, something the original approach did not allow.

Note that this definition of neighborhood is a probability distribution over the
complete search space. All experiments in Chapter 4 that require the calculation of the
neighborhood of a pipeline use a random sample of this distribution.
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3.2.2 Distance Between Pipelines

When trying to estimate the distance between machine learning pipelines, although
not strictly mandatory, it is important to take into consideration the impact on the final
result of the pipeline (the accuracy of a classification pipeline, for example). This takes us
back to the previous discussion that replacing an algorithm usually has a bigger impact
than simply modifying the value of a hyperparameter (note that this is not universally
true, depending on the dataset, algorithms and hyperparameters, for example). Further-
more, there are several different types of machine learning algorithms. In this work, we
grouped algorithms according to the classification of the Python library scikit-learn [12].
We hypothesize that replacing an algorithm with another from a different class will have
a bigger impact on performance than replacing it with a more similar algorithm from the
same class1.

Thus, in the context of ML pipelines, the distance dist(Sa, Sb) between trees Sa

and Sb, which represent pipelines, must take into consideration the semantics of the dif-
ference between them. For this reason, determining the distance between pipelines is not
straightforward and depends on expert knowledge. In order to define these distances, we
classified the grammar symbols into 17 disjoint sets A0, A1, . . . A16. Table 3.2 describes
the partitions containing special symbols, non-terminals and hyperparameters. The par-
titions of the preprocessing algorithms are shown in Table 3.3, whereas the classifiers are
described in Table 3.4. All algorithms are based on the scikit-learn API2 [12; 60].

Table 3.2: Symbol partitioning for special symbols, non-terminals and hyperparameters.

Partition Description
A0 NULL symbol
A1 <start> symbol
A2 <preprocessing> symbol
A3 <classification> symbol
A14 Discrete hyperparameters
A15 Continuous hyperparameters
A16 Categorical hyperparameters

The set A0 is reserved for a special NULL symbol, used to treat cases in which a
node in a tree does not have a corresponding node in the other. For i, j ∈ {0, 1, . . . , 16},
the distance between two symbols x ∈ Ai and y ∈ Aj, which are nodes in the tree
representation of the pipelines, is given by d(x, y) = C, where C is a constant that

1This observation is very sensitive to the way algorithms are grouped, which is left as future work.
2The documentation for the version of the API used in this work can be found at https://scikit-learn.

org/0.22/modules/classes.html.

https://scikit-learn.org/0.22/modules/classes.html
https://scikit-learn.org/0.22/modules/classes.html
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Table 3.3: Symbol partitioning for preprocessing algorithms.

Partition Description Algorithms
A4 Imputation SimpleImputer

A5 Data range manipulation

Normalizer
MinMaxScaler
MaxAbsScaler
RobustScaler
StandardScaler
QuatileTransformer
Binarizer

A6
Dimensionality manipulation
and feature construction

VarianceThreshold
SelectKBest
UnivariateSelect
SelectPercentile
PCA
IncrementalPCA
KernelPCA
FastICA
GaussianRandomProjection
SparseRandomProjection
FeatureAgglomeration
RBFSampler
Nystroem
TruncatedSVD
LinearSVCPreprocessing
ExtraTreesPreprocessing
PolynomialFeatures
BernoulliRBM
RandomTreesEmbedding

depends on the class a symbol belongs to. If x and y have the same label, d(x, y) = 0.
The proposed values of C are shown in Table 3.5.

In order to make the distance analyses possible, we impose the restriction that
all pipelines must have at most three preprocessing algorithms (with the exception of
pipelines designed for datasets with missing values, which always have an additional
imputation algorithm) and exactly one classifier. Thus, we represent a tree Si with root
ri as Si = ri(c

(i)
1 , c

(i)
2 , . . . , c

(i)
m ), where the root has m children nodes, denoted by c

(i)
j ,

j ∈ {1, 2, . . . ,m}. Each node is represented by its label (i.e., its name) and can be
considered the root of a subtree. Let us consider Sa as the pipeline in Figure 3.1. ra

corresponds to the <start> node. It has two children, c(a)1 and c
(a)
2 , which correspond to

the nodes <preprocessing> and <classification>, respectively. We define a function
ch(x) that returns the first child of node x. In this example, the <imputation> group is
denoted as ch(c

(a)
1 ), whereas <bernoulliNB> is given by ch(c

(a)
2 ).

The distance between two trees Sa and Sb will initially depend on whether they
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Table 3.4: Symbol partitioning for classification algorithms.

Partition Description Algorithms

A7 Naïve Bayes

GaussianNB
BernoulliNB
MultinomialNB
ComplementNB

A8 Linear models

SVC
NuSVC
LinearSVC
LogisticRegression
Perceptron
PassiveAggressiveClassifier
SGDClassifier
RidgeClassifier
RidgeClassifierCV

A9 Neural networks MLPClassifier

A10 Nearest neighbors
KNeighborsClassifier
RadiusNeighborsClassifier
NearestCentroidClassifier

A11 Discriminant analysis LinearDiscriminantAnalysis
QuadraticDiscriminantAnalysis

A12 Trees DecisionTreeClassifier
ExtraTreeClassifier

A13 Ensembles

RandomForestClassifier
ExtraTreesClassifier
AdaBoostClassifier
GradientBoostingClassifier

Table 3.5: The proposed distances d(x, y) between symbols w.r.t. their partitions.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A0 1 0 8 0 4 4 4 0 0 0 0 0 0 0 0 0 0
A1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A5 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A6 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 1 2 2 2 2 2 2 0 0 0
A8 0 0 0 0 0 0 0 2 1 2 2 2 2 2 0 0 0
A9 0 0 0 0 0 0 0 2 2 1 2 2 2 2 0 0 0
A10 0 0 0 0 0 0 0 2 2 2 1 2 2 2 0 0 0
A11 0 0 0 0 0 0 0 2 2 2 2 1 2 2 0 0 0
A12 0 0 0 0 0 0 0 2 2 2 2 2 1 2 0 0 0
A13 0 0 0 0 0 0 0 2 2 2 2 2 2 1 0 0 0
A14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5
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include preprocessing steps or only a classification algorithm. Equation 3.3 shows four
possible cases: neither Sa nor Sb have preprocessing steps, and only the distance from
the classification algorithm (distclf ) is accounted for (C1); both trees have preprocessing
steps, and we calculate the distances from the two sides of the tree (distpre and distclf )
(C2); only Sa (C3) or Sb (C4) have a preprocessing step, so we calculate the distance
between the classification subtrees and add a constant k to the distance, where k =

d(<preprocessing>, NULL) is the distance between the <preprocessing> non-terminal
and the NULL symbol, which is greater than the distance between any two preprocessing
algorithms.

dist(Sa, Sb) =



distclf (ch(c
(a)
1 ), ch(c

(b)
1 )) C1

distpre(c
(a)
1 , c

(b)
1 ) + distclf (ch(c

(a)
2 ), ch(c

(b)
2 )) C2

k + distclf (ch(c
(a)
1 ), ch(c

(b)
2 )) C3

k + distclf (ch(c
(a)
2 ), ch(c

(b)
1 )) C4

(3.3)

To the best of our knowledge, the way we calculate the distance between two
preprocessing subtrees cannot be expressed in closed form, and function distpre is described
in Algorithm 1, where children(x) is a function that returns all the children of node x.
Sets A and B are initialized with the preprocessing groups of trees Sa and Sb, respectively
(line 3). The first component of the distance is calculated as the distance from all groups
that are present in only one of the trees to the NULL symbol (lines 4 and 5). The second
component consists of the distances between groups that are present in both trees (line 6).
The loop in lines 7-16 compares the groups in the intersection. Function get_node(l, X)

returns the node in set X whose label is l. For each group, if the algorithms in trees Sa

and Sb are different, we add their distance to the total distance (line 11). If they are the
same, we add the distance between hyperparameter partitions, according to Table 3.5, to
the total distance (lines 13 and 14), which is then returned in line 17.

As an example, consider that Algorithm 1 receives the pipelines from Figure 3.1 and
Figure 3.3c as Sa and Sb, respectively. In line 3, set A receives node <imputation> and B
receives nodes <imputation> and <dimensionality>. Thus, the difference between the
two sets is composed of node <dimensionality>, and its distance to the NULL symbol
is added to the total distance. In line 4, intersect gets the symbol <imputation> and
the corresponding nodes in trees Sa and Sb are retrieved in lines 8 and 9. algA and
algB correspond to the same algorithm, so the distances between the values of their
hyperparameters are added to the total distance.

Equation 3.4 handles the case of the distance between the classification algorithms.
In the first case of the equation, the algorithms are the same. Thus, the roots ra and rb,
which correspond to the non-terminals with the names of the algorithms, have the same
number of children, m. In this case, the distance between the trees is the summation of the
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Algorithm 1 Distance between preprocessing subtrees
1: procedure distpre(Sa, Sb) ▷ The root of Sa and Sb is the <preprocessing> symbol
2: distance← 0
3: A← {n | n ∈ children(Sa)}; B ← {n | n ∈ children(Sb)}
4: diff ← (A−B) ∪ (B −A)

5: distance← distance+
∑|diff |

i=1 d(diffi, NULL)
6: intersect← A ∩B
7: for all label ∈ intersect do
8: algA← ch(get_node(label, A))
9: algB ← ch(get_node(label, B))

10: if algA ̸= algB then ▷ Different algorithms
11: distance← distance+ d(algA, algB)
12: else ▷ Same algorithm; check hyperparameters
13: hpA← children(algA); hpB ← children(algB)

14: distance← distance+
∑|hpA|

i=2 d(ch(hpAi), ch(hpBi))
15: end if
16: end for
17: return distance
18: end procedure

distance between the values of the hyperparameters of each algorithm. If the algorithms
are not the same, the distance between the trees is the distance between the partitions to
which each algorithm belongs, given in Table 3.5.

distclf (Sa, Sb) =


∑m

j=2 d(ch(c
(a)
j ), ch(c

(b)
j )) if ra = rb,

d(ra, rb) otherwise.
(3.4)

3.3 Fitness Function

The last component of a fitness landscape is a fitness function f : X → R that
assigns a real number to each element of the set of configurations X, described in Sec-
tion 3.1. In this work, we deal with multiclass classification problems with class imbalance.
Therefore, we use the F1 score [88] to evaluate the quality of the solution given by each
machine learning pipeline. Equation 3.5 defines F1 score for binary classification prob-
lems, where TP, FP and FN are the numbers of true positives, false positives, and false
negatives given by the pipeline, respectively. When working with classification problems
with class imbalance, F1 score is a useful way of measuring the model’s accuracy, because
it not only considers the errors made, but also the types of errors, revealing models that
always predict the majority class, for example.
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F1 score =
2 · TP

2 · TP + FP + FN
(3.5)

As we deal with multiclass classification, we use a one-vs-all approach, in which
we consider the results of a binary classifier for each class of the dataset. We then take
the weighted average of the F1 score for each classifier as the final pipeline’s fitness.

3.4 Adaptations of FLA Metrics

This section describes the adaptations that had to be made in order to apply
Fitness Landscape Analysis to the context of AutoML.

3.4.1 Random Walks

Many FLA metrics depend on random walks over the landscape, either because
the original formulation requires such a walk, or because computational complexity would
prevent the exploration of the complete search space. Several random walk algorithms
have been proposed with the goal of sampling discrete or continuous landscapes, such as
adaptive walks [36], neutral walks [68], progressive walks [47] and distributed walks [40].
In this work, we used a simple random walk, as described below.

Given a starting point (i.e., a machine learning pipeline), we generate a random
neighborhood of size n by applying the mutation operator, described in Section 3.2.1,
on the starting point n times, randomly select a neighbor and use it as the next starting
point. We repeat this process until a desired walk length is achieved or a number of invalid
pipelines that is five times the walk length is generated. Pipelines are invalid if the model
throws an exception during training (this might happen when a forbidden combination of
hyperparameter values is not captured by the grammar, or the eigenvalue computation
does not converge when running Principal Component Analysis, for example) or training
exceeds the time budget of 300 seconds per pipeline.

In order to perform random walks, we could apply a mutation operator a single time
to generate a random neighbor. However, we opted to generate a random neighborhood
and then choose a random neighbor as the next step to be able to use the same experiment
to calculate both correlation length and neutrality.
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3.4.2 Neutrality for Continuous Fitness

The definition of neutrality given in Section 2.2.1 expects a discrete fitness in order
to check for equality. In the case of classification pipelines, we use the F1 score, which
is continuous, as the fitness function. Thus, we adapted the definition of neutrality to
account for pipelines that are neutral within a specified tolerance δ for the fitness value.
Equation 2.4, which defines the neutral neighborhood N (s) of a pipeline s considering a
discrete fitness function, can be rewritten as Equation 3.6.

N≈(s) = {s′ ∈ N(s) | |f(s′)− f(s)| < δ}, (3.6)

whereN≈(s), N(s) and f(s) are the quasi-neutral neighborhood, a sample of the complete
neighborhood, and the fitness of s, respectively, and δ ≥ 0 is a small constant. The
neutrality ratio of s can then be rewritten as |N≈(s)|/|N(s)|.

3.4.3 Correlation Length for Non-isotropic Landscapes

The autocorrelation function used to calculate correlation length assumes that the
landscape is statistically isotropic, which means that the statistics of the fitnesses of a
random walk are the same, regardless of the starting point. To the best of our knowledge,
this might not be the case for AutoML landscapes. Thus, we performed several random
walks with different starting points in order to obtain more significant values for the
correlation length metric [32].

3.4.4 FDC for Very Large Search Spaces

In its original formulation, given in Section 2.2.3, FDC requires knowledge of the
global optimum (or optima). Malan and Engelbrecht [46] proposed an adaptation of FDC,
dubbed the fitness distance correlation searchability, or FDCs, for continuous problems,
for which the global optimum is not known.

Given a random sample of n points from the search space, the fitness values F =

{f1, . . . , fn} are evaluated and their mean f is calculated. The distance from the best
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configuration in the sample to every point, as described in Section 3.2.2, is denoted by
D∗ = {d∗1, . . . , d∗n}, with mean d∗. FDCs is given by Equation 3.7. From here on, we
denote FDCs simply by FDC.

FDCs =

∑n
i=1(fi − f)(d∗i − d∗)√∑n

i=1(fi − f)2
√∑n

i=1(d
∗
i − d∗)2

(3.7)

3.5 AutoML Optimizers

In order to evaluate how AutoML optimizers deal with search spaces with dif-
ferent characteristics, we implemented two algorithms from the literature: TPE [4] and
SMAC [29]. Both algorithms follow the Sequential Model-Based Optimization (SMBO)
approach. SMBO is a framework based on Bayesian optimization for solving algorithm
configuration problems, which can also be applied to the problem of generating complete
machine learning pipelines [23; 78]. The framework consists of iterating between fitting
regression models that predict performance and using the results to choose promising
configurations from unseen regions of the parameter space [28; 29].

SMAC (Sequential Model-based Algorithm Configuration) is an instantiation of the
SMBO framework which supports numerical, categorical and conditional hyperparameters
and can be used for sets of problem instances [29]. SMAC uses as its surrogate a model
based on the idea of random forests, which have good performance for categorical data.
The random forest is constructed as a set of regression trees using a given number of
observations sampled randomly from the training set with repetition. SMAC then obtains
a predictive mean and variance of a new configuration as the empirical mean and variance
of its trees’ predictions for such configuration. Promising hyperparameter configurations
are selected by optimizing an acquisition function, known as the Expected Improvement
(EI) [33], over the best configuration found so far – also called the incumbent. This is
done by performing a multi-start local search, chosen from the previous iterations, and
considering all configurations with locally optimal EI, which can be evaluated based on
the mean and variance of the predictions.

Another crucial step of SMAC is deciding how many evaluations should be per-
formed for each configuration and when a configuration can be chosen as the incumbent.
This component is known as the intensification mechanism. SMAC does this by taking a
list of promising configurations, chosen based on EI, and comparing them to the current
incumbent until a time budget is reached. In order for a configuration to become the
new incumbent, it must outperform the current incumbent in every sample of the data,
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making SMAC robust for noisy function evaluations.
TPE, in turn, uses tree-structured Parzen estimators (TPE) as the surrogate model

and also relies on EI as its acquisition function [4]. TPE uses Bayes’ rule to define the
probabilistic model. Using the notation defined in Section 2.1 and considering maximiza-
tion problems, TPE defines two non-parametric densities for the prior configuration, as
shown in Equation 3.8.

p(λ | y) =

g(λ) if y > y∗

l(λ) if y ≤ y∗
, (3.8)

where y = G(A,D(i)
train,D

(i)
valid), g(λ) is the density generated by using configurations that

resulted in a gain greater than a threshold y∗ and l(λ) is the density generated by the
remaining observations. y∗ is chosen as some quantile γ of the observed values of y, such
that p(y < y∗) = γ.

The work done by Bergstra et al. [4] shows a closed form of the EI equation that
is proportional to g(λ)/l(λ)3. Therefore, in order to maximize EI, TPE draws candidates λ

that are more likely under g(λ) than under l(λ) and evaluates them in terms of g(λ)/l(λ),
returning the candidate with the greatest EI at each iteration of the algorithm.

Following the SMBO framework, at each iteration, the actual fitness function is
evaluated for the chosen candidate and used to update the surrogate model. When the
time or iterations budget is exceeded, the best candidate is returned.

We executed the optimizers for the three smallest search spaces, namely small,
default and auto-sklearn, and evaluated the best fitness found in each iteration of
the algorithm, the number of distinct pipelines and the percentage of the search space
explored. We also calculated FDC for the optimizers, using the explored pipelines as the
random sample required by the metric.

3Note that the original formulation treats hyperparameter optimization as a minimization problem,
so the authors describe EI as inversely proportional to this ratio.
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Chapter 4

Experimental Evaluation and Results

In this chapter, we present the experimental evaluation and discuss the results. We
initially evaluated the fitness of random samples of the search spaces in order to obtain
preliminary insights into the difficulty of the classification tasks (i.e., the existence of good
solutions), which does not necessarily reflect the difficulty of finding the best machine
learning pipeline to solve such tasks. We also calculated the global optimum for the two
smallest search spaces, namely small and medium. We then calculated the FLA metrics
Neutrality, Correlation Length and FDC for all search spaces and datasets. Lastly, we
implemented AutoML optimizers based on TPE and SMAC, evaluated their performances
on the proposed search spaces and calculated FDC for the explored regions. Pipeline
evaluations were performed using a 5-fold cross-validation procedure, except for the SMAC
and TPE executions, which performed a single training step with the entirety of the
training data. Fitness values used to calculate FLA metrics and reported in the form of
tables were obtained for a separate test set.

4.1 Datasets

In order to evaluate the characteristics of the search spaces described in Section 3.1,
we used nine datasets, obtained from OpenML [84]. Table 4.1 summarizes their main
characteristics, including a link to the source (note that some of the original names have
been modified), the number of instances (# inst.), features (# feat.) and classes (#
classes) and information regarding the presence of missing values.

Most of the datasets are part of the OpenML-CC18 benchmarking suite [7], which
fulfills several useful requirements for comprehensive and practical benchmarking. The ex-
ceptions are statlog-segment, which is a part of OpenML100 [6], a predecessor of OpenML-
CC18, and wine-quality-red, which is not a part of any OpenML benchmarks. In order
to simplify the evaluation of the machine learning pipelines, we removed all categorical
features, otherwise the pipelines would need to include encoding steps for such features.
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Table 4.1: Datasets used in the experiments.

Dataset # inst. # feat. # classes Missing Observation
breast-w 699 9 2 Yes
diabetes 768 8 2 No

mice-protein 1,080 77 8 Yes Removed categorical
features

ml-prove 6,118 51 6 No
statlog-segment 2,310 19 7 No
texture 5,500 40 10 No 500 instances missing
vehicle 846 18 4 No
wilt 4,839 5 2 No
wine-quality-red 1,599 11 6 No

4.2 Fitness Landscapes

For each of the selected datasets, we built a fitness landscape for each search space
defined in Chapter 3. For that, we need to evaluate all candidate solutions using the F1
score, defined as our fitness. However, it is usually unfeasible to completely enumerate
the search spaces in order to obtain their global optima, but we were able to evaluate all
pipelines in search spaces small and medium, which were built with the purpose of being
toy examples to our analysis.

Table 4.2 shows the best fitness value for each combination of the two enumerable
search spaces and dataset and the number of pipelines with that fitness value, with a
precision of three decimal places. This gives us the number of global optima. We see cases
in which a large number of pipelines with the same approximated optimal fitness (e.g.,
dataset mice-protein on search space medium), whereas other combinations have a single
optimum (e.g., datasets breast-w, ml-prove and vehicle on search space small). Despite
the differences in the number of global optima, the best fitness values are very similar for
both search spaces, usually differing in less than 1% (the exceptions are datasets vehicle
and wine-quality-red, with differences of approximately 1.5% and 3%, respectively). It
stands to reason that, fixing all other characteristics of the search space, it may be easier
for an optimizer to find an optimal solution when there are several of them. Note that
this does not mean that the search space is easier, only that it is easier for an optimizer
to find a global optimum by chance.

After finding the optima for the two enumerable search spaces, in order to obtain an
overall understanding regarding the difficulty of the classification task for each dataset,
we generated the fitness of a random sample of 20,000 pipelines from each of the four
search spaces. Figure 4.1 shows a boxplot of the results, while Table 4.3 summarizes the
mean and standard deviation (within parentheses) of the fitness.

https://www.openml.org/search?type=data&sort=runs&id=15&status=active
https://www.openml.org/search?type=data&sort=runs&id=37&status=active
https://www.openml.org/search?type=data&status=active&id=40966
https://www.openml.org/search?type=data&sort=runs&id=1475&status=active
https://www.openml.org/search?type=data&sort=runs&id=36&status=active
https://www.openml.org/search?type=data&sort=runs&id=40499&status=active
https://www.openml.org/search?type=data&sort=runs&id=54&status=active
https://www.openml.org/search?type=data&sort=runs&id=40983&status=active
https://www.openml.org/search?type=data&sort=runs&id=40691&status=active
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Table 4.2: Global optima of each combination of search space and dataset.

Search space Dataset Best fitness # pipelines

small

breast-w 0.982 1
diabetes 0.803 2
mice-protein 0.974 10
ml-prove 0.446 1
statlog-segment 0.968 2
texture 0.999 10
vehicle 0.811 1
wilt 0.990 6
wine-quality-red 0.625 8

medium

breast-w 0.978 54
diabetes 0.801 3
mice-protein 0.983 990
ml-prove 0.448 33
statlog-segment 0.970 40
texture 0.998 6
vehicle 0.799 3
wilt 0.989 3
wine-quality-red 0.645 16

Figure 4.1: Fitness evaluation of a random sample of the search space.
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Source: author.

Table 4.3: Best fitness of a random sample of the search space. Values within parentheses
show the difference between the sample optimum and the global optimum.

Dataset small medium large auto-sklearn
breast-w 0.982 (0.0%) 0.978 (0.0%) 0.982 0.980
diabetes 0.799 (0.5%) 0.796 (0.6%) 0.797 0.803
mice-protein 0.974 (0.0%) 0.983 (0.0%) 0.983 0.985
ml-prove 0.445 (0.2%) 0.442 (1.3%) 0.449 0.450
statlog-segment 0.965 (0.3%) 0.968 (0.2%) 0.973 0.978
texture 0.999 (0.0%) 0.998 (0.0%) 0.999 0.999
vehicle 0.809 (0.2%) 0.798 (0.1%) 0.799 0.820
wilt 0.990 (0.0%) 0.989 (0.0%) 0.989 0.990
wine-quality-red 0.623 (0.3%) 0.640 (0.8%) 0.627 0.648
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For search spaces small and medium, the random sample, albeit small, is able to
capture the global optimum or find solutions with fitness very close to the optimum. For
all datasets, except for breast-w, the sample of search space auto-sklearn contains the
best solutions. When we only consider search spaces small, medium and large, which
were specifically proposed for this work, small contains the best solution for five out
of nine datasets, medium for two datasets and large for six1. Although it may appear
that search spaces with more algorithms (i.e., small and large) are better than search
spaces with fewer algorithms (i.e., medium), we note that the fitness values of the best
solution found in all search spaces are very close. An implication of this observation is
that, in general, smaller search spaces might be sufficient and, depending on how the
chosen optimization algorithm explores the space, easier to search.

4.3 FLA Metrics

After obtaining some hints on the difficulties of the landscapes generated by the
four search spaces, this section shows the results of Neutrality, FDC and Correlation
Length, which address Research Question 1. These metrics were calculated using a sample
of the search space, obtained uniformly at random or using the random walk described in
Sections 3.4.1.

4.3.1 Neutrality

For the analysis of the neutrality of the search space, for each combination of search
space and dataset, we performed ten random walks of length up to 15,000 pipelines,
starting from random points in the search space. For each solution in the walk, we
evaluated the fitness function of up to 50 randomly generated neighbors and analyzed its
neutrality ratio. One of the neighbors was randomly selected to be the next point in the
walk. Here we report the mean neutrality ratio of the complete walk.

We defined both the length of the random walks and the size of the neighborhood
in terms of valid pipelines. When the experiment exceeded five times the walk length
without finding the desired number of valid pipelines, the walk was interrupted at the

1More than one search space may contain pipelines with the best fitness for each dataset.
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current length. A similar approach was used for the generation of the neighborhood, with
a limit of ten times the size of the neighborhood for each point in the random walk.

Recall from Section 3.4 that, for continuous fitness functions, we consider neutrality
within a specified tolerance δ. We executed experiments varying the values of δ from 0 to 1,
as shown in Figure 4.2. As expected, neutrality increases for higher tolerance thresholds.
Furthermore, the behavior of neutrality as a function of δ varies between search spaces and
datasets. Therefore, we set the tolerance independently for each combination of dataset
and search space as the standard deviation of the mean fitness of the random sample of
size 20,000. However, it might be more appropriate to define the tolerance according to
the business needs of the application, in terms of fitness requirements, which is beyond
the scope of the present work.

Figure 4.2: Effect of the tolerance threshold δ on the neutrality ratio, considering the
longest random walks and largest neighborhoods.
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Figure 4.3 illustrates the neutrality results for the diabetes dataset. The results for
the other datasets, which are mostly similar to those for the diabetes dataset, can be found
in Appendix B.1, Figures B.1 to B.8. Search space small showed the lowest neutrality
ratios for all datasets, except for wine-quality-red when evaluating larger neighborhood
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sizes. This search space keeps all hyperparameters fixed at their default values, so the
results suggest that changing hyperparameter values indeed has a lower impact on the
fitness of the solution than changing algorithms. Search space large, which has the
largest number of algorithms and hyperparameter values, showed the highest neutrality
ratios for six datasets. The exceptions are datasets breast-w,ml-prove and wilt, for both
the smallest and largest neighborhood sizes. We were unable to identify characteristics
of such datasets that could explain this behavior. Note that higher neutrality ratios may
indicate either a more globally neutral landscape or landscapes with larger neutral regions.

Figure 4.3: Neutrality evaluation for the diabetes dataset (note the different scales).
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Overall, these results seem to confirm the expectation that larger search spaces,
especially those with broad hyperparameter domains, tend to be more neutral. The
possible effects of neutrality on the performance of optimization methods will be explored
in Section 4.4. It is important to note that we evaluated methods based on Bayesian
optimization, which make a global exploration of the search space. The performance of
this kind of method may be less affected by the presence of neutrality than gradient-based
methods or local search.

The grammars used to define the search spaces allow the existence of some condi-
tional hyperparameters that are ignored by the algorithm based on the value of another
hyperparameter. When this happens, pipelines that only differ in the value of a hyperpa-
rameter that is ignored are inherently the same, generating artificial neutrality. Although
the grammars could be modified to prevent this from happening, we chose not to do so,
given that it would require increasing the complexity of the grammar, which would affect
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the way we represent the semantics of the pipelines, calculate the distance and define the
neighborhood.

4.3.2 Correlation Length

Correlation Length is a way of measuring the ruggedness of a landscape and is
based on random walks. For this reason, we calculated this measure using the neutrality
experiments, described in Section 4.3.1, with the largest neighborhood size.

Figure 4.4: Correlation length results.
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Figure 4.4 shows the correlation length for different walk lengths and a summa-
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rization of the results for a walk of 15,000 pipelines. For walks of length up to 5,000, we
see some instability in the correlation length for different executions of the random walk,
but it becomes stable after this point. For seven datasets, correlation length is ordered, in
ascending order, according to the size of the search space, meaning that small always has
the smallest correlation length, meaning more rugged landscapes (see Table 2.1), followed
by medium, auto-sklearn and large. For dataset breast-w, the ordering is maintained,
although medium and small have roughly the same correlation length. For diabetes, this
can be observed for search spaces auto-sklearn and large. Correlation length also de-
pends on the characteristics of the dataset, although this effect is much less pronounced
than what was observed for the search space.

4.3.3 Fitness Distance Correlation

FDC analysis was carried out by evaluating ten independent random samples of
10,000 pipelines each. In our previous study [61], in which we evaluated samples of size
3,000, we demonstrated the sample size has little effect on FDC. Thus, we omitted this
experiment here. Recall that, for maximization problems (see Equation 2.3), low FDC
values are considered easy, values around zero are hard and high values indicate misleading
landscapes. Some works proposed specific values that could be considered low or high,
but we limit ourselves to the comparison of FDC values for different datasets and search
spaces.

Figure 4.5 illustrates the results of the FDC analysis. As we can see, FDC is not
consistent among datasets and search spaces. Any given dataset can produce positive
or negative FDC values for different search spaces. The same can be observed when
grouping the results by search space. Overall, 24 out of 36 combinations of dataset and
search space had negative FDC values, which suggests easy landscapes, ten combinations
are considered misleading by FDC and two are hard2. It is important to note that FDC
tries to describe the searchability of the landscape, not the hardness of the classification
problem. Thus, we can observe instances that are described as hard or misleading by
FDC, but have high fitness values (Tables 4.2 and 4.3).

A major drawback of using FDC for continuous spaces is the dependence on the
local optimum for a sample of the space, which may be arbitrarily worse than the global
optimum. In order to assess the impact of this adaptation, we executed smaller FDC
experiments, using ten independent random samples of size 5,000, using either the global
or local optima for search spaces small and medium, whose global optima are known. We

2We considered a landscape as hard if the interquartile range of the boxplot included the value zero.
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Figure 4.5: FDC results.
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call these results FDCg. Figure 4.6 shows considerable differences between the local FDC
and FDCg for dataset breast-w and search space small and for dataset statlog-segment
and search space medium. In the former case, FDC indicates a misleading landscape,
whereas FDCg indicates that the landscape is easy. The latter is less extreme. The
landscape was identified as misleading by FDC and hard by FDCg. Besides these changes
in interpretation, FDCg also showed less variation than FDC. Despite these differences,
the global optimum is rarely known, and the computational cost of evaluating machine
learning pipelines makes it unfeasible to evaluate larger samples.

FDC results indicate that the searchability of AutoML problems greatly depends
on the dataset and the search space, making it hard to generalize assumptions regarding
problem difficulty. Thus, we believe that FDC should always be analyzed together with
other landscape characteristics and only be interpreted as a weak indication of problem
difficulty.
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Figure 4.6: FDC results using global and local optima for completely explored search
spaces.
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4.4 AutoML Optimizers

In order to obtain some insights on how the characteristics of the fitness landscape
impact the performance of search methods (Research Question 2), we executed ten in-
dependent runs of TPE and SMAC, with a time budget of five hours. Tables 4.4 and
4.5 describe the hyperparameters of the TPE and SMAC implementations, respectively.
Note that the original implementations [4; 29] of both algorithms used a hyperparameter
to control the number of iterations or executions, which we replaced with a time budget.
We also omitted the extra evaluations of Expected Improvement (EI) for a random sample
from SMAC, due to time constraints.

The number of pipelines evaluated within the time budget shows great variation
for each execution of the algorithms. This can occur for a number of factors, such as the
time required to train the pipelines and concurrence with other processes running on the
same computer, for example.

For the TPE and SMAC executions, pipelines were evaluated using the same frame-
work as the complete exploration of the search spaces and the computation of FLA metrics.
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However, training was done using the complete training data, rather than using a 5-fold
cross-validation procedure, due to time constraints. For this reason, fitness values are
not directly comparable to those obtained for the global optima evaluation of enumerable
search spaces. Despite this limitation, we were still able to evaluate how the optimizers
respond to the characteristics of the landscapes, as identified by the metrics described in
Section 4.3.

Table 4.4: Hyperparameters of the TPE implementation.

Hyperparameter Value
Size of the random sample obtained before
starting the algorithm 20

Number of points chosen from the EI distributions
to be used in the evaluation of the objective function
at each iteration

108

Fraction of best point from the previous iteration
to be used to construct the new density functions 0.25

Table 4.5: Hyperparameters of the SMAC implementation.

Hyperparameter Value

SMAC HPs

Percentage of promising configurations
to use in the intensify step 0.2

Size of the random sample used to evaluate
EI during the local search step 10

Random
Forest HPs

Number of trees in the forest 10
Use bootstrap samples True
Maximum depth of the trees 220

Minimum number of samples required
to split an internal node 3

Minimum number of samples required
to be at a leaf node 3

Number of features to consider when
looking for the best split

5/6 of the features

Figure 4.7 summarizes the results for dataset diabetes, which is representative of
other datasets3. The plots on the left-hand side show the best fitness found by each opti-
mizer at each iteration of the algorithm. As we can see, SMAC executes fewer iterations
given the same time budget as TPE, but both algorithms seem to converge after very
few iterations. The smaller number of iterations performed by SMAC can be due to the
overhead of evaluating random forests. For some datasets, TPE tends to find slightly
better pipelines for search space auto-sklearn, which has the highest neutrality ratio
and correlation length among the three evaluated search spaces. The plots in the middle

3The solid lines represent the mean of 10 independent runs. Given the variation in the number of
evaluated pipelines in each run, the mean can decrease in later iterations.
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Figure 4.7: Exploration of the search spaces by TPE and SMAC for dataset diabetes.
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of the figure show how many distinct pipelines were evaluated at each iteration, whereas
the right-hand side corresponds to the percentage of the search space that has been ex-
plored so far. TPE gets stuck in a very small number of pipelines for search spaces small
and medium, but is able to better explore search space auto-sklearn. This suggests that
TPE can benefit from the presence of neutrality, but struggles to explore more rugged
landscapes. On the other hand, SMAC is able to efficiently explore all search spaces. In
fact, for search space auto-sklearn, there is very little repetition of pipelines, followed
by small and medium. This suggests that SMAC’s performance is also hindered by an
increase in ruggedness, but to a much lesser extent than TPE. Furthermore, small is
more rugged than medium, but is better explored by SMAC, so there are probably other
characteristics of the landscape affecting the exploratory ability of the algorithm. The
results for the other datasets can be found in Appendix B.2, Figures B.9 to B.16.

4.4.1 FDC of the Explored Regions

We calculated FDC for the pipelines explored by TPE and SMAC, using the best
solution found as the optimum. Figure 4.8 shows the results. As presented in Section 4.3.3,
FDC values greatly differ between search spaces and datasets, so we were unable to find
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meaningful patterns that could explain optimizer performance. However, when comparing
TPE and SMAC, we note that, although both are able to find pipelines with good fitness,
they explore the space in very different ways. For instance, there is a much larger variation
in the results of the independent runs of TPE than those of SMAC. Furthermore, there
are several instances in which the interpretation of problem difficulty given by FDC is
different for each optimizer. For example, TPE’s exploration of search space medium with
dataset breast-w revealed an easy landscape (negative FDC), whereas SMAC identified it
as slightly hard or misleading (small positive value). Similarly, the landscape generated
by search space medium and dataset statlog-segment was identified as easy by SMAC
and misleading by TPE. Moreover, FDC results vary a lot for TPE, even changing the
interpretation of the difficulty of the landscape for different executions. These observations
support our claim that FDC (based on local optima) may not be a good metric to assess
the difficulty of AutoML problems.

Figure 4.8: FDC of the regions explored by TPE and SMAC.
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Chapter 5

Conclusions and Future Work

AutoML methods allow the industry and researchers from various fields to use machine
learning without the need to deeply understand what happens behind the curtains. How-
ever, such methods still need to define a search space of possible solutions in order to find
the best one for a given learning problem. Little is known about the characteristics of
these spaces and how they can affect the performance of different search methods.

In this work, we adapted a tree-based representation of machine learning pipelines
that is able to capture the semantics of the pipelines. We took advantage of this rep-
resentation to define a probabilistic neighborhood based on a mutation operator and a
distance metric between pipelines that take into consideration the semantics of the mod-
ifications needed to transform one pipeline into the other. Changes that are considered
more relevant by a human expert (replacing a classification algorithm, for example) result
in a larger distance than smaller modifications (changing the value of a hyperparameter,
for example).

In order to address Research Question 1 (characteristics of the search space), we
evaluated typical fitness landscape analysis measures for four different search spaces and
nine datasets. We found that larger search spaces, especially those with broad domains for
the hyperparameters of the algorithms, tend to have higher neutrality ratios than smaller
spaces. Correlation Length, which is a way of measuring the ruggedness of a landscape,
showed that smaller search spaces are usually more rugged than larger ones, which can
be hard for optimization methods. Fitness Distance Correlation (FDC) results, on the
other hand, were harder to analyze. FDC values show great variation between different
search spaces and datasets, with no apparent patterns. Although results were difficult
to analyze, more than 60% of the evaluated instances were considered easy, less than a
third were considered misleading and very few are hard. This suggests that, although
they seem very complex, given their size and variety of variable types, AutoML search
spaces may not be extremely hard to search, at least for methods based on Bayesian
optimization. Furthermore, we note that using local optima to calculate FDC can lead
to very different results compared to experiments using global optima, which is usually
unfeasible to calculate.

Regarding Research Question 2 (optimizer performance), search method TPE
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found slightly better pipelines and explored a larger portion of the search space for more
neutral landscapes, suggesting that it may benefit from the presence of neutrality, but
this effect was less present in SMAC executions. More rugged landscapes, as identified
by Correlation Length, often result in poorer exploration by both TPE and SMAC, al-
though SMAC is more robust than TPE. However, SMAC was able to explore some very
rugged landscapes better than smoother ones, suggesting that other characteristics of the
landscape are affecting the exploration ability of the optimizers. We found no clear cor-
relation between FDC values and the optimizers’ ability to explore the landscapes and
find good solutions, indicating that this metric may not be a good way of explaining the
performance of AutoML methods based on Bayesian optimization.

These results give initial insights into the characteristics of AutoML search spaces
and how search methods based on Bayesian optimization behave in relation to these char-
acteristics. A possible direction for future research is to evaluate other classes of AutoML
methods, such as those based on evolutionary search and multi-fidelity optimization. It
would also be interesting to modify the grammars in order to eliminate the generation of
different pipelines that are actually considered the same, because some hyperparameters
are ignored during training. Another important direction is to study how the parameters
that control the generation of neighborhoods (i.e., the weights of the mutation opera-
tor) and the distance between different components of the pipelines, which were defined
based on the experience of the author and his advisors, affect FLA measures. The dis-
tance metric also depends on a categorization of machine learning algorithms. In this
work, we used the classification used by the scikit-learn library, but there might be more
appropriate approaches, such as grouping algorithms based on how they work [70].
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Appendix A

Context-free Grammars

This appendix lists the grammars presented in Section 3.1 in BNF (Backus–Naur form)
notation.

A.1 Search space small

# __default denotes the d e f au l t va lue o f the parameter ,
# as de f ined by the s c i k i t −l ea rn implementation .

<Start> : := <preproce s s ing > <c l a s s i f i c a t i o n >

# Preproce s s ing
<preproce s s ing > : :=

<imputation> | <imputation> <b ina r i z e r > | imputation> <bounding> |
<imputation> <dimens iona l i ty> | <imputation> <feat_const> |
<imputation> <b ina r i z e r > <dimens iona l i ty> |
<imputation> <bounding> <b ina r i z e r > |
<imputation> <bounding> <dimens iona l i ty> |
<imputation> <dimens iona l i ty> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <bounding> |
<imputation> <dimens iona l i ty> <feat_const> |
<imputation> <feat_const> <b ina r i z e r > |
<imputation> <feat_const> <bounding> |
<imputation> <feat_const> <dimens iona l i ty> |
<imputation> <bounding> <b ina r i z e r > <dimens iona l i ty> |
<imputation> <bounding> <dimens iona l i ty> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <bounding> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <feat_const> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <feat_const> <bounding> |
<imputation> <feat_const> <b ina r i z e r > <dimens iona l i ty> |
<imputation> <feat_const> <bounding> <b ina r i z e r > |
<imputation> <feat_const> <bounding> <dimens iona l i ty> |
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<imputation> <feat_const> <dimens iona l i ty> <b ina r i z e r > |
<imputation> <feat_const> <dimens iona l i ty><bounding>

## Imputation
<imputation> : := <simpleImputer>

<simpleImputer> : := SimpleImputer <strategy_imp>
<strategy_imp> : := __default

## Bounding
<bounding> : :=

<normal izer> | <minMaxScaler> | <maxAbsScaler> | <robust_sca ler> |
<standard_scaler> | <quant i l e_trans former>

<normal izer> : := Normal izer <norm>
<norm> : := __default

<minMaxScaler> : := MinMaxScaler

<maxAbsScaler> : := MaxAbsScaler

<robust_sca ler> : := RobustScaler <with_scal ing> <with_center ing>
<with_scal ing> : := __default
<with_center ing> : := __default

<standard_scaler> : := StandardSca ler <with_std> <with_mean>
<with_std> : := __default
<with_mean> : := __default

<quant i l e_trans former> : :=
Quanti leTransformer <n_quanti les> <output_dis t r ibut ion>

<n_quanti les> : := __default
<output_dis t r ibut ion> : := __default

## Bina r i z e r
<b ina r i z e r > : := <binar i z e r_a lg>

<binar i ze r_a lg> : := B ina r i z e r <threshold_bin>
<threshold_bin> : := __default

## Dimens iona l i ty reduct ion and f e a tu r e s e l e c t i o n
<dimens iona l i ty> : :=

<var ianceThreshold> | <se lectKBest> | <un iva r i a t e_se l e c t > |
<s e l e c t_pe r c en t i l e > | <pca> | <incremental_pca> | <kernel_pca> |
<fast_ica> | <gauss ian_pro ject ion> | <sparse_random_projection> |
<feature_agglomerat ion> | <rbf_sampler> | <nystroem> |
<truncatedsvd> | <linear_svc_dim> | <extra_trees_dim>
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<varianceThreshold> : := VarianceThreshold

<se lectKBest> : := SelectKBest <features_dim>
<features_dim> : := __default

<un iva r i a t e_se l e c t > : :=
Un iva r i a t eS e l e c t <score_func_univar> <mode> <param_univar>

<score_func_univar> : := __default
<mode> : := __default
<param_univar> : := __default

<s e l e c t_pe r c en t i l e > : := S e l e c tP e r c e n t i l e <score_func_se lect> <pe r c en t i l e >
<score_func_se lect> : := __default
<pe r c en t i l e > : := __default

<pca> : :=
PCA <features_dim> <whiten> <svd_solver> <tol_pca> <iterated_power>

<whiten> : := __default
<svd_solver> : := __default
<tol_pca> : := __default
<iterated_power> : := __default

<incremental_pca> : := IncrementalPCA <features_dim> <whiten>

<kernel_pca> : :=
KernelPCA <features_dim> <kernel_pca_hp> <degree_pca>

<gamma_dim> <coef0_dim>
<kernel_pca_hp> : := __default
<degree_pca> : := __default
<gamma_dim> : := __default
<coef0_dim> : := __default

<fast_ica> : :=
FastICA <features_dim> <algor i thm_fas t i ca> <funct>

<max_iter_fastica> <tol_dim> <whiten>
<algor i thm_fas t i ca> : := __default
<funct> : := __default
<max_iter_fastica> : := __default
<tol_dim> : := __default

<gauss ian_pro ject ion> : := GaussianRandomProjection <features_dim> <eps i l on >
<eps i l on > : := __default

<sparse_random_projection> : :=
SparseRandomProjection <features_dim> <eps i l on >

<dens i ty> <dense_output>
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<dens i ty> : := __default
<dense_output> : := __default

<feature_agglomerat ion> : :=
FeatureAgglomeration <features_dim> <a f f i n i t y > <compute_full_tree>

<a f f i n i t y > : := __default __default
<compute_full_tree> : := __default

<rbf_sampler> : := RBFSampler <features_dim> <gamma_dim>

<nystroem> : :=
Nystroem <features_dim> <kernel_dr> <gamma_dim> <degree_1> <coef0_dim>

<kernel_dr> : := __default
<degree_1> : := __default

<truncatedsvd> : :=
TruncatedSVD <features_dim> <n_iter> <tol_dim> <algorithm_tsvd>

<n_iter> : := __default
<algorithm_tsvd> : := __default

<linear_svc_dim> : := LinearSVCPreprocess ing <tol_svc_dim> <C_dim>
<tol_svc_dim> : := __default
<C_dim> : := __default

<extra_trees_dim> : :=
ExtraTreesPreprocess ing <cr iter ion_dim> <max_features_dim>

<min_samples_split_dim> <min_samples_leaf_dim>
<bootstrap_dim>

<criter ion_dim> : := __default
<max_features_dim> : := __default
<min_samples_split_dim> : := __default
<min_samples_leaf_dim> : := __default
<bootstrap_dim> : := __default

## Feature con s t ru c t i on
<feat_const> : :=

<polynominal_features> | <bernoull i_rbm> | <random_trees_emb>

<polynominal_features> : :=
PolynomialFeatures <degree_polyfeat> <interact ion_only> <include_bias>

<degree_polyfeat> : := __default
<interact ion_only> : := __default
<inc lude_bias> : := __default

<bernoull i_rbm> : :=
BernoulliRBM <n_components> <learning_rate_brbm>

<batch_size> <max_iter_dim>
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<n_components> : := __default
<learning_rate_brbm> ::= __default
<batch_size> : := __default
<max_iter_dim> : := __default

<random_trees_emb> : :=
RandomTreesEmbedding <n_estimators_feat> <max_depth_feat>

<min_samples_split_feat> <min_samples_leaf_feat>
<n_estimators_feat> : := __default
<max_depth_feat> : := __default
<min_samples_split_feat> : := __default
<min_samples_leaf_feat> : := __default

# C l a s s i f i c a t i o n
<c l a s s i f i c a t i o n > : :=

<gaussian_nb> | <bernoul l i_nb> | <multinomial_nb> | <complement_nb> |
<svc> | <nu_svc> | <l inear_svc> | <l o g i s t i c_ r e g r e s s i o n > |
<perceptron> | <pass ive_agre s s ive > | <mlp> | <sgd> | <lda> | <qda> |
<knn> | <radius_neighbours> | <centro id> | <r idge> | <ridge_cv> |
<dec i s i on_tree> | <extra_tree> | <random_forest> |
<extra_trees> | <ada_boost> | <gradient_boost ing>

<gaussian_nb> : := GaussianNB

<bernoul l i_nb> : := Bernoull iNB <bina r i z e > <alpha_nb> <f i t_pr i o r >
<b ina r i z e > : := __default
<alpha_nb> : := __default
<f i t_pr i o r > : := __default

<multinomial_nb> : := MultinomialNB <alpha_nb> <f i t_pr i o r >

<complement_nb> : := ComplementNB <alpha_nb> <f i t_pr i o r > <norm_cnb>
<norm_cnb> : := __default

<svc> : :=
SVC <C> <kerne l> <degree_kernel> <gamma> <coef0> <probab i l i t y >

<shr ink ing> <decis ion_funct ion_shape> <to l> <max_iter>
<class_weight>

<C> ::= __default
<kerne l> : := __default
<degree_kernel> : := __default
<gamma> : := __default
<coef0> : := __default
<probab i l i t y > : := __default
<shr ink ing> : := __default
<decis ion_funct ion_shape> : := __default
<to l> : := __default
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<max_iter> : := __default
<class_weight> : := __default

<nu_svc> : :=
NuSVC <nu> <kerne l> <degree_kernel> <gamma> <coef0> <probab i l i t y >

<shr ink ing> <decis ion_funct ion_shape> <to l> <max_iter>
<class_weight>

<nu> : := __default

<l inear_svc> : :=
LinearSVC <penalty_loss_dual_svc> <to l> <C> <class_weight>

<penalty_loss_dual_svc> : := __default __default __default

<l o g i s t i c_ r e g r e s s i o n > : :=
Log i s t i cReg r e s s i on <penalty> <to l> <C> <f i t_ in t e r c ep t >

<max_iter> <warm_start>
<penalty> : := __default
<f i t_ in t e r c ep t > : := __default
<warm_start> : := __default

<perceptron> : := Perceptron <penalty> <to l> <max_iter> <warm_start>

<pass ive_agre s s ive > : :=
Pass iveAggre s s i ve <C> <f i t_ in t e r c ep t > <max_iter> <to l>

<loss_pac> <average> <class_weight>
<loss_pac> : := __default
<average> : := __default

<mlp> : :=
MLP <learn ing_rate> <learn ing_rate_in i t> <momentum>

<max_iter> <ac t i va t i on >
<learn ing_rate> : := __default
<learn ing_rate_in i t> : := __default
<momentum> : := __default
<ac t i va t i on > : := __default

<sgd> : := SGD <penalty> <to l> <max_iter> <lo s s > <warm_start>
<lo s s > : := __default

<lda> : := LDA <to l>

<qda> : := QDA <reg_param> <to l>
<reg_param> : := __default

<knn> : :=
KNearestNeighbors <k> <weights> <k_algorithm>

<lea f_s i z e > <p> <d_metric>
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<k> ::= __default
<weights> : := __default
<k_algorithm> : := __default
<l ea f_s i z e > : := __default
<p> : := __default
<d_metric> : := __default

<radius_neighbours> : :=
RadiusNeighbors <radius> <weights> <k_algorithm>

<lea f_s i z e > <p> <d_metric>
<radius> : := __default

<centro id> : := Centroid <shr ink ing_thresho ld> <d_metric>
<shr ink ing_thresho ld> : := __default

<r idge> : :=
Ridge <alpha> <max_iter> <copy_X> <so lver_r idge> <to l>

<normal ize> <f i t_ in t e r c ep t >
<alpha> : := __default
<copy_X> ::= __default
<so lver_r idge> : := __default
<normal ize> : := __default

<ridge_cv> : := RidgeCCV <cv> <normal ize> <f i t_ in t e r c ep t >
<cv> : := __default

<dec i s i on_tree> : :=
DT <c r i t e r i o n > <s p l i t t e r > <max_depth> <max_features>

<min_weight_fraction_leaf> <max_leaf_nodes>
<c r i t e r i o n > : := __default
<s p l i t t e r > : := __default
<max_depth> : := __default
<max_features> : := __default
<min_weight_fraction_leaf> : := __default
<max_leaf_nodes> : := __default

<extra_tree> : :=
ExtraTree <c r i t e r i o n > <s p l i t t e r > <class_weight> <max_features>

<max_depth> <min_weight_fraction_leaf> <max_leaf_nodes>

<random_forest> : :=
RandomForest <c r i t e r i o n > <bootstrap_and_oob> <class_weight_Trees>

<n_estimators> <warm_start> <max_features> <max_depth>
<min_weight_fraction_leaf> <max_leaf_nodes>

<bootstrap_and_oob> : := __default __default
<class_weight_Trees> : := __default
<n_estimators> : := __default
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<extra_trees> : :=
ExtraTrees <c r i t e r i o n > <bootstrap_and_oob> <class_weight_Trees>

<n_estimators> <warm_start> <max_features> <max_depth>
<min_weight_fraction_leaf> <max_leaf_nodes>

<ada_boost> : := AdaBoost <algorithm_ada> <n_estimators> <learning_rate_ada>
<algorithm_ada> : := __default
<learning_rate_ada> : := __default

<gradient_boost ing> : :=
GradientBoost ing <loss_grad ient> <to l> <learn ing_rate_gradient>

<presor t> <n_estimators> <warm_start> <max_features>
<max_depth> <min_weight_fraction_leaf>
<max_leaf_nodes>

<loss_grad ient> : := __default
<learn ing_rate_gradient> : := __default
<presor t> : := __default
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A.2 Search space medium

<Start> : := <preproce s s ing > <c l a s s i f i c a t i o n >

# Preproce s s ing
<preproce s s ing > : :=

<imputation> | <imputation> <bounding> | <imputation> <dimens iona l i ty>

## Imputation
<imputation> : := <simpleImputer>

<simpleImputer> : := SimpleImputer <strategy_imp>
<strategy_imp> : := mean | median | most_frequent

## Bounding
<bounding> : := <standard_scaler>

<standard_scaler> : := StandardSca ler <with_std> <with_mean>
<with_std> : := True | Fa l se
<with_mean> : := True | Fa l se

## Dimens iona l i ty reduct ion and f e a tu r e s e l e c t i o n
<dimens iona l i ty> : := <selectKBest> | <pca>

<selectKBest> : := SelectKBest <features_dim>
<features_dim> : := RANDATT(1 ,ATT−1)

<pca> : := PCA <features_dim> <whiten> <svd_solver>
<whiten> : := True | Fa l se
<svd_solver> : := f u l l | arpack | randomized

# C l a s s i f i c a t i o n
<c l a s s i f i c a t i o n > : :=

<l o g i s t i c_ r e g r e s s i o n > | <mlp> | <knn> | <random_forest> | <ada_boost>

<l o g i s t i c_ r e g r e s s i o n > : :=
Log i s t i cReg r e s s i on <penalty> <f i t_ in t e r c ep t > <max_iter> <warm_start>

<penalty> : := l 1 | l 2
<f i t_ in t e r c ep t > : := True | Fa l se
<max_iter> : := 100 | 300 | 500
<warm_start> : := True | Fa l se

<mlp> : := MLP <learn ing_rate> <max_iter> <act i va t i on >
<learn ing_rate> : := constant | i n v s c a l i n g | adapt ive
<ac t i va t i on > : := i d e n t i t y | l o g i s t i c | tanh | r e l u
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<knn> : :=
KNearestNeighbors <k> <weights> <k_algorithm>

<lea f_s i z e > <p> <d_metric>
<k> : := 1 | 5 | 15 | 25 | 35
<weights> : := uniform | d i s t ance
<k_algorithm> : := brute | kd_tree | ba l l_t r e e
<l ea f_s i z e > : := 20 | 40 | 60 | 80 | 100
<p> : := RANDINT(1 ,10 )
<d_metric> : := euc l i d ean | manhattan | chebyshev | minkowski

<random_forest> : :=
RandomForest <c r i t e r i o n > <bootstrap_and_oob> <class_weight_Trees>

<n_estimators> <warm_start> <max_features> <max_depth>
<c r i t e r i o n > : := g i n i | entropy
<bootstrap_and_oob> : := True True | True Fa l se | Fa l se Fa l se
<class_weight_Trees> : := balanced | balanced_subsample | None
<n_estimators> : := 10 | 30 | 50
<max_features> : := sq r t | l og2
<max_depth> : := 10 | 30 | 50

<ada_boost> : := AdaBoost <algorithm_ada> <n_estimators>
<algorithm_ada> : := SAMME.R | SAMME
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A.3 Search space large

<Start> : := <preproce s s ing > <c l a s s i f i c a t i o n >

# Preproce s s ing
<preproce s s ing > : :=

<imputation> | <imputation> <b ina r i z e r > | <imputation> <bounding> |
<imputation> <dimens iona l i ty> | <imputation> <feat_const> |
<imputation> <b ina r i z e r > <dimens iona l i ty> |
<imputation> <bounding> <b ina r i z e r > |
<imputation> <bounding> <dimens iona l i ty> |
<imputation> <dimens iona l i ty> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <bounding> |
<imputation> <dimens iona l i ty> <feat_const> |
<imputation> <feat_const> <b ina r i z e r > |
<imputation> <feat_const> <bounding> |
<imputation> <feat_const> <dimens iona l i ty> |
<imputation> <bounding> <b ina r i z e r > <dimens iona l i ty> |
<imputation> <bounding> <dimens iona l i ty> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <bounding> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <feat_const> <b ina r i z e r > |
<imputation> <dimens iona l i ty> <feat_const> <bounding> |
<imputation> <feat_const> <b ina r i z e r > <dimens iona l i ty> |
<imputation> <feat_const> <bounding> <b ina r i z e r > |
<imputation> <feat_const> <bounding> <dimens iona l i ty> |
<imputation> <feat_const> <dimens iona l i ty> <b ina r i z e r > |
<imputation> <feat_const> <dimens iona l i ty><bounding>

## Imputation
<imputation> : := <simpleImputer>

<simpleImputer> : := SimpleImputer <strategy_imp>
<strategy_imp> : := mean | median | most_frequent

## Bounding
<bounding> : :=

<normal izer> | <minMaxScaler> | <maxAbsScaler> |
<robust_sca ler> | <standard_scaler> | <quant i l e_trans former>

<normal izer> : := Normal izer <norm>
<norm> : := l 1 | l 2 | max

<minMaxScaler> : := MinMaxScaler

<maxAbsScaler> : := MaxAbsScaler
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<robust_sca ler> : := RobustScaler <with_scal ing> <with_center ing>
<with_scal ing> : := True | Fa l se
<with_center ing> : := True | Fa l se

<standard_scaler> : := StandardSca ler <with_std> <with_mean>
<with_std> : := True | Fa l se
<with_mean> : := True | Fa l se

<quant i l e_trans former> : :=
Quanti leTransformer <n_quanti les> <output_dis t r ibut ion>

<n_quanti les> : := RANDINT(10 ,2000)
<output_dis t r ibut ion> : := uniform | normal

## Bina r i z e r
<b ina r i z e r > : := <binar i z e r_a lg>

<binar i ze r_a lg> : := B ina r i z e r <threshold_bin>
<threshold_bin> : := RANDFLOAT(0 .000001 ,1000)

## Dimens iona l i ty reduct ion and f e a tu r e s e l e c t i o n
<dimens iona l i ty> : :=

<var ianceThreshold> | <se lectKBest> | <un iva r i a t e_se l e c t > |
<s e l e c t_pe r c en t i l e > | <pca> | <incremental_pca> | <kernel_pca> |
<fast_ica> | <gauss ian_pro ject ion> | <sparse_random_projection> |
<feature_agglomerat ion> | <rbf_sampler> | <nystroem> |
<truncatedsvd> | <linear_svc_dim> | <extra_trees_dim>

<var ianceThreshold> : := VarianceThreshold

<se lectKBest> : := SelectKBest <features_dim>
<features_dim> : := RANDATT(1 ,ATT−1)

<un iva r i a t e_se l e c t > : :=
Un iva r i a t eS e l e c t <score_func_univar> <mode> <param_univar>

<score_func_univar> : := ch i2 | f _ c l a s s i f
<mode> : := fp r | f d r | fwe
<param_univar> : := RANDFLOAT(0 . 0 1 , 0 . 5 )

<s e l e c t_pe r c en t i l e > : := S e l e c tP e r c e n t i l e <score_func_se lect> <pe r c en t i l e >
<score_func_se lect> : := ch i2 | f _ c l a s s i f | mutual_info
<pe r c en t i l e > : := RANDINT(1 ,99 )

<pca> : :=
PCA <features_dim> <whiten> <svd_solver> <tol_pca> <iterated_power>

<whiten> : := True | Fa l se
<svd_solver> : := auto | f u l l | arpack | randomized
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<tol_pca> : := RANDFLOAT( 0 . 0 , 0 . 1 )
<iterated_power> : := RANDINT(2 ,20 )

<incremental_pca> : := IncrementalPCA <features_dim> <whiten>

<kernel_pca> : :=
KernelPCA <features_dim> <kernel_pca_hp> <degree_pca>

<gamma_dim> <coef0_dim>
<kernel_pca_hp> : := poly | rb f | s igmoid | c o s i n e
<degree_pca> : := RANDINT(2 , 5 )
<gamma_dim> : := RANDFLOAT(0 . 000030518 , 8 . 0 )
<coef0_dim> : := RANDFLOAT( −1 ,1)

<fast_ica> : :=
FastICA <features_dim> <algor i thm_fas t i ca> <funct>

<max_iter_fastica> <tol_dim> <whiten>
<algor i thm_fas t i ca> : := p a r a l l e l | d e f l a t i o n
<funct> : := logcosh | exp | cube
<max_iter_fastica> : := RANDINT(10 ,1000)
<tol_dim> : := RANDFLOAT(0 .0000000001 , 0 . 1 )

<gauss ian_pro ject ion> : := GaussianRandomProjection <features_dim> <eps i l on >
<eps i l on > : := RANDFLOAT( 0 . 0 , 1 . 0 )

<sparse_random_projection> : :=
SparseRandomProjection <features_dim> <eps i l on >

<dens i ty> <dense_output>
<dens i ty> : := RANDFLOAT(0 . 0 0001 , 1 . 0 )
<dense_output> : := True | Fa l se

<feature_agglomerat ion> : :=
FeatureAgglomeration <features_dim> <a f f i n i t y > <compute_full_tree>

<a f f i n i t y > : :=
euc l i d ean ward | euc l i d ean complete | euc l i d ean average | l 1 complete |
l 1 average | l 2 complete | l 2 average | manhattan complete |
manhattan average | c o s i n e complete | c o s i n e average

<compute_full_tree> : := True | Fa l se

<rbf_sampler> : := RBFSampler <features_dim> <gamma_dim>

<nystroem> : :=
Nystroem <features_dim> <kernel_dr> <gamma_dim> <degree_1> <coef0_dim>

<kernel_dr> : := l i n e a r | poly | rb f | s igmoid
<degree_1> : := RANDINT(2 ,10 )

<truncatedsvd> : :=
TruncatedSVD <features_dim> <n_iter> <tol_dim> <algorithm_tsvd>
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<n_iter> : := RANDINT(5 ,1000)
<algorithm_tsvd> : := arpack | randomized

<linear_svc_dim> : := LinearSVCPreprocess ing <tol_svc_dim> <C_dim>
<tol_svc_dim> : := RANDFLOAT(0 . 0 0001 , 0 . 1 )
<C_dim> : := RANDFLOAT(0 . 03125 , 32768 . 0 )

<extra_trees_dim> : :=
ExtraTreesPreprocess ing <cr iter ion_dim> <max_features_dim>

<min_samples_split_dim> <min_samples_leaf_dim>
<bootstrap_dim>

<criter ion_dim> : := g i n i | entropy
<max_features_dim> : := RANDFLOAT( 0 . 0 , 1 . 0 )
<min_samples_split_dim> : := RANDINT(2 ,20 )
<min_samples_leaf_dim> : := RANDINT(1 ,20 )
<bootstrap_dim> : := True | Fa l se

## Feature con s t ru c t i on
<feat_const> : :=

<polynominal_features> | <bernoull i_rbm> | <random_trees_emb>

<polynominal_features> : :=
PolynomialFeatures <degree_polyfeat> <interact ion_only> <include_bias>

<degree_polyfeat> : := RANDINT(2 , 3 )
<interact ion_only> : := True | Fa l se
<inc lude_bias> : := True | Fa l se

<bernoull i_rbm> : :=
BernoulliRBM <n_components> <learning_rate_brbm>

<batch_size> <max_iter_dim>
<n_components> : := RANDINT(1 ,10 )
<learning_rate_brbm> ::= RANDFLOAT(0 . 0 1 , 1 )
<batch_size> : := RANDINT(1 ,100)
<max_iter_dim> : := RANDINT(10 ,10000)

<random_trees_emb> : :=
RandomTreesEmbedding <n_estimators_feat> <max_depth_feat>

<min_samples_split_feat> <min_samples_leaf_feat>
<n_estimators_feat> : := RANDINT(5 ,50 )
<max_depth_feat> : := RANDINT(2 ,10 )
<min_samples_split_feat> : := RANDINT(2 ,20 )
<min_samples_leaf_feat> : := RANDINT(1 ,20 )

# C l a s s i f i c a t i o n
<c l a s s i f i c a t i o n > : :=

<gaussian_nb> | <bernoul l i_nb> | <multinomial_nb> | <complement_nb> |
<svc> | <nu_svc> | <l inear_svc> | <l o g i s t i c_ r e g r e s s i o n > |
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<perceptron> | <pass ive_agre s s ive > | <mlp> | <sgd> | <lda> | <qda> |
<knn> | <radius_neighbours> | <centro id> | <r idge> | <ridge_cv> |
<dec i s i on_tree> | <extra_tree> | <random_forest> | <extra_trees> |
<ada_boost> | <gradient_boost ing>

<gaussian_nb> : := GaussianNB

<bernoul l i_nb> : := Bernoull iNB <bina r i z e > <alpha_nb> <f i t_pr i o r >
<b ina r i z e > : := RANDFLOAT( 0 . 0 , 1 . 0 )
<alpha_nb> : := RANDFLOAT( 0 . 0 , 9 . 0 )
<f i t_pr i o r > : := True | Fa l se

<multinomial_nb> : := MultinomialNB <alpha_nb> <f i t_pr i o r >

<complement_nb> : := ComplementNB <alpha_nb> <f i t_pr i o r > <norm_cnb>
<norm_cnb> : := True | Fa l se

<svc> : :=
SVC <C> <kerne l> <degree_kernel> <gamma> <coef0> <probab i l i t y >

<shr ink ing> <decis ion_funct ion_shape> <to l> <max_iter>
<class_weight>

<C> ::= RANDFLOAT(0 . 03125 , 32768 . 0 )
<kerne l> : := l i n e a r | poly | rb f | s igmoid
<degree_kernel> : := RANDINT(2 ,10 )
<gamma> : := RANDFLOAT(0 . 000030518 , 8 . 0 )
<coef0> : := RANDFLOAT(0 . 0 , 1 0 0 0 . 0 )
<probab i l i t y > : := True | Fa l se
<shr ink ing> : := True | Fa l se
<decis ion_funct ion_shape> : := ovo | ovr | None
<to l> : := RANDFLOAT(0 .0000000001 , 0 . 1 )
<max_iter> : := RANDINT(10 ,10000)
<class_weight> : := balanced | None

<nu_svc> : :=
NuSVC <nu> <kerne l> <degree_kernel> <gamma> <coef0> <probab i l i t y >

<shr ink ing> <decis ion_funct ion_shape> <to l> <max_iter>
<class_weight>

<nu> : := RANDFLOAT(0 .0000000001 , 1 . 0 )

<l inear_svc> : :=
LinearSVC <penalty_loss_dual_svc> <to l> <C> <class_weight>

<penalty_loss_dual_svc> : :=
l 1 squared_hinge Fa l se | l 2 hinge True |
l 2 squared_hinge True | l 2 squared_hinge Fa l se

<l o g i s t i c_ r e g r e s s i o n > : :=
Log i s t i cReg r e s s i on <penalty> <to l> <C> <f i t_ in t e r c ep t >
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<max_iter> <warm_start>
<penalty> : := l 1 | l 2
<f i t_ in t e r c ep t > : := True | Fa l se
<warm_start> : := True | Fa l se

<perceptron> : := Perceptron <penalty> <to l> <max_iter> <warm_start>

<pass ive_agre s s ive > : :=
Pass iveAggre s s i ve <C> <f i t_ in t e r c ep t > <max_iter> <to l>

<loss_pac> <average> <class_weight>
<loss_pac> : := hinge | squared_hinge
<average> : := True | Fa l se

<mlp> : :=
MLP <learn ing_rate> <learn ing_rate_in i t> <momentum>

<max_iter> <ac t i va t i on >
<learn ing_rate> : := constant | i n v s c a l i n g | adapt ive
<learn ing_rate_in i t> : := RANDFLOAT( 0 . 1 , 1 . 0 )
<momentum> : := RANDFLOAT( 0 . 0 , 1 . 0 )
<ac t i va t i on > : := i d e n t i t y | l o g i s t i c | tanh | r e l u

<sgd> : := SGD <penalty> <to l> <max_iter> <lo s s > <warm_start>
<lo s s > : :=

hinge | l og | modified_huber | squared_hinge |
perceptron | squared_loss

<lda> : := LDA <to l>

<qda> : := QDA <reg_param> <to l>
<reg_param> : := RANDFLOAT( 0 . 0 , 1 . 0 )

<knn> : :=
KNearestNeighbors <k> <weights> <k_algorithm>

<lea f_s i z e > <p> <d_metric>
<k> : := RANDINT(1 ,30 )
<weights> : := uniform | d i s t ance
<k_algorithm> : := auto | brute | kd_tree | ba l l_t r e e
<l ea f_s i z e > : := RANDINT(5 ,100)
<p> : := RANDINT(1 ,15 )
<d_metric> : := euc l i d ean | manhattan | chebyshev | minkowski

<radius_neighbours> : :=
RadiusNeighbors <radius> <weights> <k_algorithm>

<lea f_s i z e > <p> <d_metric>
<radius> : := RANDFLOAT(1 . 0 , 3 0 . 0 )

<centro id> : := Centroid <shr ink ing_thresho ld> <d_metric>
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<shr ink ing_thresho ld> : := RANDFLOAT(0 . 0 , 30 . 0 )

<r idge> : :=
Ridge <alpha> <max_iter> <copy_X> <so lver_r idge>

<to l> <normal ize> <f i t_ in t e r c ep t >
<alpha> : := RANDFLOAT( 0 . 0 , 1 . 0 )
<copy_X> ::= True | Fa l se
<so lver_r idge> : :=

auto | svd | cho l e sky | l s q r | sparse_cg | sag | saga
<normal ize> : := True | Fa l se

<ridge_cv> : := RidgeCCV <cv> <normal ize> <f i t_ in t e r c ep t >
<cv> : := RANDINT(2 ,10 )

<dec i s i on_tree> : :=
DT <c r i t e r i o n > <s p l i t t e r > <max_depth> <max_features>

<min_weight_fraction_leaf> <max_leaf_nodes>
<c r i t e r i o n > : := g i n i | entropy
<s p l i t t e r > : := best | random
<max_depth> : := RANDINT(10 ,100)
<max_features> : := sq r t | l og2
<min_weight_fraction_leaf> : := RANDFLOAT( 0 . 0 , 0 . 5 )
<max_leaf_nodes> : := RANDINT(2 ,100)

<extra_tree> : :=
ExtraTree <c r i t e r i o n > <s p l i t t e r > <class_weight> <max_features>

<max_depth> <min_weight_fraction_leaf> <max_leaf_nodes>

<random_forest> : :=
RandomForest <c r i t e r i o n > <bootstrap_and_oob> <class_weight_Trees>

<n_estimators> <warm_start> <max_features> <max_depth>
<min_weight_fraction_leaf> <max_leaf_nodes>

<bootstrap_and_oob> : := True True | True Fa l se | Fa l se Fa l se
<class_weight_Trees> : := balanced | balanced_subsample | None
<n_estimators> : := RANDINT(5 ,50 )

<extra_trees> : :=
ExtraTrees <c r i t e r i o n > <bootstrap_and_oob> <class_weight_Trees>

<n_estimators> <warm_start> <max_features> <max_depth>
<min_weight_fraction_leaf> <max_leaf_nodes>

<ada_boost> : :=
AdaBoost <algorithm_ada> <n_estimators> <learning_rate_ada>

<algorithm_ada> : := SAMME.R | SAMME
<learning_rate_ada> : := RANDFLOAT(0 . 0 1 , 2 . 0 )

<gradient_boost ing> : :=
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GradientBoost ing <loss_grad ient> <to l> <learn ing_rate_gradient>
<presor t> <n_estimators> <warm_start> <max_features>
<max_depth> <min_weight_fraction_leaf>
<max_leaf_nodes>

<loss_grad ient> : := deviance | exponent i a l
<learn ing_rate_gradient> : := RANDFLOAT(0 .0000000001 , 1 . 0 )
<presor t> : := True | Fa l se | auto
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A.4 Search space auto-sklearn

<Start> : := <preproce s s ing > <c l a s s i f i c a t i o n >

# Preproce s s ing
<preproce s s ing > : :=

<imputation> | <imputation> <bounding> |
<imputation> <dimens iona l i ty> | <imputation> <feat_const>

## Imputation
<imputation> : := <simpleImputer>

<simpleImputer> : := SimpleImputer

## Bounding
<bounding> : := <normal izer> | <minMaxScaler> | <standard_scaler>

<normal izer> : := Normal izer <norm>
<norm> : := l 1 | l 2

<minMaxScaler> : := MinMaxScaler <feature_range_min> <feature_range_max>
<feature_range_min> : := RANDFLOAT( −1.0 ,0 .0 )
<feature_range_max> : := RANDFLOAT( 1 . 0 , 1 . 0 )

<standard_scaler> : := StandardSca ler <with_std> <with_mean>
<with_std> : := True | Fa l se
<with_mean> : := True | Fa l se

## Dimens iona l i ty reduct ion
<dimens iona l i ty> : := <pca>

<pca> : := PCA <features_dim> <whiten>
<features_dim> : := RANDATT(1 ,ATT−1)
<whiten> : := True | Fa l se

## Feature con s t ru c t i on
<feat_const> : := <bernoull i_rbm>

<bernoull i_rbm> : :=
BernoulliRBM <n_components> <learning_rate_brbm>

<batch_size> <max_iter_dim>
<n_components> : := RANDINT(1 ,50 )
<learning_rate_brbm> ::= RANDFLOAT(0 . 0001 , 1 )
<batch_size> : := RANDINT(1 ,100)
<max_iter_dim> : := RANDINT(1 ,1000)
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# C l a s s i f i c a t i o n
<c l a s s i f i c a t i o n > : :=

<multinomial_nb> | <svc> | <l inear_svc> | <sgd> |
<knn> | <random_forest> | <extra_trees>

<multinomial_nb> : := MultinomialNB <alpha_nb> <f i t_pr i o r >
<alpha_nb> : := RANDFLOAT( 0 . 0 , 1 . 0 )
<f i t_pr i o r > : := True | Fa l se

<svc> : :=
SVC <kerne l> <gamma> <degree_kernel> <max_iter>

<C> <to l> <coef0> <shr ink ing>
<kerne l> : := l i n e a r | poly | rb f | s igmoid
<gamma> : := RANDFLOAT(0 . 000030518 , 8 . 0 )
<degree_kernel> : := RANDINT(2 , 6 )
<max_iter> : := RANDINT(10000000 ,1000000000)
<C> : := RANDFLOAT(0 .00001 ,100000)
<to l> : := RANDFLOAT(0 . 0 0001 , 0 . 0 1 )
<coef0> : := RANDFLOAT(0 . 0 , 1 0 . 0 )
<shr ink ing> : := True | Fa l se

<l inear_svc> : :=
LinearSVC <C> <to l> <mul t i c l a s s > <int e r c ep t_sca l i ng > <class_weight>

#<C> ::= RANDFLOAT(0 .00001 ,100000)
#<to l> : := RANDFLOAT(0 . 0 0001 , 0 . 0 1 )
<mu l t i c l a s s > : := ovr | crammer_singer
<in t e r c ep t_sca l i ng > : := RANDFLOAT(0 . 1 , 1 0 . 0 )
<class_weight> : := balanced | None

<sgd> : :=
SGD <lo s s > <penalty> <alpha_sgd> <l1_rat io> <to l> <max_iter>

<learning_rate_sgd> <eta0> <power_t> <class_weight>
<lo s s > : :=

hinge | l og | modified_huber | squared_hinge | perceptron |
squared_loss | huber | e p s i l o n_ i n s e n s i t i v e |
squared_eps i l on_insens i t i v e

<penalty> : := l 1 | l 2 | e l a s t i c n e t
<alpha_sgd> : := RANDFLOAT(0 . 0 00001 , 0 . 1 )
<l1_rat io> : := RANDFLOAT( 0 . 0 , 1 . 0 )
#<to l> : := RANDFLOAT(0 .0000000001 , 0 . 1 )
#<max_iter> : := RANDINT(10000000 ,1000000000)
<learning_rate_sgd> : := optimal | i n v s c a l i n g | constant
<eta0> : := RANDFLOAT(0 . 0 0001 , 0 . 1 )
<power_t> : := RANDFLOAT( 0 . 0 , 1 . 0 )
#<class_weight> : := balanced | None
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<knn> : := KNearestNeighbors <k> <weights>
<k> : := RANDINT(1 ,50 )
<weights> : := uniform | d i s t ance

<random_forest> : :=
RandomForest <n_estimators> <c r i t e r i o n > <max_features>

<max_depth> <min_samples_leaf> <bootstrap>
<n_estimators> : := RANDINT(10 ,3000)
<c r i t e r i o n > : := g i n i | entropy
<max_features> : := sq r t | l og2 | None | RANDFLOAT( 0 . 0 , 1 . 0 )
<max_depth> : := None | RANDINT(2 , 4 )
<min_samples_leaf> : := RANDINT(1 ,50 )
<bootstrap> : := True | Fa l se

<extra_trees> : :=
ExtraTrees <n_estimators> <c r i t e r i o n > <max_features>

<max_depth> <min_samples_leaf> <bootstrap>
#<n_estimators> : := RANDINT(10 ,3000)
#<c r i t e r i o n > : := g i n i | entropy
#<max_features> : := sq r t | l og2 | None | RANDFLOAT( 0 . 0 , 1 . 0 )
#<max_depth> : := None | RANDINT(2 , 4 )
#<min_samples_leaf> : := RANDINT(1 ,50 )
#<bootstrap> : := True | Fa l se
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Appendix B

Additional Results

This appendix contains results for datasets omitted from Chapter 4.

B.1 Neutrality

Figures B.1 to B.8 show additional neutrality results.

Figure B.1: Neutrality evaluation for the breast-w dataset.
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Figure B.2: Neutrality evaluation for the mice-protein dataset.
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Figure B.3: Neutrality evaluation for the ml-prove dataset.
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Figure B.4: Neutrality evaluation for the statlog-segment dataset.
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Figure B.5: Neutrality evaluation for the texture dataset.
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Figure B.6: Neutrality evaluation for the vehicle dataset.
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Figure B.7: Neutrality evaluation for the wilt dataset.
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Figure B.8: Neutrality evaluation for the wine-quality-red dataset.
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B.2 Search Space Exploration by AutoML Optimizers

Figures B.9 to B.16 illustrate the exploration of AutoML optimizers for datasets
not included in Section 4.4.

Figure B.9: Exploration of the search spaces by TPE and SMAC for dataset breast-w.
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Figure B.10: Exploration of the search spaces by TPE and SMAC for dataset mice-protein.
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Figure B.11: Exploration of the search spaces by TPE and SMAC for dataset ml-prove.
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Figure B.12: Exploration of the search spaces by TPE and SMAC for dataset statlog-
segment.
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Figure B.13: Exploration of the search spaces by TPE and SMAC for dataset texture.
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Figure B.14: Exploration of the search spaces by TPE and SMAC for dataset vehicle.
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Figure B.15: Exploration of the search spaces by TPE and SMAC for dataset wilt.
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Figure B.16: Exploration of the search spaces by TPE and SMAC for dataset wine-
quality-red.
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