UNIVERSIDADE FEDERAL DE MINANS GERAIS Instituto de Ciências Exatas Programa de Pós-Graduação em Matemática

Rafael da Costa Pereira

DINÂMICA GENÉRICA DE BILHARES OVAIS EM SUPERFÍCIES DE CURVATURA CONSTANTE: Estendendo alguns resultados do plano

Rafael da Costa Pereira

DINÂMICA GENÉRICA DE BILHARES OVAIS EM SUPERFÍCIES DE CURVATURA CONSTANTE: estendendo alguns resultados do plano

Tese de Doutorado apresentada ao Colegiado da Pós-Graduação em Matemática da Universidade Federal de Minas Gerais como requisito parcial para obtenção do Título de Doutor em Matemática.

Orientadora: Sônia Pinto de Carvalho

Belo Horizonte 2021

Pereira, Rafael da Costa

P436d Dinâmica genérica de bilhares ovais em superfícies de curvatura constante [recurso eletrônico] / Rafael da Costa Pereira. – 2021.

1 recurso online (77 f. il, color.): pdf.

Orientadora: Sônia Pinto de Carvalho.

Tese (doutorado) - Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Matemática.

Referências: f. 75-77

1. Matemática – Teses. 2. Bilhares Convexos – Teses . 3. Superfícies (Matemática) – Teses.I. Carvalho, Sônia Pinto de. II. Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Matemática. III.Título.

CDU 51(043)

Universidade Federal de Minas Gerais Departamento de Matemática Programa de Pós-Graduação em Matemática

FOLHA DE APROVAÇÃO

Bilhares estritamente convexos em superfícies de curvatura constante estendendo alguns resultados do plano

RAFAEL DA COSTA PEREIRA

Tese defendida e aprovada pela banca examinadora constituída por:

n larto

Profa. Sônia Pinto de Carvalho UFMG

Prof. José Pedro Gaivão

Universidade de Lisboa

Prof. Luciano Coutinho dos Santos CEFET-MG

prye Dias Cornein Mario

Prof. Mário Jorge Dias Carneiro⁻ UFMG

Prof. Ronaldo Garcia

UFGo

the U. ka

Profa. Sylvie Marie Kamphorst UFMG

Belo Horizonte, 10 de setembro de 2021.

Av. Antônio Carlos, 6627 – Campus Pampulha - Caixa Postal: 702 CEP-31270-901 - Belo Horizonte – Minas Gerais - Fone (31) 3409-5963 e-mail: <u>pgmat@mat.ufmg.br</u> - home page: <u>http://www.mat.ufmg.br</u>/pgmat

Agradecimentos

À CAPES por ter financiando esse trabalho e a todas as agências de financiamento que apoiaram esse trabalho de alguma forma. Ao programa de Pós Graduação da UFMG que me permitiu proporcionar este trabalho. A professora Sylvie cuja contribuição para o trabalho foi essencial. A Sônia por todas a lições ensinadas. Aos meus pais.

Resumo

Nós utilizamos a topologia C^2 para investigar propriedades genéricas dos bilhares ovais no plano, na esfera e no plano hiperbólico. Em conjunto com o trabalho de dos Santos e Pinto de Carvalho [11], estendemos os resultados de Dias Carneiro et al. [7, 8] sobre bilhares ovais no plano para bilhares ovais na esfera e no plano hiperbólico. Vamos demonstrar que, sob certas condições genéricas, os bilhares ovais nessas superfícies possuem apenas um número finito de órbitas periódicas, para cada período N, todas não degeneradas. Além disso, as variedades estáveis e instáveis de dois pontos hiperbólicos ou não se intersectam ou possuem pelo menos uma interseção transversal. Também mostramos que qualquer bilhar oval com uma órbita elíptica 2-periódica pode ser aproximado por um bilhar com ilhas elípticas, calculando o Primeiro Coeficiente de Birkhoff.

Palavras-chave: Bilhares Convexos; Pontos Elípticos; Superfícies.

Abstract

We use the C^2 topology to investigate generic proprieties for oval billiards on the plane, sphere and hyperbolic plane. Together with the work by dos Santos e Pinto de Carvalho [11], we extend the results of Dias Carneiro et al. [7, 8] about plane oval billiards to oval billiards on the sphere and the hyperbolic plane. We are going to show that, under certain generic conditions, oval billiards on these surfaces have only a finite number of periodic orbits, for each period N, all nondegenerate. Moreover, the stable and unstable manifolds of two hyperbolic points either do not intersect or have at least one transversal intersection. We also show that any oval billiard with a 2-periodic elliptic orbit can be approximated by a billiard with elliptic islands, by calculating the First Birkhoff Coefficient.

Keywords: Convex Billiards; Elliptic Points; Surfaces.

Lista de Figuras

1.1	O problema do bilhar	10		
2.1	Fluxo de bilhar	13		
2.2	Exemplo de uma aplicação T_{α}	13		
2.3	Exemplo de órbita 6-periódica(esquerda) e sua trajetória associada(direita).	14		
2.4	Exemplo de uma frente focalizadora(esquerda) e conjunto de retas dadas			
	por $\phi^t(\alpha(s(u), v_{\theta(u)}))$ (direita).	14		
2.5	Exemplo da definição do ângulos ψ_i e ϕ_i	17		
2.6	.6 Exemplo de uma órbita periódica elíptica(vermelha) e uma trajetória na			
	vizinhança	19		
2.7	Exemplo de uma ilha elíptica para um diâmetro elíptico	20		
3.1	Folha superior do hiperboloide $x^2 + y^2 - z^2 = -1$	23		
3.2	Semiesfera de equação $x^2 + y^2 + z^2 = 1$	25		
5.1	Frentes definidas a partir das variedades estável e instável	43		

Sumário

1	 Introdução Bilhares Convexos no Plano 					
2						
	2.1	Topol	ogia	16		
	2.2	Órbita	as Periódicas	16		
	2.3	Órbita	as Hiperbólicas	18		
	2.4	Órbita	as Elípticas	19		
3	Bilł	Bilhares Convexos em Superfícies de curvatura constante				
	3.1	Curva	tura Geodésica	22		
	3.2	Model	os Geométricos para Superfície de Curvatura Constante	23		
		3.2.1	Plano Hiperbólico	23		
		3.2.2	Semiesfera	24		
	3.3	Bilhar	es Ovais em Superfícies	25		
4	Uma Topologia para o Espaço das Ovais					
	4.1	Espaç	os de Baire	28		
	4.2	Topol	ogia C^r das Curvas fechadas em Superfícies $\ldots \ldots \ldots \ldots \ldots \ldots$	29		
	4.3	3 Topologia C^r de curvas ovais		30		
		4.3.1	Perturbações Locais para Superfícies de Curvatura Constante	32		
5	Ger	Genericidade das Órbitas Periódicas 34				
	5.1	Órbita	as periódicas não degeneradas	35		
		5.1.1	Órbitas n -periódicas não degeneradas	35		
		5.1.2	Frentes Focalizadoras e Transversalidade	39		
	5.2	Diâme	etros Elípticos	43		
		5.2.1	Diâmetro Elíptico e Não Ressonância	44		
		5.2.2	O Primeiro Coeficiente de Birkhoff	45		
	5.3	Propri	iedades Genéricas para Bilhares Convexos no Plano Euclidiano, PLano			
		Hiperbólico e Semiesfera		46		

\mathbf{A}	A Computação algébrica					
	A.0.1	Derivada	. 47	7		

Capítulo 1

Introdução

O problema dos bilhares convexos no plano euclidiano foi originalmente proposto por Birkhoff em 1927 [4] como uma aplicação do Teorema Geométrico de Poincaré, também conhecido como o Teorema de Poincaré-Birkhoff. O problema consiste no movimento livre de uma partícula dentro de uma região fechada e convexa, assumindo que partícula se move a uma velocidade constante e que colide elasticamente nos impactos com a fronteira (ver figura 1.1). Considerando apenas o ponto de impacto na fronteira e direção do

Figura 1.1: O problema do bilhar

movimento, podemos definir um difeomorfismo Twist¹ T no cilindro $\mathcal{A} = \mathbb{R}/\mathbb{Z} \times [-1, 1]$, considerando o parâmetro comprimento de arco s e a componente tangencial do momento $p = \cos \theta$, onde θ é o ângulo entre a direção do movimento e a tangente na fronteira no ponto de impacto.

Uma maneira de generalizar o problema de bilhares convexos no plano é considerar o movimento geodésico de uma partícula em uma superfície dentro de uma região limitada por uma curva convexa. Com isso naturalmente nos perguntamos quais propriedades do problema dos bilhares convexos no plano euclidiano se mantém e quais propriedades surgem ao considerarmos superfícies de curvaturas não nulas. Embora o problema dos bilhares convexos em superfícies tenha sido significativamente menos explorados que o caso planar, alguns avanços já foram obtidos. Na década de 90, Veselov [23] estudou a

¹Um difemorfismo Twist f é um difeomorfismo conservativo, que preserva os fins do cilindro e tal que $|\partial_2 \pi_x \circ f| > c > 0$. Onde π_x é a projeção na primeira coordenada.

integrabilidade de bilhares elípticos na semiesfera e no plano hiperbólico, Blumen et al. [5]. Provam que o conjunto das órbitas 3-periódicas tem medida nula em 2012, Bialy [3] em 2013 prova que o único bilhar convexo sem órbitas com pontos conjugados² na semiesfera e no plano hiperbólico é o bilhar circular, dos Santos e Pinto de Carvalho [11] obtêm a derivada da aplicação de bilhar para bilhares convexos na semiesfera e no plano hiperbólico além de provar a não degenericidade de órbitas periódicas e mais recentemente Zhang [25] e Almeida [1] provam que genericamente as órbitas têm defeito zero na semiesfera e no plano hiperbólico respectivamente.

No primeiro capítulo desse trabalho, apresentamos os resultados para bilhares planos de Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [7, 8] que iremos estender para bilhares convexos na semiesfera e no plano hiperbólico além de alguns resultados clássico de bilhares no plano. No segundo capítulo apresentamos resultados preliminares de bilhares em superfície sobretudo o trabalho feito por dos Santos e Pinto de Carvalho [11]. No terceiro capítulo construímos a topologia para o espaço de bilhares convexos e no quarto apresentamos os principais resultados obtidos nesse trabalho:

Teorema A. Genericamente os bilhares ovais em superfícies de curvatura constante possuem um número finito de órbitas n-periódicas, todas não degeneradas.

Teorema B. Genericamente as variedades estáveis e instáveis de dois pontos periódicos hiperbólicos, não necessariamente distintos, para bilhares ovais em superfícies de curvatura constante ou não possuem interseção ou possuem pelo menos uma interseção transversa.

Teorema C. Possuir uma órbita 2-periódica elíptica é uma propriedade aberta e genericamente essas órbitas são não degeneradas e não ressonantes para bilhares ovais. Além disso qualquer bilhar oval com uma 2-periódica elíptica pode ser aproximado por um bilhar oval com uma órbita 2-periódica elíptica com ilhas elípticas.

²Uma órbita tem pontos conjugados se existe um campo de Jacobi Discreto que se anula não trivial em $\{x_N, x_{N+1}, \ldots, x_M\}$.

Capítulo 2

Bilhares Convexos no Plano

Neste capítulo estamos interessados em determinar como a maioria dos bilhares convexos no plano devem se comportar, isto é, um bilhar convexo genérico possui as mesmas propriedades de difeomorfismos conservativos C^1 ? Será possível provar um teorema de Kupka-Smale para os bilhares convexos? Se existirem, como são as órbitas elípticas? Essas perguntas se tornam interessantes no momento em que não podemos apenas pertubar o difeomorfismo twist T, uma vez que após uma pertubação local não podemos garantir que manteremos uma aplicação de bilhar. De fato, esperamos que o oposto deva acontecer. Uma maneira de evitar esse problema é perturbar a curva de fronteira. Embora seja possível fazer isso, alguns cuidados devem ser tomados, para garantir que o difeomorfismo gerado pela curva perturbada eteja próxima do difeomorfismo da curva original. Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [8] definem uma topologia e respondem a essas perguntas. Vamos começar por uma introdução sobre bilhares convexos com intuito também de definir uma notação para o resto do trabalho.

Seja $D \subset \mathbb{R}^2$ uma região simples, limitada e convexa. Se uma partícula tem posição q e velocidade v, o fluxo de bilhar é definido através das equações

$$\dot{q} = v \quad \dot{v} = 0 \tag{2.1}$$

para $q \in \text{int } D$. Temos o movimento em linha reta dentro da região D, ou seja, o fluxo é $\phi^t(q, v) = (q + tv, v)$. Precisamos definir o que acontece nas colisões com a fronteira. Assumindo uma reflexão elástica teremos que o ângulo de incidência será igual ao ângulo de reflexão, ou seja, se $q \in \partial D$ tem vetor velocidade v^- então o vetor velocidade v^+ após colisão é

$$v^+ = v^- - 2 < v^-, n > n$$

onde n é um vetor normal unitário de ∂D e portanto precisamos que ∂D seja diferenciável¹. Sem perda de generalidade vamos assumir que ||v|| = 1.

¹É possível definir o fluxo de bilhar no caso em que ∂D é diferenciável por partes [6].

Figura 2.1: Fluxo de bilhar

Definição 1. Uma curva é dita uma oval se for fechada, simples, positivamente orientada, de classe C^r , com $r \ge 2$, e com curvatura estritamente positiva.

Embora o estudo dos bilhares convexos não se resuma ao caso de curvas ovais, nós nos restringiremos a esse caso.

A partir do fluxo do bilhar podemos definir a aplicação de bilhar.

Definição 2. Sejam $D \subset \mathbb{R}^2$ uma região tal que ∂D é uma oval e α uma parametrização de ∂D , então

$$T_{\alpha} : [0, L) \times (0, \pi) \to [0, L) \times (0, \pi)$$
$$(s, \theta) \mapsto (S(s, \theta), \Theta(s, \theta))$$

tal que $\alpha(S(s,\theta)) = \pi_1(\phi^{L(s_0,\theta_0)}(\alpha(s), v_{\theta}), \phi^t \notin o \text{ fluxo de bilhar, } v_{\theta} \notin o \text{ vetor unitário}$ que faz um ângulo $\theta \mod \alpha'(s), L(s_0, \theta_0) \notin \text{ tempo entre colisões } e \Theta(s, \theta) \notin o \text{ ângulo de }$ $\pi_2(\phi^{L(s_0, \text{theta}_0)}(\alpha(s), v_{\theta})) \mod \alpha'(S(s, \theta)).$

Figura 2.2: Exemplo de uma aplicação T_{α} .

Dada uma órbita, $\mathcal{O}(s_0, \theta_0) = \{(s_i, \theta_i) | (s_i, \theta_i) = T^i_{\alpha}(s_0, \theta_0)\}$, podemos associar a trajetória de bilhar dada por $\{\phi^t(\alpha(s_0), v_{\theta_0}) | t \in \mathbb{R}\}$ e vice-versa. Um ponto (s_0, θ_0) é dito *n*-periódico, se *n* é o menor número natural tal que $T^n_{\alpha}(s_0, \theta_0) = (s_0, \theta_0)$. A trajetória de uma órbita 2-periódica é um segmento de reta. Para n > 2 a trajetória de um ponto *n*-periódico é uma polígonal fechada com *n* arestas.

Figura 2.3: Exemplo de órbita 6-periódica(esquerda) e sua trajetória associada(direita).

Essa dualidade entre a dinâmica de T_{α} e o fluxo nos permite traduzir algumas propriedades dinâmicas em propriedades geométricas e vice-versa. Uma dessas propriedades é a noção de frentes focalizadoras. Uma curva $\zeta(u) = (s(u), \theta(u))$ em $[0, L) \times (0, \pi)$, define um conjunto de retas dadas por $\phi^t(\alpha(s(u), v_{\theta(u)}))$, como mostra a figura 2.4. Seja

Figura 2.4: Exemplo de uma frente focalizadora(esquerda) e conjunto de retas dadas por $\phi^t(\alpha(s(u), v_{\theta(u)}))$ (direita).

 $P(\epsilon)$ o ponto de interseção entre as retas dadas por $\zeta(\epsilon) \in \zeta(0)$. Se o limite de $P(\epsilon)$ quando $\epsilon \to 0$ existe, dizemos que essa é uma frente focalizadora e $P(0) = \lim_{\epsilon \to 0} P(\epsilon)$ é o ponto de focalização para frente. O ponto de focalização para trás é definido como o ponto limite de $P(\epsilon)$ dado pela interseção entre as retas dadas por $(s(\epsilon), \pi - \theta(\epsilon)) \in (s(0), \pi - \theta(0))$. No caso de α estar parametrizada pelo comprimento de arco temos que a distância de

focalização é

$$\frac{\sin\theta_0}{\kappa(s_0) - \frac{b}{a}}$$

onde $\zeta'(0) = (a, b).$

Outra propriedade notória é fato de que se $\zeta(u)$ for um gráfico sobre \mathbb{S}^1 invariante por T_{α} então a envoltória dada por ζ é uma curva convexa².

Se α é de classe C^2 então é possível mostrar que T_{α} é um difeomorfismo de classe C^1 . A derivada da aplicação T_{α} é dada por

$$DT_{\alpha}(s_0, \theta_0) = \frac{1}{\sin \theta_1} \begin{bmatrix} g(s_0, s_1)\kappa_0 - \sin \theta_0 & g(s_0, s_1) \\ \kappa_1(g(s_0, s_1)\kappa_0 - \sin \theta_0) - \kappa_0 \sin \theta_1 & g(s_0, s_1)\kappa_1 - \sin \theta_1 \end{bmatrix}$$
(2.2)

Onde $g(s_0, s_1)$ é a distância entre $\alpha(s_0)$ e $\alpha(s_1)$ e κ_i é a curvatura geodésica em $\alpha(s_i)$. Como

$$\det(DT_{\alpha}(s_0,\theta_0)) = \frac{\sin\theta_0}{\sin\theta_1}$$

temos que T_{α} preserva a medida $\sin \theta d\theta \wedge ds$. Considerando a mudança de coordenadas $p = -\cos \theta$, temos que T_{α} é um sistema conservativo, isto é, preserva $dp \wedge ds$. Se (s_0, θ_0) é uma órbita *n*-periódica, então

$$\det(DT^n_\alpha(s_0,\theta_0)) = 1.$$

Nesse caso os autovalores de $DT^n_{\alpha}(s_0, \theta_0)$ são igual a

$$\frac{\operatorname{Tr}(DT^n_{\alpha}(s_0,\theta_0)) \pm \sqrt{(\operatorname{Tr}DT^n_{\alpha}(s_0,\theta_0))^2 - 2}}{2}$$

Outra consequência de (2.2) é a existencia de um c > 0 tal que para todo (s, θ) temos

$$\frac{1}{c} < \frac{\partial S}{\partial \theta}(s, \theta) < c$$

Essa propriedade é chamada de Propriedade Twist Uniforme. Isso torna o bilhar oval uma aplicação Twist. Uma das principais propriedades de aplicações Twist é a existência de um príncipio variacional dado por uma função chamada de função geradora. No caso do bilhar oval uma função geradora é $-g(s_0, s_1)$.

Nas próximas seções vamos apresentar um esboço do teorema de Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [8] que afirma:

Teorema. Genericamente os bilhares ovais possuem apenas um número finito órbitas periódicas para cada período, todas elas não degeneradas.

²Isso envolve a noção de cáustica.

2.1 Topologia

Dado $\epsilon > 0$ a vizinhança tubular de uma oval α é dada por

$$N_{\epsilon}(\alpha) = \{\alpha(t) + \lambda \eta(t); \forall t, |\lambda| < \epsilon\}$$

onde η é o normal unitário de α . Seja C o conjunto de curvas ovais C^2 com a topologia acima se torna um espaço de Baire³, pelo fato das imersões C^2 de \mathbb{S}^1 em \mathbb{R}^2 é um espaço de Baire. Se β está contida em $N_{\epsilon}(\alpha)$ temos que

$$\beta(t) = \alpha(t) + \lambda(t)\eta(t)$$

com λ de classe C^2 tal que $||\lambda||_2 < \epsilon$.

Dizemos que $\alpha \sim \beta$ se existe uma composição de isometrias e homotetias A, tais que $A(\alpha) = \beta$. Seja $\mathcal{C} = C/_{\sim}$ com a topologia induzida temos que

Definição 3. $[\beta] \in \mathcal{C}$ é dita ϵ - C^2 próxima de $[\alpha] \in \mathcal{C}$ se existirem $\alpha \in [\alpha]$ e $\beta \in [\beta]$ tal que $\beta \in N_{\epsilon}(\alpha)$.

 \mathcal{C} é um espaço de Baire e dizemos que uma propriedade é genérica se for satisfeita em um residual⁴. A motivação para a definição de \mathcal{C} , vem do fato de que todas as aplicações $T_{\overline{\alpha}}$, com $\overline{\alpha} \in [\alpha]$, são conjugadas à aplicação T_{α} , i e., existe um difeomorfismo h tal que $h^{-1} \circ T_{\overline{\alpha}} \circ h = T_{\alpha}$.

2.2 Órbitas Periódicas

O Teorema de Poincaré-Birkhoff garante a existência de um tipo particular de órbitas periódicas((m, n)-órbitas). Quando aplicado para bilhares podemos garantir a existência de pelo menos duas órbitas *n*-periódicas para todo $n \ge 2$. Dizemos que uma órbita $\mathcal{O}(s_0, \theta_0)$ é *não degenerada* se $DT^n_{\alpha}(s_0, \theta_0)$ não possuir autovalores iguais a ±1. É possível mostrar que uma órbita é não degenerada se, e somente se, a hessiana de $g_n(s_0, \ldots, s_{n-1}) =$ $g(s_0, s_1) + \cdots + g(s_{n-1}, s_0)$ for não nula⁵.

O objetivo agora é mostrar que conjunto U_N das curvas ovais tais que para todo $n \neq 1$ divisor de N, todas as órbitas *n*-periódicas de T_{α} são não degeneradas é aberto e denso.

Para garantir que U_N é aberto, vamos mostrar que se $\alpha \in U_N$ então para todo $n \neq 1$ divisor de N toda órbita n-periódica $\mathcal{O}(s_0, \theta_0)$ possui pelo menos um ponto no compacto $\mathbb{S}^1 \times [\pi/N, (N-1)\pi/N]$. Seja ψ_i o ângulo interno da trajetória dada por (s_0, θ_0) e $\phi_i = \inf{\{\theta_i, \pi - \theta_i\}}$.

 $^{^{3}}$ Seção [4.1].

 $^{{}^{4}}$ Seção [4.1].

 $^{{}^{5}}$ Esse resultado pode ser encontrado no capítulo 2 de Kozlov e Treschëv [15] e no capítulo 4 da tese de dos Santos [10].

Figura 2.5: Exemplo da definição do ângulos $\psi_i \in \phi_i$.

Temos que $\sum \psi_i + 2\phi_i = n\pi$, por outro lado a soma dos ângulos internos é menor ou igual a $(n-2)\pi$ e portanto $\sum \phi_i > \pi$, o que nos garante o resultado. Como todas as órbitas são não degeneradas (e portanto isoladas) temos que a quantidade de órbitas *n*-periódicas é finita. Difeomorfismos de $\mathbb{S}^1 \times (0,\pi)$ terem apenas um número finito de pontos fixos não degenerados em um subconjunto compacto é um propriedade C^1 aberta⁶, o que vai nos garantir a seguinte proposição.

Proposição 4. U_N é aberto.

Para garantir a densidade de U_N começamos por parametrizar uma curva α pelo parâmetro φ que é o ângulo que a reta tangente faz com uma direção fixada. Seja $\mathcal{O}(\varphi_0, \theta_0)$ é uma órbita *n*-periódica para α e

$$\beta(\varphi) = \alpha(\varphi) + \lambda(\varphi)\eta(\varphi) \tag{2.3}$$

tal que $\lambda(\varphi_i) = \lambda'(\varphi_i) = 0$. Então $\mathcal{O}(\varphi_0, \theta_0)$ é uma órbita *n*-periódica para β . Assim com a escolha correta de $\lambda(\varphi)$ vamos conseguir provar o seguinte lema.

Lema 5. Se $\mathcal{O}(s_0, \theta_0)$ é uma órbita n-periódica degenerada para α , então existe uma curva β , C^2 -próxima de α , tal que $\mathcal{O}(s_0, \theta_0)$ é uma órbita n-periódica não degenerada.

A prova do lema acima consiste em observar que o determinante de $DT^n_{\alpha}(\varphi_0, \theta_0)$ é igual 1 e com isso uma órbita é degenerado se tiver traço igual a ±2. Analisando o traço de $DT^n_{\alpha}(\varphi_0, \theta_0)$ obtemos que

$$\operatorname{Tr}\left(DT^{n}_{\alpha}(\varphi_{0},\theta_{0})\right) = \kappa(\varphi_{0})B + C,$$

onde *B* e *C* não dependem da curvatura $\kappa(\varphi_0)$. Assim considerando β como em (2.3) com $\lambda(\varphi_i) = \lambda'(\varphi_i) = 0$ para $i = 0, ..., n - 1, \lambda''(\varphi_i) = 0$ para $i = 1, ..., n - 1, \lambda''(\varphi_0) \neq 0$ e $\|\lambda\|_2 < \epsilon \in B \neq 0$ temos

$$\operatorname{Tr}\left(DT^{n}_{\beta}(\varphi_{0},\theta_{0})\right) = \operatorname{Tr}\left(DT^{n}_{\alpha}(\varphi_{0},\theta_{0})\right) - \epsilon$$

⁶A topologia C^1 é definida na Seção [4.2].

Se B = 0, basta realizar o mesmo argumento para (φ_i, θ_i) , tendo em vista que em algum momento devemos ter $B_i \neq 0$, pois caso contrário o

$$\operatorname{Tr}\left(DT_{\alpha}^{n}(\varphi_{0},\theta_{0})\right) = \pm 2\left(\frac{\kappa_{0}L}{\sin\theta_{0}}\right) \neq \pm 2$$

onde L é o comprimento da trajetória.

Realizando a interseção dos U_N e cortando pela relação de equivalência temos o teorema.

Teorema. Genericamente os bilhares em C possuem apenas um número finito órbitas periódicas para cada período, todas elas não degeneradas.

2.3 Orbitas Hiperbólicas

Uma órbita $\mathcal{O}(\varphi_0, \theta_0)$, *n*-periódica é dita *hiperbólica* se $DT^n_{\alpha}(\varphi_0, \theta_0)$ não tiver autovalores de norma 1. Pelo fato do bilhar ser uma aplicação Twist temos que as órbitas *n*-periódicas são pontos críticos do funcional $W_n(s_0, \ldots, s_{n-1}) = g(s_0, s_1) + \cdots + g(s_{n-2}, s_{n-1})$. Pela prova do Teorema de Poincaré-Birkhoff é possível garantir a existência de pelo menos dois pontos críticos, e consequentemente dois pontos *n*-periódicos, sendo um deles um ponto de máximo global. Utilizando o critério de Mackay-Meiss [16] garantimos que o máximo global, se isolado, é uma órbita *n*-periódica hiperbólica.

Dada um oval α , de classe C^r e uma órbita $\mathcal{O}(\varphi_0, \theta_0)$, *n*-periódica hiperbólica. Associada a cada ponto (φ_i, θ_i) temos duas variedade invariantes C^{r-1} , a variedade instável de (φ_i, θ_i)

$$W^{u}(\varphi_{i},\theta_{i}) = \{(\varphi,\theta) | \lim_{i \to -\infty} T^{in}_{\alpha}(s,\theta) = (\varphi_{i},\theta_{i}) \}$$

e a a variedade estável de (s_i, θ_i)

$$W^{s}(\varphi_{i},\theta_{i}) = \{(\varphi,\theta) | \lim_{i \to \infty} T^{in}_{\alpha}(\varphi,\theta) = (\varphi_{i},\theta_{i}) \}$$

Um ponto (φ, θ) é dito heteroclínico(homoclínico) se (φ, θ) pertence à $W^u(\varphi_i, \theta_i) \cap$ $W^s(\varphi_j, \theta_j)$ para $i \neq j (i = j)$. Dizemos ainda que (φ, θ) é tranversal (tangencial) se a interseção das variedades é transversa (tangente) em (φ, θ) .

Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [8] provam que genericamente as órbitas hiperbólicas de bilhares em C ou não possuem interseção ou possuem pelo menos uma interserção heteroclínica (ou homoclínica) transversa. A prova desse resultado é consequência do seguinte lema.

Lema 6. Seja $\alpha \in U_N$ e $\mathcal{O}(\overline{\varphi_0}, \overline{\theta_0})$ uma órbita n-periódica hiperbólica tal que $W^s(\overline{\varphi_0}, \overline{\theta_0})$ e $W^u(\overline{\varphi_i}, \overline{\theta_i})$ se intersectam tangencialmente em (φ_0, θ_0) . Então α pode ser aproximado por curvas em U_N tais que (φ_0, θ_0) é heteroclínica (ou homoclínica) transversa. Seja (φ_0, θ_0) um ponto de interseção tangencial de $W^s(\overline{\varphi_0}, \overline{\theta_0})$ e $W^u(\overline{\varphi_i}, \overline{\theta_i})$. O fato do bilhar oval ser uma aplicação Twist nos garante que a imagem de uma vetor tangente vertical pela derivada é um vetor tangente não vertical, com isso podemos assumir que a interseção entre $W^s(\overline{\varphi_0}, \overline{\theta_0})$ e $W^u(\overline{\varphi_i}, \overline{\theta_i})$ são gráficos locais $\theta_+(\varphi)$ e $\theta_-(\varphi)$ com $\theta'_+(\varphi_0) =$ $\theta'_0(\varphi_0) = \overline{\theta}$. As variedades vão definir uma frente focalizadora em (φ_0, θ_0) cuja a distância de focalização⁷ para frente é

$$d_{+} = \frac{\sin \theta_{0}}{\kappa(\varphi_{0})(1+\overline{\theta})}$$

e para trás

$$d_{-} = \frac{\sin \theta_0}{\kappa(\varphi_0)(1-\overline{\theta})}.$$

É possível obter uma curva β , ϵ - C^2 próxima de α que mantém essa órbita hiperbólica e a órbita de (φ_0, θ_0), porém cujas as distâncias de focalização dadas por $W^s_\beta(\overline{\varphi_0}, \overline{\theta_0})$ e $W^u_\beta(\overline{\varphi_i}, \overline{\theta_i})$ são diferentes. De fato β é será da forma:

$$\beta(\varphi) = \alpha(\varphi) + \lambda(\varphi)\eta_1(\varphi)$$

tal que $\lambda(\varphi_0) = \lambda'(\varphi_0) = 0$, $\lambda''(\varphi_0) \neq 0$ e $\lambda(\varphi) = 0$ fora de uma vizinhança suficientemente pequena em torno de φ_0 .

2.4 Órbitas Elípticas

Uma órbita $\mathcal{O}(\varphi_0, \theta_0)$ *n*-periódica é dita *elíptica* se os autovalores de DT^n_{α} são da forma $e^{i2\pi\gamma}$. Uma ilha elíptica é um subconjunto T^n -invariante, homeomórfico a um disco contendo (φ_0, θ_0) , nesse caso a órbita é dita Moser-estável. Um diâmetro elíptico é um órbita 2-periódica elíptica e portanto temos obrigatoriamente que $\theta_0 = \theta_1 = \pi/2$.

Figura 2.6: Exemplo de uma órbita periódica elíptica(vermelha) e uma trajetória na vizinhança.

⁷Esse resultado pode ser encontrado em [17].

Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [7] provam que o conjunto de bilhares ovais que possuem diâmetro elíptico é um aberto e o conjunto dos bilhares ovais que possuem ilhas elípticas de medida positiva é denso. As principais ferramentes para provar esse resultado são a Forma Normal de Birkhoff e o Teorema Twist de Moser que veremos com mais detalhes na seção 5.2.

Seja $(\varphi_0, \pi/2)$ um diâmetro elíptico em uma curva C^5 com um autovalor igual a $e^{i2\pi\gamma}$, tal que $e^{i2\pi\gamma n} \neq 1$ para $n = 1, \ldots, 4$. Para poder utilizar a Forma Normal de Birkhoff primeiramente fazemos a mudança de coordenadas $p = -\cos\theta$ e $s = s - s_0$ para que T_{α} preserve $dp \wedge ds$ e que o ponto periódico seja o ponto (0, 0). Expandindo T_{α}^2 no seu polinômio de Taylor de grau 4, a Forma Normal de Birkhoff nos diz como obter uma mudança de coordenadas (r, θ) tal que T_{α}^2 pode ser escrita na forma

$$T^2_{\alpha}(\theta, r) = (\theta + \gamma + \tau_1 \dot{r}^2 + O(|r|^2)^4, r + O(|r|^2)^4)$$

O Teorema Twist de Moser diz que se $\tau_1 \neq 0$ então o diâmetro possui ilhas elípticas, ou seja, é Moser estavél.

Figura 2.7: Exemplo de uma ilha elíptica para um diâmetro elíptico.

Utilizando computação algébrica Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [7] obtem uma expressão para τ_1 e mostram que

Teorema. Um bilhar oval com um diâmetro elíptico pode ser aproximado por um bilhar oval com um diâmetro elíptico Moser estavél.

A prova desse resultado consiste em primeiro obter uma curva de classe C^6 , ϵ - C^2 próxima que satisfaz a condição de não ressonância, se a curva obtida tiver $\tau_1 = 0$, obtemos uma nova curva de classe C^6 , ϵ - C^2 próxima tal que $\tau_1 \neq 0$.

Se α de classe C^6 tem um diâmetro elíptico em φ_0 primeiro consideramos uma curva β como em (2.3) com $\lambda(\varphi_i) = \lambda'(\varphi_i) = 0$ para i = 0, 1 e $\lambda''(\varphi_0) \neq 0$ e com isso é possível garantir que β_1 satisfaz a condição de não ressonância. Se τ_1 de β_1 for nulo, consideramos tal que $\lambda_1(\varphi_i) = \lambda'_1(\varphi_i) = \lambda''_1(\varphi_i) = \lambda'''_1(\varphi_i) = 0$ para i = 0, 1 e $\lambda_1^{(4)}(\varphi_0) \neq 0$ isso, juntamente com a expressão obtida para τ_1 é suficiente para conseguirmos que τ_1 de β_2 seja não nulo. Caso α não seja classe C^6 , basta aproximar por uma curva α_1 de classe C^6 .

Capítulo 3

Bilhares Convexos em Superfícies de curvatura constante

O problema dos bilhares convexos no plano pode ser estendido naturalmente. Basta observar que o fluxo dado por (2.1) é o fluxo geodésico. Gostaríamos de tentar preservar a propriedade Twist da aplicação de bilhar, todavia não é evidente quais seriam as condições necessárias e suficientes a se colocar na superfície para podermos garantir que tal propriedade é preservada. Uma condição necessária é que S seja uma superfície completa. Portanto o estudo dos bilhares convexos em superfícies de curvatura constante se reduz a estudar bilhares convexos no plano euclidiano, na esfera e no plano hiperbólico¹.

3.1 Curvatura Geodésica

Seja (S, g) uma superfície riemanniana simplesmente conexa onde $S \in g$ são ambas de classe C^2 . Dada uma curva α parametrizada pelo parâmetro comprimento de arco s, definimos a curvatura geodésica como

$$\kappa_g(s_0) = \left\| \left. \frac{D\alpha'}{ds} \right|_{s_0} \right\|_g$$

onde $\frac{D}{ds}$ é a derivada covariante. Observamos que

$$\frac{D\alpha'}{ds} = \nabla_{\alpha'(s)}\alpha'(s)$$

onde ∇ é a conexão de Levi-Civita. Se α não estiver parametrizada por comprimento de arco temos $\alpha'(s) = \alpha'(t)/||\alpha'(t)||_g$, utilizando as propriedades da conexão temos que

$$\nabla_{\alpha'(s)}\alpha'(s) = \frac{1}{\|\alpha'(t)\|_g} \left(\frac{1}{\|\alpha'(t)\|_g} \nabla_{\alpha'(t)}\alpha'(t) + \frac{d}{dt} \left(\frac{1}{\|\alpha'(t)\|_g}\right)\alpha'(t)\right)$$

¹Esse fato vem de diversos resultados obtido no final do século XIX e início do XX, uma discussão sobre o assunto pode ser encontrada em do Carmo [9].

e com isso

$$\kappa_g^2(t_0) = \frac{1}{\|\alpha'(t_0)\|_g^4} \left\| \frac{D\alpha'}{dt}(t_0) \right\|_g^2 - \frac{1}{\|\alpha'(t_0)\|_g^6} \left\langle \frac{D\alpha'}{dt}(t_0), \alpha'(t_0) \right\rangle_g^2.$$
(3.1)

3.2 Modelos Geométricos para Superfície de Curvatura Constante

3.2.1 Plano Hiperbólico

Existem diversos modelos para o plano hiperbólico. Aqui construíremos o mesmo modelo utilizado nos trabalhos [1, 11, 21] conhecido como o modelo do hiperboloide. Dado $v = (x, y, z) \in \mathbb{R}^3$ consideramos a forma bilinear quadrática

$$q(v) = x^2 + y^2 - z^2.$$

Ela define um pseudo produto interno real^2 dado por

$$\langle v_1, v_2 \rangle_{\mathbb{H}} = \frac{1}{2}(q(v_1 + v_2) - q(v_1) - q(v_2)) = x_1x_2 + y_1y_2 - z_1z_2.$$

O espaço \mathbb{R}^3 com $\langle , \rangle_{\mathbb{H}}$ é chamado de 3-espaço de Minkowski e foi proposto como uma interpretação geométrica para relatividade no ínicio do século 20³. Seja \mathbb{H}^2 a folha superior da hiperboloide dado por $x^2 + y^2 - z^2 = -1$, i.e., $\{v \in \mathbb{R}^3 | z > 0, q(v) = -1\}$. Embora o 3-espaço de Minkowski não seja uma variedade riemanianna, temos que $\langle , \rangle_{\mathbb{H}}$

Figura 3.1: Folha superior do hiperboloide $x^2 + y^2 - z^2 = -1$

induz uma métrica riemanianna no hiperboloide, de fato temos que a aplicação

 $\phi(\rho,\theta) = (\sinh\rho\cos\theta, \sinh\rho\sin\theta, \cosh\rho)$

 $^{^{2}}$ Um pseudo produto interno real é linear, comutativo, mas ao invés de ser positivo definido pedimos apenas que seja não degenerado.

³Para mais detalhes sobre o assunto veja [12].

é uma parametrização para $\mathbb{H}^2,$ e a métrica riemanianna nestas coordenadas é

$$g(\rho,\theta) = \left(\begin{array}{cc} 1 & 0\\ 0 & \sinh^2\rho \end{array}\right)$$

A vantagem desse modelo são boas expressões para a distância e as geodésicas dada pelo lema abaixo.

Lema 7. Seja $A \in \mathbb{H}^2$ $e \overrightarrow{T}$ um vetor tangente unitário nas coordenadas (ρ, θ) em A então

$$\gamma(t) = A\cosh t + \overrightarrow{T}\sinh t$$

é a geodésica que passa por A na direção \overrightarrow{T} . Seja $B \in \mathbb{H}^2$ e L a distância entre A e B então

$$\cosh(L) = -\langle A, B \rangle_{\mathbb{H}}$$

Demonstração. Esse lema decorre do fato que

$$<\phi_{\rho}(\rho,\theta),\phi(\rho,\theta)>_{\mathbb{H}}=<\phi_{\theta}(\rho,\theta),\phi(\rho,\theta)>_{\mathbb{H}}=0$$

e se γ é como no enunciado então

$$\gamma'(t) = A \sinh t + \overrightarrow{T} \cosh t$$

е

$$\gamma''(t) = A \cosh t + \overrightarrow{T} \sinh t.$$

3.2.2 Semiesfera

Existem diversos modelos para a semiesfera. Aqui construiremos o mesmo modelo utilizado nos trabalhos [1, 11, 21]. Definimos $\mathbb{S}^2_+ = \{v = (x, y, z) \in \mathbb{R}^3 | z > 0 \ , < v, v >= 1\}.$

$$\phi(\rho,\theta) = (\sin\rho\cos\theta, \sin\rho\sin\theta, \cos\rho)$$

é uma parametrização para $\mathbb{S}^2_+,$ e a métrica riemanianna em coordenadas é

$$g(\rho, \theta) = \left(\begin{array}{cc} 1 & 0 \\ 0 & \sin^2 \rho \end{array} \right).$$

Lema 8. Seja $A \in \mathbb{S}^2_+$ $e \overrightarrow{T}$ um vetor tangente unitário na coordenadas (ρ, θ) em A então

$$\gamma(t) = A\cos t + \vec{T}\sin t$$

é a geodésica que passa por A na direção \overrightarrow{T} . Seja $B \in \mathbb{S}^2_+$ e L a distância entre A e B então

$$\cos(L) = \langle A, B \rangle$$

Figura 3.2: Semiesfera de equação $x^2 + y^2 + z^2 = 1$

Demonstração. Esse lema decorre do fato que

$$\langle \phi_{\rho}(\rho,\theta), \phi(\rho,\theta) \rangle = \langle \phi_{\theta}(\rho,\theta), \phi(\rho,\theta) \rangle = 0$$

e se γ é como no enunciado então

$$\gamma'(t) = -A\sin t + \vec{T}\cos t$$

е

$$\gamma''(t) = -A\cos t - \overrightarrow{T}\sin t$$

3.3 Bilhares Ovais em Superfícies

Nessa seção vamos apresentar os resultados de [11] que afirma que bilhares ovais com uma fronteira de classe C^q é uma aplicação Twist de classe C^{q-1} tendo a distância como função geradora. Além de obter uma expressão para derivada análoga ao caso do plano eucliano.

Definição 9. Uma curva fechada α em uma superfície é dita geodésicamente estritamente convexa se qualquer geodésica tangente à α intercepta α em no máximo um ponto.

Lema 10. Se α for uma curva regular simples, fechada com curvatura geodésica estritamente positiva em uma superfície de curvatura constante então α é geodésicamente estritamente convexa.⁴

Observamos que mesmo no plano euclidiano existem curvas que são geodésicamente estritamente convexas, mas possuem pontos de curvatura nula⁵.

 $^{^{4}}$ Esse lema pode ser encontrado em Araújo [2].

 $^{^5\}mathrm{Tais}$ pontos devem ser necessáriamente isolados.

Definição 11. Uma curva regular simples, fechada em uma superfície é dita oval se a curvatura geodésica for estritamente positiva.

Observamos que o fluxo 2.1 no caso de uma superfície é o fluxo geodésico, portanto podemos definir o fluxo de bilhar de maneira análoga como na definição (2) de aplicação de bilhar.

Teorema 12. [11] Seja α uma oval em \mathbb{S}^2_+ ou \mathbb{H}^2 , $T_{\alpha}(s_1, \psi_1) = (s_2, \psi_2)$ a Aplicação de Bilhar, $g = g(s_1, s_2)$ a distância geodésica e κ_i a curvatura geodésica de Γ em s_i , i = 1, 2. A derivada da aplicação do bilhar $DT_{\alpha}|_{(s_1,\psi_1)}$ em \mathbb{H}^2 é dada por

 $\frac{1}{\sin\psi_2} \left(\begin{array}{cc} \kappa_1 \sinh g - \cosh g \sin \psi_1 & \sinh g \\ \kappa_2(\kappa_1 \sinh g - \cosh g \sin \psi_1) + \sinh g \sin \psi_1 \sin \psi_2 - \kappa_1 \cosh g \sin \psi_1 & \kappa_2 \sinh g - \cosh g \sin \psi_2 \end{array} \right).$

 $e \ em \ \mathbb{S}^2_+ \ por$

$$\frac{1}{\sin\psi_2} \left(\begin{array}{cc} \kappa_1 \sin g - \cos g \sin \psi_1 & \sin g \\ \kappa_2(\kappa_1 \sin g - \cos g \sin \psi_1) - \sin g \sin \psi_1 \sin \psi_2 - \kappa_1 \cos g \sin \psi_1 & \kappa_2 \sin g - \cos g \sin \psi_2 \end{array}\right).$$

Além disso, a aplicação do bilhar T preserva a medida $\sin \psi d\psi \wedge ds$.

A prova desse Teorema consiste em utilizar as expressões do lema (7) e (8) para provar que a órbita do bilhar minimiza a ação dada pela distância e calcular a derivada do bilhar a partir das derivadas segunda da ação dada pela distância. Observamos que podemos pedir que α seja apenas geodésicamente estritamente convexa. Refazemos aqui algumas das contas.

Lema 13. Seja $g(s_1, s_2)$ a distância geodésica entre $s_1 \ e \ s_2 \ em \ \mathbb{S}^2_+$ ou $\mathbb{H}^2 \ e \ T_{\alpha}(s_1, \psi_1) = (s_2, \psi_2)$ então

$$\partial_1 g = -\cos\psi_1 \quad , \quad \partial_1 g = \cos\psi_2$$

Demonstração.Supondo α parametrizado por comprimento de arco. Em \mathbb{H}^2 pelo lema 7 temos

$$\alpha(s_2) = \alpha(s_1)\cosh(g(s_1, s_2)) + \overrightarrow{V}\sinh(g(s_1, s_2))$$

onde \overrightarrow{V} é o vetor tangente unitário em $\alpha(s_1)$ a geodésica que passa por $\alpha(s_1)$ à $\alpha(s_2)$ e que

 $\cosh g(s_1, s_2) = - \langle \alpha(s_1), \alpha(s_2) \rangle_{\mathbb{H}} .$

Aplicando a regra da cadeia na expressão acima obtemos

$$\sinh(g(s_1, s_2))\partial_1 g = - \langle \alpha'(s_1), \alpha(s_2) \rangle_{\mathbb{H}}.$$

 $\operatorname{como} < \alpha'(s_1), \alpha(s_1) >_{\mathbb{H}} = 0 \ \mathrm{e} < \alpha'(s_1), \overrightarrow{V} >_{\mathbb{H}} = \cos \psi_1, \ \mathrm{temos}$

$$\partial_1 g = -\cos\psi_1.$$

Além disso

$$\alpha(s_1) = \alpha(s_2)\cosh(g(s_1, s_2)) + \overrightarrow{-U}\sinh(g(s_1, s_2))$$

onde \overrightarrow{U} é o vetor tangente unitário em $\alpha(s_2)$ da geodésica que passa por $\alpha(s_1)$ à $\alpha(s_2)$, logo por definição temos $\langle \alpha'(s_2), \overrightarrow{U} \rangle = \cos \psi_2$, novamente utilizando a regra da cadeia temos

$$\partial_2 g = \cos \psi_2.$$

O caso \mathbb{S}^2_+ é análogo.

Capítulo 4

Uma Topologia para o Espaço das Ovais

O primeiro problema que encontramos ao tentar definir uma topologia para as aplicações de bilhares é o fato das curvas fechadas possuírem domínios de parametrização diferentes, pois dadas curvas α : $I_{\alpha} \to S \in \beta$: $I_{\beta} \to S$, se $I_{\alpha} \neq I_{\beta}$ as aplicações Twist T_{α} e T_{β} associadas vão estar em domínios diferentes de tal maneira a não ficar claro o que significaria dizer que T_{α} está próxima de T_{β} . Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [7, 8] resolvem esse problema no plano euclidiano paremetrizando todas as curvas por um parâmetro angular φ que é o ângulo que o vetor tangente faz com uma direção fixada. Essa abordagem apresenta algumas vantagens entre elas temos que o parâmetro φ sempre varia de zero a 2π e que normal unitário $\eta(\varphi)$ é de classe C^{∞} . Tal abordagem não se traduz muito bem para as outras superfícies. De fato utilizando o transporte paralelo é possível obter uma parametrização angular análoga, porém o intervalo de variação do parâmetro angular não é mais sempre igual, pois depende da área da região. Optamos então por considerar curvas fechadas como imersões de \mathbb{S}^1 em S. Dessa forma podemos definir uma topologia de maneira mais intuitiva, porém perdemos algumas parametrizações interessantes, como por exemplo, o parâmetro comprimento de arco.

4.1 Espaços de Baire

Dado um espaço topológico $X \in A \subset X$, então o interior de A é o conjunto formado pela união de todos os abertos contidos em A. Um espaço topológico é um *espaço de Baire* se a união enumerável de fechados com interior vazio, possui interior vazio. Um conjunto que está contido em união enumerável de fechados com interior vazio é dito um conjunto *magro*. Observamos que um conjunto fechado tem interior vazio se, e somente se, seu complentar é aberto e denso, com isso podemos definir, equivalentemente, que um espaço topológico é um *espaço de Baire* se a interseção enumerável de abertos e densos é densa. Um conjunto que contém uma interseção enumerável de abertos e densos é chamado de *residual*.

O teorema de Categoria de Baire nos diz que *todo espaço topológico métrico* completo é um espaço de Baire. Além disso é possível mostrar que um subespaço aberto de um espaço de Baire é Baire. Estes resultados podem ser encontrado em Munkres [19].

Definição 14. Uma propriedade é dita **genérica** em um espaço de Baire se for satisfeita em um conjunto residual.

Observamos que a interseção de dois conjuntos residuais em um espaço de Baire é um residual.

4.2 Topologia C^r das Curvas fechadas em Superfícies

Nessa seção vamos definir a topologia para as imersões C^2 de \mathbb{S}^1 em S de tal maneira a tornar esse espaço topológico em um espaço de Baire. Com intuito de simplificar e deixar mais intelígivel, vamos definir a topologia em $C^r(\mathbb{S}^1, S)$, embora toda a discussão feita nessa seção possa ser feita para $C^r(M, N)$ onde M e N são variedades diferenciáveis e M é compacta. Os resultados dessa seção podem ser encontrados em Hirsch [14].

Seja $f \in C^r(\mathbb{S}^1, S)$, $\epsilon > 0$, φ uma pametrização do aberto $U \subset \mathbb{S}^1$, ϕ uma parametrização do aberto $V \subset S$ e um compacto $K \subset U$ e $f(K) \subset V$. Definimos $N^r(f, \varphi, U, \phi, V, K, \epsilon)$ como o conjunto das funções g que satisfazem:

- $g(K) \subset V$.
- $\sup_{x \in \varphi^{-1}(K)} \left| \left| D^k \left(\phi^{-1} \circ f \circ \varphi \right) (x) D^k \left(\phi^{-1} \circ g \circ \varphi \right) (x) \right| \right| < \epsilon \text{ para todo } 0 \le k \le r \text{ .}$

A união de interseções finitas desses conjuntos formam uma topologia em $C^r(\mathbb{S}^1, S)$. Essa é conhecida como topologia fraca em $C^r(\mathbb{S}^1, S)$. Se considerássemos um coleção de compactos $\{K_i\}$ cobrindo \mathbb{S}^1 ao invés de K, teríamos a topologia forte em $C^r(\mathbb{S}^1, S)$, mas ambas topologias são equivalentes, pois \mathbb{S}^1 é compacto.

Embora $C^r(\mathbb{S}, S)$ seja um espaço métrico, a métrica não é definida explicitamente tornando-a difícil de se trabalhar. Vamos usufruir do fato de que no plano hiperbólico e na semiesfera existe uma parametrização ϕ , como em 3.2, para definir

Definição 15. Sejam $f,g \in C^r(\mathbb{S}^1,S)$, onde S é o plano hiperbólico ou a semiesfera, dizemos que f e g estão $C^r \epsilon$ -próximas se

$$\sup_{t \in [0,1]} \|D^k \left(\phi^{-1} \circ f \circ \varphi\right)(t) - D^k \left(\phi^{-1} \circ g \circ \varphi\right)(t)\| < \epsilon$$

para todo $k \leq r$, onde ϕ é dada como em 3.2 e φ como

$$\varphi(t) = e^{2\pi i t}.$$

Observamos que $|| \cdot ||$ utilizado na definição para a topologia $C^r(\mathbb{S}^1, S)$ é a norma usual em \mathbb{R}^2 .

Um teorema clássico afirma que $C^r(\mathbb{S}^1, S)$ é um espaço de Baire. Podemos dizer ainda mais e afirmar que $C^r(\mathbb{S}^1, S)$ é um espaço métrico completo, além disso o conjunto das imersões é um aberto de $C^r(\mathbb{S}^1, S)$ e com isso eles formam um espaço de Baire.

4.3 Topologia C^r de curvas ovais

Relembramos que uma curva regular simples, fechada em uma superfície é dita oval se a curvatura geodésica for estritamente positiva. Como a derivada do bilhar depende da distância e da curvatura geodésica, vamos mostrar que a topologia definida na seção anterior se comporta bem com essas propriedades.

Seja (S, g) uma superfície com uma métrica Riemanniana de classe C^2 e de curvatura limitada. Embora α seja uma imersão de \mathbb{S}^1 , vamos muitas vezes considerar α em coordenadas locais, isto é, $\alpha(t) = (x_1(t), x_2(t)) = \phi^{-1}(\alpha(\varphi(t)))$, nesse caso temos que a derivada covariante de $\alpha'(t)$ nas coordenadas locais ϕ é

$$\frac{D\alpha'}{dt} = \left(\frac{d^2x_1}{dt^2} + \sum \frac{dx_j}{dt}\frac{dx_i}{dt}\Gamma^1_{ij}\right)\partial_1 + \left(\frac{d^2x_2}{dt^2} + \sum \frac{dx_j}{dt}\frac{dx_i}{dt}\Gamma^2_{ij}\right)\partial_2$$
(4.1)

Nosso objetivo é comparar a curvatura geodésica de duas curvas $\alpha \in \beta$, embora $\alpha'(t) \in \beta'(t)$ pertençam, em geral, a planos tangentes diferentes podemos comparar sua norma, conforme o lema abaixo.

Lema 16. Sejam α_n imersões tais que $\alpha_n \to \alpha$ em $C^r(\mathbb{S}^1, S)$ então para todo $p \in \mathbb{S}^1$ temos $d(\alpha_n(p), \alpha(p)) \to 0$ e $\kappa_n(p) \to \kappa(p)$, onde $\kappa_n(p)$ e $\kappa(p)$ são as curvaturas geodésicas em $\alpha_n(p)$ e $\alpha(p)$.

Demonstração. Dado p, seja t tal que $\varphi(t) = p$. Seja V a bola geodésica de raio ϵ em $\alpha(p), U = \alpha^{-1}(V \cap \alpha(\mathbb{S}^1))$ e um compacto $K \subset U$. Seja $\phi = \exp_{\alpha(p)}$ e considere $N^r(\alpha, \varphi, U, \phi, V, K, \epsilon)$, em particular temos para n >> 0 que

$$||\phi^{-1} \circ \alpha \circ \varphi(t) - \phi^{-1} \circ \alpha_n \circ \varphi(t)|| < \epsilon$$

o que nos garante que $d(\alpha_n(p), \alpha(p)) < \epsilon$. Precisamos agora garantir que

$$\left| \left\| \frac{D\alpha'(t)}{dt} \right\|_g - \left\| \frac{D\alpha'_n(t)}{dt} \right\|_g \right| < \epsilon$$

Observamos que por (4.1) temos que a norma da derivada covariante de α' em t depende apenas das derivadas das coordenadas da curva, dos símbolos de Christoffel e coefiecientes da métrica g. Como S e g são ambas de classe C^2 , temos que esses termos variam todos pelo menos continuamente e juntamente com (3.1) garantimos o resultado. **Proposição 17.** Seja C o conjunto das curvas ovais de uma superfície simplesmente conexa e completa S de curvatura limitada. O conjunto C é aberto na topologia $C^r(\mathbb{S}^1, S)$ com $r \ge 2$.

Demonstração. Como ter curvatura positiva e ser uma imersão são propriedades abertas, basta mostar que se $\alpha_n \to \alpha$ com α_n imersões com curvatura positiva tal que $\alpha_n \notin C$ então $\alpha \notin C$. Suponhamos por absurdo que $\alpha \in C$, então existem sequências $\{t_n\}, \{s_n\}$ tais que $t_n < s_n, \alpha(t_n) = \alpha(s_n)$. A menos de tomarmos subsequências convergentes seja te s os limites de t_n e s_n , respectivamentes. Temos que $\alpha(t) = \alpha(s)$ e portanto t = s, logo $\alpha'(t) = \alpha'(s)$. Observamos que pelo Teorema de Gauss Bonnet

$$\int_{t_n}^{s_n} \kappa_g(\alpha_n(t)) dt \ge 2\pi - \theta_n - K_{inf} \cdot A_n$$

onde K_{min} é o mínimo da curvatura de S, θ_n é o ângulo entre $\alpha'_n(t_n)$ e $\alpha'_n(s_n)$ e A_n é a área conforme a figura abaixo

temos $\theta_n \in A_n$ tendem a zero, logo

$$\lim_{n \to \infty} \int_{t_n}^{s_n} \kappa_g(\alpha_n(t)) dt \ge 2\pi$$

gerando um absurdo, pois $s_n - t_n$ tende a zero e $k_g(\alpha_n)$ é limitada e portanto o limite deveria ser igual a zero.

Corolário 18. C é um espaço de Baire.

Sejam $\alpha \in \beta$ pertencentes a C, dizemos que $\alpha \sim \beta$ se existem h difeomorfismo C^2 de \mathbb{S}^1 e uma isometria F de S tal que $F \circ \alpha \circ h = \beta$.

Proposição 19. A relação ~ é uma relação de equivalência em C.

Demonstração. $\alpha \sim \alpha$ é trivial, basta considerar a identidade em $C^2(\mathbb{S}^1, \mathbb{S}^1)$ e a identidade em S.

Se $\alpha \sim \beta$, temos $F \circ \alpha \circ h = \beta$ então $\alpha = F^{-1} \circ \beta \circ h^{-1}$, como F^{-1} é também um isomorfismo de $S \in h^{-1}$ é também um difeomorfismo C^2 de \mathbb{S}^1 temos $\beta \sim \alpha$.

Se $F_{\alpha} \circ \alpha \circ h_{\alpha} = \beta$ e $F_{\beta} \circ \beta \circ h_{\beta} = \gamma$ então temos que $F_{\beta} \circ F_{\alpha} \circ \alpha \circ h_{\alpha} \circ h_{\beta} = F_{\beta} \circ \beta \circ h_{\beta} = \gamma$, como $F_{\beta} \circ F_{\alpha}$ é uma isometria de S e $h_{\alpha} \circ h_{\beta}$ é um difeomorfismo C^2 de \mathbb{S}^1 , logo temos $\alpha \sim \gamma$. **Definição 20.** Seja C conforme a proposição 17, chamamos o conjunto $C = C/\sim$ o conjunto de **mesas** ovais de S e denotamos a classe de α por $[\alpha]$.

A ideia aqui é que qualquer aplicacação twist T de uma curva na classe de α é conjugada a aplicação twist T_{α} . Como a função geradora é a distância temos que as órbitas são preservadas pela isometria, além disso uma reparametrização de α gera apenas uma mudança de coordenadas para T.

Proposição 21. O conjunto das mesas ovais é Baire.

Demonstração. Seja $\pi : C \to C$ a projeção canônica. Temos que se $A \subset C$ é denso então $\pi(A)$ é denso, de fato, seja $\mathcal{U} \subset C$ aberto, então $\pi^{-1}(\mathcal{U})$ é aberto e portanto existe $\alpha \in \pi^{-1}(\mathcal{U}) \cap A$, logo $\pi(\alpha) \in \mathcal{U} \cap \pi(A)$. Por outro lado afirmamos que se \mathcal{A} é denso, então $\pi^{-1}(\mathcal{A})$ é denso. Dado α , seja \mathcal{U} uma vizinhança de $[\alpha]$ então existe β tal que $\beta \in N(F \circ \alpha \circ h, \epsilon)$, para algum $F, h \in \epsilon \operatorname{com} \pi(\beta) \in \mathcal{A}$, pois caso contrário $\mathcal{U} \cap \mathcal{A} = \emptyset$. Agora observamos que se $\beta \in N(F \circ \alpha \circ h, \epsilon)$ então $F^{-1} \circ \beta \circ h^{-1} \in N(\alpha, \epsilon)$, mas como $F^{-1} \circ \beta \circ h^{-1} \in [\beta]$ temos $\pi^{-1}(\mathcal{A})$ é denso.

Finalmente para provar a proposição basta observar que

$$\bigcap \mathcal{A}_{\omega} = \pi \left(\bigcap \pi^{-1} \left(\mathcal{A}_{\omega} \right) \right)$$

e portanto se \mathcal{A}_{ω} é aberto e denso, temos que $\pi^{-1}(\mathcal{A}_{\omega})$ é aberto e denso, como C é Baire temos que $\bigcap \pi^{-1}(\mathcal{A}_{\omega})$ é denso e logo temos que $\bigcap \mathcal{A}_{\omega}$ é denso.

4.3.1 Perturbações Locais para Superfícies de Curvatura Constante

O próximo lema nos permite fazer pertubações locais.

Lema 22. Seja α uma curva C^2 de uma superfíce S de curvatura constante. Fixado um s_0 , existe uma vizinhança I suficientemente pequena de s_0 e uma curva β tal que $\beta(t) = \alpha(t)$ para todo $t \notin I$, $\alpha(s_0) = \beta(s_0)$, $\alpha'(s_0) = \beta'(s_0)$ e $\alpha''(s_0) \neq \beta''(s_0)$.

Demonstração. Seja V um campo unitário de classe C^{∞} em uma vizinhança U de $\alpha(s_0)$ com $V(s_0)$ igual ao vetor normal unitário em $\alpha(s_0)$ e I tal que $\alpha(t) \in U$ para todo $t \in I$. Basta tomar agora uma função λ de classe C^{∞} tal que $\lambda(t) = 0$ para $t \notin I$, $\lambda(s_0) = \lambda'(s_0) = 0$ e $\lambda''(s_0) \neq 0$ e definir

$$\beta(t) := \exp_{\alpha(t)} \lambda(t) V(t) \tag{4.2}$$

por construção $\alpha(t) = \beta(t)$ para $t \notin I$ e $\alpha(s_0) = \beta(s_0)$, pela definição da exponencial em S, temos

$$\beta(t) = \alpha(t)C(\lambda(t)) + V(t)S(\lambda(t)),$$

onde

$$S(g) = \begin{cases} g & \text{para o Plano Euclidiano.} \\ \sin g & \text{para a Semi-Esfera.} \\ \sinh g & \text{para o Plano Hiperbólico.} \end{cases},$$
(4.3)
$$C(g) = \begin{cases} 1 & \text{para o Plano Euclidiano.} \\ \cos g & \text{para a Semi-Esfera.} \\ \cosh g & \text{para o Plano Hiperbólico.} \end{cases}$$

Lembramos que S'(t) = C(t), C'(t) = -KS(t), onde $K = 0, \pm 1$ é a curvatura da superfície S. Com isso obtemos

$$\beta'(t) = C(\lambda(t))(\alpha'(t) + \lambda'(t)V(t)) + S(\lambda(t))(V'(t) - K\lambda(t)\alpha(t)).$$

Como $S(\lambda(s_0)) = 0$ e $C(\lambda(s_0)) = 1$, temos $\beta'(s_0) = \alpha'(s_0)$, além disso

$$\beta''(t) = C(\lambda(t))(\alpha''(t) + \lambda''(t)V(t) + \lambda'(t)V'(t)) - K\lambda'(t)S(\lambda(t))(\alpha'(t) + \lambda'(t)V(t)) + S(\lambda(t))(V''(t) + \lambda''(t)\alpha'(t) + \lambda'(t)\alpha'(t)) + \lambda'(t)C(\lambda(t))(\alpha'(t) + \lambda'(t)V(t))$$

finalmente obtemos $\beta''(s_0) = \alpha''(s_0) + \lambda''(s_0)V(s_0)$

Corolário 23. Dado $\alpha \in \{s_0, \ldots, s_n\}$, então existe uma curva β , C^2 próxima de α tal que $\alpha(s_i) = \beta(s_i), \alpha'(s_i) = \beta'(s_i) \ e \ \kappa_{\beta}(s_i) = \kappa_{\alpha}(s_i) + \epsilon_i$.

Do fato de que a distância e a curvatura vão estar próximas decorre que se duas mesas estão C^2 próximas então as aplicações twist associadas estão C^1 próximas.

Lema 24. Sejam $\alpha \ e \ \beta \ duas \ curvas \ C^2 \ próximas.$ Então as aplicações twist associdas T_{α} $e \ T_{\beta} \ estão \ C^1 \ próximas.$

Esse resultado foi provado inicialmente por dos Santos e Pinto de Carvalho [11] e consiste em provar que as funções geradoras, i.e., a distância estão C^2 próximas e com isso T_{α} e T_{β} vão estar C^1 próximas.

Demonstração. Observamos que de acordo com as fórmulas 7 e 8, temos que

$$g_{\alpha}(s_0) = \cosh^{-1} < \alpha(s_0), \alpha(s_1) >_{\mathbb{H}}$$
 para a Plano Hiperbólico.
 $g_{\alpha}(s_0) = \arccos < \alpha(s_0), \alpha(s_1) >$ para a Esfera.

Logo como $\alpha \in \beta$ estão C^2 próximas temos que g_{α} , g_{β} estão C^2 próxima se portanto temos que $T_{\alpha} \in T_{\beta}$ estão C^1 próximas.

Observamos que qualquer círculo geodésico é integrável e são conjugados entre si, porém a curvatura geodésica de dois círculos distintos não estão necessariamente próximos na topologia acima.

Capítulo 5

Genericidade das Órbitas Periódicas

O objetivo desse capítulo é provar os teoremas A, B e C.

Teorema A. Genericamente os bilhares ovais em superfícies de curvatura constante possuem um número finito de órbitas n-periódicas, todas não degeneradas.

Teorema B. Genericamente as variedades estáveis e instáveis de dois pontos periódicos hiperbólicos, não necessariamente distintos, para bilhares ovais em superfícies de curvatura constante ou não possuem interseção ou possuem pelo menos uma interseção transversa.

Teorema C. Possuir uma órbita 2-periódica elíptica é uma propriedade aberta e genericamente essas órbitas são não degeneradas e não ressonantes para bilhares ovais. Além disso qualquer bilhar oval com uma 2-periódica elíptica pode ser aproximado por um bilhar oval com uma órbita 2-periódica elíptica com ilhas elípticas.

Relembramos que um ponto (s_0, θ_0) é dito *n*-periódico, se *n* é o menor número natural tal que $T^n_{\alpha}(s_0, \theta_0) = (s_0, \theta_0)$. A trajetória de uma órbita *n*-periódica é um segmento de geodésica se n = 2 e é um polígonal com *n* arestas se n > 2. Além disso utilizando o Teorema de Poincaré-Birkhoff e o critério de Mackay-Meiss garantimos que o funcional comprimento possui um máximo global e, se isolado, temos uma órbita $\mathcal{O}(\varphi_0, \theta_0)$ *n*-periódica hiperbólica, isto é, $DT^n_{\alpha}(\varphi_0, \theta_0)$ não tem autovalores de norma igual a 1. Uma órbita $\mathcal{O}(\varphi_0, \theta_0)$ *n*-periódica é dita elíptica se os autovalores de DT^n_{α} são da forma $e^{i2\pi\gamma}$. O teorema C, não garante que possuir uma órbita 2-periódica elíptica é uma propriedade genérica, mas caso um bilhar tenha tal órbita então genericamente tal órbita deve ter um autovalor igual a $e^{i2\pi\gamma}$, tal que $e^{i2\pi\gamma k} \neq 1$ para $k = 1, \ldots, 4$ (chamada de condição de não-ressonância). Temos ainda que é possível garantir que possuir um subconjunto T^n -invariante, homeomórfico a um disco contendo (φ_0, θ_0) , isto é, ilha elíptica é uma propriedade densa, entretando não conseguimos garantir que é uma propriedade C^2 aberta.

No trabalho de dos Santos e Pinto de Carvalho [11] é provado o Teorema A para o plano hiperbólico e para a semiesfera é provado apenas que é uma propriedade aberta utilizando o conjunto das curvas C^{∞} com a topologia C^2 do espaço \mathbb{R}^3 . Uma das principais diferenças é a maneira de se realizar uma perturbação que no nosso trabalho não depende do espaço em que a superfície está mergulhada. Na próxima seção refazemos sua prova salientando as diferenças com a topologia e perturbação propostas no presente trabalho.

Para o Teorema B usamos o conceito de campos de Jacobi inspirados nos trabalhos de Wojtkowski [24] e Blumen et al. [5] e as técnicas desenvolvidas por Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [8].

A prova do Teorema C segue as ideias de Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [7] para perturbar uma 2-periódica elíptica e obter um bilhar com o primeiro coeficiente de Birkhoff diferente de zero.

5.1 Orbitas periódicas não degeneradas

Teorema 25 (dos Santos & Pinto de Carvalho). O conjunto dos bilhares ovais C^{∞} em \mathbb{S}^2_+ e \mathbb{H}^2 que possuem um número finito de órbitas periódicas para um período n e todas são não degeneradas é aberto e denso para \mathbb{H}^2 e aberto para \mathbb{S}^2_+ .

Observamos que muitos dos resultados obtidos no teorema acima podem ser mostrados, com algumas alterações, para a topologia proposta no capítulo 3 no conjunto das ovais C^2 ao invés de se considerar apenas as ovais C^{∞} . Refazemos aqui a prova do teorema acima salientando altereções necessárias. Completamos aqui a prova da densidade para \mathbb{S}^2_+ utilizando as ideias desse mesmo trabalho.

5.1.1 Orbitas *n*-periódicas não degeneradas

Lema 26 (dos Santos). Seja α uma oval então existe $\delta_n > 0$, tal que toda órbita nperiódica de T_{α} contém pelo menos um ponto em $\mathbb{S}^1 \times [\delta_n, \pi - \delta_n]$.

Demonstração. Dada uma órbita *n*-periódica $\{s_i, \theta_i\}_{i=0}^{n-1}$, caso n = 2 temos necessarimente $\theta_0 = \theta_1 = \frac{\pi}{2}$. Se n > 2 a órbita define um *n*-polígono geodésico com ângulos internos iguais a $\psi_i = \pi - 2\phi_i$, onde $\phi_i = \inf\{\theta_i, \pi - \theta_i\}$. Em \mathbb{H}^2 como consequência do Teorema de Gauss-Bonnet obtemos

$$(n-2)\pi > \sum_{i} \psi_i = n\pi - 2\sum_{i} \phi_i$$

e portanto temos

$$\sum_{i} \phi_i > \pi$$

logo existe algum i_0 tal que $\phi_{i_0} > \frac{\pi}{n}$ e portanto $\frac{\pi}{n} \le \theta_{i_0} \le \pi - \frac{\pi}{n}$.
O argumento acima não se traduz em \mathbb{S}^2_+ , porém a área delimitada por α vai nos permitir limitar a soma dos ângulos internos como obtivemos acima. Suponhamos, primeiramente, que a trajetória da órbita seja um polígono convexo e seja A_P a área delimitado por esse polígono convexo. Pelo Teorema de Gauss-Bonnet temos

$$A_P = 2\pi - 2\sum_i \phi_i.$$

Como a área A delimitada por α é estritamente menor que 2π , temos $A = 2\pi - \epsilon$, com $\epsilon > 0$, e portanto

$$2\pi - 2\sum_i \phi_i < 2\pi - \epsilon$$

obtemos então que

$$\sum_i \phi_i > \frac{\epsilon}{2}$$

então existe pelo menos um i_0 tal que $\phi_{i_0} \geq \frac{\epsilon}{2n}$ e portanto $\frac{\epsilon}{2n} \leq \theta_{i_0} \leq \pi - \frac{\epsilon}{2n}$. Caso a trajetória formada pela órbita não seja um polígono convexo basta observar que o polígono convexo com vértices em $\{s_i\}$ possui a soma dos ângulos internos maior que soma dos ângulos internos do polígono não convexo.

Definição 27. Seja \mathcal{U}_n o conjunto dos bilhares ovais C^2 tais que o conjunto de órbitas *n*-periódicas é finito e todas são não degeneradas.

Proposição 28 (dos Santos & Pinto de Carvalho). \mathcal{U}_n é aberto utilizando a topologia C^2 do espaço \mathbb{R}^3 .

Demonstração. Pelo lema 26, temos que T^n_{α} possui um número finito de pontos fixos não degenerados no compacto $\mathbb{S}^1 \times [\delta_n, \pi - \delta_n]$. Como órbitas *n*-periódicas e não degeneradas em um compacto é uma propriedade aberta na topologia C^1 , o lema 24 nos garante a proposição.

Observamos que para provar o resultado foi necessário apenas que curvas próximas tenham aplicações de bilhares associadas C^1 próximas, o que é esperado de qualquer topologia definida no espaço das curvas para o estudo de bilhar. Portanto o mesmo resultado vale para topologia proposta no capítulo 3 no conjunto de ovais C^2 .

Para provar a densidade é necessário realizar perturbações. Dos Santos e Pinto de Carvalho optam por realizar perturbações do tipo :

$$\beta(s) = \begin{cases} \frac{\alpha(s) + \lambda(s)\eta(s)}{\sqrt{1 + \lambda^2(s)}} & \text{em } \mathbb{S}^1_+ \\ \frac{\alpha(s) + \lambda(s)\eta(s)}{\sqrt{1 - \lambda^2(s)}} & \text{em } \mathbb{H}^2 \end{cases}$$

onde η é o vetor em \mathbb{R}^3 normal a curva. Essa perturbação define a topologia. Uma vizinhança de α é um conjunto de todas as curvas β como acima onde λ é uma função

real periódica $C^2 \operatorname{com} \|\lambda\| < \epsilon$. Essa perturbação traz consigo duas grandes desvantagens em nossa opinião. A primeira é que a perturbação (e consequentemente a topologia) dependem do espaço \mathbb{R}^3 . Isso pode ser resolvido realizando uma perturbação do tipo:

$$\beta(s) := \exp_{\alpha(s)} \lambda(s)\eta(s).$$

A outra desvantagem é que, em geral, $\eta(s)$ não é de classe C^2 , e portanto não podemos garantir que β seja de classe C^2 , isso força dos Santos a trabalhar apenas com curvas C^{∞} . Nós observamos que as perturbações necessárias para provar os Teoremas A, B e C, são feitas sempre em um número finito de pontos e preservando o perímetro da órbita, por isso utilizamos perturbações do tipo 4.2, tendo em vista que a nossa topologia não está definida através das perturbações. A redefinição da topologia, da perturbação e o aprimoramento do lema abaixo, é onde reside a nossa maior contribuição para prova do Teorema A.

Lema. Dado um bilhar C^{∞} em uma superfície S com uma órbita n-periódica degenerada temos duas possibilidades. Se $S = \mathbb{H}^2$ então existe um bilhar C^2 próximo tal que possui a mesma órbita n-periódica porém não degenerada. Se $S = \mathbb{S}^2_+$ e o comprimento da órbita n-periódica degenerada não for um múltiplo de π então existe um bilhar C^2 próximo tal que possui a mesma órbita n-periódica porém não degenerada.

A prova desse lema consiste em considerar o traço de $DT^n_{(s_0,\theta_0)}$ como uma função das curvaturas, essa função será um polinômio de múltiplas variáveis, caso ele dependa de alguma curvatura basta realizar uma perturbação que altere apenas a curvatura. Para garantir a densidade em \mathbb{S}^2_+ , mostramos que:

Lema 29. Seja $O = \{(s_0, \theta_0), \ldots, (s_{n-1}, \theta_{n-1})\}$ um órbita n-periódica de uma curva C^2 então o traço de $DT^n_{(s_0,\theta_0)}$ como função das curvaturas em s_0, \ldots, s_{n-1} não é constante.

Demonstração. Observamos que

$$DT_{(s_i,\theta_i)} = \frac{1}{\sin \theta_{i+1}} \begin{pmatrix} \kappa_i S(g_i) - C(g_i) \sin \theta_i & S(g_i) \\ \kappa_{i+1}(\kappa_i S(g_i) - C(g_i) \sin \theta_i) - KS(g_i) \sin \theta_i \sin \theta_{i+1} - \kappa_i C(g_i) \sin \theta_i & \kappa_{i+1} S(g_i) - C(g_i) \sin \theta_{i+1} \end{pmatrix}$$

onde $S(g) \in C(g)$ são como em (4.3) e K é a curvatura. Observamos que

$$DT_{(s_i,\theta_i)} = \frac{1}{\sin \theta_{i+1}} \begin{pmatrix} 1 & 0 \\ \kappa_{i+1} & -\sin \theta_{i+1} \end{pmatrix} \begin{pmatrix} C(g_i) & S(g_i) \\ -KS(g_i) & C(g_i) \end{pmatrix} \begin{pmatrix} -\sin \theta_i & 0 \\ \kappa_i & 1 \end{pmatrix}$$

Definimos

$$B_i^+ := \begin{pmatrix} 1 & 0 \\ \kappa_i & -\sin\theta_i \end{pmatrix}, R(g) := \begin{pmatrix} C(g) & S(g) \\ -KS(g) & C(g) \end{pmatrix} \in B_i^- := \begin{pmatrix} -\sin\theta_i & 0 \\ \kappa_i & 1 \end{pmatrix}.$$

Pela regra da cadeia temos que $DT^n_{(s_0,\theta_0)} = DT_{(s_{n-1},\theta_{n-1})}DT_{(s_{n-2},\theta_{n-2})}\cdots DT_{(s_0,\theta_0)}$ e portanto

$$DT_{(s_0,\theta_0)}^n = \frac{1}{\sin\theta_{n-1}\cdots\sin\theta_0} B_0^+ R(g_{n-1}) B_{n-1}^- B_{n-1}^+ R(g_{n-2}) B_{n-2}^- \cdots B_1^+ R(g_0) B_0^-$$

Seja $\Theta = \sin \theta_{n-1} \cdots \sin \theta_0$, como tr(AB) = tr(BA) temos

$$\operatorname{tr}(DT^{n}_{(s_{0},\theta_{0})}) = \frac{1}{\Theta} \operatorname{tr}(R(g_{n-1})B^{-}_{n-1}B^{+}_{n-1}R(g_{n-2})B^{-}_{n-2}\cdots B^{+}_{1}R(g_{0})B^{-}_{0}B^{+}_{0})$$

e como

$$B_i^- B_i^+ = \begin{pmatrix} -\sin\theta_i & 0\\ \kappa_i & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ \kappa_i & -\sin\theta_i \end{pmatrix} = \begin{pmatrix} -\sin\theta_i & 0\\ 2\kappa_i & -\sin\theta_i \end{pmatrix} = -\sin\theta_i I + K_i$$

onde I é a identidade e

$$K_i := \left(\begin{array}{cc} 0 & 0\\ 2\kappa_i & 0 \end{array}\right)$$

Por fim

$$\operatorname{tr}(DT^{n}_{(s_{0},\theta_{0})}) = \frac{1}{\Theta} \operatorname{tr}(R(g_{n-1})(-\sin\theta_{n-1}I + K_{n-1}) \cdots R(g_{0})(-\sin\theta_{0}I + K_{0}))$$
(5.1)

Se $\alpha(s_{i_0}), \ldots, \alpha(s_{i_m})$ são todos os pontos de colisão distintos então o tr $(DT^n_{(s_0,\theta_0)})$ é um polinômio em $\kappa_{i_0}, \ldots, \kappa_{i_m}$, onde j_i é a quantidade de batidas em s_i . Seja $\overline{\kappa} := \kappa_{i_0}^{j_{i_0}}, \ldots, \kappa_{i_m}^{j_{i_m}}$ o termo de maior grau e $a_{\overline{\kappa}}$ seu coeficiente, pela linearidade do traço temos

$$a_{\overline{\kappa}}\overline{\kappa} = \frac{1}{\Theta} \operatorname{tr}(R(g_{n-1})K_{n-1}R(g_{n-2})K_{n-2}\cdots R(g_0)K_0).$$

Observamos ainda que

$$R(g_i)K_i = \begin{pmatrix} 2\kappa_i S(g_i) & 0\\ 2\kappa_i C(g_i) & 0 \end{pmatrix}$$

e finalmente temos

$$a_{\overline{\kappa}}\overline{\kappa} = \frac{1}{\Theta} \operatorname{tr} \left(\begin{array}{cc} 2^{n}S(g_{0})\cdots S(g_{n-1})\overline{\kappa} & 0\\ * & 0 \end{array} \right) = \frac{2^{n}}{\Theta}S(g_{i_{0}})^{j_{i_{0}}}\cdots S(g_{m})^{j_{i_{m}}}$$

Corolário 30. Dado um bilhar em uma superfície de curvatura constante com uma órbita n-periódica degenerada então existe um bilhar C^2 próximo que possui a mesma órbita nperiódica, porém não degenerada.

Demonstração. Se α tem uma órbita *n*-periódica degenerada então tr $(DT^n_{(s_0,\theta_0)}) = \pm 2$, pois det $(DT^n_{(s_0,\theta_0)}) = 1$. Logo realizando uma perturbação do tipo 4.2, obtemos uma curva β próxima tal que tr $(DT^n_{(s_0,\theta_0)}) \neq \pm 2$.

Uma consequência de 5.1 é em caso de não haver batidas múltiplas o coeficiente de $\kappa_{i_1} \cdots \kappa_{i_m}$ é igual a

$$\frac{(-1)^{n-m}2^m(S(g_{i_1})\cdots S(g_{i_{m-1}}))}{\sin(\theta_{i_1})\cdots \sin(\theta_{i_m})}$$

onde g_{i_j} é a distância percorrida pela órbita de $\alpha(s_{i_j})$ até $\alpha(s_{i_{j+1}})$. Isso decorre, pois

$$R(g_i)R(g_{i+1}) = R(g_i + g_{i+1}).$$

Além disso temos que o termo constante é $(-1)^n 2C(L)$, Dos Santos e Pinto de Carvalho calculam apenas esse termo e observam que em \mathbb{H}^2 esse termo não pode ser igual a ± 2 e portanto o polinômio não é constante. Todavia em \mathbb{S}^2_+ é possível ter o termo constante igual a ± 2 , por isso se fez necessário obter uma maneira de determinar os outros coeficientes.

Como consequência dos resultados acima temos:

Teorema A. Genericamente os bilhares ovais em superfícies de curvatura constante possuem um número finito de órbitas n-periódicas, todas não degeneradas.

5.1.2 Frentes Focalizadoras e Transversalidade

No caso planar o Teorema de Poincaré-Birkhoff e o critério Mackay-Meiss nos garantem a existência de pelo menos uma órbita *n*-periódica hiperbólica, com $n \ge 2$. No intuito de provar o teorema B, queremos estudar a tranversalidade de tais órbitas. Para isso usamos o conceito de frentes focalizadoras e campos de Jacobi.

Definição 31. Seja $\alpha : \mathbb{S}^1 \to S$ uma oval e $T_\alpha : \Omega \to \Omega$ a aplicação Twist associada. Um feixe de raios com ponto base $(s_0, \theta_0) \in \Omega$ é uma curva C^1

$$\zeta: (-\epsilon_0, \epsilon_0) \to \Omega \quad , \quad \zeta(0) = (s_0, \theta_0).$$

Com $\epsilon_0 > 0$. $\zeta'(0)$ é chamado de span do feixe.

Seja γ uma geodésica de S. Um campo de Jacobi em γ é um campo vetorial J(t) definido em γ tal que

$$\frac{\mathrm{D}^2 J}{\mathrm{d}t^2} + K\gamma' = 0$$

Onde K é a curvatura de S. Observamos que uma frente de raios induz um campo de Jacobi. Dado um feixe $\zeta(\epsilon) = s(\epsilon), \theta(\epsilon), |\epsilon| < \epsilon_0$ considere a variação geodésica

$$F(\epsilon, t) = \exp_{p(\epsilon)} t \cdot n(\epsilon)$$

onde

$$p(\epsilon) = \alpha \left(s \left(\frac{\epsilon}{\|\alpha'(s_0)\|} \right) \right)$$

e $n(\epsilon)$ é o vetor unitário na direção da geodésica no ponto $p(\epsilon)$ e na direção $\theta(\epsilon)$. A princípio poderíamos definir sem o termo $||\alpha'(s_0)||$, porém isso faria a frente depender da parametrização. A variação geodésica F vai definir o campo de Jacobi J(t) na geodésica γ definida por (s_0, θ_0) dado pelas condinções iniciais

$$J(0) = s'(0)\tau(0)$$
 e $J'(0) = n'(0)$

 $\tau(\epsilon)$ é o tangente unitário em $\alpha(s(\epsilon)).$ De fato temos que

$$F(\epsilon, t) = \alpha \left(s \left(\frac{\epsilon}{||\alpha'(s_0)||} \right) \right) \cosh(t) + n(\epsilon) \sinh(t) \qquad \text{em } \mathbb{H}^2,$$

$$F(\epsilon, t) = \alpha \left(s \left(\frac{\epsilon}{||\alpha'(s_0)||} \right) \right) \cos(t) + n(\epsilon) \sin(t) \qquad \text{em } \mathbb{S}^2_+,$$

e portanto

$$\frac{\partial F(\epsilon, t)}{\partial \epsilon} = \alpha' \left(s \left(\frac{\epsilon}{||\alpha'(s_0)||} \right) \right) s' \left(\frac{\epsilon}{||\alpha'(s_0)||} \right) \frac{\cosh(t)}{||\alpha'(s_0)||} + n'(\epsilon) \sinh(t) \qquad \text{em } \mathbb{H}^2,$$
$$\frac{\partial F(\epsilon, t)}{\partial \epsilon} = \alpha' \left(s \left(\frac{\epsilon}{||\alpha'(s_0)||} \right) \right) s' \left(\frac{\epsilon}{||\alpha'(s_0)||} \right) \frac{\cos(t)}{||\alpha'(s_0)||} + n'(\epsilon) \sin(t) \qquad \text{em } \mathbb{S}^2_+.$$

Em ambos os casos temos

$$\frac{\partial F(0,0)}{\partial \epsilon} = s'(0)\tau(0).$$

Além disso temos que:

•
$$\frac{D}{dt} \left(\frac{\partial F(0,t)}{\partial \epsilon} \right) \Big|_{t=0} = (s'(0)\tau(0)\sinh(t) + n'(0)\cosh(t))|_{t=0} = n'(0)$$

para o plano hiperbólico.
•
$$\frac{D}{dt} \left(\frac{\partial F(0,t)}{\partial \epsilon} \right) \Big|_{t=0} = (-s'(0)\tau(0)\sin(t) + n'(0)\cos(t))|_{t=0} = n'(0)$$

para a semiesfera.

Como mostra a proposição seguinte o campo de Jacobi induzido depende apenas da parte linear do feixe de raios.

Proposição 32. Dado um feixe de raios $\zeta(\epsilon) = (s(\epsilon), \theta(\epsilon))$. Se $\theta'(0) = b$ e s'(0) = aentão $||n'(0)|| = |b - a\kappa_g(s_0)|$.

Demonstração. Seja $\tau(\epsilon)$ o tangente unitário em $\alpha(\epsilon)$. Note que

$$n(\epsilon) = \sin(\theta(\epsilon))\tau(s(\epsilon)) + \cos(\theta(\epsilon))\tau(s(\epsilon))^{\perp}$$

logo temos que

$$n'(\epsilon) = \theta'(\epsilon) \cos(\theta(\epsilon))\tau(s(\epsilon)) + \cos(\theta(\epsilon))(\tau(s(\epsilon))^{\perp})' + \sin(\theta(\epsilon))(\tau(s(\epsilon)))' - \theta'(\epsilon) \sin(\theta(\epsilon))\tau(s(\epsilon))^{\perp}$$

lembramos que $\tau'(s(\epsilon)) = s'(\epsilon)\kappa_g(s(\epsilon))\tau(s(\epsilon))^{\perp}$ e que $(\tau(\epsilon)^{\perp})' = -\kappa_g(\epsilon)\gamma'(\epsilon)$. Com isso temos

$$n'(0) = (b - ak_g(s_0)\cos\theta_0\tau(s_0) + (a\kappa_g(s_0) - b)\sin\theta_0\tau(s_0)^{\perp}$$

= $(b - a\kappa_g(s_0))(\cos\theta_0\tau(s_0) - \sin\theta_0\tau(s_0)^{\perp}) = (b - a\kappa_g(s_0))n^{\perp}(s_0)$

Tal campo não é necessariamente normal a trajetória. O campo será normal se, e somente se, $J(0) \in J'(0)$ são ortogonais a trajetória. Logo o campo de Jacobi ortogonal dado pelo feixe é dado pelas condições iniciais $J^{\perp}(0) = s'(0) \sin(\theta_0) n^{\perp}(0) \in J'^{\perp} = n'(0)$, pois n'(0) já é ortogonal à trajetória.

Definição 33. Dado um feixe de raios como na proposição 32 e seja J^{\perp} o campo de Jacobi ortogonal associado. Quando existir t_0 tal que $J^{\perp}(t_0) = 0$, chamamos t_0 de distância de focalização e $\gamma(t_0)$ o ponto de focalização.

Dado um feixe de raios como na proposição 32. Como os campos de Jacobi em \mathbb{H}^2 são dados por

$$J(t) = J(0)\cosh t + J'(0)\sinh t$$

e logo J(t) = 0 se, e somente se,

$$\tanh t = -\frac{J(0)}{J'(0)} = -\frac{a\sin\theta_0}{b-ak_g} = \frac{\sin\theta_0}{k_g - \frac{b}{a}}$$

Observamos que nem sempre haverá um ponto de focalização. Isso ocorre pois a curvatura de \mathbb{H}^2 faz com que as geodésicas se afastem. Neste caso existe mais de uma frente paralela.

Para \mathbb{S}^2_+ temos contas análogas, porém lembramos que os campos de Jacobi em \mathbb{S}^2_+ são dados por

$$J(t) = J(0)\cos t + J'(0)\sin t$$

e logo J(t) = 0 se, e somente se,

$$\tan t = -\frac{J(0)}{J'(0)} = -\frac{a\sin\theta_0}{b-ak_g} = \frac{\sin\theta_0}{k_g - \frac{b}{a}}$$

Nesse caso as frentes sempre focalizarão, novamente isso ocorre devido a curvatura de \mathbb{S}^2_+ , de fato sempre vão existir dois pontos de focalização, devem ser antípodais.

Dado um feixe de raios em (s_0, θ_0) queremos definir um campo de Jacobi ortogonal em toda a órbita de (s_0, θ_0) . Para isso vamos precisar definir a evolução ao colidir com a fronteira da mesa. Suponhamos que temos um campo de Jacobi ortogonal definido em uma trajetória chegando em $\alpha(s_0)$ com ângulo θ_0 definindo uma variação geodésica $F(\epsilon, t) = \exp_{\alpha(s_0+\epsilon)} t \cdot n(\epsilon)$, então campo refletido vai ser definido por

$$F(\epsilon, t) = \exp_{\alpha(s_0 - \epsilon)} t \cdot \tilde{n}(-\epsilon), \text{ onde } \tilde{n}(\epsilon) = n(\epsilon) + 2\sin\theta(\epsilon)\tau^{\perp}$$

O campo de Jacobi \tilde{J} após a reflexão é dado por $\tilde{J}(0) = -a\sin(\theta_0)$ e $\tilde{J} = -\tilde{n}'(0)$.

Logo temos que

$$\tilde{n}'(0) = n'(0) + 2b\cos\theta_0\tau^{\perp} - 2ak_q\sin\theta_0\tau$$

Além disso $\tilde{n}^{\perp} = n^{\perp} - 2\cos(\theta_0)\tau^{\perp}$ e pela proposição 32 temos $n'(0) = (b - ak_g)n^{\perp}$ e portanto

$$<\tilde{n}'(0), \tilde{n}^{\perp} > = (b - ak_g) + 2b\cos^2\theta_0 - 2ak_g\sin^2\theta_0 + 2(b - ak_g)\cos^2\theta_0 - 4b\cos^2\theta_0 = (b - ak_g) - 2ak_g = J(0) - \frac{2k_g}{\sin\theta_0}J'(0).$$

Finalmente o seguinte lema conclui a prova do Teorema B.

Lema 34. Seja α de classe C^2 possuindo apenas órbitas n-periódicas, todas não degeneradas, para cada n natural. E seja (s_1, θ_1) , (s_2, θ_2) pontos periódicos hiperbólicas de α tais que $W^s(s_1, \theta_1)$ e $W^u(s_2, \theta_2)$ possuem uma interceção tangente em (s_0, θ_0) . Então existe β próxima de α tal que (s_0, ϕ_0) é uma órbita de homo\heteroclínica transversa.

Demonstração. Seja $I \subset \mathbb{S}^1$ tal que I contenha apenas o ponto em s_0 e mais nenhum ponto de sua órbita e das órbitas de $O(s_1, \theta_1), O(s_2, \theta_2)$, i.e., $I \cap \pi_s(O(s_0, \theta_0)) = \{s_0\}$, $I \cap \pi_s(O(s_1, \theta_1)) = \emptyset = I \cap \pi_s(O(s_2, \theta_2))$, onde π_s é a projeção na primeira coordenada. Tal conjunto existe pois $T^{in+j}(s_0, \phi_0) \to_i T^j((s_1, \phi_1))$ e $T^{-in+j}(s_0, \phi_0) \to_i T^j((s_1, \phi_1))$. Seja v^{tan} o vetor de tangência em (s_0, ϕ_0) e $v^s = DT_{(s_0, \phi_0)}v$, $v^u = DT_{(s_0, \phi_0)}^{-1}v$, como mostra a figura abaixo. Seja $J^u_{\alpha}, J^s_{\alpha}$ o campo de Jacobi Ortogonal definido, respectivamente, por v^u na trajetória $(S^{-1}(s_0, \theta_0), s_0)$ e v^s na trajetória $(s_0, S(s_0, \theta_0))$. Observamos que

$$J^s_\alpha = R_\alpha J^u_\alpha$$

de fato J^u é igual ao campo J^-_{α} definido por v na trajetória $(s_0, S^{-1}(s_0, \theta_0))$ e J^s_{α} é igual ao campo J^+ definido por v na trajetória $(s_0, S(s_0, \theta_0))$. Agora seja $\beta(t) = \exp_{(\alpha(t))} \lambda(t)n(t)$, tal que $\lambda(t) = 0$ para todo $t \notin I$ e $\lambda(s_0) = \lambda'(s_0) = 0$ e $|\lambda''(s_0)| = \epsilon$ para algum ϵ positivo. Temos que as órbitas de (s_i, θ_i) , mais ainda, os vetores v^u e v^s não mudaram, de fato a aplicação $T_{\alpha} = T_{\beta}$ para todo ponto que permanesse fora de $I \times (0, \pi)$. Portanto $J^u_{\alpha} = J^u_{\beta}$ e $J^s_{\alpha} = J^s_{\beta}$, além disso temos $J^+_{\beta} = J^s_{\beta}$, onde J^+ definido por $DT^{-1}_{\beta}v^s$ na trajetória $(s_0, S(s_0, \theta_0))$ e

$$J_{\beta}^{-} = R_{\beta} J_{\beta}^{u}$$

 J^- definido por $DT_\beta v^u$ na trajetória $(s_0, S(s_0, \theta_0))$ e logo $J^+ \neq J^-$ e com isso $DT_\beta v^u \neq DT_\beta^{-1} v^s$.

Figura 5.1: Frentes definidas a partir das variedades estável e instável

5.2 Diâmetros Elípticos

O Teorema de Poincaré-Birkhoff nos garante a existência de pelo menos duas órbitas 2-periódicas, que chamaremos de diâmetro. A maior, quando isolada, será sempre hiperbólica, porém a outra pode ser tanto uma órbita hiperbólica quanto elíptica. Para guarantir a existência de ilhas elíticas a ideia principal é colocar a Aplicação de Bilhar na Forma Normal de Birkhoff e mostrar que genericamente o primeiro coeficente de Birkhoff é não nulo e utilizar o Teorema Twist de Moser para garantir a existência de ilhas elípticas. Enunciamos abaixo uma versão simplificada desses teoremas.

Teorema 35. Se f é um difeomorfismo C^4 que preserva área em uma vizinhança de 0 em R^2 , tal que 0 é um ponto fixo elípitco não degenerado, e seja $\lambda = e^{i\gamma}$ um dos autovalores de Df(0), ainda se $\lambda^n \neq 1$ para n = 1, 2, 3, 4 (chamada de condição de não-ressonância). Então existe um difeomorfismo h em uma vizinhança do 0, que preserva área tal que em coordenadas complexas temos

$$h \circ f \circ h^{-1}(z) = (\lambda z e^{i\gamma P(z\overline{z})} + O(|z|)^3)$$

Com $P(x) = \tau_1 x$, τ_1 é o primeiro coeficiente de Birkhoff da função f. Além disso se $\tau_1 \neq 0$ então suficientemente próximo da origem, f tem um conjunto de curvas fechadas e invariantes com medida de Lebesgue positiva. Temos ainda medida do complementar deste conjunto tende a zero quando o medida da vizinhança se aproxima do zero, nesse caso dizemos que o ponto fixo elípitco é Moser estável.

Observamos que o Teorema C não afirma que genericamente um bilhar possuí diâmetro elíptico, mas sim que se possuir um diâmetro elíptico genericamente ele é Moser estável. Para provar o Teorema C, primeiramente provamos que ter diâmetro elíptico é uma propriedade aberta e portanto o conjunto de bilhares com diâmetro elíptico é Baire, observamos que γ pode ser obtida através do traço de Df(0) e com isso conseguimos perturbar um diâmetro elíptico para garantir a condição de não ressonância e por fim pertubamos para garantir que o primeiro Coeficiente de Birkhoff, τ_1 é não nulo, para isso usamos computação algébrica para obter uma expressão algébrica da forma

$$\tau_1 = f(L, \kappa_0, \kappa_1, \kappa'_0, \kappa'_1) + g(L, \kappa_0, \kappa_1)\kappa''_0 + g(L, \kappa_1, \kappa_0)\kappa''_1.$$
(5.2)

O caso de curvatura nula já tinha sido obtido em Dias Carneiro, Oliffson Kamphorst, e Pinto de Carvalho [7]. Obtemos

$$g(L,\kappa_0,\kappa_1) = -\frac{1}{8} \frac{S(L) \left(S(L) - C(L)/\kappa_1\right)}{\left(S(L) - C(L)/\kappa_0\right)\left(S(L) - C(L)/\kappa_0 - C(L)/\kappa_1 - KS(L)/(\kappa_0\kappa_1)\right)}.$$
(5.3)

Onde S(L)e G(L) são como (4.3) e K é a curvatura.

5.2.1 Diâmetro Elíptico e Não Ressonância

Dada α uma oval de classe C^2 , se $s_0 \in s_1$ é um diâmetro para α , temos que

$$\{(s_0, \pi/2), (s_1, \pi/2)\}$$

formam uma órbita 2-periódica. Utilizando 5.1 obtemos:

$$\operatorname{tr}\left(DT^{2}_{\alpha_{(s_{0},\pi/2)}}\right) = 2(C(2g) - S(2g)((\kappa_{0} + \kappa_{1}) + 2S(g)\kappa_{0}\kappa_{1}))$$

onde g é a distância entre $\alpha(s_0)$ e $\alpha(s_1)$. Se α é tal que tr $\left(DT^2_{\alpha(s_0,\pi/2)}\right) < 2$. Como o diâmetro elíptico quando isolado é um mínimo local para g então para qualquer curva β suficientemente próxima de α , temos que tal órbita é elípitica e com isso temos:

Lema 36. O conjunto dos bilhares ovais com diâmetro elíptico é aberto e consequentemente Baire.

Além disso temos que os autovalores de $DT^2_{\alpha_{(s_0,\pi/2)}}$ são

$$e^{\pm i\gamma} = \frac{\operatorname{tr}\left(DT^2_{\alpha_{(s_0,\pi/2)}}\right)}{2} \pm i\sqrt{1 - \frac{\left(\operatorname{tr}\left(DT^2_{\alpha_{(s_0,\pi/2)}}\right)\right)^2}{4}}$$

Com isso temos que

$$\cos \gamma = \frac{\operatorname{tr}\left(DT^2_{\alpha_{(s_0,\pi/2)}}\right)}{2}$$

então a condição de não ressonância do Teorema 35 pode reescrita como

$$\operatorname{tr}\left(DT^2_{\alpha_{(s_0,\pi/2)}}\right)\notin\{0,-1\}$$

realizando uma perturbação como 4.2 que pelo Corolário 23 concluímos

45

Proposição 37. Um bilhar oval com diâmetro elíptico ressonante pode ser aproximado por um bilhar oval com diâmetro elíptico não ressonante.

5.2.2 O Primeiro Coeficiente de Birkhoff

Para calcularmos o primeiro coeficiente de Birkhoff, precisamos primeiramente considerar a Aplicação de Bilhar em coordenadas que preserve a medida de Lesbesgue, ou seja, tomamos $p = \cos \theta$, além disso a menos de realizar uma reparametrização, podemos supor que $s_0 = 0$. Após precisamos expandir T^2 no polinômio de Taylor de grau 3 em uma vizanhança de (0, 0), i.e.

$$T^{2}(s,p) = \left(\sum_{i+j=1}^{3} a_{ij}s^{i}p^{j}, \sum_{i+j=1}^{3} b_{ij}s^{i}p^{j}\right) + \mathcal{O}(|(s,p)|^{4}).$$

Utilizando uma mudança de coordenadas complexa, obtemos que T^2 pode ser representado como

$$z \mapsto e^{i\gamma} \left(\sum_{i+j=1}^{3} c_{ij} z^i \overline{z}^j \right) + \mathcal{O}(|(z|^4))$$

e pode ser mostrado que o primeiro coeficiente de Birkhoff τ_1 , pode ser obtido através de γ , c_{21} , c_{20} e c_{02} ([13, 18, 20]). Com o auxílio do software *MAPLE*, podemos realizar uma computação algébrica e obter a expressão (5.3). No apêndice A se encontra a transcrição do código.

Lema 38. Um bilhar oval C^5 com diâmetro elíptico não ressonante pode ser aproximado por um bilhar oval cujo o primeiro coeficiente de Birkhoff é não nulo.

Demonstração. Dado α uma curva oval C^5 com diâmetro elíptico não ressonante, como $g(L, \kappa_0, \kappa_1)$ é sempre diferente de zero, tomamos

$$\beta(t) := \exp_{\alpha(t)} \lambda(t) V(t)$$

com V um campo unitário de classe C^{∞} igual ao vetor normal unitário em $\alpha(s_0)$ e λ de classe C^{∞} tal que $\lambda^{(n)}(s_0) = 0$ para n = 0, 1, 2, 3 e $\lambda^{(4)}(s_0) \neq 0$, com isso vamos obter uma curva β tal que a órbita 2-periódica se mantêm igual, assim como $\kappa_0, \kappa_1, \kappa'_0, \kappa'_1$, mas $\kappa''_{\beta_0} = \kappa''_{\alpha_0} + \epsilon$ e portanto

$$\tau_1(\beta) = \tau_1(\alpha) + g(L, \kappa_0, \kappa_1)\epsilon$$

Como consequência de (5.2) temos que ter o primeiro Coeficiente de Birkhoff diferente de zero é uma propriedade aberta na topologia C^5 . Por último observamos que o conjunto ovais C^5 é denso e portanto obtemos **Teorema C.** Possuir uma órbita 2-periódica elíptica é uma propriedade aberta e genericamente essas órbitas são não degeneradas e não ressonantes para bilhares ovais. Além disso qualquer bilhar oval com uma 2-periódica elíptica pode ser aproximado por um bilhar oval com uma órbita 2-periódica elíptica com ilhas elípticas.

Corolário 39. Bilhares ovais com ilhas elípticas é uma propriedade genérica se considerarmos a topologia C^5 .

5.3 Propriedades Genéricas para Bilhares Convexos no Plano Euclidiano, PLano Hiperbólico e Semiesfera.

Na década de 80, Stojanov e Pekovt estudam propriedadse genéricas para bilhares em \mathbb{R}^n , em particular [22] prova que genericamente uma órbita *n*-periódica não colide múltiplas vezes em um mesmo ponto com ângulos distintos, isto é, não há batida múltipla. Al'em disso duas órbitas *n*-periódicas distintas não possuem pontos de colisão em comum. Em 2015 [25] estende esse resultado para a esfera e em 2017 [1] para o plano hiperbólico. A topologia usada nesses trabalhos é a topologia de Whitney C^{∞} , utilizando essa topologia juntamente com os resultados de [7, 8], [11] e o presente trabalho é possível enunciar o seguinte teorema:

Teorema 40. Genericamente para bilhares ovais no plano euclidiano, plano hiperbólico e semiesfera podemos garantir as seguintes propriedades:

- 1. Possuem um número finito de órbitas n-periódicas, todas não degeneradas e pelo menos uma delas é hiperbólica;
- nenhuma trajetória periódica colide múltiplas vezes em um mesmo ponto com ângulos distintos. Ainda mais, duas órbitas distintas de mesmo período não têm pontos em comum;
- 3. as variedades estáveis e instáveis de dois pontos periódicos hiperbólicos ou não possuem interseção ou possuem pelo menos uma interseção transversa;
- 4. se possuir uma órbita 2-periódica elíptica ela deve possuir ilhas elípticas.

Apêndice A

Computação algébrica

Indicamos aqui o código criado no Maple 2015.

A.0.1 Derivada

Nesse primeiro código obtemos a derivada em termos do diâmetro e de $R_i = 1/\kappa_i$. No código seguinte utilizamos o código anterior para obter 3-jato e o termo que depende da derivada segunda da curvatura.

T: billiard map on a surface of constant curvature cannonical variables: s: arclenght p= sin(theta) tangencial momentum - theta angle with inward normal

Calculus of the billiard map derivatives up to order 3 and the 3-jet of ToT for a 2-periodic orbit T(0,0) = (s[1],0), ToT(0,0) = (0,0)

```
> restart:readlib(mtaylor):
R2: Plane
> #G:=x->x:DG:=x->1:C:=0:
  plano:=G(L)=L,D(G)(L)=1,(D@D)(G)(L)=0,`@@`(D,2)(G)(L)=0, C=0:
H2: Hiperbolic Plane
> #G:=x->sinh(x):DG:=x->cosh(x):
  hip:=G(L)=sinh(L), D(G)(L)=cosh(L), (D@D)(G)(L)=sinh(L), `@@`(D,2)
   (G)(L)=sinh(L),C=-1:
S2: Semi sphere
> #G:=x->sin(x):DG:=x->cos(x):
   esf:=G(L)=sin(L),D(G)(L)=cos(L),(D@D)(G)(L)=-sin(L),^{ee}(D,2)(G)
   (L)=-sin(L),C=1:
> superficie:=plano:
T(s,p) = (S(s,p),P(s,p))
1: geodesic distance,
k: geodesic curvature of the boundary and define r = 1/k
Initial conditions
> CI := 1(0,0) = L, S(0,0) = s[1], P(0,0) = 0, 1(s[1],0) = L, S(s(0,0))
   [1],0) = 0, P(s[1],0) = 0, R(s[1]) = r[1], Theta(0) = 0,
  R(0) = r[0]:
derivatives of the geodesic distance l(s[0],s[1]) (uses that P(0,0)=0)
> CD1 := D[1](1)(0,0) = 0, D[2](1)(0,0) = 0, D[1](1)(s[1],0) = 0, D
  [2](1)(s[1],0) = 0, D(Theta)(0) = 1:
> CD2 :=
  D[1,1](1)(0,0) = D[1](P)(0,0)*D[1](S)(0,0),
  D[2,2](1)(0,0) = D[2](P)(0,0)*D[2](S)(0,0),
  D[1,2](1)(0,0) = D[1](P)(0,0)*D[2](S)(0,0),
  D[1,1](1)(s[1],0) = D[1](P)(s[1],0)*D[1](S)(s[1],0),
  D[2,2](1)(s[1],0) = D[2](P)(s[1],0)*D[2](S)(s[1],0),
  D[2,1](1)(s[1],0)= D[1](P)(s[1],0)*D[2](S)(s[1],0):
General form of DT for a surface of constant curvature
> aa:=(x,y)->(G(l(x,y))-D(G)(l(x,y))*R(x)*cos(Theta(y)))/(R(x)*cos
   (Theta(P(x,y))));
  dd:=(x,y)->(G(1(x,y))-D(G)(1(x,y))*R(S(x,y))*cos(Theta(P(x,y))))/
```

```
(R(S(x,y))*cos(Theta(y)));
  bb:=(x,y) \rightarrow -G(l(x,y))/(cos(Theta(P(x,y)))*cos(Theta(y)));
  cc:=(x,y)->
   -1/(R(S(x,y))*R(x))*(G(1(x,y)))
  -R(x)*D(G)(1(x,y))*cos(Theta(y))
   -R(S(x,y))*D(G)(l(x,y))*cos(Theta(P(x,y)))
   -C*G(1(x,y))*(R(S(x,y))*R(x))*\cos(Theta(P(x,y)))*\cos(Theta(y)));
> eq1:=D[1](S)(0,0)=eval(subs(CI,aa(0,0))):
> eq2:=D[2](S)(0,0)=eval(subs(CI,bb(0,0))):
> eq3:=D[1](P)(0,0)=eval(subs(CI,cc(0,0))):
> eq4:=D[2](P)(0,0)=eval(subs(CI,dd(0,0))):
> eqns10:=eq1,eq2,eq3,eq4;
First derivatives at (s1,0)
> eq5:=D[1](S)(s[1],0)= eval(subs(CI,aa(s[1],0))):
> eq6:=D[2](S)(s[1],0)= eval(subs(CI,bb(s[1],0))):
> eq7:=D[1](P)(s[1],0)= eval(subs(CI,cc(s[1],0))):
> eq8:=D[2](P)(s[1],0)= eval(subs(CI,dd(s[1],0))):
> eqns11:=eq5,eq6,eq7,eq8:
Second order derivatives (first order derivatives of a,b,c,e)
> eq10:=D[1,1](S)(0,0)=eval(subs(eqns10,CD1,CI,D[1](aa)(0,0))):
> eq11:=D[2,1](S)(0,0)=eval(subs(eqns10,CD1,CI,D[2](aa)(0,0))):
> eq12:=D[2,2](S)(0,0)=eval(subs(eqns10,CD1,CI,D[2](bb)(0,0))):
> eq13:=D[1,1](P)(0,0)=eval(subs(eqns10,CD1,CI,D[1](cc)(0,0))):
> eq15:=D[2,1](P)(0,0)=eval(subs(eqns10,CD1,CI,D[2](cc)(0,0))):
> eq16:=D[2,2](P)(0,0)=eval(subs(eqns10,CD1,CI,D[2](dd)(0,0))):
> eqns20:=eq10,eq11,eq12,eq13,eq15,eq16:
> eq17:=D[1,1](S)(s[1],0)= eval(subs(eqns11,CI,CD1,D[1](aa)(s[1],0)
  )):
> eq18:=D[2,1](S)(s[1],0)= eval(subs(eqns11,CI,CD1,D[2](aa)(s[1],0))
  )):
> eq19:=D[2,2](S)(s[1],0)= eval(subs(eqns11,CI,CD1,D[2](bb)(s[1],0)
  )):
> eq20:=D[1,1](P)(s[1],0)= eval(subs(eqns11,CI,CD1,D[1](cc)(s[1],0))
  )):
> eq21:=D[2,1](P)(s[1],0)= eval(subs(eqns11,CI,CD1,D[2](cc)(s[1],0)
  )):
  eq22:=D[2,2](P)(s[1],0)= eval(subs(eqns11,CI,CD1,D[2](dd)(s[1],0)
>
```

```
)):
> eqns21:=eq17,eq18,eq19,eq20,eq21,eq22:
Third order derivatives (second order derivatives of a,b,c,e)
> eq23:=D[1,1,1](S)(0,0)=subs(eqns20,eqns10,eval(subs(CI,CD1,CD2,D
  [1,1](aa)(0,0))):
  eq24:=D[2,1,1](S)(0,0)=subs(eqns20,eqns10,eval(subs(CD2,CD1,subs
  (CI,D[2,1](aa)(0,0)))):
> eq25:=D[2,2,1](S)(0,0)=subs(eqns20,eqns10,eval(subs(CD2,CD1,subs
  (CI,D[2,2](aa)(0,0)))):
> eq26:=D[2,2,2](S)(0,0)=subs(eqns20,eqns10,eval(subs(CD2,CD1,subs
  (CI,D[2,2](bb)(0,0)))):
> eq27:=D[1,1,1](P)(0,0)=subs(eqns20,eqns10,eval(subs(CD2,CD1,subs
  (CI,D[1,1](cc)(0,0)))):
> eq28:=D[2,1,1](P)(0,0)=subs(eqns20,eqns10,eval(subs(CD2,CD1,subs
  (CI,D[2,1](cc)(0,0)))):
> eq29:=D[2,2,1](P)(0,0)=subs(eqns20,eqns10,eval(subs(CD2,CD1,subs
  (CI,D[2,2](cc)(0,0)))):
> eq30:=D[2,2,2](P)(0,0)=subs(eqns20,eqns10,eval(subs(CD2,CD1,subs
  (CI,D[2,2](dd)(0,0)))):
> eqns30:=eq23,eq24,eq25,eq26,eq27,eq28,eq29,eq30:
> eq31:=D[1,1,1](S)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[1,1](aa)(s[1],0))))):
> eq32:=D[2,1,1](S)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[2,1](aa)(s[1],0))))):
> eq33:=D[2,2,1](S)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[2,2](aa)(s[1],0)))):
> eq34:=D[2,2,2](S)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[2,2](bb)(s[1],0)))):
> eq35:=D[1,1,1](P)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[1,1](cc)(s[1],0))))):
> eq36:=D[2,1,1](P)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[2,1](cc)(s[1],0)))):
> eq37:=D[2,2,1](P)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[2,2](cc)(s[1],0))))):
> eq38:=D[2,2,2](P)(s[1],0)=subs(eqns11,eqns21,eval(subs(CD1,CD2,
  subs(CI,D[2,2](dd)(s[1],0))));
> eqns31:=eq31,eq32,eq33,eq34,eq35,eq36,eq37,eq38:
The 3-jet of ToT at (0,0)
> alias(s[2] = S(S(s[0],p[0]),P(s[0],p[0])),p[2] = P(S(s[0],p[0]),P
  (s[0],p[0]))):
> S2:=convert(subs(eqns31,eqns30,eqns21,eqns10,subs
```

(CI,mtaylor(s[2],[s[0],p[0]],4))),polynom):

```
> P2:=convert(subs(eqns31,eqns30,subs(eqns21,eqns20,subs(eqns11,
  eqns10, subs(CI,
  mtaylor(p[2],[s[0],p[0]],4)
 )))),polynom):
> A[1,0]:=coeff(coeff(S2,s[0],1),p[0],0);
> A[0,1]:=coeff(coeff(S2,s[0],0),p[0],1);
> B[1,0]:=coeff(coeff(P2,s[0],1),p[0],0);
> B[0,1]:=coeff(coeff(P2,s[0],0),p[0],1);
Check area preserving - order 1
> simplify(subs(superficie,A[1,0]*B[0,1]-A[0,1]*B[1,0]));
Second order terms
> A[2,0]:=coeff(coeff(S2,s[0],2),p[0],0);
> A[1,1]:=coeff(coeff(S2,s[0],1),p[0],1);
> A[0,2]:=coeff(coeff(S2,s[0],0),p[0],2);
> B[2,0]:=coeff(coeff(P2,s[0],2),p[0],0);
> B[1,1]:=coeff(coeff(P2,s[0],1),p[0],1);
> B[0,2]:=coeff(coeff(P2,s[0],0),p[0],2);
Check order preserving - order 2
> simplify(subs(superficie,
  A[1,0]*B[1,1]+2*A[2,0]*B[0,1]-2*A[0,1]*B[2,0]-A[1,1]*B[1,0]));
order 3 - terms
> A[3,0]:=coeff(coeff(S2,s[0],3),p[0],0):
> A[2,1]:=coeff(coeff(S2,s[0],2),p[0],1):
> A[1,2]:=coeff(coeff(S2,s[0],1),p[0],2):
> A[0,3]:=coeff(coeff(S2,s[0],0),p[0],3):
> B[3,0]:=coeff(coeff(P2,s[0],3),p[0],0):
> B[2,1]:=coeff(coeff(P2,s[0],2),p[0],1);
> B[1,2]:=coeff(coeff(P2,s[0],1),p[0],2);
> B[0,3]:=coeff(coeff(P2,s[0],0),p[0],3);
coefficients of R" in the 3 order terms
R"(0)
```

```
> k2a[3,0,0]:=coeff(A[3,0],(D@D)(R)(0));
> k2a[2,1,0]:=coeff(A[2,1],(D@D)(R)(0));
> k2a[1,2,0]:=coeff(A[1,2],(D@D)(R)(0));
> k2a[0,3,0]:=coeff(A[0,3],(D@D)(R)(0));
```

```
> k2b[3,0,0]:=coeff(B[3,0],(D@D)(R)(0));
```

```
> k2b[2,1,0]:=coeff(B[2,1],(D@D)(R)(0));
> k2b[1,2,0]:=coeff(B[1,2],(D@D)(R)(0));
> k2b[0,3,0]:=coeff(B[0,3],(D@D)(R)(0));
```

<u>R</u>"(1)

> k2a[3,0,1]:=coeff(A[3,0],(D@D)(R)(s[1])):

- > k2a[2,1,1]:=coeff(A[2,1],(D@D)(R)(s[1])):
- > k2a[1,2,1]:=coeff(A[1,2],(D@D)(R)(s[1])):
- > k2a[0,3,1]:=coeff(A[0,3],(D@D)(R)(s[1])):

```
> k2b[3,0,1]:=coeff(B[3,0],(D@D)(R)(s[1])):
```

- > k2b[2,1,1]:=coeff(B[2,1],(D@D)(R)(s[1])):
- > k2b[1,2,1]:=coeff(B[1,2],(D@D)(R)(s[1])):
- > k2b[0,3,1]:=coeff(B[0,3],(D@D)(R)(s[1])):

simplify the 3-jet of ToT from the file 0-derivatives (only terms in R") to obtain tau

We have $(s_2, p_2) = T^2 (s_0, p_0)$ and the Taylor coefficients of s_2 and p_2 with respect to s_0 and p_0 at (0,0) up to third order are defined by $s_2 (s_0, p_0) = a_{1,0} s_0 + a_{0,1} p_0 + a_{2,0} s_0^2 + a_{1,1} s_0 p_0 + a_{0,2} p_0^2 + a_{3,0} s_0^3 + a_{2,1} s_0^2 p_0 + a_{1,2} s_0 p_0^2 + a_{0,3} p_0^3$ $p_2 (s_0, p_0) = b_{1,0} s_0 + b_{0,1} p_0 + b_{2,0} s_0^2 + b_{1,1} s_0 p_0 + b_{0,2} p_0^2 + b_{3,0} s_0^3 + b_{2,1} s_0^2 p_0 + b_{1,2} s_0 p_0^2 + b_{0,3} p_0^3$

```
> restart:
plano:=G(L)=L,D(G)(L)=1,C=0:
hip:=G(L)=sinh(L),D(G)(L)=cosh(L),C=-1:
esf:=G(L)=sin(L),D(G)(L)=cos(L),C=1:
superficie:=plano:
```

Linear Terms (s and p)

```
> sa[1,0]:=(G(L)-D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0])/(r[1]*r[0])+G
   (L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])/(r[1]*r
   [0]):
 > sa[0,1]:=-2*(G(L)-D(G)(L)*r[1])*G(L)/r[1]:
 > sb[1,0]:=-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
   (G(L)-D(G)(L)*r[0])/(r[1]*r[0]^2):
  sb[0,1]:=(G(L)-D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0])/(r[1]*r[0])+G
   (L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])/(r[1]*r
  [0]):
diagonal terms are equal
> simplify(sa[1,0]-sb[0,1]):
determinant = 1
> DET:=factor(simplify(sa[1,0]*sb[0,1]-sa[0,1]*sb[1,0])):
> simplify(subs(plano,D(G)(L)^2+C*G(L)^2)):
  simplify(subs(esf,D(G)(L)^2+C*G(L)^2)):
  simplify(subs(hip,D(G)(L)^2+C*G(L)^2)):
> define_det:=D(G)(L)^2=1-C*G(L)^2:
trace is 4A-2 with A=B+1
> A:=((G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[1]))/(r[1]*r[0]):
  det:=(D(G)(L)^2+C*G(L)^2): # = 1!!!!
  simplify(4*A-2*det-2*sa[1,0]):
> B:=factor(subs(define_det,(expand(A))-1)):
```

this term appears a lot

```
> XX:=(G(L)-D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0])+G(L)*(G(L)-D(G)(L)*
r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0]):
> a[1,0]:=sa[1,0]:a[0,1]:=sa[0,1]:b[1,0]:=sb[1,0]:b[0,1]:=sb[0,1]
:
```

Quadratic Terms

(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[0]^3*r[1]
^2))/r[1]+1/6*(G(L)-D(G)(L)*r[0])^3*((-D(G)(L)*(G(L)-D(G)
(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1]
)/(r[1] ² *r[0])+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)
*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]*r[0])-D
(G)(L)*`@@`(D,2)(R)(s[1]))/r[1]+2*D(G)(L)*D(R)(s[1])^2/(r
[1] ²)+2*(G(L)-D(G)(L)*r[1])*D(R)(s[1]) ² /(r[1] ³)-(G(L)-D
(G)(L)*r[1])*`@@`(D,2)(R)(s[1])/(r[1]^2)+(G(L)-D(G)(L)*r
[1])*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/
(r[1]^3*r[0]^2))/(r[0]^3)+1/2*(G(L)-D(G)(L)*r[0])*(G(L)-D
(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2*((-D(G)(L)*(G
$(L)-D(G)(L)*r[0])*G(L)/r[0]+^@@^(D,2)(G)(L)*(G(L)-D(G)(L)*$
r[0])*G(L)*r[1]/r[0]+D(G)(L)*r[1])/r[1]+(G(L)-D(G)(L)*r[1]
)*(G(L)-D(G)(L)*r[0])^2/(r[1]*r[0]^2))/(r[0]^3*r[1]^2)
-1/6*G(L)*(-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*
r[0])*D(R)(s[1])^2*(G(L)-D(G)(L)*r[0])^2/(r[1]^3*r[0]^3)
-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)
(s[1])*(G(L)-D(G)(L)*r[0])*D(R)(0)/(r[1]^2*r[0]^3)+2*(-D
(G)(L)*D(R)(0)-D(G)(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/r[0]
-C*G(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])-C*G(L)*r[1]*D(R)(0)
)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/(r[1]^2*r[0]^2)+(G(L)-D
(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(s
$[1])*(G(L)-D(G)(L)*r[0])^{2}/(r[1]^{2}*r[0]^{3})+(G(L)-D(G)(L)*r$
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])*(-D(G)(L)*D
$(R)(0)/r[0]-(G(L)-D(G)(L)*r[0])*D(R)(0)/(r[0]^2))/(r[1]^2*$
r[0])-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
$D(R)(0)^{2}/(r[1]*r[0]^{3})+2*(-D(G)(L)*D(R)(0)-D(G)(L)*D(R)(s)$
[1])*(G(L)-D(G)(L)*r[0])/r[0]-C*G(L)*D(R)(s[1])*(G(L)-D(G))
$(L)*r[0])-C*G(L)*r[1]*D(R)(0))*D(R)(0)/(r[1]*r[0]^2)+(G(L))$
$-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*^{@@}(D,2)(R)$
$(0)/(r[1]*r[0]^2)-(-D(G)(L)*@@^(D,2)(R)(0)-D(G)(L)*(G(L)-$
D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*
$r[0])/(r[1]*r[0]^2)-C*G(L)*^@@^(D,2)(R)(s[1])*(G(L)-D(G)$
$(L)*r[0])^2/r[0]-C*G(L)*D(R)(s[1])*(-D(G)(L)*D(R)(0)/r[0]-$
$(G(L)-D(G)(L)*r[0])*D(R)(0)/(r[0]^2))*r[0]+C*G(L)*(G(L)-D$
$(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]*r[0])+D$
(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])
^2/(r[1]*r[0]^2)-C*G(L)*r[1]*`@@`(D,2)(R)(0)-2*C*G(L)*D(R)
(s[1])*(G(L)-D(G)(L)*r[0])*D(R)(0)/r[0]+C*D(G)(L)*(G(L)-D
(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r
$[0]/r[0]+ @@^{(D,2)}(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-$
$C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])/(r[0]^2)+`@@`(D,2)$

```
(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
   (G(L)-D(G)(L)*r[0])/(r[1]*r[0])-D(G)(L)*D(R)(s[1])*(-D(G))
   (L)*D(R)(0)/r[0]-(G(L)-D(G)(L)*r[0])*D(R)(0)/(r[0]^2))-D
   (G)(L)*<sup>*</sup>@@<sup>*</sup>(D,2)(R)(s[1])*(G(L)-D(G)(L)*r[0])<sup>2</sup>/(r[0]<sup>2</sup>))/
   (r[1]*r[0]))-1/6*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r
   [1]*r[0])^3*(D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]-G(L)*(G
   (L)-D(G)(L)*r[0])^2/(r[0]^2)-G(L))/(r[1]^3*r[0]^3)-1/2*(G
   (L)-D(G)(L)*r[0])^{2}(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)
   *r[1]*r[0])*((D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
   (L)*r[1]*r[0])*G(L)/(r[1]*r[0])-`@@`(D,2)(G)(L)*(G(L)-D(G)
   (L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/r[0])/r[1]-(G
   (L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r
   [1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]^2))/(r[0]^3*r
   [1])+1/2*(G(L)-D(G)(L)*r[0])*(-D(G)(L)*D(R)(s[1])/r[1]-(G)
   (L)-D(G)(L)*r[1])*D(R)(s[1])/(r[1]^2))*(-D(G)(L)*D(R)(0)/r
   [0]-(G(L)-D(G)(L)*r[0])*D(R)(0)/(r[0]^2))/r[0]:
Termo em R"(0)
> R0sa30:=coeff(sa[3,0],(D@D)(R)(0)):
  a0[3,0] := simplify(R0sa30):
Termo em R"(s1)
> R1sa30:=coeff(sa[3,0],(D@D)(R)(s[1])):
  a1[3,0] := simplify(R1sa30):
ssp
> sa[2,1] := (G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[0]-D(G)(L)*
  r[1]-C*G(L)*r[1]*r[0])*((D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)
   (L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/(r[1]*r[0])-`@@`(D,2)(G)
   (L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)
   /r[0])/r[1]-(G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[0]-D(G)(L)
   *r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]
   ^2))*G(L)/(r[0]^2*r[1])-(G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*
  r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*((-D(G)(L)*(G(L)-D(G)
   (L)*r[0])*G(L)/r[0]+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0])*G
   (L)*r[1]/r[0]+D(G)(L)*r[1])/r[1]+(G(L)-D(G)(L)*r[1])*(G(L)
   -D(G)(L)*r[0])^2/(r[1]*r[0]^2))*(G(L)-D(G)(L)*r[1])/(r[0]
  ^2*r[1]^2)-1/2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]
  *r[0])^2*((-D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+`@@`(D,
  2)(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)*r[1]/r[0]+D(G)(L)*r[1])
   /r[1]+(G(L)-D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0])^2/(r[1]*r[0])
```

^2))*G(L)/(r[1]^2*r[0]^2)+1/2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r
[1]-C*G(L)*r[1]*r[0])^2*(D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)
/r[0]-G(L)*(G(L)-D(G)(L)*r[0])^2/(r[0]^2)-G(L))*(G(L)-D(G)
(L)*r[1])/(r[1]^3*r[0]^2)+1/2*(G(L)-D(G)(L)*r[1])*((D(G)
(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)
/(r[1]*r[0])-`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r
[1]-C*G(L)*r[1]*r[0])*G(L)/r[1])/r[0]-(G(L)-D(G)(L)*r[0])*
(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D
(G)(L)*r[1])/(r[0] ² *r[1] ²))/r[1]-1/2*(-D(G)(L)*D(R)(0)/r
$[0]-(G(L)-D(G)(L)*r[0])*D(R)(0)/(r[0]^2))*(-D(G)(L)*D(R)(s)$
$[1])/r[1]-(G(L)-D(G)(L)*r[1])*D(R)(s[1])/(r[1]^2))*G(L)$
-1/2*(G(L)-D(G)(L)*r[0])^2*G(L)*((-D(G)(L)*(G(L)-D(G)(L)*r
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r
$[1]^2*r[0])^{0}(D,2)(G)(L)^{0}(G(L)-D(G)(L)^{r}[0]-D(G)(L)^{r}$
[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]*r[0])-D(G)
(L)*`@@`(D,2)(R)(s[1]))/r[1]+2*D(G)(L)*D(R)(s[1])^2/(r[1]
^2)+2*(G(L)-D(G)(L)*r[1])*D(R)(s[1])^2/(r[1]^3)-(G(L)-D(G)
(L)*r[1])*`@@`(D,2)(R)(s[1])/(r[1]^2)+(G(L)-D(G)(L)*r[1])*
(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]
^3*r[0]^2))/(r[0]^2)-1/2*G(L)*(2*(G(L)-D(G)(L)*r[0]-D(G)
(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])^2*G(L)*(G(L)-D(G)(L)
*r[0])/(r[1]^3*r[0]^2)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
(L)*r[1]*r[0])*D(R)(s[1])*G(L)*D(R)(0)/(r[1]^2*r[0]^2)-(-D
(G)(L)*D(R)(0)-D(G)(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/r[0]
-C*G(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])-C*G(L)*r[1]*D(R)(0)
$)*D(R)(s[1])*G(L)/(r[1]^2*r[0])-(G(L)-D(G)(L)*r[0]-D(G)(L)$
*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(s[1])*(G(L)-D(G)(L)*r
$[0])*G(L)/(r[1]^2*r[0]^2)+(D(G)(L)*D(R)(s[1])*G(L)+C*G(L)$
2*D(R)(s[1])*r[0])*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/(r[1])
^2*r[0]^2)+(D(G)(L)*D(R)(s[1])*G(L)+C*G(L)^2*D(R)(s[1])*r
$[0])*D(R)(0)/(r[1]*r[0]^2)-(-C*G(L)*(G(L)-D(G)(L)*r[0]-D$
(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/r[1]+C*G
(L) ² * [@] @ ^(D,2) (R)(s[1])*(G(L)-D(G)(L)*r[0])+C*G(L) ² *D(R)
(s[1])*D(R)(0)+D(G)(L)*`@@`(D,2)(R)(s[1])*(G(L)-D(G)(L)*r
[0])*G(L)/r[0]-D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[0]*r[1])-`@@`(D,2)
(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G
(L)/r[0]-C*D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*
r[1]*r[0])*G(L)-`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)
r[1]-C*G(L)*r[1]*r[0])*G(L)/r[1]+D(G)(L)*(G(L)-D(G)(L)*r
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/(r[1]*r[0]))/(r[1]
r[0]))+1/2(G(L)-D(G)(L)*r[0]) ² *(G(L)-D(G)(L)*r[1])*((D

```
(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G
     (L)/(r[1]*r[0])- @@^(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)
     *r[1]-C*G(L)*r[1]*r[0])*G(L)/r[0])/r[1]-(G(L)-D(G)(L)*r[0]
     )*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-
    D(G)(L)*r[1])/(r[0]^2*r[1]^2))/(r[0]^2*r[1]):
 coeficientes de R"(0) e R"(s1)
  > R0sa21:=coeff(sa[2,1],(D@D)(R)(0)):
     a0[2,1]:=R0sa21:
  > R1sa21:=coeff(sa[2,1],(D@D)(R)(s[1])):
    a1[2,1]:=simplify(R1sa21):
Spp
   > sa[1,2] := -1/2*G(L)*(-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-
     C*G(L)*r[1]*r[0])*D(R)(s[1])^2*G(L)^2/(r[1]^3*r[0])-2*(D
     (G)(L)*D(R)(s[1])*G(L)+C*G(L)^2*D(R)(s[1])*r[0])*D(R)(s[1])
     )*G(L)/(r[1]<sup>2</sup>*r[0])+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
     (L)*r[1]*r[0])*<sup>@</sup>(D,2)(R)(s[1])*G(L)<sup>2</sup>/(r[1]<sup>2</sup>*r[0])-(-D
     (G)(L)*(G(L)-D(G)(L)*r[1])*G(L)/r[1]+C*D(G)(L)*(G(L)-D(G))
     (L)*r[1])*G(L)*r[0]+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[1])*G
     (L)+2@^{(D,2)}(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)*r[0]/r[1]+C*G
     (L)*r[1]*r[0]+C*G(L)*r[0]*(G(L)-D(G)(L)*r[1])^2/r[1]-C*G
     (L)^{3*}(D,2)(R)(s[1])*r[0]+D(G)(L)*(G(L)-D(G)(L)*r[1])
     ^2/r[1]-D(G)(L)*`@@`(D,2)(R)(s[1])*G(L)^2+D(G)(L)*r[0])/(r
     [1]*r[0])+1/2*(G(L)-D(G)(L)*r[1])*((-D(G)(L)*(G(L)-D(G)))
     (L)*r[1])*G(L)/r[1]+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[1])*G
     (L)*r[0]/r[1]+D(G)(L)*r[0])/r[0]+(G(L)-D(G)(L)*r[0])*(G(L))
     -D(G)(L)*r[1])^2/(r[0]*r[1]^2))/r[1]+1/2*G(L)^2*((-D(G)(L)
     *(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D
     (G)(L)*r[1])/(r[1]<sup>2</sup>*r[0])+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r
     [0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r
     [1]*r[0])-D(G)(L)*`@@`(D,2)(R)(s[1]))/r[1]+2*D(G)(L)*D(R)
     (s[1])<sup>2</sup>/(r[1]<sup>2</sup>)+2*(G(L)-D(G)(L)*r[1])*D(R)(s[1])<sup>2</sup>/(r[1])
     ^3)-(G(L)-D(G)(L)*r[1])*<sup>2</sup>@<sup>2</sup>(D,2)(R)(s[1])/(r[1]<sup>2</sup>)+(G(L)-
     D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*
     r[0])<sup>2</sup>/(r[1]<sup>3</sup>*r[0]<sup>2</sup>))*(G(L)-D(G)(L)*r[0])/r[0]-G(L)*(G
     (L)-D(G)(L)*r[1])*((D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r
     [1]-C*G(L)*r[1]*r[0])*G(L)/(r[1]*r[0])-`@@`(D,2)(G)(L)*(G
     (L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/r[0])
     /r[1]-(G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-
     C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]^2))*(G
```

```
(L)-D(G)(L)*r[0])/(r[1]*r[0])+1/2*(G(L)-D(G)(L)*r[1])^2*(
   (-D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+`@@`(D,2)(G)(L)*(G)
   (L)-D(G)(L)*r[0])*G(L)*r[1]/r[0]+D(G)(L)*r[1])/r[1]+(G(L)-
  D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0])^2/(r[1]*r[0]^2))*(G(L)-D
   (G)(L)*r[0])/(r[1]<sup>2</sup>*r[0])+G(L)*(G(L)-D(G)(L)*r[1])*((-D
   (G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+^@@^(D,2)(G)(L)*(G(L))
   -D(G)(L)*r[0])*G(L)*r[1]/r[0]+D(G)(L)*r[1])/r[1]+(G(L)-D
   (G)(L)*r[1])*(G(L)-D(G)(L)*r[0])^2/(r[1]*r[0]^2))*(G(L)-D
   (G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])/(r[1]^2*r[0])
  -1/2*G(L)^2*((D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
   (L)*r[1]*r[0])*G(L)/(r[1]*r[0])-\ensuremath{`@e^{(D,2)}(G)(L)*(G(L)-D(G))}
   (L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/r[0])/r[1]-(G
   (L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r
   [1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]^2))*(G(L)-D(G)
   (L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])/(r[1]*r[0])-1/2*(G
   (L)-D(G)(L)*r[1])^2*(D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]
   -G(L)*(G(L)-D(G)(L)*r[0])^{2}/(r[0]^{2})-G(L))*(G(L)-D(G)(L)*r
  [0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])/(r[1]^3*r[0]):
termos em R''(0) e R''(s1)
> R0sa12:=coeff(sa[1,2],(D@D)(R)(0)):
  a0[1,2]:=R0sa12:
> R1sa12:=coeff(sa[1,2],(D@D)(R)(s[1])):
  a1[1,2]:=simplify(R1sa12):
ррр
 > sa[0,3] := -1/6*G(L)*((-D(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)/r
   [1]+ @@^(D,2)(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)-D(G)(L)* @@^
   (D,2)(R)(s[1])*G(L)^{2}+D(G)(L)*(G(L)-D(G)(L)*r[1])^{2}/r[1])
   /r[1]+2*D(G)(L)*D(R)(s[1])^2*G(L)^2/(r[1]^2)+2*(G(L)-D(G)
   (L)*r[1])*D(R)(s[1])^{2*G(L)^2/(r[1]^3)-(G(L)-D(G)(L)*r[1])}
   *`@@`(D,2)(R)(s[1])*G(L)^2/(r[1]^2)+(G(L)-D(G)(L)*r[1])/r
   [1])-1/6*G(L)^3*((-D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]
   -C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]^2*r[0])+`@@`
   (D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r
   [0])*(G(L)-D(G)(L)*r[1])/(r[1]*r[0])-D(G)(L)*`@@`(D,2)(R)
   (s[1]))/r[1]+2*D(G)(L)*D(R)(s[1])^2/(r[1]^2)+2*(G(L)-D(G)
   (L)*r[1])*D(R)(s[1])^2/(r[1]^3)-(G(L)-D(G)(L)*r[1])*`@@`
   (D,2)(R)(s[1])/(r[1]^2)+(G(L)-D(G)(L)*r[1])*(G(L)-D(G)(L)*
  r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]^3*r[0]^2))
   +1/6*(G(L)-D(G)(L)*r[1])*(D(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)
   /r[1]-G(L)*(G(L)-D(G)(L)*r[1])<sup>2</sup>/(r[1]<sup>2</sup>)-G(L))/r[1]+1/2*G
```


	(s[1])*(-D(G)(L)*D(R)(0)/r[0]-(G(L)-D(G)(L)*r[0])*D(R)(0)/
	$(r[0]^2))*r[0]+C*G(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G$
	(L)*r[1]*r[0])^2/(r[1]*r[0])+D(G)(L)*(G(L)-D(G)(L)*r[0]-D
	(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]*r[0]^2)-C*G(L)*r[1]*
	`@@`(D,2)(R)(0)-2*C*G(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])*D
	(R)(0)/r[0]+C*D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
	(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])/r[0]+`@@`(D,2)(G)(L)*(G
	(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)
	(L)*r[0])/(r[0]^2)+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)
	(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])/(r[1]*r[0])
	-D(G)(L)*D(R)(s[1])*(-D(G)(L)*D(R)(0)/r[0]-(G(L)-D(G)(L)*r
	$[0])*D(R)(0)/(r[0]^2))-D(G)(L)*^@@^(D,2)(R)(s[1])*(G(L)-D$
	(G)(L)*r[0]) ² /(r[0] ²))/(r[1]*r[0]))/r[0]+1/6*(G(L)-D(G)
	(L)*r[0])^3*(-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r
	[1]*r[0])*D(R)(0)^2*(G(L)-D(G)(L)*r[1])^2/(r[0]^3*r[1]^3)
	-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)
	$(0)*(G(L)-D(G)(L)*r[1])*D(R)(s[1])/(r[0]^2*r[1]^3)+2*(-D)$
	(G)(L)*D(R)(s[1])-D(G)(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]
	-C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])-C*G(L)*r[0]*D(R)(s[1])
	$)*D(R)(0)*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]^2)+(G(L)-D(G)$
	(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(0)*(G
	$(L)-D(G)(L)*r[1])^2/(r[0]^2*r[1]^3)+(G(L)-D(G)(L)*r[0]-D$
	(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)*(-D(G)(L)*D(R)(s[1])
	/r[1]-(G(L)-D(G)(L)*r[1])*D(R)(s[1])/(r[1]^2))/(r[0]^2*r
	[1])-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D
	$(R)(s[1])^{2}/(r[0]*r[1]^{3})+2*(-D(G)(L)*D(R)(s[1])-D(G)(L)*D$
	(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]-C*G(L)*D(R)(0)*(G(L)-D(G)
	$(L)*r[1])-C*G(L)*r[0]*D(R)(s[1]))*D(R)(s[1])/(r[0]*r[1]^2)$
	$+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*^@@^(D,$
	$2)(R)(s[1])/(r[0]*r[1]^2)-(\eqref{eq:constraint}@@\eqref{eq:constraint}(D,2)(G)(L)*(G(L)-D(G)(L)*r$
	[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r
	$[1]^{2}-2*C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])*D(R)(s[1])/r$
	$[1]-C*G(L)*`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])^2/r[1]-C*G$
	(L)*D(R)(0)*(-D(G)(L)*D(R)(s[1])/r[1]-(G(L)-D(G)(L)*r[1])*
	D(R)(s[1])/(r[1] ²))*r[1]-D(G)(L)* [@] @ ^(D,2) (R)(s[1])-D(G)
	$(L)* @@^(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])^2/(r[1]^2)-D(G)(L)$
	D(R)(0)(-D(G)(L)*D(R)(s[1])/r[1]-(G(L)-D(G)(L)*r[1])*D
	$ (R)(s[1])/(r[1]^2))+ @@^{(D,2)}(G)(L)*(G(L)-D(G)(L)*r[0]-D $
	(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]*r
	[U] + C*D(G)(L)*(G(L) - D(G)(L)*r[0] - D(G)(L)*r[1] - C*G(L)*r[1]
	r[U] = C(G(L) - D(G)(L) + r[L]) / r[1] + C + C(L) + (G(L) - D(G)(L) + r[0] - C(C)(L) + r[0] - C(C)(L) + r[0] + r
	D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]*r[0])+D(G)(L)*(G(L)

$-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[0]*r[1]$
^2)-C*G(L)*r[0]*`@@`(D,2)(R)(s[1])-D(G)(L)*(G(L)-D(G)(L)*r
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r
[1] ² *r[0]))/(r[0]*r[1]))/(r[0] ³)+1/2*(G(L)-D(G)(L)*r[0]-
D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2*(-2*(G(L)-D(G)(L)*r[0]-D
(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)^2*G(L)^2/(r[0]^3*r
[1])-2*(D(G)(L)*D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])*D(R)
(0)*G(L)/(r[0] ² *r[1])+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
(L)*r[1]*r[0])*`@@`(D,2)(R)(0)*G(L)^2/(r[0]^2*r[1])-(-D(G)
(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+C*D(G)(L)*(G(L)-D(G)(L)*
r[0])*G(L)*r[1]+C*G(L)*r[1]*r[0]+D(G)(L)*(G(L)-D(G)(L)*r
[0]) ² /r[0]-C*G(L) ³ * [@] @ ^(D,2) (R)(0)*r[1]+C*G(L)*r[1]*(G
(L)-D(G)(L)*r[0])^2/r[0]-D(G)(L)*`@@`(D,2)(R)(0)*G(L)^2+
`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)*r[1]/r[0]+D(G)(L)
r[1]+`@@`(D,2)(G)(L)(G(L)-D(G)(L)*r[0])*G(L))/(r[0]*r[1]
))*(G(L)-D(G)(L)*r[0])/(r[1] ² *r[0] ³)-1/6*(G(L)-D(G)(L)*r
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*((-D(G)(L)*(G(L)-D(G)))*(C(L)*(C(L)-D(G)))*(C(L)*C(L)-D(G)))
(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0]
)/(r[1]*r[0]^2)+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)
*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])/(r[1]*r[0])-D
(G)(L)*`@@`(D,2)(R)(0))/r[0]+2*D(G)(L)*D(R)(0)^2/(r[0]^2)
$+2*(G(L)-D(G)(L)*r[0])*D(R)(0)^2/(r[0]^3)-(G(L)-D(G)(L)*r$
$[0])*^{@}(D,2)(R)(0)/(r[0]^2)+(G(L)-D(G)(L)*r[0])*(G(L)-D(C)(C))$
(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[0]^3*r[1]
^2))/(r[1]*r[0])+1/2*(-D(G)(L)*D(R)(0)/r[0]-(G(L)-D(G)(L)*
$r[0])*D(R)(0)/(r[0]^2))*((G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-$
$C*G(L)*r[1]*r[0])*D(R)(0)*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1])$
$^2)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)$
$(s[1])/(r[0]*r[1]^2)-(-D(G)(L)*D(R)(s[1])-D(G)(L)*D(R)(0)*$
(G(L)-D(G)(L)*r[1])/r[1]-C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])
)-C*G(L)*r[0]*D(R)(s[1]))/(r[0]*r[1]))*(G(L)-D(G)(L)*r[0])
r[0]-1/6*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0]
)^3*((-D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+`@@`(D,2)(G)
$(L)*(G(L)-D(G)(L)*r[0])*G(L)-D(G)(L)*^{@@}(D,2)(R)(0)*G(L)$
$^{2+D(G)(L)*(G(L)-D(G)(L)*r[0])^{2}r[0])/r[0]+2*D(G)(L)*D(R)}$
$(0)^{2}G(L)^{2}/(r[0]^{2})+2*(G(L)-D(G)(L)*r[0])*D(R)(0)^{2}G(L)$
^2/(r[0]^3)-(G(L)-D(G)(L)*r[0])* "@@"(D,2)(R)(0)*G(L)^2/(r
[0]^2)+(G(L)-D(G)(L)*r[0])/r[0])/(r[1]^3*r[0]^3)+1/2*((G
(L) - D(G)(L) * r[0] - D(G)(L) * r[1] - C*G(L) * r[1] * r[0]) * D(R)(s[1])
* $(G(L) - D(G)(L) * r[0]) / (r[L])^2 * r[0]^2) + (G(L) - D(G)(L) * r[0] - D$
$(G)(L)^{*}r[L]^{-}C^{*}G(L)^{*}r[L]^{*}r[U])^{*}D(R)(U)/(r[L]^{*}r[U]^{2})^{-}(-D(G)$
(ב) (ע) (ע) (U) (G) (ב) *U(K) (S[L]) * (G(L) -D(G) (L) *r[U])/r[U]-C*

xx1:=1/6*XX/(r[1]*r[0]^3):

	<pre>xx2:=1/6*XX^3/(r[1]^3*r[0]^5):</pre>
	b0[3,0]:= 1/6*((G(L)-D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0])+G
	(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0]))/(r
	[1]*r[0]^3)+1/6*((G(L)-D(G)(L)*r[1])*(G(L)-D(G)(L)*r[0])+G
	(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0]))*3/
	(r[1]^3*r[0]^5):simplify(b0[3,0]-R0sb30):
[>	R1sb30:=coeff(sb[3,0],(D@D)(R)(s[1])):
L	<pre>b1[3,0]:=simplify(R1sb30):</pre>
ssp	
>	sb[2,1]:=(G(L)-D(G)(L)*r[0])*(-(G(L)-D(G)(L)*r[0]-D(G)(L)*
	r[1]-C*G(L)*r[1]*r[0])*D(R)(0)*G(L)/(r[0]^2*r[1])-(D(G)(L)
	*D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])/(r[0]*r[1]))*(-(G(L)-
	D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])*G
	(L)/(r[1] ² *r[0])-(D(G)(L)*D(R)(s[1])*G(L)+C*G(L) ² *D(R)(s
	[1])*r[0])/(r[1]*r[0]))/r[0]+1/2*(D(G)(L)*D(R)(0)*G(L)/r
	[0]+(G(L)-D(G)(L)*r[0])*D(R)(0)*G(L)/(r[0]^2))*(G(L)-D(G)
	(L)*r[1])*((G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r
	[0])*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/(r[1]^2*r[0]^2)+(G(L)-
	D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)/(r[1]*
	r[0] ²)-(-D(G)(L)*D(R)(0)-D(G)(L)*D(R)(s[1])*(G(L)-D(G)(L)
	*r[0])/r[0]-C*G(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])-C*G(L)*r
	[1]*D(R)(0))/(r[1]*r[0]))/r[1]+1/2*(G(L)-D(G)(L)*r[0]) ² *
	(G(L)-D(G)(L)*r[1])*(2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
	(L)*r[1]*r[0])*D(R)(0)^2*G(L)*(G(L)-D(G)(L)*r[1])/(r[0]^3*
	r[1] ²)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
	D(R)(s[1])*G(L)*D(R)(0)/(r[1]^2*r[0]^2)-(-D(G)(L)*D(R)(s
	[1])-D(G)(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]-C*G(L)*D(R)
	(0)*(G(L)-D(G)(L)*r[1])-C*G(L)*r[0]*D(R)(s[1]))*D(R)(0)*G
	$(L)/(r[0]^2*r[1])-(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r$
	[1]*r[0])*`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])*G(L)/(r[0]
	^2*r[1]^2)+(D(G)(L)*D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])*D
	$(R)(0)*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]^2)+(D(G)(L)*D(R)$
	(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])*D(R)(s[1])/(r[0]*r[1]^2)-
	(D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])
	*G(L)/(r[1]*r[0])+C*G(L)^2*D(R)(s[1])*D(R)(0)+D(G)(L)*`@@`
	(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])*G(L)/r[1]+C*G(L)^2* [@] @ ^{(D} ,
	2)(R)(0)*(G(L)-D(G)(L)*r[1])-~~@@~(D,2)(G)(L)*(G(L)-D(G)(L)
	*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/r[0]-`@@`(D,2)
	(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G
	<pre>*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/r[0]-~@@~(D,2) (G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G</pre>

	(L)/r[1]-C*D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*
	r[1]*r[0])*G(L)-C*G(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
	(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])/r[0]-D(G)(L)*(G(L)-D(G)
	(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0]
)/(r[1]*r[0]))/(r[0]*r[1]))/(r[0] ² *r[1])-1/2*(G(L)-D(G)
	(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*((D(G)(L)*(G(L)-D
	(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/(r[1]*r[0])
)-`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r
	[1]*r[0])*G(L)/r[1])/r[0]-(G(L)-D(G)(L)*r[0])*(G(L)-D(G)
	(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1]
)/(r[0] ² *r[1] ²))/(r[1]*r[0])-(G(L)-D(G)(L)*r[0]-D(G)(L)*
	r[1]-C*G(L)*r[1]*r[0])*(D(G)(L)*D(R)(0)*G(L)/r[0]+(G(L)-D
	(G)(L)*r[0])*D(R)(0)*G(L)/(r[0]^2))*(-(G(L)-D(G)(L)*r[0]-D
	(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])*G(L)/(r[1]^2*r[0]
)-(D(G)(L)*D(R)(s[1])*G(L)+C*G(L)^2*D(R)(s[1])*r[0])/(r[1]
	*r[0]))/(r[1]*r[0])+(G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[0]
	-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(2*(G(L)-D(G)(L)*r[0]-D(G)
	$(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)^2*G(L)*(G(L)-D(G)(L)*r$
	[1])/(r[0]^3*r[1]^2)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
	(L)*r[1]*r[0])*D(R)(s[1])*G(L)*D(R)(0)/(r[1]^2*r[0]^2)-(-D
	(G)(L)*D(R)(s[1])-D(G)(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]
	-C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])-C*G(L)*r[0]*D(R)(s[1])
	$)*D(R)(0)*G(L)/(r[0]^2*r[1])-(G(L)-D(G)(L)*r[0]-D(G)(L)*r$
	[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])*
	G(L)/(r[0]^2*r[1]^2)+(D(G)(L)*D(R)(0)*G(L)+C*G(L)^2*D(R)
	$(0)*r[1])*D(R)(0)*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]^2)+(D$
	$(G)(L)*D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])*D(R)(s[1])/(r$
	$[0]*r[1]^2)-(D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G$
	$(L)*r[1]*r[0])*G(L)/(r[1]*r[0])+C*G(L)^2*D(R)(s[1])*D(R)$
	$(0)+D(G)(L)*^{@@}(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])*G(L)/r[1]+$
	$C*G(L)^{2*}@@^(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])-^@@^(D,2)(G)$
	(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)
	/r[0]-`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
	(L)*r[1]*r[0])*G(L)/r[1]-C*D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)
	(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)-C*G(L)*(G(L)-D(G)(L)*r[0]-
	D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])/r[0]-D
	(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
	(G(L)-D(G)(L)*r[0])/(r[1]*r[0]))/(r[0]*r[1]))*G(L)/(r[0]
	2*r[1] - (G(L) - D(G)(L)*r[0])*(G(L) - D(G)(L)*r[0] - D(G)(L)*r
	[1]-C*G(L)*r[1]*r[0])*(-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-
	C*G(L)*r[1]*r[0])*D(R)(0)^2*G(L)^2/(r[0]^3*r[1])-2*(D(G)
	$(L)*D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])*D(R)(0)*G(L)/(r[0])$

^2*r[1])+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])
*`@@`(D,2)(R)(0)*G(L)^2/(r[0]^2*r[1])-(`@@`(D,2)(G)(L)*(G
(L)-D(G)(L)*r[0])*G(L)*r[1]/r[0]-D(G)(L)*`@@`(D,2)(R)(0)*G
(L) ² +D(G)(L)*r[1]-D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+
$C*G(L)*r[1]*(G(L)-D(G)(L)*r[0])^2/r[0]+C*D(G)(L)*(G(L)-D$
(G)(L)*r[0])*G(L)*r[1]+C*G(L)*r[1]*r[0]+D(G)(L)*(G(L)-D(G)
(L)*r[0])^2/r[0]-C*G(L)^3*`@@`(D,2)(R)(0)*r[1]+`@@`(D,2)
(G)(L)*(G(L)-D(G)(L)*r[0])*G(L))/(r[0]*r[1]))*(G(L)-D(G)
(L)*r[1])/(r[0]^2*r[1]^2)-1/2*(G(L)-D(G)(L)*r[0])^2*G(L)*
(-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)
(0) ² *(G(L)-D(G)(L)*r[1]) ² /(r[0] ³ *r[1] ³)-2*(G(L)-D(G)
(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)*(G(L)-D(G)
(L)*r[1])*D(R)(s[1])/(r[0] ² *r[1] ³)+2*(-D(G)(L)*D(R)(s[1]
)-D(G)(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]-C*G(L)*D(R)(0)*
(G(L)-D(G)(L)*r[1])-C*G(L)*r[0]*D(R)(s[1]))*D(R)(0)*(G(L)-
$D(G)(L)*r[1])/(r[0]^2*r[1]^2)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r$
[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])
^2/(r[0]^2*r[1]^3)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*
r[1]*r[0])*D(R)(0)*(-D(G)(L)*D(R)(s[1])/r[1]-(G(L)-D(G)(L)
*r[1])*D(R)(s[1])/(r[1]*2))/(r[0]*2*r[1])-2*(G(L)-D(G)(L)*
$r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])^2/(r[0]*r$
$[1]^{3}+2*(-D(G)(L)*D(R)(s[1])-D(G)(L)*D(R)(0)*(G(L)-D(G)$
(L)*r[1])/r[1]-C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])-C*G(L)*r
$[0]*D(R)(s[1]))*D(R)(s[1])/(r[0]*r[1]^2)+(G(L)-D(G)(L)*r$
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(s[1])/(r
$[0]*r[1]^2)-(-D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G$
$(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]^2*r[0])-C*G(L)*D$
(R)(0)*(-D(G)(L)*D(R)(s[1])/r[1]-(G(L)-D(G)(L)*r[1])*D(R)
$(s[1])/(r[1]^2))*r[1]-D(G)(L)*D(R)(0)*(-D(G)(L)*D(R)(s[1])$
$/r[1]-(G(L)-D(G)(L)*r[1])*D(R)(s[1])/(r[1]^2))-D(G)(L)*$
`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])^2/(r[1]^2)+`@@`(D,2)
(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
(G(L)-D(G)(L)*r[1])/(r[1]*r[0])-C*G(L)*`@@`(D,2)(R)(0)*(G
$(L)-D(G)(L)*r[1])^2/r[1]-2*C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r$
[1])*D(R)(s[1])/r[1]+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D
$(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]^2)$
$-D(G)(L)* @@^(D,2)(R)(s[1])+C*G(L)*(G(L)-D(G)(L)*r[0]-D(G)$
(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]*r[0])-C*G(L)*r[0]*~@@~
(D,2)(R)(s[1])+D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
(L)*r[L]*r[U])^2/(r[U]*r[L]^2)+C*D(G)(L)*(G(L)-D(G)(L)*r
[U]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/r
[1])/(T[U]*T[1]))/(T[U]^2)+1/2*(G(L)-D(G)(L)*T[U]-D(G)(L)*

	r[1]-C*G(L)*r[1]*r[0])^2*(G(L)-D(G)(L)*r[1])*((-D(G)(L)*(G
	(L)-D(G)(L)*r[0])*G(L)/r[0]+~@@~(D,2)(G)(L)*(G(L)-D(G)(L)*
	r[0])*G(L)-D(G)(L)*`@@`(D,2)(R)(0)*G(L)^2+D(G)(L)*(G(L)-D
	(G)(L)*r[0])^2/r[0])/r[0]+2*D(G)(L)*D(R)(0)^2*G(L)^2/(r[0]
	^2)+2*(G(L)-D(G)(L)*r[0])*D(R)(0)^2*G(L)^2/(r[0]^3)-(G(L)-
	D(G)(L)*r[0])*`@@`(D,2)(R)(0)*G(L)^2/(r[0]^2)+(G(L)-D(G)
	(L)*r[0])/r[0])/(r[1]^3*r[0]^2)-1/2*((G(L)-D(G)(L)*r[0]-D
	(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)*(G(L)-D(G)(L)*r[1])/
	(r[0] ² *r[1] ²)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r
	[1]*r[0])*D(R)(s[1])/(r[0]*r[1]^2)-(-D(G)(L)*D(R)(s[1])-D
	(G)(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]-C*G(L)*D(R)(0)*(G
	(L)-D(G)(L)*r[1])-C*G(L)*r[0]*D(R)(s[1]))/(r[0]*r[1]))*G
	(L)*(-D(G)(L)*D(R)(0)/r[0]-(G(L)-D(G)(L)*r[0])*D(R)(0)/(r
	[0] ²))+1/2*(G(L)-D(G)(L)*r[0])*(2*(G(L)-D(G)(L)*r[0]-D(G)
	$(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])^{2*G(L)*(G(L)-D(G)(L)}$
	*r[0])/(r[1]^3*r[0]^2)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
	(L)*r[1]*r[0])*D(R)(s[1])*G(L)*D(R)(0)/(r[1]^2*r[0]^2)-(-D
	(G)(L)*D(R)(0)-D(G)(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/r[0]
	-C*G(L)*D(R)(s[1])*(G(L)-D(G)(L)*r[0])-C*G(L)*r[1]*D(R)(0)
)*D(R)(s[1])*G(L)/(r[1]^2*r[0])-(G(L)-D(G)(L)*r[0]-D(G)(L)
	*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(s[1])*(G(L)-D(G)(L)*r
	[0])*G(L)/(r[1] ² *r[0] ²)+(D(G)(L)*D(R)(s[1])*G(L)+C*G(L)
	^2*D(R)(s[1])*r[0])*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/(r[1]
	^2*r[0]^2)+(D(G)(L)*D(R)(s[1])*G(L)+C*G(L)^2*D(R)(s[1])*r
	$[0])*D(R)(0)/(r[1]*r[0]^2)-(-C*G(L)*(G(L)-D(G)(L)*r[0]-D$
	(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/r[1]+C*G
	$(L)^{2*}(0,2)(R)(s[1])*(G(L)-D(G)(L)*r[0])-D(G)(L)*(G(L))$
	-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)
	*r[1])/(r[0]*r[1])+D(G)(L)*`@@`(D,2)(R)(s[1])*(G(L)-D(G)
	$(L)*r[0])*G(L)/r[0]+C*G(L)^2*D(R)(s[1])*D(R)(0)+D(G)(L)*(G)$
	(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/(r[1])
	r[0] - C*D(G)(L)*(G(L) - D(G)(L)*r[0] - D(G)(L)*r[1] - C*G(L)*r
	[1]*r[0])*G(L)-`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*
	r[1]-C*G(L)*r[1]*r[0])*G(L)/r[1]-`@@`(D,2)(G)(L)*(G(L)-D
	(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)/r[0])/(r
	[1]*r[0])/r[0]-1/2*G(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-
	C*G(L)*r[1]*r[0])^2*(-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*
	G(L)*r[1]*r[0])*D(R)(0)^2*G(L)^2/(r[0]^3*r[1])-2*(D(G)(L)*
	D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])*D(R)(0)*G(L)/(r[0]^2*r
	[1])+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
	@@ (D,2)(R)(0)*G(L)^2/(r[0]^2*r[1])-(`@@`(D,2)(G)(L)*(G
	$(L)-D(G)(L)*r[0])*G(L)*r[1]/r[0]-D(G)(L)*[@@^(D,2)(R)(0)*G$

```
(L)^{2+D(G)(L)*r[1]-D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+
  C*G(L)*r[1]*(G(L)-D(G)(L)*r[0])^2/r[0]+C*D(G)(L)*(G(L)-D)
   (G)(L)*r[0])*G(L)*r[1]+C*G(L)*r[1]*r[0]+D(G)(L)*(G(L)-D(G)
   (L)*r[0])^2/r[0]-C*G(L)^3*`@@`(D,2)(R)(0)*r[1]+`@@`(D,2)
   (G)(L)*(G(L)-D(G)(L)*r[0])*G(L))/(r[0]*r[1]))/(r[1]^2*r[0]
  ^2)-1/2*G(L)*(-(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]
   *r[0])*D(R)(0)*G(L)/(r[0]^2*r[1])-(D(G)(L)*D(R)(0)*G(L)+C*
  G(L)^{2*D(R)}(0)*r[1])/(r[0]*r[1]))*((G(L)-D(G)(L)*r[0]-D(G))
   (L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])*(G(L)-D(G)(L)*r[0])/
   (r[1]<sup>2</sup>*r[0]<sup>2</sup>)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r
   [1]*r[0])*D(R)(0)/(r[1]*r[0]^2)-(-D(G)(L)*D(R)(0)-D(G)(L)*
  D(R)(s[1])*(G(L)-D(G)(L)*r[0])/r[0]-C*G(L)*D(R)(s[1])*(G)
   (L)-D(G)(L)*r[0])-C*G(L)*r[1]*D(R)(0))/(r[1]*r[0]))+1/2*(-
   (G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)*
  G(L)/(r[0]^{2*r[1]})-(D(G)(L)*D(R)(0)*G(L)+C*G(L)^{2*D(R)}(0)*
  r[1])/(r[0]*r[1]))*(G(L)-D(G)(L)*r[1])*(-D(G)(L)*D(R)(0)/r
  [0]-(G(L)-D(G)(L)*r[0])*D(R)(0)/(r[0]^2))/r[1]:
> R0sb21:=coeff(sb[2,1],(D@D)(R)(0)):
 > b0[2,1]:=-G(L)*(G(L)-D(G)(L)*r[1])*((G(L)-D(G)(L)*r[0])*(G
   (L)-D(G)(L)*r[1])+G(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
   (L)*r[1]*r[0]))^2/(r[0]^4*r[1]^3):
  simplify(b0[2,1]-R0sb21):
> R1sb21:=coeff(sb[2,1],(D@D)(R)(s[1])):
  b1[2,1]:=simplify(R1sb21):
spp
> sb[1,2]:=-(G(L)-D(G)(L)*r[0])*G(L)*(2*(G(L)-D(G)(L)*r[0]-D
   (G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)^{2*G(L)*(G(L)-D(G)(L)}
   *r[1])/(r[0]^3*r[1]^2)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
   (L)*r[1]*r[0])*D(R)(s[1])*G(L)*D(R)(0)/(r[1]^2*r[0]^2)-(-D
   (G)(L)*D(R)(s[1])-D(G)(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]
   -C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])-C*G(L)*r[0]*D(R)(s[1])
   )*D(R)(0)*G(L)/(r[0]<sup>2</sup>*r[1])-(G(L)-D(G)(L)*r[0]-D(G)(L)*r
  [1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])*
  G(L)/(r[0]^{2*r[1]^2}+(D(G)(L)*D(R)(0)*G(L)+C*G(L)^{2*D(R)})
   (0)*r[1])*D(R)(0)*(G(L)-D(G)(L)*r[1])/(r[0]^2*r[1]^2)+(D
   (G)(L)*D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])*D(R)(s[1])/(r
   [0]*r[1]^2)-(D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
   (L)*r[1]*r[0])*G(L)/(r[1]*r[0])+C*G(L)^2*D(R)(s[1])*D(R)
   (0)+D(G)(L)*`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])*G(L)/r[1]+
  C*G(L)^{2*}@@^(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])-^@@^(D,2)(G)
   (L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)
```
/r[0]-`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
(L)*r[1]*r[0])*G(L)/r[1]-C*D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)
(L)*r[1]-C*G(L)*r[1]*r[0])*G(L)-C*G(L)*(G(L)-D(G)(L)*r[0]-
D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])/r[0]-D
(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
(G(L)-D(G)(L)*r[0])/(r[1]*r[0]))/(r[0]*r[1]))*(G(L)-D(G)
(L)*r[1])/(r[0]*r[1])+1/2*(G(L)-D(G)(L)*r[0])*G(L)^2*(-2*
(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)
^2*(G(L)-D(G)(L)*r[1])^2/(r[0]^3*r[1]^3)-2*(G(L)-D(G)(L)*r
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)*(G(L)-D(G)(L)*r
[1])*D(R)(s[1])/(r[0]^2*r[1]^3)+2*(-D(G)(L)*D(R)(s[1])-D
(G)(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])/r[1]-C*G(L)*D(R)(0)*(G
(L)-D(G)(L)*r[1])-C*G(L)*r[0]*D(R)(s[1]))*D(R)(0)*(G(L)-D
(G)(L)*r[1])/(r[0]^2*r[1]^2)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r
$[1]-C*G(L)*r[1]*r[0])*^@@^(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])$
^2/(r[0]^2*r[1]^3)+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*
r[1]*r[0])*D(R)(0)*(-D(G)(L)*D(R)(s[1])/r[1]-(G(L)-D(G)(L)
*r[1])*D(R)(s[1])/(r[1]^2))/(r[0]^2*r[1])-2*(G(L)-D(G)(L)*
$r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])^2/(r[0]*r$
$[1]^{3}+2*(-D(G)(L)*D(R)(s[1])-D(G)(L)*D(R)(0)*(G(L)-D(G)$
(L)*r[1])/r[1]-C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r[1])-C*G(L)*r
$[0]*D(R)(s[1]))*D(R)(s[1])/(r[0]*r[1]^2)+(G(L)-D(G)(L)*r$
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(s[1])/(r
$[0]*r[1]^{2}-(-D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G$
$(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]^2*r[0])-C*G(L)*D$
(R)(0)*(-D(G)(L)*D(R)(s[1])/r[1]-(G(L)-D(G)(L)*r[1])*D(R)
$(s[1])/(r[1]^2))*r[1]-D(G)(L)*D(R)(0)*(-D(G)(L)*D(R)(s[1])$
$/r[1]-(G(L)-D(G)(L)*r[1])*D(R)(s[1])/(r[1]^2))-D(G)(L)*$
`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])^2/(r[1]^2)+`@@`(D,2)
(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*
(G(L)-D(G)(L)*r[1])/(r[1]*r[0])-C*G(L)*`@@`(D,2)(R)(0)*(G
$(L)-D(G)(L)*r[1])^2/r[1]-2*C*G(L)*D(R)(0)*(G(L)-D(G)(L)*r$
[1])*D(R)(s[1])/r[1]+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D
$(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]^2)$
$-D(G)(L)*^{0}(D,2)(R)(s[1])+C*G(L)*(G(L)-D(G)(L)*r[0]-D(G)$
(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]*r[0])-C*G(L)*r[0]*`@@`
(D,2)(R)(s[1])+D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
$(L)*r[1]*r[0])^2/(r[0]*r[1]^2)+C*D(G)(L)*(G(L)-D(G)(L)*r$
[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/r
[1])/(r[0]*r[1]))/r[0]-1/2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]
-C*G(L)*r[1]*r[0])*((-D(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)/r
$[1]+ @@^{(D,2)(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)*r[0]/r[1]+D$

(G)(L)*r[0])/r[0]+(G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[1])
^2/(r[0]*r[1]^2))/(r[1]*r[0])+1/2*(G(L)-D(G)(L)*r[0])*(-2*
(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s
[1]) ² *G(L) ² /(r[1] ³ *r[0])-2*(D(G)(L)*D(R)(s[1])*G(L)+C*G
(L) ² *D(R)(s[1])*r[0])*D(R)(s[1])*G(L)/(r[1] ² *r[0])+(G(L)
-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)
(s[1])*G(L)^2/(r[1]^2*r[0])-(-D(G)(L)*(G(L)-D(G)(L)*r[1])*
G(L)/r[1]+C*D(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)*r[0]+`@@`(D,
2)(G)(L)*(G(L)-D(G)(L)*r[1])*G(L)*r[0]/r[1]+`@@`(D,2)(G)
(L)*(G(L)-D(G)(L)*r[1])*G(L)-C*G(L)^3*`@@`(D,2)(R)(s[1])*r
[0]+C*G(L)*r[0]*(G(L)-D(G)(L)*r[1])^2/r[1]+D(G)(L)*r[0]+D
(G)(L)*(G(L)-D(G)(L)*r[1])^2/r[1]+C*G(L)*r[1]*r[0]-D(G)(L)
*`@@`(D,2)(R)(s[1])*G(L)^2)/(r[1]*r[0]))/r[0]+1/2*(G(L)-D
(G)(L)*r[0])*(G(L)-D(G)(L)*r[1])^2*(-2*(G(L)-D(G)(L)*r[0]-
D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(0)^2*G(L)^2/(r[0]^3*r
$[1])-2*(D(G)(L)*D(R)(0)*G(L)+C*G(L)^{2*D(R)(0)*r[1]}*D(R)$
$(0)*G(L)/(r[0]^2*r[1])+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G$
(L)*r[1]*r[0])*`@@`(D,2)(R)(0)*G(L)^2/(r[0]^2*r[1])-(`@@`
(D,2)(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)*r[1]/r[0]-D(G)(L)*
$e@^{(D,2)(R)(0)*G(L)^2+D(G)(L)*r[1]-D(G)(L)*(G(L)-D(G)(L)*$
r[0])*G(L)/r[0]+C*G(L)*r[1]*(G(L)-D(G)(L)*r[0])^2/r[0]+C*D
(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)*r[1]+C*G(L)*r[1]*r[0]+D(G)
$(L)*(G(L)-D(G)(L)*r[0])^2/r[0]-C*G(L)^3*^@@^(D,2)(R)(0)*r$
[1]+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0])*G(L))/(r[0]*r[1]))
$/(r[0]*r[1]^2)-1/2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*$
r[1]*r[0])*(D(G)(L)*D(R)(0)*G(L)/r[0]+(G(L)-D(G)(L)*r[0])*
$D(R)(0)*G(L)/(r[0]^2))*(D(G)(L)*D(R)(s[1])*G(L)/r[1]+(G(L))$
-D(G)(L)*r[1])*D(R)(s[1])*G(L)/(r[1]*2))/(r[1]*r[0])-1/2*
(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D
(G)(L)*r[1])^2*((-D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+
`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)-D(G)(L)*`@@`(D,2)
$(R)(0)*G(L)^{2}+D(G)(L)*(G(L)-D(G)(L)*r[0])^{2}/r[0])/r[0]+2*D$
(G)(L)*D(R)(0)^2*G(L)^2/(r[0]^2)+2*(G(L)-D(G)(L)*r[0])*D
(R)(0) ² *G(L) ² /(r[0] ³)-(G(L)-D(G)(L)*r[0])* [@] @ ^(D,2) (R)
(0)*G(L)^2/(r[0]^2)+(G(L)-D(G)(L)*r[0])/r[0])/(r[1]^3*r[0]
+1/2*(G(L)-D(G)(L)*r[0])*(-(G(L)-D(G)(L)*r[0]-D(G)(L)*r
$[1]-C*G(L)*r[1]*r[0])*D(R)(0)*G(L)/(r[0]^2*r[1])-(D(G)(L)*$
$D(R)(0)*G(L)+C*G(L)^2*D(R)(0)*r[1])/(r[0]*r[1]))*(D(G)(L)*$
D(R)(s[1])*G(L)/r[1]+(G(L)-D(G)(L)*r[1])*D(R)(s[1])*G(L)/
$(r[1]^2))/r[0]-1/2*G(L)^2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-$
C*G(L)*r[1]*r[0])*(2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G
(L)*r[1]*r[0])*D(R)(0)^2*G(L)*(G(L)-D(G)(L)*r[1])/(r[0]^3*

(L)*r[1])-C*G(L)*r[0]*D(R)(s[1]))*D(R)(s[1])/(r[0]*r[1]^2)
+(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,
2)(R)(s[1])/(r[0]*r[1] ²)-(-D(G)(L)*(G(L)-D(G)(L)*r[0]-D
(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]^2*
r[0])-C*G(L)*D(R)(0)*(-D(G)(L)*D(R)(s[1])/r[1]-(G(L)-D(G))
(L)*r[1])*D(R)(s[1])/(r[1] ²))*r[1]-D(G)(L)*D(R)(0)*(-D(G)
(L)*D(R)(s[1])/r[1]-(G(L)-D(G)(L)*r[1])*D(R)(s[1])/(r[1])
^2))-D(G)(L)*`@@`(D,2)(R)(0)*(G(L)-D(G)(L)*r[1])^2/(r[1]
^2)+`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)
*r[1]*r[0])*(G(L)-D(G)(L)*r[1])/(r[1]*r[0])-C*G(L)*`@@`(D,
$2)(R)(0)*(G(L)-D(G)(L)*r[1])^2/r[1]-2*C*G(L)*D(R)(0)*(G(L))$
-D(G)(L)*r[1])*D(R)(s[1])/r[1]+`@@`(D,2)(G)(L)*(G(L)-D(G)
(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[1]
$)/(r[1]^2)-D(G)(L)* @@^(D,2)(R)(s[1])+C*G(L)*(G(L)-D(G)(L))$
*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])^2/(r[1]*r[0])-C*G(L)*
$r[0]*^{@@}(D,2)(R)(s[1])+D(G)(L)*(G(L)-D(G)(L)*r[0]-D(G)(L)$
*r[1]-C*G(L)*r[1]*r[0])^2/(r[0]*r[1]^2)+C*D(G)(L)*(G(L)-D
(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r
$[1])/r[1])/(r[0]*r[1]))-1/2*G(L)*(G(L)-D(G)(L)*r[1])^2*$
(-2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)
$(0)^{2*G(L)^{2}}(r[0]^{3*r[1]})^{-2*(D(G)(L)*D(R)(0)*G(L)+C*G(L)}$
^2*D(R)(0)*r[1])*D(R)(0)*G(L)/(r[0]^2*r[1])+(G(L)-D(G)(L)*
r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*`@@`(D,2)(R)(0)*G(L)
^2/(r[0]^2*r[1])-(`@@`(D,2)(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)
r[1]/r[0]-D(G)(L)`@@`(D,2)(R)(0)*G(L)^2+D(G)(L)*r[1]-D
(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)/r[0]+C*G(L)*r[1]*(G(L)-D)
$(G)(L)*r[0])^2/r[0]+C*D(G)(L)*(G(L)-D(G)(L)*r[0])*G(L)*r$
$[1]+C*G(L)*r[1]*r[0]+D(G)(L)*(G(L)-D(G)(L)*r[0])^2/r[0]-C*$
$G(L)^{3*}(0,2)(R)(0)*r[1]+(0,2)(G)(L)*(G(L)-D(G)(L)*$
$r[0])*G(L))/(r[0]*r[1]))/(r[1]^2)+1/2*(G(L)-D(G)(L)*r[1])*$
(D(G)(L)*D(R)(0)*G(L)/r[0]+(G(L)-D(G)(L)*r[0])*D(R)(0)*G
$(L)/(r[0]^2))*(D(G)(L)*D(R)(s[1])*G(L)/r[1]+(G(L)-D(G)(L)*$
r[1])*D(R)(s[1])*G(L)/(r[1]*2))/r[1]+1/2*G(L)*2*(G(L)-D(G)
(L)*r[1])*(2*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r
[0])*D(R)(0)^2*G(L)*(G(L)-D(G)(L)*r[1])/(r[0]^3*r[1]^2)+(G
(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[1]*r[0])*D(R)(s[1])
$*G(L)*D(R)(U)/(r[1]^2*r[0]^2)-(-D(G)(L)*D(R)(s[1])-D(G)(L)$
D(K)(U)(G(L)-D(G)(L)*T[L])/T[1]-C*G(L)*D(R)(U)*(G(L)-D
$(G)(L)^{*}r[L])^{-C^{*}}G(L)^{*}r[U]^{*}D(R)(S[1]))^{*}D(R)(0)^{*}G(L)/(r[0]^{2})^{*}$
r[1] - (G(L) - D(G)(L) * r[0] - D(G)(L) * r[1] - C*G(L) * r[1] * r[0]) *
$ \begin{array}{c} @@ (D,2)(R)(U)^*(G(L)-D(G)(L)^*r[1])^*G(L)/(r[U]^2*r[1]^2) + \\ (D(G)(L)^*p(D)(O)^*g(L))^*g(L)^*(G(L)^*p(D)(O)^*r(L))^*G(L)^*(G(L)^*) \\ \end{array} $
(D(G)(T)*D(K)(O)*G(T)+C*G(T)^Z*D(K)(O)*T[T])*D(K)(O)*(G(T)


```
Tau - (terms in R") Im(C[2,1])
```

```
(L)<sup>2</sup>*D(G)(L)<sup>4</sup>)):
     simplify(tt*ft-t):
R''(0)
   > a[3,0]:=a0[3,0]:a[2,1]:=a0[2,1]:a[1,2]:=a0[1,2]:a[0,3]:=a0[0,
     3]:
     b[3,0]:=b0[3,0]:b[2,1]:=b0[2,1]:b[1,2]:=b0[1,2]:b[0,3]:=b0[0,
     3]:
  > tau := -1/8*a[1,0]*(3*b[3,0]*a[0,1]/b[1,0]-3*b[1,0]*a[0,3]/a
     [0,1]+a[2,1]-b[1,2])+1/8*b[1,0]*(-a[1,2]+3*a[3,0]*a[0,1]/b[1,
     0]+b[2,1]*a[0,1]/b[1,0]-3*b[0,3]):
  > t1:= -1/16*XX^2*(G(L)-D(G)(L)*r[1])*G(L)
     /(r[1]<sup>2</sup>*r[0]<sup>2</sup>*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[0]*r
     [1])*(G(L)-D(G)(L)*r[0])):
     t4:= -1/16*XX^{4*}(G(L)-D(G)(L)*r[1])*G(L)
     /(r[1]<sup>4</sup>*r[0]<sup>4</sup>*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[0]*r
     [1])*(G(L)-D(G)(L)*r[0])):
     t3:= 1/4*XX<sup>2</sup>*G(L)<sup>2</sup>*(G(L)-D(G)(L)*r[1])<sup>2</sup>/(r[0]<sup>4</sup>*r[1]<sup>4</sup>):
     t2 := 1/4*G(L)^2*(G(L)-D(G)(L)*r[1])^2/(r[1]^2*r[0]^2):
     t5 := 1/4*XX<sup>2</sup>*G(L)<sup>2</sup>*(G(L)-D(G)(L)*r[1])<sup>2</sup>/(r[1]<sup>4</sup>*r[0]<sup>4</sup>):
     t6 := -G(L)^3*(G(L)-D(G)(L)*r[0]-D(G)(L)*r[1]-C*G(L)*r[0]*r
     [1])*(G(L)-D(G)(L)*r[0])*(G(L)-D(G)(L)*r[1])^3
     /(r[1]<sup>4</sup>*r[0]<sup>4</sup>):
     t:=simplify(t1+t2+t3+t4+t5+t6):
     #simplify(t-tau):
   > tt:=-1/8*(G(L)-D(G)(L)*r[1])*G(L)*1/((G(L)-D(G)(L)*r[0]-D(G)
     (L)*r[1]-C*G(L)*r[1]*r[0])*(G(L)-D(G)(L)*r[0])):
     ft:=1/2*( (4*D(G)(L)^6*C*G(L)^2+6*D(G)(L)^4*C^2*G(L)^4+4*C^3*
     G(L)<sup>6</sup>*D(G)(L)<sup>2</sup>+C<sup>4</sup>*G(L)<sup>8</sup>+D(G)(L)<sup>4</sup>+D(G)(L)<sup>8</sup>+C<sup>2</sup>*G(L)<sup>4</sup>+2*
     D(G)(L)^{2*C*G(L)^{2}}
     :
     simplify(ft*tt-t):
  > ft :=1/2*(DET^2+DET):
     simplify(ft*tt-tau):
   > fator:=subs(DET^2=1,DET=1,ft):
  > tau:=fator*tt:
```

Referências Bibliográficas

- V. L. d. Almeida. Defeito zero para bilhares convexos em ℍ². PhD thesis, Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Matemática, 2017. Sob orientação de Pinto de Carvalho, Sônia.
- [2] P. V. Araújo. Geometria Diferencial. IMPA, 3 edition, 2016. ISBN 9978-85-244-0421-4.
- [3] M. Bialy. Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane. Discrete and Continuous Dynamical Systems, 33, 09 2013. doi: 10.3934/dcds.2013.33.3903.
- [4] G. D. Birkhoff. *Dynamical systems*. Amer Mathematical Soc. American Mathematical Society, 1966. ISBN 082181009X,9780821810095.
- [5] V. Blumen, K. Y. Kim, J. Nance, e V. Zharnitsky. Three-period orbits in billiards on the surfaces of constant curvature. *International Mathematics Research Notices*, 2012(21):5014–5024, 2012. doi: 10.1093/imrn/rnr228.
- [6] N. Chernov e R. Markarian. *Chaotic billiards*. Mathematical Surveys and Monographs 127. American Mathematical Society, 2006. ISBN 9780821840962.
- [7] M. J. Dias Carneiro, S. Oliffson Kamphorst, e S. Pinto de Carvalho. Elliptic islands in strictly convex billiards. *Ergodic Theory & Dynamical Systems*, 23, 2003.
- [8] M. J. Dias Carneiro, S. Oliffson Kamphorst, e S. Pinto de Carvalho. Periodic orbits of generic oval billiards. *Nonlinearity (Bristol)*, 20, 2007.
- [9] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Springer International Publishing, 2016.
- [10] L. C. dos Santos. Bilhares convexos em superfícies de curvatura constante. PhD thesis, Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Matemática, 2014. Sob orientação de Pinto de Carvalho, Sônia.

- Santos e S. Pinto de Carvalho. Periodic orbits of oval [11] L. C. dos billiards on surfaces of constant curvature. Dynamical Systems, 32URL (2):283-294,2017.doi: 10.1080/14689367.2016.1216088.https://doi.org/10.1080/14689367.2016.1216088.
- P. L. Galison. Minkowski's space-time: From visual thinking to the absolute world. *Historical Studies in the Physical Sciences*, 10:85–121, 1979. ISSN 00732672. URL http://www.jstor.org/stable/27757388.
- [13] A. Hayli, T. Dumont, J. Moulin-Ollagnier, e J.-M. Strelcyn. Some new results on robnik billiards. *Journal of Physics A: Mathematical and General*, 20:3237, 01 1999. doi: 10.1088/0305-4470/20/11/027.
- [14] M. Hirsch. Differential Topology, volume 33. Springer, 01 1994. doi: 10.1007/978-1-4684-9449-5.
- [15] V. V. Kozlov e D. V. Treschëv. Billiards : a genetic introduction to the dynamics of systems with impacts. Translations of mathematical monographs, v. 89. American Mathematical Society, Providence, R.I, 1991. ISBN 0821845500.
- [16] R. Mackay e J. Meiss. Linear stability of periodic orbits in lagrangian systems. *Physics Letters A*, 98(3):92–94, 1983. ISSN 0375-9601. doi: https://doi.org/10.1016/0375-9601(83)90735-1.
- [17] R. Markarian, S. Oliffson Kamphorst, e S. Pinto de Carvalho. Chaotic properties of the elliptical stadium. *Communications in Mathematical Physics*, 174(3):661 – 679, 1996. doi: cmp/1104275489. URL https://doi.org/.
- [18] R. Moeckel. Generic bifurcations of the twist coefficient. Ergodic Theory and Dynamical Systems, 10:185 – 195, 03 1990. doi: 10.1017/S0143385700005472.
- [19] J. Munkres. *Topology*. Featured Titles for Topology. Prentice Hall, Incorporated, 2000. ISBN 9780131816299.
- [20] S. Oliffson Kamphorst e S. Pinto de Carvalho. The first birkhoff coefficient and the stability of 2-periodic orbits on billiards. *Experimental Mathematics*, 14, 01 2005. doi: 10.1080/10586458.2005.10128923.
- [21] C. Pires. Dois resultados em bilhares em superfícies com curvatura constante. PhD thesis, Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Matemática, 2020. Sob orientação de Pinto de Carvalho, Sônia.

- [22] L. Stojanov. Generic properties of periodic reflecting rays. Ergodic Theory and Dynamical Systems, 7(4):597–609, 1987. doi: 10.1017/S0143385700004223.
- [23] A. P. Veselov. Confocal surfaces and integrable billiards on the sphere and in the lobachevsky space. Journal of Geometry and Physics, 7(1):81 – 107, 1990. ISSN 0393-0440. doi: https://doi.org/10.1016/0393-0440(90)90021-T.
- [24] M. P. Wojtkowski. Two applications of jacobi fields to the billiard ball problem.
 J. Differential Geom., 40(1):155–164, 1994. doi: 10.4310/jdg/1214455290. URL https://doi.org/10.4310/jdg/1214455290.
- [25] P. Zhang. Convex billiards on convex spheres. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 34, 05 2015. doi: 10.1016/j.anihpc.2016.07.001.