
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Samuel Benjoino Ferraz Aquino

Strategies for Efficient Subgraph Enumeration on GPUs

Belo Horizonte
2023

Samuel Benjoino Ferraz Aquino

Strategies for Efficient Subgraph Enumeration on GPUs

Final Version

Dissertation presented to the Graduate Program in Computer
Science of the Federal University of Minas Gerais in partial
fulfillment of the requirements for the degree of Doctor in
Computer Science.

Advisor: Prof. Dr. Wagner Meira Júnior
Co-Advisor: Prof. Dr. George Luiz Medeiros Teodoro

Belo Horizonte
2023

© 2023, Samuel Benjoino Ferraz Aquino.

 Todos os direitos reservados

 Aquino, Samuel Benjoino Ferraz.

A657s Strategies for efficient subgraph enumeration on GPUs
 [recurso eletrônico] : / Samuel Benjoino Ferraz Aquino – 2023.
 1 recurso online (95 f. il, color.) : pdf.

 Orientador: Wagner Meira Júnior.
 Coorientador: George Luiz Medeiros Teodoro.

 Tese (Doutorado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de
 Ciências da Computação.
 Referências: f.90-95

 1. Computação – Teses. 2. Mineração de dados
 (Computação) – Teses. 3. Algoritmos de computador – Teses.
 I. Meira Júnior, Wagner. II. Teodoro, George Luiz Medeiros.
 III. Universidade Federal de Minas Gerais, Instituto de Ciências
 Exatas, Departamento de Computação. IV. Título.

CDU 519.6*72(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer vismeg Lucas Cruz
CRB 6/819 - Universidade Federal de Minas Gerais - ICEx

.��0�&*��
��Z����&
�Z��Z���
*Z��(�*Z
��*,�,.,!Z��Z��Q���
*Z�4
,
*Z

#&!�&
�
Z��Z#R*��(�.
PN!Z��Z��Q���
Z�
Z�!�#.,
PN!Z

���	���������������

�����
��
��������	�
����������������
����������������

�����������
�����������
���

,9F9Z89:@8=85Z9Z5BCAJ585ZB9>5Z65@75Z9K5?=@58AC5Z7A@FG=GHX85ZB9>AFZ*9@<AC9F	Z

#'"��2�� �'Z���)Z�Y �"'Z�Z!C=9@G58ACZ
�9B5DG5?9@GAZ89Z�=W@7=5Z85Z�A?BHG5VUAZ�Z.���Z

#'"��Z��"'��Z�IELZ�����'"+Z,�"�"'"Z�Z�AAC=9@G58ACZ
�9B5CG5?9@GAZ89Z�=W@7=5Z85Z�A?BHG5VUAZ�Z.���Z

#'"��Z#����$$�Z!��1��'Z
��3� �'�Z��1�/3Z
�@FG=GHGAZ89Z�@;C?TG=75Z�Z.�&�*Z

#'"���Z
���Z�'�+-� �Z������ã�+Z
�1�+Z��Z���"Z
�9B5CG5?9@GAZ89Z�=W@7=5Z85Z�A?BHG5VUAZ�Z.@Z

#'"��Z��' � �"Z��� "Z%IE -O"Z#�'��'�Z
�9B5CG5?9@GAZ89Z�=W@7=5Z85Z�A?BHG5VUAZ�Z.���Z

#'"��Z&� �-"Z
 -S �"Z���+"Z��''��)Z
�9B5CG5?9@GAZ89Z�=W@7=5Z85Z�A?BHG5VUAZ�Z.���Z

9>AZ�AC=MA@G9�Z��Z89ZAHGH6CAZ89Z�����Z

PHILIPPE OLIVIER
ALEXANDRE
NAVAUX:05548012053

Assinado de forma digital por
PHILIPPE OLIVIER ALEXANDRE
NAVAUX:05548012053
Dados: 2023.11.21 19:06:49 -03'00'

I dedicate this work to God, my family and friends. Specially
to my father, in my loving memory.

Acknowledgments

I devote the end of this journey primarily to God, who gave me strength and resilience
to overcome the challenges even when I believed I couldn’t. I want to thank my parents,
whose teachings allowed me to pursue my goals with faith and patience. Special thanks
to my father, who would be very proud of this accomplishment. I want to thank my wife,
Vanessa, who always believed in me and took care of our family and kids when I was away.
I want to thank my kids Gustavo and Lara for being my emotional fuel and motivation
to finish this journey. Many thanks to my dear friends for advice and fun conversations:
Júlio, Vinícius Dias, Vanilson, Marcelo, Brivaldo and Carlos Teixeira. I want to thank
you my advisor Prof. Wagner Meira Jr. and my co-advisor Prof. George Teodoro for all
the support and patience through these years. You taught me the foundations of relevant
research, which I will carry throughout my career. Finally, I would like to acknowledge
the funding agencies CNPq, CAPES and FAPEMIG for financial support and the compu-
tational resources of the SDumont supercomputer provided by the National Laboratory
for Scientific Computing (LNCC/MCTI).

Resumo

Mineração de padrões em grafos (MPG) é uma área em constante evolução e que com-
preende algoritmos com alto custo computacional. Algoritmos de MPG são construídos a
partir da enumeração de subgrafos, que visita um grafo de entrada e retorna os subgrafos
que atendem uma propriedade desejada. Graphics Processing Units (GPUs) tem sido
amplamente utilizadas para acelerar algoritmos em diversas áreas. Entretanto, a enumer-
ação de subgrafos apresenta um padrão irregular de processamento, e sua implementação
em GPUs é ineficiente por conta de acessos não coalescidos de memória, divergências e
desbalanceamento de carga. As estratégias existentes na literatura para a paralelização da
enumeração de subgrafos em GPU são limitadas e não representam uma solução completa
para todos os desafios desse problema nesta arquitetura. Esta tese propõe estratégias para
projetar e implementar a enumeração de subgrafos de maneira eficiente em GPUs. Nossa
estratégia de exploração DFS-wide reduz o consumo de memória e oportuniza otimizações
no padrão de acesso a memória, que aliada ao fluxo de execução warp-centric, minimizam
as divergências e melhoram o uso da capacidade computacional da GPU. Também propo-
mos uma camada de balanceamento de carga de baixo custo para melhorar a utilização da
GPU. Nossas estratégias foram implementadas em um sistema de enumeração chamado
DuMato, que provê uma API para implementar eficientemente algoritmos de MPG. Nossa
avaliação experimental mostrou que os algoritmos de MPG implementados com DuMato
são até duas ordens de magnitude mais rápidos que os algoritmos implementados uti-
lizando sistemas de MPG do estado da arte, além de serem capazes de minerar subgrafos
maiores.

Palavras-chave: GPU. Enumeração de Subgrafos. Processamento Irregular. Balancea-
mento de Carga.

Abstract

Graph Pattern Mining (GPM) is an important and rapidly evolving area which demands
high computation-demanding algorithms. GPM algorithms rely on subgraph enumera-
tion, extracting subgraphs from an input graph that matches a given property. Graphics
Processing Units (GPUs) have been an excellent platform for accelerating algorithms in
many areas. However, the irregularity of subgraph enumeration makes it challenging for
efficient execution on GPUs due to typical uncoalesced memory access, divergence, and
load imbalance. These aspects have not been extensively addressed in previous work on
subgraph enumeration using GPU. This thesis proposes strategies to design and imple-
ment subgraph enumeration efficiently on GPU. We propose a depth-first search style
search (DFS-wide) that reduces memory demand while enabling sufficient parallelism to
utilize the GPU, along with a warp-centric design that minimizes execution divergence
and improves utilization of the GPU computing capabilities. We also propose a low-cost
load-balancing layer to mitigate the inherent load imbalance of parallel subgraph enumer-
ation. Our strategies have been implemented in a system named DuMato, which provides
a simple programming interface to implement GPM algorithms efficiently. We perform
an extensive evaluation of all proposed strategies, comparing DuMato with the state-of-
the-art subgraph enumeration systems. Our evaluation has shown that DuMato is up to
two orders of magnitude faster and can mine larger subgraphs.

Keywords: GPU. Subgraph Enumeration. Irregular Processing. Load Balancing.

List of Figures

1.1 GPM applications. 13
1.2 Subgraph enumeration task. 14
1.3 Example of subgraph enumeration lattice. 14
1.4 Amount of subgraphs for bio-diseasome [48] dataset. 15
1.5 Irregularity. 17
1.6 Memory uncoalescence during the access of adjacency lists. 18
1.7 Load imbalance among warps and SMs. 18
1.8 Traversal strategies. 19

2.1 A graph G and an induced subgraph S. 26
2.2 A traversal and an induced traversal. 27
2.3 Traversals tr_v1, tr_v5 and tr_v9 are isomorphic. Traversals tr_v1 and tr_v5

are automorphic. 28
2.4 A graph G and its possible subgraphs (patterns) with three vertices. 29
2.5 Traversal strategies . 31
2.6 Clique counting and motif counting algorithms. 31
2.7 Subgraph enumeration paradigms. 33
2.8 SIMT execution model. 35
2.9 GPU’s execution and memory model. 36

3.1 G2Miner execution workflow. 43
3.2 Graph analytics execution workflow. 45
3.3 Graph pattern mining execution workflow. 46

4.1 DuMato execution workflow. 47

5.1 DFS-wide’s TE data structure. 53
5.2 BFS, DFS, and DFS-wide. 54
5.3 DFS-wide subgraph exploration. 55
5.4 Move phase. 56
5.5 Find primitives. 58
5.6 Primitive write. 59
5.7 Extend phase. 60
5.8 Filter primitive . 61
5.9 Aggregate phase. 62

5.10 Canonical relabeling on GPU. 64
5.11 Warp-centric steps of the extend phase. 65
5.12 Warp-centric steps of the extend phase using virtualization. 65

6.1 Metric inst_per_warp and divergences. 72
6.2 Warp activity of motif counting. 75
6.3 Physical warp activity of motif counting. 76
6.4 Impact of load-balancing threshold and number of threads to execution time

(motif counting). 77
6.5 Impact of load-balancing threshold and number of threads to execution time

(clique counting). 78
6.6 Rebalancing pattern with different thresholds. 79

A.1 Lossless graph compression using cliques. 87
A.2 Clique compression without removing shared edges. 87

List of Tables

3.1 Related work. 39

4.1 DuMato API. 48

5.1 Mapping of our novel strategies to DuMato’s execution workflow. 51

6.1 Characteristics of each implementation. 69
6.2 Graphs used for evaluation. 70
6.3 Execution time (seconds) of DM_DFS, DM_WC and HAND_WC. 71
6.4 Improvements of DM_WC over DM_DFS. 73
6.5 Comparison between warp-centric with and without warp virtualization. . . . 74
6.6 Execution time varying the job sizes. 79
6.7 Comparative performance. Execution time (seconds) of DM_WC and DM_WCLB. 80
6.8 Comparative performance. Execution time (seconds) of DuMato and baselines

(GPU and CPU). 82

A.1 Lossless compression of ca-AstroPh using the cliques. 89

Contents

1 Introduction 13
1.1 Challenges . 16

1.1.1 Irregularity . 16
1.1.2 Combinatorial Explosion . 19

1.2 Limitations of the State-of-the-art Strategies 20
1.3 Thesis Statement . 21
1.4 Contributions . 22

1.4.1 Publications . 23
1.5 Organization . 23

2 Background 25
2.1 Graph Pattern Mining . 25

2.1.1 Graph Theory . 25
2.1.2 Problem Definition . 29
2.1.3 Subgraph Enumeration Paradigms 33

2.2 GPU Architecture . 34

3 Related Work 38
3.1 Subgraph Enumeration Systems for CPU 38
3.2 Subgraph Enumeration Systems for GPU 42
3.3 Other Graph Mining Systems . 44

4 DuMato Subgraph Enumeration System for GPUs 47

5 Strategies for Efficient Subgraph Enumeration on GPUs 51
5.1 DFS-wide Subgraph Exploration . 51
5.2 Warp-centric Enumeration Phases . 57

5.2.1 Warp-centric Core Primitives . 57
5.2.2 Extend . 59
5.2.3 Filter . 60
5.2.4 Aggregate . 62
5.2.5 Warp Virtualization . 64

5.3 Warp-level Load Balancing . 67

6 Experimental Evaluation 69

6.1 Experimental Setup . 70
6.2 Performance Improvements to Warp-Centric DFS-wide 70

6.2.1 DuMato’s Overhead . 70
6.2.2 Warp-centric vs. DFS . 71
6.2.3 Warp Virtualization . 73

6.2.3.1 Scheduling of Virtual Warps 74
6.2.3.2 Impacts of Load Imbalance 74

6.3 Gains Due to Load-Balancing . 76
6.3.1 Number of Threads and Load-Balancing Threshold 76
6.3.2 Amount of Donations . 78
6.3.3 Warp-centric vs Warp-centric with Load-balancing 80

6.4 Comparison with State-of-the-art GPGPM Environments 81

7 Final Remarks 84
7.1 Limitations and Future Work . 85

Appendix A Use Case: Graph Compression 86

References 90

13

Chapter 1

Introduction

Graph pattern mining (GPM) algorithms (e.g., clique listing, motif counting, frequent
subgraph mining, and subgraph matching) aim to unveil relevant subgraph patterns in
graphs [60]. They are used in different domains and applications [17, 53], and Figure 1.1
depicts three examples. Figure 1.1(a) shows a graph with several communities detected
using the clique listing algorithm. Figure 1.1(b) illustrates a computer vision application
that uses the subgraph matching algorithm to detect image patterns. Figure 1.1(c) depicts
the discovery of relevant scientific collaboration patterns using the frequent subgraph
mining algorithm.

These algorithms rely on subgraph enumeration over an input graph, depicted in
Figure 1.2. Subgraph enumeration visits all subgraphs of an input graph G that fullfil
a graph property P required by a GPM algorithm. This property may be topological
(e.g., clique) or statistical (e.g., pattern frequency [8]). The GPM algorithm produces its
output (usually counting, listing or specific aggregations) as the desired subgraphs are
visited by subgraph enumeration.

Suppose a GPM algorithm that needs to visit an input graph G to list all paths with
three vertices. Figure 1.3 depicts how this GPM algorithm relies on subgraph enumeration.
A traversal represents an order that vertices of G are visited, and the ith level contains
several traversals with i vertices. For example, the second level of Figure 1.3 contains
18 traversals ({1, 5},{1, 6},· · · ,{8, 4}). Subgraph enumeration involves a combinatorial

Figure 1.1: GPM applications.

(a) Community detection.

Source: [38].

(b) Computer vision [62].

Source: [62].

(c) Collaboration detection.

Source: [18].

14

Figure 1.2: Subgraph enumeration task.

Source: created by the author.

procedure, and any traversal tr produces new traversals by recursively combining its
vertices with a set of vertices derived from the adjacency of vertices in tr. For example,
the traversal tr = {8, 4} (second level) uses the vertices 2 (adjacent to 8) and 3 (adjacent
to 4) to produce traversals for the third level ({8, 4, 2} and {8, 4, 3}). A filtering in the
traversals of the third level allows the extraction of subgraphs with three vertices that
fullfil the desired property (paths).

Figure 1.3: Example of subgraph enumeration lattice.

Source: created by the author.

Due to the inherent combinatorial operations needed to generate subgraphs, sub-
graph enumeration deals with a combinatorial explosion in the number of visited sub-
graphs as the size of the enumerated subgraphs increases. Figure 1.4 uses the small bio-
logical dataset bio-diseasome (516 vertices, 1.2K edges) [48] to depict the combinatorial
explosion and the memory demand as we increase the number of vertices of enumerated
subgraphs (assuming a 4-byte integer per vertex to store each subgraph). The vast amount
of visited subgraphs during subgraph enumeration may cause long execution times and

15

memory consumption, leading to the pursuit of massively parallel architectures.

Figure 1.4: Amount of subgraphs for bio-diseasome [48] dataset.

Source: created by the author.

Subgraph enumeration systems propose a high-level framework to allow the imple-
mentation of GPM algorithms through subgraph enumeration, providing a good trade-
off between programmability and performance. These systems were proposed for CPUs
[16, 28, 54, 40, 56] and GPUs [12, 11] architectures. The state-of-the-art subgraph enu-
meration systems for GPUs [12, 11] show that this architecture may accelerate subgraph
enumeration. However, the methods in the literature do not fully exploit modern GPU
computing power as they do not mitigate the critical challenges in using this device. Next,
we detail the main challenges concerning parallel subgraph enumeration on GPUs.

1.1. Challenges 16

1.1 Challenges

This section presents the main challenges concerning the design and implementa-
tion of subgraph enumeration on GPU. Algorithm 1 depicts the subgraph-centric parallel
processing model [52], used in this thesis to model parallel processing. In this model, each
parallel task receives a different initial traversal tr and parallel tasks perform subgraph
enumeration starting from different traversals in parallel.

1 Function main():
2 G← input graph

3 k ← desired size k

4 P ← desired property

5 foreach v ∈ V (G) do
6 task[i]← new Parallel Task(enumeration,G, k, P, {v})
7 end

8 Function enumeration(Graph G, int k, Property P, Traversal tr):
9 return Subgraphs with k vertices starting from tr and matching P

Algorithm 1: Subgraph-centric parallel processing.

1.1.1 Irregularity

Figure 1.5 depicts the parallel subgraph enumeration of two independent threads t1
and t2 using the same input graph of Figure 1.3. Assume t1 and t2 need to visit all induced
subgraphs with three vertices starting from v4 and v5, respectively. Thread t1 does more
computations than t2, as there are more subgraphs starting from v4 than from v5 (see
Figure 1.3). Yellow dashed lines represent the edges accessed by t1 through enumeration,
and green dotted ones represent the edges accessed by t2. Note that the memory access
pattern of t1 differs from t2, as it depends on the vertices found through enumeration,
which are discovered during the execution. This dynamism and unpredictability of par-
allel subgraph enumeration make it an irregular task, and this irregularity has negative
consequences for efficient parallel execution on GPU.

GPUs execute threads in a Single Instruction Multiple Data (SIMD) fashion using
groups of threads called warps. Threads within a warp shall execute in lockstep to take full
advantage of SIMD parallelism, and the first consequence of irregularity is the degradation
of lockstep execution due to divergences within a warp. Suppose threads t1 and t2 in
Figure 1.5 belong to the same warp and are executing Algorithms 2 and 3 to perform

1.1. Challenges 17

Figure 1.5: Irregularity.

Source: created by the author.

subgraph enumeration in parallel. Enumeration relies on generating the set of extensions
(line 5), which are the vertices used to generate new traversals from the current one. In
order to generate this set, threads iterate over the adjacency lists of the vertices in the
traversal (lines 2 and 3) and insert into the extensions the ones that are valid according
to the desired property (lines 4 and 5). Although threads t1 and t2 execute the same
code, they iterate over adjacency lists with different sizes and progress at different paces
within the same warp. This behavior generates divergent executions that decrease GPU’s
parallel efficiency.

1 Function E(traversal tr1):
2 foreach v ∈ tr1 do
3 foreach n ∈ adj(v) do
4 if valid(tr1, n) then
5 tr1.extensions+ = n;
6 end

7 end

8 end
9 · · ·
Algorithm 2: Thread 1 enumerates tr1.

1 Function E(traversal tr2):
2 foreach v ∈ tr2 do
3 foreach n ∈ adj(v) do
4 if valid(tr2, n) then
5 tr2.extensions+ = n;
6 end

7 end

8 end
9 · · ·
Algorithm 3: Thread 2 enumerates tr2.

The second negative consequence of irregularity for GPU processing is the memory
uncoalescence. Threads iterate over the adjacency lists to generate the extensions (line 3
of Algorithms 2 and 3), and the location of these lists in memory is dynamic throughout
execution, as it depends on the vertices in the traversal. Assuming the graph is represented
in CSR format [30], Figure 1.6 depicts the memory demands of threads t1 and t2 of
Figure 1.5 to visit all induced subgraphs with three vertices. This access pattern is
scattered, and t1 and t2 belong to the same warp, resulting in uncoalesced memory requests
and the underutilization of GPU’s memory bandwidth.

The GPU is a set of streaming multiprocessors (SM), each of them containing
schedulers to execute warps in streaming processors (SP) in a SIMD fashion. The third
negative consequence of irregularity for GPU processing is the inherent load imbalance,
depicted by Figure 1.7. For the sake of simplicity, assume warps with two threads. In
this example, the GPU has two SMs, each with two SPs, and will execute subgraph
enumeration to visit all subgraphs with three vertices of the graph depicted in Figure 1.5.

1.1. Challenges 18

Figure 1.6: Memory uncoalescence during the access of adjacency lists.

Source: created by the author.

Each thread receives one vertex as the starting traversal, and the scheduler chooses one
warp at a time to execute in the SPs from a pool of warps. The number of subgraphs
visited by threads, warps, and SMs are indicated in parentheses and show the weight of
the tasks processed by each SM.

Figure 1.7: Load imbalance among warps and SMs.

Source: created by the author.

Regarding workload, there is a load imbalance among all threads within a warp.
Thus, one thread will become idle earlier than the others in all warps, decreasing the
warp efficiency. Besides, when we compare the number of subgraphs visited by different
warps and SMs, we notice that the intra-warp load imbalance scales to the entire GPU

1.1. Challenges 19

execution. This behavior is inherent to subgraph enumeration and is enhanced by the
scale-free property of real-world graphs [4], decreasing the GPU occupancy and resulting
in the underutilization of GPU’s massive parallelism.

1.1.2 Combinatorial Explosion

Breadth-First Search (BFS) and Depth-First Search (DFS) are the two standard
strategies used to traverse graphs in subgraph enumeration. Figure 1.8 depicts the inter-
mediate traversals needed by BFS and DFS strategies to generate the traversal {2, 8, 4}
using the same input graph G of Figure 1.3. BFS is a natural choice for subgraph enumer-
ation as it exports a regular parallelism and memory locality in exploring adjacency lists.
For example, the traversals in the second enumeration level of Figure 1.8(b) are produced
by accessing the entire adjacency list of vertex 2 at once. However, BFS materializes
all the traversals throughout enumeration, and the amount of memory required quickly
grows with the size of the traversal due to the combinatorial explosion in the number of
subgraphs, limiting its use to enumerate small subgraphs [12, 54].

Figure 1.8: Traversal strategies.

(a) Input graph

(b) BFS (c) DFS

Source: created by the author.

1.2. Limitations of the State-of-the-art Strategies 20

The DFS approach reduces the memory demand as only a tiny portion of the
states (traversals being actively processed) are kept during the enumeration. However,
its irregular and strided memory requests may severely affect its parallel performance on
GPU. For example, to produce the traversal {2, 8} in the second enumeration level of
Figure 1.8(c), DFS accesses only one vertex in the adjacency list of vertex 2, reducing the
opportunities to take advantage of GPU’s high-bandwidth memory. The strided memory
access pattern of DFS hardens memory locality and deteriorates cache performance.

In summary, the combinatorial explosion in the number of traversals generates a
tradeoff between memory efficiency and high memory demand concerning the traversal
strategy. BFS presents better memory locality, but combinatorial explosion limits BFS for
subgraph enumeration. On the other hand, DFS alleviates the effects of the combinatorial
explosion at the cost of a worse memory locality.

1.2 Limitations of the State-of-the-art Strategies

As we increase the size of the subgraphs visited by subgraph enumeration, we may
extend and improve the results produced by the GPM algorithms, as observed in example
applications presented below:

• Network motif algorithms are used to discover relevant patterns in collaboration
networks, and new collaboration patterns are found when the size of the visited
subgraphs is increased up to 5 vertices [13];

• Large cliques (up to 10 vertices) are useful to extract relevant hierarchical rela-
tions in several real-world datasets [42]. Besides, algorithms that enumerate large
quasi-cliques (a relaxation of the clique problem that returns only subgraphs fulfill-
ing a density criterion) are helpful to detect representative human protein-protein
interaction in biological networks [6];

• Graph compression algorithms [32, 49] may use the frequency of subgraphs to re-
duce the graph size in disk, usually by replacing frequent subgraphs with a shorter
representation. The larger are the subgraphs visited by subgraph enumeration, the
higher are the chances to find larger frequent patterns, thus improving the quality
of compression.

The GPU subgraph enumeration systems in the literature do not fully exploit
modern GPU computing power as they do not fully mitigate the critical challenges in
using this device for subgraph enumeration: irregularity and combinatorial explosion.

1.3. Thesis Statement 21

Consequently, they have scalability issues concerning the amount and the size of the
visited subgraphs.

Pangolin [12] and G2Miner [11] are the two most relevant state-of-the-art subgraph
enumeration systems designed for GPUs. Pangolin follows the pattern-oblivious paradigm
and uses the BFS exploration strategy. The BFS strategy generates high memory demand
due to the combinatorial explosion. As a pattern-oblivious approach, Pangolin needs to
perform isomorphism tests to filter subgraphs matching specific patterns. Pangolin per-
forms these tests on the CPU, generating a performance bottleneck. Besides, Pangolin
does not leverage optimizations to mitigate the impacts of irregularity during parallel
processing of subgraph enumeration on GPU (divergences, uncoalescence, and load im-
balance).

G2Miner [11] follows the pattern-aware paradigm and uses a DFS-like exploration
strategy. As a pattern-aware approach, G2Miner needs to generate custom exploration
plans to visit subgraphs matching a property. G2Miner provides a code generator to
create custom GPU kernels for patterns representing a desired property, but it does not
generate functional GPU codes for new patterns. Consequently, G2Miner is limited by
the input patterns available in the source code and does not propose strategies to deal
with the combinatorial explosion in the amount of patterns as we increase the size of
the desired patterns. For example, the motif counting application searches all possible
patterns with k vertices, and G2Miner mines patterns up to 4 vertices. Even in the clique
application, G2Miner is limited to enumerate subgraphs up to 8 vertices.

1.3 Thesis Statement

The central hypothesis of this thesis is that the design of novel subgraph enu-
meration strategies for GPUs to provide more regular execution with reduced memory
consumption improves the efficient use of GPU’s computing power for this problem. To
show that, we design novel subgraph enumeration strategies for GPUs, implement them
in a GPU-friendly system, and perform an extensive evaluation using real-world datasets.

1.4. Contributions 22

1.4 Contributions

The specific contributions of this thesis include:

• A novel traversal strategy designed for GPUs called DFS-wide, that provides the
benefits of both BFS and DFS strategies. It presents a reduced memory demand
by alternating between BFS and DFS phases, storing intermediate states with good
memory locality. While the memory consumption of BFS is exponential due to
the materialization of all intermediate states, DFS-wide presents a quadratic space
complexity w.r.t. the size of visited subgraphs;

• A subgraph enumeration workflow designed using regular enumeration phases. We
use the warp-centric model [24] to create enumeration steps with reduced divergences
and improved memory efficiency, taking advantage of DFS-wide’s memory locality
to perform coalesced requests. The use of DFS-wide along with the warp-centric
steps provides speedups up to 26× w.r.t. the baseline DFS version;

• A load-balancing layer that mitigates the inherent load imbalance of subgraph enu-
meration with minimum overhead to the GPU execution. Our strategy uses the
CPU to monitor GPU occupancy asynchronously and performs workload redistri-
bution. We use fine-grained information about the warps’ activity to decide when
GPU should be rebalanced, and redistribute enumeration tasks according to the
weight of the warps to provide a balanced redistribution. The inclusion of the load-
balancing layer in the warp-centric version provides speedups up to 99× w.r.t to the
warp-centric version without load-balancing;

• A subgraph enumeration system named DuMato, which implements our optimized
strategies to execute GPM algorithms efficiently on GPUs. DuMato proposes a
GPU-friendly implementation of the pattern-oblivious paradigm, and is not bounded
by the number of patterns and the size of subgraphs enumerated. We propose a novel
strategy for canonical relabeling which allows subgraph isomorphism tests inside
GPU, eliminating the overhead of calling CPU frameworks such as Nauty [41]. Du-
Mato is able to scale for larger subgraphs and achieves speedups up to two orders of
magnitude w.r.t. state-of-the-art subgraph enumeration systems. We have made our
system publicly available through the following link: https://github.com/samuelbferraz/DuMato.

1.5. Organization 23

1.4.1 Publications

This thesis has generated the following publication and submission, respectively:

• FERRAZ, SAMUEL; DIAS, VINICIUS; TEIXEIRA, CARLOS H. C.;
TEODORO, GEORGE; MEIRA, WAGNER. Efficient Strategies for Graph Pattern
Mining Algorithms on GPUs (published on IEEE SBAC-PAD 2022).

• FERRAZ, SAMUEL; DIAS, VINICIUS; TEIXEIRA, CARLOS H. C.;
PARTHASARATHY, SRINIVASAN; TEODORO, GEORGE; MEIRA, WAGNER.
DuMato: An Efficient Warp-Centric Subgraph Enumeration System for GPU (sub-
mitted to JPDC 2023, under review).

We also contributed in the following publication:

• DIAS, VINICIUS; FERRAZ, SAMUEL; VADLAMANI, ADITYA; ERFANIAN,
MAHDI; TEIXEIRA, CARLOS H. C.; GUEDES, DORGIVAL; MEIRA, WAGNER;
PARTHASARATHY, SRINIVASAN. Graph Pattern Mining Paradigms: Consolida-
tion and Renewed Bearing (accepted on IEEE HiPC 2023).

1.5 Organization

This thesis is organized as follows:

• Chapter 2 - Background: In this chapter, we present the concepts concerning
graph pattern mining and the foundations of the GPU architecture;

• Chapter 3 - Related Work: In this chapter we review the literature of subgraph
enumeration systems designed for GPUs and CPUs;

• Chapter 4 - DuMato Subgraph Enumeration System for GPUs: In this
chapter we introduce our system that is used as a software platform to develop our
strategies for subgraph enumeration on GPUs;

• Chapter 5 - Strategies for Efficient Enumeration on GPUs: In this chapter,
we present our strategies for efficient subgraph enumeration on GPUs using DuMato;

1.5. Organization 24

• Chapter 6 - Experimental Evaluation: In this chapter we provide an exper-
imental evaluation to show the improvements in our strategies and compare our
optimal implementation to the state-of-the-art subgraph enumeration systems;

• Chapter 7 - Final Remarks: In this chapter, we list the conclusions of this thesis
and propose extensions to address some limitations.

25

Chapter 2

Background

This chapter presents the main definitions for designing and implementing our strategies
for efficient subgraph enumeration on GPU. Section 2.1 presents the pertinent graph
theory concepts, the formal definition for subgraph enumeration, and examples of GPM
algorithms modeled according to this definition. Section 2.2 presents architectural details
of GPUs that are important to understanding the effectiveness of our proposed strategies.

2.1 Graph Pattern Mining

2.1.1 Graph Theory

For the sake of simplicity, we assume connected undirected graphs without labels
(Definitions 1 and 2). Despite that, the solutions proposed throughout this thesis may be
adapted to support directed graphs and labeled components.

Definition 1 A graph G is a structure defined by two sets: vertices and edges, denoted
as V (G) and E(G), respectively. If G has n vertices, V (G) is a set {v1, v2, ..., vn} and
E(G) is a set of unordered pairs (vi, vj) such that vi ∈ V (G), vj ∈ V (G), vi ̸= vj (no
self-loops) and vi is connected to vj.

Definition 2 A graph S is a subgraph of a graph G iff V (S) ⊆ V (G) and E(S) ⊆ E(G).
S is connected iff for every pair of vertices (vi, vj) ∈ V (S), vi reaches vj using edges in
E(S).

We say a subgraph S of a graph G is an induced subgraph (Definition 4) if E(S)

contains all edges connecting V (S) in G. Without loss of generality, in this work we
assume induced subgraphs that are connected (Definition 3). Thus, if not otherwise

2.1. Graph Pattern Mining 26

specified, when we say subgraph we mean connected induced subgraph. Figure 2.1 depicts
a graph G and an induced subgraph S of G.

Definition 3 A connected subgraph of a graph G is a subgraph S such that, for any
two vertices vi, vj ∈ V (S), there is a path connecting vi to vj in S.

Definition 4 An induced subgraph of a graph G is a subgraph S such that for any two
vertices vi, vj ∈ V (S), (vi, vj) ∈ E(S) iff (vi, vj) ∈ E(G). Induced subgraphs are usually
represented only by their vertex set because edges are implicitly drawn from G.

Figure 2.1: A graph G and an induced subgraph S.

Source: created by the author.

Subgraphs are discovered through incremental visits of vertices, called traversals
(Definition 5). A traversal represents an order that vertices are visited in a graph. Any
traversal is extracted from a set called traversal power set (Definition 6). When a traversal
is finished, it can be used to create an induced subgraph from its vertices, which is called
induced traversal (Definition 7). Figure 2.2 depicts a traversal tr and an induced traversal
using an input graph G.

Definition 5 A traversal is an array tr = [v1, · · · , vk] of k unique vertices of a graph G

(tr ⊆ V (G)), which stores an order each vertex v ∈ tr was visited in G (first appearance).
Given any two vertices x, y ∈ tr such that tr[i] = x, tr[j] = y and 0 ≤ i < j < k, there is
a path between x and y in G, and tr visited x prior to y.

Definition 6 Given a graph G, the traversal power set (TPS) is the set of all valid
traversals in G.

Definition 7 Given a traversal T in a graph G, an induced traversal is the induced
subgraph S such that V (S) = T . We also say T induces S.

2.1. Graph Pattern Mining 27

Figure 2.2: A traversal and an induced traversal.

Source: created by the author.

A traversal’s neighborhood (Definition 8) corresponds to the set containing the
unique vertices in the adjacency lists of vertices in the traversal. Algorithm 4 depicts a
pseudocode to determine the neighborhood of a traversal. A traversal uses its neighbor-
hood to visit new subgraphs.

Definition 8 Given a graph G and a subgraph S of G, the neighbourhood of S is a

function N : V (S)→ V (G) such that N(V (S)) =

(⋃
u∈V (S)

neighbours(u)

)
\ V (S).

1 Function N(tr):
2 neighbourhood← ∅
3 foreach v ∈ tr do
4 foreach n ∈ adjacency(v) do
5 valid← true
6 foreach v ∈ tr do
7 if n == v then
8 valid← false
9 break

10 end
11 end
12 if valid then
13 neighbourhood← neighbourhood ∪ n
14 end
15 end
16 end
17 return neighbourhood

Algorithm 4: Pseudocode to calculate the neighbourhood of a traversal tr.

Consider the graph G depicted in Figure 2.3 and the three traversals with 3 ver-
tices starting from vertices v1 (tr_v1), v5 (tr_v5) and v9 (tr_v9). These three traversals

2.1. Graph Pattern Mining 28

visit subgraphs that correspond to a path, and we say there is an isomorphism (Defi-
nition 9) between them. Traversals tr_v1 and tr_v5 are not only isomorphic but also
correspond to the same subgraph in G, and we say there is an automorphism between
them (Definition 10).

Figure 2.3: Traversals tr_v1, tr_v5 and tr_v9 are isomorphic. Traversals tr_v1 and
tr_v5 are automorphic.

Source: created by the author.

Definition 9 An isomorphism between two graphs G and H is a bijective function
f : V (G)→ V (H) such that, for all edges (vi, vj) ∈ E(G), (f(vi), f(vj)) ∈ E(H).

Definition 10 Given graphs G and H such that V (G) = V (H), we say an isomorphism
between G and H is an automorphism.

Consider now the graph G depicted in Figure 2.4. Given any induced traversal S
with 3 vertices obtained from G, there must be an isomorphism between S and one of
the subgraphs depicted in red. The set of subgraphs depicted in red is called pattern set
(Definition 11), and subgraphs p1 and p2 are called canonical patterns.

Definition 11 The pattern set (PS) is the minimal set of induced subgraphs (patterns)
with k vertices such that, given any graph G and an induced subgraph s of G with k vertices,
∃ p ∈ PS such that s is isomorphic to p. Patterns in PS are also called canonical
patterns, as they are stored using a standard and unique representation.

Canonical relabeling (Definition 12) is a common task in GPM algorithms and
maps a subgraph s to its corresponding canonical pattern.

Definition 12 Given an input graph G, a subgraph s of G with k vertices and the corre-
sponding pattern set, the canonical relabeling task consists in discovering which pattern

2.1. Graph Pattern Mining 29

Figure 2.4: A graph G and its possible subgraphs (patterns) with three vertices.

Source: created by the author.

in the pattern set (PS) is isomorphic to s and returning the corresponding isomorphism
function.

Next we present the problem definition, which is used to design and implement
Graph Pattern Mining algorithms in this thesis.

2.1.2 Problem Definition

Graph Pattern Mining (GPM) algorithms aim to generate subgraphs with k ver-
tices that satisfy a desired property. Definition 13 presents subgraph enumeration using
a function E, which reaches traversals with k vertices starting from an initial traversal.
Function P models the property that enumerated subgraphs are expected to fulfill. GPM
algorithms are expected to generate an output (e.g., counting the number of subgraphs),
and function A receives each enumerated subgraph with k vertices to produce the expected
output of the algorithm.

Definition 13 E : (G, tr, k, P,A)→ TR is a function such that:

E(G, tr, k, P,A) =

⋃

u∈N(tr)

E(G,P (tr + u), k, P,A) if 0 < |tr| < k (1)

A(tr) if |tr| = k (2)

∅ if |tr| = 0 (3)

where G is a graph; tr ∈ TPS; k ≥ |tr|; P : TPS → TPS is a property such that
P (tr) = tr if tr satisfies a property, and ∅ otherwise; A(tr) produces results for the GPM
algorithm; and TR ⊆ TPS.

2.1. Graph Pattern Mining 30

In order to implement E, we must choose a traversal strategy to visit subgraphs.
The two main traversal strategies are breadth-first search (BFS) and depth-first
search (DFS), and Algorithm 5 depicts implementations of a function E using these
strategies. BFS builds a queue to materialize all traversals generated throughout enumer-
ation. On the other hand, DFS materializes only one traversal at a time and extends it
recursively.

1 Function E_BFS(G, tr, k, P , A):
2 queue← {tr}
3 while queue ̸= ∅ do
4 tr ← dequeue(queue)
5 if |tr| == 0 then
6 return
7 end
8 else if |tr| == k then
9 A(tr)

10 end
11 else
12 foreach v ∈ N(tr) do
13 tr′ ← tr + v
14 enqueue(queue, P (tr′))

15 end
16 end
17 end

18 Function E_DFS(G, tr, k, P , A):
19 if |tr| == 0 then
20 return
21 end
22 else if |tr| == k then
23 A(tr)
24 end
25 else
26 foreach v ∈ N(tr) do
27 tr′ ← tr + v
28 E_DFS(P (tr′), k)

29 end
30 end

Algorithm 5: Algorithms for function E using BFS and DFS traversals.

Given the graph G of Figure 2.5(a), consider the calls E_BFS and E_DFS

depicted in Figures 2.5(b) and 2.5(c). Assume a function P that allows visiting all possible
traversals. The green induced traversals to represent the first occurrence of the same
induced traversal [v1, v2, v5] in both exploration strategies. BFS visits subgraphs [v1, v3]

and [v1, v4] (represented in yellow), keeps these two intermediate states in memory, and
reaches [v1, v2, v5] afterward. On the other hand, DFS goes straight to [v1, v2, v5] without
keeping intermediate states [v1, v3] and [v3, v4].

In order to understand how the enumeration function E may be used to design
GPM algorithms, consider the GPM algorithms clique listing (Definition 14) and motif
counting (Definition 15), depicted by Figure 2.6. Algorithms 6 and 7 depict the design
of GPM algorithms for these problems. Without loss of generality, we choose the DFS
implementation of enumeration function E.

Definition 14 A clique of size k is a graph C with k vertices such that, for every vi ∈
V (C) and vj ∈ V (C), (vi, vj) ∈ E(C). Given a graph G, the clique listing problem lists
all cliques of G with k vertices.

2.1. Graph Pattern Mining 31

Figure 2.5: Traversal strategies

(a) Graph G

(b) E_BFS(G, {v1}, k, P, A) (c) E_DFS(G, {v1}, k, P, A)

Source: created by the author.

Figure 2.6: Clique counting and motif counting algorithms.

Source: created by the author.

Definition 15 A motif of size k is a vertex-induced connected subgraph containing k

vertices. The motif counting problem counts the amount of each motif of size k in a
graph G.

For clique listing (Algorithm 6), property function P checks whether the induced
traversal is a clique, and A function prints the cliques with k vertices. For motif counting

2.1. Graph Pattern Mining 32

1 Function P(tr):
2 foreach v ∈ tr do
3 foreach v′ ∈ tr do
4 if v ̸= v′ and v′ /∈ adj(v) then
5 return ∅
6 end
7 end
8 end
9 return tr

10 Function A(tr):
11 print(tr)

12 Function clique_listing(G, k):
13 foreach v ∈ V (G) do
14 E_DFS(G, v, k, P, A)
15 end

Algorithm 6: Clique listing using enumeration function E.

1 Function P(tr):
2 return tr

3 Function A(tr):
4 s← induced_traversal(tr)
5 pattern← canonical_relabeling(s)
6 count[pattern]← count[pattern] + 1

7 Function motif_counting(G, k):
8 foreach v ∈ V (G) do
9 E_DFS(G, v, k, P, A)

10 end

Algorithm 7: Motif counting using enumeration function E.

2.1. Graph Pattern Mining 33

(Algorithm 7), property function P allows all traversals to pass (any induced traversal
with k vertices is valid), and function A discovers which canonical pattern p is isomorphic
to the traversal and increments the counter associated with p.

2.1.3 Subgraph Enumeration Paradigms

Given a graph G and a property P , Figure 2.7 depicts the two subgraph enu-
meration paradigms used to visit subgraphs matching P in G: pattern-oblivious and
pattern-aware. In the pattern-oblivious approach, all subgraphs of a specific size are vis-
ited regardless of P , and the ones that fulfill P are selected afterwards. In order to filter
subgraphs matching a pattern, this approach relies on subgraph isomorphism tests. Unfor-
tunately, the state-of-the-art subgraph isomorphism tools are designed for CPU [41, 29].
Besides, visiting subgraphs regardless of the property increases the number of visited
subgraphs and the overall cost of this approach.

Figure 2.7: Subgraph enumeration paradigms.

Source: created by the author.

The pattern-aware approach uses the desired graph property to create an explo-
ration plan [7, 23] to visit only subgraphs matching the property. Instead of materializ-
ing all subgraphs and checking properties afterward, pattern-aware uses the exploration
plan to extract from the adjacency lists only the extensions that produce new subgraphs
matching the property, eliminating the need of graph isomorphism algorithms. The main
disadvantage of pattern-aware is the need of custom rules for each pattern associated with
a property. For example, if you use this paradigm to visit quasi-cliques, you will have
to create custom rules for each possible pattern associated with the desired quasi-cliques.
When we increase the size and the amount of patterns, the cost and complexity of gener-
ating thousands of exploration plans may limits the scalability of subgraph enumeration
systems using this paradigm. For example, G2Miner [11] has a hardcoded restriction that

2.2. GPU Architecture 34

limits the execution of the motif counting application (which visits all subgraphs with a
certain size) for subgraphs up to 4 vertices.

Next we present the main concepts concerning our target computing architecture:
GPUs.

2.2 GPU Architecture

GPUs are parallel computing devices containing thousands of cores and a high-
bandwidth DRAM. The two leading manufacturers of current GPUs are NVIDIA [44]
and AMD [3]. Although they differ concerning low-level hardware, their execution and
memory models share the same architectural concepts. NVIDIA’s GPUs have been widely
used to accelerate applications, and we will explain the architectural details of GPUs using
NVIDIA’s nomenclature.

GPUs follow the Single Instruction Multiple Thread (SIMT) execution model,
depicted in Figure 2.8. A code is executed in a Single Instruction Multiple Data (SIMD)
fashion by groups of threads called warps. Each thread of a warp has a local sequential
id called lane, which is an integer in the range [0 · · · warpsize − 1] used to distiguish
each thread inside the warp. Threads within a warp are supposed to execute the same
instruction in lockstep using their data. A warp is an independent computing unit, and
different warps do not share program counters. Warps are organized in groups called
blocks, and the grid is the set comprising all blocks. The warp size is fixed (usually 32)
and depends on the GPU architecture, but the programmer defines the block and grid
sizes. Threads can be identified concerning the grid (global id), to the block (local id),
and to the warp (private id).

Figure 2.9 depicts the execution and memory architecture of current GPUs. A
GPU is an array of Streaming Multiprocessors (SM), which are responsible for executing
a set of warps. Each SM receives a set of blocks to execute, and warps within the same
block are scheduled to execute in the same SM. Each SM contains the following:

• Cores (CO), the smallest execution unit. A group of n cores is scheduled to execute
a warp with n threads in a SIMD fashion. An SM usually contains 32 to 128
cores [44];

• Register File, a private memory of each core. The amount of registers allocated for
warps depends on the total amount of threads scheduled to execute on the GPU;

• Warp Schedulers, which schedules the execution of warps within an SM. Each SM

2.2. GPU Architecture 35

Figure 2.8: SIMT execution model.

Source: created by the author.

contains its warp schedulers, as SMs are supposed to schedule warps independently.
The amount of warp schedulers per SM depends on the warp size and the number of
cores per SM. For example, an SM with 64 cores executing 32-thread warps contains
two warp schedulers;

• L1 Data Cache and Shared Memory, a configurable memory cache shared among
cores within the same SM. It can be used as an L1 hardware data cache and/or as
a shared memory for warps executing in the same SM.

Memory requests not serviced by the internal SM memory hierarchy are forwarded
to the L2 cache and HBRAM. The L2 cache has a fixed size and provides hardware
caching with spatial and temporal locality. The HBRAM is a high bandwidth DRAM
that can service parallel memory requests using few memory transactions when specific
requirements are met.

The primary requirement to effectively use HBRAM is: the k-th thread within
a warp must access the k-th word of the same 32-byte, 64-byte, or 128-byte memory
segment. Memory requests are serviced with memory transactions that are 32-byte, 64-
byte, or 128-byte wide. Fewer memory transactions are needed when threads within the
same warp request positions in the same memory segment.

Algorithm 8 depicts the code of three warps w1, w2 and w3 (32 threads each).
The argument vec is an array of 4-byte integers, and the function private_id() returns
an integer in range [0 · · · 31], corresponding to the thread id with respect to the warp.
In order to understand how memory requests are serviced on GPUs, we will analyze the
number of memory transactions to access vec[id] in each warp (last line of each function).

2.2. GPU Architecture 36

Figure 2.9: GPU’s execution and memory model.

Source: created by the author.

1 Function w1(int ∗ vec):
2 int id← private_id()
3 int value← vec[id]

4 Function w2(int ∗ vec):
5 int id← private_id()
6 id← id ∗ 32
7 int value← vec[id]

8 Function w3(int ∗ vec):
9 int id← private_id()

10 if id%2 == 0 then
11 ...
12 int value← vec[id]

Algorithm 8: Functions representing code executed by three different warps.

For w1, thread 0 requests vec[0], thread 1 requests vec[1], thread 2 requests vec[2]

and so forth. Thus, memory requests of w1 are within the same 128-byte memory seg-
ment (vec[0 · · · 32]), and we say the GPU services these requests using only one coalesced
transaction. For w2, thread 0 requests vec[0], thread 1 requests vec[32], threads 2 requests
vec[64] and so forth. Thus, each memory request of w2 belongs to a different 128-byte
memory segment, and we say the GPU services these requests using 32 uncoalesced trans-
actions.

Warp w3 shows the importance of regularity for efficient memory requests. As w1,
memory requests of w3 belong to the same 128-byte memory segment. Despite that, half
of w3’s threads (odd ids) will reach line 12 prior to the other half (even ids) due to the
conditional statement in line 10. We say there is a branch divergence in threads of w3,
as threads within the same warp need to execute different instructions after a certain
execution point. After divergence, w3 is divided into two execution units (odd and even
threads), which are scheduled independently, including their memory requests. Thus,
although all memory requests of w3 belong to the same memory segment, two identical
transactions (vec[0 · · · 32]) are generated to service w3 due to divergence. Half of the

2.2. GPU Architecture 37

positions of each transaction are not used and represent wasted bandwidth.

38

Chapter 3

Related Work

This thesis aims to design novel strategies to improve the efficiency of graph pattern
mining algorithms on GPUs. Thus, we must be able to deal with the execution behavior
and memory consumption of this class of algorithms. This section reviews the literature
on general-purpose subgraph enumeration systems designed for CPUs and GPUs.

Table 3.1 summarizes the works discussed. We analyze how their strategies mit-
igate the challenges for parallel subgraph enumeration (irregularity and combinatorial
explosion). For CPU systems, we analyze regularity by inspecting memory locality and
load balancing. For GPU systems, we analyze regularity by inspecting divergences, mem-
ory uncoalescence, and load-balancing strategies. For both architectures, we analyze the
impacts of the combinatorial explosion phenomenon by examining the memory require-
ments of each system.

Parallel implementations of specific GPM algorithms were proposed for multi-
core [14, 1, 34, 47, 19] and manycore architectures [31, 36, 55, 26, 2]. However, these
solutions do not provide a general-purpose environment that allows the design of other
GPM applications and will not be covered in this chapter.

3.1 Subgraph Enumeration Systems for CPU

Arabesque [54] is one of the first systems targeting distributed memory machines
and the first to support subgraph-centric parallel processing. The algorithmic approach
adopted by Arabesque is known as pattern-oblivious because it does not rely on pattern
generation to guide the subgraph enumeration. Arabesque proposes a data structure
to compress subgraphs in memory and to mitigate the memory demands of the BFS-
style exploration. At the same time, it also employs load balancing using a round-robin
strategy. It proposes a novel canonicality checking algorithm, which allows a coordination-
free exploration strategy, along with a two-level aggregation mechanism that reduces the
amount of isomorphism checking. Despite Arabesque’s compressed data structure to

3.1. Subgraph Enumeration Systems for CPU 39

GPM System Proc. Explor. Enumeration
strate. paradigm

Arabesque [54] CPU BFS Pattern-oblivious
NScale [46] CPU BFS Pattern-oblivious
G-miner [10] CPU BFS Pattern-oblivious
RStream [56] CPU BFS Relational
Automine [40] CPU DFS Pattern-aware
Fractal [16] CPU DFS Pattern-oblivious
Pangolin [12] CPU+GPU BFS Pattern-oblivious
Peregrine [28] CPU DFS Pattern-aware
G-thinker [58] CPU BFS Pattern-oblivious
GraphPi [50] CPU DFS Pattern-aware
PBE [21] GPU DFS Pattern-oblivious
Kaleido [61] CPU BFS Pattern-oblivious
GraphZero [39] CPU DFS Pattern-aware
SumPA [20] CPU DFS Pattern-aware
G2Miner [11] GPU BFS/DFS Pattern-aware

Table 3.1: Related work.

store intermediate enumeration data, its BFS-style enumeration limits the enumeration
of bigger subgraphs due to the combinatorial explosion.

NScale [46] proposes a distributed graph computing environment for neighborhood-
centric processing, which is more suitable for graph analytics algorithms such as PageR-
ank. Thus, it only supports simple GPM algorithms (e.g., triangle counting). The authors
propose optimizations to reduce the memory requirements by exploiting overlaps among
the subgraphs on a machine. However, its neighborhood-centric design presents a high
memory consumption as it requires the construction of subgraphs prior to execution. They
divide the graph into partitions and use bin packing-based algorithms to create partitions,
along with a distributed cache mechanism to improve memory locality. However, the dy-
namic behavior of subgraph enumeration limits the effectiveness of this load-balancing
strategy.

G-miner [10] is a system whose primary goal is to propose a task pipeline to
mitigate the load imbalance of enumeration tasks in a distributed environment. They
bound the memory consumption caused by combinatorial explosion using secondary stor-
age (disk) and also improved memory locality using local caches to avoid pulling remove
vertices. They propose static and dynamic load-balancing schemes. The static scheme
uses a greedy algorithm to divide the graph into partitions using graph coloring and

3.1. Subgraph Enumeration Systems for CPU 40

CC (connected components) finding algorithms. The dynamic scheme allows task steal-
ing among workers, as an optimal static load balancing scheme is hard to predict for
subgraph enumeration. Other parallel architectures may use the general-purpose task
pipeline proposed by G-miner to allow static and dynamic load balancing schemes with
reduced synchronization overheads. However, it is also a BFS-like enumeration algorithm.
Although the authors use secondary storage to keep the intermediate states, the amount of
I/O transactions and the size of the second storage impacts the performance and viability
of enumerating bigger subgraphs.

Similarly to G-miner, G-thinker [58] proposes a task scheme for distributed graph
pattern mining processing. They improve memory locality using a hierarchical caching
scheme through three kinds of tables, reducing the I/O costs of concurrent accesses to
vertices. It also improves load balancing by providing a more lightweight task scheme
that removes the need for graph partitioning. It also proposes different task containers to
model enumeration tasks. Both cache tables and task containers can be parameterized to
provide bounded memory consumption. It also supports dynamic load balancing and fault
tolerance. However, its BFS-like enumeration strategy still needs to eliminate the impacts
of combinatorial explosion and presents the same limitations concerning the length of the
enumerated subgraphs.

RStream [56] is an out-of-core single-machine relational system that relies on join
operations to perform subgraph enumeration. The main goal of RStream is to provide
a subgraph enumeration that can scale for bigger subgraphs by increasing disk capacity
at the cost of suboptimal performance. Thus, their strategies optimize join operations
and provide a friendly programming interface. They propose a load-balancing strategy
that divides the intermediate tables produced by enumeration into chunks, which are
pushed back into a job list managed by a produced-consumer algorithm. The user must
build its relational phases using callback functions to allow canonical filters/redundancy
elimination. After each join, tuple reshuffling is performed to provide memory locality
in partitions. It incorporates canonical filtering and two-level pattern aggregation from
Arabesque [54, 27]. They do not propose strategies to improve memory locality. The join-
based scheme used by RStream is similar to a BFS-like enumeration algorithm. Thus it
presents severe limitations caused by the intermediate states produced by the expensive
join operations, causing high memory consumption and intensive I/O requests as the
length of enumerated subgraphs increases.

Fractal [16] was the first distributed memory CPU-based system to use a DFS-like
strategy for subgraph enumeration. The DFS exploration reduces the materialization of
the intermediate states produced by enumeration, reducing the memory requirements and
mitigating the impacts of combinatorial explosion. In order to mitigate load imbalance,
they use job queues to propose a work-stealing mechanism such that threads in the same
node steal local jobs prior to stealing from remote nodes, reducing the communication

3.1. Subgraph Enumeration Systems for CPU 41

overheads. They do not propose strategies to improve memory locality.
Specific patterns may allow custom optimizations and execution plans, and Au-

toMine [40] proposes an automated code generation for GPM algorithms on CPU through
set intersection/subtraction operations. It uses the pattern-aware exploration strategy,
where patterns guide the subgraph enumeration by leveraging specialized execution plans.
It employs scheduling of intersect/subtract operations to automate code generation for
custom patterns, and optimizes code for a single pattern by calculating loop-invariant
neighborhoods (prefixes) and saving them before nested loops. In the same way, Pere-
grine [28] is a parallel GPM system designed for shared memory CPU machines, which
uses the same concepts of AutoMine but proposes an API that allows high-level pro-
gramming of GPM algorithms. It proposes the concepts of anti-vertices and anti-edges to
allow advanced structural constraints in the enumeration. As the pattern-aware approach
is specialized for specific patterns, it may be too expensive in general-purpose GPM sce-
narios where subgraph exploration typically involves multiple patterns. Both systems use
a DFS-like enumeration scheme, thus reducing the memory requirements. AutoMine mit-
igates neither memory locality nor load imbalance. Peregrine does not mitigate memory
locality and uses a minimalist load balancing scheme to reduce the load imbalance across
matching tasks, which is not enough to mitigate load imbalance.

GraphPi [50] and GraphZero [39] are pattern-aware systems that propose improve-
ments for nested-loop-based (e.g., AutoMine [40]) implementations of GPM algorithms.
GraphPi discusses the tradeoff concerning symmetry-breaking and the performance of
subgraph matching. For instance, some rules may prune all automorphisms but gener-
ate unnecessary intermediate states. It proposes a novel strategy to break the symmetry
of patterns (2-cycle based) and an efficient schedule generator that estimates the cost
of symmetry-breaking rules along with the execution plan. At last, a strategy to deal
with counting-only algorithms is proposed. GraphZero proposes optimizations for auto-
mated code generated by AutoMine. Its schedule generator uses a performance model
to generate an optimal schedule, and, using this schedule, its symmetry-breaking rules
are extracted and allow the reduction of automorphisms to one. At last, it generalizes
the orientation optimization (standard in specific patterns such as cliques), where the
vertices are reindexed, and pruning is improved. Both perform DFS-like enumeration and
present reduced memory usage, thus mitigating the impacts of combinatorial explosion.
GraphPi does not propose a strategy to improve memory locality and uses a minimalist
work-stealing mechanism that keeps a task queue containing a set of tasks greater than a
threshold (not enough to mitigate load imbalance for all datasets). GraphZero mitigates
neither memory locality nor load imbalance.

Kaleido [61] is an out-of-core system designed to overcome the main limitations of
Arabesque. It proposes another compact data structure to store intermediate enumeration
states (an improvement over Arabesques’s ODAG data structure) with an I/O layer to

3.2. Subgraph Enumeration Systems for GPU 42

provide external storage. It also improves isomorphism checking by proposing filters to
reduce the calls for canonical relabeling libraries. The key contribution of Kaleido w.r.t.
load imbalance is a strategy to predict the size of the subgraph candidates level by level
and use this information to create subgraph partitions between threads. Although it is
possible to predict the size of subgraph candidates level by level, this information is not
enough to accurately predict the volume of jobs generated by a subgraph. As Kaleido
uses a BFS-like exploration strategy, it presents the same limitations concerning the length
of the enumerated subgraphs due to the combinatorial explosion. They do not propose
strategies to improve memory locality.

Nested-loop-based systems such as AutoMine and Peregrine rely on custom symmetry-
breaking rules and schedule generation for each pattern enumerated. As patterns may
share substructures, enumerating distinct patterns independently may represent redun-
dant computation. Besides, GPM algorithms that enumerate thousands of patterns (e.g.,
motif counting) may suffer from high overheads. SumPA [20] proposes strategies to merge
patterns according to their similarities to reduce redundant computation. They reduce
the impacts of combinatorial explosion by using a DFS-like exploration scheme. They
also improve load imbalance by reordering the graph’s vertices using the degrees and pro-
viding metadata of parallel enumerations to allow work stealing. They improve memory
locality by caching the edges of overused vertices and caching their data structure that
stores shared substructures of patterns.

In the next section, we describe some subgraph enumeration systems for GPU.

3.2 Subgraph Enumeration Systems for GPU

We describe the two main subgraph enumeration systems for GPUs: Pangolin [12]
and G2Miner [11]. They were chosen because both provided a high-level API to facilitate
the creation of other GPM applications and also performed an experimental evaluation of
at least two distinct GPM applications. Other works such as PBE [21] and NemoGPU [36]
are not described because they were designed specifically for one GPM application and do
not provide a high-level programming interface to simplify the implementation of other
GPM algorithms.

Pangolin [12] is a GPU system that follows the pattern-oblivious enumeration
using the BFS exploration strategy. Pangolin’s design enables to optimize executions by
pruning the search space of subgraphs and by reducing the number of isomorphism tests
required. Materialized intermediate states generated by the BFS exploration facilitate the
runtime to leverage BSP (Bulk Synchronous Parallel) load-balancing schemes. Despite

3.2. Subgraph Enumeration Systems for GPU 43

that, they do not propose load-balancing strategies, and the high memory demands of BFS
limit its applicability to enumerate small subgraphs due to the combinatorial explosion.
Besides, Pangolin does not leverage optimizations to handle memory uncoalescence and
divergences of parallel GPM algorithms on GPU and relies on CPU frameworks to perform
isomorphism tests.

G2Miner [11] is a pattern-aware system designed for multi-GPU processing. It
allows the application to choose between a bounded BFS and a DFS enumeration, and
a warp-centric execution for the set intersect operations among adjacency lists. It uses
a simple work distribution scheme, which is edge-centric rather than vertex-centric. It
also proposes a task-scheduling mechanism to distribute enumeration tasks among GPUs.
As a pattern-aware environment, it is supposed to generate exploration plans for each
query pattern, and G2Miner proposes a software architecture that generates custom GPU
kernels for each pattern, as depicted by Figure 3.1. G2Miner suffers from limitations
when enumerating larger subgraphs, and our experimental evaluation (detailed later in
Chapter 6) reflects this. Pattern-bounded applications such as motif counting are executed
only for subgraphs up to 4 vertices, and their code generator does not generate functional
GPU code when a new pattern is provided as input. Besides, their load balancing scheme
is too simple to mitigate the inherent load imbalance among enumeration tasks, as edge-
centric workload distributions also suffers from load imbalance.

Figure 3.1: G2Miner execution workflow.

Source: [11].

The GPM systems for GPUs show that this architecture can provide performance
gains concerning multicore architectures. However, these works still need to fully address
the critical challenges concerning parallel subgraph enumeration on GPUs (combinato-
rial explosion, memory uncoalescence, divergences, and load imbalance). Pangolin has
scalability issues due to its BFS-like exploration that materializes the massive amount of
intermediate data created by the combinatorial explosion. Besides, they do not mitigate
memory uncoalescence, divergences, and load imbalance. G2Miner provides strategies to
reduce the impact of combinatorial explosion by providing a bounded BFS or DFS-like
scheme, depending on the algorithm. They also provide a warp-centric scheme to perform
the set-intersection operations and improve divergences and memory coalescence. How-
ever, the gains obtained with the warp-centric strategy are small compared to their base-

3.3. Other Graph Mining Systems 44

line implementation (2x). For example, our warp-centric enumeration scheme achieved
speedups up to 33x due to increased memory coalescence and lockstep execution (detailed
later in Section 6.2). Besides, their load balancing mechanism is minimalist for the com-
plexity of subgraph enumeration’s inherent load imbalance, and their implementation of
the pattern-aware subgraph enumeration paradigm does not work when a diverse set of
patterns with more than 4 vertices are provided.

We propose strategies to deal with the combinatorial explosion, mitigate memory
uncoalescence/divergences and load imbalance. Besides, our pattern-oblivious enumera-
tion scheme is scalable for a more significant number of patterns compared to pattern-
aware systems such as G2Miner.

3.3 Other Graph Mining Systems

There is a similar class of graph systems primarily designed to implement graph
mining algorithms such as PageRank, HITS and betweenness centrality. These algorithms
have a different execution behavior and memory consumption compared to graph pattern
mining ones. Figure 3.2 depicts the execution of the PageRank algorithm using GunRock’s
summarized workflow [57], the most popular system for GPU designed for these graph
mining algorithms. Other systems such as CuSha [33] and Ligra [51] follow the same
principles but using a different workflow.

The PageRank algorithm uses vertices to represent webpages and edges to rep-
resent links between them. For each page (vertex), it computes a relevance score using
their incoming links (edges). The algorithm starts with a set of active vertices/edges
called frontiers. In PageRank, the initial frontier is the set of all vertices. It visits the
adjacency lists for each vertex in the frontier set to discover incoming links and computes
the per-page scores. Once the values are calculated, a synchronization step propagates
the score values to the active vertices in the frontier. These graph mining algorithms rely
on convergence parameters, and, as long as a convergence criterion is not reached, they
continue processing. The PageRank algorithm continues computing per-page relevance
scores if the difference between the new and old scores exceeds a threshold. The algo-
rithm updates the frontiers with the vertices whose scores should be recomputed, and the
computing cycle restarts.

In order to understand the behavior of graph pattern mining algorithms, Fig-
ure 3.3 depicts the enumeration of all induced subgraphs with four vertices of the same
input graph used in the PageRank example. The computation starts from each vertex,
and the compute steps produce the intermediate states needed throughout enumeration.

3.3. Other Graph Mining Systems 45

Figure 3.2: Graph analytics execution workflow.

Source: created by the author.

Li represents the i-th set of intermediate states each vertex generates. Subgraph enumer-
ation performs a cartesian product between the current set of intermediate states and the
adjacency lists to produce new states, thus generating an exponential amount of interme-
diate states. The enumeration of all induced subgraphs with five vertices ends when the
cartesian product of L4 finishes for each starting vertex.

One may consider GunRock to implement the subgraph enumeration depicted in
Figure 3.3. We can initialize the frontier set using all vertices, the compute step can pro-
duce the intermediate states through cartesian products, the update phase can insert each
intermediate state with less than four vertices into the frontiers to continue enumeration,
and the convergence step can stop enumeration if no intermediate states are available.
The problem is that, in this workflow, storing all intermediate states to update the fron-
tier using updated values produced by the compute phase is mandatory. However, keeping
all intermediate states for subgraph enumeration is unfeasible due to the combinatorial
explosion in the intermediate states. Using GunRock’s workflow to implement subgraph
enumeration is equivalent to using the BFS traversal strategy, which inherently limits the
enumeration of larger subgraphs in real-world datasets [54, 12]. GunRock implements the
subgraph matching algorithm, which uses subgraph enumeration to return all subgraphs
matching a pattern in a graph. However, our tests showed that this application works
only for the triangle counting pattern. This seems to be an unresolved issue of GunRock’s

3.3. Other Graph Mining Systems 46

Figure 3.3: Graph pattern mining execution workflow.

Source: created by the author.

API1.
In summary, the state-of-the-art subgraph enumeration systems for GPU do not

fully exploit GPU’s computing power and can not execute subgraph enumeration when
a diverse set of patterns with more than four vertices is used as input. Next, we present
DuMato, our GPU-friendly subgraph enumeration system, which will be used to design
and implement our novel strategies for efficient subgraph enumeration on GPU.

1https://github.com/gunrock/gunrock/issues/804

47

Chapter 4

DuMato Subgraph Enumeration
System for GPUs

In this chapter we present DuMato, our subgraph enumeration system that supports a
high-level implementation of GPM algorithms on GPU and will be used as a software
platform to implement our novel strategies for subgraph enumeration on those platforms.
The execution workflow of DuMato (Figure 4.1) employs the filter-process model [54],
which allows the implementation of GPM algorithms based on an enumeration function
E (Definition 13). Each circle refers to a phase in the enumeration workflow.

Figure 4.1: DuMato execution workflow.

Source: created by the author.

The process starts with a call E(G, tr, k, P,A) to enumerate and output traversals
of size k that satisfy property P extended from an initial traversal tr. The initial traversal
tr is used as input to a Control phase, which implements the termination condition (step
3 in Def. 13). The output of the Control phase is a decision on whether the subgraph

48

enumeration should proceed (traversal is not empty) or terminate (traversal becomes
empty). If enumeration continues, the Extend phase computes the extensions from the
current traversal (step 1 of Def. 13). These possible extensions are in the neighborhood
of the current subgraph and are obtained from the adjacency of vertices in the traversal
(Def. 8). The Extend phase outputs the current traversal and its extensions.

Next, application-specific semantics may be employed to narrow the subgraph
search in the Filter phase, which selects subgraphs that satisfy some property P . For
example, a property P may check whether a subgraph is a clique. This is carried out by
passing over the extensions to invalidate those that do not satisfy property P . Multiple
filters may be executed depending on which conditions must be verified to ensure property
P . This phase is also responsible for compacting the extensions array such that invalid
values are removed, and the extensions are reorganized in a contiguous memory/array.
The Filter phase outputs the current traversal and extensions that are valid.

After all filters are executed, if traversal size reaches the target number of vertices,
they are forwarded to the enumeration output (step 2 of Def. 13). This is accomplished
in the Aggregate phase, in which traversals are consumed for counting, pattern counting,
or buffering. The Aggregate phase is skipped if the traversal has not reached the target
number of vertices.

Further, the Move phase decides whether to move forward or backward in the
subgraph exploration. Moving forward means that an unprocessed extension is appended
to the current traversal for processing (recursion call). Moving backward means that all
extensions of the current traversal have been processed, and the algorithm can go back
to processing smaller traversals (recursion return). The output of the Move is a modified
traversal that should restart the workflow at the Control, closing the cycle in Figure 4.1.

DuMato’s workflow (Fig. 4.1) can represent any GPM algorithm relying on the
enumeration of induced subgraphs. Table 4.1 shows DuMato’s API specification that
may be used to create GPM algorithms. The functions receive as a parameter a data
structure holding runtime information about the active traversal and extension arrays
(TE, detailed later in Fig. 5.3) along with additional parameters.

Functions Phase Scope
[CT] control(TE) Control Algorithm-independent
[MV] move(TE, genedges) Move
[EX] extend(TE, begin, size) Extend

Algorithm-specific
[FL] filter(TE, P, args) Filter
[A1] aggregate_counter(TE)

Aggregate[A2] aggregate_pattern(TE)
[A3] aggregate_store(TE)

Table 4.1: DuMato API.

Control and Move phases keep the workflow active while unprocessed traversals

49

are in the search space. Because this loop-based exploration is familiar to most GPM
algorithms searching for multiple subgraphs, these phases are independent of algorithm
semantics. Functions [CT] and [MV] implement these two phases. [CT] allows the un-
derlying runtime to check the termination conditions of the execution. [MV] implements
the traversal order of exploration and receives an additional parameter genedges that
determines whether the edges of the current traversal should be generated.

The Extend, Filter, and Aggregate phases enable a straightforward and efficient
representation of application-specific semantics on GPUs. The function [EX] implements
the Extend phase and generates the extensions array by fetching the neighborhood of
vertices in the traversal at positions in range [begin, size). This may be used to generate
extensions using alternative strategies that may be more effective in exploring subgraphs
having patterns known apriori [15, 28]. [FL] implements the Filter phase and allows
invalidating extensions that do not satisfy a user-defined property. The input to this
call is a function and its arguments (property P and args, respectively), applied to each
extension to maintain only the valid ones. This interface can be used to design custom
subgraph filters of extensions based on canonical candidate generation [54], density [37],
and subgraph matching [22], among others. [A1], [A2], and [A3] implement the Aggre-
gate phase: [A1] counts the number of valid extensions in the array of extensions; [A2]
counts the number of traversals per pattern; and [A3] allows buffering of traversals for
custom semantics and further downstream processing. These may be used, for instance,
for subgraph counting [15] and scoring [25].

Algorithms are implemented in a loop that processes new traversals until the ter-
mination condition is reached. After each loop iteration, DuMato moves the exploration
to a new traversal in preparation for the next iteration. This is common to most GPM
algorithms and can be observed in lines 10 and 19 of Algorithm 9, which presents the
implementation of two representative GPM algorithms using DuMato API: clique count-
ing and motif counting. Bold lines marked with represent algorithm-specific semantics
that uses DuMato’s API. Consequently, new algorithms with new extend, filtering and
aggregation demands may be implemented by replacing those lines.

Next, we detail how the enumeration phases (Figure 4.1) and the API (Table 4.1)
of DuMato may be used to design and implement the clique counting and motif counting
algorithms.

Clique counting. Given a graph G, the clique counting problem seeks to count
the number of cliques with k vertices within G. Clique counting represents algorithms
whose goal is searching for subgraphs with the same pattern. Because a clique extension
must be adjacent to every vertex in the traversal, the Extend phase generates the array
of extensions from the neighbors of a single vertex in the traversal. [EX] call in line 3
of Algorithm 9 implements this idea by indicating that the current extensions should be
obtained from the neighbors of the first vertex in the traversal (represented by the range

50

1 void clique_counting(TE){
2 while(control(TE)){
3 if(!extend(TE,0,1)){
4 u← TE[TE.len− 1].id;
5 filter(TE, &lower_than , [u]);
6 filter(TE,&is_clique, []);
7 }
8 if(TE.len == k − 1)
9 aggregate_counter(TE);

10 move(TE, false);
11 }
12 }

13 void motif_counting(TE){
14 while(control(TE)){
15 if(!extend(TE,0,TE.len))
16 filter(TE,&is_canonical, []);
17 if(TE.len == k − 1)
18 aggregate_pattern(TE);
19 move(TE, true);
20 }
21 }

Algorithm 9: Clique and Motif Counting algorithms.

[0, 1)). Given this set of extensions, [FL] is used in line 5 to invalidate non-canonical
candidates (extensions lower than the last vertex), and [FL] is used again in line 7 to
remove extensions that do not generate cliques. The custom procedure is_clique ensures
that valid extensions are connected to all vertices in the traversal. Both lower_than and
is_clique are simple functions that must return true or false given a traversal and one
of its extensions. Finally, if the traversal reaches k− 1 vertices, traversals with k vertices
may be aggregated with [A1], accumulating the length of the array of extensions in a
counter.

Motif counting. A motif of size k is a pattern containing k vertices. The motif
counting problem seeks to count the number of all possible motifs of size k in a graph G.
Motif counting represents algorithms whose target is searching for subgraphs of multiple
patterns. Because this problem requires visiting all induced subgraphs of size k, the [EX]

call in line 15 indicates that the adjacency of each vertex in the traversal must be consid-
ered to produce the extensions array (i.e., all traversal vertices in range [0, TE.len)). In
line 16 the algorithm calls [FL] to invalidate extensions that, combined with the traversal,
do not generate canonical candidates (Def. 12). The custom function is_canonical can
be implemented using standard canonical filtering algorithms [54]. Finally, one [A2] call
extracts the pattern from traversals combined with last-level extensions to increment the
respective pattern-specific counters (line 19).

In summary, DuMato provides an execution workflow that may be used to design
and implement GPM algorithms using subgraph enumeration. In the next chapter, we
use DuMato’s workflow to present our novel strategies for efficient subgraph enumeration
on GPUs, thus mitigating the challenges associated with using this architecture as the
target platform for GPM algorithms.

51

Chapter 5

Strategies for Efficient Subgraph
Enumeration on GPUs

In this chapter we present our novel strategies for efficient subgraph enumeration on GPUs
using DuMato as software platform. Table 5.1 maps where each strategy is demanded in
DuMato’s execution workflow.

DuMato Enumeration Phase
Strategy

DFS-wide Warp-centric Modeling Load-balancing
Extend
Filter

Aggregate
Move

Control

Table 5.1: Mapping of our novel strategies to DuMato’s execution workflow.

The warp-centric modeling of execution steps (Section 5.2) is used in all enumer-
ation phases, as it aims to provide more regular execution to mitigate the challenge of
irregularity throughout the workflow, improving the efficiency of GPU’s SIMT execu-
tion model. The DFS-wide subgraph exploration strategy (Section 5.1) mitigates the
challenge of memory demand caused by the combinatorial explosion, and is used in the
Extend phase to generate the intermediate enumeration states and in the Move phase to
move forward or backward in the enumeration. The load-balancing layer (Section 5.3)
mitigates the load imbalance caused by irregular parallel processing, and is implemented
by the Control phase of the workflow.

5.1 DFS-wide Subgraph Exploration

Algorithm 10 depicts the pseudocode of subgraph enumeration using BFS, DFS,
and our novel DFS-wide traversal strategy. For these enumeration algorithms, assume we

5.1. DFS-wide Subgraph Exploration 52

visit all subgraphs with k vertices of the input graph G, and the initial traversal tr is a sin-
gle vertex of G. While BFS materializes all intermediate states throughout enumeration
(line 9) and DFS enumerates recursively accessing only the current enumeration state (line
16), DFS-wide uses a data structure to store the intermediate states called TE (Traversal
Enumeration), depicted by Figure 5.1. TE[i].tr stores the i− th vertex id of the traver-
sal, TE[i].ext stores the extensions generated by the traversal {TE[0].tr · · ·TE[i].tr},
and TE[i].eg (extensions generated) is a flag that indicates whether the extensions of
{TE[0].tr · · ·TE[i].tr} have already been generated. The size of TE is predictable and
proportional to the maximum degree of the graph.

1 Function Enumerate_BFS(tr, k, G):
2 states← tr
3 while states ̸= ∅ do
4 cur ← pop(states)
5 if |cur| == k then
6 A(tr)
7 continue
8 next← cur ×N(cur)
9 states.push(next)

10 end

11 Function Enumerate_DFS(tr, k, G):
12 if |tr| == k then
13 A(tr)
14 return
15 foreach v ∈ N(tr) do
16 DFS({tr + v}, k)
17 end

18 Function Enumerate_DFS_Wide(tr, k, G):
19 for i ∈ [1 · · · k − 1] do
20 TE[i].ext← array(i×max(G))
21 TE[i].eg ← false

22 end
23 TE[1].tr ← tr
24 i← 1
25 while i ̸= 0 do
26 if i == k then
27 A(tr)
28 i−−
29 continue
30 end
31 if !TE[i].eg then
32 TE[i].eg ← true
33 TE[i].ext← N(tr[0 · · · i])
34 end
35 if TE[i].ext == ∅ then
36 i−−
37 else
38 TE[i+ 1]← pop(TE[i].ext)
39 i++

40 end
41 end

Algorithm 10: DFS, BFS and DFS-wide traversal strategies.

5.1. DFS-wide Subgraph Exploration 53

Line 20 initializes the extensions and the flags to indicate the extensions that have
not been generated yet. Starting from the first vertex (line 23), as in BFS, DFS-wide
generates the set of all possible extensions using the neighbourhood of the traversal (line
33). However, different from BFS, DFS-wide does not visit all these extensions at once,
and chooses only one extension from the current set of extensions to move forward and
continue the enumeration (line 38). This approach not only presents a limited memory
consumption but also allows memory parallelism and locality by accessing and storing an
entire set of adjacency lists.

Figure 5.1: DFS-wide’s TE data structure.

Source: created by the author.

Figure 5.2 depicts the enumeration lattice generated to visit the subgraph {2, 3, 4, 6}
using BFS, DFS, and DFS-wide subgraph exploration strategies. In BFS, all intermediate
traversals throughout enumeration are materialized prior to visiting {2, 3, 4, 6}. Although
this materialization may be implemented through regular memory accesses, the combina-
torial explosion makes BFS demand too much memory and impairs its use in the enumer-
ation of bigger subgraphs. On the other hand, DFS generates the minimum amount of
intermediate traversals prior to visit {2, 3, 4, 6}. Despite its low memory consumption, the
memory access pattern of DFS throughout enumeration is more sparse and deteriorates
memory locality.

DFS-wide provides a good tradeoff between regularity and memory demand. As
BFS, DFS-wide visits the entire neighborhood of the current traversal and stores the set
of valid intermediate traversals. These intermediate traversals can be generated using
coalesced memory requests, and the memory consumption is limited by the maximum
degree of the input graph. However, as in a DFS exploration, DFS-wide moves forward
in the enumeration by choosing only one possible traversal. The amount of materialized
intermediate states throughout enumeration does not grow exponentially as in BFS.

Figure 5.3(a) presents an overview of the DFS-wide exploration steps, and Fig-
ure 5.3(b) shows the operations performed in one iteration of the BFS and DFS phases.
In Figure 5.3(a), the enumeration starts with a traversal TE[i].tr and the BFS phase
produces and stores the extensions efficiently in a contiguous array (TE[i].ext), which

5.1. DFS-wide Subgraph Exploration 54

Figure 5.2: BFS, DFS, and DFS-wide.

Source: created by the author.

will be cached. The DFS receives the extensions and decides to move forward or back-
ward in the enumeration, depending on the length of tr and the extensions. Note that,
in both forward and backward enumeration, the DFS phase will access extensions in a
contiguous memory that is probably cached, improving memory efficiency. Enumeration
proceeds alternating between BFS and DFS steps until the traversal reaches the target
size. Assuming we want to enumerate a traversal tr = {v0, v1}, Figure 5.3(b) details the
operations performed in BFS and DFS phases in a single iteration of DFS-wide. In the
BFS phase, a warp visits the adjacency lists of vertices in the current traversal (step 1),
copies to extensions, and keeps only the unique extensions that are neither in the traversal
nor in the extensions (step 2). Once extensions are generated, the DFS phase starts by
consuming a vertex (v2) from extensions (step 3) and incrementing the current traversal
(step 4).

The BFS phase is implemented by the warp-centric Extend phase (described later
in Section 5.2.2) of DuMato workflow, and the DFS phase is implemented by the Move
phase, depicted by Figure 5.4. Move phase allows the warp to move forward/backward
in the enumeration of a traversal, and its pseudocode is depicted in Algorithm 11. It
receives TE and a flag genedges to indicate whether the edges of traversals should be
generated during enumeration. The edges of traversals are useful in algorithms such as
motif counting, and Move phase discovers them gradually as enumeration moves forward.
If the current traversal still has not reached the size limit and the current set of extensions

5.1. DFS-wide Subgraph Exploration 55

Figure 5.3: DFS-wide subgraph exploration.

(a) Overview.

(b) BFS and DFS steps.

Source: created by the author.

is not empty (line 3), the warp moves forward in the enumeration by consuming an
extension and extending the current traversal (lines 4-7). If the edges of traversal are
needed, induce function (line 8) is an SIMD step that reuses the edges of the current
traversal to produce the edges of the extended traversal. If the current traversal has
either reached the size limit or the current extensions set is empty, the current traversal
can not be extended and the warp moves backward in the enumeration (lines 12-13).
In case the enumeration of the current traversal finishes (line 14), the warp pulls a new
traversal (line 15). As all threads within a warp manipulate the same traversal and the
primary purpose of Move is to update information about current traversal, it is an SISD
phase, and only induce function that is costly is an SIMD step.

The worst-case space complexity of the DFS-wide exploration is O(traversals ×
max(G)×k2), where traversals is the number of traversals processed in parallel, max(G)

is the maximum degree of the input graph, and k is the length of explored subgraphs. All
data structures are allocated in global memory, and shared memory was set for caching,
which is used in the BFS phase during the copy of adjacency lists to the extensions
and in the DFS phase to read an extension to move forward/backward. The cost for
BFS subgraph exploration is O(traversals × max(G)k−1), which naturally leads to an
exponential growth of memory demands as k increases. The cost for DFS subgraph
exploration is O(traversals × k), as the only intermediate state needed is the set of
vertex ids of the current traversal. Although DFS consumes less memory than DFS-wide,
it hinders parallelism, memory coalescence, and regular execution throughout subgraph
enumeration.

5.1. DFS-wide Subgraph Exploration 56

Figure 5.4: Move phase.

Source: created by the author.

1 SIMD void move(TE, genedges){
2 SIMD extensions← TE[TE.len− 1].ext
3 SIMD if(TE.len ̸= k − 1 && extensions ̸= ∅){
4 SIMD extension← extensions[extensions.len− 1];
5 SIMD extensions.len−−;
6 SIMD TE[TE.len].tr ← extension;
7 SIMD TE[TE.len].eg ← false;
8 SIMD TE.len++;
9 SIMD if(genedges)

10 SIMD induce(TE);
11 SIMD }
12 SIMD else
13 SIMD TE.len−−;
14 SIMD if(TE.len == 0)
15 SIMD TE ← pull_traversal(T);
16 SIMD }

Algorithm 11: Move primitive

The following section explains our efficient warp-centric enumeration phases, which
uses the DFS-wide traversal structure to perform subgraph enumeration on GPUs through
a more regular execution and memory access pattern.

5.2. Warp-centric Enumeration Phases 57

5.2 Warp-centric Enumeration Phases

This section describes the design and implementation of the DuMato enumeration
phases using the warp-centric programming model [24]. This model can be used in irreg-
ular algorithms to improve the regularity of the execution. In our design, a warp receives
an initial traversal tr and all threads within the same warp perform subgraph enumera-
tion starting from tr cooperatively. Threads within a warp alternate between SIMD and
SISD phases throughout the execution workflow, allowing a more regular execution and
memory access pattern. Our goal with this model is to minimize execution divergence
in our irregular algorithms and to exploit the opportunities of parallelism and regular
memory access enabled by the DFS-wide strategy.

The following section presents the three warp-centric core primitives used to design
and implement the enumeration phases: find_one, find_many, and write.

5.2.1 Warp-centric Core Primitives

For the sake of simplicity and without loss of generality, in this section we assume
GPU warps with four threads. Figure 5.5 depicts the primitives warps use to find values
efficiently in an array. Warps can use both primitives to search for values in the adjacency
lists and extensions. Primitive find_one is used when threads within a warp need to
find whether the given value x is present in an array v, and Algorithm 12 depicts its
pseudocode. The variable fnd_local stores whether the x value was found in v by the
current thread, and the variable fnd_global stores whether any thread within a warp found
x in v. The main loop (line 3) iterates through v in parallel, and each thread within a
warp receives a different value of v to compare with x (line 4). Primitive any_sync (line
5) is a CUDA warp exchange primitive and threads within a warp exchange their variable
fnd_local. In case any fnd_local variable is not 0, any_sync returns 1 for all threads
within a warp and sets 1 to fnd_global for all threads. Otherwise, all threads receive 0 in
fnd_global and continue searching until any thread finds x or all elements in v are visited.

5.2. Warp-centric Enumeration Phases 58

Figure 5.5: Find primitives.

Source: created by the author.

1 SIMDint find_one(x, v, start, end) :

2 SISD ws← warp_size;

3 SIMD fnd_local← fnd_global← 0;

4 SIMD for (pos← start+ lane ; pos < end && !fnd_global ; pos += ws) :

5 SIMD fnd_local← v[pos] == x;

6 SIMD fnd_global← any_sync(fnd_local);

7 SISD return fnd_global;

Algorithm 12: Primitive find_one.
The primitive find_many is used when threads within a warp need to find different

values in an array v, and Algorithm 13 depicts a pseudocode of it. The algorithm is similar
to find_one, but with two crucial differences: variable fnd_global stores a mask such that
the i-th bit stores whether the i-th thread in the warp has already found its value in v,
and is built using the ballot_sync warp exchange primitive; the main loop continues for
all threads within a warp as long as there is at least one thread that still has not found
its value in v.

1 SIMDint find_many(value, v, start, end) :

2 SIMD fnd_local← fnd_global← 0;

3 SIMD for (pos← start ; pos < end && fnd_global != 0xffffffff ; start++) :

4 SIMD found_current← v[pos] == value;

5 SIMD fnd_local← fnd_local || found_current;

6 SIMD fnd_global← ballot_sync(fnd_local);

7 SIMD return fnd_local;

Algorithm 13: Primitive find_many.
The last core primitive is the write primitive, depicted in Figure 5.6. This primitive

is used when threads within a warp have different values to be written in the extensions,
but some may be invalid due to previous filtering. Algorithm 14 depicts a pseudocode

5.2. Warp-centric Enumeration Phases 59

of the write primitive. The function receives the set of extensions, the starting position
where extensions should be written, the value itself, and a boolean indicating whether
the extension is valid. The threads call the ballot_sync warp exchange primitive to build
a mask that gathers the valid value of all threads (line 2). Line 3 counts the 1’s in the
mask (popc), representing the number of valid values the warp will write. Each thread
counts the amount of valid (line 5) and invalid (line 6) values that the threads with lower
lane will write, and threads use this information to calculate the exact position the valid
values will be written in the extensions (lines 6 and 7).

Figure 5.6: Primitive write.

Source: created by the author.

1 SIMDvoid write(extensions, start, value, valid) :

2 SIMD valids← ballot_sync(valid);

3 SIMD amount_valids← popc(valids);

4 SIMD valids_offset← count_1_right(valids, lane);

5 SIMD invalids_offset← amount_valids+ count_0_right(valids, lane);

6 SIMD pos← start+ (valid ? valids_offset : invalids_offset);

7 SIMD extensions[pos]← value;

8 SIMD extensions.len += amount_valids

Algorithm 14: Primitive write.
The following section presents the warp-centric implementation of each subgraph

enumeration phase using these three core primitives.

5.2.2 Extend

Figure 5.7 depicts the goal of the extend phase. This phase is the BFS step that
generates the neighborhood extensions of a traversal tr by visiting the adjacency lists of a

5.2. Warp-centric Enumeration Phases 60

specific range of vertices. This range is essential to enable algorithms using the adjacency
list of all vertices in the current traversal (e.g., motif counting) or only the adjacency list
of a subset (e.g., clique counting).

Figure 5.7: Extend phase.

Source: created by the author.

Algorithm 15 shows our warp-centric implementation of the extend phase. Lines
5-6 are an initial SISD phase, where all threads within the warp receive a vertex id prior
to visiting its adjacency list. Lines 9-21 correspond to the SIMD phase in which threads
within the warp visit an adjacency list in parallel (line 10), and vertices already in either
current traversal or extensions are considered invalid (lines 11-14). At last, each thread
within the warp writes its extension to the extensions set in parallel (line 15). Every call
to extend returns a boolean value to indicate whether its extensions had already been filled
prior to the call, and this information is helpful to avoid unnecessary calls to the filter
phase. All lines of extend function are executed in lockstep by threads within a warp,
minimizing divergences. Besides, each line also provides regular memory access patterns
for all data structures, allowing memory coalescence and good cache locality.

5.2.3 Filter

Figure 5.8 depicts the goal of the filter phase. Given a traversal tr, filter phase
iterates the current extensions of tr in parallel and removes those that do not satisfy a
property (P function, Def. 13). Algorithm 16 shows our warp-centric implementation of
the filter phase. The algorithm gets the current traversal and a function pointer P , which
indicates whether an extension is valid. Each thread within the warp gets an extension
(line 5) and passes it to the P function (line 6), which may lead to its invalidation
depending on the implementation of P . For example, one of the filters used in the clique
counting algorithm checks whether the id of an extension is lower than the id of tr’s last
vertex, and it is implemented by a call to filter phase along with a function pointer
P that performs this test. P functions are warp-centric and can be implemented using
DuMato primitives to access the TE data structure. Lines 7-8 write the extensions back

5.2. Warp-centric Enumeration Phases 61

1 SISDboolean extend(TE, start, length){
2 SISD eg ← TE[TE.len− 1].eg;
3 SISD if(!eg){
4 SISD TE[TE.len− 1].eg ← true;
5 SISD for(i← start ; i < length ; i++){
6 SISD id← TE[i].tr;
7 SISD d← degree(id);
8 SISD produced← 0;
9 SIMD for(j ← lane ; j < d ; j+ = warp_size){

10 SIMD ext← adj(id, j);
11 SIMD inTr ← find_many(ext, TE[].tr, 0, TE.len− 1);
12 SIMD cont← any_sync(!inTr);
13 SIMD inExt← cont ? find_many(ext, TE[].tr, 0, TE.len− 1) : false;
14 SIMD valid← !inTr&& !inExt;
15 SIMD write(TE[TE.len− 1].ext, produced, valid, ext);
16 SISD }
17 SISD produced+ = d;
18 SISD }
19 SISD }
20 SISD return eg;
21 SISD}

Algorithm 15: Extend primitive.

to the extensions array, keeping only the valid ones. Lines 9-10 control the actual amount
of valid extensions after filtering.

Figure 5.8: Filter primitive

Source: created by the author.

5.2. Warp-centric Enumeration Phases 62

1 SIMDvoid filter(TE, P, args){
2 SISD e← TE[TE.len− 1].ext;
3 SISD produced← 0;
4 SIMD for(i← lane; i < extensions.len ; i+ = warp_size){
5 SIMD extension← extensions[i];
6 SIMD valid← P (TE, extension, args);
7 SIMD TE[TE.len− 1].ext.len − = warp_size;
8 SIMD write(TE[TE.len− 1].ext, produced, valid, extension);
9 SIMD amount← popc(ballot_sync(valid));

10 SIMD produced← produced+ amount;
11 SIMD }
12 SIMD}

Algorithm 16: Filter primitive.

5.2.4 Aggregate

Figure 5.9 depicts the goal of the aggregate phase. This phase is executed when a
thread warp has derived traversals with k vertices and, as discussed, it is in charge of pro-
ducing the actual GPM algorithm results (A function of Definition 13). DuMato provides
three aggregation primitives: aggregate_pattern, aggregate_counter and aggregate_store,
as defined in Table 4.1, which are explained next.

Figure 5.9: Aggregate phase.

Source: created by the author.

The aggregate_pattern is the most challenging primitive for implementation on
GPUs. It is used when the output of the GPM algorithm relies on counting the occur-
rence of patterns with k vertices, such as motif counting. This is executed on a per-warp
basis, such that each warp performs canonical relabeling, converting each subgraph with k

vertices to its canonical representative and incrementing a counter. This is only possible
due to our novel representation of patterns, which reduces the memory required to store
them. The solution for canonical relabeling relies on graph isomorphism, and GPM sys-

5.2. Warp-centric Enumeration Phases 63

tems (including Pangolin [12]) perform it on CPU using tools such as Nauty [41]. To the
best of our knowledge, we are the first work to implement canonical relabeling on GPU.

Figure 5.10 depicts our strategy for canonical relabeling on GPU. We use a bitmap
to store the edges of the traversal. For example, assuming k = 4 and a traversal tr, we need
5 bits to store the edges of a traversal. As we handle only connected traversals, v0 is always
connected to v1, and this edge is not stored. The two least significant bits of the bitmap
store the edges of v2 with respect to {v0, v1}, and the next three bits store the edges of v3
with respect to {v0, v1, v2} (same reasoning may be applied to a subgraph with k vertices).
Using 5 bits, we can represent up to 32 possible traversals, as seen in Figure 5.10(a). Each
possible traversal with 4 vertices can be mapped to its canonical representative, shown
in Figure 5.10(b). As traversals often produce isomorphic subgraphs, different traversals
may be mapped to the same canonical representative. The amount of patterns is much
smaller than the number of possible traversals, as seen in Figure 5.10(c), and the bitmap
representation of patterns may be relabeled to use consecutive bitmaps.

Our implementation creates a dictionary that receives a traversal tr with k vertices
along with its edges encoded using the bitmap representation (a.k.a. an induced traversal)
and converts tr to a canonical representative that is in a contiguous range of positions
(Figure 5.10). This is performed in two steps: in (a) → (b) traversal edges are mapped
to non-contiguous representatives; and in (b) → (c) non-contiguous representatives are
mapped to contiguous identifiers. This conversion allows each warp to use local counters
patterns using less memory, as no position in the array of counters is wasted. This
dictionary is a pre-processed data structure, created once for a range of k values, and
that can be used in any dataset and in any application that requires canonical relabeling
(e.g., frequent subgraph mining [18] and subgraph matching [22]). DuMato provides this
dictionary as an input file.

The aggregate_counter primitive is called when the desired results/output of the
GPM algorithm is pattern counting, such as in the clique counting algorithm. Each warp
produces its counter (based on the length of the extensions for each traversal with k − 1

vertices) to avoid inter-warp race conditions, and the global counting is produced with a
reduction of the warps’ counters afterward on the CPU. This is a simple and inexpensive
computing primitive. Primitive aggregate_store stores the explored subgraphs with k

vertices and can be used in algorithms such as subgraph querying, which lists all subgraphs
that match a pattern instead of producing counters. We create an array buffer that stores
the connectivity bitmap of explored subgraphs with k vertices as they are produced.
DuMato then provides a producer-consumer environment using the CPU to consume the
buffer asynchronously.

5.2. Warp-centric Enumeration Phases 64

Figure 5.10: Canonical relabeling on GPU.

Source: created by the author.

5.2.5 Warp Virtualization

Divergent executions are one of the impacts of irregularity. In the warp-centric
programming model, all threads within a warp work cooperatively to make progress in
a task. Thus, keeping all threads within a warp working in the task is crucial to reduce
divergences, achieve massive parallelism and improve the task throughput. Figure 5.11
uses a traversal TE.tr = {a, b} to depict the activity of threads within a warp in our warp-
centric design of the extend phase. For this example, assume warps with eight threads
and vertices a and b with degree four. Step 1 is an SISD step, and all threads in the warp
receive the id of the vertex to be visited. Step 2 visits the adjacency of a, and step 3
writes in the extensions the vertices that belong to the neighborhood of TE.tr. In step 2,
half of the warp’s threads are idle because a has four neighbors, and the warp has eight
threads. Once the adjacency of a is visited and vertices in the traversal’s neighborhood
are written in the extensions, the steps are repeated using vertex b. Step 4 informs the
warp that vertex b will be visited, step 5 visits the adjacency of b, and step 6 writes in
the extensions. Again, half of the warp’s threads are idle in step 5.

SIMD steps 3 and 5, depicted in Figure 5.11, degrade the warp efficiency of our

5.2. Warp-centric Enumeration Phases 65

Figure 5.11: Warp-centric steps of the extend phase.

Source: created by the author.

execution, as part of the threads in the warp is idle. This happens because, in practice,
the size of the adjacency lists is not multiple of the hardware warp size (32). Although
the actual warp size can not be changed, we can create a virtual warp size and split the
warp into virtual independent execution units [24]. Recent advances in GPU hardware
scheduling also allow independent thread scheduling [43], and each thread in a warp may
have its program counter. Thus, virtual warps can run in parallel.

We propose an extension of our warp-centric enumeration steps to allow warp
virtualization, as depicted by Figure 5.12. We set the size of the virtual warps (prior
to the execution) and traversals are assigned to virtual warps rather than physical ones.
Note that, using virtual warp sizes, we reduce the chances of idleness of threads within
the same warp, thus providing oportunities to increase GPU’s massive parallelism.

Figure 5.12: Warp-centric steps of the extend phase using virtualization.

Source: created by the author.

In order to implement warp virtualization inside DuMato, we have to change the
synchronization granularity between threads within a warp. In the standard warp-centric
version, whenever any synchronization was necessary, we knew all threads within a warp

5.2. Warp-centric Enumeration Phases 66

were supposed to wait together. For example, in line 5 of the find_one primitive depicted
in Algorithm 12, the primitive any_sync checked the value of the fnd_local variable of
all threads within the same physical warp (32 threads). When we have virtual warps, one
thread can not wait for information from all other threads within the same physical warp,
as they may belong to different virtual warps. Thus, each thread we must be aware of
which other threads within the same physical warp belong to the same virtual warp.

In order to do that, we create a 32-bit per-thread synchronization mask to indi-
cate which threads are working together within a warp. For example, suppose virtual
warps with 16 threads. Threads with lane in the range [0 · · · 15] would receive the mask
0x0000ffff , while threads with lane in the range [16 · · · 31] would receive the mask
0xffff0000. This mask is passed as a parameter for all DuMato functions, along with
the size of the virtual warp (used in the for loops in the lockstep execution).

For example, Algorithm 17 depicts the primitive find_one using warp virtualiza-
tion. The mask associated with each thread is passed along with the current virtual warp
size as a parameter. In the main for loop (line 3), the lockstep execution is incremented
according to the size of the virtual warp. Besides, the starting point of each thread is
calculated using a virtual lane (a number in the range [0 · · · 15]), which is a number that
indicates the internal id of a thread within a virtual warp rather than the physical one
(pos = start + virtual_lane, line 3). Different from the standard warp-centric imple-
mentation, the any_sync primitive receives the mask as an extra parameter (line 5) to
indicate which threads within the same physical warps are supposed to wait together for
the synchronization step. We perform similar adequations in all DuMato primitives to
implement warp virtualization.

1 SIMDint find_one_virtual(x, v, start, end, mask, warp_size) :

2 SIMD ws← warp_size;

3 SIMD vlane← virtual_lane;

4 SIMD fnd_local← fnd_global← 0;

5 SIMD for (pos← start+ vlane ; pos < end && !fnd_global ; pos += ws) :

6 SIMD fnd_local← v[pos] == x;

7 SIMD fnd_global← any_sync(fnd_local, mask);

8 SIMD return fnd_global;

Algorithm 17: Primitive find_one with virtualization.

5.3. Warp-level Load Balancing 67

5.3 Warp-level Load Balancing

The cost of enumerating different traversals may vary, which leads to load im-
balance among warps. We propose a workload redistribution scheme to mitigate this
problem. Our strategy makes decisions based on the warp level activity information, and
each thread warp has an associated flag to indicate whether it is active or idle.

In our load-balancing approach, the CPU constantly and asynchronously reads the
activity information from the GPU to decide whether the load should be redistributed
to improve GPU utilization. When load balancing is to be performed, the CPU informs
the GPU by setting a flag accessed by warps in the Control phase. If this flag is set,
the warps stop their execution in a consistent state once they get in the Control phase.
When all warps stop, the execution control is returned to the CPU for work redistribu-
tion. We highlight that, although it is possible to implement complex load balancing
mechanisms using buffers to store jobs generated by warps [9], our CPU-only strategy
mitigates synchronization overheads from GPU, and more resources can be allocated for
subgraph enumeration.

Our load-balancing mechanism is implemented through the functions when_rebalance
and how_rebalance depicted in Algorithm 18. Both functions receive a DM_info ar-
gument containing a copy of the main GPU data structures and control flags. In the
when_rebalance, the warps’ activity information is continuously read by the CPU (lines 2
and 10), and if the number of idle warps is found to be higher than a threshold (thr), the
workload balancing is carried out (line 4). The GPU lb flag is set to true to inform warps
that the execution should be interrupted, and this flag is read by the Control phase on
GPU. The CPU then waits for the kernel (all warps) to finish and executes how_rebalance
to perform donations between warps. Given two warps w1 and w2, a donation from w1

to w2 is the extraction of one active traversal from w1’s queue of jobs and its insertion
into w2’s queue of jobs. We say w1 is the donator. Once rebalancing is completed, line
9 restarts the execution.

1 void when_rebalance(DM_info gpu){
2 flags← gpu.read_flags();
3 while(flags.active_warps > 0) :
4 if(flags.idle_warps > thr) :
5 gpu.lb← true;
6 gpu.waitKernel();
7 how_rebalance(gpu);
8 gpu.lb← false;
9 gpu.runKernel();

10 flags← gpu.read_flags();

11 void how_rebalance(DM_info gpu){
12 idles← list(gpu.idles);
13 actives← heap(gpu.actives);
14 total_weight← sum_weight(actives);
15 avg_weight← total_weight/|warps|;
16 for(i← 0 ; i < donations ; i++) :
17 for each(idle ∈ idles) :
18 donator ← actives.pop_heap();
19 idle.jobs.push(extract(donator));
20 if(donator.weight > avg_weight) :
21 actives.push_heap(donator);

Algorithm 18: CPU code for load balancing.

5.3. Warp-level Load Balancing 68

The load-balancing mechanism consider the cost of the jobs (traversals) assigned to
a warp and is able to donate several jobs among busy and idle warps. In order to do that,
it selects several jobs from warp donators using information from their current traversal
and extensions. The function how_rebalance depicts this strategy. We create a list of idle
warps (line 12) and a max heap with the active ones (line 13). The criteria used in the
heap ordering is the warp weight, which is the sum of the size of its arrays of extensions
(TE.ext). Once the total weight of active warps is computed, we calculate the average
weight (line 15), which will be used as a threshold (line 20) to decide whether an active
warp will donate extensions. Warps carry a list of traversals to be processed, called jobs.
Given an idle warp, we pop the active warp with the highest weight (line 18), get one of
its extensions, and push it to the list of jobs of the idle warp. If the weight of the donator
warp is still higher than the average, it is pushed back to the heap (lines 20-21). In the
Section 6.3.2 we perform an empirical evaluation to discover the appropriate amount of
donations during the rebalancing.

In summary, this chapter presented our strategies to mitigate the main challenges
for efficient subgraph enumeration on GPUs: the DFS-wide subgraph exploration reduces
the impacts of combinatorial explosion while providing opportunities for regular memory
requests; the warp-centric enumeration phases provide a workflow to minimize the effects
of irregular processing on GPU SIMT execution model; our load-balancing layer proposes
an efficient workload redistribution scheme to mitigate the load imbalance during parallel
subgraph enumeration. In the next chapter, we evaluate the performance impacts of each
strategy and compare our implementation of DuMato to the state-of-the-art subgraph
enumeration systems.

69

Chapter 6

Experimental Evaluation

This section presents an extensive performance evaluation of each proposed optimization
using DuMato subgraph enumeration system. We employ the implementations of clique
counting and motif counting algorithms, as they represent two essential categories in GPM
processing: the exploration of subgraphs sharing a single pattern (clique counting) and
the exploration of subgraphs containing multiple patterns (motif counting).

All executions and analysis were performed using five different implementations
of each algorithm. The characteristics of each implementation are summarized in Ta-
ble 6.1. DM_DFS (DuMato Depth-First Search) uses the DuMato API to implement
subgraph enumeration using standard DFS exploration. Each thread receives a differ-
ent traversal and threads within a warp enumerate distinct traversals in parallel. None
of our optimization strategies are implemented in this version, and it will be used as
our GPU baseline to evaluate the performance impacts of our optimizations. DM_WC
(DuMato Warp-Centric) uses the DuMato API to implement subgraph enumeration
and, different from DM_DFS, each warp enumerates the same traversal in parallel coop-
eratively using our novel DFS-wide approach (Section 5.1) and the warp-centric design
(Section 5.2). HAND_WC (Handcrafted Warp-Centric) is the DM_WC without using
the DuMato API calls. This version is used to evaluate the overhead of DuMato API.
DM_WCV (DuMato Warp-Centric with Virtualization) is DM_WC with our warp vir-
tualization strategy enabled (Section 5.2.5). DM_WCLB (DuMato Warp-Centric with
Load-Balancing) is the DM_WC version with our warp-level load-balancing mechanism
enabled (Section 5.3). DM_WCLB version is our optimal implementation and will be
used to compare DuMato with the state-of-the-art subgraph enumeration systems Pan-
golin [12], Peregrine [28] and G2Miner [11].

Version
DuMato Features

API DFS-wide Warp-centric Load Balancing

DM_DFS

DM_WC

DM_WCLB

Table 6.1: Characteristics of each implementation.

6.1. Experimental Setup 70

6.1 Experimental Setup

The characteristics of five real-world datasets used in our experiments are presented
in Table 6.2. CPU experiments were conducted on a machine with an Intel Xeon Silver
4108 CPU (16 threads with hyperthreading), 48GB of RAM, and Ubuntu 18.04. GPU
experiments used an NVIDIA TITAN V with 12GB and CUDA 10.1. The time limit
adopted for each execution was 24 hours. Experiments that have not finished within
24 hours are marked with the signal "-". Every execution was run three times and
demonstrated low variability (standard deviations in 0.06%-1.07%). The result is the
average execution time of the three executions. We do not present the results for the
LiveJournal graph for motif counting because the executions exceed our 24-hour limit
even for small subgraph sizes (k > 4).

Dataset V(G) E(G) Avg. Degree Density Max. Degree
Citeseer [18] 3264 4536 2.77 8.51× 10−4 99

ca-AstroPh [35] 18772 198110 21.10 1.12× 10−3 504
Mico [18] 96638 1080156 22.35 2.31× 10−4 1359

com-DBLP [59] 317080 1049866 6.62 2.08× 10−5 343
com-LiveJournal [59] 3997362 34681189 17.35 4.34× 10−6 14815

Table 6.2: Graphs used for evaluation.

6.2 Performance Improvements to Warp-Centric

DFS-wide

Table 6.3 shows the execution times for DM_DFS, DM_WC and HAND_WC as
the size of the subgraphs mined (k) varies.

6.2.1 DuMato’s Overhead

A comparison between DM_WC and HAND_WC shows the overhead of using
DuMato to implement GPM algorithms. The handcrafted versions are a little faster than
the versions implemented using DuMato, and this overhead is primarily caused by extra
function calls when using an API-oriented application. The maximum overhead is about

6.2. Performance Improvements to Warp-Centric DFS-wide 71

6%, and there is a decrease in the overhead as we increase the value of k. We believe
this overhead is negligible w.r.t. the overall execution time, mainly when we compare the
comprehensiveness and readability of a GPM code written using DuMato to a handcrafted
one.

6.2.2 Warp-centric vs. DFS

The DM_DFS version assigns traversals per thread, and each thread enumerates
their traversals independently. As processing each traversal may result in different execu-
tion paths, threads within a warp will diverge throughout the enumeration, deteriorating
warp and memory efficiency. Divergences are reduced and memory access pattern is im-
proved by the DM_WC version, which attains speedups up to 26× (Clique, Mico and
k = 5) w.r.t. the DM_DFS.

System k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

M
ot

ifs
C

it
es

ee
r DM_DFS 0.02 0.54 11.83 252.97 7.45K - -

DM_WC 0.01 0.04 0.91 18.09 334.32 9.65K -

ca
-A

st
r. DM_DFS 1.79 590.63 - - - - -

DM_WC 0.11 27.88 6.87K - - - -

M
ic

o DM_DFS 23.74 15.74K - - - - -
DM_WC 1.24 768.10 - - - - -

D
B

L
P DM_DFS 1.05 199.34 29.99K - - - -

DM_WC 0.07 11.33 16.60K - - - -

C
liq

ue
C

it
es

ee
r DM_DFS 0.01 0.01 0.01 0.01 ∅ ∅ ∅

DM_WC 0.01 0.01 0.01 0.01 ∅ ∅ ∅

ca
-A

st
r. DM_DFS 0.21 4.35 48.0 329.32 2.82K 23.14K -

DM_WC 0.01 0.25 2.91 24.66 190.55 1.65K 12.27K

M
ic

o DM_DFS 2.93 249.22 14.20K - - - -
DM_WC 0.13 10.70 527.10 26.22K - - -

D
B

L
P DM_DFS 0.14 3.63 124.08 3.35K 74.60K - -

DM_WC 0.01 0.21 6.74 196.36 4.78K - -

L
iv

eJ
r. DM_DFS 291.0 5.30K - - - - -
DM_WC 14.01 219.65 6.17K - - - -

∅: no valid subgraphs

Table 6.3: Execution time (seconds) of DM_DFS, DM_WC and HAND_WC.

To understand the effects of our exploration and optimization strategies at the
hardware level, Table 6.4 shows the improvements of DM_WC over DM_DFS using exe-
cution and memory metrics collected from CUDA NVProf profiling tool [45]. GPU profil-
ing is much slower than standard runs, and we present the results using the DBLP dataset

6.2. Performance Improvements to Warp-Centric DFS-wide 72

for k up to 4. Note that the DM_DFS and DM_WC versions perform the same com-
putations but use different parallelization strategies and optimization techniques. Thus,
they will handle the same processing demands during enumeration.

Metrics are divided into two categories: (i) Execution, which measures the efficient
use of the GPU execution model and parallelism, and (ii) Memory, which quantifies the
use of the memory hierarchy. For execution, we chose the metric inst_per_warp, which
calculates the average number of instructions executed by each warp. To better under-
stand this metric, Figure 6.1 depicts the execution pattern of two different warps (assume
warps with four threads). In Figure 6.1(a), the warp does not diverge and executes in
lockstep during the execution of the entire set of instructions. In this case, the worst-case
result of the inst_per_warp metric is ten. In Figure 6.1(b), the warp executes only the
first instruction in lockstep. After this point, there is a divergence, and two blocks of
threads within the same warp execute concurrently: threads {1, 2} and threads {3, 4}. In
this case, the worst-case result of the inst_per_warp metric is eighteen: 1 (first instruc-
tion) + 9 (threads {1,2}) + 8 (threads {3,4}). The more regular the execution is, the
fewer divergent instructions are issued, and warps require fewer instructions.

Figure 6.1: Metric inst_per_warp and divergences.

(a) With divergence. (b) Without divergence.

Source: created by the author.

For memory, we chose the metric gld_transactions, which measures the total
amount of load transactions requested to global memory. The more coalesced the memory
access pattern is, the fewer transactions are needed to service memory requests. In our
experiments, we observed that the other metrics were consistent with these two represen-
tative choices.

Execution metrics : The Warp-Centric DFS-Wide exploration results in natural
lockstep implementation, which fits better the GPU execution model and allows all threads
within a warp to execute the same instruction more often to minimize divergence. This
reduces the total number of instructions per warp for the DM_WC version, as they exe-
cute mostly in lockstep, and all threads in the warp tend to execute the same instruction.

6.2. Performance Improvements to Warp-Centric DFS-wide 73

App. k
Memory (load transactions) Execution (inst. per warp)

DM_DFS DM_WC Improvement DM_DFS DM_WC Improvement

Clique
3 618.1M 212.7M 2.9× 3.3M 876.6K 3.8×
4 6.7B 852.4M 7.9× 50.5M 5.1M 9.9×

Motifs
3 3.3B 597.0M 5.53× 17.5M 2.6M 7.36×
4 134.7B 22.8B 5.90× 1.9B 143.2M 13.3×

Table 6.4: Improvements of DM_WC over DM_DFS.

This regularity is confirmed by the execution measures, with improvements ranging from
3.8x and 13.3x, confirming that our warp-centric design provides more regular execution.

Memory metrics: The Warp-Centric DFS-Wide exploration with its regular lock-
step execution allowed threads to perform memory requests together using coalesced re-
quests. Therefore, our DM_WC version reduces the total number of memory transactions.
This reduction is confirmed by the memory metric, with improvements ranging from 2.90x
to 7.92x, showing that our memory optimizations reduce wasted bandwidth and improve
memory efficiency.

6.2.3 Warp Virtualization

Table 6.5 shows the execution time of our warp-centric version using virtual warps
with 16 and 8 threads, and compares it to the standard warp-centric version (warps with
32 threads) using different datasets. We show only the results for the motif counting
application, as it accesses the entire set of adjacency lists during the extend phase of Du-
Mato (see line 3 of Algorithm 9) and thus presents more chances of taking advantage of
warp virtualization. Warp virtualization should increase warp efficiency by reducing the
granularity of parallelism when visiting one adjacency list, thus reducing the chances of
having idle threads within a warp. However, what we see is a performance deterioration
as we increase the amount of virtual warps per warp. For all values of k, the standard
warp-centric version is faster than the warp-centric with virtualization. The performance
deterioration caused by warp virtualization is explained by two factors acting together:
the way GPUs schedule virtual warps and the inherent load imbalance of subgraph enu-
meration.

6.2. Performance Improvements to Warp-Centric DFS-wide 74

App Dataset k
Warp size

32 16 8

Motifs

Citeseer
7 5,06 6,28 9,83
8 96,94 111,39 182,81

ca-Astroph
5 126,77 208,24 391,71
6 23625,04 39339,01 74904,86

Mico
4 23,27 38,34 70,42
5 7621,53 13033,78 24978,10

DBLP
5 31,90 48,32 86,43
6 2648,65 4089,01 7500,62

Table 6.5: Comparison between warp-centric with and without warp virtualization.

6.2.3.1 Scheduling of Virtual Warps

Virtual warps are independent computing units, which may reduce the chances of
synchronization issues on GPU and facilitate the implementation of algorithms relying on
fine-grained synchronizations. However, it is not guaranteed that virtual warps will be
scheduled to execute concurrently. The GPU scheduler is conservative and assumes that
independent virtual warps should not run concurrently [43]. Besides, as a physical warp
may contain several virtual warps executing independently, there will be more misaligned
memory access patterns within the same warp, and consequently an increase in the amount
of memory transactions per warp, which reduces memory efficiency.

6.2.3.2 Impacts of Load Imbalance

Figure 6.2 shows the percentage of active physical warps and virtual ones for motif
counting using 30% of the load-balancing threshold. In the standard warp-centric version
(Figures 6.2(a) and 6.2(c)), a virtual warp represents a physical one, and the average
percentage of active warps is kept above the threshold throughout the majority of the
execution. In the warp-centric version using virtualization with 16 threads (Figures 6.2(b)
and 6.2(d)), the percentage of active virtual warps is kept above the threshold throughout
execution, as the load-balancing layer uses the amount virtual warps to decide when to
rebalance. Two virtual warps may belong to different physical warps, and there is an
increase in the amount of active physical warps throughout execution compared to the
standard warp-centric version. Despite that, Figure 6.3 illustrates the average amount
of active virtual warps per physical warp in two executions. Due to the inherent load

6.2. Performance Improvements to Warp-Centric DFS-wide 75

imbalance of subgraph enumeration, the amount of physical warps with two active virtual
warps decreases throughout execution. As the GPU scheduler does not guarantee that the
amount of SPs allocated to a virtual warp is exactly the amount of its active threads, we
do not have maximum SIMD efficiency when physical warps contain less than 32 active
threads and virtual warps are spread throughout the grid. In other words: an increase
in the average amount of physical warps depicted in Figures 6.2(b) and 6.2(d) does not
reflect an actual better parallel performance, as many physical warps contain only half of
their threads in active state.

Figure 6.2: Warp activity of motif counting.

(a) Citeseer, k = 8, warp size 32 (b) Citeseer, k = 8, warp size 16

(c) ca-AstroPh, k = 5, warp size 32 (d) ca-AstroPh, k = 5, warp size 16

Source: created by the author.

6.3. Gains Due to Load-Balancing 76

Figure 6.3: Physical warp activity of motif counting.

(a) Citeseer, k = 8 (b) ca-AstroPh, k = 5

Source: created by the author.

6.3 Gains Due to Load-Balancing

6.3.1 Number of Threads and Load-Balancing Threshold

Here, we analyze the effect of number of threads used and rebalancing threshold
to the execution time for the motif counting application (results for clique counting are
equivalent). Our evaluation varied the number of threads and threshold for all algorithms
and datasets and several values of k, using the DM_WCLB version. The results are
shown in Figures 6.4 and 6.5 for motifs and clique, respectively.

As can be observed, 51,200 threads are not sufficient to fully take advantage of the
GPU, which attains better performance with higher thread count values. Specifically, the
configuration with 102,400 threads and a threshold of 30% led to the best performance
for most of our experiments and was, consequently, selected to be used in the rest of the
experiments in this work. The configuration with 409,600 threads and a threshold between
80%-90% also provided good performance. However, the more threads we instantiate, the
more registers are needed, and the chances of performance deterioration due to register
pressure are higher especially when executed on a GPU with fewer physical registers.
The only scenario where 102,400 threads and a threshold of 30% is far from the optimal
execution performance is using ca-AstroPh and k = 4. The load becomes imbalanced
more quickly for this small k, and a threshold of 30% using 102,400 threads results in
several load-balancing calls that deteriorate performance.

In order to identify the tradeoff associated with the variation of the load-balancing

6.3. Gains Due to Load-Balancing 77

Figure 6.4: Impact of load-balancing threshold and number of threads to execution time
(motif counting).

(a) Citeseer, k = 7 (b) Citeseer, k = 8

(c) ca-AstroPh, k = 4 (d) ca-AstroPh, k = 5

Source: created by the author.

threshold, Figure 6.6 presents the load-balancing pattern of executions varying the thresh-
old for both applications. We tested two opposite values of threshold (10% and 90%), and
the best one was found in the sensitivity analysis of Figures 6.4 and 6.5 (30%). When
the threshold is 10%, the average percentage of active warps is kept higher than the
other thresholds throughout execution. However, increasing GPU occupancy does not
necessarily result in better performance when the occupancy is higher than a certain min-
imum, achieved when up to 30% of threads are idle (around 28 active warps per SM). As
seen in Figures 6.6(a) and 6.6(d), a side effect of decreasing the threshold is an increase
in the number of calls to the load-balancing layer, which increases the overhead of the
load-balancing layer throughout execution and deteriorates performance.

The threshold of 90% decreases the overhead of the load-balancing layer compared
to the threshold of 10%, as fewer calls to workload redistribution are performed. However,
this execution keeps an average amount of active warps lower than the minimum required
to achieve efficiency, which also deteriorates performance. The threshold of 30% presents

6.3. Gains Due to Load-Balancing 78

Figure 6.5: Impact of load-balancing threshold and number of threads to execution time
(clique counting).

(a) ca-AstroPh, k = 8 (b) ca-AstroPh, k = 9

(c) DBLP, k = 6 (d) DBLP, k = 7

Source: created by the author.

the best tradeoff between the number of calls to the load-balancing layer and the minimum
amount of active warps throughout execution.

6.3.2 Amount of Donations

Our novel load-balancing algorithm may assign more than one traversal per warp
during the workload redistribution. Table 6.6 shows the execution time varying the num-
ber of donations per warp. An increase in this parameter results in improvements for all
configurations up to 8 donations per warp. After that point, there are gains with 16 do-
nations per warp for most configurations, but there are also few cases in which increasing
the parameter leads to a minor performance penalty. Overall, the case with 16 donations

6.3. Gains Due to Load-Balancing 79

Figure 6.6: Rebalancing pattern with different thresholds.

(a) Motifs, k = 7, Citeseer, 10% (b) Motifs, k = 7, Citeseer, 30% (c) Motifs, k = 7, Citeseer, 90%

(d) Clique, k = 6, DBLP, 10% (e) Clique, k = 6, DBLP, 30% (f) Clique, k = 6, DBLP, 90%

Source: created by the author.

per warp is the best performing configuration. The number of donations per warp has also
an impact (reduction) in the number of calls to the load-balancing layer. For instance,
the execution of clique for ca-AstroPh and k = 8 spent 13% of the total execution time
with load balancing with 1 donation, while the same execution with 16 donations spent
only 3% with load-balancing.

Donations
App. Dataset k

1 8 16 32 64
7 7.03 5.26 5.06 5.78 5.65Citeseer 8 108.29 97.03 96.95 97.79 98.88
5 147.98 129.21 126.78 126.67 128.23ca-AstroPh 6 24328.37 23501.34 23625.05 23692.57 23700.19
4 35.63 24.72 23.27 22.14 23.13Mico 5 7924.87 7641.68 7621.54 7599.79 7589.40
5 45.89 34.05 31.90 30.92 30.58

Motifs

DBLP 6 2838.40 2645.50 2648.65 2649.30 2642.99
10 1184.77 1144.80 1155.25 1157.83 1158.26ca-AstroPh 11 5371.64 5271.42 5320.67 5347.48 5346.87
5 49.78 34.38 33.30 34.45 35.22Mico 6 1453.21 1359.41 1354.69 1368.33 1364.97
7 86.04 69.84 70.75 71.93 72.22DBLP 8 1177.41 1115.44 1122.30 1132.54 1140.21
4 81.46 43.57 34.56 29.92 26.50

Clique

LiveJournal 5 1439.97 658.52 602.53 576.59 565.73

Table 6.6: Execution time varying the job sizes.

6.3. Gains Due to Load-Balancing 80

6.3.3 Warp-centric vs Warp-centric with Load-balancing

Table 6.7 shows that the DM_WCLB version attained speedups of up to 65×
compared to DM_WC (Motifs app, Citeseer dataset and k = 8). As the size of the enu-
merated subgraphs increases, work skewness grows because most subgraphs are extracted
from denser regions of the graph associated with increasingly fewer vertices. At this point,
load balancing becomes more effective. Hence, DM_WCLB allowed the exploration of
larger subgraphs for all datasets. Whenever the amount of work is insufficient to exhibit
a substantial imbalance or to pay off the overhead of redistributing the load (k ≤ 4 in
small datasets), DM_WC outperforms DM_WCLB.

System k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12

M
ot

ifs

Citeseer
DM_WC 0.0 0.04 0.91 18.09 334.32 9.66K - - - -

DM_WCLB 0.11 0.12 0.24 0.67 5.06 96.95 - - - -

ca-Astr.
DM_WC 0.11 27.88 6.87K - - - -

DM_WCLB 0.25 1.47 126.78 23.63K - - - - - -

Mico
DM_WC 1.24 768.10 - - - - -

DM_WCLB 0.47 23.27 7.62K - - - - - - -

DBLP
DM_WC 0.07 11.33 1.66K - - - -

DM_WCLB 0.13 1.11 31.9 2.65K - - - - - -

C
liq

ue

Citeseer
DM_WC 0.01 0.01 0.01 0.01 ∅ ∅ ∅

DM_WCLB 0.11 0.12 0.12 0.13 ∅ ∅ ∅

ca-Astr.
DM_WC 0.01 0.25 2.91 24.66 190.55 1.65K 12.27K

DM_WCLB 0.13 0.27 0.57 1.88 7.92 42.0 228.48 1.16K 5.32K 22.26K

Mico
DM_WC 0.13 10.70 527.10 26.22K - - -

DM_WCLB 0.3 1.27 33.31 1.35K - - - - - -

DBLP
DM_WC 0.01 0.21 6.74 196.36 4.78K - -

DM_WCLB 0.13 0.29 0.78 5.17 70.76 1.12K 16.05K - - -

LiveJr.
DM_WC 14.01 219.65 6.17K - - - -

DM_WCLB 3.32 34.56 602.53 29.95K - - - - - -
∅: no valid subgraphs

Table 6.7: Comparative performance. Execution time (seconds) of DM_WC and
DM_WCLB.

6.4. Comparison with State-of-the-art GPGPM Environments 81

6.4 Comparison with State-of-the-art GPGPM

Environments

This section compares our optimal DuMato GPU implementations (DM_WCLB)
against four representative state-of-the-art subgraph enumeration systems: G2Miner [11]
and Pangolin [12], both designed for GPU; Fractal [16] and Peregrine [28], both designed
for parallel CPU machines. Table 6.8 shows the results. For each dataset and value of
k, we emphasize in bold the best execution time(s). DuMato is more scalable and able
to explore larger subgraphs than all the baselines within the same time limit, exploring
subgraphs of up to 12 vertices. To the best of our knowledge, subgraphs of such size have
not been explored by any other GPM system searching for exact outputs, showing that
we can reduce the impacts of combinatorial explosion and improve scalability.

G2Miner is the state-of-the-art subgraph enumeration system for GPU. As it fol-
lows the pattern-aware paradigm, it must generate an execution plan for any query pattern
before the execution, and its limitations become apparent when we increase the size of the
subgraphs mined for the motif counting application. G2Miner has a hardcoded restric-
tion concerning the number of patterns the motif counting application can process and
is limited by k = 4. Our enumeration strategies are more scalable and can reach larger
subgraph sizes.

G2Miner performs faster than DuMato for the clique counting application, as it
represents a scenario using a widely studied single pattern (clique), which allows the
creation of a custom efficient execution plan. However, two details must be pointed out
in this scenario: even in its best-case scenario, G2Miner is not able to generate execution
plans for cliques larger than 8 vertices (e.g., ca-Astroph and DBLP), thus it also presents
scalability limitations concerning the subgraph size; if we change the pattern, G2Miner is
not able to create execution plans on-the-fly (its code generator for GPU is not functional),
while DuMato is not restricted by the desired pattern.

Pangolin clearly suffers from scalability issues. Although it achieves good perfor-
mance for small datasets and small enumerated subgraphs, it usually runs out of memory
when the size of explored subgraphs is close to 5 vertices, limiting the applicability of
GPM algorithms. Compared to Fractal, we obtain significant speedups in all executions
with gains ranging from 12× to 78×. As the size of the explored subgraphs increases, the
processing cost is higher, and DuMato exploits better GPU’s massively parallel processing
and achieves more significant gains.

Regarding Peregrine, DuMato is competitive for small values of explored subgraphs
(up to 5 vertices), and shows speedups of up to 115x for larger explored subgraphs. Even
in Peregrine’s best case (clique application, which contains only one pattern), DuMato

6.4. Comparison with State-of-the-art GPGPM Environments 82

System k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12

M
ot

ifs
C

it
es

ee
r DuMato 0.11 0.12 0.24 0.67 5.06 96.95 - - - -

G2Miner 0.01 ERR NS NS NS NS NS NS NS NS
Pangolin 0.01 0.01 INC OOM OOM OOM OOM OOM OOM OOM
Peregrine 0.01 0.01 0.05 3.47 537.66 - - NS NS NS
Fractal 5.17 5.20 5.69 12.44 163.48 - - - - -

ca
-A

st
ro

ph DuMato 0.25 1.47 126.78 23.62K - - - - - -
G2Miner 0.01 0.05 NS NS NS NS NS NS NS NS
Pangolin 0.01 0.21 INC OOM OOM OOM OOM OOM OOM OOM
Peregrine 0.01 0.57 132.90 52.80K - - - - - -
Fractal 9.13 435.64 4.72K - - - - - - -

M
ic

o

DuMato 0.47 23.27 7.62K - - - - - - -
G2Miner 0.01 0.84 NS NS NS NS NS NS NS NS
Pangolin 0.01 3.31 OOM OOM OOM OOM OOM OOM OOM OOM
Peregrine 0.06 6.57 7.92K - - - - - - -
Fractal 16.43 474.46 - - - - - - - -

D
B

L
P

DuMato 0.13 1.11 31.90 2.64K - - - - - -
G2Miner 0.01 0.84 NS NS NS NS NS NS NS NS
Pangolin 0.01 0.17 INC OOM OOM OOM OOM OOM OOM OOM
Peregrine 0.07 0.95 78.59 50.95K - - - - - -
Fractal 14.33 37.62 1.43K - - - - -

C
liq

ue
C

it
es

ee
r DuMato 0.11 0.12 0.13 0.14 ∅ ∅ ∅ ∅ ∅ ∅

G2Miner 0.01 0.01 0.01 0.01 ∅ ∅ ∅ ∅ ∅ ∅
Pangolin 0.01 0.01 0.01 0.01 ∅ ∅ ∅ ∅ ∅ ∅
Peregrine 0.01 0.03 0.02 0.02 ∅ ∅ ∅ ∅ ∅ ∅
Fractal 4.84 4.83 4.75 4.81 ∅ ∅ ∅ ∅ ∅ ∅

ca
-A

st
ro

ph DuMato 0.13 0.27 0.57 1.88 7.92 42.0 228.48 1.15K 5.32K 22.26K
G2Miner 0.01 0.01 0.01 0.08 0.68 5.01 NS NS NS NS
Pangolin 0.01 0.01 0.02 0.11 0.61 OOM OOM OOM OOM -
Peregrine 0.01 0.10 0.83 6.38 43.56 272.42 1.55K 7.93K 36.26K -
Fractal 8.17 9.75 15.89 78.09 439.16 2.30K 12.89K 57.02K - -

M
ic

o

DuMato 0.30 1.27 33.31 1.35 49.49K - - - - -
G2Miner 0.01 0.02 0.74 31.98 1.16K 39.58K NS NS NS NS
Pangolin 0.01 0.05 2.93 OOM - - - - - -
Peregrine 0.09 1.81 82.67 3.66K - - - - - -
Fractal 14.17 48.53 1.44K 56.72K - - - - - -

D
B

L
P

DuMato 0.13 0.29 0.78 5.17 70.76 1.12K 16.05K - - -
G2Miner 0.01 0.01 0.02 0.37 8.16 148.23 NS NS NS NS
Pangolin 0.01 0.01 0.03 0.50 OOM OOM OOM OOM OOM OOM
Peregrine 0.11 0.16 1.36 25.92 531.88 9.35K - - - -
Fractal 13.44 14.32 22.72 186.97 2.52K 35.51K - -

L
iv

eJ
ou

rn
al DuMato 3.31 34.56 602.53 29.95K - - - - - -

G2Miner 0.02 0.21 6.39 318.98 14.95K - NS NS NS NS
Pangolin 0.01 0.53 OOM OOM OOM OOM OOM OOM OOM OOM
Peregrine 3.91 26.66 1.06K 64.74K - - - - - -
Fractal 394.85 901.05 16.06K - - - - - - -

OOM : out-of-memory; INC : incomplete results;
∅: no valid subgraphs; ERR: execution error; NS : not supported.

Table 6.8: Comparative performance. Execution time (seconds) of DuMato and baselines
(GPU and CPU).

can deliver consistent speedups. We achieve more expressive gains in the motif counting
application for larger values of k, which may be explained by the inherent characteristics
of the pattern-aware enumeration of Peregrine. As we increase the size of explored sub-
graphs, the number of valid patterns and exploration plans grows exponentially, incurring
two aspects that impact Peregrine’s performance: (i) the cost of generating exploration
plans for each pattern increases, and (ii) part of exploration plans does not generate valid
subgraphs, leading to wasted computational resources.

In summary, this chapter shows that our proposed subgraph enumeration strategies
improved the efficient use of GPU’s computing power compared to state-of-the-art meth-

6.4. Comparison with State-of-the-art GPGPM Environments 83

ods for subgraph enumeration on GPU. The DFS-wide subgraph exploration presents an
affordable data structure to store the intermediate enumeration data and opportunities
for execution parallelism and regular memory requests. The warp-centric enumeration
phases provide a more regular execution throughout the enumeration execution workflow,
maximizing GPU’s SIMT efficiency. Our load-balancing layer provides a low-cost work-
load redistribution scheme that mitigates the inherent load imbalance of parallel subgraph
enumeration. Implementing and evaluating our novel subgraph enumeration strategies in
the DuMato system confirms our hypothesis that novel subgraph enumeration strategies
were needed to improve the efficient use of GPU’s computing power for this problem.

84

Chapter 7

Final Remarks

In this work, we propose novel strategies to mitigate the main challenges for efficient
subgraph enumeration on GPUs: irregularity, which limits the use of GPU’s massive par-
allelism and HBRAM; and combinatorial explosion, which creates high memory demands
and limits the scalability of GPM algorithms. Our DFS-wide traversal strategy provides
a good tradeoff between memory locality and low memory consumption for the interme-
diate enumeration states, thus improving the efficiency in accessing GPU’s HBRAM and
reducing the impacts of combinatorial explosion.

Our warp-centric enumeration workflow uses the DFS-wide data structures to im-
plement subgraph enumeration through efficient SIMD/SISD lockstep phases, reducing
divergences and improving GPU’s HBRAM efficiency through memory coalescence. We
also proposed and evaluated an implementation with warp virtualization, providing new
opportunities for fine-grained parallelism of subgraph enumeration on GPU.

Our load-balancing strategies mitigate the imbalance caused by the irregular pro-
cessing during the parallel subgraph enumeration. We proposed a lightweight warp-level
layer performed by the CPU, which monitors GPU occupancy to rebalance when uti-
lization is low. Two custom functions must be provided to this layer: when_rebalance,
which uses a threshold to infer when GPU is idle and a workload redistribution is neces-
sary; how_rebalance, which redistributes enumeration jobs considering the weight of each
warp. Jobs are extracted from the heaviest warps and warps receive several jobs in a
workload redistribution step, increasing the GPU occupancy and reducing the calls to the
load-balancing layer.

All of our optimization strategies were implemented in an open-source system
called DuMato, which provides a high-level functional API for the design and execution
of GPM algorithms on GPU. This system contributes to widen the efficient use of GPM
algorithms even for users unfamiliar with GPUs, thus increasing research opportunities
to take advantage of these algorithms in new scenarios.

7.1. Limitations and Future Work 85

7.1 Limitations and Future Work

There are a few fronts of improvement in this work. Warp virtualization did not
bring performance gains in the warp-centric execution workflow when virtual warps receive
different traversals. The inherent load imbalance of subgraph enumeration associated with
the conservative GPU scheduling of virtual warps reduces the massive parallelism of this
virtualization approach. As a next step, we plan to use warp virtualization during the
visitation of adjacency lists of the same traversal rather than assigning different traversals
to different virtual warps. This way, we could ensure a lockstep execution between different
virtual warps and reduce the amount of idle virtual warps within the same physical warp.

Our load-balancing mechanism uses the CPU to check when load-balancing is
needed and to perform workload redistribution. We could extend our write primitive to
help load-balancing. This primitive is responsible for writing the intermediate states, and
it could redirect a portion of the extensions to a queue of jobs consumed by the CPU
asynchronously. In this strategy, the CPU would not stop GPU execution to perform
workload redistribution, thus reducing the overhead of the load-balancing layer.

The implementation of DuMato is currently pattern-oblivious, which gives us the
advantage of enumerating larger subgraphs without the need for custom exploration plans.
However, our experiments showed that the pattern-aware paradigm may be more efficient
for a scenario concerning a limited amount of smaller patterns. As DuMato proposes
a general-purpose API, we also plan to extend its primitives to implement the pattern-
aware enumeration paradigm. This way, we will have a subgraph enumeration system
that takes advantage of both paradigms, allowing a detailed comparison using the same
software environment and giving new insights into the suitability of each enumeration
paradigm.

The size of the enumerated subgraphs does not limit the execution of our strategies
using DuMato. However, due to the exponential growth in the number of subgraphs as
we increase k, the complete execution of subgraph enumeration may take a long time to
finish even in an optimized environment. We plan to propose an interface to DuMato to
allow the streaming of the visited subgraphs with k vertices, thus allowing the collection
of results on the fly. As the pattern size does not limit us and we use a DFS-like traversal
strategy, we can visit larger subgraphs and produce results gradually.

86

Appendix A

Use Case: Graph Compression

Graph compression is a research area dedicated to finding a shorter representation of a
graph G. The reason for compressing a graph varies depending on the context: reduce
the storage space, reduce I/O cost, improve the overall memory efficiency, and so forth.
Besides, some graph compression techniques may be applied to any graph while others
are domain-specific [5]. Our goal in this appendix is to propose a graph compression
algorithm using DuMato. We want to demonstrate the applicability of DuMato in an
end-to-end application and illustrate opportunities to exploit when having a subgraph
enumeration system capable of visiting larger subgraphs.

Graph compression algorithms replace parts of the graph with other representations
according to a criterion. Our graph compression algorithm uses DuMato to enumerate all
cliques of a size k and replace these cliques using a lossless shorter representation, depicted
by Figure A.1. For each clique in the graph, we insert a new vertex representing that
clique and connect the vertices belonging to that clique to this new vertex. For example,
in Figure A.1(a), there are two cliques with four vertices, and we create the vertices 9 and
10 to represent them, along with the edges connecting the vertices that belonged to the
corresponding cliques. In Figure A.1(b), we create the vertices 11 and 12 to represent the
cliques with 5 vertices. Assuming the cost to store subgraphs is the sum of its vertices and
edges, the compression rate using cliques with four vertices is 9%, while the compression
rate using cliques with five vertices is 25%. As we increase the size of the cliques, we
reduce the overhead caused by adding the new vertex and edges.

A similar technique has been used by other paper [49], but with a difference: they
replace entire maximal cliques, thus ignoring the chances of these cliques sharing edges
with other cliques can also reduce the size of the subgraph. Instead, when we replace a
clique, we keep the edges that are shared with other cliques. We enumerate all possible
cliques with k vertices and rank them according to their capacity to reduce the size of
the graph. If a clique shares edges with other cliques, we remove only the edges that
are not shared, thus keeping other cliques that may also be used to compress the graph
later. Figure A.2 depicts our replacement strategy used for compression. Dotted edges
represent edges shared between cliques. When the clique surrounded with a dashed line
is replaced using the mechanism described in Figure A.1, the shared edges are kept, thus

87

Figure A.1: Lossless graph compression using cliques.

(a) k = 4. (b) k = 5.

Source: created by the author.

keeping the structure of the graph and allowing the clique in the middle to be used for
compression in the future.

Figure A.2: Clique compression without removing shared edges.

Source: created by the author.

Given a clique C, rank(C) indicates the compression capability of C and is calcu-
lated as:

88

rank(C) = ((k × (k − 1))/2)− (shared_edges(C) + k + 1) (A.1)

In the first part of the Equation A, ((k × (k − 1))/2) represents the set of all
edges of a clique with k vertices. In an ideal scenario, all these edges should be removed
when a clique is used for compression. The second part of the equation represents the
overhead of the compression. We do not remove the shared edges, and we also have to
add k edges and one vertex to create the compressed graph, thus reducing the ranking
of the clique. The fewer shared edges a clique contains, the more compressive it will be.
As we enumerate all possible cliques with k vertices, we can rank them to maximize their
compression capabilities.

Algorithm 19 uses DuMato API to implement the compression algorithm that uses
cliques with k vertices. The output is the compression score, which represents how many
edges/vertices of the graph can be removed if cliques with k vertices are used to compress
the graph. The left column represent the GPU code, which is written using DuMato API.
This code is almost the same code clique_counting code depicted in Algorithm 9, but
with one difference: in line 10 we store the cliques rather than counting. This is necessary
to calculate the compression scores of each clique later on CPU.

The right column represents the CPU code executed after all the enumeration
workflow finishes. Lines 15-19 count the times each edge appears in each enumerated
clique. Lines 22-29 rank each clique based on the number of shared edges. Lines 32-37
calculate the compression score using only the cliques that compress the original graph
(those with a rank greater than 1). If we wanted to compress the graph, we could replace
lines 35-36 with the code to create the compressed graph.

Table A.1 shows the number of compressing cliques (those with rank ≥ 1) and
the number of edges that can be removed if we apply our lossless compression using all
enumerated cliques of size k. Note that as we increase the size of visited subgraphs, the
compression using cliques becomes more effective. Besides, note that we used cliques up
to 9 vertices, which is not possible if we use the state-of-the-art subgraph enumeration
systems for GPU.

89

1 // GPU code
2 void clique_counting(TE){
3 while(control(TE)){
4 if(!extend(TE,0,1)){
5 u← TE[TE.len− 1].id;
6 filter(TE, &lower_than , [u]);
7 filter(TE,&is_clique, []);
8 }
9 if(TE.len == k − 1)

10 aggregate_store(TE);
11 move(TE, false);
12 }
13 }

14 //CPU code
15 edges← {}
16 foreach clique ∈ cliques do
17 foreach edge ∈ clique.edges do
18 edges[edge] + +;
19 end
20 end
21

22 rank ← {}
23 foreach clique ∈ cliques do
24 rank[clique]← (k ∗ (k − 1))/2;
25 rank[clique]− = (k + 1);
26 foreach edge ∈ clique.edges do
27 if(edges[edge] > 1)
28 rank[clique]−−;
29 end
30 end
31

32 sort(rank, descending);
33 score← 0;
34 foreach clique ∈ cliques do
35 if(rank[clique] >= 1)
36 score+ = rank[clique];

37 end
38 return score;

Algorithm 19: Compression algorithm.

k # cliques # compressing cliques # removed edges
4 9580415 412 412
5 64997961 1134 2250
6 400401488 1710 5094
7 2218947958 2126 8548
8 11088038672 2442 12276
9 50170510922 2658 15384

Table A.1: Lossless compression of ca-AstroPh using the cliques.

90

References

[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad
Jamour. Scalemine: Scalable parallel frequent subgraph mining in a single large
graph. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’16, pages 61:1–61:12, Piscataway, NJ,
USA, 2016. IEEE Press.

[2] Mohammad Almasri, Izzat El Hajj, Rakesh Nagi, Jinjun Xiong, and Wen-mei Hwu.
Parallel k-clique counting on gpus. In Proceedings of the 36th ACM International
Conference on Supercomputing, ICS ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[3] AMD. AMD Homepage. https://www.amd.com, 2022.

[4] Albert-László Barabási. Scale-free networks: A decade and beyond. Science,
325(5939):412–413, 2009.

[5] Maciej Besta and Torsten Hoefler. Survey and taxonomy of lossless graph compression
and space-efficient graph representations, 2019.

[6] Malay Bhattacharyya and Sanghamitra Bandyopadhyay. Mining the largest quasi-
clique in human protein interactome. In 2009 International Conference on Adaptive
and Intelligent Systems, pages 194–199, Sep. 2009.

[7] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient subgraph
matching by postponing cartesian products. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, page 1199–1214, New York, NY,
USA, 2016. Association for Computing Machinery.

[8] Björn Bringmann and Siegfried Nijssen. What is frequent in a single graph? In
Takashi Washio, Einoshin Suzuki, Kai Ming Ting, and Akihiro Inokuchi, editors,
Advances in Knowledge Discovery and Data Mining, pages 858–863, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg.

[9] Daniel Cederman and Philippas Tsigas. On dynamic load balancing on graphics
processors. In GH ’08, GH ’08, 2008.

[10] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng.
G-miner: An efficient task-oriented graph mining system. In Proceedings of the

REFERENCES 91

Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018. Association
for Computing Machinery.

[11] Xuhao Chen and Arvind. Efficient and scalable graph pattern mining on GPUs. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI
22), pages 857–877, Carlsbad, CA, July 2022. USENIX Association.

[12] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Pangolin: An
efficient and flexible graph mining system on cpu and gpu. Proc. VLDB Endow.,
13(10):1190–1205, April 2020.

[13] Sarvenaz Choobdar, Pedro Ribeiro, Sylwia Bugla, and Fernando Silva. Comparison
of co-authorship networks across scientific fields using motifs. In 2012 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining, pages
147–152, 2012.

[14] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse
real-world graphs*. In Proceedings of the 2018 World Wide Web Conference, WWW
’18, pages 589–598, Republic and Canton of Geneva, Switzerland, 2018. International
World Wide Web Conferences Steering Committee.

[15] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse
real-world graphs. In WWW ’18, WWW ’18, 2018.

[16] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira, and Srinivasan
Parthasarathy. Fractal: A general-purpose graph pattern mining system. In Proceed-
ings of the 2019 International Conference on Management of Data, SIGMOD ’19,
page 1357–1374, New York, NY, USA, 2019. Association for Computing Machinery.

[17] Alexandra Duma and Alexandru Topirceanu. A network motif based approach for
classifying online social networks. In 2014 IEEE 9th IEEE International Symposium
on Applied Computational Intelligence and Informatics (SACI), pages 311–315, 2014.

[18] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
Grami: Frequent subgraph and pattern mining in a single large graph. Proc. VLDB
Endow., 7(7):517–528, mar 2014.

[19] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in
large sparse real-world graphs. ACM J. Exp. Algorithmics, 18, November 2013.

[20] Chuangyi Gui, Xiaofei Liao, Long Zheng, Pengcheng Yao, Qinggang Wang, and Hai
Jin. Sumpa: Efficient pattern-centric graph mining with pattern abstraction. In 2021
30th International Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 318–330, 2021.

REFERENCES 92

[21] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee Tan.
Gpu-accelerated subgraph enumeration on partitioned graphs. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, SIGMOD
’20, page 1067–1082, New York, NY, USA, 2020. Association for Computing Machin-
ery.

[22] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee Tan.
Gpu-accelerated subgraph enumeration on partitioned graphs. In SIGMOD ’20, SIG-
MOD, 2020.

[23] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: Towards ultrafast and
robust subgraph isomorphism search in large graph databases. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, SIGMOD
’13, page 337–348, New York, NY, USA, 2013. Association for Computing Machinery.

[24] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating
cuda graph algorithms at maximum warp. In PPoPP ’11, PPoPP ’11, 2011.

[25] Bryan Hooi, Kijung Shin, Hemank Lamba, and Christos Faloutsos. Telltail: Fast
scoring and detection of dense subgraphs. In AAAI ’20, AAAI ’20, 2020.

[26] Yang Hu, Hang Liu, and H. Howie Huang. Tricore: Parallel triangle counting on gpus.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC ’18. IEEE Press, 2018.

[27] Eslam Hussein, Abdurrahman Ghanem, Vinicius Vitor dos Santos Dias, Carlos H.C.
Teixeira, Ghadeer AbuOda, Marco Serafini, Georgos Siganos, Gianmarco De Fran-
cisci Morales, Ashraf Aboulnaga, and Mohammed Zaki. Graph data mining with
arabesque. In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD ’17, page 1647–1650, New York, NY, USA, 2017. Association
for Computing Machinery.

[28] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A pattern-aware
graph mining system. In Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, pages YYYY–YYYY, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[29] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool
for large and sparse graphs. 2014.

[30] Terence Kelly. Compressed sparse row format for representing graphs. In Compressed
Sparse Row Format for Representing Graphs, USENIX Winter 2020, 2020.

REFERENCES 93

[31] Robert Kessl, Nilothpal Talukder, Pranay Anchuri, and Mohammed Zaki. Parallel
graph mining with gpus. In Wei Fan, Albert Bifet, Qiang Yang, and Philip S.
Yu, editors, Proceedings of the 3rd International Workshop on Big Data, Streams
and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and
Applications, volume 36 of Proceedings of Machine Learning Research, pages 1–16,
New York, New York, USA, 24 Aug 2014. PMLR.

[32] Nikhil S. Ketkar, Lawrence B. Holder, and Diane J. Cook. Subdue: Compression-
based frequent pattern discovery in graph data. In Proceedings of the 1st International
Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations,
OSDM ’05, page 71–76, New York, NY, USA, 2005. Association for Computing
Machinery.

[33] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. Cusha: Vertex-
centric graph processing on gpus. In Proceedings of the 23rd International Symposium
on High-Performance Parallel and Distributed Computing, HPDC ’14, page 239–252,
New York, NY, USA, 2014. Association for Computing Machinery.

[34] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu Yang.
Scalable distributed subgraph enumeration. Proc. VLDB Endow., 10(3):217–228,
nov 2016.

[35] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM Trans. Knowl. Discov. Data, 2007.

[36] W. Lin, X. Xiao, X. Xie, and X. Li. Network motif discovery: A gpu approach.
In 2015 IEEE 31st International Conference on Data Engineering, pages 831–842,
Address, 2015. Publisher.

[37] Guimei Liu and Limsoon Wong. Effective pruning techniques for mining quasi-cliques.
In ECMLPKDD ’08, ECMLPKDD ’08, 2008.

[38] Zhenqi Lu, Johan Wahlström, and Arye Nehorai. Community detection in complex
networks via clique conductance. Scientific Reports., April 2018.

[39] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and Bo Wu.
Graphzero: A high-performance subgraph matching system. SIGOPS Oper. Syst.
Rev., 55(1):21–37, jun 2021.

[40] Daniel Mawhirter and Bo Wu. Automine: Harmonizing high-level abstraction and
high performance for graph mining. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, page 509–523, New York, NY, USA, 2019.
Association for Computing Machinery.

REFERENCES 94

[41] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal
of Symbolic Computation, 2014.

[42] Md Moniruzzaman Monir and Ahmet Erdem Sarıyüce. Using large cliques for hi-
erarchical dense subgraph discovery. In Sriram Chellappan, Kim-Kwang Raymond
Choo, and NhatHai Phan, editors, Computational Data and Social Networks, pages
179–192, Cham, 2020. Springer International Publishing.

[43] NVIDIA. Volta Architecture Whitepaper. https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf, 2017.

[44] NVIDIA. NVIDIA Homepage. https://www.nvidia.com, 2022.

[45] NVIDIA. Profiler User Guides, howpublished="https://docs.nvidia.com/cuda/profiler-
users-guide/", 2023.

[46] Abdul Quamar, Amol Deshpande, and Jimmy Lin. Nscale: Neighborhood-centric
large-scale graph analytics in the cloud. The VLDB Journal, 25(2):125–150, apr
2016.

[47] Pedro Ribeiro and Fernando Silva. G-tries: A data structure for storing and finding
subgraphs. Data Min. Knowl. Discov., 28(2):337–377, March 2014.

[48] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[49] Ryan A. Rossi and R. Zhou. Graphzip: a clique-based sparse graph compression
method. Journal of Big Data, 5, 2018.

[50] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. Graphpi: High performance
graph pattern matching through effective redundancy elimination. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’20. IEEE Press, 2020.

[51] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’13, page 135–146, New York,
NY, USA, 2013. Association for Computing Machinery.

[52] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar,
Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. Goffish: A sub-graph
centric framework for large-scale graph analytics. In Euro-Par 2014 Parallel Process-
ing, pages 451–462, Cham, 2014. Springer International Publishing.

REFERENCES 95

[53] Olaf Sporns and Rolf Kötter. Motifs in brain networks. PLOS Biology, 2(11):null,
10 2004.

[54] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A system for distributed graph
mining. In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP ’15, page 425–440, New York, NY, USA, 2015. Association for Computing
Machinery.

[55] Ha-Nguyen Tran, Jung-jae Kim, and Bingsheng He. Fast subgraph matching on
large graphs using graphics processors. In Matthias Renz, Cyrus Shahabi, Xiao-
fang Zhou, and Muhammad Aamir Cheema, editors, Database Systems for Advanced
Applications, pages 299–315, Cham, 2015. Springer International Publishing.

[56] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry
Xu. Rstream: Marrying relational algebra with streaming for efficient graph mining
on a single machine. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’18, page 763–782, USA, 2018. USENIX
Association.

[57] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and
John D. Owens. Gunrock: Gpu graph analytics. ACM Trans. Parallel Comput.,
4(1), aug 2017.

[58] Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury, M. Tamer Özsu, Wei-Shinn
Ku, and John C. S. Lui. G-thinker: A distributed framework for mining subgraphs
in a big graph. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pages 1369–1380, 2020.

[59] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. In MDS ’12, MDS ’12, 2012.

[60] Mohammed J. Zaki and Wagner Meira Jr. Data Mining and Machine Learning:
Fundamental Concepts and Algorithms. Cambridge University Press, Address, March
2020.

[61] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng, and Jiafeng Guo. Kaleido: An
efficient out-of-core graph mining system on a single machine. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE), pages 673–684, 2020.

[62] Feng Zhou and Fernando De la Torre. Deformable graph matching. In 2013 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2922–2929, 2013.

	Introduction
	Challenges
	Irregularity
	Combinatorial Explosion

	Limitations of the State-of-the-art Strategies
	Thesis Statement
	Contributions
	Publications

	Organization

	Background
	Graph Pattern Mining
	Graph Theory
	Problem Definition
	Subgraph Enumeration Paradigms

	GPU Architecture

	Related Work
	Subgraph Enumeration Systems for CPU
	Subgraph Enumeration Systems for GPU
	Other Graph Mining Systems

	DuMato Subgraph Enumeration System for GPUs
	Strategies for Efficient Subgraph Enumeration on GPUs
	DFS-wide Subgraph Exploration
	Warp-centric Enumeration Phases
	Warp-centric Core Primitives
	Extend
	Filter
	Aggregate
	Warp Virtualization

	Warp-level Load Balancing

	Experimental Evaluation
	Experimental Setup
	Performance Improvements to Warp-Centric DFS-wide
	DuMato's Overhead
	Warp-centric vs. DFS
	Warp Virtualization
	Scheduling of Virtual Warps
	Impacts of Load Imbalance

	Gains Due to Load-Balancing
	Number of Threads and Load-Balancing Threshold
	Amount of Donations
	Warp-centric vs Warp-centric with Load-balancing

	Comparison with State-of-the-art GPGPM Environments

	Final Remarks
	Limitations and Future Work

	Use Case: Graph Compression
	References

