
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Tiago Melo Tannus

Towards the Quantification of Information Leakage for Dynamic Secrets

Belo Horizonte
2022

Tiago Melo Tannus

Towards the Quantification of Information Leakage for Dynamic Secrets

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Mário Sérgio Alvim

Belo Horizonte
2022

Tiago Melo Tannus

Explorando a Quantificação de Vazamento de Informação sobre Segredos
Dinâmicos

Versão Final

Dissertação apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Minas
Gerais, como requisito parcial à obtenção do t́ıtulo de Mestre
em Ciência da Computação.

Orientador: Mário Sérgio Alvim

Belo Horizonte
2022

© 2022, Tiago Melo Tannus.
. Todos os direitos reservados

 Tannus, Tiago Melo.

T167t Towards the quantification of information leakage for
 dynamic secrets [manuscrito] / Tiago Melo Tannus. — 2022.
 95 f. il.

 Orientador: Mário Sérgio Alvim.
 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação
 Referências: f. 90-92.

 1. Computação – Teses. 2. Fluxo de informação – Teses.
 3. Criptografia de dados (Computação) – Teses. 4. Segurança
 da informação – Teses. 5. Métodos formais – Teses. I. Alvim,
 Mário Sérgio. II. Universidade Federal de Minas Gerais, Instituto
 de Ciências Exatas, Departamento de Ciência da Computação.
 III. Título.

CDU 519.6*46 (043)
Ficha Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende

Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS EXATAS

PROGRAMA DE PÓS‐GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FOLHA DE APROVAÇÃO

Dissertação defendida e aprovada pela banca examinadora cons tuída pelos Senhores:

Prof. Mario Sérgio Ferreira Alvim Júnior ‐ Orientador
Departamento de Ciência da Computação ‐ UFMG

Profa. Elaine Gouvêa Pimentel
Departamento de Matemá ca ‐ UFRN

Prof. Jeroen Antonius Maria van de Graaf
Departamento de Ciência da Computação ‐ UFMG

Prof. Gabriel de Morais Cou nho
Departamento de Ciência da Computação ‐ UFMG

Belo Horizonte, 29 de março de 2022.

Documento assinado eletronicamente por Mario Sergio Ferreira Alvim Junior, Professor do
Magistério Superior, em 31/03/2022, às 16:03, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Elaine Gouvêa Pimentel, Usuária Externa, em
04/04/2022, às 10:21, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto
nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Gabriel de Morais Cou nho, Professor do Magistério
Superior, em 05/04/2022, às 16:42, conforme horário oficial de Brasília, com fundamento no art.
5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Jeroen Antonius Maria Van de Graaf, Professor do
Magistério Superior, em 07/04/2022, às 15:20, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A auten cidade deste documento pode ser conferida no site h ps://sei.ufmg.br
/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0,
informando o código verificador 1350826 e o código CRC 7286E366.

Referência: Processo nº 23072.217016/2022‐25 SEI nº 1350826

Para vovó Edir.

Acknowledgments

First of all, I would like to thank my mother, Paula, and father, Sérgio. They love me

immensely, and made many sacrifices to make this a reality. Without their continuous

support throughout all the hardships none of this would be possible.

Second, but no less important, I would like to thank Professor Mário Alvim. It was

a pleasure to work with him. The greatest teacher I’ve ever met in a classroom, always

trying to improve. Maybe the most hard working person I know. And also one of the

most comprehensive.

I would also like to thank my family for all the emotional support they gave me.

Family is the most important thing in life, and I was lucky to have a great family that

always supported my choices. I would like to thank my sister, Sara, my girlfriend, Isabelle,

my uncle, Pablo, and all the other family members that make me a better person everyday.

I believe that friends are the second most important thing in life. Friends are a

different kind of family. I will cite here as many as I can remember. I will definitely forget

some of you, but you all have a place in my heart. Mateus, for opening many doors for

me; Plinio, for being an schmuck; Benhur, for giving great life advice; Salim, for helping

me move; Soneca, for saying that he saw Nelson Piquet winning an F1 championship

before he was born; Richard, for turning my head to the left; Avx, for turning my head

to the right; Pinarel, for playing quality DotA with me; Brasil, for being crazy; Iza, for

controlling Brasil; Lotti, for giving great musical advice; Bolha and Pedro, for giving

terrible opinions about soccer; Thiti, a great partner for everyhing; Ramon, another great

partner for everything; Henrique, a third great partner for everything; Lucas Renan,

a great partner for a walk to McDonalds; Artur, for talking about games; Loucas, for

talking about people; João Falcão Moreno, for showing me new technologies and his

uncle’s movie; Pedro Bustamante, for great anime and manga suggestions; Aquino, for

hunting pokemons; Guru, for talking about Galo; Gabriel Henrique Lopes Gomes Alves

Nunes, for helping controlling the environment; Joseph, for the late night talks about life;

Bruno, for using female deodorant; Rod Quantico, for the defense of the indians; Igor,

for questioning things; Bruno Demattos, for being just a great person; and everyone else

that I forgot to mention here.

I also want to thank the Computer Science Department which was an integral part

of my life during many years. I had the pleasure to work with great people at CRC -

Heitor, Pi, Jean, Manassés, Armstrong, Polly, Clovis, Murilo, and Alison - who were part

of the journey. They also gave me a deeper contact with the people from the department

which I learned to admire and respect. Great people like Sônia, Gilmara, David, Ricardo,

and many others. I want to thank Professor Gabriel Coutinho, Elaine Pimentel and

Jeroen van de Graaf for taking the time to read my thesis and point out important topics

so I could improve this work.

I would also like to thank all the teachers I had throughout my academic career,

for they taught me many lessons about life. The classroom is one of the most enriching

environments in life, if you have the right mindset to enjoy it.

I would also like to thank CAPES for giving me financial support throughout the

master’s course.

Finally, I would like to thank all brazilian citizens, who paid for my academic

education. Brazil is a blessed country with great people that deserve nothing but the

best.

“Fire shall teach you.”

(Ember Spirit, Dota 2 Hero)

Resumo

O framework de fluxo de informação quantitativo (QIF) apresenta uma modelagemmatemática

para vários tipos de sistemas com os quais lidamos no dia a dia. Essa modelagem é

feita através de matrizes estocásticas, distribuições de probabilidade, e outros modelos

matemáticos suplementares. Além disso, esse framekwork é capaz de modelar informações

senśıveis que interagem com este sistema. Através desta interação, pode haver vazamento

de informação. Um ponto que QIF também é capaz de capturar. Com isso é posśıvel

mensurar a vulnerabilidade relacionada a este vazamento.

A literatura original de QIF propõe que o conhecimento à priori de um adversário

sobre informações senśıveis pode ser modelado como uma simples distribuição de proba-

bilidade. Recentemente, um novo trabalho expandiu essa ideia para que esse tipo de con-

hecimento pudesse ser modelado por distrubuições sobre distribuições de probabilidade,

conhecidas como hiper-distribuições. Esse trabalho desmembrou o conceito tradicional

de vulnerabilidade em dois tipos: vulnerabilidade do segredo, que está associada intrinsi-

camente ao segredo, e vulnerabilidade de estratégia, que relaciona a vulnerabilidade das

diferentes estratégias presentes. Entretanto, nada foi desenvolvido para como o conhec-

imento a priori interage com um canal. Também não há calculos para vulnerabilidade

após o processamento. Consequentemente, não há noção formulada para vazamento de

informação.

Essa dissertação apresenta duas maneiras de realizar a interação de uma hiper-

distribuição com o canal, além de apresentar uma maneira restrita de cálculos de vul-

nerabilidade após a interação do conhecimento com o sistema. Isso nos permite medir o

vazamento de informação, dada a interação.

Palavras-chave: Fluxo de Informação Quantitativo, Segredos Dinâmicos, Vazamento de

Informação, Fundamentos de Segurança da Computação, Métodos Formais.

Abstract

The framework of Quantitative Information Flow (QIF) presents a mathematical model-

ing for many types of systems which we deal with on a daily basis. This is done through

stochastic matrices, probability distributions, and supplementary mathematical appara-

tus. It also models sensitive information and how that changes after interacting with a

system. Through this interaction, there may be information leakage. This is something

that QIF is also able to capture. Furthermore, it is possible to measure how vulnerable a

piece of information is when it relates to the system.

The original QIF literature proposes that the adversary’s prior knowledge about

sensitive information can be modelled as a simple probability distribution on secret val-

ues. Recently, a new work expanded this idea so that this type of knowledge could be

modelled as distributions on distributions on secret values, known as hyper-distributions.

This work dismembered the traditional concept of vulnerability into two different types:

secret vulnerability, which focuses on the vulnerability of the secret itself, and strategy

vulnerability, which focuses on the vulnerability associated with the different strategies

that can generate a secret. However, nothing has been said about how this knowledge

interacts with a channel. It was also left open the issue of measuring any type of vulner-

abilities after the processing. Consequently, there is no notion of leakage of information

when hyper distributions represent prior knowledge.

Our work presents two models for the interaction between the prior information

modelled as a hyper-distribution and the channel. We also present a way to measure

vulnerability after the interaction between knowledge and system. This allows us to

measure how much information is accessed by the adversary given this interaction.

Keywords: Quantitative Information Flow, Dynamic Secrets, Information Leakage, Vul-

nerability Measures, Foundations of Computer Security, Formal Methods.

List of Figures

1.1 Abstraction of a system. 15

1.2 Representation of the system using QIF terminology. 16

1.3 Representation of a system with the concept of knowledge. 18

2.1 Representation of a model for buildings and floors, raided by a police officer. . 34

2.2 Experiment ran by Mardziel et al. [2014b]. with buildings and floors. 35

2.3 Abstraction of a system with a context of execution. 37

2.4 Example of Aggregation Matrix . 43

4.1 Graphical view of the update model from 3.1.1 57

4.2 Graphical view of the joint approach. 70

4.3 Dismembration of ∆. 73

5.1 Operational significance overview. 83

Contents

1 Introduction 15

1.1 Thesis objectives . 18

1.2 Contributions . 19

1.3 Related Work . 19

1.4 Thesis outline . 20

2 Preliminaries and literature review 22

2.1 The traditional QIF framework . 22

2.2 Expanded QIF framework for dynamic secrets 33

2.3 Hidden Markov Models: what they are and how they interact 44

3 Extending on Objectives and Knowledge Update 48

3.1 Defining knowledge update for dynamic secrets 48

4 Attempts of defining measures for posterior secret and strategy vul-

nerabilities 55

4.1 How to define measures for posterior vulnerability given environments . . . 56

4.2 Attempt using direct update and the definitions from Alvim et al. [2017a]

for prior vulnerability . 56

4.3 Attempt defining posterior strategy vulnerability as a function of secret

vulnerability . 59

4.4 Attempt using the update model from McIver and Morgan [Alvim et al.,

2020, chap. 13,14] . 61

4.5 Refined attempt of McIver and Morgan using Manhattan Distance as a

gain function . 65

4.6 Attempt through the generation of a prior from the joint matrix 70

5 Final definition of posterior strategy and secret vulnerabilities given

a model 76

5.1 Final definition using aggregation matrices 76

5.2 Operational Interpretation . 82

5.3 Monotonicity proofs regarding the vulnerabilities 85

5.4 Comparing older definitions with Definition 5.5 86

6 Conclusion 89

Bibliography 90

A A tool for calculating secret and strategy leakage 93

A.1 Implementation . 93

A.2 Functionalities . 93

15

Chapter 1

Introduction

We live in a world where technology is advancing quickly. Computational systems are

everywhere we can possibly imagine, ranging from the most trivial tasks from day-to-

day life to the most complex computational systems. There are many properties that

are relevant like correctness, efficiency, transparency, privacy, and many others. Each of

these properties has both practical and theoretical relevance. And we would like examine

the specifics of one of them: protection of sensitive information. One of its most relevant

aspects is privacy.

One may ask how privacy relates to computational systems and what is the rele-

vance of treating such problem. Both of these questions may seem to have straightforward

answers, and yet they are extremely important.

We can associate the concept of privacy to computer science. Let us think of

a system in a more abstract way. If we represent a system as a “box” where possibly

sensitive information is received as an input and then processed, later the system outputs

a result. With this way of depicting things, we may want to keep this sensitive information

private. A few systems that value privacy are elections, password checkers, bank apps,

and others. From this we can argue that privacy in the context of a computational system

has the aim to minimize sensitive information leakage after it is processed by a system.

Speaking in more general terms, being able to differentiate when information is made

private or public [Moore, 2008].

INPUT

system

OUTPUT

Figure 1.1: Abstraction of a system.

We can interpret Figure 1.1 as if information flows through a system. The challenge

related to it is keeping this information private. Arguably it is impossible to not reveal

anything sensitive. Take the classical example of a password checker for instance. When

16

someone types a password on a login screen, on the general case it will necessarily grant

access to the account if the password is correct, or deny it if the password is incorrect.

Then it is true that some information can be derived from each of the answers of the

system. Even knowing that some information is being leaked, we still continue to use this

kind of system because we deem it “safe enough” to do so. Therefore there the amount

of information exposed is perceived intuitively as acceptably small.

From this acceptance, arises the need to use a mathematical framework that can

encapsulate the concepts of the occurrence of information leakage and also quantify it.

From this we can define an acceptable threshold for each situation. There is a theo-

retical framework that captures this general idea: The Quantitative Information Flow

(QIF)[Alvim et al., 2020]. QIF is a domain of theoretical computer science that aims to

study how much information leaks in computational systems, and what can be done to

prevent those leaks. Further on this dissertation this framework will be presented with

its formalisms. For now we obtain ourselves to the most important concepts.

First let us think about the user of the system. The user is the entity that utilizes

the system to process its information. This is done by feeding the system a possibly

sensitive input. Since we want to treat about privacy, we call this input a secret. This

secret can be seen as a value that is hidden from all entities involved, other than the

user himself. Another important entity is the adversary1. The adversary tries to discover

what was the input given by the user - i.e. the secret. This can be seen as an “invasion

of privacy”. At first the adversary doesn’t know what was the input, but he can observe

how the system behaves after the secret is processed.

prior distribution

channel

hyper-distribution

Figure 1.2: Representation of the system using QIF terminology.

The adversary also has a few other pieces of knowledge. She knows that the user

has a finite set of secrets from which she can choose from. Her knowledge about how the

secret is generated is modelled as simple probability distribution to pick a specific secret

as input. This is distribution is called prior distribution. After selecting the secret, the

user employs a channel to process it. The channel is a stochastic matrix that maps the

input to an output given a distribution of probabilities. By combining her prior knowledge

about the secret with full knowledge about how the system works, the adversary can use

the system’s outputs to update her knowledge about the secret. This can be modelled as a

1From here on, when we use the pronoun “she” we will be referring to the adversary.

17

posterior distribution that is a probability distribution that represents how likely it is for

each of possible secret given a particular output. Finally by weighing the probability of

each posterior distributions happening, we obtain a hyper-distribution, also called a hyper.

A hyper is a probability distribution over probabilities distributions that symbolizes the

adversary’s knowledge after the system displays the output. The general idea can be

visualized on Figure 1.2.

There are two very important concepts related to what was already described, the

first is the vulnerability of the system, which gives us is how big is the threat of the

secret being discovered given an instant. The vulnerability can be measured before the

secret goes through the channel by analyzing the prior distribution, which we call prior

vulnerability. It can also be measured after it goes through the channel by analyzing the

hyper distribution, which is called posterior vulnerability.

The second is the concept of leakage that creates an association between the two

kinds of vulnerability previously described. This association tells us how much of the

vulnerability changed after the secret was processed by the channel. In other words it

represents how much information the channel allowed to be learned by the adversary.

To better visualize this concept, we can think of a more concrete example. Imagine

that a user is at an ATM machine. His password would represent the secret, the channel

is the ATM machine that could accept or deny the input password. After the channels

accepts or deny an input, it will necessarily leak some information. Either by accepting

the input or rejecting it.

Given a prior vulnerability of a secret, it may seem intuitive that changing the

distribution multiple times can improve the security we have about the secret. Which

would decrease the vulnerability. Inspired by this idea, Mardziel et al. [2014a] tried to

find what would actually happen if you changed the prior multiple times. And the result

was counter-intuitive: changing your prior multiple times could actually increase the value

of the vulnerability if your strategy for doing so was somehow predictable.

This novel finding motivated a new line of work on this subject. Alvim et al.

[2017a] presented a new way of introducing priors: instead of simple distributions, priors

were denoted by hypers, aiming to represent the different strategies an user could have to

input the secret. This made that the concept of vulnerability had to be broken down into

two different parts. Strategy vulnerability that addresses the values innate to each prior

distribution, and environmental vulnerability that handles how each user of the system

picks a different prior to make use of.

These later findings are the motivation for this project, Alvim et al. [2017a] mod-

elled the priors as hypers and defined the concepts of prior vulnerability given this mod-

eling. The authors did not expand the concepts for an update function, which would

require them to define an operation to push a hyper through a channel. Consequently

it was impossible to define concepts for posterior vulnerability and leakage. We want

1.1. Thesis objectives 18

to use this new concept to explore what happens with the other parts of the system.

This different modeling can have different implications on channels, posteriors, posterior

vulnerabilities, and, most importantly, leakages, that are one of the focal points of the

framework.

1.1 Thesis objectives

The goals of this thesis are the following.

Main objective: Investigate how the recently proposed models of prior knowledge

as hyper-distributions can be extended to distinguish leakage about secrets from

leakage about strategies.

The QIF framework presents us with the idea that the adversary has some previous

knowledge about the system, usually dubbed as prior distribution. This knowledge is then

updated, which is usually done by a channel. This update generates a posterior adversarial

knowledge, which is usually denoted by a hyper-distribution.

Previous

Knowledge

Update

Function

Updated

Knowledge

Figure 1.3: Representation of a system with the concept of knowledge.

Recent research on this subject [Alvim et al., 2017a][Alvim et al., 2020, chap.

13, and 14] tried to redefine the classical notion of a prior probability being a single

distribution of probability over the secrets. While the former redefined the prior as a

hyper, the latter kept the notion of a single distribution being the prior, but allowed

channels to receive hypers as inputs without defining their outputs. From these facts we

can divide the main objective into two specific objectives..

1.1.1 Specific objective 1: Define knowledge update

Define a new update function similar to the traditional QIF approach. This new update

function must be able to receive a hyper as an input and push it through a channel. We

also need to define what results from this operation.

1.2. Contributions 19

1.1.2 Specific objective 2: Define posterior versions of

vulnerability measures and of leakage for secret and

strategy

Evolve the already established concepts of vulnerability of strategies and vulnerability of

secrets, from Alvim et al. [2017a], for the posterior case. This means that we must be

able to apply the concepts of vulnerability to the resulting object of the new type from

the knowledge update, specified by 1.1.1.

1.2 Contributions

The main contributions of this thesis are the following:

• We define of an update function that broadens the default QIF approach, allowing

hypers to be used as priors and produce meaningful results after the interaction

with a channel. This step gives sequence to the work of Alvim et al. [2017a]. This

work is presented on Chapter 3.

• We propose two new metrics for posterior vulnerability for secret and strategy.

One that encapsulates the secret and another for the environment. We also define

leakage for environments. It is important to note that these metrics are done with

a restricted set of guesses. This also extends the previous work from Alvim et al.

[2017a]. This work is presented on Chapter 5.

• We provide a revised notation to the work of Alvim et al. [2017a], which aims to make

the understanding of the framework of environments clearer. This work is scattered

throughout the thesis, but it is presented on Section 2.2 and used extensively on

Chapter 5.

1.3 Related Work

Information is an inherent subject to computer science. Keeping information secret is

also very important. This is due to the fact that our world has computational systems

controlling everything around us. The reliability of these systems depends on who has

access to it, thus a secret password can be used to restrict access. These secrets can be

held by big organizations or single individuals. Zviran and Haga [1999] describe many

characteristics of their use (e.g length, frequency of use, composition, lifetime, etc). These

are important factors that may help the users create stronger passwords. Brown et al.

[2004] present an interesting study of frequency of personal password usage and how much

one’s personal characteristics are present on the secret.

1.4. Thesis outline 20

Passwords must be strong, that means they must not be easily discovered by third

parties. Literature presents us with many ways to create them, for instance Glory et al.

[2019] present a complex algorithm to generate strong and unique passwords that will

not be easily cracked. The problem is that a complex password may not be recalled by

the user with ease. Blocki et al. [2014] argue that spaced repetition associated with a

mnemonic technique may enable users to create strong passwords that will also be easily

recalled. Although Florêncio et al. [2007] argue that strong passwords are not really

necessary to avoid brute-force attacks, they just have to be sufficiently long given that a

“‘three strikes” rule apply.

One could have the intuition that changing passwords frequently would make them

stronger. Some studies, like Adams et al. [1997], seem to endorse this idea. Later on,

Mardziel et al. [2014b] had an interesting finding through a theoretical work on the founda-

tions of QIF. They used probabilistic automata to model program execution. This model

takes inputs and, through a random function, produce outputs. They aim to capture

dynamics of secrets, thus they use strategy functions to generate inputs. This model also

presents different types of adversaries: the usual adversary that interacts with the channel

on every occasion, and a “wait-adaptative adversary” that can observe the execution of

the system and interact when she sees fit. They also proposed an information-theoretic

metric for quantifying flow of dynamic secrets. This metric then was used on experiments

with both types of adversaries. The metric also generalized the previous metric of leakage

for static secrets. Through experimentation they concluded that more frequent change

could lead to more leakage. However, that work didn’t try to explain why this is possible,

or characterize the phenomenon precisely. They only proposed that strategies play a role

on this. We present more about this subject on Example 2.19.

More recently, Alvim et al. [2017a] published a study further expanding this idea.

They tried to characterize the phenomenon, explicitly modeling strategies as part of the

adversary’s prior knowledge. This work could distinguish between two kinds of prior vul-

nerability: environmental prior vulnerability, which focused on quantifying the intrinsic

uncertainty about how each strategy generates secrets, and strategy prior vulnerability,

which models the uncertainty about the adversarial knowledge of the aggregation of mul-

tiple strategies. This will be presented by Defintions 2.21, 2.22, 2.24, and 2.27. This work

did not define any type of posterior vulnerability or leakage, and this is the main objective

of this thesis.

1.4 Thesis outline

We organize this thesis as follows. In Chapter 2, we present the background knowledge

needed to read this work. Mainly introducing QIF concepts and a few other concepts

related to it. In Chapter 3 we present two types of knowledge update for the specific

1.4. Thesis outline 21

scenario where prior knowledge is represented as a hyper. Chapter 4 presents many

attempts on defining posterior vulnerability measures for the case of dynamic secrets.

Until we reach Chapter 5, where we present our final definition, for a restricted set of

guesses. We later present, in the Appendix A, a few details of a program that calculates

the posterior hypers, given a prior hyper and a channel, and also calculates all types of

relevant vulnerabilities for this work.

We finally conclude this work on Chapter 6.

22

Chapter 2

Preliminaries and literature review

In this chapter, we present all essential results in literature for the understanding of this

thesis. We introduce the general framework for QIF in Section 2.1, a few extensions of this

framework in Section 2.2, and also a type of stochastic matrix named markov in Section

2.3.

2.1 The traditional QIF framework

The quantitative information flow (QIF) framework aims to measure information leakage

in a system. This is a relevant problem in computational security with respect to privacy.

To achieve the goal of privacy the framework models information and the systems that

process it. The approach also shows how information flows when data is processed. The

flow may leak sensitive information, which can be used by an adversary for ill intended

purposes, which is what we want to avoid.

QIF derives from information theory. The latter is already well defined on litera-

ture. This research field is based in works as the one proposed by Shannon [1948].

QIF is a relatively new approach. Early works had many different notations.

The fundamentals of this knowledge has been organized in a book, published by Alvim

et al. [2020]. This thesis will adopt notations from this book. The symbol (:=) is used,

throughout the thesis, for definitions. Additionally we use the pronoun “she” to refer to

the adversary, which will be introduced on Section 2.1.1. We also use the symbol D as a

representation of a probability distribution. That is, given a set A, when we state DA, it
means the set of infinitely many probability distributions over the set A.

2.1.1 Secrets and basic notions

One of the major concepts is that of the secret, which is used to represent the sensitive

information concerning a user. A secret can be used to represent things such as passwords,

locations, etc. Even results such as a positive test of an infectious disease can be sensitive

with regards to an adversary.

We consider two agents interacting with the secret in some way. The user is the

one who knows the secret and wants to keep it protected. The adversary does not know

2.1. The traditional QIF framework 23

the secret value, and wants to infer it by using the clues she has. Before interacting with

the system, the adversary knows the probability distribution over possible values the

secret can assume. We call this a prior distribution, because it represents the adversarial

knowledge before any interaction with the system. We consider a probability distribution δ

on a finite set X a function from X to the interval [0, 1], which we denote as δ : X 7→ [0, 1],

such that
∑

x∈X δx = 1.

For instance if the secret is a 4-digit numerical password for a bank account, the

prior can be represented as an uniform probability of 1/10000 for each of the 10000 possible

digit combinations. We define1 secret and prior as follows.

Definition 2.1 (Secret and prior). A secret is some piece of information the user

wants to protect from the adversary. We usually denote a secret by x, and assume it

can take values from a non-empty, finite set X . The knowledge some adversary has

about the secret is represented by a probability distribution π on X , called a prior

distribution, that specifies the probability πx of every value x ∈ X .

Another important concept is that of the support. The support of a distribution is

the set of all elements with non-zero probabilities of a distribution. We define the support

as follows.

Definition 2.2 (Support of a distribution). Let A be a nonempty set. Given a

distribution π ∈ DA, the support of π is ⌈π⌉ = {a ∈ A|π(a) > 0}.

A point distribution is also a key concept. We define it as follows.

Definition 2.3 (Point distribution). Given a distribution π ∈ DA, we call π a

point distribution, written [a], when one of the elements of a ∈ A has an assigned

probability of 1.

The prior distribution is pivotal to measure how vulnerable a secret is before the

adversary interacts with the system. It represents the knowledge the adversary has before

the system is run. At first she can only take information from the prior. And thus the

QIF framework presents us a way to measure the corresponding vulnerability. Taking

inspiration from the literature we can use a few already established metrics like guessing

entropy [Massey, 1994], and Shannon entropy [Shannon, 1948].

Guessing entropy measures the expected number of tries an adversary needs to

guess the secret. It takes into account that the adversary always makes the optimal

choice in a linear search (i.e. guessing the secret making one attempt at the time. Each

1Most definitions on Section 2.1 are strongly based from Alvim et al. [2020], with the adaptations
necessary to be presented here.

2.1. The traditional QIF framework 24

of the attempts asks a question: “Is x = x′?”, for some x′ ∈ X .). Using this metric, an

optimal adversary always tries to guess the exact value of the secret from the most to least

probable. Therefore it is an uncertainty measure for her (i.e., the higher its value, the

less informative the prior is). Assuming that πxi
s are in a non-increasing order, guessing

entropy is defined as

G(π) =

|X |∑
i=1

iπ(xi).

Shannon entropy represents the maximum number of Boolean questions that would

have to be asked, over a prior π : DX , by an adversary, so she could identify the secret

value (i.e. questions for Shannon entropy may be formulated as: “Does x ∈ X ′?”, for

some X ′ ⊆ X .). In this case the adversary makes queries about features related to the

secret, narrowing down the possible set the secret might be in. Using the same example

as before, where the secret was a 4-digit password, the adversary might ask: “Does the

secret include the number 0?”, if the answer is yes, we could exclude all secrets which do

not include 0, thus narrowing the set of possible values. This way of thinking also takes

us to an uncertainty measure. Shannon entropy is defined as

H(π) = −
∑
x∈X

πxlog2(πx).

As presented by Smith [2009] both of these metrics may seem promising, but they

are not ideal for some scenarios. For instance the simple scenario when an adversary has

only one guess, and wants to guess correctly.

Since guessing entropy and Shannon entropy do not cover important cases such as

the one we just presented, Smith [2009] and Braun et al. [2009] proposed a new metric

called Bayes Vulnerability. The idea behind Bayes vulnerability is that the adversary has

only one shot at guessing the secret, thus he wants to make the most out of her attempt

by guessing what has more probability. It is defined as follows.

Definition 2.4 (Bayes vulnerability). Given a prior distribution π over a set of

secrets X , the Bayes vulnerability is defined as

V1(π) := max
x∈X

πx.

Example 2.5. We can exemplify a few instances of Bayes vulnerability. Let us think

about 3 cases: a coin, a 6-sided die where the secret is whether or not a number smaller

or equal to 2 is rolled, and a 20-sided die where the secret is one specific face.

2.1. The traditional QIF framework 25

• The distribution for the first case can be represented as πcoin = {1/2, 1/2}, thus the

optimal guess is any side of the coin. This results in V1(π
coin) = 1/2, which means

the probability that the adversary guesses which side of the coin was tossed is 1/2.

• In the second scenario, we can represent the distribution as π6−die = {1/3, 2/3}, thus
the optimal guess is that the number rolled will be greater than 2. This results in

V1(π
6−die) = 2/3, which means the probability that the adversary guesses correctly if

the number tossed was lower than 2 is 2/3.

• And the last case has a uniform probability distribution with all values equal to 1/20,

thus any side of the die is an optimal guess. This results in V1(π
20−die) = 1/20, which

means the probability that the adversary guesses which side of the 20-sided die was

tossed is 1/20.

△▽2

Bayes vulnerability is a good way to measure vulnerability, since it gives us a

very straightforward way to think about it. But there is a nuance, it assumes that the

adversary is interested in discovering the entirety of the secret in one try. This is not valid

in every scenario. The adversary might be interested in discovering the secret partially,

she can be happy to discover the secret in more than one try, or she even may not want

to make a guess if she is penalized by guessing wrong.

To cover all of these scenarios Alvim et al. [2012b] proposed the g-vulnerability

framework. This framework was shown to generalize the Bayes vulnerability, guessing

entropy, and shannon entropy. g-vulnerability adds more expressiveness, thus making us

able to better depict instances that weren’t previously covered.

As stated on Alvim et al. [2020].

The basic pillar of the g-vulnerability is that the knowledge about a secret

X is important only to the extent that it can be exploited by an adversary,

enabling her to take some action that rewards her.

That means that if the adversary knows the password for the user’s bank account,

she can log-in and steal money, or if she knows the exact location of a courier, she can

intercept it. Thus to model its operational scenario there is an specific set W of actions

the adversary can take. This set of actions W , as we will call it from now on, can be the

same as the set of secrets X or not.

To model these scenarios, the g-leakage framework presents a function that given

the guesses and secrets, rewards the adversary depending on how much he is expected to

benefit from an action.. This is defined as the gain function.

2From now on we will use △▽ to denote the end of an example.

2.1. The traditional QIF framework 26

Definition 2.6 (Gain function). Given a finite set of secrets X and a set of guesses

W, where X ̸= ∅ and W ≠ ∅, a gain function is a function g :W ×X → R.

The value given by the gain function g(w, x) represents how much the adversary

is rewarded by taking action w ∈ W when the secret is x ∈ X . The values returned by

the function can be arbitrary in specific cases, but it is very common to return values in

the interval [0, 1]. When the value is restricted to this interval, it is straightforward that

when g(w, x) = 0, the adversary has no gain by choosing w when secret is x. Similarly,

when g(w, x) = 1, w is an optimal action for secret x. From now on when we will call

G1X the set of gain functions restricted to [0, 1].

Now we can define g-vulnerability, which is fundamentally the maximization of the

expected gain of an adversary, given a distribution π over the possible values of a secret

X.

Definition 2.7 (g-vulnerability). Given a prior distribution π, a set of secrets X ,a
gain function g : X × W → R, and a set of guesses W, the g-vulnerability is a

function defined as

Vg(π) := max
w∈W

∑
x∈X

πxg(w, x).

We can expand on this by using an example from Alvim et al. [2020, chap. 3, p.

25].

Example 2.8. With X = x1, x2 and W = w1, w2, w3, w4, w5, let gain function g have the

(rather arbitrarily chosen) values shown in the following matrix:

G x1 x2

w1 −1.0 1.0

w2 0.0 0.5

w3 0.4 0.1

w4 0.8 −0.9
w5 0.1 0.2

To compute the value of Vg on, say, π = (0.3, 0.7), we must compute the expected

gain for each possible action w in W, given by the expression
∑
x∈X

πxg(w, x) for each one,

to see which of them is best. The results are as follows.

2.1. The traditional QIF framework 27

πx1(w1, x1) + πx2g(w1, x2) = 0.3× (−1.0) + 0.7× 1.0 = 0.40

πx1(w2, x1) + πx2g(w2, x2) = 0.3× 0.0 + 0.7× 0.5 = 0.35

πx1(w3, x1) + πx2g(w3, x2) = 0.3× 0.4 + 0.7× 0.1 = 0.19

πx1(w4, x1) + πx2g(w4, x2) = 0.3× 0.8 + 0.7× (−0.9) = −0.39

πx1(w5, x1) + πx2g(w5, x2) = 0.3× 0.1 + 0.7× 0.2 = 0.17

Thus we find that w1 is the best action and Vg(π) = 0.4

△▽

The g-vulnerability framework is very expressive, much more than what we pre-

sented on Example 2.8. Depending on which function we choose, we can model a wide

variety of scenarios so our measurement of vulnerability is more faithful to reality.

There is a particularly important gain function: the identity gain function[Alvim

et al., 2020, chap. 3, p. 29], this function depicts the scenario where the adversary only

has gain if he guesses the exact value of the secret in one try. The actions here are values

that can be guessed. When the adversary guesses right, it has a gain of 1, and if she

guesses wrong it has 0 gain.

gid(w, x) :=

1, if w = x,

0, if w ̸= x.

This gain function has an important implication: it yields Bayes vulnerability.

Theorem 2.9 (Alvim et al. [2020]). Vulnerability under gid coincides with Bayes vulner-

ability, for all π : DX :
Vgid(π) = V1(π) .

Proof. Alvim et al. [2020, chap. 3, p. 30].

There are many other interesting gain functions, and they can be modelled to

describe appropriately numerous different scenarios. Alvim et al. [2016] showed that V ′
gs

are exactly the family of information functions satisfying a set of reasonable properties.

Here we restrict ourselves to the relevant gain functions from this scope.

2.1.2 Channels and updates

As we discussed previously the user wants to protect a secret from the adversary when

it is being used. The QIF framework depicts the processing of the secret by a system.

The system can represent many things such as security protocols or computer programs.

This is modeled as a information-theoretic channel, which is a probabilistic function from

inputs to outputs, usually depicted by a matrix. If we go back to our 4-digit password

2.1. The traditional QIF framework 28

being the secret, we can think about the channel as a representation of the ATM machine

or the bank app, which will take the password as input for access. The output is to unlock

access or not, depending on the correctness of the password.

Definition 2.10 (Channel matrix). Let X and Y be finite sets representing secret

input and observable output values respectively. Meaning each x is mapped to a

distribution on y. A channel matrix C from X to Y is a stochastic matrix, indexed

by X ×Y, where each entry Cx,y represents the conditional probability p(y|x) of the
system producing output y ∈ Y when input is x ∈ X .

Thus a channel matrix has type X × Y 7→ [0, 1], this can also be represented as

X 7→ DY . This means that each x is mapped to a distribution on Y . To be more concise

on definitions, we will adopt the representation X _ Y for X → DY . This representation
also abstracts unimportant attributes, such as program code and protocol entities, while

keeping the information-theoretic properties.

We exemplify this with the channel matrix C (2.1) where each row represents the

probability distribution that each secret xi outputs each observable yj.

C y1 y2 y3 y4

x1
1/4 1/4 1/4 1/4

x2
1/2 1/3 1/6 0

x3 0 1 0 0

(2.1)

The channel is a pivotal part of QIF, as it affects directly the adversarial knowledge

about the secret X. This happens when we the initial knowledge the adversary has, the

prior distribution π, interacts with the channel. For instance, lets suppose the channel

above produces the output y4, the adversary can infer that the secret is x1. This is because

the input x1 is the only secret able to output y4. But by making this assertion, we assume

that the adversary knows how the channel works.

One special case that will be relevant to us further on this thesis is the null channel

[Alvim et al., 2020, p60].

Definition 2.11 (Null Channel O). The null channel O is a channel that leaks

everything. It is the mapping of π 7→
∑

x πx[[x]]. The corresponding reduced channel

matrix is the identity matrix I.

The adversary, after observing an output y, updates her knowledge about x, from

the prior distribution, to a posterior distribution. This can be calculated using the Bayes’

theorem

2.1. The traditional QIF framework 29

p(x|y) =
p(y|x)p(x)

p(y)
. (2.2)

But to achieve this result, there is a process that must be completed. The first

step is to calculate the joint distribution. It is defined as follows

Definition 2.12 (Joint distribution). The joint distribution is defined as the prob-

ability of each input-output pair. We denote this by

pXY (x, y) := πxCx,y.

The joint distribution can be represented as a matrix J : X × Y, where each Jx,y

represents the probability of the input-output pair (x, y).

So applying the prior π = {1/2, 1/3, 1/6} on the channel C, Table 2.1, we obtain the

following joint J (2.3). On J, each cell represents the joint probability of each pair (x, y).

J y1 y2 y3 y4

x1
1/8 1/8 1/8 1/8

x2
1/6 1/9 1/18 0

x3 0 1/6 0 0

(2.3)

After achieving the joint distribution, the adversarial knowledge has been updated.

But to obtain new information some calculations must be made. Firstly we find the

marginal distribution on Y . This marginalization is done by the sum of each column in

J. Since p(y) =
∑

x:X p(x, y). For Table 2.3, we get {7/24, 29/72, 13/72, 1/8}. And then each

value Y can obtain, gives a posterior distribution on X. Calculations follow the Bayes

theorem 2.2. Now we can obtain the following matrix.

Posterior y1 y2 y3 y4

x1
3/7 12/29 9/13 1

x2
4/7 9/29 4/13 0

x3 0 8/29 0 0

(2.4)

The combination of the distribution p(y) and the matrix 2.4 represent the adver-

sarial knowledge after the interaction between C and π. Each row of matrix 2.4 represents

that given an output yj, what is the probability that each secret xi generated it. This can

also be seen as a distribution over distributions, this is what we call a hyper-distribution.

We define hyper distribution below.

2.1. The traditional QIF framework 30

Definition 2.13 (Hyper distribution). Given a finite set X of secret values, a

hyper-distribution ∆ is a distribution on distributions on X . Thus ∆ has type

D(DX), which can also be written as D2X . A hyper-distribution that results from the

interaction of a prior distribution π and a channel C is written [π ▷C], pronounced

“pushing π through C”.

We call inner distributions the set of distributions that are part of the support ⌈∆⌉
of ∆. Each inner is represented by δi. We call the distribution on the inners outer

distributions. They are represented by ai. Thus we can write [π ▷ C] =
∑

i ai[δ
i].

The hyper-distribution obtained by pushing π = {1/2, 1/3, 1/6} on channel 2.1 can

be seen below.

[π ▷ C] 7/24 29/72 13/72 1/8

x1
3/7 12/29 9/13 1

x2
4/7 9/29 4/13 0

x3 0 8/29 0 0

(2.5)

On this hyper we have as the outer distribution {7/24, 29/72, 13/72, 1/8}. In other

words the probability that the observable output is y1 = 7/24, y2 = 29/72, y3 = 13/72, and

y4 = 1/8. Given that an specific yj was observed, each row, which are the inners, contains

the associated probability for the xi that generated the output.

2.1.3 Posterior vulnerability and information leakage

As discussed on Section 2.1, our goal is to measure leakage caused by the system while

processing information. So far we have defined a measure for prior vulnerability and how

to model a system. All we have to do now is define a metric to verify how vulnerable the

information is after interacting with the system, and then compare it with what we had

previously.

It is only natural to apply this measurement to the resulting hyper after π is pushed

through C, or in other words [π ▷ C]. But how would it be done?

We know that a channel C maps the prior π to a hyper [π ▷ C], this hyper is

represented by possible states of knowledge about X that the adversary has, what we

called inners, and their respective probabilities of happening, what we called outers. One

reasonable way is to calculate the value of Vg on each of these inners and combine them

somehow.

The combination of these inners can be done if we take the worst case scenario,

or the “maximum” value. But this is not precise in some cases, for instance Alvim et al.

[2020, chap. 5, p. 72]. Thus the posterior g-vulnerability is defined as the expected

2.1. The traditional QIF framework 31

value of the g-vulnerabilty over the hyper-distribution, in other words inners weighted by

outers. We define it as follows.

Definition 2.14 (Posterior g-vulnerability). Given a prior distribution π, a gain

function g : X ×W → R, and a channel C, the posterior g-vulnerability is defined

as

Vg [π ▷ C] :=
∑
i

aiVg(δ
i) where [π ▷ C] =

∑
i

ai[δ
i].

In other words Vg [π ▷ C] is the expected value of Vg over [π ▷ C].

Example 2.15. Here we can look back at Example 2.5, and make the proper calculations

to find which is the posterior vulnerability on this case. We will use the bayes gain function,

2.1.1, to make the calculations.

[π ▷ C] 7/24 29/72 13/72 1/8

x1
3/7 12/29 9/13 1

x2
4/7 9/29 4/13 0

x3 0 8/29 0 0

We have that the posterior g-vulnerability is

Vg[π ▷ C] = 7/24× Vg(3/7, 4/7, 0) + 29/72× Vg(12/29, 9/29, 8/29)

+ 13/72× Vg(9/13, 4/13, 0) + 1/8× Vg(1, 0, 0)

= 7/24× 4/7 + 29/72× 12/29 + 13/72× 9/13 + 1/8× 1

= 1/6 + 1/6 + 1/8 + 1/8

= 7/12.

△▽

We can finally define the notion of information leakage. All we have to do is

compare the values of prior vulnerabilities Vg(π) and posterior vulnerabilities Vg [π ▷ C].

This comparison can be done “multiplicatively”, focusing on the relative difference, or

“additively”, focusing on the absolute difference.

2.1. The traditional QIF framework 32

Definition 2.16 (Multiplicative and additive g-leakage). Let π : DX be a prior

distribution on X , let C : X → DY be a channel, the multiplicative g- leakage is

defined as

L×
g (π,C) :=

Vg [π ▷ C]

Vg(π)
,

and the additive g-leakage is defined as

L+
g (π,C) := Vg [π ▷ C]− Vg(π).

It is important to notice that multiplicative leakage is ambiguous as the vulnerabil-

ity can be positive and negative, thus QIF mainly focuses on non-negative vulnerabilities

[Alvim et al., 2020, chap. 3.3.1].

Another result presented by Alvim et al. [2012a], is that a posterior vulnerability

is always greater than, or equal to, prior vulnerability. This is intuitively true because the

adversary cannot lose information about the secret after it is pushed through a channel.

The worst that could happen is that the output does not change the information, thus

the adversary does not gain any new information but maintains what she has. This is

what we call the theorem of monotonicity.

Theorem 2.17 (Monotonicity [Alvim et al., 2020]). Pushing a prior through a

channel does not decrease vulnerability: for all distributions π in DX and channels

C we have

Vg [π ▷ C] ≥ Vg(π) .

Due to Definition 2.17, the additive leakage is always non-negative, also multiplica-

tive leakage is never smaller than 1.

Example 2.18. Let us consider the prior π = {1/2, 1/3, 1/6}, which we used to obtain the

hyper 2.5, and Example 2.15 with its respective Vg [π ▷ C] value. We know that Vg(π) = 1/2,

and Vg [π ▷ C] = 7/12. The multiplicative leakage is

L×
g (π,C) =

Vg [π ▷ C]

Vg(π)
=

7/12
1/2

= 7/6,

and the additive is

L+
g (π,C) = Vg [π ▷ C]− Vg(π) = 7/12− 1/2 = 1/12.

△▽

The QIF framework is extensive and there are many interesting properties, other

than showed here. We choose to restrict this review to these concepts, because they are

the ones necessary to understand our work. We refer to Alvim et al. [2020] for various

examples that can augment this thesis.

2.2. Expanded QIF framework for dynamic secrets 33

2.2 Expanded QIF framework for dynamic secrets

We already presented many basic QIF concepts until this point. It is possible to apply

them in different scenarios, some of them previously exposed here. But some scenarios

need more expressive models. For instance dynamic secrets. Dynamic secrets are what

the name says, secrets that can change over different executions. If we think two users

who have access to a vault which can be unlocked through a password. For security

reasons this password needs to be changed every two weeks. Each user can have two

different passwords, and cycle through them throughout the weeks according to each of

their strategies. This scenario cannot be easily modelled by a simple prior. Here we need

an additional layer of expressiveness.

Previous work already developed foundation for this subject. Mardziel et al.

[2014b] presented the motivation behind it. Alvim et al. [2017a] formulated the theo-

retical framework to represent priors for dynamic secrets. Alvim et al. [2020] presented

a work that is helpful when dealing with updates of this different type of prior. On this

section we will present the fundamentals of this extension of QIF.

2.2.1 Adding the notion of secrets and environments

There is an intuitive thought that changing the secret multiple times makes it safer.

Mardziel et al. [2014b] presented results that challenge this premise. If the user has a fixed

strategy to generate a secret, and uses this strategy multiple times, the secret may become

more vulnerable than if the original secret is kept the same. They present an interesting

example, reproduced below as on Example 2.19. They use a different model, here it is

adapted with QIF terminology, making it possible to model the described scenario.

Example 2.19 (Stakeouts and raids [Mardziel et al., 2014b]). Consider that an evil gang

has a stash of special goods which is being hidden from the police. They can move this

stash around many different buildings. A police officer wants to stop the evil gang, for this

he can choose to stakeout or raid a building. When the police uses the stakeout action,

they obtain information without alarming the gang but they do not recover the stash or

make any arrests. The action of raiding a building is an active attempt to find the stash,

thus if the police chooses to do so they may scare the gang, therefore this cannot be used

all the time.

Adapting the notation used on Mardziel et al. [2014b] to QIF we have that secrets

are the locations of the stash. The channels are stakeouts, from which the police can make

observations of the movement in each building in order to infer information about the

location of the secret. After obtaining information through observation of the channel,

the police can make an action: raid any building or leave them untouched, which we can

interpret as the set of guesses. Gain occurs if the police raid a where the stash is located.

2.2. Expanded QIF framework for dynamic secrets 34

Initially many scenarios were considered: dynamic secrets, which get updated every

few time steps, perfect raids, which only are successful exactly when the building raided

contains the stash, imperfect raids, which have a small chance of success even when raiding

wrong buildings and a small chance of failure when raiding the correct building, etc. All

scenarios presented by the authors had the expected behaviors, making the secret more or

less vulnerable, following general intuition about secrecy, depending on the execution.

Then the authors extended their previously defined concepts, adding more “struc-

ture” to it. On their second formulation Mardziel et al. [2014b, sec. VI-E], the offi-

cer should look after n-buildings (in the authors’ numeric example, 5), additionally each

building would have a number of floors

n-floors = (n-buildings− 1)!

(in the authors’ numeric example 24). and each floor would be controlled by a gang. Each

of the gangs would have a stash of special goods, and they each had their own way of

moving the stash around the buildings. Although their floor number is fixed. We can see

the representation of this idea clearer with Figure 2.1. Each gang has a floor on each

building, for instance gang g0 has floor 0 on each of the buildings, gang g1, has floor 1 on

each of the buildings and so on.

Figure 2.1: Representation of a model for buildings and floors, raided by a police officer.

This changes a few aspects of what we previously described as the QIF modelling

of the scenario. Now the secret is not only a building, but also the floor. Each gang has a

different strategy to move the stash around, where each strategy is a distinct permutation

in-between buildings (e.g. g0 = 0, 1, 2, 3, 4, g2 = 0, 3, 4, 1, 2, g3 = 3, 4, 1, 0, 2). And the

channels now are stakeouts that are successful only half of the time. Another important

change on this adaptation is that the gain now is the probability of making a raid that is

correct, on any gangs’ stash. There is also a crucial factor, the strategies of each gang are

known to the officer, and that is exactly what causes leakage. Additionally, the authors

allowed different amounts of change on the stash location. The results obtained can be

seen on Figure 2.2.

2.2. Expanded QIF framework for dynamic secrets 35

Figure 2.2: Experiment ran by Mardziel et al. [2014b]. with buildings and floors.

Here the parameter r represents how often the gangs move their stash. So for

r = 1, the gangs move their stashes every time step, for r = 2 , they move every 2 time

steps. As we can see on Figure 2.2(top), the more often the stash is moved, the bigger the

adversarial expected gain is. We can interpret the adversarial gain here as the chance of

a successful raid, which here corresponds to a measure of secret vulnerability. This may

contradict our intuition, but it shows that in some cases the more the secret is changed,

the more vulnerable it becomes. Figure 2.2(bottom) shows that the adversary also learns

the strategy faster, highfunc represents the strategy, the more the secret is changed. We

can see a direct correlation between those two characteristics. △▽

We can use what we learned from Example 2.19 to think of a new example. It

may seem intuitive at first that if the user has a secret to protect and he changes the

secret multiple times, it would make it less vulnerable. For instance, suppose you have

access to a laboratory and you have a password for each day, being the respective day

of the week. Every day you enter the laboratory for the first time, you have to write on

the door the first three letters of your password (i.e MON for Monday, TUE for Tuesday,

WED for Wednesday, and so on). If an adversary wants to find out your password, she

will have an easier time. If your password was “MONDAY” and you never changed it, it

would be harder for the adversary. We can also exemplify this with couriers on a map,

this example has ideas derived from the previous, but its modelling is closer to what we

are used to on the QIF notation presented here.

2.2. Expanded QIF framework for dynamic secrets 36

Example 2.20. Suppose we have a map with 5 different cities {x1, x2, x3, x4, x5}. Each

courier A, B, C, D, E, or F might be on any city, and the adversary wants to find any of

them. For this we have a distribution a that represents the possibility of finding each of

the couriers {πA, πB, πC , πD, πE, πF}.

1/10 1/10 2/10 3/10 2/10 1/10

πA πB πC πD πE πF

We then have a set of distributions ∆ = {πA, πB, πC , πD, πE, πF} that presents the
distribution that each courier has to move to a city on the map. For instance πA shows

that user A equal probability of moving to any of the cities, while πB represents that B

can be on city x1 or x2 with equal probability, and won’t be anywhere else.

∆ πA πB πC πD πE πF

x1
1/5 0 1/3 1/2 3/4 1/3

x2
1/5 1/2 1/3 0 1/4 0

x3
1/5 0 0 0 0 0

x4
1/5 0 0 0 0 2/3

x5
1/5 1/2 1/3 1/2 0 0

Now we can combine both distributions on a single table, which could be interpreted

as possible strategies used by defenders, an environment, that we will later define on this

section.

∆ πA πB πC πD πE πF

x1
1/5 0 1/3 1/2 3/4 1/3

x2
1/5 1/2 1/3 0 1/4 0

x3
1/5 0 0 0 0 0

x4
1/5 0 0 0 0 2/3

x5
1/5 1/2 1/3 1/2 0 0

a 1/10 1/10 2/10 3/10 2/10 1/10

This last table looks similar to a hyper that could result from pushing a prior dis-

tribution through a channel, but in this case it represents the knowledge of the adversary

before any interaction with the system. The adversary knows the all the data. Thus she

can calculate the outer probability, which represents single courier to be chosen. And she

also knows the inners, the strategy for each of the couriers.

△▽

As we discussed on the beginning of this section, some situations are not faithfully

represented by a simple prior distribution π : DX . Some scenarios, like the one from

Example 2.20 are better represented by an element of type D2X . On these scenarios the

2.2. Expanded QIF framework for dynamic secrets 37

outers represent the probability that an user chooses a specific strategy, while the inners

represent the distribution over the secrets for each strategy. This makes us think that in

some cases we may need elements of type DnX . Alvim et al. [2017a, sec. 6] expanded these

ideas and made two important contributions: they showed that an element of type D2X is

enough to represent, for leakge purposes, any scenario that π : DX does not capture; they

also defined metrics for prior vulnerability using an element of type D2X as the prior.

As stated previously, Alvim et al. [2017a] formulated the framework to deal with

situations where elements of type D2X were needed. The concept was that an user had

a context of execution, in which he would get to choose a strategy to use. After his

choice, that strategy would be responsible for generating the secret input, which would

then interact with the system. We can visualize this concept with Figure 2.3.

Figure 2.3: Abstraction of a system with a context of execution.

This framework presents many tools to depict different levels of adversarial knowl-

edge about the strategies and its associated probabilities. Her knowledge about the system

could be total, partial or concise. Total knowledge is when the adversary knows all the

associated probability distributions. Naturally, partial knowledge is when the adversary

knows parts of the distributions. Concise, or as we define it π, represents the state of

knowledge when the adversary doesn’t differentiate between strategies. We will always

assume that the adversary has total knowledge about the system, unless stated otherwise.

Two important concepts presented by Alvim et al. [2017a] are those of strategy

and environment. Strategy represents the probability of each secret, while environment3

associates all possible strategies with another distribution of probability.

Definition 2.21 (Strategy and environment). A strategy, σ ∈ DX , is a distribution

of probability over all possible values of X .
An environment is a probability distribution over the set of strategies, we can denote

an environment by Π ∈ DS. It can also be represented as Π ∈ D2X .

3On Alvim et al. [2017a] the notation for environment is En, on this thesis we chose to redefine this
as Π to help with more straightforward definitions. Additionally strategies are defined there as πn, on
this thesis we define strategies as σn.

2.2. Expanded QIF framework for dynamic secrets 38

We exemplify these concepts with matrices 2.6, here we have two environments,

Π1 and Π2. They may look similar at first, but they differ greatly when it comes to which

strategy will be used.

σ1 σ2 σ3

x1 1 0 1/2

x2 0 1 1/2

Π1 1/2 1/2 0

and

σ1 σ2 σ3

x1 1 0 1/2

x2 0 1 1/2

Π2 0 0 1

(2.6)

Both environments behave similarly, we have three columns σ1, σ2 and σ3 that

represent the different possible strategies. Each strategy has a different distribution for

X . The bottom row is a probability distribution over the possible strategies. This is

where Π1 differs from Π2, they assign different probabilities for each strategy. These

environments can also be represented on a single table, as is shown below.

σ1 σ2 σ3

x1 1 0 1/2

x2 0 1 1/2

Π1 1/2 1/2 0

Π2 0 0 1

(2.7)

By looking at the matrix 2.7, we can see that the notion of environment generalizes

the concept of prior presented on Section 2.1. For instance environment Π2 has only

one distribution possible over the secrets, thus it is a point-hyper. This distribution is

σ3 = {1/2, 1/2}. That is the same representation we use for a simple prior π. In other

words a hyper has type D2X , but a point-hyper can be represented as a DX .
It is important to point out that every environment is a hyper, but not every

hyper is an environment. This is due to the fact that, in the context of QIF, hypers can

represent the values of secrets and their outputs, alternatively environments treat only

about secrets.

After defining the concepts of environment and strategy, we can make the distinc-

tions between concise, partial and total knowledge, we define it as follows and illustrate

it with Example 2.23.

2.2. Expanded QIF framework for dynamic secrets 39

Definition 2.22 (Concise, Partial and Total Knowledge). Given an environment

Π : D2X , the adversary can have multiple levels of knowledge. The adversary has

total knowledge if he knows every existing column of the environment.

She has partial knowledge if she knows a combination of the environment Π. These

combinations are done by merging columns and multiplying their respective proba-

bilities.

The adversary has concise knowledge if she knows only one column, in other words

a simple prior distribution. This is done by merging all the columns of the environ-

ment into one, π = [
∑

i σ
i].

Example 2.23 (Alvim et al. [2017a] (sec. 5)). Imagine a system with six users, where

users σ1,σ2 live in state A, users σ3,σ4 live in state B, users σ5,σ6 live in state C. If the

adversary knows each user by id, he has total knowledge of each user strategy. It can be

represented by matrix 2.8.

Total σ1 σ2 σ3 σ4 σ5 σ6

x1 1 0 1/2 1/4 3/4 1/3

x2 0 1 1/2 3/4 1/4 2/3

User 1/10 1/10 2/10 3/10 2/10 1/10

(2.8)

If the adversary knows only from which state the user is trying to login, we can

represent his knowledge by matrix 2.9, this is done by collapsing the appropriate columns

from each of the states.

Partial σA σB σC

x1
1/2 7/20 11/18

x2
1/2 13/20 7/18

State 2/10 5/10 3/10

(2.9)

We obtain this by merging σ1, σ2 into σA, and similarly for the others. Finally if

the adversary doesn’t know about the users or states, his knowledge is represented by 2.10,

which is obtained by collapsing all columns into one.

Concise π

x1
11/24

x2
13/24

[σΠ] 1

(2.10)

Merging columns mean that given ai, σ
i and aj, σ

j, the merging is a new inner

σi + σj with its respective outer ai + aj. In other words the adversary may be losing

2.2. Expanded QIF framework for dynamic secrets 40

information because he cannot differentiate between the strategies represented by σi and

σj.

On traditional QIF we used to treat priors as distributions on DX , but with the

concept of environments we are able to use D2X . There is another result on Alvim et al.

[2017a, sec. 6] that shows that this generalization also works for DnX . Despite this

generalization, we can collapse the environment into a simple DX , the concise prior π, as
we mentioned previously. The concise is captured by taking the expectation of the inners

in an environment, weighted by the outer.

Our main goal in QIF is to measure leakage, and given this new way of describing

prior knowledge, we have all the tools we need to define a measure for prior vulnerability.

This measurement dismembers the traditional prior vulnerability into two types. One

about secrets, even if the strategies are known. The other refers to the uncertainty about

the strategy itself. The first type is called secret vulnerability given an environment, this

measure aims to capture the uncertainty embedded on the secret itself. And it is defined

as follows4.

Definition 2.24 (Secret vulnerability given an environment). Given a g-

vulnerability measure Vg : DX → R, the secret vulnerability given an environment

Π : D2X is a function V (X |Π) : D2X → R of the environment defined as

V (X |Π) := E
Π
Vg.

Example 2.25. Looking back at Table 2.7, we can use Definition 2.24 to measure the

prior vulnerability for each environment. Here our Vg is Bayes vulnerability.

V (X |Π1) = 1/2V1(σ
1) + 1/2V1(σ

2) = 1/2× 1 + 1/2× 1 = 1, (2.11)

and

V (X |Π2) = 1× V1(σ
3) = 1/2× 1 = 1/2. (2.12)

Each of these values represent how vulnerable the secret itself is if outers are known.

As we can see V (X |Π1) is high, representing the high vulnerability of the secret. If we

look back at matrix 2.7, we can verify that if the adversary knows which strategy is being

used on Π1 she learns the secret value. A similar reasoning can be made to verify that Π1

protects the secret more.

△▽
4On Alvim et al. [2017a], the secret vulnerability given an environment is defined as environmental

vulnerability V en(En), where En is the environment. This notation is very confusing because it mixes
the meanings of different types of vulnerability. Therefore, on this thesis, we adopt the notation presented
on Definition 2.24.

2.2. Expanded QIF framework for dynamic secrets 41

From the results from Example 2.25 we can conclude that despite both environ-

ments being similar, the value of prior secret vulnerability given an environment may have

large differences. We can verify that V (X |Π1) ≥ V (X |Π2), which is expected since Π1

has randomness on the strategies while Π2 has its randomness on the secrets. This further

endorses the notion of uncertainty being measured on the secret itself. The secret is more

vulnerable on Π1, because if the adversary discovers which strategy is being used, he will

know what is the secret. On Π2, on the other hand, it doesn’t matter if the adversary

knows which strategy is being used, we will always have some uncertainty related about

the secret.

2.2.2 Expanding the concept of vulnerability

As we discussed previously, grounded by Example 2.25, the security of a secret may lie on

the lack of knowledge by the adversary on which strategy is being used. The security may

also lie within the strategy itself, which Alvim et al. [2017a] call security by strategy. As

we have defined before, security by strategy is represented by V (X |Π). Thus a definition

to capture the vulnerability within the lack of knowledge about the strategies, or what

we call security by aggregation, is needed.

Alvim et al. [2017a] defined a metric called strategy vulnerability or V (S |Π) :

D2X 7→ R. This metric aims to capture two main concepts: represent the certainty of

an adversary about which strategy the user will use to generate his secrets; and how

predictable is the behavior of an environment. Let us look at the following example to

better grasp these concepts.

Example 2.26. Take into account the following matrix from Alvim et al. [2017a]. This

matrix represents four possible strategies {σ1;σ2;σ3;σ4}. There are also the possible en-

vironments {Π1,Π2,Π3} which assign different probabilities to each of the strategies. For

Π1 the secret space is X = {x1, x2}. Π1. It assumes that σ1 will be used half of the time,

while σ2 will also be used half of the time. Π2 assumes that σ3 is the only possible strategy.

Finally, Π3 assigns 1/2 probability for each σ1 and σ4.

σ1 σ2 σ3 σ4

x1 1 0 1/2 9/10

x2 0 1 1/2 1/10

Π1 1/2 1/2 0 0

Π2 0 0 1 0

Π3 1/2 0 0 1/2

To follow the premises presented before, it is intuitive to expect that strategy vul-

nerability should be high on Π2, since its a point distribution, therefore the adversary will

2.2. Expanded QIF framework for dynamic secrets 42

definitely know which strategy is being used. Π1 and Π3 behave alike in respect of strate-

gies, but they are different environments, thus we can’t have the same values for both. For

instance if Π1 produces secret x1, the user will know which strategy is being used, σ1, and

this is not the case for Π3. Which takes us to the conclusion that Π3 is more vulnerable

in respect to a measurement of strategy vulnerability. So we want a metric that satisfies

the following order: V (S |Π2) > V (S |Π3) > V (S |Π1).

△▽

From this example we can infer that the intuition behind strategy vulnerability is

that a strategy is known given a concise prior if Vg(π) ≈ V (X |Π). The reason being

that if these values are similar, the environment must also be similar to it’s concise, since

another way to read this equation is Vg(EΠ) ≈ EΠ Vg. This definition reflects correctly

wrt. the ordering of Example 2.26 and is defined as follows5.

Definition 2.27 (Strategy vulnerability given a concise prior). Given a g-

vulnerability measure Vg : DX → R, the strategy vulnerability given a concise prior

π, and an environment Π is defined as the ratio

V (S |π) := Vg(π)

V (X |Π)
.

By observing definitions 2.24 and 2.27, it is noticeable that they relate to each

other. Alvim et al. [2017a] state that when looking at traditional prior vulnerability, we

have a notion of perceived security. More specifically we can decompose the traditional

concept of prior vulnerability, Definition 2.7 into two factors, security by aggregation and

security by strategy:

Vg(π)︸ ︷︷ ︸
perceived security

= V (S | π)︸ ︷︷ ︸
security by agg

× V (X |Π)︸ ︷︷ ︸
security by strat

. (2.13)

Equation 2.13 expresses that prior vulnerability can be allocated into strategy

vulnerability given a concise prior and secret vulnerability given an environment, with

inversely proportional behavior. As we discussed before prior secret vulnerability given

an environment is more closely related to secrets than strategy vulnerability given a

concise prior, which relates the strategies. Therefore the main goal to protect a secret

within this scenario is to decrease secret vulnerability given an environment to the cost of

increasing strategy vulnerability given a concise prior. This will make the secret safer.

5Following the change on Definition 2.24 for prior secret vulnerability given an environment, on this
thesis we also adopt a different notation for strategy vulnerability. Here we call it strategy vulnerability
given a concise prior, whereas on Alvim et al. [2017a] the notation for strategy vulnerability is V st(En).

2.2. Expanded QIF framework for dynamic secrets 43

2.2.3 Developing on partial knowledge

Definitions concerning environments, so far, have considered an adversary with either

concise or total knowledge. But Definition 2.22 already gives us a hint that this may not

be the case every time. In fact, on most real-world scenarions the adversary will have

partial knowledge. Therefore Alvim et al. [2017a] presents another tool to depict this

situation: model of adversarial knowledge.

A model of adversarial knowledge is a hyper M : D2X that depicts the knowl-

edge the adversary may have on how secrets are generated. This model can represent

many different levels of knowledge about the environment. Each inner σn in M represents

a strategy the adversary understands as possible. Each outer associated with a inner

represents the probability of that strategy being used. The environment Π is representa-

tive of an adversary with total knowledge, while π represents the adversary with concise

knowledge.

The process of abstraction is done by taking Π and multiplying it by an aggregation

matrix A that associates the strategies which the adversary cannot distinguish. This

aggregation matrix can be deterministic or probabilistic.

Definition 2.28 (Aggregation matrix (p. 14,15 Alvim et al. [2017a])). The aggre-

gation matrix A is a channel matrix of type S ×S, in which each entry is A(i, j) is

the probability p(π|µ) of an adversary mapping strategy π to µ.

Following the definition of aggregation matrix, we can now relate this concept to

the abstraction of hypers. We define it as follows:

Definition 2.29 (Abstraction of a hyper). A hyper M is an abstraction of another

hyper Π, denoted by M ⊑ Π, iff M = Π · A for some aggregation matrix A.

We can see on Figure 2.2.3 this update works. At first we have an environment Π

that is transformed into a joint matrix J. J is then multiplied by the aggregation matrix

A that associates σ1 and σ2 at full. Which results in the final model M .

Π
σ1 σ2 σ3

1/2 1/3 1/6
x1 1 0 1/3
x2 0 1/2 1/3
x3 0 1/2 1/3

J

9/18 0 1/18
→ 0 3/18 1/18

0 3/18 1/18

A

σ1,2 σ3

σ1 1 0
· σ2 1 0

σ3 0 1

M
σ1,2 σ3

5/6 1/6
x1

3/5 1/3
= x2

1/5 1/3
x3

1/5 1/3

Figure 2.4: Example of Aggregation Matrix

2.3. Hidden Markov Models: what they are and how they interact 44

Alongside the notion of abstractions and models, the vulnerabilities proposed by

Alvim et al. [2017a] were also enhanced. Prior secret vulnerability given an abstraction

is defined as follows:

Definition 2.30 (Prior secret vulnerability given an abstraction). The vulnerability

of the secret in an environment Π, when the adversary’s model is abstraction M is

given by

V (X |Π,M) :=
∑
π

Πσ

∑
µ

A(µ, π)
∑
x

π(x)g(w, x)

The intuition behind this definition is that the adversary chooses his actions based

on the model M , but the actual gain still has to be measured w.r.t. the real strategies

from Π.

Prior strategy vulnerability given an abstraction was also redefined.

Definition 2.31 (Prior strategy vulnerability given an abstraction). Given a g-

vulnerability measure Vg : DX → R, the strategy vulnerability in an environment Π,

obtained through an aggregation matrix A, is defined as the ratio

V (S |Π,M) :=
V (X |Π,M)

V (X |Π)
.

The change here is simpler, given that strategy vulnerability given a concise prior

is defined as a function of secret vulnerability given an environment.

2.3 Hidden Markov Models: what they are and how

they interact

One of our definitions, Section 4.4, worked with a notion of updating the secret and for

this it used markovs, therefore we introduce it here. Markov is a common name within

the probability scope. There are many kinds of markov processes. They are stochastic

processes that depend only on its current state to predict the next state [Oksendal, 2013].

The most known Markov process is the markov chain. It describes a series of possible

events in which the probability of each subsequent event depends only on the state of the

previous event [Gagniuc, 2017]. As the Markov chain, there are many others. Our main

interest lies on the Hidden Markov models. This type of markov models different types of

signals in order to accommodate concurrent processes [Varga and Moore, 1990]. The QIF

approach for Hidden Markov models is slightly different, we follow the definitions from

Alvim et al. [2020, chap. 13, and 14] and present it on the remainder of this section.

From now on we will refer to Hidden Markov Models as only markovs, for simplicity.

2.3. Hidden Markov Models: what they are and how they interact 45

These updates are important to understand the process behind the development

of our solution. Specifically on Section 4.4 markovs will be used considerably.

2.3.1 A brief introduction on markovs

On QIF a markov is a stochastic matrix that updates the secret without producing any

observable outputs [Alvim et al., 2020, chap. 13]. Markovs are similar to channels, in

the sense that they can be represented as matrices and interact with secrets. The main

difference between them is that markovs take the secrets and update them, while channels

produce observable outputs. We present the definition for markovs below.

Definition 2.32 (Markov). Let X be a finite set representing secret input values.

A markov matrix M from X to X is a stochastic matrix, indexed by X ×X , where
each entry Mxi,xj

represents the probability that the secret is xi is updated to xj.

As Alvim et al. [2020] states, markovs do not leak and channels do not update.

A markov takes a prior π and transforms it into a point-hyper on π′. Since the markov

only changed the prior, it does not leak. But if π ̸= π′ then the markov has updated the

secret. A similar thought can be brought to the channel, that takes the prior π to a hyper

∆. If the support of ∆ is non-singleton, then the channel has leaked information about

the secret.

The update on the prior through the markov is done by multiplying the matrices.

If the prior π can be represented as the vector A = [a1j] with dimensions 1 × n and the

markov can be represented by the matrix B = [bij] with dimensions n × n, it is always

a square matrix because it maps secrets to secrets, the product AB will be the resulting

markov with dimensions 1× n. AB = [c1j], where c1j = a11b1j + a12b2j + ·+ a1nbnj.

We can look at the example below to better grasp these concepts.

Example 2.33. Suppose that we have 4 possible values a secret can assume X = {1, 2, 3, 4}.
Their initial probabilities are π = {1/2, 1/4, 1/4, 0} respectively. Then we can add arbitrary

update rules such as:

• If the secret is an even number, it will become an odd number with 1/3 probability for

each, and it has 1/3 probability of not changing.

• If the secret is an odd number, it will become 2 with probability 1/3 and 4 with

probability 2/3.

Usually the prior vector is represented as a column, but for this operation we will

use its transpose. This can be easily represented as the markov below.

2.3. Hidden Markov Models: what they are and how they interact 46

πT 1/2 1/4 1/4 0 ·

M 1 2 3 4
1 0 1/3 0 2/3
2 1/3 1/3 1/3 0
3 0 1/3 0 2/3
4 1/3 0 1/3 1/3

,

in which we can run a round of update. As described before it is the product of the

vector π and the matrix M. This operation results on matrix 2.33.

[πM] = (πT)′ 1/12 1/3 1/12 1/2 .

△▽

2.3.2 Markovs models and their interactions with channels

Markovs can interact with channels in two ways, both of them are presented by Alvim

et al. [2020, chap 13.4.1]. First we can have a channel leak, then the result is passed on

to the markov. This interaction is called channel then markov.

The first step on this interaction is the prior π being pushed through C. This

leaks some information and the adversary may revise her knowledge on the initial state.

The leaked information is represented by the posteriors. Every single observation y has

an associated inner py and its outer probability py, which relies on π and C. After this

observation, the adversary takes the initial distribution of M , and deduces what the final

distribution σ′
y is to the initial distribution σy. The hyper resulting from running C;M

on π is composed by all inners σ′
y, each one with its respective outer py.

Example 2.34 (Alvim et al. [2020] (chap. 13, p. 235-239)). Suppose we have a prior

π : {1/2, 1/2} and a channel and a markov with the same format

C = M =
0 1
1/2 1/2

.

The interaction C;M on an uniform prior, we have that

[(1/2, 1/2) ▷ C] = 3/4 ∗ [(2/3, 1/3)] + 1/4 ∗ [(0, 1)] ,

then we run M on each of those inners separately, giving

[(2/3, 1/3) ▷M] = [(2/3, 1/3)] and [(0, 1) ▷M] = [(1/2, 1/2)]

and the combining of both hypers, weighted by the outer [(3/4, 1/4)], results in 3/4 ∗
[(5/6, 1/6)] + 1/4 ∗ [(1/2, 1/2)].

△▽

2.3. Hidden Markov Models: what they are and how they interact 47

The other way that this interaction can happen is to have a markov update the

secret, then the channel leak. This interaction is called markov then channel.

Here the process is the inverse of the previous one. The prior π first interacts with

a markov M . This updates the prior to a new one. The updated prior π′ is then pushed

through C, which leaks some information.

Example 2.35 (Alvim et al. [2020] (chap. 13, p. 235-240)). As in the previous example,

suppose we have a prior π : {1/2, 1/2} and a channel and a markov with the same format

C = M =
0 1
1/2 1/2

.

The interaction M;C on an uniform prior, we have that

[(1/2, 1/2) ▷M] = [3/4, 1/4] ,

which is obtained by a simple matrix multiplication. Now we conclude pushing the

resulting prior π′ through C, giving

[(3/4, 1/4) ▷ C] = 7/8 ∗ [(6/7, 1/7)] + 1/8 ∗ [(0, 1)] .

△▽

With this we conclude the literature review for the understanding of this work.

48

Chapter 3

Extending on Objectives and

Knowledge Update

In this chapter we present the first relevant result of this thesis: the formulation of update

functions for the general case where the prior is represented as hyper distributions. Section

3.1.1 introduces the concept of a direct update, where each inner is pushed through the

channel independently, and the result is weighted by the outer. Section 3.1.2 introduces

a indirect type of update, where the prior hyper distribution is transformed into a simple

distribution and then pushed through the channel. This chapter solves the objective

proposed on Section 1.1.1.

3.1 Defining knowledge update for dynamic secrets

As we stated previously, our main objective is to verify the leakage when we have the prior

knowledge represented by a hyper distribution. As we showed on Section 2.2, literature

already give us the tools to represent this type of prior knowledge and how to calculate

its respective vulnerabilities. From this, the first step we have to take is to define how the

environment will interact with the channel. This interaction will produce a new element

that represents the update in knowledge for the adversary. There are two types of update

that we used.

3.1.1 Direct Update

The first type of update is what we called direct update. It works as a direct interaction

of environment and channel. If we look back at the traditional QIF framework, we have

a prior π : DX interacting with a channel matrix C : X → DY , this then results on a

hyper ∆ : D(DX). On the novel approach we interact the prior environment Π : D2X
and C : X → DY , but it is noticeable that the type of the channel does not change. This
can only mean that it will accept the same objects as input. If we look closely at the

environment Π, we can say that it is composed by many inners δi weighted by an outer ai.

Each of these inners represents a different strategy, which can also be seen as a separate

prior. Thus we can take each of these priors and push it through the channel.

3.1. Defining knowledge update for dynamic secrets 49

By pushing each inner δi, we have different resulting hypers. But we still have

the outers ai relating to each of these hypers. From this interaction all we have to do is

combine them into a single object. This resulting object will have type D3X . We define

it as follows.

Definition 3.1 (Environment-through-channel hyper). Let Π : D2X be a hyper on

X such that Π =
∑

i ai[π
i], where each πi : DX is an inner distribution and each

ai is the probability the outer assigns to πi. Let C : X → DY be a channel. Then

result of pushing Π through C is a 3-hyper (i.e. an object of type D3X), represented
by {Π ▷ C}, it is defined as:

{Π ▷ C} :=
∑
i

ai[[π
i ▷ C]]

Where each of the brackets [] represent a point hyper distribution. From this we can

infer that an environment-through-channel hyper is of type D3X .

Example 3.2 (Direct update usage. Part I). We will exemplify how the update works by

pushing the hyper akasha through the identity channel I.

akasha

σ1 σ2 σ3

1/3 1/3 1/3

1 0 0

0 1 0

0 0 1/2

0 0 1/2

▷

I

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Pushing the distribution σ1 results as follows:

σ1 ▷ I =

1

0

0

0

▷ I ⇒ Joint :

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⇒ [σ1 ▷ I] :

1

1

0

0

0

Pushing the distribution σ2 results as follows:

σ2 ▷ I =

0

1

0

0

▷ I ⇒ Joint :

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⇒ [σ2 ▷ I] :

1

0

1

0

0

3.1. Defining knowledge update for dynamic secrets 50

Pushing the distribution σ3 results as follows:

σ3 ▷ I =

0

0

1/2

1/2

▷ I ⇒ Joint :

0 0 0 0

0 0 0 0

0 0 1/2 0

0 0 0 1/2

⇒ [σ3 ▷ I] :

1/2 1/2

0 0

0 0

1 0

0 1

After that we have the following environment-through-channel:

{akasha ▷ C} =

1/3 1/3 1/3

1 1 1/2 1/2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

As shown by Alvim et al. [2017a, sec. 6] if your measure of information has type

D2X → R then you can represent the adversarial knowledge as an object of type D2X . If
it is of type DnX , with n ≥ 3, you can convert it to an equivalent object of type D2X .

Theorem 3.3 (Expressiveness of hypers[Alvim et al., 2017a]). For every πn : DnX ,
with n ≥ 2,

V n(πn) = V n(π̂2) ,

where π̂2 : D2X is the hyper resulting from marginalizing the joint of πn w.r.t

Y2 × Y3 × · · ·Yn−1.

Proof. Alvim et al. [2017b, p. 29].

This result is very important because it allows us to be more expressive when we

want to. We have shown with Definition 3.1 that we can represent the posterior knowledge

of an adversary with an element of type D3X , therefore we can convert it to an object of

type D2X and use appropriate measures.

Alvim et al. [2020, chap. 14.3.1], has already shown a way to squash probabilistic

functions so they collapse from type DnX to Dn−1X , for n ≥ 1. Taking advantage of

this, we define how our environment-through-channel {Π ▷ C} : D3X collapses back into

a hyper [Π ▷ C] : D2X as follows.

3.1. Defining knowledge update for dynamic secrets 51

Definition 3.4 (Squashing of Environment-through-channel). Let Π : D2X be a

hyper on X such that Π =
∑

i ai[π
i], where ai is the outer probability of the hyper

and πi represents the inner distributions. Let C : X → DY be a channel, and let

{Π ▷ C} be the environment-through-channel, of type D3X , resulting from pushing

Π through C. Let µ be the squashing function of type DnX → Dn−1X , for n ≥ 1, so

that for Π : D2X we have:

(µ∆)x :=
∑
δ:⌈∆⌉

∆δ × δx

Then the squashing of {Π ▷ C} can be represented as:

µ{∆ ▷ C}

We can also squash an environment of type D2X into a distribution of type DX .
We define it as follows.

Definition 3.5 (Squashing of a hyper). Let ∆ : D2X be a hyper on X such that

∆ =
∑

i ai[π
i], where ai is the outer probability of the hyper and πi represents

the inner distributions. Let C : X → DY be a channel, and let {Π ▷ C} be the

environment-through-channel, of type D3X , resulting from pushing Π through C.

Let µ be the squashing function of type DnX → Dn−1X , for n ≥ 1. The squashing

of Π is equal to

µ∆ = µ(µ{∆ ▷ C})

We can now move to Example 3.6 to better understand how squashing works on

both cases.

Example 3.6 (Direct update usage. Part II). We will exemplify how squashing works by

using it on the result of pushing the hyper akasha onto the identity channel. Consider

the following environment-through-channel.

{akasha ▷ C} =

1/3 1/3 1/3

1 1 1/2 1/2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

If we squash it once we get we will take the element of type D3X to an element

D2X . This is done by a simple multiplication of the outer probabilities of {akasha ▷ C}
and the respectives outer probabilities of [akasha ▷ C].

3.1. Defining knowledge update for dynamic secrets 52

[akasha ▷ C] =

1/3 1/3 1/6 1/6

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

We can squash this 2-hyper once more, by doing it we would obtain an element of

type DX . This operation takes the outer probabilities of [akasha ▷ C] and multiplies each

of its respective inners. Then we sum all the columns into one.

π′ =

1/3

1/3

1/6

1/6

This type of update is very important and will be used throughout Chapter 4 for

most of the attempts on defining posterior vulnerability measures for dynamic secrets.

Including our final formulation.

3.1.2 Indirect Update

The second type of update is called indirect update. The strategies and secrets are trans-

formed into an intermediate object, which is then pushed through the channel with stan-

dard QIF approach. The result of that is then marginalized so we can have the final

results. This update is done by taking the prior environment Π : D2X and creating a

joint distribution of secrets and strategies. This joint distribution will be of type D(X×S)
which can then be pushed through a channel and create a resulting hyper. The channel

has to be adapted to receive this joint. It needs to be copied once for each strategy, and

its rows combined to each other copy of it. This will be clearer with our next example.

Example 3.7 (Indirect update usage). Consider the following environment:

akasha

σ1 σ2 σ3

1/3 1/3 1/3

1 0 0

0 1 0

0 0 1/2

0 0 1/2

3.1. Defining knowledge update for dynamic secrets 53

This is then transformed into the join distribution pairing strategies and secrets.

πakasha =

σ1x1
1/3

σ1x2 0

σ1x3 0

σ1x4 0

σ2x1 0

σ2x2
1/3

σ2x3 0

σ2x4 0

σ3x1 0

σ3x2 0

σ3x3
1/6

σ3x4
1/6

(3.1)

The adaptation of the channel occurs. For each strategy, we double the rows of the

channel. In this case we have an identity channel and three strategies. Therefore we have

3 identity channels concatenated into one.

I =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, III =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The resulting hyper is obtained by the simple QIF update method of pushing a prior

through a channel.

3.1. Defining knowledge update for dynamic secrets 54

[πakasha ▷ III] =

1/3 1/3 1/6 1/6

σ1x1 1 0 0 0

σ1x2 0 0 0 0

σ1x3 0 0 0 0

σ1x4 0 0 0 0

σ2x1 0 0 0 0

σ2x2 0 1 0 0

σ2x3 0 0 0 0

σ2x4 0 0 0 0

σ3x1 0 0 0 0

σ3x2 0 0 0 0

σ3x3 0 0 1 0

σ3x4 0 0 0 1

.

The hyper [πakasha ▷ III] can be then marginalized for strategies or secrets, to obtain

the results we want. The marginalization here is simple to be made, all we have to do is

add the rows that represent each aspect.

For the strategy marginalization we have:

[πakasha ▷ III]
St =

1/3 1/3 1/6 1/6

σ1 1 0 0 0

σ2 0 1 0 0

σ3 0 0 1 1

,

and for the secret marginalization we have:

[πakasha ▷ III]
Sec =

1/3 1/3 1/6 1/6

x1 1 0 0 0

x2 0 1 0 0

x3 0 0 1 0

x4 0 0 0 1

.

△▽

This second update is will be further used on Section 4.6, which was one of the

attempts on defining posterior vulnerability measures.

Both types of update can be used on any environment, but the resulting object of

each type has different ways of being interpreted. Therefore, any measure applied to the

resulting objects must take that into consideration.

55

Chapter 4

Attempts of defining measures for

posterior secret and strategy

vulnerabilities

In the search for a definition for strategy and secret leakage, we made various attempts that

failed for a few different reasons: they did not meet our intuition, they failed important

properties, and others. Nevertheless, they will be described here because these attempts

give us insights into how secret and strategy leakage do behave. They are also helpful in

justifying the need for the final definition described in Chapter 5.

In this chapter, we present each of the preliminary attempts on defining a consistent

measure for posterior vulnerabilities given the notion of environments. We start on Section

4.1 with a brief introduction on work towards new measure.

In Section 4.2 we use the direct update, described on Section 3.1.1, and try to

apply it on the resulting hyper the definitions already made by Alvim et al. [2017a]. We

also show why this definition was not appropriate.

With Section 4.3 we show a few re-definitions of the previous vulnerability metrics

that did not work.

Section 4.4 tries a novel approach using markovs, which is important to reveal to

us the metrics previously defined may not be sensible enough.

Additionally, Section 4.5 tries to work on this sensitivity issue with the proposal

of a new gain function.

And finally, in Section 4.6 we attempt a new type of update function, the indi-

rect update from Section 3.1.2, while taking advantage of the new gain function defined

previously.

4.1. How to define measures for posterior vulnerability given environments 56

4.1 How to define measures for posterior

vulnerability given environments

As discussed in Section 2, there are many possible scenarios that QIF can encapsulate.

Special scenarios require special metrics for leakage. If the user has many possible strate-

gies to generate an input secret, modeling vulnerability will be more complex. For this

on Alvim et al. [2017a], a metric is proposed to differentiate two main types of vulnera-

bilities: Strategy and Environmental. They presented versions for the prior case. In this

section, we discuss the need for strategy and secret vulnerability measures and present a

few attempts on how to define this measure for the posterior case, and so complete the

model to provide an assessment of leakage.

As Alvim et al. [2017a] say, strategy vulnerability is a measure of how much the

adversary knows about the strategy being used. Therefore this metric must distinguish

scenarios where the adversary knows precisely which is the user’s strategy from those

where he is uncertain about it. Additionally, we should also take into account the amount

of uncertainty about it. Alvim et al. [2017a] go further and propose a metric for prior

strategy vulnerability, Definition 2.27. But they do not present a model for updates with

a hyper distribution representing the adversarial prior knowledge. Thus literature does

not have posterior vulnerability defined for this specific case. Likewise Alvim et al. [2017a]

propose that secret vulnerability is a measure of how much the adversary knows about

the secret itself. Proposing a prior metric for it, but leaving the posterior case for future

work.

4.2 Attempt using direct update and the definitions

from Alvim et al. [2017a] for prior vulnerability

The standard QIF framework uses different definitions for prior and posterior vulnerabil-

ities. One of the main reasons for that is that the objects used to attain the values have

different types. A prior π is used to calculate the prior vulnerability and has type DX , a
hyper ∆ is used to calculate the posterior vulnerability and has type D2X .

The is different with environments. We can see this more clearly with Figure 4.1

This figure has an initial hyper Π : D2X , representing an environment, that is pushed

through C. This results in an environment-through-hyper {Π ▷ C}, which is represented

by the resulting set ∆ of distributions of type D2X and the distribution over it γ : DY .
An advantage of the framework presented in Section 3.1 is that we can squash{∆ ▷ C} so
it also becomes of type D2X .

4.2. Attempt using direct update and the definitions from Alvim et al. [2017a] for prior
vulnerability 57

Figure 4.1: Graphical view of the update model from 3.1.1

Using this reasoning, we can take the same metrics for prior vulnerability proposed

by Alvim et al. [2017a] and use them on the objects that result from pushing the hyper

Π through C. We present these definitions below.

Attempt 4.1 (Posterior strategy vulnerability adapted from Alvim et al. [2017a]).

Let Π : D2X be a hyper on X , let C : X → DY be a channel, let {ai} be an

outer probability distribution over the inners of {Π ▷ C}. The posterior strategy

vulnerability, written V (S |Π ▷ C) is defined as the expected value of V (S |C) over
{Π ▷ C}, that is,

V (S |Π ▷ C) :=
∑
i

aiV (S | [σi ▷ C]),

where {Π ▷ C} =
∑

i ai[[σ
i ▷ C]], ai represents the outer probability of the

environment-through-hyper generated, and σi represents the inner distributions of

the point hypers.

Attempt 4.2 (Posterior secret vulnerability adapted from Alvim et al. [2017a]).

Let Π : D2X be a hyper on X , let C : X → DY be a channel, let ai be an outer

probability over the inners of {Π ▷ C}. The posterior strategy vulnerability, written

V (X |Π ▷ C) is defined as the expected value of V (X |C) over {Π ▷ C}, that is,

V (X |Π ▷ C) :=
∑
i

aiV (X | [σi ▷ C]),

where {Π ▷ C} =
∑

i ai[[σ
i ▷ C]], ai represents the outer probability of the

environment-through-hyper generated, and σi represents the inner distributions of

the point hypers.

Example 4.4 shows how both definitions are applied.

Although in principle promising, this re-utilization of definitions did not work.

When using the metrics on the hypers Π′ the property of monotonicity 2.17 did not hold.

Also, a few values intuitively did not pass some of the sanity checks to verify its integrity.

This should be clearer with the next example. For this example, we adapt the already

established definition of leakage, Definition 2.16, as follows.

4.2. Attempt using direct update and the definitions from Alvim et al. [2017a] for prior
vulnerability 58

Definition 4.3 (Secret and strategy leakage). Let Π : D2X be a hyper on X , let
C : X → DY be a channel, the multiplicative strategy leakage given an environment

is defined as:

L×
st(Π,C) :=

V (S |Π ▷ C)

V (S |Π)
,

the additive strategy leakage given an environment is defined as:

L+
st(Π,C) := V (S |Π ▷ C)− V (S |Π) ,

the multiplicative secret leakage given an environment is defined as:

L×
sec(Π,C) :=

V (X |Π ▷ C)

V (X |Π)
,

and the additive strategy leakage given an environment is defined as:

L+
sec(Π,C) := V (X |Π ▷ C)− V (X |Π).

Example 4.4 (Calculating V (S |Π ▷ C) and V (X |Π ▷ C) without squashing). Let us

think about the following matrix which presents us with three environments: bane, clinkz

and dazzle. Each of those will be pushed through the identity channel I.

σ1 σ2 σ3 σ4

x1 1 0 1/2 9/10
x2 0 1 1/2 1/10

bane 1/2 1/2 0 0
clinkz 0 0 1 0
dazzle 1/2 0 0 1/2

▷
I

1 0
0 1

. (4.1)

When we calculate, using the definitions 2.24 and 2.27, we get the following results

for each of the environments:

V (X | bane) = 1 and V (S | bane) = 1/2,

V (X | clinkz) = 1/2 and V (S | clinkz) = 1,

V (X | dazzle) = 19/20 and V (S | dazzle) = 1.

The resulting hyper, after squashing according to Theorem 3.4, for each of these

environments is represented as follows:

bane
1/2 1/2

1 0
0 1

,

clinkz
1/2 1/2

1 0
0 1

,

dazzle
1/2 9/20 1/20

1 1 0
0 0 1

.

4.3. Attempt defining posterior strategy vulnerability as a function of secret
vulnerability 59

Now we can use the new definitions for posterior environmental vulnerability 4.1

and posterior strategy vulnerability 4.2 to make the proper calculations:

V (X | bane ▷ I) = 1 and V (S | bane ▷ I) = 1,

V (X | clinkz ▷ I) = 1 and V (S | clinkz ▷ I) = 1/2,

V (X | dazzle ▷ I) = 1 and V (S | dazzle ▷ I) = 19/20.

And then we verify the leakage for each case

L+
sec(bane, I) = 1 − 1 = 0 and L+

st(bane, I) = 1 − 1/2 = 1/2,

L+
sec(clinkz, I) = 1 − 1/2 = 1/2 and L+

st(clinkz, I) = 1/2 − 1 = −1/2,

L+
sec(dazzle, I) = 1 − 19/20 = 1/20 and L+

st(dazzle, I) = 19/20 − 1 = −19/20.

From which we can clearly see that the property of monotonicity is being violated.

△▽

From Example 4.4 we can conclude that adapting the definitions from Alvim et al.

[2017a], the results for vulnerabilities from pushing Π through C do not respect the

property of monotonicity. Therefore they are not satisfactory measures.

Monotonicity does not hold for the non-squashed version as well. Take for instance

dazzle and its non-squashed and squashed version respectively:

dazzle
1/2 1/2
1/2 9/10 1/10

1 1 0
0 0 1

,

dazzle
1/2 9/20 1/20

1 1 0
0 0 1

. (4.2)

By making simple calculations we will attain equivalent results. The matrices 4.2

may differ in forms but result in the same values of vulnerability. Therefore we find the

same problem with respect to monotonicity. From which we can conclude that Definitions

4.2 and 4.1 do not result in a solution for a vulnerability metric using, either using the

non-squashed or squashed versions.

4.3 Attempt defining posterior strategy

vulnerability as a function of secret

vulnerability

There is an interesting aspect about the hypers that represent the inners from {Π ▷ C}.
They are not necessarily an environment, in that each DX is not a strategy. We can take

4.3. Attempt defining posterior strategy vulnerability as a function of secret
vulnerability 60

as an example the non-squashed version from matrix 4.2 from the previous section. We

present them below splitting them into each of its inners.

[dazzle ▷ I]
1/2 1/2
1/2 9/10 1/10

1 1 0
0 0 1

→

[σ1 ▷ I]
1/2
1/2

1
0

and

{σ4 ▷ I}
1/2

9/20 1/20

1 0
0 1

.

The hypers [σ1▷I] and{σ4 ▷ I} are the result of pushing σ1 and σ2 through channel

I, respectively. They are not necessarily environments. This is easy to see if we look at

environment dazzle before it goes through the channel I.

σ1 σ2 σ3 σ4

x1 1 0 1/2 9/10
x2 0 1 1/2 1/10

dazzle 1/2 0 0 1/2

,

We can see that the environments have 4 possible strategies. On [σ1 ▷ I] we only

have one strategy depicted, which is different from the environment used for the prior

calculations. And it would not make sense to make the same calculations on different

objects. The same idea can be used to argue about {σ4 ▷ I}.
One could assume that it would make sense to apply metrics for posterior environ-

mental vulnerability on the resulting inners. Starting from that, we redefined posterior

strategy vulnerability and made that environmental vulnerability would not change after

the environment was pushed through a channel. This comes from the idea that the en-

vironment itself does not change from prior to posterior. We, therefore, used the default

definition of leakage to evaluate the results, Definition 4.3.

Attempt 4.5 (Posterior strategy vulnerability as a function of secret vulnerability).

Let Π : D2X be a hyper on X , let C : X → DY be a channel, let {ai} be an outer

probability distribution on the inners of {Π ▷ C}. Let π be the concise hyper of each

inner of the {Π ▷ C}.
The posterior strategy vulnerability, written V (S |Π ▷ C) is defined as the expected

value for strategy vulnerability given that each inner was pushed through C over the

environmental vulnerability calculated prior to pushing the hyper, that is:

V (S |Π ▷ C) :=

∑
i aiV (S | [σi ▷ C])

V (X |Π)

After formulating this definition we ran many examples with sanity checks. From

analyzing the results we found that all the posterior vulnerabilities resulted in 1. So the

4.4. Attempt using the update model from McIver and Morgan [Alvim et al., 2020,
chap. 13,14] 61

values for leakage, despite being in accordance with basic properties, were not adequate.

From this, we could conclude that this definition only divides the vulnerability value by

itself when calculating leakage. We can see that on Equation 4.3 below.

L×
st(Π,C) =

V st{Π ▷ C}
V st(Π)

=
V en(Π)∑
i aiV (πi)

× V (π)

V en(Π)
=

V (π)∑
i aiV (πi)

(4.3)

From Equation 4.3 we can conclude that L×
st(Π,C), as defined, is the inverse of

V (S |Π ▷ C). Therefore whenever we calculate leakage we would get 1 as result, indifferent

of how the prior was calculated. This approach showed itself not to be informative in

practice, thus it would consider every system as equivalent. Following this, we moved on

to a new approach.

4.4 Attempt using the update model from McIver

and Morgan [Alvim et al., 2020, chap. 13,14]

On Alvim et al. [2020, chap. 13,14] the authors propose a framework that deals with the

problem of updating secrets. They also briefly discuss the problem of strategies. There

is a special problem proposed by Alvim et al. [2020, exercise. 13.2] on this subject. We

present it here with Algorithm 1. It is very important to note that this approach views

secrets as a combination of values and strategies, as in a joint distribution.To better

understand this algorithm keep in mind that p⊕ is an operator used on QIF to represent

a choice between two arguments with p probability. More precisely, ap ⊕ b represents a

random choice that takes a with probability p, and b with probability (1− p).

Algorithm 1 Password Histories
1: VAR
2: password: 0,1 - Either 0 or 1.
3: p,q: [0,1] - Between 0 and 1.
4:

5: REPEAT N TIMES
6: PRINT password ← Leak current password.
7:

8: ↓ Internal choice of new password.
9: password := (IF password=0 THEN 1 p⊕ 0 ELSE 0 q⊕ 1)

10: END.

The algorithm shown models a password that is changed repeatedly, this process

is done probabilistically based on its current value. Which is something already suggested

by Mardziel et al. [2014b]. A question that may be asked is what would happen to the

adversarial knowledge after multiple runs. Intuitively, that the adversary would eventually

learn about the values of p and q after observing many runs.

4.4. Attempt using the update model from McIver and Morgan [Alvim et al., 2020,
chap. 13,14] 62

This initial thought can be expanded if we create an example for it, thus let us

work on that. Imagine we have three different strategies for generating the password:

• random: A new password is generated uniformly. (p = q = 1/2).

• not-1: A new password is generated uniformly if its current value is 0, but if it is 1,

change it to 0. (p = 1/2, q = 1).

• alternate - If the current value is 0, set it to 1, and vice versa. (p = q = 1).

We can represent this strategy as follows. First, we need to state that both the

current value of the password and the strategy that is being used are represented as pairs -

for instance r0 means that the strategy is random and the current value is 0, n1 represents

strategy not-1 and the current value 1, and so on. We list each (strategy,password) pair

as follows:

• r0: strategy random and current value is 0.

• r1: strategy random and current value is 1.

• n0: strategy not-1 and current value is 0.

• n1: strategy not-1 and current value is 1.

• a0: strategy alternate and current value is 0.

• a1: strategy alternate and current value is 1.

Then we can build the following matrices to represent the adversarial knowledge

about the system. We build a markov where each row and each column represent a pair

(strategy,secret) this is responsible to update the secret and is depicted as follows:

M r0 r1 n0 n1 a0 a1

r0 1/2 1/2 0 0 0 0

r1 1/2 1/2 0 0 0 0

n0 0 0 1/2 1/2 0 0

n1 0 0 1 0 0 0

a0 0 0 0 0 0 1

a1 0 0 0 0 1 0

(4.4)

Here each row represents the current state the world is in, and each column rep-

resents the next state that the world can change to. For instance, if we are on r0, we

can move to r0 with 1/2 probability, or to r1 with the same probability. The adversary a

priori has no knowledge of which secret is being used. Therefore we can represent it as a

simple prior with matrix 4.5.

4.4. Attempt using the update model from McIver and Morgan [Alvim et al., 2020,
chap. 13,14] 63

r0 1/6

r1 1/6

n0 1/6

n1 1/6

a0 1/6

a1 1/6

(4.5)

And the channel is depicted by Algorithm 1 on line 9. Below we can have a full

overview of the system created.

r0 1/6

r1 1/6

n0 1/6

n1 1/6

a0 1/6

a1 1/6

▷

C 0 1

r0 0 1

r1 1 0

n0 0 1

n1 1 0

a0 0 1

a1 1 0

M r0 r1 n0 n1 a0 a1

r0 1/2 1/2 0 0 0 0

r1 1/2 1/2 0 0 0 0

n0 0 0 1/2 1/2 0 0

n1 0 0 1 0 0 0

a0 0 0 0 0 0 1

a1 0 0 0 0 1 0

This matrix is the representation of the prior 4.5 that will interact with both the

channel C and the markov M. The first step of this approach is to make the traditional

QIF interaction of pushing the prior through a channel.

r0 1/6

r1 1/6

n0 1/6

n1 1/6

a0 1/6

a1 1/6

▷

C 0 1

r0 0 1

r1 1 0

n0 0 1

n1 1 0

a0 0 1

a1 1 0

=

[π ▷ C]

1/2 1/2

0 1/3

1/3 0

0 1/3

1/3 0

0 1/3

1/3 0

After this, we take the resulting hyper and interact it with the markov to update

the secret. Section 2.3.2 presents how to make these calculations. This is done by pushing

each inner of [π ▷ C] and then combining them weighted by their outer probabilities.

4.4. Attempt using the update model from McIver and Morgan [Alvim et al., 2020,
chap. 13,14] 64

[π ▷ C]

1/2 1/2

0 1/3

1/3 0

0 1/3

1/3 0

0 1/3

1/3 0

▷

M r0 r1 n0 n1 a0 a1

r0 1/2 1/2 0 0 0 0

r1 1/2 1/2 0 0 0 0

n0 0 0 1/2 1/2 0 0

n1 0 0 1 0 0 0

a0 0 0 0 0 0 1

a1 0 0 0 0 1 0

=

[π ▷ C|M]

1/2 1/2

1/6 1/6

1/6 1/6

1/3 1/6

0 1/6

1/3 0

0 1/3

Then we repeat the process on the second iteration, this time we push a hyper

through the channel. This is done by pushing each column and then weighting it by its

outer. This is the direct update from Section 3.1.1.

∆

1/2 1/2

1/6 1/6

1/6 1/6

1/3 1/6

0 1/6

1/3 0

0 1/3

▷

C 0 1

r0 0 1

r1 1 0

n0 0 1

n1 1 0

a0 0 1

a1 1 0

=

[∆ ▷ C]

1/12 5/12 1/3 1/6

0 1/5 0 1/2

1 0 1/4 0

0 2/5 0 1/2

0 0 1/4 0

0 2/5 0 0

0 0 1/2 0

And finally, we make the final push of the resulting hyper [∆ ▷ C] through the

Markov, again with using the intermediate hypers described on Section 2.3.2.

[∆ ▷ C]

1/12 5/12 1/3 1/6

0 1/5 0 1/2

1 0 1/4 0

0 2/5 0 1/2

0 0 1/4 0

0 2/5 0 0

0 0 1/2 0

▷

m r0 r1 n0 n1 a0 a1

r0 1/2 1/2 0 0 0 0

r1 1/2 1/2 0 0 0 0

n0 0 0 1/2 1/2 0 0

n1 0 0 1 0 0 0

a0 0 0 0 0 0 1

a1 0 0 0 0 1 0

=

[∆ ▷ C|M]

1/12 5/12 1/3 1/6

1/2 1/10 1/8 1/4

1/2 1/10 1/8 1/4

0 1/5 1/4 1/4

0 1/5 0 1/4

0 0 1/2 0

0 2/5 0 0

Now we can make calculations for vulnerability and verify if this result can be

valuable. Here we use the default Bayes vulnerability. Since our prior is a uniform

distribution with 1/6 probability, Vg(π) = 1/6. For the posterior case, we have that

Vg [∆ ▷ C|M] = 1/12× 1/2 + 5/12× 2/5 + 1/3× 1/2 + 1/6× 1/4 = 5/12.

If we calculate the leakage we have L×
g (π,C|M) = 5/12÷ 1/6 = 5/2. With this result,

we can conclude that the adversary would eventually increase his knowledge of the secret

4.5. Refined attempt of McIver and Morgan using Manhattan Distance as a gain
function 65

over multiple runs. But despite the promising results we attained, this approach is not

sensible enough. Since it fails to grasp big differences between similar distributions. The

matrices presented below are one of these scenarios.

ember

σ1 σ2

x1
99/100 98/100

x2
1/100 2/100

1/2 1/2

,

huskar

σ1 σ2

x1 1 0

x2 0 1

1/2 1/2

. (4.6)

We can ask ourselves “what is the prior vulnerability on each of the scenarios

presented above?”. This can be verified with simple calculations with the metrics defined

by Alvim et al. [2017a].

V (X | ember) = 99/100× 1/2 + 98/100× 1/2 = 197/200.

V (X |huskar) = 1× 1/2 + 1× 1/2 = 1.

With ember, the strategies differ minimally and the secret will be x1 most of the

time, despite which strategy is chosen. On huskar we always get x1 for σ
1, and x2 for σ

2.

But if we only look at the results, the values for vulnerability are greatly similar. Thus we

need a better way to measure a “distance” between strategies. This will allow our results

to properly judge similar, but fundamentally different strategies.

Another important point is that if we look only at the outer, the vulnerability

could be 1/2 in both cases. This is also very misleading.

The idea that any metric for posterior vulnerability had to be sensible enough to

capture subtle differences like the ones presented in matrix 4.6 were sine qua non on how

we approached our next attempts, Sections 4.5, and 4.6.

4.5 Refined attempt of McIver and Morgan using

Manhattan Distance as a gain function

Given what we learned so far, there are a few ways to move forward. One promising idea

is to combine the structure already present in the literature and what we learned with

4.4, that is, measure distances between strategies.

The best way to measure the distance between strategies is to define a specific

gain function to them. With this gain function defined, we can calculate her gains and

the vulnerabilities associated. Given a set of strategies, the adversary can guess which

strategy is being used. Her gain will be determined considering the distance between the

strategy she chose and the actual strategy.

4.5. Refined attempt of McIver and Morgan using Manhattan Distance as a gain
function 66

On this approach we go back to representing secrets as simple values, instead of

pairs as we did on Section 4.4.

4.5.1 Finding a suitable gain function

The adversarial guesses here are the strategies, which are probability distributions. Thus

a suitable gain function needs to be able to measure the distance between probability

distributions. Literature presents us with many ways to measure this type of distance.

Examples range from Rényi entropy [Rényi, 1961], Kullback-Liebler divergence [Kullback

and Leibler, 1951], Hellinger distance [Cieslak et al., 2012], Bhattacharyya distance [Bhat-

tacharya, 1946], etc.. Some of these suit generic cases and can be broadly applied, others

match more particular cases that need to meet certain criteria. We tried a few of these

functions and ended up choosing Manhattan distance. This function was chosen because

it is easy to understand. It also achieves the results we aimed for vulnerabilities and

leakage.

There are a few other ways to measure this distance without logarithmic functions.

Two of the most known are total variation[Devroye et al., 1990] and Manhattan distance

[Krause, 1973]1. We made calculations with both distances but we found out that would

be better to work with the Manhattan distance only. This is because total variation

distance works with a supremum, which causes problems with the optimization that may

be used on future developments of the project, Chapter 6.

Definition 4.6 (Manhattan distance). The Manhattan distance between two dis-

tributions α : DX and β : DX of probability given by

mh(α, β) :=
∑
p∈α,β

|α(p)− β(p)|.

Having chosen a function to measure the distance, we can now take this to the

QIF framework and define a gain function associated with it.

Definition 4.7 (Manhattan distance gain function). The Manhattan distance gain

function gmh : DX × DX 7→ 0, 1 is given by

gmh(α, β) :=
2−mh(α, β)

2
.

The thought behind this definition is very intuitive. As any simple metric we have

a subtraction of the maximum possible adversarial gain and the distance between the

1This distance is also known as Taxicab Geometry or L1 distance, here we will treat is as Manhattan
Distance

4.5. Refined attempt of McIver and Morgan using Manhattan Distance as a gain
function 67

strategy chosen by the adversary and the actual strategy. The only tweak that had to be

made is to change the subtraction from 1, intuitive, to 2. This is because on the worst-case

scenario the Manhattan distance would be 2. Giving us negative values if we kept 1.

With the gain function, Definition 4.7, we can define the prior and posterior vul-

nerabilities specific to this case.

Attempt 4.8 (Prior Manhattan distance strategy vulnerability). Given the Man-

hattan distance gain function 4.7, a strategy σ ∈ DX , a hyper Π ∈ D2X , and a set

of guesses w ∈ W. The prior Manhattan distance strategy vulnerability is defined

as

Vgmh
(S|Π) = max

w

∑
σ

Π(σ)gmh(w, σ).

Attempt 4.9 (Posterior Manhattan distance strategy vulnerability). Given the

Manhattan distance gain function 4.7, given a strategy σ ∈ DX , given a hyper

Π ∈ D2X , given a set of guesses w ∈ W, and given an environment-through-

channel {Π ▷ C} ∈ D3X . The posterior Manhattan distance strategy vulnerability is

defined as

Vgmh
(S |Π ▷ C) =

∑
i

ai max
w

∑
σ

{Π ▷ C} (σ)gmh(w, σ).

Where ai represents the i’th outer of the {Π ▷ C}.

It is important to notice here that we redefined only the strategy vulnerability.

This is because using a gain function that compares probability distributions makes little

sense when calculating secret vulnerabilities. For this part we keep Definitions 2.24 and

4.2. We can verify through Example 4.4 that they respected monotonicity and had valid

results for leakage.

With these definitions made, we can move to an experimental phase to verify if

they have interesting results that can be further expanded.

4.5.2 Testing the previous metrics with gmh

After defining the new gain function, we can run sanity checks to verify if it respects the

basic properties we need. This was not the case. Results did not follow the intuition they

should, which made this simple definition not adequate. Before we present our example

there is one important point to be made about the set of guesses W .

To make the proper calculations we would have to consider every possible guess.

This would be attained through linear programming, as presented by Alvim et al. [2020,

4.5. Refined attempt of McIver and Morgan using Manhattan Distance as a gain
function 68

chap. 5.5.3]. But we can restrict the set of guesses to W = {π} ∪ {πi|σi ∈ ⌈Π⌉} and still

attain meaningful results.

Now we present a few interesting results of sanity checks.

Example 4.10 (Calculating Vgmh
(S |Π ▷ C) with gmh). Let us think about the following

matrix which presents us with two environments jakiro and lich. These environments

will be pushed through the identity channel I.

σ1 σ2 σ3

x1 1 0 1/2
x2 0 1 1/2

jakiro 1/2 1/2 0
lich 0 0 1

▷
I

1 0
0 1

.

Here we have that the set of guessesW, following our restriction, isW = {(1, 0), (0, 1), (1/2, 1/2)},
which we will refer to as w1, w2, and w3 respectively. Note that π = w3. Now we can use

Definition 4.8 to compute the prior Manhattan Distance Vulnerability. For jakiro we

have

Vgmh
(S | jakiro) = max

i
(
∑
j

jakiro(wj) gmh(wi, wj))

= max(1/2× g(w1, w1) + 1/2× g(w1, w2) + 0× g(w1, w3);

1/2× g(w2, w1) + 1/2× g(w2, w2) + 0× g(w2, w3);

1/2× g(w3, w1) + 1/2× g(w3, w2) + 0× g(w3, w3))

= max(1/2× 2 + 1/2× 0; 1/2× 0 + 1/2× 2; 1/2× 1 + 1/2× 1)

= max(1; 1; 1)

= 1,

which is intuitive because the entirety of the uncertainty is within the strategy, thus

the value of vulnerability is low. For lich we have

Vgmh
(S | lich) = max

i
(
∑
j

lich(wj) gmh(wi, wj))

= max(0× g(w1, w1) + 0× g(w1, w2) + 1× g(w1, w3);

0× g(w2, w1) + 0× g(w2, w2) + 1× g(w2, w3);

0× g(w3, w1) + 0× g(w3, w2) + 1× g(w3, w3))

= max(1× 1; 1× 1; 1× 2)

= max(1; 1; 2)

= 2,

4.5. Refined attempt of McIver and Morgan using Manhattan Distance as a gain
function 69

which is intuitive because the strategy is already known, making the value for vul-

nerability high. The resulting hyper for each of these environments is represented as

follows:

jakiro = lich =

∆1

0
1

1
0

∆2

0
1

0
1

∆3

1
1/2 1/2

1 0
0 1

.

Which can be squashed to be represented as

jakiro = lich =

1/2 1/2

1 0
0 1

, .

Now we can use the new definitions for posterior manhattan distance vulnerability

4.9 to make the proper calculations. Since both environments result in the same hyper,

the calculation is the same.

Vgmh
(S | jakiro ▷ I) = Vgmh

(S | lich ▷ I)

=
∑
i

δi max
w

∑
s

∆(σ)gmh(w, σ)

=
∑
i

δiVgmh
(∆i)

= (0× Vgmh
(∆1) + 0× Vgmh

(∆2) + 1× Vgmh
(∆3)

= Vgmh
(∆3)

= max
i

(
∑
j

a∆3 gmh(wi, wj))

= max(1/2× g(w1, w1) + 1/2× g(w1, w2);

1/2× g(w2, w1) + 1/2× g(w2, w2);

1/2× g(w3, w1) + 1/2× g(w3, w2))

= max(1/2× 2 + 1/2× 0; 1/2× 0 + 1/2× 2; 1/2× 1 + 1/2× 1)

= max(1; 1; 1)

= 1,

And then we verify the leakage for each case

L×
gmh

(jakiro, I) =
1

1
= 1 and L×

gmh
(lich, I) =

1

2
=

1

2
.

4.6. Attempt through the generation of a prior from the joint matrix 70

From which we can see incoherent values. First and more importantly it violates

the property of monotonicity 2.17 on the calculation of L×
gmh

(lich, I), giving us a leakage

smaller than 1. The expected value for L×
gmh

(jakiro, I) should also be higher than 1,

because at first the adversary does not know the strategy, and after pushing the prior

through the channel he learns exactly what the strategy is.

△▽

Although we attained inconclusive results with this attempt, defining a new gain

function made us touch on the aspect of being able to differentiate between similar and

distinct strategies. This aspect is pivotal in defining a proper metric for vulnerabilities

within different strategies. This paved the way to our next definition that will be presented

in Section 4.6 and our final definition presented in Chapter 5.

4.6 Attempt through the generation of a prior from

the joint matrix

Our final attempt was a hybrid version. It combined ideas from previous attempts. Here

we have the idea presented in Section 4.4 that makes the secrets pairs of strategies and

secrets. In other words we will use the joint D(S ×X) as the prior. We also use the idea

of a distinct gain function, presented in Section 4.5. This helps us measure vulnerabilities

with more accuracy. We will present an example throughout this section that can help

create the intuition behind the formulation. Illustrating each step along the way.

Firstly we can look at Figure 4.2 to get a sense of how our formulation works. We

first have a prior hyper Π : D2X . This prior has a set S of strategies and a set X secrets.

Π is then transformed into a Joint : D(S ×X) distribution, combining S and X in pairs.

This Joint will then be pushed through a channel that is adjusted accordingly to interact

with it. This “pushing” works like in traditional QIF and results on ∆ : D2y. This ∆

then is marginalized to receive the calculations for the respective attributes: S and X .

Figure 4.2: Graphical view of the joint approach.

4.6. Attempt through the generation of a prior from the joint matrix 71

mars =

σ1 σ2

1/2 1/2

x1
1/2 0

x2
1/2 0

x3 0 1/2

x4 0 1/2

(4.7)

Consider the environment mars, presented by matrix 4.7. This environment has

strategies S = {σ1, σ2} and secrets X = {x1, x2, x3, x4}. We will use this object to make

the measurements for prior strategy vulnerability, taking into account the Manhattan

distance gain function 4.7. We define it as follows.

Attempt 4.11 (Prior strategy vulnerability with a prior joint). Let Π : D2X be a

hyper on X such that Π =
∑

i ai[σ
i]. Where each δi : DX is an inner distribution

and each ai is the associated outer distribution over the inners. Also let W be the

set of guesses consisting of each δi and πΠ.

The prior strategy vulnerability, written Vgmh
(S|Π), is defined as

Vgmh
(S|Π) := max

w∈W

∑
i∈|a|

Πδigmh(w, δ
i),

where Πδi is the probability of δi according to Π.

Since we are using the Manhattan distance gain function 4.7, the same rules for

the set of guesses apply here. The restricted set is

WElf = {(1/2, 1/2, 0, 0); (0, 0, 1/2, 1/2); (1/4, 1/4, 1/4, 1/4)} (4.8)

With the set of guesses we can calculate the prior strategy vulnerability.

Vgmh
(S|mars) = max

i
(
∑
j

mars(wj) gmh(wi, wj))

= max(1/2× g(w1, w1) + 1/2× g(w1, w2);

1/2× g(w2, w1) + 1/2× g(w2, w2);

1/2× g(w3, w1) + 1/2× g(w3, w2)))

= max(1/2× 2 + 1/2× 0; 1/2× 0 + 1/2× 2; 1/2× 1 + 1/2× 1)

= max(1; 1; 1)

= 1,

(4.9)

4.6. Attempt through the generation of a prior from the joint matrix 72

For the prior secret vulnerability, we take the literature approach defined by Alvim

et al. [2017a], which we presented on Definition 2.24. The calculations for each vulnera-

bility follow.

Vgmh
(X|mars) = E

mars
Vg.

= 1/2V1(σ
1) + 1/2V1(σ

2)

= 1/2× 1/2 + 1/2× 1/2

= 1/2

(4.10)

Now we take the idea from Section 4.4 and combine each strategy and secret into

pairs. This is done by simply multiplying its probabilities. The hyper representing the

prior, matrix 4.7, then becomes a simple probability distribution, shown on matrix 4.11.

The result of this operation represents the joint distribution of secrets and strategies.

σmars =

σ1x1
1/4

σ1x2
1/4

σ1x3 0

σ1x4 0

σ2x1 0

σ2x2 0

σ2x3
1/4

σ2x4
1/4

(4.11)

Prior σmars is ready to be pushed through a channel. In this example, we are using

channel D, but to take the adapted prior, we have to double the rows of D, constructing

channel DD. We can see this transformation on matrix 4.12. This is the indirect update

that we presented on Section 3.1.2.

D =

1 0

1 0

0 1

0 1

, DD =

1 0

1 0

0 1

0 1

1 0

1 0

0 1

0 1

(4.12)

The result of pushing is then

4.6. Attempt through the generation of a prior from the joint matrix 73

[σElf ▷ DD] =

1/2 1/2

σ1x1
1/2 0

σ1x2
1/2 0

σ1x3 0 0

σ1x4 0 0

σ2x1 0 0

σ2x2 0 0

σ2x3 0 1/2

σ2x4 0 1/2

. (4.13)

[σmars ▷DD], in this case, is what we called previously ∆. So now we have to make

the dismembering for each attribute: Strategies and Secrets. This is done by a simple

marginalization.

Figure 4.3: Dismembration of ∆.

The resulting marginalization on strategies is

[σmars ▷ DD]St =

1/2 1/2

1 0

0 1

, (4.14)

and the marginalization for secrets is

[σmars ▷ DD]Sec =

1/2 1/2

1/2 0

1/2 0

0 1/2

0 1/2

. (4.15)

In each matrix 4.14 and 4.15 we can now calculate the posterior strategy vulnera-

bility. We define it as follows.

4.6. Attempt through the generation of a prior from the joint matrix 74

Definition 4.12 (Posterior strategy vulnerability with a prior joint). Let [Π ▷C]st

be the resulting hyper of pushing Π through C . Let [Π ▷C]st be the marginalization

on strategies of such hyper. Where each γi : DY is an inner distribution and each

bi is the associated outer probability.

The posterior strategy vulnerability, written Vgmh
(S|Π ▷ C), is defined as

Vgmh
(S|Π ▷ C) :=

∑
y∈Y

by ×max
w∈W

∑
i∈|a|

γigmh(w, δ
i)

After defining both prior and posterior vulnerabilities, it is only natural that we

follow with the leakage definition. This definition is straightforward and is very similar

to the other types of leakage previously defined in 2.16. It is defined as follows:

Definition 4.13 (Multiplicative strategy leakage and additive strategy leakage).

Let Π : D2X be a hyper on X , let C : X → DY be a channel, the multiplicative

strategy leakage is defined as:

L×
gmh

(Π,C) :=
Vgmh

(S|Π ▷ C)

Vgmh
(S|Π)

and the additive strategy leakage is defined as:

L+
gmh

(Π,C) := Vgmh
(S|Π ▷ C)− Vgmh

(S|Π).

We already have the value for prior strategy vulnerability from Equation 4.9. With

the prior strategy vulnerability in hands, we now look to 4.14 and calculate the posterior

strategy vulnerability using Definition 4.12.

V st
gmh

[mars ▷ II] =
∑
y∈Y

by ×max
w∈W

∑
i∈|a|

γigmh(w, δ
i)

= 2.

And now we can verify the leakage using Definition 4.13.

L+
st(mars, II)gmh

=
2

1
= 2 and L×

st(mars, II)gmh
= 2− 1 = 1.

(4.16)

There was a big problem with our results. Throughout many tests and experiments,

we realized that, as represented by the results from 4.16, the result for L×
st(Π, C)gmh

would

always result in 2. We ran over five hundred sanity checks. They varied in sample size,

channel type, prior type, and different restrictions for the set of guesses. With all of them

resulting in the same value.

4.6. Attempt through the generation of a prior from the joint matrix 75

This made us realize that this formulation was correct but not ideal. We were

missing something. The problem was that the adversary had too much power, he always

had unrestricted knowledge. Which allowed him to make the most informed decision

always, thus he would not gain any new information despite the pushing through the

channel. This made us look back to Alvim et al. [2017a, sec. 5]. With this kind of

knowledge, the leakage had to be maximum. Therefore we had to improve the model on

how he could perceive the environment. This was done using aggregation matrices, which

we presented in Section 2.2.3.

76

Chapter 5

Final definition of posterior strategy

and secret vulnerabilities given a

model

In this chapter we discuss the main contribution of this thesis: A formulation for posterior

vulnerabilities given a model for both secrets and strategies. This formulation allows us

to define leakage for the scenario where a hyper is used to represent adversarial prior

knowledge [Alvim et al., 2017a]. This chapter addresses the objective proposed in Section

1.1.2.

In Section 5.1 we define our metrics for posterior strategy vulnerability and pos-

terior secret vulnerability. Section 5.2 presents the operational interpretation for the

metrics. We also present a proof for monotonicity in Section 5.3. Finally, in Section 5.4

we make comparisons with previous examples to show the validity of our formulation.

5.1 Final definition using aggregation matrices

The previous attempts helped us define a measure well suited for posterior strategy vul-

nerability. With our first attempt, Section 4.2, we reused definitions proposed by Alvim

et al. [2017a]. Recall that it showed us that the resulting element from pushing an envi-

ronment through a channel is not necessarily an environment, in the sense that it does

not necessarily reflect how a secret is generated, although it depicts the adversarial state

of knowledge. Given that a new definition was needed.

Our second attempt, presented on Section 4.3, showed us that we have to be careful

with said redefinition, because environments and hypers do not represent the same objects.

For instance, environments necessarily have type D2X , because by definition generate

secrets. Hypers can have different types, this is because they can represent many types of

knowledge related or unrelated to the secret. Our third attempt, Section 4.4, showed us

that only obtaining values respecting monotonicity is not enough: we also have to respect

distances between strategies. This idea was explored on our fourth attempt, Section 4.5,

which was not sensitive enough, even with the hybrid approach from Section 4.6. This

5.1. Final definition using aggregation matrices 77

was because we were missing an important point: models of partial knowledge.

Alvim et al. [2017a] introduced the concepts of strategy and the prior vulnerabilities

related to it. It also introduced aggregation matrices and models, presented on Section

2.2.3. Their work defined that the adversary only knew a model M , and not necessarily

the entire environment Π. Vulnerability was shown to be behave similarly if a model of

partial knowledge was introduced on the framework. There were two special cases. The

first was when M = Π, that is if the aggregation matrix was the identity matrix. This

represented the adversary with unabridged knowledge, which corresponds to the case in

which an adversary can discern the exact strategy generating the secret. The second case

was when M = π, which happened when A was the null channel, Definition 2.11. This

case coincides with the traditional QIF approach, in which the adversary knows only one

possible strategy of generating secrets.

Alvim et al. [2017a] did not define how to push an environment Π through a

channel. We developed this idea on Section 3.1. It is important to define a measure for

posterior vulnerability and leakage. A very intuitive way to think is to take the squashed

product of pushing Π through C and defining

V (X|[M ▷ C]) = E
[M▷C]

V

and use Alvim et al. [2017a] method of defining strategy leakage as

V (S|[M ▷ C]) =
V (X|[M ▷ C])

V (X|[π ▷ C])

but this can be shown not to work when comparing both leakages, assuming we

are using multiplicative leakage:

V (X|[M ▷ C])

V (X|M)
=

V (S|[M ▷ C])

V (S|M)
· V (X|[Π ▷ C])

V (X|Π)

=
V (X|[M ▷ C])

V (X|Π ▷ C])
· V (X|Π)
V (X|M)

· V (X|[Π ▷ C])

V (X|Π)

(5.1)

because this means that strategy leakage will always be ≤ 1. Since using the

perceived leakage equation 2.13, we have that

Perceived Leakage︸ ︷︷ ︸
constant

= Strategy Leakage︸ ︷︷ ︸
≤1

× Secret Leakage︸ ︷︷ ︸
≥1

.

with all of this in mind we can redefine the prior cases for strategy and secret

vulnerability as follows.

5.1. Final definition using aggregation matrices 78

Definition 5.1 (Prior secret vulnerability given a model). Let Π : D2X , where

each σi : DX represents a possible strategy within Π. Let M : D2X be a model of

adversarial knowledge consistent with Π, let X be the set of secrets, let W be the set

of guesses, and let g : X×W → R be a gain function. The prior secret vulnerability

given a model, written V (X |M), is defined as:

V (X |M) :=
∑

σ′∈DX

max
w∈W

∑
x∈X

Mσ′σ′
xg(w, x),

where σ′ represents the possible strategies on M mapped by an aggregation matrix

A.

The intuition behind Definition 5.1 is to assume that the representation for the

adversarial knowledge is the model, and thus choose the best guess given the distributions

represented by it.

Definition 5.2 (Prior strategy vulnerability given a model). Let Π : D2X , where
each σi : DX represents a possible strategy within Π. Let A : S×S ′ be an aggregation

matrix. Let M : D2X be a model of adversarial knowledge obtained by applying A to

Π, let X be the set of secrets, let W be the set of guesses, and let g : X ×W → R be

a gain function. The prior strategy vulnerability given a model, written V (S |M),

is defined as:

V (S |M) :=
∑

σ′∈DX

max
w∈W

∑
σ∈DX

ΠσA(σ
′|σ)gmh(w, σ)

where σ′ represents the possible strategies on A which can be mapped to a model

M : D2X .

To better understand all the calculations, we discuss on the examples of this section

how the calculations for these vulnerabilities are made. Example 5.3 presents the context

and the calculations for the prior vulnerabilities. It is important to notice that for these

tests we restrict the set of guesses to W = X in the case of secret vulnerability, and to

W = {π} ∪ {πi|σi ∈ ⌈Π⌉} ∪ {σj ∈M} in the case of strategy vulnerabilities.

Example 5.3 (invoker Example. Part I). Suppose we have an environment invoker

invoker =

σ1 σ2

9/10 1/10

x1 1 0

x2 0 1

.

Suppose the adversarial knowledge is achieved through the aggregation matrix A

5.1. Final definition using aggregation matrices 79

A =

σA

x1 1

x2 1

,

The model for the adversarial knowledge is then achieved by M = Π · A

σ1 σ2

9/10 1/10

x1 1 0

x2 0 1

·

σA

1

1

1

=

σA

1

9/10

1/10

Suppose we now push M through the following C

invoker =

y1 y2

x1 1 0

x2 0 1

.

If we make the calculations we can come that the resulting hyper is

[invoker ▷ C] =

σ1 σ2

9/10 1/10

x1 1 0

x2 0 1

.

We have in hand all the results of how the knowledge updates when we push invoker

through C. Now we need to know what it represents. Firstly we will make the calculations

for the prior vulnerabilities.

V (S |M) =
∑

σ′∈DX

max
w∈W

∑
σ∈DX

ΠσA(σ
′|σ)gmh(w, σ)

= max(w = σ1, w = σ2, w = π)

= max(((9/10× 1× 1)σ1 + (1/10× 1× 0)σ2)w=σ1 ,

((9/10× 1× 0)σ1 + (1/10× 1× 1)σ2)w=σ2 ,

((9/10× 1× 9/10)σ1 + (1/10× 1× 1/10)σ2)w=π),

= max(9/10, 1/10, 41/50)

= 9/10.

△▽

The definitions for posterior vulnerability for secret and strategy follow closely

their prior versions. We only add the interaction with the channel to it. This is very

similar to what is done by Alvim et al. [2020, theorem 5.7]. Below we define posterior

secret vulnerability given a model.

5.1. Final definition using aggregation matrices 80

Definition 5.4 (Posterior secret vulnerability given a model). Let Π : D2X , where
each σi : DX represents a possible strategy within Π. Let M : D2X be a model of

adversarial knowledge, let X be the set of secrets, let W be the set of guesses, let

g : X ×W → R a gain function, and let C : X → DY be a channel. The posterior

secret vulnerability given a model M, w.r.t. channel C, written V (X |M ▷ C), is

defined as:

V (X |M ▷ C) :=
∑
y∈Y

∑
σ′∈DX

max
w∈W

∑
x∈X

Mσ′σ′
xCxyg(w, x)

where σ′ represents the possible strategies on M mapped by an aggregation matrix

A.

This definition may seem complex at first, but it is just the adaptation of Definition

2.30 with the interaction between the strategy generated by the model and the channel.

In similar fashion to Definition 5.4, we now define posterior strategy vulnerability given

a model.

Definition 5.5 (Posterior strategy vulnerability given a model). Let Π : D2X ,
where each σi : DX represents a possible strategy within Π. Let A : S × S ′ be

an aggregation matrix, let X be the set of secrets, let W be the set of guesses, let

g : X ×W → R a gain function, and let C : X → DY be a channel. The posterior

strategy vulnerability given a model M, w.r.t. channel C, written V (S |M ▷ C), is

defined as:

V (S |M ▷ C) :=
∑
y∈Y

∑
σ′∈DX

max
w∈W

∑
σ∈DX

∑
x∈X

ΠσA(σ
′|σ)σxCxygmh(w, σ)

where σ′ represents the possible strategies on A which can be mapped to a model

M : D2X .

It is important to notice here, that we keep the restrictions made on the set of

guesses which we presented on Section 4.6. Namely, guesses are W = {π} ∪ {πi|σi ∈
⌈Π⌉} ∪ {σj ∈M}.

Example 5.6 (invoker Example. Part II). With our definition of posteriors in hand, we

can now make the calculations for posterior vulnerabilities on the context of Example 5.3.

V (S |M ▷ C) =
∑
y∈Y

∑
σ′∈DX

max
w∈W

∑
σ∈DX

∑
x∈X

ΠσA(σ
′|σ)σxCxygmh(w, σ)

= (
∑

σ′∈DX

max
w∈W

∑
σ∈DX

∑
x∈X

ΠσA(σ
′|σ)σxCxygmh(w, σ))y1

5.1. Final definition using aggregation matrices 81

+ (
∑

σ′∈DX

max
w∈W

∑
σ∈DX

∑
x∈X

ΠσA(σ
′|σ)σxCxygmh(w, σ))y2

= (max
w∈W

∑
σ∈DX

∑
x∈X

ΠσA(σ
′|σ)σxCxygmh(w, σ))y1

+ (max
w∈W

∑
σ∈DX

∑
x∈X

ΠσA(σ
′|σ)σxCxygmh(w, σ))y2

= {max(w = σ1, w = σ2, w = π)}y1
+ {max(w = σ1, w = σ2, w = π)}y2
= {max([((9/10× 1× 1× 1× 1)x1 + (9/10× 1× 0× 0× 1)x2)σ1

+ ((1/10× 1× 0× 1× 0)x1 + (1/10× 1× 1× 0× 0)x2)σ2]w=σ1 ,

[9/10× 1× 1× 1× 0)x1 + (9/10× 1× 0× 0× 0)x2)σ1

+ ((1/10× 1× 0× 1× 1)x1 + (1/10× 1× 1× 0× 1)x2)σ2]w=σ2 ,

[9/10× 1× 1× 1× 9/10)x1 + (9/10× 1× 0× 0× 9/10)x2)σ1

+ ((1/10× 1× 0× 1× 1/10)x1 + (1/10× 1× 1× 0× 1/10)x2)σ2]w=π}y1
+ {max([((9/10× 1× 1× 0× 1)x1 + (9/10× 1× 0× 1× 1)x2)σ1

+ ((1/10× 1× 0× 0× 0)x1 + (1/10× 1× 1× 1× 0)x2)σ2]w=σ1 ,

[9/10× 1× 0× 0× 0)x1 + (9/10× 1× 0× 1× 0)x2)σ1

+ ((1/10× 1× 0× 0× 1)x1 + (1/10× 1× 1× 1× 1)x2)σ2]w=σ2 ,

[9/10× 1× 1× 0× 9/10)x1 + (9/10× 1× 0× 1× 9/10)x2)σ1

+ ((1/10× 1× 0× 0× 1/10)x1 + (1/10× 1× 1× 1× 1/10)x2)σ2]w=π}y2
= max(9/10, 0, 81/100)y1 +max(0, 1/10, 1/100)y2

= 1.

With this we conclude the calculations of vulnerabilities. △▽

There were many attempts to define posterior vulnerability for strategies. This

final approach was shown to suit our prerequisites. After the formulation of this measure

it is natural to define the leakage related to it. This formulation follows what we did

previously, but we show here for completeness.

5.2. Operational Interpretation 82

Definition 5.7 (Secret and strategy leakage). Let Π : D2X be a hyper on X , let
M : D2X be a model of adversarial knowledge, let C : X → DY be a channel, the

corresponding multiplicative strategy leakage is defined as:

L(S,M,C,×) :=
V (S |M ▷ C)

V (S |M)
,

the corresponding additive strategy leakage is defined as:

L(S,M,C,+) := V (S |M ▷ C)− V (S |M) ,

the corresponding multiplicative secret leakage is defined as:

L(X,M,C,×) :=
V (X |M ▷ C)

V (X |M)
,

and the corresponding additive strategy leakage is defined as:

L(X,M,C,+) := V (X |M ▷ C)− V (X |M).

Example 5.8 (invoker Example. Part II). Now to finalize the calculations for leakage,

we can take the result for prior vulnerability from Example 5.3 and the result for posterior

vulnerability from Example 5.6.

Linvoker(S,M,C,×) = V (S |M ▷ C)÷ V (S |M)

= (1)÷ (9/10)

= 10/9.

This example, differently from our previous formulations, presents a meaningful

result. The adversary actually learns about the strategy after the prior is pushed through

the channel.

These definitions are a step forward. However they were made with a restriction

the set of possible strategy guesses strategies. This is not enough to give a complete

analysis of the scenario. This is actually an optimization problem. General formulations

for QIF are present on Alvim et al. [2020, chap. 5.5.3]. This framework presents a linear

programming model to solve QIF optimization problems. Through this, our formulations

can be expanded to unlimited guesses in an optimization problem.

5.2 Operational Interpretation

Every information metric needs to state the meaning behind the number. This is what

we mean by operational interpretation. For instance the number Shannon entropy gives

means how many ”yes or no questions” must be asked by the adversary so she discovers

5.2. Operational Interpretation 83

the secret, Bayes vulnerability means the probability of the adversary guessing the secret

with only one guess, etc. Here we will give the operational interpretation of Equation 5.4

and Equation 5.5.

We start by providing a formula for the joint distribution of: a real strategy σ : DX
used to generate secrets, a perceived strategy σ′ : DX the adversary believes is being used

to generate the secret, the secret x : X , and the observation y : Y . We can represent the

inter-relationship among these elements in our model as follows.

Figure 5.1: Operational significance overview.

Now the joint is given by

p(σ, σ′, x, y) = p(σ)p(σ′|σ)p(x|σ′, σ)p(y|x, σ′, σ) (By the chain rule of probability)

= ΠσA(σ
′|σ)σxCxy (By our model. Definition 5.2).

(5.2)

Note that marginals on any combination of σ, σ′, x, y can be obtained in the usual

way. The result presented by Alvim et al. [2017a] is that V (X |M) is the adversary’s

expected gain if secrets are generated by environment Π, but the adversary believes they

are generated by a model M compatible with Π. This is formalized by Proposition 5.9

below

5.2. Operational Interpretation 84

Proposition 5.9 (Operational interpretation of V (X |M)).

V (X |M) :=
∑
σ∈DX

Πσ

∑
σ′∈DX

A(σ′|σ)
∑
x∈X

σxg(wσ′
, x),

where wσ′
= argmax

w

∑
x∈X σxg(wσ′

, x).

Proof.∑
σ∈DX

Πσ

∑
σ′∈DX

A(σ′|σ)
∑
x∈X

σxg(wσ′
, x) =

∑
σ′∈DX

∑
σ∈DX

∑
x∈X

p(σ, σ′, x)g(wσ′
, x) (By Equation 5.2)

=
∑

σ′∈DX

Mσ′

∑
x∈X

σ′
xg(w

σ′
, x)

∑
σ∈DX

p(σ|σ′, x)

=
∑

σ′∈DX

Mσ′ max
w∈W

∑
x∈X

σ′
xg(w, x)

= V (X |M).

For V (S |M), the operational interpretation is akin to that of V (X |M):

Proposition 5.10 (Operational interpretation of V (S |M)).

V (S |M) :=
∑
σ∈DX

Πσ

∑
σ′∈DX

A(σ′|σ)g(wσ′
, σ),

where wσ′
= argmax

w

∑
σ∈DX p(σ|σ′)g(wσ′

, σ).

Proof.∑
σ∈DX

Πσ

∑
σ′∈DX

A(σ′|σ)g(wσ′
, σ) =

∑
σ′∈DX

∑
σ∈DX

p(σ, σ′)g(wσ′
, σ) (By Equation 5.2)

=
∑

σ′∈DX

p(σ′)
∑
σ∈DX

p(σ|σ′)max
w∈W

∑
σ∈DX

p(σ|σ′)g(wσ′
, σ)

=
∑

σ′∈DX

max
w∈W

∑
σ∈DX

p(σ|σ′)g(wσ′
, σ)

=
∑

σ′∈DX

max
w∈W

∑
σ∈DX

ΠσA(σ
′|σ)g(w, σ)

= V (S |M).

The next result shows that when the adversary has concise knowledge, Definition

5.4 recovers the classic definition.

Proposition 5.11. V (X |π ▷ C) collapses into Vg [π ▷ C].

5.3. Monotonicity proofs regarding the vulnerabilities 85

Proof.

V (X | π ▷ C) =
∑
y∈Y

∑
σ′∈DX

max
w∈W

∑
x∈X

Mσ′σ′
xCxyg(w, x) (By Definition 5.4)

=
∑
y∈Y

max
w∈W

∑
x∈X

πxCxyg(w, x) (Mπ = 1, σ′
x = πx)

= Vg [π ▷ C] .

5.3 Monotonicity proofs regarding the

vulnerabilities

The most common problem that our previous attempts incurred was disrespecting the

property of monotonicity 2.17, which mandates that the posterior vulnerability is always

bigger or equal to the prior vulnerability. Therefore here we present a mathematical proof

for each of the vulnerabilities we presented on this section. For the secret vulnerability

we have that

Theorem 5.12 (Monotonicity of Vulnerability of the secret given a model). Let

Π : D2X , where each σi : DX represents a possible strategy within Π. Let M : D2X
be a model of adversarial knowledge consistent with Π, let X be the set of secrets, let

W be the set of guesses, let g : X ×W → R a gain function, and let C : X → DY
be a channel. Let V (X |M) be defined as in Definition 5.1. Let V (X |M ▷ C) be

defined as in Definition 5.4, then

V (X |M ▷ C) ≥ V (X |M) .

Proof.

V (X |M ▷ C) =
∑
y∈Y

∑
σ′∈DX

max
w∈W

∑
x∈X

Mσ′σ′
xCxyg(w, x) (By Definition 5.4)

≥
∑

σ′∈DX

max
w∈W

∑
x∈X

Mσ′σ′
xg(w, x)

∑
y∈Y

Cxy (All terms are non-negative)

=
∑

σ′∈DX

max
w∈W

∑
x∈X

Mσ′σ′
xg(w, x) (

∑
y∈Y

Cx,y = 1)

= V (X |M).

Finally for strategy vulnerability we have that

5.4. Comparing older definitions with Definition 5.5 86

Theorem 5.13 (Monotonicity of vulnerability of the strategy given a model). Let

Π : D2X , where each σi : DX represents a possible strategy within Π. Let A : S ×S ′

be an aggregation matrix, knowledge, let X be the set of secrets, let W be the set of

guesses, let g : X ×W → R a gain function, and let C :: X → DY be a channel.

Let V (S |M) be defined as in Definition 5.2. Let V (S |M ▷ C) be defined as in

Definition 5.5, then

V (S |M ▷ C) ≥ V (S |M) .

Proof.

V (S |M ▷ C) =
∑
y∈Y

∑
σ′∈DX

max
w∈W

∑
σ∈DX

∑
x∈X

ΠσA(σ
′|σ)σxCxygmh(w, σ) (By Definition 5.5)

≥
∑

σ′∈DX

max
w∈W

∑
σ∈DX

ΠσA(σ
′|σ)gmh(w, σ)

∑
x∈X

σx
∑
y∈Y

Cxy (All terms are non-negative)

=
∑

σ′∈DX

max
w∈W

∑
σ∈DX

ΠσA(σ
′|σ)gmh(w, σ)

∑
x∈X

σx (
∑
y∈Y

Cx,y = 1)

=
∑

σ′∈DX

max
w∈W

∑
σ∈DX

ΠσA(σ
′|σ)gmh(w, σ) (

∑
x∈X

σx = 1))

= V (S |M).

Having guaranteed monotonicity, we assure that given Definition 5.2 and Definition

5.5, the adversary cannot lose information about the secret. In the worst case, where

V (S |M ▷ C) = V (S |M), we can deduce that the output will not be give any new

information and thus can be disregarded. This property, being for strategies or secrets, is

pivotal for the notions of leakage presented by Definition 5.7. It assures us that additive

leakage is always non-negative, and multiplicative leakage is never smaller than 1.

Given these results, the new metrics satisfy one of the fundamental properties of

QIF for posterior vulnerabilities [Alvim et al., 2020, chap. 11.3], therefore guaranteeing

the validity of the measures.

5.4 Comparing older definitions with Definition 5.5

In this section we will show how Definition 5.5 compares to the others, and proves to be

more adequate on depicting each scenario.

On Section 4.2, Example 4.4 we obtained negative results for additive leakage on

two of the three the cases.

5.4. Comparing older definitions with Definition 5.5 87

σ1 σ2 σ3 σ4

x1 1 0 1/2 9/10
x2 0 1 1/2 1/10

bane 1/2 1/2 0 0
clinkz 0 0 1 0
dazzle 1/2 0 0 1/2

▷

I
1 0
0 1

. (5.3)

If we apply our latest definition we obtain

V (S | bane ▷ I) = 2,

V (S | clinkz ▷ I) = 1,

V (S | dazzle ▷ I) = 199/100.

And then we verify the leakage for each case

Lbane(S,M, I,×) = 2
2/3

= 3,

Lclinkz(S,M, I,×) = 1
1

= 1,

Ldazzle(S,M, I,×) =
199/100

1
= 199/100.

which proves to be more suitable just by respecting the property of monotonicity.

Additionally, it makes sense that clinkz has minimal leakage, since its strategy is already

known to the adversary because it is a point hyper. bane presents a big leakage, since

the strategy will be known to the adversary after the execution. Also dazzle represents

minimum leakage, because the adversary cannot gain too much information, given the

similarities between the strategies.

Section 4.3 did not present a calculation, but argued over the same example as

Section 4.2, which we just presented a solution for.

Section 4.4 showed us that there would not be a good distinction between the

scenarios presented on Equation 4.6, all systems would be treated as equivalent. If we

apply our new approach to these scenarios we can properly distinguish them. The new

model has the following results.

Lember(S,M, I,×) =
199/100

1
= 199/100,

Lhuskar(S,M, I,×) = 2
2/3

= 3.

huskar presents a high amount of leakage, which makes sense since the strategy

will be revealed to the adversary. Additionally, ember presents a low amount of leakage,

which follows the premise that little knowledge will be obtained about the strategy after

the hyper is pushed through the channel. This example shows that there can be room for

improvement, because the leakage here should be even lower. This may be done with a

different gain function.

Section 4.5, with Example 4.10 had the problem of having two environments

5.4. Comparing older definitions with Definition 5.5 88

σ1 σ2 σ3

x1 1 0 1/2
x2 0 1 1/2

jakiro 1/2 1/2 0
lich 0 0 1

▷

I
1 0
0 1

,

that differ on a fundamental basis present incoherent values with our intuition,

there Ljakiro(S,M, I,×) = 1, which present would suggest for instance, that the adversary

does not learn anything about the strategy for jakiro, which is untrue since he learns

exactly what the strategy is. Also for Llich(S,M, I,×) = 2 suggests that the adversary

learns something about lich strategy, which cannot be possible since its already known

to the adversary. If we apply our novel definition we have that

Ljakiro(S,M, I,×) =
2
2/3

= 3 and Llich(S,M, I,×) =
1

1
= 1.

which presents us with more reasonable values.

Section 4.6 was shown not to work because the values were always the same. Our

final formulation does not have the same issue. As we presented.

Judging by all of these experiments, we can conclude that the new definitions

for both strategy and secret vulnerability present meaningful results w.r.t the intuition

behind what we would expect.

89

Chapter 6

Conclusion

In this thesis, we studied how prior knowledge can be modelled as hypers within the

framework of Quantitative Information Flow (QIF). Furthermore we also studied how

this novel model of prior knowledge impacts a few other elements within the processing

of information by a system.

This issue was brought to light by Alvim et al. [2017a], which also presented an

appropriate way to measure prior vulnerabilities when prior knowledge is represented by

a hyper. On this thesis, in Chapter 3, we expanded this notion making possible to model

posterior knowledge. This was done through two different types of updates.

We also presented a formula to calculate posterior vulnerability within this sce-

nario. One for each type of vulnerability: secret, Definition 5.4, and strategy, Definition

5.5. We were able to test the effectiveness of each definition by restricting the set of

guesses possible to the adversary so we obtain feasible calculations.

This study can be further expanded by allowing the calculations for posterior

vulnerability to take into consideration an unrestricted set of guesses. This may be an

optimization problem. Another way to expand these formulations is to associate it to the

concept of Capacity [Alvim et al., 2017a, chap. 7] and work on the implications of this

notion when using a hyper as a prior distribution.

It is also possible to improve on the tool presented in Appendex A. This could be

done by developing an API for the program so it can be incorporated on other programs.

A second improvement to be made is to create an interaction from the calculations made

here to the QIF-related language like kuifje1. One more possible improvement on the tool

is to reproduce this code on a faster language, like C++, which could make calculations

more efficient.

Finally many experiments can be made with real world data, by using the code we

present on Appendex A. One interesting scenario is to compare the results obtained by

Mardziel et al. [2014b], who analyzed the Rockyou dataset, with the proposed formulations

made in Section 5 of this thesis.

1Here is a good kuifje repository: https://github.com/gleisonsdm/kuifje-compiler.

https://github.com/gleisonsdm/kuifje-compiler

90

Bibliography

Anne Adams, Martina Angela Sasse, and Peter Lunt. Making passwords secure and

usable. In People and computers XII, pages 1–19. Springer, 1997.

Mário S Alvim, Miguel E Andrés, and Catuscia Palamidessi. Quantitative information

flow in interactive systems. Journal of Computer Security, 20(1):3–50, 2012a.

Mario S Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, and Geoffrey Smith.

Measuring information leakage using generalized gain functions. In 2012 IEEE 25th

Computer Security Foundations Symposium, pages 265–279. IEEE, 2012b.

Mário S Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Morgan,

Catuscia Palamidessi, and Geoffrey Smith. Axioms for information leakage. In 2016

IEEE 29th Computer Security Foundations Symposium (CSF), pages 77–92. IEEE,

2016.

Mário S Alvim, Piotr Mardziel, and Michael Hicks. Quantifying vulnerability of secret

generation using hyper-distributions. In International Conference on Principles of

Security and Trust, pages 26–48. Springer, 2017a.

https://homepages.dcc.ufmg.br/ msalvim/publications/2017-POST.pdf.

Mário S Alvim, Konstantinos Chatzikokolakis, Annabelle Mciver, Carroll Morgan,

Catuscia Palamidessi, and Geoffrey Smith. The Science of Quantitative Information

Flow. Springer, 2020. ISBN 9783319961293, 9783319961316.

Mário S. Alvim, Piotr Mardziel, and Michael Hicks. Quantifying vulnerability of secret

generation using hyper-distributions (extended version), 2017b.

A Bhattacharya. On a measure of divergence between two multinomial populations.

1946.

Jeremiah Blocki, Saranga Komanduri, Lorrie Cranor, and Anupam Datta. Spaced

repetition and mnemonics enable recall of multiple strong passwords. arXiv preprint

arXiv:1410.1490, 2014.

Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Quantitative

notions of leakage for one-try attacks. In 25th Conference of Mathematical

Foundations of Programming Semantics, pages 75–91, 2009.

Bibliography 91

Alan S Brown, Elisabeth Bracken, Sandy Zoccoli, and King Douglas. Generating and

remembering passwords. Applied Cognitive Psychology: The Official Journal of the

Society for Applied Research in Memory and Cognition, 18(6):641–651, 2004.

David A Cieslak, T Ryan Hoens, Nitesh V Chawla, and W Philip Kegelmeyer. Hellinger

distance decision trees are robust and skew-insensitive. Data Mining and Knowledge

Discovery, 24(1):136–158, 2012.

Luc Devroye, Laszlo Gyorfi, et al. No empirical probability measure can converge in the

total variation sense for all distributions. The Annals of Statistics, 18(3):1496–1499,

1990.

Dinei Florêncio, Cormac Herley, and Baris Coskun. Do strong web passwords

accomplish anything? HotSec, 7(6):159, 2007.

Paul A Gagniuc. Markov chains: from theory to implementation and experimentation.

John Wiley & Sons, 2017.

Farhana Zaman Glory, Atif Ul Aftab, Olivier Tremblay-Savard, and Noman Mohammed.

Strong password generation based on user inputs. In 2019 IEEE 10th Annual

Information Technology, Electronics and Mobile Communication Conference

(IEMCON), pages 0416–0423. IEEE, 2019.

Eugene F Krause. Taxicab geometry. The Mathematics Teacher, 66(8):695–706, 1973.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86, 1951.

Piotr Mardziel, Mário S Alvim, and Michael Hicks. Adversary gain vs. defender loss in

quantified information flow. In Workshop on Foundations of Computer Security

(FCS), 2014a.

Piotr Mardziel, Mário S Alvim, Michael Hicks, and Michael R Clarkson. Quantifying

information flow for dynamic secrets. In 2014 IEEE Symposium on Security and

Privacy, pages 540–555. IEEE, 2014b.

https://homepages.dcc.ufmg.br/ msalvim/publications/2014-S&P.pdf.

James L Massey. Guessing and entropy. In Proceedings of 1994 IEEE International

Symposium on Information Theory, page 204. IEEE, 1994.

Adam Moore. Defining privacy. Journal of Social Philosophy, 39(3):411–428, 2008.

Bernt Oksendal. Stochastic differential equations: an introduction with applications.

Springer Science & Business Media, 2013.

Bibliography 92

Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:

Contributions to the Theory of Statistics, volume 4, pages 547–562. University of

California Press, 1961.

Claude E Shannon. A mathematical theory of communication. The Bell system

technical journal, 27(3):379–423, 1948.

Geoffrey Smith. On the foundations of quantitative information flow. In International

Conference on Foundations of Software Science and Computational Structures, pages

288–302. Springer, 2009.

A P Varga and Roger K Moore. Hidden markov model decomposition of speech and

noise. In International Conference on Acoustics, Speech, and Signal Processing, pages

845–848. IEEE, 1990.

Moshe Zviran and William J Haga. Password security: an empirical study. Journal of

Management Information Systems, 15(4):161–185, 1999.

93

Appendix A

A tool for calculating secret and

strategy leakage

In this section we describe the an additional contribution of this thesis. We present a

tool which is able to make the QIF operations we presented previously. We can take a

prior hyper as an input, push it through a channel and receive the squashed version of

the posterior hyper, this represents our update function from Section 3.1.1. Additionally

we can calculate the vulnerabilities from our final definition, Chapter 5, and the leakages

related to them.

A.1 Implementation

Our main goal with the implementation 1 is to be able to calculate the pushing of a hyper

through a channel and determine the values for vulnerabilities. We are not worried about

efficiency, just correctness. Therefore we choose to implement the code with Python3.

Python is a comprehensible language, which makes the code easier to read. We also have

many libraries to chose from, which make the code less clunky. Numpy and Fraction are

two very important libraries, since many of QIF calculations work with matrices, which

are easier to handle with Numpy and fractions.

We did not make experiments on large scale, but that is a future proposition. This

is due to the fact that Python is not an efficient language like C++, so translating the

code to C++ would make large scale experiments more viable.

A.2 Functionalities

In this Section we will present a few functionalities of the code.

1For access to the code, visit the git repository at https://github.com/tannus/dynamic˙secrets.

https://docs.python.org/3/reference/
https://numpy.org/doc/stable/reference/
https://docs.python.org/3/library/fractions.html
https://www.cplusplus.com/reference/
https://github.com/tannus/dynamic_secrets

A.2. Functionalities 94

A.2.1 Hyper Class

The Hyper Class is the most basic class implemented, it served as a basis to the other

two important classes we have. This class has the outer and inner as attributes. It also

has the get functions for each of the attributes and three print functions for outer, inner

and the hyper itself.

A.2.2 Environment Class

The Environment Class is an expansion of the Hyper. It is by far the most used class on

the code. It has its attributes outer and strat similar to the Hyper Class. It has the same

functionalities as the hyper. In addition to that it has a function to return the concise

version of the environment, a function to simplify the environment eliminating all its 0

columns, and a function to make guesses relevant to the context.

A.2.3 Aggregation Class

The Aggregation Class is simple class that represents the aggregation matrices. It has

two attributes for the matrix and its labels, which represent each strategy maps on each

column of the aggregation matrix. Most importantly it has a function to make the model

matrix, given an environment and its abstraction matrix.

A.2.4 Pushing Functions

There are two classes of pushing functions. The first class consists of basic functions

that work with the inner steps of the push through operation. We have a function for

computing the joint, marginalizing the joint, calculating the outer from a joint, and calculating

a inner from a joint. The other class works one step forward, using the previously described

operations. We can push a simple distribition through a channel, push a simple distribution

through a markov, push a hyper through a channel, push a hyper through a markov, push a

column from an environment through a channel, and push an environment through a channel.

Additionaly we have a more complex function, called model push that encapsulates all the

steps from environment to abstraction matrix to model to posterior hyper and that also

calculates vulnerabilities.

A.2.5 Squashing Functions

Squashing Functions are very straightforward, they take a n-hyper as an input and lower

it one dimension. There are two types of this function implemented. One for general

hypers and one specific for environments.

A.2. Functionalities 95

A.2.6 Vulnerability Functions

Vulnerability and leakage functions are another straightforward concept. We have one

function for each case of vulnerability. Prior secret and prior strategy vulnerability behave

very similarly and are simple functions following Definitions 5.1 and 5.4. Prior strategy

vulnerability adds more complexity to the calculations, since it has to also calculate gains

with manhattan distance, it follows Definition 5.2. Posterior strategy vulnerability adds

even more complexity to the previous case, but behaves similarly. It follows Definition

5.5.

A.2.7 Guess and Gain Functions

There are two Guess functions, one to generate the basic set of guesses based on the

environment, and another to make synthetic guesses. Gain functions are very simple and

follow the Definition 4.6.

A.2.8 Input Functions

Additionally to the functions about QIF, we implemented a few functions to take a file as

input and create the relevant data structures for it, that is vectors and stochastic matrices.

We also check the validity of each probability distribution used as input.

A.2.9 Print Functions

We have a few functions that print all the matrices and vectors in a human-readable way.

	Introduction
	Thesis objectives
	Contributions
	Related Work
	Thesis outline

	Preliminaries and literature review
	The traditional QIF framework
	Expanded QIF framework for dynamic secrets
	Hidden Markov Models: what they are and how they interact

	Extending on Objectives and Knowledge Update
	Defining knowledge update for dynamic secrets

	Attempts of defining measures for posterior secret and strategy vulnerabilities
	How to define measures for posterior vulnerability given environments
	Attempt using direct update and the definitions from Alvim et al. [2017] for prior vulnerability
	Attempt defining posterior strategy vulnerability as a function of secret vulnerability
	Attempt using the update model from McIver and Morgan (Alvim et al. [2020], chap. 13,14)
	Refined attempt of McIver and Morgan using Manhattan Distance as a gain function
	Attempt through the generation of a prior from the joint matrix

	Final definition of posterior strategy and secret vulnerabilities given a model
	Final definition using aggregation matrices
	Operational Interpretation
	Monotonicity proofs regarding the vulnerabilities
	Comparing older definitions with Definition 5.5

	Conclusion
	Bibliography
	A tool for calculating secret and strategy leakage
	Implementation
	Functionalities

