
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Kattiana Fernandes Constantino

Finding Collaborations based on Co-Changed Files

Belo Horizonte
2022

Kattiana Fernandes Constantino

Finding Collaborations based on Co-Changed Files

Final Version

Dissertation presented to the Graduate Program in Computer
Science of the Federal University of Minas Gerais in partial
fulfillment of the requirements for the degree of Doctor in
Computer Science.

Advisor: Eduardo Magno Lages Figueiredo

Belo Horizonte
2022

© 2022, Kattiana Fernandes Constantino.

 Todos os direitos reservados

 Constantino, Kattiana Fernandes.

C758f Finding collaborations based on co-changed files [recurso
 eletrônico] / Kattiana Fernandes Constantino – 2022.
 1 recurso online (159 f. il, color.): pdf.

 Orientador: Eduardo Magno Lages Figueiredo.

 Tese (Doutorado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f. 123-138.

 1. Computação – Teses. 2. Engenharia de software – Teses.
 3. Sistemas abertos (Computadores) – Teses. 4. Software –
 Desenvolvimento – Sistemas colaborativos - Teses. I.
 Figueiredo, Eduardo Magno Lages. II. Universidade Federal
 de Minas Gerais, Instituto de Ciências Exatas, Departamento de
 Ciência da Computação. III. Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6/1510 - Universidade Federal de Minas Gerais - ICEx

/!�1�'+��
��T����*�T��T��!
+T��*�+T
�!+-�-/-#T��T��M!��
+T�3-
+T

%'#�*�
T��T%N+��*�/
LK#T��T��M!��
T�
T�#�%/-
LK#T

��

���������������

�
��
����
����
���

���������
���
��	�������
����

����������	���������������������

-8D8T789>7;74T8T4AB?H474TA8<4T54>64T8I4=;>47?B4T6?>DE;EFR74TA8<?DT+8>:?B8D	T

%($��T��0�(�$T���"$T����,T���0��(��$T� #B;8>E47?BT
�8A4CE4=8>E?T78T�;Q>6;4T74T�?=AFE4PO?T� /���T

%($���T'�&0��T#��2��(�T%)�.�,T
�8A4BE4=8>E?T78T�;Q>6;4T74T�?=AFE4PO?T� /���T

%($��T��(�$T-SG@T��T#��2��(�T1T���".�T
�8A4BE4=8>E?T78T�;Q>6;4T74T�?=AFE4PO?T� /���T

%($��T��$(T�T�
�$T+.��" ����(T
�4=A?T�?FBO?T� /-�%'T

%($��T��(���$T��T
� ����T����T
�46F<7478T78T�?=AFE4PO?T� /�/T

�8<?T�?B;J?>E8�T��T78T�F<:?T78T�����T

Este trabalho é fruto de inúmeros e árduos sacrifícios em tem-
pos difíceis. Tempos em que a ciência e a pesquisa foram
fortemente atacadas no Brasil. Portanto, dedico esse meu
trabalho a todos os cientistas, pesquisadores e estudantes que
bravamente resistiram e ainda, resistem. Por uma ciência de
qualidade e mais igualitária.

Acknowledgments

Em primeiro lugar, quero agradecer a Deus por tudo. Sou profundamente grata a Ele,
por me guiar e me dar forças para superar os obstáculos na minha vida e principalmente,
nessa etapa do doutorado. Também, agradeço sinceramente a toda a minha enorme
família. Em especial, agradeço aos meus pais Edgar e Cícera, minha irmã Kellen, meus
irmãos Kássio e Kelbe, meu cunhado Moacir, minha cunhada Daliane, minhas sobrinhas
Bruna e Fernanda e meu sobrinho Miguel. Agradeço pelo amor, orações, apoio e torcida.
Agradeço por acreditarem em mim sempre. Por se fazerem presentes mesmo que distantes.
Obrigada por tudo. Amo todos vocês. Além disso, agradeço aos amigos que a vida me
deu, que foram e são essenciais na minha jornada, principalmente nos momentos mais
adversos. Sou feliz por ter cada um de vocês perto de mim.

Também agradeço por todo apoio, orientação e incentivo que meu orientador Ed-
uardo Figueiredo me deu durante o doutorado. Sua experiência e conhecimento me desafi-
aram a pensar criticamente e me levaram a atingir meu potencial máximo. Além disso,
sua paciência e disposição para responder às minhas perguntas foram fundamentais para
moldar minha pesquisa e melhorar minhas habilidades de escrita. Eu não poderia ter
concluído esta jornada sem a sua ajuda. Também, quero expressar minha mais sincera
gratidão a cada um dos meus amigos da DCC e do LabSoft que, ao longo de todos esses
anos, caminharam juntos cada passo dessa longa, árdua e vitoriosa jornada. Sem vocês,
meus queridos amigos, teria sido muito mais difícil. Segundo um provérbio africano, “Se
quer ir rápido, vá sozinho. Se você quer ir longe, vá em grupo.”

Agradeço também o inestimável apoio e trabalho dos professores do Departamento
de Ciência da Computação da Universidade Federal de Minas Gerais (DCC/UFMG). O
compromisso do corpo docente em proporcionar uma educação de qualidade aos seus
alunos tem sido notável, me sinto privilegiada! Também, estendo minha gratidão a to-
dos os colaboradores que trabalham incansavelmente para garantir o bom funcionamento
de todas as atividades desta excelente universidade. Além disso, gostaria de agradecer
às agências de financiamentos por todas as bolsas recebidas ao longo desta jornada: (1)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) bolsa
424340/2016-0; (2) Programa de Doutorado Sanduíche no Exterior (PDSE) da CAPES,
bolsa 88881.189537/2018-01 - Sob a supervisão do professor Christian Kästner (agradeço
pela orientação durante o intercâmbio); e, (3) Ministério Público do Estado de Minas
Gerais (MPMG) pelo Programa de Capacidades Analíticas - sob a supervisão dos profes-
sores Marcos André Gonçalves e Alberto Laender (obrigada pelo apoio e a oportunidade).

“Alone we can do so little, together we can do so much.”
(Helen Keller)

Resumo

Desenvolvedores devem colaborar entre si em todos os estágios do ciclo de vida do soft-
ware para criar sistemas bem-sucedidos. No entanto, em grandes projetos com centenas
de desenvolvedores, como os projetos de código aberto, pode ser muito complexo encon-
trar desenvolvedores com a mesma afinidade e, assim, obter boas colaborações e novos
insights. Além disso, nesse contexto de projetos, pode haver desperdício de recursos e
esforços, o que desencoraja a permanência de muitos desenvolvedores. Portanto, esta tese
de doutorado propõe uma investigação sobre o desenvolvimento colaborativo baseadas em
interesses similares de código. Foram realizados cinco estudos empíricos, nos quais: (1)
investigamos como as colaborações acontecem em desenvolvimento de projetos de código
aberto. Algumas das principais conclusões do estudo da entrevista incluem que a colabo-
ração transcende a codificação e inclui tarefas de documentação e de gerenciamento; (2)
investigamos quão abertos os desenvolvedores estão para colaborarem uns para com os
outros. Algumas análises do estudo de pesquisa revelaram que a maioria dos participantes
(85%) prefere trabalhar em colaboração com a equipe principal e 30% prefere trabalhar em
tarefas independentes; (3) propomos duas estratégias de recomendação de desenvolvedores
e um protótipo para suportá-las; (4) avaliamos as duas estratégias de recomendação de de-
senvolvedores, sob o ponto de vista de quem recebe a recomendação; as taxas de aceitação
para eles foram superiores a 65%. Quando juntamos as estratégias, a taxa de aceitação
foi de 81%. Finalmente, (5) também avaliamos o suporte ferramental com usuários e não
usuários do GitHub. Baseado nos resultados obtidos nesta tese de doutorado, é possível
que os desenvolvedores e mantenedores possam adquirir o conhecimento para fomentar as
colaborações no projeto e consequentemente, evitar o esvaziamento do mesmo.

Palavras-chave: projetos de software de código aberto; desenvolvimento colaborativo
de software; colaboração distribuída; recomendação de desenvolvedor.

Abstract

Software developers must collaborate at all stages of the software life-cycle to create suc-
cessful software systems. However, for large projects with hundreds of dynamic developers,
such as several successful open source projects, it can be very complex to find developers
with the same affinity and thus gain suitable collaborations and new insights. Besides, in
this project context, resources and efforts may be wasted, discouraging many developers
from staying. Therefore, this doctoral thesis proposes an investigation of collaborative
development based on similar code interests and tool–supported strategies to help devel-
opers find suitable collaborators. We performed five empirical studies: (1) we investigated
how collaborations happen in open–source software development projects through an in-
terview study. Some main findings from the interview study include that collaboration
transcends coding and includes documentation and management tasks; (2) we designed
and performed a survey study to investigate how open developers are to collaborate with
others. Some analysis from the survey study revealed that most participants (85%) prefer
to work collaboratively with the core team members and 30% prefer to work in inde-
pendent tasks; (3) we provided two strategies based on co–changed files and a prototype
tool, named CoopFinder, that support them; (4) we evaluated these two strategies to
motivate collaborations based on changes of similar code of point of view of who receives
the developer recommendations. As a result, the acceptance rates for them were greater
than 65%. The joint strategy presented the best acceptance rate (81%); and, (5) we also
evaluated these strategies and their supporting tool with GitHub users and non–GitHub
users. About 86% of the participants answered that they could use or recommend this
tool. Based on the results obtained in this doctoral thesis, it is possible that developers
and maintainers can acquire the knowledge to foster collaborations in the project and,
consequently, avoid emptying it.

Keywords: open-source software projects; collaborative software development; distributed
collaboration; developer recommendation.

List of Figures

1.1 Discussion on GitHub forum about an issue. 15
1.2 Study steps. 18

2.1 Summary of several existing recommendation strategies. 27

3.1 Interview study overview . 39

4.1 Research method overview . 56
4.2 Location of the survey participants for of this study. 59
4.3 Collaborative and independent work expectations vs. realities (what develop-

ers prefer vs. how it is). 61
4.4 Participants clustered in the three groups: Collaboration, Mixed, and Inde-

pendent. 61
4.5 Survey results on the developers’ prominent task categories to work collabo-

ratively with others in the project. 63
4.6 Each task category has two groups: collaboration and independent group. The

number of participants for each group is in parentheses. 64

5.1 Overview of recommendation strategies. 72
5.2 TF–IDF results for Strategy 1. Terms means the set of files of the project.

N means the total number of developers. IDF determines the weight of rare
file across all sets in the project. 73

5.3 TF–IDF results for Strategy 2. For each changed file, the value of the
number of changed LoC is in parentheses. 73

5.4 Contributors information. 76
5.5 Exploring collaborator recommendations. 76

6.1 Research method overview. 82
6.2 Location of the survey participants for analysing the recommendations of this

study. 85

7.1 Research method overview. 104
7.2 Distribution of time (in minutes) of the tasks performed by participants when

they used CoopFinder and GitHub. 110

List of Tables

2.1 An overview of prior works that explored recommendation strategies. 32

3.1 Participants Demographics. 40
3.2 Interview Questions . 40
3.3 Reasons for working collaboratively and independently. 42
3.4 Categories and codes for the types of collaborative contributions in the projects. 43
3.5 Categories and codes for the people roles involved in collaborative software

development projects. 44
3.6 Categories and codes for the collaboration channels. 45
3.7 Challenges and barriers faced by participants. 47

4.1 List of Questions answered by participants for this study. 58
4.2 Background of participants. 59

5.1 Summarizing the collaborator recommendation strategies. 74

6.1 Completely randomized design. 84
6.2 Participants demographics. 85
6.3 Survey questions. 86
6.4 Developer expectations (preference). 88
6.5 Percentage of the surveyed participants related to interest in co-changed files. 89
6.6 Percentage of the surveyed participants related to familiarity with co-changed

files. 90
6.7 Survey results on the task categories of developers to work collaboratively with

others in the project. 91
6.8 Percentage of non–acceptance or acceptance the recommended developers in

each strategy. 92
6.9 Percentage of the recommended developers accepted by surveyed groups of the

Strategy 1. 94
6.10 Percentage of the recommended developers accepted by surveyed groups of the

Strategy 2. 94
6.11 Percentage of the surveyed participants related to interest and familiarity with

co–changed files. 95
6.12 Percentage of the recommended developers accepted by surveyed groups of the

joint strategy. 96

List of Tables 11

6.13 Categories and codes for the feedback of (43) participants. 98

7.1 List of tasks to be performed by participants. 105
7.2 Profiling information of the participants. 107
7.3 Statistic Table. 108
7.4 Results of tasks performed by GitHub users and non–GitHub users. 109
7.5 Descriptive statistic. Minutes spent performing the tasks using both tools. . . 111
7.6 Other features to improve the recommendations. 113

B.1 Survey Questions. 146

C.1 Pre-assignment Questionnaire - Part 1. 151
C.2 Pre-assignment Questionnaire - Part 2. 152
C.3 Context and Tasks Using GitHub - Part 1. 153
C.4 Context and Tasks Using GitHub - Part 2. 154
C.5 Context and Tasks Using GitHub - Part 3. 155
C.6 Context and Tasks Using CoopFinder - Part 1. 156
C.7 Context and Tasks Using CoopFinder - Part 2. 157
C.8 Context and Tasks Using CoopFinder - Part 3. 158
C.9 Post–assignment questionnaire. 159

Contents

1 Introduction 14
1.1 Problem Statement . 15
1.2 Research Goals . 16
1.3 Method . 17
1.4 Contributions and Publications . 19
1.5 Results . 21
1.6 Doctoral Thesis Outline . 22
1.7 Funding . 23

2 Background and Related Work 24
2.1 Collaborative Software Development . 25
2.2 Recommender Systems . 27
2.3 Recommendation Algorithms . 29
2.4 Related Work . 30
2.5 Concluding Remarks . 35

3 Software Developer Perceptions on Collaborations 36
3.1 Interview Study Design . 37
3.2 Results of the Interview Study . 41
3.3 Limitations and Threats to Validity . 51
3.4 Concluding Remarks . 52

4 Openness for Collaborations 54
4.1 Survey Design . 55
4.2 Surveyed Participant Overview . 58
4.3 Survey Results . 60
4.4 Threat to Validity . 67
4.5 Concluding Remarks . 68

5 Tool-Supported Strategies to Find Collaborators 70
5.1 Strategies of Recommending Collaborators 71
5.2 CoopFinder Overview . 75
5.3 Concluding Remarks . 77

6 Evaluating Recommendations from the Developer Perspective 78

6.1 Study Design . 79
6.1.1 Research Method . 81

6.2 Results . 87
6.3 Joint Strategy . 95
6.4 Qualitative Analysis . 97
6.5 Threats to Validity . 99
6.6 Concluding Remarks . 100

7 User Evaluation 101
7.1 Study Design . 101
7.2 Study Results . 106
7.3 Threats to Validity . 114
7.4 Concluding Remarks . 116

8 Conclusion 117
8.1 Summary of the Work and Contributions 117
8.2 Future Work . 120

Bibliography 123

Appendix A Interview Documents 139
A.1 Recruitment email . 139
A.2 Recruitment email - Details of the research 140
A.3 Consentimento Verbal [Portuguese] . 141
A.4 Verbal Consent [English] . 142
A.5 Interview Protocol [English] . 142

A.5.1 Part 1 . 142
A.5.2 Part 2 . 143

Appendix B Survey Documents 144
B.1 Recruitment email . 144
B.2 Opinion survey . 145

Appendix C User Evaluation Documents 147
C.1 Free and enlightened consent . 147
C.2 Pre-assignment questionnaire . 151
C.3 Context and tasks using GitHub . 153
C.4 Context and tasks using CoopFinder . 156
C.5 Post-assignment questionnaire . 159

14

Chapter 1

Introduction

Consider two hypothetical scenarios. First, Mary is a core team member in an open-
source software (OSS) project. She would like more contributors to develop new features,
enhance, and maybe help manage the project. Mary also knows that many developers
made the last contribution long ago or never contributed to the project again. Thus, she
decided to promote an event to encourage the engagement of these temporarily inactive
developers or attract new developers. Moreover, Mary realizes that it would be interesting
for the project if active developers motivate others to contribute again or make their first
contributions. Thus, the chances of engagement and assertive contributions would be
more significant.

In the second hypothetical scenario, Joseph is a young developer and a volunteer in
an OSS project hosted on GitHub. He has tried to make a few contributions to a specific
project. For example, he was recently asked to design a new feature for this project.
However, Joseph is not very familiar with this specific project. Thus, he needs some help.
Perhaps, he could find another developer with whom he could discuss various design ideas
to have new insights. Therefore, Mary and Joseph look for the solution to their problems.
In other words, they want to find other developers with the same interests in the project.
That is, developers prefer or are familiar with specific parts of the code, being able to make
contributions regarding these parts. Consequently, they contribute to the engagement in
the project as a whole and enhance the opportunities for collaborations.

Although Mary and Joseph are hypothetical cases, Figure 1.1a shows a concrete
example of a GitHub project in which a core member called five other developers (three
core and two casual developers) to help him with an issue1. The post author probably
thought that these developers’ work would be relevant to this issue; thus, the author
mentioned (@)<developer> to join in the discussion. However, for some reason, none
of them answered the request. Hence, this real example leads us to think about one of
our general questions: although they are members of the project, would they be the most
appropriate and interested developers to help the post author?

Figure 1.1b presents a second part of the same example. After one day, another
developer, different from the five called ones, offered to help. Afterward, the issue author

1https://github.com/okfn-brasil/serenata-de-amor/issues/447

1.1. Problem Statement 15

(a) Core member called other core developers to help with this issue.

(b) A new developer offered help with this issue. And, the core member suggested that
they work collaboratively.

Figure 1.1: Discussion on GitHub forum about an issue.

offered to code together or to help this developer as a mentor. By observing this second
situation, we could wonder: since the core members are overloaded, what other developers
could be called upon to work together? After a few days, that issue was closed. Despite
the enthusiasm of the issue author to help in what the new developer needed, there is no
evidence that the collaboration happened. There was no record of commits on the new
developer fork. Moreover, there is no evidence that any other developers helped the core
member solve this project’s issue.

1.1 Problem Statement

Previous work showed that developers usually prefer to request collaboration from
core team members, who are supposed to have sufficient motivation, knowledge, and

1.2. Research Goals 16

experience in the project [Minto and Murphy, 2007; Kononenko et al., 2016]. However,
based on other prior studies, core team members may be overwhelmed and, as a result,
they may not provide collaborative support promptly [Yu et al., 2015; Gousios et al., 2015;
Steinmacher et al., 2018]. Moreover, other experienced developers, who are not part of
the core team, could be better used by the project. In other words, all collaboration is
essential for the sustainability of the project [Gamalielsson and Lundell, 2014]. Hence, all
contributions should be valued and encouraged [Pham et al., 2013; Gousios et al., 2014;
Pinto et al., 2016].

Previous work also mentioned that the lack of people performing some roles that
compose the core team, such as maintainers, supporters, reviewers, and others, impacts
the sustainability of the project [Jiang et al., 2015; Costa et al., 2021]. Another impact
on the project is related to developer turnover. For instance, a small group of developers
may be overloaded and centered on the project information and knowledge [Avelino et al.,
2016; Ferreira et al., 2017]. Moreover, other developers may be underused, even scarce,
or with restricted access to information due to limited knowledge-sharing opportunities
(e.g., collaborations, discussions) [Tamburri et al., 2015]. Both situations can frustrate
the developers, encouraging them to leave the project. All of the issues raised above are on
how the community of developers relates to each other. Moreover, how these relationships
positively or negatively impact the project. These situations also lead us to question: how
to balance and optimize collaboration among project developers?

1.2 Research Goals

This doctoral thesis aims to support developers, maintainers and researchers with a
better understanding of how to improve collaboration opportunities among developers in
a specific project and, consequently, avoid project starvation. Thus, the general objective
can be divided into the following specific goals (SGs) as follows.

• SG1 Investigate the motivations, processes, interactions, and barriers involved in
collaboration during open–source software development.

• SG2 Investigate how open the developers are for collaboration with others.

• SG3 Provide tool–supported strategies based on co–changed files to find suitable
collaborators.

• SG4 Evaluate developers recommendations based on co–change files from the point
of view of who receives the recommendations.

1.3. Method 17

• SG5 Evaluate the effectiveness of developer recommendation tools in supporting
developers and maintainers, considering both perspectives (GitHub user and non–
user).

1.3 Method

We divided this doctoral thesis into five main steps described in Figure 1.2. There-
fore, this research begins with an interview study (Step 1). Afterward, we designed and
applied a survey study (Step 2) to investigate if developers are open to collaborations.
Following this, we designed and implemented tool–supported strategies of developer rec-
ommendation based on similar interests (Step3). Next, we designed and applied a survey
study (Step 4) to evaluate the developer recommendations. Finally, we performed a con-
trolled experiment (Step 5) to complete the evaluation.

Step 1. As shown in Figure 1.2, we carried out an interview study to explore
the collaborations, processes, communication channels, and barriers and challenges faced
by developers in open–source software development. We focused on understanding (i)
what motivates developers to collaborate, (ii) the collaboration process adopted, and (iii)
challenges and barriers involved in collaboration (Chapter 3).

Step 2. We performed a survey study (Figure 1.2) to cross-validate the interview
results (Chapter 3). We aimed to know how open developers work collaboratively based on
their behaviors and to identify and check the main tasks to explore further collaboration
opportunities (Chapter 4).

Step 3. As detailed in Figure 1.2, based on the lessons learned from the previous
steps, we designed and proposed two strategies of developer recommendation based on co-
changed files. To extract these files, we considered the number of commits for Strategy
1. For Strategy 2, we used the number of changed lines of code. Furthermore, we
designed and implemented a visual tool to support these strategies (Chapter 5).

Step 4. We performed a survey study to evaluate two developer recommendation
strategies based on co-change files from the point of view who receives the recommenda-
tions (Figure 1.2). These recommendation strategies were results of our interview study
(Chapter 3) and the survey study (Chapter 4).

Step 5. We performed a controlled experimental study to evaluate two recom-
mendation strategies and the proposed visual tool (Figure 1.2).

1.3. Method 18

Pilot Study Participant Selection Project Selection Interview Protocol Qualitative Analyses

Step 1

GitHub Repositories Feature Extraction Changed File
Scoring

Recommendation
Model

CoopFinder
Prototype

Step 3

Opinion Survey Quantitative and
Qualitative Analyses

Participant C 1 and 2

Top-1
Recommended

 Developer

Strategy 1

Strategy 2

Surveyed
Developer

Participant A

Participant Selection

Step 4

Pilot Study Population Sampling

Experiment (~ 1:10 hour)

Latin Square Design -
Experiment Tasks (1 hour)

Data Collection

Quantitative and Qualitative Analyses

Group 2

Session Training First Tool Second Tool

Group 1

(10 min)

Pre-assignement
questionnaire

Answering (10 min)

Demographic
Information

Post-assignement
Questionnaire

Answering (10 min)

CoopFinder
Feedback

Participant Selection

Convenience and
Snowball

Recruitment
Technique

Step 5

Opinion Survey Quantitative and
Qualitative Analyses

Step 2

Pilot Study Population Sampling

Figure 1.2: Study steps.

1.4. Contributions and Publications 19

1.4 Contributions and Publications

One of the main expected contributions of this doctoral thesis is the lessons learned
concerning collaboration in open–source software development. With our results, we be-
lieve that practitioners acquire some necessary knowledge to improve the collaborations
among developers and to avoid starvation in the project. The second main expected con-
tribution is the visual framework to help developers improve collaboration opportunities
in a open–source software development project. The recommendations are extracted from
the software development activities among developers of the same project.

Until the date of production of this document, the following publications were by
products of this doctoral thesis, and contain parts of the thesis results.

1. Understanding Collaborative Software Development: An Interview Study. 15TH
IEEE/ACM International Conference on Global Software Engineering (ICGSE),
Seoul, South Korea, 2020. [Constantino et al., 2020].

2. Perceptions of Open-Source Software Developers on Collaborations: An Interview
and Survey Study. 2021. Journal of Software: Evolution and Process (JSEP), page
e2393. [Constantino et al., 2021].

3. CoopFinder: Finding Collaborators Based on Co–Changed Files. 2022. IEEE Sym-
posium on Visual Languages and Human–Centric Computing (VL/HCC), Rome,
Italy, 2022. [Constantino and Figueiredo, 2022].

4. Dual Analysis for Helping Developers to Find Collaborators Based on Co–Changed
Files: An Empirical Study. 2023. Software: Practice and Experience (SPE). doi:
10.1002/spe.3194. [Constantino et al., 2023a].

5. Recommending Collaborators Based on Co–Changed Files: A Controlled Experi-
ment. 2023. XVIII Simpósio Brasileiro de Sistemas Colaborativos (SBSC). [Con-
stantino et al., 2023b].

6. Finding Collaborations based on Co-Changed Files. 2023. XVIII Simpósio Brasileiro
de Sistemas Colaborativos (SBSC). [Constantino and Figueiredo, 2023].

Our work (1) has been recognized with an honorable mention at the prestigious
ICGSE/2020 conference. This conference is renowned worldwide for its focus on software
engineering processes and globally distributed software development. In recognition of
the quality of our work (1), we were invited by ICGSE/2020 to contribute with work
(2) to a special issue in the Journal of Software: Evolution and Process (Impact factor
(2021):1.864). Furthermore, our work (3) has been accepted for presentation at the IEEE

1.4. Contributions and Publications 20

Symposium on Visual Languages and Human-Centric Computing, widely recognized as
the premier international forum for research on this topic. Another significant accom-
plishment is the publication of our work (4) in the journal of Software: Practice and
Experience (Impact factor (2021):3.200), which is highly respected for its contributions
to the practical application of software techniques and tools for both software systems and
applications. We are thrilled to announce that our latest work (5) was not only presented
at SBSC (2023) but also received the prestigious Best Paper Award, recognizing its ex-
ceptional contribution to the field. Additionally, this current work received an honorable
mention at the SBSC Doctoral and Master Theses Competition, further acknowledging
its merit.

Furthermore, our work provided us with the opportunity to visit the Institute of
Software Research (ISR) at Carnegie Mellon University (CMU) in Pennsylvania, United
States from October 2018 to March 2019. During this period, we had the privilege of
being supervised by Professor Christian Kästner.

Moreover, we also contributed to the following work during this Ph.D. research:

1. Maurício R A Souza, Kattiana Constantino, Lucas Veado, Eduardo Figueiredo.
Gamification in Software Engineering Education: An Empirical Study. 30th Inter-
national Conference on Software Engineering Education and Training (CSEE&T).
Savannah, GA, USA, 2017. DOI: 10.1109/CSEET.2017.51.

2. A. Silva, G. Carneiro, M. Monteiro, F. Abreu, K. Constantino, and E. Figueiredo.
On the Impact of Product Quality Attributes on open–source Project Evolution. In
Proceedings of the 14th International Conference on Information Technology: New
Generations (ITNG), Las Vegas, USA, 2018.

3. A. Silva, K. Constantino, G. Carneiro, A. Paula, E. Figueiredo, M. Monteiro, and
F. Abreu. The Influence of Software Product Quality Attributes on open–source
Projects: A Characterization Study. In Proceedings of the International Conference
on Enterprise Information Systems (ICEIS), Setúbal, Portugal, 2017.

4. Juliana Pereira, Kattiana Constantino, Eduardo Figueiredo, and Gunter Saake.
Quantitative and Qualitative Empirical Analysis of Three Feature Modeling Tools.
In Communications in Computer and Information Science (CCIS), 2017.

1.5. Results 21

1.5 Results

This doctoral thesis provides the following main results.
Our main findings from the interview study (Chapter 3) include: (i) collaboration

transcends coding and includes documentation and management tasks; (ii) the collab-
oration process has different nuances and challenges when considering members of the
core team interacting with each other and interacting with peripheral developers; and,
(iii) knowledge management is a challenge in collaboration, and it is important to care-
fully define communication policies to mitigate and avoid problems related to knowledge
retention and decentralization.

Our analysis from the survey study (Chapter 4) revealed that most participants
(85%) prefer to work collaboratively with the core team, 30% prefer to work in indepen-
dent tasks, and 22% value the collaborations with the other developers. Furthermore,
the majority of participants selected the category related to software development (60%)
as the main task to work collaboratively with other developers. Finally, despite personal
preferences to work independently, developers still consider collaborating with others in
some scenarios, especially in development tasks.

In Chapter 5, we provided and discussed two strategies for recommending de-
velopers based on co–changed files. First, we recommend developers to engage in the
project and enhance the opportunities for collaborations, not only core members, code-
reviewers, or mentors but also all developers commonly interested. We also presented the
CoopFinder tool to help developers find collaborators in a specific project. CoopFinder
supports both strategies mentioned.

Our main findings from the survey study (Chapter 6) to evaluate two recommen-
dation strategies showed that (i) developers have a similar interest in the co-change files
for both strategies. These considerations are of relevance because many opportunities for
contributions to the project are linked with coding. Thus, that may indicate one less
barrier to improving collaboration among developers. (ii) The acceptance rates for the
two recommendation strategies were greater than 65%. The joint strategies presented
the best acceptance rate (81%), which raises evidence of the benefits of combining both
Strategies 1 and 2.

Finally, as a result of the experimental study (Chapter 7), participants pointed out
that CoopFinder is easy to use, intuitive, exciting, and supports project maintainer.
Moreover, about 66% of the participants stated they would use or recommend this tool.

1.6. Doctoral Thesis Outline 22

1.6 Doctoral Thesis Outline

In addition to this introductory chapter, the remainder of this thesis is organized
as follows.

Chapter 2 provides the essential concepts to support this work. In addition,
we present an overview of collaboration, processes, communication, and barriers and
challenges faced by developers. This chapter also discusses related work.

Chapter 3 presents the interview study aiming to understand the motivations,
processes, interactions, and barriers involved in collaboration during software develop-
ment. We interviewed 12 experienced developers of open–source software projects hosted
on GitHub. The results of this study contribute to the specific goal SG1 of this doctoral
thesis.

Chapter 4 presents the survey study aiming to obtain a understanding of how col-
laboration happens in open–source software development, based on developers’ behavior
to work with others. To this end, we designed and performed an opinion survey answered
by 121 developers. The results of this study contribute to the specific goal SG2 of this
doctoral thesis.

Chapter 5 presents two recommendation strategies of collaborators based on cod-
ing activities, especially in co–changed files. Besides, we present the prototype tool,
namely CoopFinder, to support the recommendation strategies. The results of this
study contribute to the specific goal SG3 of this doctoral thesis.

Chapter 6 presents a survey study to evaluate two collaborator recommendation
strategies based on co-change files from the perspective of who receives the recommen-
dations. We evaluated these strategies based on an extensive survey with 102 real-world
developers for this evaluation. The results of this study contribute to the specific goal
SG4 of this doctoral thesis.

Chapter 7 presents a experimental study to evaluate the recommendation strate-
gies and tool-prototype from the point of view of GitHub users and non-GitHub users.
We present a quantitative and qualitative evaluation of it using the state of the practice
as a baseline. The results of this study contribute to the specific goal SG5 of this doctoral
thesis.

Chapter 8 shows a summary of this doctoral thesis.

1.7. Funding 23

1.7 Funding

This research was supported for the following scholarships:

• CAPES Scholarship. This research was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) grant 424340/2016-
0.

• PDSE Scholarship. The author’s visit to Institute of Software Research (ISR) of
Carnegie Mellon University (CMU), Pennsylvania/United State, from October/2018
to March/2019 under the supervision of professor Christian Kästner. This exchange
was supported by the Programa de Doutorado Sanduíche no Exterior (PDSE) from
CAPES grant 88881.189537/2018-01.

• MPMG Scholarship. This research was partially supported by the Ministério
Público do Estado de Minas Gerais (MPMG) through the project Analytical Capa-
bilities.

24

Chapter 2

Background and Related Work

Open–source software (OSS) is a notable model for open collaboration, which happens
when people are trying to make something together to achieve the same goal [Laurent,
2004; Whitehead, 2007; Riehle et al., 2009]. It is the basis for sharing knowledge, ex-
perience, and skills among multiple team members to contribute to the development of
a new product. In our context, software development is a collaborative problem-solving
activity where success is dependent upon knowledge acquisition, information sharing and
integration, and the minimization of communication breakdowns [Tymchuk et al., 2014;
Bird, 2011]. Indeed, software developers collaborate in all software life-cycle phases to
successfully build software systems. In a typical software development process, develop-
ers perform many different tasks, such as developing software artifacts (e.g., source code,
models, documentation, and test scenarios), managing and coordinating their develop-
ment work or team, and communicating with each other [Whitehead, 2007]. This chapter
presents a summary of background information and related work that is fundamental to
the understanding of this doctoral thesis. The remainder of this chapter is organized as
follows. Section 2.1 presents the main concepts on collaboration in open-source projects.
Section 2.2 describes a overview of the traditional concepts of recommender systems. Sec-
tion 2.3 presents the fundamental concepts of algorithms used in this doctoral thesis.
Finally, we discuss the related work (Section 2.4) and conclude this chapter in Section
2.5.

2.1. Collaborative Software Development 25

2.1 Collaborative Software Development

Project Sustainability. Private and public companies want to guarantee sta-
ble and longevity software systems for their costumers. To this end, companies create
a sustainable culture to support software development. Following work investigated the
various entities that compose this sustainable culture. For instance, the license type can
positively or negatively impact the project community [Engelfriet, 2009], the different gov-
ernance approach applied in open–source software development [Eckert et al., 2019], the
communication and coordination mechanisms that need constant improvement [Cataldo
et al., 2006; Bird, 2011; Pham et al., 2013]. Moreover, the member diversity in the project
[Lima et al., 2014; Vasilescu et al., 2015b; Qiu et al., 2019], and their sustained commit-
ments [Dabbish et al., 2012a,b; Marlow et al., 2013] influence the project productivity. In
this doctoral thesis context, we focus on project sustainability related to its developers,
interaction, and individual responsibilities. Project sustainability depends on the diver-
sity and engagement of its contributors. The more diverse a project is, the more chance
the project is to succeed [Mockus et al., 2000; Qiu et al., 2019]. Furthermore, contribu-
tors who enjoy the work are more likely to remain than those driven by personal interest
[Shah, 2006; Lee et al., 2017]. Indeed, contributors who identify with the community and
feel like a part of it are more likely to be long-term contributors [Hippel and Krogh, 2003;
Fang and Neufeld, 2009].

Developer Roles. Team can be constituted by the developers to achieve a com-
mon goal. Some teams have factors that may affect either performance or contributions
to the project, as follows. Nakakoji et al. [2002] identified potential roles presented in
open–source communities based on the level of involvement with the project (time and
relevant contributions): project leader who is project owner, core members who are trusted
members of community, active developers, peripheral developers who contribute casually,
bug fixers, bug reporters, readers who discuss about code changes and leave comments,
and passive users. Not all communities have all types or the same names of these roles
[Nakakoji et al., 2002; Von Krogh et al., 2003]. For instance, Matragkas et al. [2014] in-
vestigated the diversity and structure of open–source software communities. They found
three types of contributors: core developers, active users, and passive users. Yamashita
et al. [2015] identified the core and non–core developers as the kind of contributors in
open–source software development teams. Our work considers four type of contributors:
newcomer, one-time contributor, peripheral contributor, and core contributor. The new-
comer is a novice in the project without any contribution accepted yet [Steinmacher et al.,
2014, 2018; Rehman et al., 2022]. The one-time contributor (OTC) who has one contri-
bution accepted [Lee and Carver, 2017; Lee et al., 2017]. The peripheral contributor is
a casual contributor [Lee and Carver, 2017; Barcomb et al., 2018], and finally, the core

2.1. Collaborative Software Development 26

contributor who is highly involved and usually contributes 80 percent of the source code
[Barcomb et al., 2018].

Collaboration Challenges. Collaboration brings known challenges. For in-
stance, the turnover of contributors is one of the factors that can impact the sustain-
ability of the projects [Gamalielsson and Lundell, 2014; Lin et al., 2017] or their quality
[Foucault et al., 2015]. Therefore, maintainers need to be aware of the need to create a
receptive culture for everyone interested in joining the team and value their contributions
[Gousios et al., 2015, 2016]. Furthermore, it is necessary to offer appropriate support for
contributors to make quality contributions. This individual experience can be one of the
keys to retain the contributor for the short or long-term in the project [Zhou and Mockus,
2012, 2014; Qiu et al., 2019; Barcomb et al., 2019]. Other challenges are the coordination
and communication that often break down in large and distributed teams and result in
longer resolution times and build failures [Herbsleb, 2007; Cataldo et al., 2008; Cataldo
and Herbsleb, 2012; Vale et al., 2021]. Collaborative Development Environments integrate
source code management tools and bug trackers with collaborative development features
[Lanubile et al., 2010]. They can be a solution to the communication and coordination
challenges of distributed software projects [Abbattista et al., 2008]. Besides, various so-
cial coding platforms allow developers to make contributions flexibly and efficiently, such
as GitHub1, GitLab2, Bitbucket3, SourceForge4, and others. In our context, we focus
on one social coding platform, GitHub, to improve open–source software development
collaboration.

GitHub is an example of a collaborative development environment that provides
an infrastructure for collaborative development. Besides, GitHub is a Web-based code-
hosting service that uses the Git distributed version control system. GitHub is available
for free. As of July 2022, GitHub reports having over 83 million users and more than 200
million repositories5. In fact, GitHub has become an essential tool in technology areas
that demand collaboration, such as globally distributed software development [McDonald
and Goggins, 2013; Storey et al., 2014]. GitHub also provides two collaborative develop-
ment models: shared access and fork & pull model. In the shared repository model, team
members have direct push access to the principal repository. This model is considered
suited to small teams and organizations. The fork & pull model lower the “barrier for
entry” for users interested in collaborating to an open–source software project [Gousios
et al., 2015]. In this model, developers “fork” the repository to create their own copy of
the source code and make changes without affecting the upstream development. After-
wards, developers can submit a pull request to inform the project maintainers to integrate

1https://github.com/
2https://about.gitlab.com/
3https://bitbucket.org/
4http://sourceforge.net
5https://github.com/

2.2. Recommender Systems 27

the changes into the main branch of the project. Pull requests are often used to initiate
a code review or discussion around code changes. The fork & pull model is popular with
OSS projects for reducing coordination requirements.

2.2 Recommender Systems

Recommender Systems (RecSys) usually make use of the approaches Content-
Based Filtering (CB) (also known as the personality-based approach), Collaborative Fil-
tering (CF), and Hybrid Filtering [Adomavicius and Tuzhilin, 2005; Bobadilla et al., 2013;
Robillard et al., 2009; Beel et al., 2016] as well as other systems, such as knowledge-based
systems, as shown by Figure 2.1. While content-based tries to recommend based on the
characteristics of consumed items, collaborative tries to correlate users with shared pref-
erences to generate the recommendations [Schafer et al., 2007]. In turn, hybrid methods
combine both approaches to minimize the limitations and to improve recommendation
performance [Jung et al., 2004; Su et al., 2007; De Campos et al., 2010]. We present more
detail of each approach as follows.

Recommender System

Content-Based Filtering
Collaborative Filtering

Model-based Filtering
Memory-Based Filtering

Item-Based
Use-Based

Hybrid Filtering

Figure 2.1: Summary of several existing recommendation strategies.

Content-Based Filtering has as basic idea using the properties of an item to
recommend other similar items/people based on user preference in the past [Pazzani, 1999]
(Figure 2.1). For instance, in a music context, one may use the singer’s name, compositor,
music genre, and keywords. These properties match the taste of a target user. In this
context, only the kinds of music that have a high degree of similarity to whatever the
user preferences are recommended. The content-based approach to recommendation has
its origins in information retrieval research [Allenby and Rossi, 1998; Billsus et al., 1998]
and information filtering [Ricci et al., 2011].

2.2. Recommender Systems 28

Collaborative Filtering [Breese et al., 1998] is the most popular recommendation
approach. The key idea of collaborative filtering is to use the feedback from each individual
user. In this approach, the user feedback may be distinguished between explicit feedback
(e.g., the user assigns a rating to an item) and implicit feedback (e.g., the user purchases
an item, watches a video, or contacts someone). Collaborative filtering has two groups
[Yang et al., 2014], as presented by Figure 2.1: Model-Based Filtering applies RecSys
information to create a model that generates recommendations; Memory-Based Filtering
usually uses similarity metrics to obtain the distance between two users, or two items,
based on each of their ratios. Furthermore, this group is categorized according to the
item and user as follows.

Item-Based Method [Sarwar et al., 2001] is a basic collaborative filtering algorithm
(Figure 2.1). The item-based method can make a recommendation by following the steps:
(1) After using items (e.g., movies, music, project repositories, source code), users ex-
plicitly assign numeric ratings to the items; (2) A recommender system correlates the
ratings in order to determine which item ratings are most similar to other items; (3) The
system predicts ratings of new items for the target user based on the ratings of similar
items already rated by the users, and (4) If these new items seem to be preferred, the
system recommends them to the user. The famous sentence of Amazon.com recommen-
dations, “Customers who bought this book also bought ...”, represents the core idea of
the item-based method.

User-Based Method [Resnick et al., 1994] is a basic collaborative filtering algorithm
(Figure 2.1). The user-based method makes recommendations by executing (2’) and (3’)
instead of (2) and (3) in the item-based method, respectively: (2’) A recommender system
correlates the ratings in order to determine which user’s ratings are the most similar to
other ones, and (3’) The system predicts ratings of new items for the target user based
on the ratings of similar users.

Hybrid Filtering [Burke, 2002; Porcel et al., 2012] seeks to combine the strengths
of collaborative filtering and content-based filtering to create a system that can best meet
users needs. There are different ways to combine collaborative and content-based meth-
ods. Based on the combination, this approach can be classified as follows [Adomavicius
and Tuzhilin, 2005; Robillard et al., 2009]: (a) implementing collaborative and content-
based methods separately and combining their predictions [Billsus and Pazzani, 2000;
Kim et al., 2011], (b) incorporating some content-based characteristics into a collabora-
tive approach [Melville et al., 2002; Li and Kim, 2003; Hu and Pu, 2010], (c) incorporating
some collaborative characteristics into a content-based approach [Popescul et al., 2001;
De Campos et al., 2010; Choi et al., 2012], and (d) constructing a general unifying model
that incorporates both content-based and collaborative characteristics [Mooney and Roy,
2000].

2.3. Recommendation Algorithms 29

2.3 Recommendation Algorithms

Information Retrieval [Salton and Buckley, 1988; Salton, 1989] and Information
Filtering are the basis of the content-based approach to the recommendation. Because of
the significant progress made by the information retrieval and filtering communities and
because of the importance of several text-based applications, many current content-based
systems focus on recommending items containing textual information, such as documents,
Web sites (URLs), and news messages. The advancement over the traditional information
retrieval approaches comes from the use of user profiles that contain information about
users’ preferences, needs, and tastes. The profiling information can be extracted from
users directly or indirectly, e.g., through questionnaires or learned from their behavior
over time, respectively.

Term Frequency - Inverse Document Frequency (TF–IDF) [Yu and Salton,
1976; Robertson and Jones, 1976; Salton and Buckley, 1988; Salton, 1989; Amati and
Van Rijsbergen, 2002; Jones, 2004] is one of the most traditional measures for specifying
term weights for information retrieval research. It is the product of two statistics: term
frequency and inverse document frequency. The measure determines the importance of a
term within a document that is defined as follows:

wt,d = tft,d · idft (2.1)

Where, tft,d is term frequency of term t in document d (a local parameter) and
idft is inverse document frequency (a global parameter).

Term Frequency (TF) measures how frequently a term appears in a document.
Since every document is different in length, a term can occur much more times in long
documents than shorter ones. Thus, as a way of normalization, the term frequency is
often divided by the document length:

tft,d = ft,d∑
k ft,d

(2.2)

Inverse Document Frequency (IDF) measures how important a term is. All
terms are equally important while computing TF. However, specific terms, such as “is”,
“of”, and “that”, may appear many times but have little importance. Thus, we need to
weigh down the many terms while scaling up the rare ones, by computing the following:

idft = log N

nt

(2.3)

Where, the log of the number (N) of sets of terms divided by the number of sets
that contain the term t. Inverse document frequency (1/nt) determines the weight of rare
term across all sets in the documents.

2.4. Related Work 30

Cosine Similarity [Salton, 1971; Salton and Harman, 2003] is a measure of sim-
ilarity between two non zero vectors of n dimensions by finding the cosine of the angle
between them. Given two vectors of attributes, A and B, the cosine similarity, θ is repre-
sented using a cross product as:

cosine similarity (A, B) = AB

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

(2.4)

Where, in text matching, the attribute vectors A and B are usually the term
frequency vectors of two text documents. The cosine similarity also is a method of nor-
malizing document length during the comparison. The resulting similarity ranges from −1
meaning exactly opposite, to 1 meaning the same. The angle θ indicates independence,
and in-between values indicate intermediate dissimilarity or similarity between vectors A
and B. In information retrieval, the cosine similarity of two documents will range from 0
to 1 since the term frequencies (TF–IDF weights) cannot be negative. The angle between
two term frequency vectors cannot be greater than 90°. When the angle is 90°, it means
that the two term frequency vectors are opposite [Baeza-Yates and Ribeiro-Neto, 1999;
Gunawardana and Shani, 2009].

2.4 Related Work

This section discusses previous work that have similar goals and how they differ
from ours along two main dimensions.

Collaboration in Open–Source Software Development. Several studies have
discussed diverse aspects of collaboration in open–source software development [Lakhani
and Hippel, 2004; Gamalielsson and Lundell, 2014; Gousios et al., 2015, 2016; Linåker
et al., 2018; Zhou et al., 2019]. However, each one focuses on distinct aspects and per-
spectives. For instance, two studies investigated the “fork & pull” development model
from the integrators’ [Gousios et al., 2015] and contributors’ [Gousios et al., 2016] per-
spectives. Both studies investigated practitioners’ working habits and challenges alike.
Gousios et al. [2015] investigated which motivation keeps contributors working on the
project and how not to discourage them. In a complementary study, Gousios et al. [2016]
pointed out that it is essential to reduce response time, maintain awareness, improve
communication, and improve quality (e.g., source code and documentation). Contribu-
tors also need to follow guidelines and best practices for their contributions to be accepted.
Although these works investigated different perspectives of “fork & pull” development,

2.4. Related Work 31

they do not target collaboration as we do in this thesis. For instance, Chapter 3 presents
an interview study with twelve experienced developers of open–source software projects
hosted on GitHub. In such study, we aim to investigate how the community supports
an increasing number of developers through spontaneous collaboration.

Zhou et al. [2019] show that there are significant inefficiencies in the fork-based de-
velopment process of many communities, such as lost contributions, rejected pull requests,
redundant development, and fragmented communities. They pursue two complementary
strategies: (i) identifying and suggesting the best practices for inefficient projects; and (ii)
designing new interventions to improve the community awareness for correctly using fork-
based development and helping developers to detect redundant development. In contrast,
we focus on a qualitative analysis based on interviews (Chapter 3) and a survey (Chap-
ter 4) with experienced software developers to understand the barriers and motivations
related to the collaboration process in fork based development, and how these factors im-
pact developers’ willingness to collaborate. Therefore, our research aims at understanding
how the collaboration occurs, in the perspective of developers.

Social theories propose that the sustainability of the community depends on en-
gaged and aware community members to support demands of the community [Gamaliels-
son and Lundell, 2014; Butler et al., 2002]. Some studies investigate the use of GitHub
social features to understand developer behavior and skills [Oliveira et al., 2021; Oliveira,
2022], to evaluate projects’ success, and to identify potential collaboration opportunities.
For instance, Marlow et al. [2013] observed that developers use signs (e.g., skills, rela-
tionships) from the GitHub profile to form impressions of users and projects, focusing
specifically on how social activity streams improve member receptivity to contributions
through pull requests. Tsay et al. [2014] found that both technical and social information
influence the evaluation of contributions. McDonald and Goggins [2013] noted that one of
the main reasons for the increasing number of contributions and developers to a project
are features provided by GitHub. Unlike these papers, this doctoral thesis focuses on
how the developers perceive the collaboration process in the project. We investigated the
motivations and the strategies to find and, when possible, retain developers in a project.
Additionally, our study focuses on identifying developers’ technical and social aspects that
can impact their project contributions (Chapter 3 and 4).

Developer Recommendations for Collaborative Interactions. The relation-
ship between developers is collaborative when they interact with each other to achieve
a common goal or do a task in an intellectual effort. Table 2.1 shows an overview of
many works in the literature related to recommendations for collaborative interactions in
software engineering. For instance, Minto and Murphy [2007] ranked a list of the likely
emergent team members with whom to communicate based on a set of files of interest.
They applied a simple frequency-based weighting to form these recommendations. Be-

2.4. Related Work 32

sides, they extracted information available from the Subversion repositories. In our work,
we also recommend developer to developer (user–user) of a project (Chapter 5). We
applied the TF–IDF score as a “relevance file scoring” and a classifier based on cosine
similarity measure to support recommendations using different code activity information
(number of commits and quantity of changed LoC).

Surian et al. [2011] recommended a list of top developers that are most compatible
based on their programming language skills, past projects, and project categories they
have worked on before. In addition, they extracted information available from Source-
Forge.Net. In our context, we collected information based only on source code changes
from the target project in which the developer collaborates with other developers or with
the project. Besides, we collected data from GitHub. Canfora et al. [2012] identify and
recommend mentors for newcomers in software projects by mining data from mailing lists
and versioning systems. They used raw frequencies (TF) and asymmetric Dice coefficient
as techniques to construct the recommendation list. They evaluated the approach on data
from five open–source projects: Apache httpd, the FreeBSD kernel, PostgreSQL, Python,
and Samba. In our context, we also recommend a list of developers with knowledge in
specific parts of software projects to connect them with other developers of the project
(Chapter 5). However, we extended our recommendations for all active collaborators of
the project that need help or want to follow the work of another developer. As mentioned
before, we used TF–IDF and cosine similarity measures.

Table 2.1: An overview of prior works that explored recommendation strategies.
Paper Purpose Feature Set Techniques* Repository

Minto and Murphy [2007] user-user source code data IR Subversion

Kagdi and Poshyvanyk [2009] user-task source code data IR/SM Subversion

Surian et al. [2011] user-user technical skills and
project data SM SourceForge.Net

Canfora et al. [2012] user-user social interactions
and project data IR/SM Git-based and

community repository

Jiang et al. [2015] user-task social interactions
and project data ML GitHub

Thongtanunam et al. [2015] user-task source code data SM Gerrit code review

Rahman et al. [2016] user-task technical skills and
source code data SM GitHub

Costa et al. [2021] user-task project data IR GitHub

Our work user-user source code data IR/SM GitHub

*The acronyms used in the “Techniques” column stand for: Information Retrieval (IR) methods:
Includes topic detection, term frequencies, relative category frequency, semantic filtering, ranking
functions. Machine Learning (ML) methods: Includes support vector machines. Similarity Mea–
sure (SM): Includes cosine similarity, euclidean distance, asymmetric Dice coefficient, random
walk restart compatibility metric.

Moreover, other works focused on recommendations whose general purpose is to
recommend developers for a specific task. For instance, Kagdi and Poshyvanyk [2009]

2.4. Related Work 33

recommend a ranked list of developers to assist in performing software changes. They
combined Latent Semantic Indexing (LSI) techniques with Mining Software Repositories
(MSR) to recommend a ranked list of candidate developers for the source code change.
They obtained data from the Subversion repository. Jiang et al. [2015] recommended core
members for contribution evaluation. They used Support Vector Machines techniques
(SVM) to analyze different kinds of features, including file paths of modified codes, rela-
tionships between contributors and core members, and the activeness of core members.

Thongtanunam et al. [2015] recommended reviewers based on past reviews of files
with similar names and paths. First, it finds past reviews with files whose paths and
names are similar to those in the patch under review by string comparison. Then, it
assigns the same score for all the reviewers from each such past review. Finally, all
reviewers are ranked based on the sum of their scores. Based on these results, they aims
to help developers to identify appropriate code–reviewers. Rahman et al. [2016] identified
an appropriate code reviewer for a pull request. In addition, they analyzed the past
developer work experience with external software libraries and specialized technologies
used by the pull request.

Zanjani et al. [2016] identified reviewers who have changed files with similar names.
Kagdi et al. [2012] recommend a ranked list of expert developers to assist in the imple-
mentation of software change requests. They applied the Information Retrieval (IR)
based concept location technique to locate source code entities relevant to a given textual
description of a change request. Costa et al. [2021] recommended participants for collab-
orative merge sessions. They analyzed the project history and built a ranked list of most
appropriate developers to integrate a pair of branches (Developer Ranking).

Other efforts [Terra et al., 2015; Xu et al., 2017; Ponzanelli et al., 2017; Jiang et al.,
2017b; Rahman et al., 2018; Sajedi-Badashian and Stroulia, 2020; Gong et al., 2021; Dey
et al., 2021] have been done in context of recommendation projects for developers and
vice-versa. For instance, Liu et al. [2020] recommend software features from the users’
perspective for designers of the project. Another example, Berkani [2020] recommends
friends in social networks. They take into consideration the semantic and social informa-
tion of users. However, this kind of recommendations is not the focus of our work.

In our context, we recommend user(s) to user based on co–changed files for to-
gether contributing to the engagement in the project and enhance the opportunities for
collaborations, not only core members or code-reviewers but also any collaborator that
has commonly interested. For instance, developers who implement similar features by
changing the same files. We showed a list of possible opportunities for collaboration and
the surveyed participants (Chapter 5) chose in which of them they could work together
with the recommended collaborator, as a mentor, as a tester, as a developer, or as a re-
viewer. Besides, we evaluate these strategies of recommendations in the context of GitHub
repositories using data collected from answers of 102 surveyed developers (Chapter 6). It

2.4. Related Work 34

is important to say that previous work [Minto and Murphy, 2007; Kagdi and Poshyvanyk,
2009; Jiang et al., 2015; Thongtanunam et al., 2015; Rahman et al., 2016] relies on au-
tomatic evaluations based on very limited ground truths that do not necessarily capture
the will to collaborate.

Furthermore, the software developer recommendation problem can be defined as
producing, for a given developer d, a list of possible collaborators, sorted according to
their relevance (interest in collaborating with) to d. Similarly to other recommendation
problems (e.g., movie recommendation), our problem can be viewed in two scenarios: a
cold start scenario and a non cold start scenario. The cold start problem refers to the
absence of sufficient information regarding a given user, which makes it difficult to produce
effective recommendations for that user [Hu et al., 2019]. Following prior studies [Minto
and Murphy, 2007; Canfora et al., 2012], in this work, we focus on the non cold start
scenario, leaving specific solutions to address cold start as future work.

2.5. Concluding Remarks 35

2.5 Concluding Remarks

In this chapter, we introduced the main concepts on collaboration in open–source
projects. In addition, we defined the traditional concepts of recommender systems. Fur-
thermore, we presented the recommendation algorithms relevant for this thesis, namely,
Term Frequency - Inverse Document Frequency (TF–IDF) and Cosine Similarity. Finally,
we discussed the works related to this doctoral thesis. The next chapter presents an in-
terview study aiming to understand the motivations, processes, interactions, and barriers
involved in collaboration during software development.

36

Chapter 3

Software Developer Perceptions on
Collaborations

This chapter presents the interview study to understand the motivations, processes, inter-
actions, and barriers involved in collaboration during software development. This knowl-
edge could help us retain developers in the projects and, consequently, guarantee their
sustainability. To achieve this aim, we designed a semi-structured interview protocol and
interviewed twelve experienced and active software developers of from large collaborative
projects from GitHub. Each interview lasted between 30 to 60 minutes and was guided
by three main questions about (i) what motivates developers to collaborate, (ii) the col-
laboration process adopted, and (iii) challenges and barriers involved in collaboration.
Our key results indicate three main types of collaborative contributions: (i) repository
management tasks, (ii) issue management tasks, and (iii) software development tasks.
That is, developers collaborate not only on writing code and implementing features, but
they also organize themselves and coordinate management tasks, such as coordinating
and planning change requests. We also uncovered a number of communication chan-
nels used by developers to collaborate, ranging from GitHub forum to Slack and email.
Furthermore, the main barriers for collaboration mentioned in our interview study are
related to non–technical, rather than technical issues. The remainder of this chapter is
organized as follows. Section 3.1 describes the interview study design. Section 3.2 reports
the results of the study regarding the research questions defined for this study. Section
3.3 discusses the limitations of the study. Finally, we end this chapter with some final
remarks (Section 3.4).

3.1. Interview Study Design 37

3.1 Interview Study Design

This section describes the goals, research questions, and method for the interview
study. In this study, each interview was transcribed verbatim and applied standard cod-
ing techniques for qualitative research.

Goal and Research Questions. Collaboration among open–source software developers
could take many forms. In a sense, there is a range from the enduring partnership between
members at an open–source software project team, such as to join insights to solve an
issue, to program in pairs, to share time, resources, and to acquire knowledge [Qiu et al.,
2019; Pinto et al., 2016]. Developers may have expectations concerning the kinds of
contributions they want and concerning the roles and responsibilities of each party [Onoue
et al., 2013]. Sometimes, the term “collaboration” may have different meanings to the
developers and others who may be directly or indirectly involved.

Therefore, the main goal of this interview study is to understand how and why
collaboration happens from developers’ perspectives in open–source software development
projects hosted on GitHub. We aim to identify which possible motivations, processes,
interactions are common in software development projects. Furthermore, we aim to com-
prehend the challenges and barriers faced by developers. We expect that our results
could help project maintainers to optimize collaboration opportunities and attract more
community members. To obtain a understanding on how collaboration happens in soft-
ware development projects, we interviewed twelve experienced developers in open–source
software projects in the context of the social coding site GitHub. Furthermore, we set
the goals of our interviews using the Goal/Question/Metric template (GQM) [Basili and
Weiss, 1984]. Following such a goal definition template, the scope of our interview study
is summarized as outlined below.

Analyze individual motivation, collaboration process and challenge and barriers
for the purpose of identifying opportunities for collaborations
with respect to collaboration process
from the point of view of developers and maintainers
in the context of the social coding site GitHub.

To achieve this goal, we consider the following research questions:

RQ1 - What are the motivations to work collaboratively? With RQ1, we
want to investigate the individual motivation of developers. We also discuss the
reasons for working independently mentioned by participants.

3.1. Interview Study Design 38

RQ2 - How does the collaboration process occur? To make a better analysis,
we refine the RQ2 in the following sub-questions.

RQ2.1 – What are the collaborative contributions? With RQ2.1, we want to
identify all collaborative contributions reported by participants and highlight
the main collaborative contributions. Moreover, we want to know which col-
laborative contributions could be further explored into a software project.

RQ2.2 – What are the roles involved? With RQ2.2, we want to comprehend
how the developers organize themselves, in particular, considering their roles
and interest in different types of collaborative contributions.

RQ2.3 – What communication channel do developers use to support collabora-
tion among them, and how? With RQ2.3, we want to know what communica-
tion tools are often used by developers. Besides, we want to understand how
communication occurs to support the collaborative contributions.

RQ3 - What are the challenges and barriers in working collaboratively?
With RQ3, we are interested to know which challenges and barriers are faced by
developers when working collaboratively. Besides, we want to know what are the
options we could pursue in order to optimize collaboration.

Research Method. To answer the research questions, we performed an interview study,
as summarized in Figure 3.1. In this study, we invited GitHub developers and performed
individual interviews that were conducted face to face or through Skype. Each interview
was transcribed verbatim. For the data analysis, we applied standard coding techniques
for qualitative research [Corbin and Strauss, 2014; Creswell and Creswell, 2017]. The
sections below explain the details of our method while Figure 3.1 gives an overview of it.

Pilot Study. We met with all researchers involved in this study to discuss an in-
terview protocol. As shown in Figure 3.1, we first decided to run a pilot study by selecting
three developers of the open–source projects. With these pilot interviews, we refined the
protocol, questions, focus, and time for interviews interactively. All participants in the
pilot interviews are Ph.D. candidates in Computer Science, while also software developers
and technical contributors to GitHub projects. Among others, we learned that time for
answering was too short, and we decided to give more time to explore the topic better.
Therefore, we reformulated the interview script and excluded the pilot interview data
from our analysis.

Participant Selection. As presented in Figure 3.1, to select participants, we first
mined Portuguese speakers (the language of the author) and frequent GitHub developers
with more than 500 commits in the last three years using GitHub’s REST API v31, in
line with prior studies on GitHub [Viggiato et al., 2019b,a; Oliveira et al., 2017, 2019].

1https://developer.github.com/v3/

3.1. Interview Study Design 39

Pilot Study Participant Selection Project Selection Interview Protocol Qualitative Analyses

Figure 3.1: Interview study overview

With this last selection criterion, we tried to guarantee that the developer had experience
in open–source development and was currently involved in at least one project. There-
fore, we could confidently state our interview questions related to collaboration among
developers on open–source development. Next, we sent e-mails to invite the top eighty
developers for an interview (Figure 3.1). A total of eighteen developers replied to the invi-
tation. However, six of them later cancelled the interviews. Therefore, twelve developers
participated in the final interview process. Before starting the interview, participants
provided their demographic information, including whether they were over 18 years old
(condition to be interviewed). In Table 3.1, we summarize demographic information of
our interviewees. Participants’ demographic information concern gender, last education
status (Edu.), years of OSS development experience (OSS Exp.), number of contributions
on GitHub for the past three years (GH Contr.), previous or current roles in the project,
and their project domains. We identified each participant with an anonymized identifier
(P#). Ten participants volunteered their time to contribute to their respective project
and the other two work full time as a professional in the project (and receive financial
incentives). Notably, all participants have knowledge in software engineering or software
development, and more than three years of software development experience.

Project Selection. To facilitate and better contextualize the questions for the
participants, we focus the discussions based on the project to which the participant con-
tributes the most (Figure 3.1). Moreover, the project could help them remember or focus
answers on their collaborative experience a project. When the participant was active
in multiple projects, we picked the most popular one in terms of stars and forks. Each
participant (P#) answered the interview questions focusing on a project to which they
collaborated.

Interview Protocol. We conducted individual interviews that were conducted
face to face or through Skype (Figure 3.1). Each interview lasted between 30 to 60 min-
utes. We recorded and transcribed interviews in order to code them. The interviews were
semi-structured based on five guiding questions, as shown in Table 3.2. Since our inter-
views were semi-structured, the interviewer asked follow-up questions that were not in

3.1. Interview Study Design 40

Table 3.1: Participants Demographics.

ID Gender Edu. OSS Exp. GH Contr.* Roles** Project Domains

P01 M B.S. 4 >900 TC/U Compilers/E-business
P02 M B.S. 2 >1,900 TC E-commerce
P03 F B.S. 4 >2,800 TC/SEO Artificial Intelligence/Education
P04 M M.S. 5 >600 TC/ME E-business
P05 M B.S. 9 >4,600 TC E-business/Infrastructure
P06 M B.S. 11 >3,900 TC E-Collaboration Tools
P07 F M.S. 7 >2,800 FPM/TC/SEO Civil Participation/Datamining
P08 M Ph.D. 10 >3,500 CM/SEO/M/TC Civil Participation/Datamining
P09 M M.S. 11 >4,000 ME/TC/SEO E-commerce/WebSecurity
P10 F M.S. 4 >2,500 CM/ME/TC/SEO Datamining
P11 M B.S. 8 >4,300 FM/TC/SEO Datamining/E-commerce
P12 M M.S. 5 >600 PM/TC/M/U Artificial Intelligence

*We recorded the values of the “#” of GH Contributions column in March 2021 (in the last 3 years). **The
acronyms used in the “Contribution Type” column stand for: Community Manager (CM), Technical Contributor
(TC), Former Project Manager (FPM), Social Event Organizer (SEO), Maintainer (M), Mentor (ME), and
User (U).

the interview script in order to further explore potentially interesting points that partici-
pants said. Moreover, we talked for a short time informally with the participants before
the interviews to facilitate a friendly and relaxed atmosphere. During the interviews, we
encouraged them to talk freely. In some cases, the participants referred to GitHub for
clarifications or explanations. All these strategies supported the exploratory nature of
our study and allowed us to examine unexpected insights.

Table 3.2: Interview Questions

ID Questions
IQ1 In the project hosted on GitHub which you are mostly involved in,

do you prefer to work alone or with other developers? Why?
IQ2 In the <project name> project, what kind of collaboration is the most

common among developers?
IQ3 Are there other collaborations that are important, but little explored

in the <project name> project that you participate in?
IQ4 Do you usually open some communication channels with any of the

project developers in <project name> for more collaborations? How?
Which tools do you use?

IQ5 In the <project name> project, in which you are involved in, do you
usually visit the forks of other developers to find something that might
be useful to you?

Qualitative Data Analysis. As detailed in Figure 3.1, we qualitatively analyzed
the interview transcripts using standard coding techniques for qualitative research [Corbin
and Strauss, 2014; Creswell and Creswell, 2017]. Two researchers analyzed the responses
individually and marked relevant segments with codes (tagging with keywords). Later,

3.2. Results of the Interview Study 41

the researchers compared their codes to reach consensus and tried to group these codes
into relevant categories. With the support of the other three researchers, the codes and
categories were discussed to extract key findings and theories.

3.2 Results of the Interview Study

This section presents the results from the perceptions of developers on collabora-
tions according to each research question proposed in Section 3.1.

RQ1 - What are the motivations to work collaboratively?

The first research question aims to investigate the individual motivation of open–
source software developers to work individually or in collaboration. Regarding the collab-
orative aspects, i.e., working with others in the execution of specific tasks, five participants
stated that they prefer to work with others, five participants prefer to work alone, and
two stated that it depends on each specific situation.

Working Collaboratively. In Table 3.3, we present the reasons why developers
prefer to work as a team. The results show that some motivations for working collab-
oratively are related to positive impacts on the project (e.g., strengthening the synergy
of teamwork, increasing the quality of the code and reinforcing best practices, benefits
from sharing knowledge and learning, and increasing productivity). For example, P04
explained “I prefer to work with other developers because their opinion on the developed
code is essential to make developers more confident,” and similarly, P09 emphasized “I
prefer to work together with other developers. It increases code quality. Also, you can
learn more, because you interact with your colleagues all the time. Moreover, you can
have new ways to solve problems.”

Working Independently. In Table 3.3, we also show the reasons why developers
prefer to work independently. The motivations for working independently are for par-
ticular benefits, own satisfaction, no pressure, and own pace. Besides, the participants
mentioned some drawbacks to working in groups, such as the dependence of other devel-
opers and the time-consuming nature of collaborative work, for example, when developers
need to make a joint decision to solve an issue or about a new release. These drawbacks
could postpone the project results. P10 reported: “You depend on the result of other
people and of more time to solve an issue or make a decision. It can be a problem.” P08
was one of the participants who remarked that sometimes they like to work with other
developers, like “pair programming,” and other moments they prefer to work in own pace:

3.2. Results of the Interview Study 42

Table 3.3: Reasons for working collaboratively and independently.

Category Codes P(#) F(#)
Working Teamwork 5 15
Collaboratively Knowledge sharing/learning 4 6

Increased code quality and best practices 4 16
Productivity 2 2
Professional activities 1 1

Working Self-management 4 7
Independently Personal interests 2 2

Different timezone 2 2
Independent tasks 2 2
Reaching consensus can be time-consuming 2 2
Dependence of others 1 1
Collaboration for demand 1 1
For non–core contributor 1 1

The acronyms used in the P(#) and F(#) columns stand for: Number of participants that cited the codes(P),
frequency of the code (F).

“I prefer to work alone, in my own time, for fun, without any pressure.” Our results also
show the developers’ motivations for collaborating into the open–source software project
both in a group or independently. These motivations coincide with the motivations found
by previous works [Pinto et al., 2016; Steinmacher et al., 2018; Von Krogh et al., 2012;
Pham et al., 2013]. We realized that the participants reported some of their experiences
and possible outcomes of the collaborations in the project. Besides, they have apprecia-
tion expectations and want their contributions to be valued and recognized with financial
benefit or not.

RQ1 Summary: The motivations of developers for working collaboratively are
focused on providing positive results to the project. They highlight the benefits of
knowledge sharing, strengthened synergy in teamwork, and increased productivity
and code quality. Regarding working independently, developers perceive personal
benefits by working without pressure and at their own pace. For instance, they
do not have to deal with dependencies among developers and time-consuming joint
problem-solving activities.

RQ2 - How does the collaboration process occur?

The second research question aims at characterizing the collaboration process in
collaborative software development projects. Therefore, we aim to understand the collabo-
rative contributions, the involved people, the collaboration channels, and the collaboration

3.2. Results of the Interview Study 43

Table 3.4: Categories and codes for the types of collaborative contributions in the projects.

Category Codes P(#) F(#)
Software Development Tasks Feature developing 9 19

Code review 6 10
Writing code 4 9
Opening a pull request 4 7
submitting pull request 2 2

Issues Management Tasks Issue solving 7 15
Issue reporting 4 8
Triaging issue 4 6
Issue opening 4 4
Issue detecting 2 3

Repository Code in upstream 7 9
Code in forks 2 4
Manage repository 2 2

Documentation Tasks Writing documentation 4 6
Translating documentation 3 5
Internationalization project 3 4
Improving documentation 3 3

The acronyms used in the P(#) and F(#) columns stand for: Number of participants that cited
the codes(P), frequency of the code (F).

process.
Collaborative Contributions. In Table 3.4, we indicate that feature developing,

issue solving, code integrated into the upstream, and code review are the most recurring
collaborative contributions mentioned by the participants. In fact, a previous study [Lee
et al., 2017] confirms that issue fixing (“fix bug”) and feature development (“add new fea-
ture”) are the top motivations for developers. The responses of participants also indicate
a transparent collaboration process that revolves around solving issues. It includes open-
ing and categorizing issues, developing code to implement changes (e.g., new features,
improvements, or fixes) required in these issues, submitting pull requests, reviewing the
code, and integrating the code to the upstream as presented in Table 3.4. The pull-based
development model helps the control of the contributed code quality by selecting new con-
tributions and incremental code reviews [Tsay et al., 2014; Gousios et al., 2014]. Thereby,
developers perceive each task as a contribution to the projects, not only the code itself.
We observe that some tasks are suitable for a developer to do alone. However, some
developers prefer looking for collaboration with other developers to perform these tasks.
As seen in Table 3.4, Software Development Tasks and Issues Management Tasks are
the most prominent categories regarding what participants understand as collaborative
contributions into projects.

3.2. Results of the Interview Study 44

Table 3.5: Categories and codes for the people roles involved in collaborative software
development projects.

Category Codes P(#) F(#)
Software Developer Developer 8 12
Project Roles Maintainer 5 5

Team leader 3 3
Project promoter 2 3
Reviewer 2 2
Coordinator 1 2

Committer Types Peripheral contributor 2 4
Core developer 2 3
Newcomer 2 2

The acronyms used in the P(#) and F(#) columns stand for: Number of parti-
cipants that cited the codes(P), frequency of the code (F).

Roles Involved. In Table 3.5, we show the roles of developers involved in collab-
orations. The first column of Table 3.5 presents the two categories we identity: Software
Developer Project Roles and Committer Type. The analysis of Table 3.5 revealed four
perspectives on the roles involved in collaborative software development projects: their
role in the development process, their contributor type, their expected characteristics, and
their responsibilities. Regarding software development roles, the roles of “developer” and
“maintainer” were the most mentioned by the participants. The roles of project promoter,
coordinator, core team, and reviewer were also mentioned. Two participants also used
categories to classify committer type as “peripheral developer”, “core developer”, and
“newcomers” as presented in Table 3.5. Interestingly, these types of committers match
the terminology used in recent research paper [Lee and Carver, 2017]. This finding in-
dicates an alignment between software development research and practice. There are a
set of responsibilities attributed to these developers, as stated by P05 and supported by
P03 and P08: “I am a core team member and also, one of the project maintainers. So,
I can create a branch, or ask for someone to review a pull request.” Besides, P02 said
(supported by P01 and P04): “Some issues are more appropriate for newcomers.” Some
codes identified in this analysis are related to desired characteristics of developers. The
main desired characteristics are “availability to collaborate” and “engagement”, also cited
in literature [Qiu et al., 2019; Miller et al., 2019; Lee et al., 2017]. For instance, avail-
ability includes the developer’s ability to conciliate the volunteer aspect of collaborating
in collaborative software development projects with their formal employment schedule.
P07 affirmed (supported by P02): “developers need to be very engaging to work on an
open–source project.”

Collaboration Means. In Table 3.6, we present the codes related to the com-
munication channels that developers used to support collaboration among them in open–

3.2. Results of the Interview Study 45

source development projects. GitHub issues was the most cited, following by Slack,
GitHub Pull Requests, e-mail, Telegram, and Gitter as communication channels for
collaboration. Prior works reported similar findings for open–source software projects
[Dabbish et al., 2012b; Qiu et al., 2019] and commercial projects [Kalliamvakou et al.,
2015].

Table 3.6: Categories and codes for the collaboration channels.

Category Codes P(#) F(#)
Communication and GitHub Issues (forum) 7 12
Coordination Slack 3 4

GitHub Pull Request (forum) 3 3
Remote Interactions e-mail 3 5

Telegram 3 4
Gitter tool 3 3
Internet Relay Chat (IRC) 1 2
Meeting.gs 1 1
Twitter 1 1
WhatsApp 1 1

The acronyms used in the P(#) and F(#) columns stand for: Number of participants that cited
the codes(P), frequency of the code (F).

They pointed out that developers usually communicate through text messages.
Developers stated that each project is free to adopt its own communication policies, and
in some cases, they do not have clear rules regarding communication tools usage. For
instance, participant P12 declared, “Sometimes, I start chatting on the forum, but if the
conversation extends, I switch to email.” Besides, participant P08 stated, “If I know the
developer, I talk directly. However, sometimes I open the issue.” Finally, P10 explained
all communication channels used during their works: “Large projects that I worked on
already have a specific communication channel, if they do not have, I use GitHub Issues.
I also use Gitters as a chat tool, Discuss as a tool for deeper discussions, GitHub Issue
as a way to record bugs and improvements, and some other projects I used Slack as well.”
While it could be advantageous to have several communication tools, it could also cause
data inconsistency. These findings align with the importance of defining the role of the
communication channels to use them for different purposes within a team [Giuffrida and
Dittrich, 2015; Storey et al., 2016].

Considering that all participants are GitHub users, it is not surprising that they
mention this platform as their primary collaboration channel. However, it is interesting
to notice that the issue system is an essential element in open–source software collabora-
tion. Thus, it complies with the perception of participants that issue solving contributes
significantly to collaborative software development. Bissyandé et al. [2013] found a con-
siderable correlation between the number of forks and the number of issues that bring a

3.2. Results of the Interview Study 46

positive impact on the project. Indeed, through issue reporting, developers help identify
and fix bugs, document software code, and enhance the software system. Participants
pointed out that they use communication tools in several contribution tasks in the life
cycle of the open–source project. For example, they use these tools to direct and promote
the project, recruit new developers, ask for help to develop a new feature, discuss solving
an issue, or other demands. P8 explained: “I posted on Twitter asking whether someone
could help me to develop a new feature for this repository. Several developers answered
me.” Following a different strategy, P9 shared: “I sent an e-mail asking whether they
could accept being members of the repository’s maintainer group.”

RQ2 Summary: Software Development and Issues Management Tasks are the most
notable categories concerning what participants understand as collaborative contri-
butions. In particular, they emphasize the tasks of feature developing, issue solving,
code integrated into the upstream, and code review. Furthermore, Software Devel-
oper Project Roles and Committer Types are the categories of people involved in
collaboration into the project. Committer Types are concerned with how often the
developers commit to the project. Regarding the communication means, GitHub
issues (forum) was the most cited communication tool by developers. Moreover,
they usually communicate with text messages. Furthermore, participants pointed
out that they use communication tools to ask for help with a new feature, fix an
issue, or manage a repository.

RQ3 - What are the challenges and barriers in working collaboratively?

In order to answer RQ3, we identify the challenges and barriers that would impact
on decisions into collaborative software development. Table 3.7 presents the challenge and
barrier categories as follow: Knowledge and Time, Documentation, Collaborators, and
Community Issues. For each category, we outline the main codes based on the frequency
of code and the number of participants citing them.

Knowledge and Time. Knowledge is one constant challenge and barrier in a
project. Therefore, the core team needs to know how to manage and make the knowledge
available in the project. P07 (supported by P11) was emphatic in saying that “Project
needs to have developers answering questions...” for the project to survive because without
the developers answering questions, the project fails in its first goal, which is to attract
developers or maintainers [Minto and Murphy, 2007]. P01 agrees with P07, but looks for
knowledge among senior developers of the project (supported by P02 and P06). “I have
a greater tendency to ask for help from a developer who has contributed for a longer time
and who has more extensive knowledge.” Thus, when the core team is aware of these
matters, it has the challenge of being available to meet the demands of peripheral and

3.2. Results of the Interview Study 47

Table 3.7: Challenges and barriers faced by participants.

Category Codes P(#) F(#)
Knowledge Clarifying any questions 6 11
and Time Collaboration depends on specific knowledge 5 7

Collaboration depends on free time 4 8
Seeking information/clarification 4 4
Conciliating employment and volunteer job 2 3

Doc. Problem Lack of documentation 5 6
Collaborators Lost contribution 3 4
Quitting Dependency of collaborators 2 2

Lack of mentor 2 2
Lack of maintainer 2 2

Community Issues Code in forks 3 3
Community expectancy 2 3
No compliance with contributing guidelines 2 2
Problem with maintainability 2 2

The acronyms used in the P(#) and F(#) columns stand for: Number of participants that cited the codes(P),
frequency of the code (F).

newcomer developers who want to participate in the project. For instance, it can happen
as mentoring in a forum or the code review phase. However, developers do not always
have the time and technical knowledge necessary to help, as P02 warns “... we use many
packages made by other developers... I encounter several problems ... I try to solve them
myself, but we don’t always have the time or knowledge to do it.” That is, the participant
highlights that acquiring knowledge takes a lot of time and effort. P02 and P07 also
reported the lack of time as one of the collaboration prevalent barriers. For instance, P2
states: “The maintainer has a job and does not have time for the project ...” and P07
concludes “(the developer needs) to have time to contribute, after all, everyone has limited
time.”

Moreover, P08 expressed their concern related to specific knowledge from non–
technical collaborators: “In my project, I have collaboration not only about coding but
also the interpretation of legal laws by lawyers. Then, thinking that GitHub is a tool
only for the developer community, we have extra work in joining lawyers’ knowledge to
our collaborators. Thus, when a developer analyzes an issue to solve it, they could have
that specific knowledge (technical or non–technical)”. Indeed, GitHub is a tool for techni-
cal and non–technical professionals. Project leaders need to pay attention to that kind of
collaboration in their projects. Furthermore, when the developers have enough technical
knowledge for the project, and all team is comfortable to share knowledge with each other,
the next goal for the core team is to retain this knowledge into the project. One possi-
bility is encouraging the developers to share their experience. For instance, whether the

3.2. Results of the Interview Study 48

developer knows a specific functionality, they could develop another similar functionality
or mentor someone that wants to develop it. P02 explains: “...I worked in a functionality
previously about phone patterns. After someone, from another country, asked me the same
functionality, I adapted it to his country pattern...” It could be a drawback for the project
losing trained developers, and with relevant knowledge. Thus, some strategies to retain
these developers need to be done, as P11 explains (supported by P07): “The networks
in OSS projects are essential. Usually, I always try to keep in contact with everyone who
collaborates with the project. So, there are punctual contributions, that sometimes we do
not talk to the contributor as much. However, when the contribution is more significant,
we try to keep talking to get closer because the contributor may have knowledge that can
help at another time.” The lack of experience of the quasi-contributors deemed the work
unacceptable [Steinmacher et al., 2018]. The lack of time is one of the reasons for de-
velopers to stop contributing to GitHub projects [Qiu et al., 2019]. Lack of time was
also identified as the most common barrier to participation faced by peripheral developers
[Pinto et al., 2016] and “no time” was one of the reasons for disengagement in open–source
software projects [Miller et al., 2019].

Documentation Problem. A barrier related to documentation is mainly the lack
or out-of-date documentation. A newcomer enters the project to collaborate, but they do
not find enough documentation to understand the project, as P11 reported: “...(When)
people wanted to know about more advanced things before collaboration. Then, they opened
issues that the documentation did not supply.” The core team recognizes the importance
of documentation. However, documentation tasks are not as prioritize as coding tasks.
The following are the reports of P05 and P10, respectively: “...The documentation is left
towards the end (of the project)” and “Collaboration on documentation in both the code
itself and official documentation are little explored, but it is as relevant as the primary
collaboration (coding).” On the other hand, documentation is also the gateway to start
collaboration on a project. It can be an excellent opportunity to become part of the de-
veloper team. Newcomers who are unfamiliar with the project could start to collaborate
with the project making or improving documentation, as reported by P06 (supported P03
and P09): “You have to emphasize that documentation is not so explored. For instance,
the project’s internationalization is an exciting contribution. You could collaborate with
translating documents...” and “I believe that a little more documentation would be very
important. Many people could collaborate with documentation, since they do not collabo-
rate with code.”

Several works [Pham et al., 2013; Stol et al., 2010; Steinmacher et al., 2015b]
stated the lack of documentation as a barrier for collaboration in the open–source software
project. The usual recommendation is to keep useful project documentation up to date,
since documentation is one of the sources of knowledge about the project. In this way, it is
the opportunity for encouraging collaboration from newcomers and making them familiar

3.2. Results of the Interview Study 49

with the project. Hence, documentation should be easily accessible for developers. Some
careful with documentation of the project could avoid demotivating developers, losing
contributions for misunderstanding, and overloading the discussion forums with questions
quickly clarified in documentation.

Collaborators Quitting. Collaborators are the key to the success of an open–
source project. Therefore, we show the barriers that the participants based on their
experiences point out as situations that discouraged these developers from remaining in
the project. As a consequence, the project loses possible contributions. P08 exemplifies
a situation “... Something that happens a lot is someone who starts a contribution, and
for some reason, he does not end it.”... [the participant showed a fork with 26 ahead
commits in his GitHub project]... “For example, this developer worked a lot, and we
did not even know about it.” Such a problem likely happens because of carelessness
with the developers. Another possible explanation concerns the high number of forks
in the project, which makes it difficult to know who is working and in what [Rastogi
and Nagappan, 2016]. Hence, to avoid losing developers or collaborations, P07 alerts:
“If volunteer developers are making several contributions and the core team stops giving
feedback to them, certainly, they will abandon that work.”

Other participants faced difficulties when the project decisions were too centralize
only on one member of the core team. Many decisions to take, issues to solve, pull requests
to review were cumulated or frozen waiting for maintainer decision. P02 reported: “First,
maintaining a project is a too hard task, mainly when it is not the main activity of the
maintainers. It may overwork them and make them abandon the project. But, whether
they receive financial incentives, then they could dedicate themselves exclusively to the
main project and attends the community demands.”

Considering the statements of these participants, the developers have a great chal-
lenge to bring these developers back (if possible). For P07, this depends more on the
motivation of the developers than on the efforts of the core team: “If after a while, some-
one (from the team) gives feedback to the developer again, he will have to be very motivated
to return working on the issue. After a while, without working on the code, the developer
does not remember the entire context anymore. So, it’s too difficult. The developer has to
be really motivated to keep contributing with the project”. Indeed, forgetting is an impor-
tant factor that can impact software development tasks [Nembhard and Osothsilp, 2001;
Krüger et al., 2018].

Since it may not be possible to have the “lost” developer back, the next challenge
for the maintainers presented by P08 is to find another developer who can continue the
activity that was previously stopped: “So, I wanted to highlight it for someone who wants
to continue this work.” Another challenge is knowing how to appreciate each contribution,
P10 emphasizes the importance of valuing all collaborations, even those that seem not to
have much value: “(After, listed some contributions) These three contributions are less

3.2. Results of the Interview Study 50

used, sometimes they are seen as not as important, but in fact, they are essential.”, “... I
believe these are collaborations that are not the main ones, but they are just as relevant.”

Community Issues - Fork Fragmentation. Some developers take advantage
of the fork to specialize the project for their interest. Furthermore, in some cases, these
new functionalities may not be updated for the main project. Thus, this practice makes it
difficult to manage the project’s functionalities. P12 confesses this practice: “Some forks
are more advanced than others. One fork can have a subset of functionality, while others
may have other different subsets. Thus, if you want to use the project as a whole, there
are several fragmented versions.” Therefore, fragmentation is one of the drawbacks of
collaborative software development and requires collaboration. Many development efforts
over multiple project versions are wasted, and many bug-fixes are not propagated [Zhou
et al., 2019; Stănciulescu et al., 2015]. Consequently, it makes a great set of specialized
forks. For projects with a large number of forks, it becomes impracticable [Stănciulescu
et al., 2015].

Community Issues - Failing to Comply with the Project’s Contribution
Guidelines. In order to attract developers and keep them active, project maintainers
usually have their code of conduct and guidelines of best practices for contributions. This
documentation drives new developers on the community’s expectations regarding posture,
commitment, and quality of work [Pham et al., 2013; Pinto et al., 2016]. However, we see
reports on some procedures that developers still fail to follow or that require improvement,
before accepting a relevant pull request as P10 explains: “. . . So, to prioritize code
organization and review more appropriately, I have asked the author to separate this in
different pull requests and different commit to keep history, to make it easier to fix, to
facilitate the review.” Another situation was reported by P05 that impacted the project
and future maintenance “Another collaboration could be the creation of a set of tests. The
developers send the features, but the tests are missing. This situation can cause a delay
in the project.” That is, not all developers have a testing culture. Besides, some tests
require more time and effort from casual and volunteer contributors. Project owners and
integrators are aware of these restrictions [Greiler et al., 2012; Pham et al., 2013; Gousios
et al., 2015]. Therefore, volunteers for this specific contribution are welcome.

Community Issues - Work Overload. Besides, some contributions demand
great efforts from both the newcomer or peripheral developers and the core team, as P05
reported and supported by P04. “Some projects are so challenging to test. For instance,
they do not have any test suite for what you have done. So, first, you have to open a new
issue to create the test suite for that. Next, you have to involve the core team because
of the task complexity.” Finally, P2 exposes the difficulty of a project having only one
maintainer: “I think that because it does not have a company behind it, it has only one
individual, so, I think that sometimes there is a little lack of organization.” This finding
reinforces the importance of attracting developers to the sustainability of the projects,

3.3. Limitations and Threats to Validity 51

as newcomers and experienced developers [Qureshi and Fang, 2011; Schilling et al., 2012;
Rastogi and Nagappan, 2016; Morrison et al., 2016].

RQ3 Summary: We identified four categories of barriers and challenges faced
by developers. That is, developers face issues regarding lack of knowledge and
time, documentation, the dependency of developers, and community issues. Fork
fragmentation and work overload were recurrently mentioned.

3.3 Limitations and Threats to Validity

In this section, we clarify potential threats to the study’s credibility, discuss some
bias that may have affected the study results, and explain our actions to mitigate them.
The main threats and our respective actions to mitigate them are discussed below based
on the proposed categories of Wohlin et al. [2012].

Construct Validity. Construct validity reflects what extent the operational mea-
sures that are studied represent what the researchers have in mind and what is investigated
according to the RQs [Wohlin et al., 2012]. We used an interview script to ensure that
all participants were asked the same base questions. The interview script was developed
in stages. The script was first piloted in three interviews. After these pilot interviews,
we reformulated the script to ensure that the questions were sufficient to generate data
to answer our research questions. Only then, we invited the other participants to the
study. The use of semi-structured interviews was also relevant for allowing the on-the-fly
adaptation of questions, in case the interviewer noticed any possible misunderstanding of
questions. After the conclusion of the analysis, the final manuscript related to the results
of the interviews were sent to the participants for validation. This validation did not
result in change requests from participants.

Internal Validity. The internal validity is related to uncontrolled aspects that
may affect the study results [Wohlin et al., 2012]. A larger number of participants should
be interviewed to capture the general view of a broader audience. However, this type
of study is limited by the availability of practitioners willing to participate in a study
without any type of reward or compensation for their time. Nonetheless, the number
of interviewees is in accordance with the literature on lived experience (minimum 10
interviewees) [Bernard, 2017] and phenomenological studies (minimum 6 interviewees)
[Morse, 1994]. Hence, we found some consensus in a random sample with participants
from different projects, which may depict perceptions of the community regarding how

3.4. Concluding Remarks 52

collaboration happens in collaborative software development projects.
External Validity. External validity concerns the ability to generalize the re-

sults to other environments, such as to industry practices [Wohlin et al., 2012]. In our
interview study, we interviewed twelve Portuguese-speaker developers in order to avoid
communication issues. However, it could have the chance of limiting the generalization of
our subjects. To mitigate this limitation, we were careful to invite active and experienced
developers to the open–source project (top-eighty contributions on GitHub). In fact,
before starting the interview, all interviewees had the opportunity to talk about the main
open–source projects they contributed and their current occupation. Most of them have
worked as senior developers in several countries (e.g., Brazil, England, the United States,
and Germany). Furthermore, they have contributed to projects with a higher number
of stars, which attract developers from several places around the world. All these fac-
tors corroborate with the interviewees’ expertise in global collaboration with open–source
development.

Conclusion Validity. The conclusion validity concerns with issues that affect
the ability to draw the correct conclusions from the study [Wohlin et al., 2012]. The
results presented in the study are first and foremost observations and interpretations of
the researchers from the interview studies. These results reflect our individual perceptions
of practitioners, and our interpretations of their responses. All researchers participated
in the data analysis process and discussions on the main findings to mitigate the bias of
relying on the interpretations of a single person. Nonetheless, there may be several other
important issues in the data collected, not yet discovered or reported by us.

3.4 Concluding Remarks

In this chapter, we reported and analyzed data collected through interviews con-
ducted with twelve developers from different open–source software communities to know
how collaborations happen, the process, the barriers, and challenges faced by developers.
Our main findings from interview study include: (i) collaboration transcends coding, and
includes documentation and management tasks; (ii) the collaboration process has different
nuances and challenges when considering members of the core team interacting with each
other, and members of the team interacting with peripheral developers; collaboration is
heavily driven by issue management, and it is impacted by management skills in defining,
categorizing, and sizing tasks accordingly, in such way that the community (including
newcomers) can collaborate independently; (iii) knowledge management is a challenge in
collaboration, and it is important to carefully define communication policies in order to

3.4. Concluding Remarks 53

mitigate and avoid problems related to knowledge retention and decentralization. Next
chapter, we present a survey study to cross-validate this interview study and better un-
derstand how open the developers are to collaborate with others. The opinion survey
was answered by 121 developers (response rate of 12%) who contribute to open–source
projects hosted on GitHub.

54

Chapter 4

Openness for Collaborations

In this chapter, we cross-validate our interview results (Chapter 3) to obtain a deep
understanding of how collaboration happens in open–source software development, based
on developers’ behavior to work with others. Moreover, we aim to identify and check
witch the main tasks can increase the opportunities for collaboration. To achieve these
aims, we designed and performed an opinion survey answered by 121 developers (response
rate of 12%) who contribute to open–source projects hosted on GitHub. All participants
are developers familiar with their projects and that made their last commit within the
last year. The remainder of this chapter is organized as follows. Section 4.1 describes the
survey study settings. Section 4.3 analyzes and reports the results of this empirical study.
Section 4.4 discusses some threats to the study validity. Finally, we end this chapter with
some concluding remarks (Section 4.5).

4.1. Survey Design 55

4.1 Survey Design

In order to study how the collaborations happen among developers, we performed
an opinion survey to get more insight into the results from the interview study (Chapter
3). We describe below the survey goal, research questions, and the steps of the research
method.

Goal and Research Questions. In Chapter 3.2, some interviewees (e.g., P01,
P02, P06, and P07) reported they have a tendency to mutual interactions with the senior
developers of the project instead of interactions with other developers. The main reason is
that the core team members have a more significant level of involvement with the project.
Experienced community members are also more prone to sharing knowledge and mutual
interactions with other members than non–core team developers. However, all collabora-
tions are essential for the sustainability of the project [Gamalielsson and Lundell, 2014].
Hence, all contributions should be valuable and encouraged [Pinto et al., 2016; Pham
et al., 2013; Gousios et al., 2014]. For instance, casual developers or newcomers also con-
tribute with bug fixes, new features, documentation, user support, and other important
tasks. Therefore, we performed a survey study aiming to cross-validate our results and
understand how collaboration happens in software development projects. Based on de-
velopers’ behavior, we aim to know how open they are to working collaboratively with
others and which main tasks are to further opportunities for collaboration in the open-
source software development project. Furthermore, we set the goals of the survey using
the Goal/Question/Metric template (GQM) [Basili and Weiss, 1984]. Following such a
goal definition template, the scope of the survey study is outlined below.

Analyze developers’ behavior and preferences
for the purpose of knowing the openness for collaborations
with respect to increase the opportunities for collaboration
from the point of view of developers and maintainers
in the context of open-source software development project.

To achieve this goal, we consider the following survey research questions (RQs):

RQ1 - How open are developers to work collaboratively? With RQ1, we want
to know how developers prefer to work and how they actually work, with respect
to: working alone, working with the core team, or working with other developers.

RQ2 - What types of activities do developers prefer to collaborate? With
RQ2, we aim to investigate the types of activities that are more likely to improve

4.1. Survey Design 56

Opinion Survey Quantitative and
Qualitative Analyses

Pilot Study Population Sampling

Figure 4.1: Research method overview

collaboration among developers.

RQ3 - What other perceptions do developers provide about collabora-
tions? With RQ3, we aim to know which are the observations or developers’ per-
ceptions provided in the open questions of the opinion survey.

Research Method. To answer the research questions, we performed a survey study.
According to Easterbrook et al. [2008], survey studies, usually associated with the ap-
plication of questionnaires, are used to identify characteristics of a great population.
Surveys are meant to collect data to describe, compare, or explain knowledge, behaviors,
and attitudes [Pfleeger and Kitchenham, 2001]. Figure 4.1 presents our research method
overview. In summary, we select projects hosted on GitHub. We extract data from the
original repository and its contributing forks. Additionally, based on some collabora-
tive strategies, we choose the surveyed participants and their similar developers based on
code changes. Each participant answers an online questionnaire. The survey study was
executed in accordance to the following steps.

Pilot Study. We executed a pilot study in order to validate the study protocol
and the questionnaire. For the pilot study, we sent 158 invitation emails to answer our
survey. In total, 10 participants completed the survey in our pilot study. The main
improvement from the pilot study was related to the questionnaire. Initially, we asked
participants about their current collaboration practices (questionnaire item SQ1, in Table
4.1). However, during the pilot study, we noticed that the current work practice may not
reflect the participant preferences. Therefore, we added the questionnaire item SQ2.
Another change is related to the number of recommended developers presented for each
participant. Firstly, we started with three developers for each participant. However, we
realized that it turns the questionnaire too long and very complicated for participants to
answer. For each of the recommended developers, the participant should check the relevant
files for both and answer the questions. Thus, participants gave signals indicating giving

4.1. Survey Design 57

up on completing the survey, for instance, leaving the questions blank related to the last
recommended developers. Thereby, we decided to reduce for one recommended developer
per participant. We also decided to use developer recommendations based on similar code
changes [Minto and Murphy, 2007; Jiang et al., 2015; Costa et al., 2021] to obtain concrete
collaboration scenarios across developers. Accordingly, the developer would collaborate
with existing or possible concrete situations.

Population Sampling. The target population sample is composed of developers
working on contributing forks of open–source projects hosted on GitHub, as presented
by Figure 4.1. Therefore, we first selected candidate open–source projects from GitHub
according to the following criteria: they must be public, have at least 1K stars, and must
active with ongoing development. This yielded 3,464 repositories, from which we ran-
domly selected 50. The selected repositories include many famous and popular projects,
such as MongoDB1 (Version 4.4, 19K stars, 7K forks and C++ as predominate lan-
guage), Eclipse Deeplearning4J2 (Version 1.0.0, 12K stars, 5K forks and Java as
predominate language), Pandas3 (Version 1.1.3, 27K stars, 11K forks and Python as
predominate language), and Vue4 (Version 3.0, 16K stars, 3K forks and TypeScript as
predominate language). Afterward, we automatically collected the name and emails of
project developers with at least four accepted commits (with their last commit within the
last year). Based on the last commit date, we try to guarantee that the developers may
be currently involved or still familiar with the project [Miller et al., 2019; Krüger et al.,
2018].

Opinion Survey. We created a questionnaire5 on Google Forms composed of
questions about the project developers’ perception of their collaborative works with other
project community members (Figure 4.1). Table 4.1 shows the final version of list of
questions (after the pilot study) for this study. Finally, we seek any additional infor-
mation that participants would like to add. We ask two open questions. First, what
additional collaborative tasks that participants may wish to work in work collaboratively
with. Second, in the last question, the participants could add any comments to this study.
These additional questions aim to catch any important issues to participants not asked
in the questionnaire. We sent personalized emails to 1,113 developers from 50 projects.
In total, 130 participants completed the opinion survey. We analyzed their responses,
and filtered incomplete responses, excluding 9 participants. Finally, we nicknamed the
surveyed participants from S01 to S121. Our goal is to use these nicknames while keeping
the anonymity of the participants, for analyzing their feedback from open questions.

1https://github.com/mongodb/mongo
2https://github.com/eclipse/deeplearning4j
3https://github.com/pandas-dev/pandas
4https://github.com/vuejs/vue-next
5The complete questionnaire is presented on Appendix B. Besides, this complete questionnaire was

used partially in two study (Chapters 4 and 6).

4.2. Surveyed Participant Overview 58

Table 4.1: List of Questions answered by participants for this study.

ID Questions
SQ1 How are you working on the project?

[] In collaboration with the core team
[] In collaboration with owners of other forks
[] Independently

SQ2 How do you prefer to work on the project?
[] In collaboration with the core team
[] In collaboration with owners of other forks
[] Independently

SQ3 I worked or may work in partnership with the owner of this fork on some
tasks of the project, such as:
[] software development tasks (e. g., feature or test suites developing,
or code review)
[] issues management tasks (e. g., reporting, triaging, or solving issues)
[] community building (e.g., motivating/recruiting collaborators,
or promoting/directing the project)
[] maintainability (e. g., improving code/project quality)
[] mentorship/knowledge sharing (e. g., for giving/asking help to develop
a new feature or fix an issue)
[] repository management tasks
[] I did not work or may not work in partnership with the owner of fork
[] other (open question)

SQ4 Other important observations or suggestions (open question)

Quantitative and Qualitative Analyses. As indicated in Figure 4.1, we col-
lected quantitative and qualitative data from the opinion survey (concerning developer
opinions and preferences) and objective data such as demographic information. Section
4.2 presents this demographic information and Section 4.3 presents quantitative and qual-
itative analysis to answer the research questions of this work.

4.2 Surveyed Participant Overview

Through the GitHub REST API6, we collected the public and available informa-
tion of the survey participants in their GitHub profiles as follows. Table 4.2 summarizes
statistics on the background of participants such as the number of followers and following
as indicators of social interaction and popularity of the participants. They have a median

6https://docs.github.com/en/rest

4.2. Surveyed Participant Overview 59

Table 4.2: Background of participants.

Mean St. Deviation Min Median Max
Followers 77 1,983 0 20 1,505
Following 13 20 0 4 116
Public Repos 54 67 2 31 512
Contributions 1,715 2,249 38 797 11,093

*We recorded the values in July of 2021.

0

10

20

30

USA UK
Ind

ia
Chin

a

Germ
an

y

Can
ad

a
Braz

il

Belg
ium

Fran
ce

Hun
ga

ry
Ja

pa
n

Rus
sia

Aus
tra

lia

Neth
erl

an
ds

Norw
ay

Pola
nd

Port
ug

al

Sing
ap

ore

Sou
th

Kore
a

Swed
en

Switz
erl

an
d

Urug
ua

y

Figure 4.2: Location of the survey participants for of this study.

of 20 followers and 4 following. Additionally, we collected the number of public reposito-
ries they have interested to follow or participated in, and the number of the contributions
in the last year. Likewise, they have a median of 31 of interest in public repositories and
797 commits in the past three years.

Moreover, Figure 4.2 presents the location of the survey participants that many
of them were from the USA, UK, and India, but there was also a wide distribution
among other unspecified countries, because this information was not available (total of
40). Finally, we mined the public and available roles and technologies information auto
declared by participants in their bios. The roles are Compiler Developer, Community
Team Manager, Data Engineer, Data Scientist, Front-End Developer, Maintainer, Pro-
grammer, Researcher, Software Engineer, Software Developer, Tutor, UI Designer, and
Web Developer. The Languages used are Java, JavaScript, MATLAB, Python, Rust, and
TypeScript. Besides, the technologies they use involve Apache Framework, API maker,
BootStrap, Build tools, CLI, Dataviz, Gatsby, Git, JIT compilation, MongoDB, Node.js,
Plugins, and React/Redux.

4.3. Survey Results 60

4.3 Survey Results

This section describes the results of the survey study regarding the three research
questions introduced in Section 4.1. We analyzed 121 responses from 130 participants. We
decided to exclude 9 participants that left some questions without answers, i.e., incomplete
questionnaires. We also do not include any responses from our pilot study.

RQ1 - How open are developers to work collaboratively?

To answer the RQ1, we used the participants responses for the survey items SQ1
(How are you currently working on the project?) and SQ2 (How do you prefer to work
in the project?) (Table 4.1). They had the following options to answer (more than one
option is allowed): (i) In collaboration with the core team, (ii) In collaboration
with the other developers (owners of forks), and (iii) Independently. Figures
4.3a and 4.3b use Venn diagrams to present the responses for their preferences and the
actual practice of collaborative work, respectively. The intersections illustrate participants
that choose more than one options. For their preferences, Figure 4.3a indicates that most
participants (85%) prefer to work collaboratively with the core team, 30% prefer to work
in independent tasks, and 22% prefer to collaborate with the other developers (owners
of forks). Regarding their actual practices, Figure 4.3b indicates 74% of the participants
actually work collaboratively with the core team, 36% work in independent tasks, and
11% work in collaboration with the other developers (owner of forks).

Figures 4.3a and 4.3b also present the participants mapped into groups, based on
collaborative work categories, as follows: Collaboration Group, Independent Group, and
Mixed Group. Participants from Collaboration Group work or prefer to work strictly in
collaboration, and participants from Independent Group work or prefer to work strictly
independently. The other group work or prefer to work independently or collaboratively
(Mixed Group). The significant differences between the results (preference versus reality)
are between the subsets that involve most of those chosen for mixed and independent
works. Figure 4.4 presents the matched and mismatched expectations of each group. Most
of the developers of the Collaboration and Independent Group are working according
to their stated preferences.

Considering these results, we can observe some indicators about which could at-
tract (or not) more collaboration for a project. For example, Farias et al. [2019] found that
collaborators that contribute regularly and that active participation and long-time inter-
action with a project are drivers for collaboration. Similarly, Blincoe et al. [2016] found
that developers are also likely to contribute to new projects after a popular user whom
they are following performs any activity on that project. Cai and Zhu [2016] argued that

4.3. Survey Results 61

Other Collaborators (22%)

71 112

13

17

16

Core Team (85%)

Independently
(30%)

(a) Developer expectations (preference).

Other Collaborators (11%)

Collaboration group

Mixed group

Independent group

66 110

2

112

29

Core Team (74%)

Independently
(36%)

(b) Developer reality.

Figure 4.3: Collaborative and independent work expectations vs. realities (what develop-
ers prefer vs. how it is).

N
um

be
r o

f S
ur

ve
y

P
ar

tic
ip

an
ts

0

20

40

60

80

Collaboration Mixed Independent

Matched expectations Mismatched expectations

Figure 4.4: Participants clustered in the three groups: Collaboration, Mixed, and Inde-
pendent.

experienced developers produce quality codes that could attract more developers to the
project. Therefore, developers are interested in improving the project or their knowledge
and reputations by interacting or following core team members. Another possible point
is that sponsored projects have dedicated developers full-time for the project. Hence, it
facilitates the interaction and synergy among these project developers. This finding is also
consistent with prior findings that collaborators contributing regularly and actively and
long-time participating in a project may attract or engage other collaborators [Blincoe
et al., 2016; Farias et al., 2019].

Simultaneously, the Mixed Group has the highest number of developers with mis-

4.3. Survey Results 62

matched expectations (52%). Indeed, developers who are open to all collaboration possi-
bilities have mismatched expectations. In this regard, aside from collaboration barriers,
such as lack of interaction with project members [Bird, 2011; Zhou and Mockus, 2011],
lack of knowledge codebase [Gousios et al., 2016], and others [Steinmacher et al., 2015b],
not everyone works well with everyone, conflicting their preferences and styles [Surian
et al., 2011]. Although developers are open to work collaboratively, this situation is not
always easy when faced with technical or social barriers.

RQ1 Summary: The survey results show that most participants (85%) prefer to
work collaboratively with the core team, 30% prefer to work in independent tasks,
and 22% to value the collaborations with the other developers. Besides, when we
asked about how they are working on the project (reality), 74% of those surveyed
claimed that they work collaboratively with the core team, 36% work in independent
tasks, and 11% answered that they work in collaboration with other developers. The
most developers from the Collaboration and Independent Groups have their ex-
pectations matched as working with the same group of their preference. In contrast,
most of the developers from the Mixed group had their mismatched expectations.

RQ2 - What types of activities do developers prefer to collaborate?

To answer the RQ2, we used the participants’ responses for the item SQ3 of the
questionnaire (I worked or may work in partnership with the owner of this fork on some
tasks of the project, such as...). For each participant, we selected a developer (they may
have not contributed with) of a project they already work on. The developer was se-
lected based on the similarities between modifications made in its forks and modifications
made by the participant in its contributions. Thus, we asked participants which types of
activities they could work collaboratively with the selected developer. Figure 4.5 summa-
rizes the responses of participants. The task categories are: software development tasks
(e.g., feature or test suites developing, or code review), maintainability (e.g., improving
code/project quality), issues management tasks (e.g., reporting, triaging, or solving is-
sues), and mentorship/knowledge sharing (e.g., for giving/asking help to develop a new
feature or fix an issue), community building (e.g., motivating/recruiting developers, or
promoting/directing the project), and repository management tasks.

The majority of the developers collaborate in software development tasks (60%).
Maintainability (47%), issues management tasks (42%), and mentorship/knowledge shar-
ing (33%) are also prominent tasks to work collaboratively with other developers. Com-
munity building and repository management are the least selected tasks for collaborative
work. On the other hand, 27% of them claimed that they would not work collaboratively
on any task with the presented developer. Participants further had the opportunity to

4.3. Survey Results 63

Percentage of Survey Participants (%)

Software development tasks

Maintainability

Issues management tasks

Mentorship/Knowledge sharing

Community building

Repository management tasks

I did not work or may not work
collaboratively with

0% 20% 40% 60%

Figure 4.5: Survey results on the developers’ prominent task categories to work collabo-
ratively with others in the project.

provide an optional comment within the survey. In this optional answer, they commented
that Documentation is another category for collaborative tasks. Cross-validating these
results with the interview study results (Section 3.2), tasks related to software develop-
ment and issues management were the most preferred. Furthermore, in both studies, the
developers mentioned that the mentorship/knowledge Sharing and documentation tasks
are opportunities for collaboration in the project.

To investigate which task categories were more appropriate to work in a group or
independently in the project, we matched these task categories with the population sample
based on their preferences of working (Figure 4.3a). Figure 4.6 shows the detailed analysis
for each type of task, considering two groups from the results of RQ1: (i) participants who
prefer to work strictly in the Collaboration Group and participants who prefer to work
strictly independently (Independent Group), we do not consider the Mixed group for
this analysis because they are openness for any opportunity of collaboration or in a group
or independently. Moreover, it is important to notice that we excluded the answers of 3
participants of the collaboration group who marked all options in the questionnaire item
SQ3, rendering their response inconsistent (they would not work collaboratively in any
task and also would work collaboratively in all tasks). Thus, the Collaboration Group
has 81 participants, and the Independent Group has 16 participants. Furthermore, the
number of participants for each group is in parentheses. However, they are subdivided
based on their choice (Agree|Disagree). Participants who agreed to work collaboratively
with another developer randomly selected (Agree) in that task category, and participants

4.3. Survey Results 64

Collaboration(57|24) Independently(5|11)
0

10

20

30

40

50

60

70

80

90

100
Software Development Tasks

Agree
Disagree

Collaboration(43|38) Independently(4|12)
0

10

20

30

40

50

60

70

80

90

100
Maintainability

Collaboration(42|39) Independently(2|14)
0

10

20

30

40

50

60

70

80

90

100
Issues Management Tasks

Collaboration(30|51) Independently(2|14)
0

10

20

30

40

50

60

70

80

90

100
Mentorship/Knowledge Sharing

Collaboration(19|62) Independently(2|14)
0

10

20

30

40

50

60

70

80

90

100
Community Building

Collaboration(16|65) Independently(0|16)
0

10
20
30
40
50
60
70
80
90

100
Repository Management Tasks

Pe
rc

en
ta

ge
 o

f S
ur

ve
y

Pa
rti

cip
an

ts
 (%

)

Figure 4.6: Each task category has two groups: collaboration and independent group.
The number of participants for each group is in parentheses.

who disagree or did not choose the task category (Disagree).
Starting the analysis with the Collaboration Group that declared themselves

open to collaborative work with the project developers, the tasks most selected by them
are software development tasks, maintainability, and issues management tasks with 70%,
53%, and 52%, respectively. These results match with other works [Tsay et al., 2014;
Gousios et al., 2014; Steinmacher et al., 2018] that also show that these tasks are preferred
among the projects’ developers. On the other hand, the tasks of repository management
(80%), community building (77%), and mentorship/knowledge sharing (63%) were the
least considered. This result is somewhat surprising. We expected that this group would
be more open to these tasks (community building and mentorship/knowledge sharing,
mainly) to strengthen ties among developers and, consequently, the project community.
Indeed, some works [Begel and Simon, 2008; Balali et al., 2020] encourage mentoring to
support the integration of the newcomers into projects, and others [Canfora et al., 2012;
Steinmacher et al., 2015a] present the difficulty faced by developers to obtain effective
mentoring. Cross-validating these results, in our interview study (Section 3.2), few de-
velopers also chose the repository management tasks. However, some developers have
emphasized that the projects should have collaborators available to support developers
who need helps.

Some developers who declared a preference to work independently in the project

4.3. Survey Results 65

claimed they were not open to creating partnerships with another developer. For instance,
for the participant S63 the Pull Request is the event that implies that an author is ready
for their code to be looked at. Before that point, any code on other forks/branches is
likely to be underdeveloped, and review/input from other developers may be detrimental.
For example, premature input on a vague idea can waste a disproportionate amount of
time on a trivial or non–critical issue. Participant S67 completed: “I think the distributed
version control model has this right in the sense that there is a way to indicate to others
that you are ready to discuss your ideas by creating PRs, either to the main repo or to
any other fork if you want to have a more focused discussion with a specific individual”.
On the other hand, just a few of these developers (Independent Group) still consider
working collaboratively. One possible reason for this could be that developers can see the
benefits of their contributions to the project community. Although they prefer to have
their tasks well defined to work independently, they are willing to work collaboratively
on specific tasks with other developers, such as code development and maintainability.
In our interview study (Section 3.2), developers pointed out the motivations/reasons to
work independently. However, they are open to working collaboratively if they need some
help.

RQ2 Summary: When exposed to the project’s collaborative scenario, the ma-
jority of participants selected the category related to software development (60%),
maintenance (47%), issues management (42%), and mentorship/knowledge sharing
(33%) as prominent tasks to work collaboratively with other developers. On the
other hand, 27% of them claimed that they did not work or may not work col-
laboratively with a randomly selected developer. Furthermore, participants added
freely Documentation as a category for collaboration.

RQ3 - What other perceptions do developers provide about collaborations?

To answer the RQ3, we address the results for the third research question related
to other perceptions of surveyed participants. To this end, we analyzed the answers
from the open questions used for the survey to extracting new insights, suggestions, or
criticism. Indeed, participants had this field to elaborate or clarify their points, helping
us to understand information or situations from a perspective of participant as we get
feedback in their own words, the most of them will be discussed in more detail as follows.

Participants mentioned their perceptions of the collaborative process and the main
beneficiaries in this context of projects hosted on GitHub. Contributors copy the original
version and make their changes. When their works are ready, they have an option of
making back these changes to the original repository contributing to the project and

4.3. Survey Results 66

the entire community or keeping them into their own fork for their personal benefits, as
explained by participant S32: “All collaboration occurs on the original repository, and
there would be little to no benefit for users to collaborate away from the main repository.
So, any work off of the main repo would only serve for personal purposes.” Participant S37
also detailed how this collaborative process: “When making changes, I code independently
in my own fork of the project. Collaboration occurs when I submit a pull request into the
main repository of the project and those code changes undergo review. Collaboration also
occurs when issues are discussed, again in the main repository.” Contributions in the
copy of contributors and without backing to the original repository also happen for their
benefit initially. However, in some cases, it may generate a new project or product [Jiang
et al., 2017a]. The opposite also applies, i.e., when a project merges with another one.
Participant S31 explained “This was a special case of a project developed independently,
<project 1>, being moved into <project 2>. I worked with the maintainer (of project 2)
on his fork to move the project over and then we finally moved our combined effort into
<project 2>.” Participants detailed these types of contributions and their advantages as
we also presented in the interview study (Section 3.2).

Participants expressed the importance of communication between maintainers, core
team members, and other contributors focused discussions around the subject, such as
new insights/ideas about an issue or new feature, software development, and code review.
Participants also listed many communication channels used to interact with the project
contributors, such as GitHub Issues, GitHub Pull Request, Slack tool, community meet-
ings, and mailing list discussions. For instance, surveyed participant S42 mentioned: “In
general, on this project, we often identify potential collaborations through centralized com-
munication, such as the assignment of GitHub issues on <project name> or through
questions and comments on the <project name> Slack space.” Participant S45 also men-
tioned “Usually, I discuss my ideas and thoughts in a designated GitHub Issue/PR with
the core team and whoever joins in the discussion in the form of comments. Technically,
anyone can join the discussion or review my code, but typically only members of the core
team do.” In our interview study (Section 3.2), developers pointed out that the value of
communication among developers and the tools to support them. They also mentioned
that projects are open for anyone. However, usually, core team member become more
required.

Concerning effective coordination of collaborations, participants expressed the im-
portance of the GitHub environment to support maintainers and contributors in the
making decision and development tasks of the projects. For example, participant S80
clarified: “Most collaboration happens in GitHub issues or pull requests. It’s rare to
work directly on a fork together unless we’re prototyping a big feature.” Moreover, some
participants mentioned that due to large projects with too many developers (forks), it
becomes difficult to keep track of their contributions or know who they are. Participant

4.4. Threat to Validity 67

S17 declared (supported by S37): “There are a LOT of forks of <project name> out there.
While I’m very tied into the main repo they’re ALL forked from, I don’t spend any effort
tracking other people’s forks.” Participants also declared the main purpose of their fork
version. They also declared that use their copy of the original repository to make contri-
butions back, as stated by participant S121 (supported S73, S75, S96, and others): “My
fork’s only purpose is to fix bugs and merge back into the main repository”. In general,
GitHub encourages the participation of anyone who wants to participate. For example,
the participant declared that it is limited to contribute to the project. However, GitHub
can support them: “The general development of this project is interesting and important,
but my ability to contribute is limited. That makes working in a GitHub setting very
practical.”

RQ3 Summary: Participants stated that collaboration occurs mainly during issue
discussions and when the code changes undergo review. Besides, they also men-
tioned that they often identify potential collaborations through centralized commu-
nication, such as the assignment of issues, questions, or comments. Finally, they
expressed the importance of the GitHub environment to support maintainers and
contributors in the development tasks of the projects.

4.4 Threat to Validity

In this section, we clarify potential threats to validity which may affect the sur-
vey study results. We also explain our actions to mitigate them based on the proposed
categories of Wohlin et al. [2012].

Construct Validity. Construct validity reflects what extent the operational mea-
sures that are studied represent what the researchers have in mind and what is investigated
according to the RQs [Wohlin et al., 2012]. We were aware that the results could be af-
fected by the quality of the questions. Thus, we were careful about this threat by preparing
a pilot questionnaire before making them available to the participants. Furthermore, we
reviewed the questionnaire related to their contents and format to avoid misunderstand-
ing and provide the necessary definitions. We include the question ‘Other’ as one of the
answer options and associated free-text fields in order to capture more clarification from
participants.

Internal Validity. The internal validity is related to uncontrolled aspects that
may affect the study results [Wohlin et al., 2012]. The target population consisted of

4.5. Concluding Remarks 68

developers in collaborative software development. A participant may answer the ques-
tionnaire without the required knowledge about the project. We addressed this concern
in the protocol: we explicitly required a developer still involved with the project to fill in
the questionnaire. A knowledgeable respondent should have more than four commits and
their last commit within the last year.

External Validity. External validity concerns the ability to generalize the results
to other environments, such as industry practices [Wohlin et al., 2012]. Indeed, our results
are restricted to the OSS projects. However, we tried to variety the domains of the
projects. Besides, we filter the participants from different popular and public projects
hosted on GitHub to reduce this risk. This way, we believe these participants from
different projects can represent a reasonable option to answer the survey reflecting the
best samples of the recurrent practices.

Conclusion Validity. The conclusion validity concerns with issues that affect the
ability to draw the correct conclusions from the study [Wohlin et al., 2012]. This survey
study involved five researchers from three different universities, including an international
university. The results presented in this survey are first and foremost observations and
interpretations from survey studies. These results reflect individual perceptions of prac-
titioners, and our interpretations of their responses. Hence, researchers participated in
the data analysis process and discussions on the main findings, to mitigate the bias of
relying on the interpretations of a single person. Nonetheless, there may be several other
important issues in the data collected, not yet discovered or reported by us.

4.5 Concluding Remarks

In this chapter, we cross-validated the interview results presented in Chapter 3 to
understand better how collaboration happens in software development projects based on
developers’ behavior. In particular, we focus on how open they are to work collaboratively
with others and the main tasks that increase collaboration opportunities. Our analysis
revealed that most participants (85%) prefer to work collaboratively with the core team,
30% prefer to work in independent tasks, and 22% to value the collaborations with the
other developers. Furthermore, when exposed to the project’s collaborative scenario, the
majority of participants selected the category related to software development (60%),
maintenance (47%), issues management (42%), and mentorship/knowledge sharing (33%)
as the main tasks to work collaboratively with other developers. Finally, despite personal
preferences to work independently, developers still consider collaborating with others in
some scenarios, especially in development tasks. Hence, in the next chapter, we present

4.5. Concluding Remarks 69

two strategies of developer recommendations with the factors that were identified in our
interview study (Chapter 3), for instance, development tasks. We use the co-changed files
to recommend developers of the same project. Besides, we present the prototype-tool,
namely CoopFinder, to support these developer recommending algorithms.

70

Chapter 5

Tool-Supported Strategies to Find
Collaborators

Although finding the suitable developers to form a team, a partner or a mentor is not
a new problem, this subject still find a lot of space with the growth of social coding
platforms, such as GitHub, and their impact on open–source software projects. This
subject call also the attention of several researchers interested in verifying or identifying
what factors may impact collaborations, knowledge sharing or strengthening the bonds
between collaborators that retain them in the project [Surian et al., 2011]. Thus, an
increasing number of studies seek to provide a direction or address this problem [Surian
et al., 2011; Jiang et al., 2015; Balali et al., 2020].

This chapter presents two recommendation strategies of collaborators based on
coding activities, especially in co–changed files. Besides, we present the prototype-tool,
namely CoopFinder, to support the recommendation strategies. To extract these co–
changed files, for Strategy 1, we considered the number of commits. For Strategy
2, we used the number of changed lines of code. To create this context, we considered
our interview study results (Chapter 3) that were cross–validated by our survey study
(Chapter 4). In our previous studies, participants deemed that software development tasks
are the most prominent category regarding what participants understand as collaborative
contributions to projects. Thus, we considered the co-change files to strengthen the ties
among developers. Other previous works [Minto and Murphy, 2007; Jiang et al., 2015;
Costa et al., 2021] also explore co-changed files to recommend developers for different
propose in software development projects. The remainder of this chapter is organized
as follows. Section 5.1 and 5.2 present the design of two recommendation strategies and
an overview of the prototype-tool. Finally, we end this chapter with some concluding
remarks (Section 5.3).

5.1. Strategies of Recommending Collaborators 71

5.1 Strategies of Recommending Collaborators

This section presents the details of two recommendation strategies for helping de-
velopers to find other collaborators with similar interests and familiarity based on their
co–changed files. In our context, we consider a co–changed file as the history of modifi-
cations made by two developers on the same file.

Even though developers face some barriers, they are generally still willing to collab-
orate with the project, mainly whether they are familiar or interested in a specific part of
code or the whole project. Thus, we are using the criterion of their interest or familiarity
with co–changed files to strengthen or create new ties among developers to improve the
opportunities for collaboration and engagement in the project. For example, a developer
trying to fix an issue on network security may be interested in other developers famil-
iar with similar problems. Alternatively, a developer interested in data science may pay
attention to developers who are experts in building models for statistical analysis in the
project. Another example is when developers fork the project for their specific interest.
Since they became familiar with the project, when customizing it, they could be potential
new collaborators, although their initial intention was not to participate in the project.
They could change their mind with some interaction with the other members. Thus, the
activities of developers around certain files may reflect their interests and expertise in
the project. As a result, if a set of files are relevant in satisfying the same interest and
familiarity, it is most likely that similar groups of developers may work together on related
or other tasks. Thus, we can improve the interaction between such developers via their
code activities.

These strategies are inspired by two previous works [Minto and Murphy, 2007;
Canfora et al., 2012]. We adapted the matrix-based computation of the former to support
recommendations using different code activity information, specifically co–changed files.
We extended the latter to recommend not only mentors, but also all active collaborators
of the project that need some help. Figure 5.1 presents an overview of the steps needed to
recommend developer to developer in the development project. The strategies to connect
them are based on co–changed files relevant to developers. That represents the part of the
project that the developers are interested in and familiar with, as presented in Figure 5.1.
We exploit Information Retrieval (IR) techniques [Baeza-Yates and Ribeiro-Neto, 1999] to
depict developers based on the files they edit. Each step of the general recommendation
strategy presented in Figure 5.1 can be described as follows.

Feature Extraction. GitHub is a social coding platform built on top of the
GIT version control system and supports the fork & pull model. To define this model,
developers make a copy of the original repository and change the project in their copies.
When these changes are ready, they can (or not) submit them back into the original

5.1. Strategies of Recommending Collaborators 72

Extracting name of changed files
based on the number of commits

Extracting name of changed files
based on the number of lines of code

modified (additions and deletions)

Source Feature Extraction Changed File Scoring
(TF-IDF Algorithm) (Cosine Similarity Algorithm)

Developer
Recommendations

1

2 1
2 3

1
2 3

Figure 5.1: Overview of recommendation strategies.

repository by means of a pull request. We assume that two developers are likely changing
the same set of files if they have similar interests in the software development project (i.e.,
they are interested in and familiar with the same part of the project). Thus, we want
to determine the similarity of interest among developers of a project. For instance, two
developers (Developer 1 and Developer 2) modified the FileA, we assumed that they have
interests in FileA. If only Developer 3 modified the FileF , it means that only Developer
3 is interested in FileF . We can also have the case that all developers are interested in
FileC , because all of them modified this file.

To extract these changes, we used the following metrics: Number of commits, used
in Strategy 1, calculates the number of times a developer has modified a file. Number
of changed lines of code (LoC), used in Strategy 2, calculates the sum of the number
of code lines added and removed in a specific file that the developer works on. Both
aforementioned metrics are calculated considering the whole life time of the project.

Strategies 1 and 2 may provide different (and thus complementary) results, as we
will see in Section 6.3. This motivates us to evaluate the joint strategy that aggregates the
results of the other two strategies. For both strategies, we extracted these changes from
the original repositories and their contributing forks. That is, we collected information
from both merged and non–merged changed files.

Changed File Scoring. Once we know which set of files developers are inter-
ested in or familiar with, we need to know how important each file is for each developer,
as presented in Figure 5.1. To this end, we use an algorithm called Term Frequency -
Inverse Document Frequency (TF–IDF) [Salton, 1989] to get the rank of relevant files
by developers. The definition of the algorithm is adapted for our context. Figures 5.2
and 5.3 present how this algorithm works as a “relevance scoring” for Strategies 1 and 2,
respectively.

Term Frequency (TF) assigns a higher relevance score to the most frequent terms
(words) in a text document [Yu and Salton, 1976]. In our context, we consider a term as
a source code file in the project. Thus, for Strategy 1, TF means the number of times
the developer changed a file in the project (number of commits). For Strategy 2, TF is
defined as the total number of code lines added and removed in the file that the developer

5.1. Strategies of Recommending Collaborators 73

Term

FileA

FileB

FileC

FileD

TF-IDFDev1 TF-IDFDev2 TF-IDFDev3 TF-IDFDev4

0.677174 0.551939 0.450066 0.571034

0.682061 0.833884 0 0

0.276094 0 0.825743 0.698457

0 0 0.339985 0.431367

TFDev1 TFDev2 TFDev3 TFDev4

3 1 2 2

2 1 0 0

1 0 3 2

0 0 1 1

ni

4

2

3

2

IDFi

1

1.51082562

1.22314355

1.51082562

Developer 3

FileD

FileC,FileC, FileC

FileA, FileA

Developer 1
FileA, FileA, FileA

FileB, FileB

FileC

Developer 4

FileD

FileC,FileC
FileA, FileA

Developer 2

FileB

FileA

N = 4

Figure 5.2: TF–IDF results for Strategy 1. Terms means the set of files of the project.
N means the total number of developers. IDF determines the weight of rare file across all
sets in the project.

Term

FileA

FileB

FileC

FileD

TF-IDFDev1 TF-IDFDev2 TF-IDFDev3 TF-IDFDev4

0.214763 0.935494 0.329444 0.326566

0.432626 0.353342 0 0

0.875620 0 0.671596 0.466010

0 0 0.663644 0.822307

TFDev1 TFDev2 TFDev3 TFDev4

3 12 3 6

4 3 0 0

10 0 5 7

0 0 4 10

ni

4

2

3

2

IDFi

1

1.51082562

1.22314355

1.51082562

Developer 3

FileD(4)
FileC(1),FileC(2), FileC(2)

FileA(2), FileA(1)

Developer 1
FileA(1), FileA(1), FileA(1)

FileB(3), FileB(1)

FileC(10)

Developer 4

FileD(10)

FileC(3),FileC(4)

FileA(4), FileA(2)

Developer 2

FileB(3)

FileA(12)

N = 4

Figure 5.3: TF–IDF results for Strategy 2. For each changed file, the value of the
number of changed LoC is in parentheses.

modified (changed LoC). Before generating TFs, we perform a pre-processing step aiming
at eliminating “stop words”. In our context, it means that we eliminate all executable
files (e.g., .exe) or compressed files (e.g., .zip and .rar) when these kinds of files were
in the project. Every file has its TF calculated according to the strategy adopted. For
instance, Developer 1 has modified FileA in three commits (Figure 5.2). For each commit,
the developer made one change that can be one addition or one removal of lines of code.
Thus, the total changed lines of code count are 3 (Fig. 5.3). In this example related to
Developer 1, the TFDev1 results for FileA is the same for both strategies. In the second
example, Developer 2 has changed FileB in only one commit (Fig. 5.2). In this commit,
Developer 2 made three modifications that can be two additions and one deletion of lines
of code. (Fig. 5.3). Thus, the TF results for FileB related to Developer 2 are TFDev2 =
1 (Fig. 5.2) and TFDev2 = 3 (Fig. 5.3), for Strategies 1 and 2, respectively.

Inverse Document Frequency (IDF) measures how relevant is a file in a project.
While computing TF, all files (“terms”) are considered equally important. However, we
know that some specific files may appear many times but they have little importance in
the project to differentiate developer interests. Thus, we need to weigh down the frequent
files while scaling up the rare ones. Towards this goal, IDF is calculated as log of the
total number (N) of developers divided by the number of developers that modified the
file. IDF = log ((N + 1)/(ni + 1)) + 11. For instance, all developers modified FileA,
thus IDFF ileA = 1 (Figs 5.2 and 5.3). Differently, only two developers have modified
FileB, thus IDFF ileB = 1.51082562. Finally, we combine both metrics described above by

1This formula adds “1” to the numerator and denominator to prevents zero divisions.

5.1. Strategies of Recommending Collaborators 74

calculating their product (TF*IDF) for each file and each developer in the project. The
resulting TF–IDF vectors are then normalized by the Euclidean norm. The final result
is a rank of files by developer for each strategy, and consequently among developers. For
instance, considering Strategy 1 for Developer 2, FileB is more relevant than FileA

(Fig. 5.2). However, in Strategy 2, the rank of files changed, then FileA became more
relevant then FileB. Consequently, it changed the relevance of files for the developers.
For example, in Strategy 1, FileB was relatively more relevant for Developer 2 than
for Developer 1 (Fig. 5.2), while Strategy 2 provides the opposite result (Fig. 5.3).
Another example, for Strategy 1, the rank of files to Developer 4 was FileC , FileA, and
FileD (Fig. 5.2). In Strategy 2, this rank changed to FileD, FileC , and FileA. When
comparing with other developers, this result also changed the level of relevance of FileA

for Developers 3 and 4.
Collaborator Recommender Model. After representing developers in a

rank of relevant files (the vector space model), we can measure their similarity using the
cosine metric that are widely used [Rahman et al., 2016; Franco et al., 2019; Berkani,
2020] because of its potential to quantify the similarity of two objects [Ricci et al., 2011].
Therefore, given two vectors A and B representing two developers, the cosine similarity
is calculated using a cross product of these two vectors. The idea of this measure is that
the similarity between developers A and B is higher the more files they have in common,
and with similar weights. This measure is used in both strategies.

cosine similarity (A, B) = AB√
A2

√
B2

(5.1)

To summarize, the focus of these developer recommendation strategies is on the
contribution based on co–changed files. For Strategy 1, we used the number of commits
in a code file. However, this metric may suffer from the following drawback. A developer
who makes frequent small commits in a code file is considered “more engaged” with the
given file than another developer who makes infrequent large commits. To minimize this
issue, Strategy 2 uses the “LOC metric” by accounting for added or deleted code lines
in a project file. By this metric, we may capture the volume of changes reflecting the level
of engagement and interest in the file. For both strategies, we do not address the quality
of contributions, i.e., we do not distinguish whether some contributions are more or less
relevant for the project. Table 5.1 summarizes the input (in) and output (out) of each
strategy.

Table 5.1: Summarizing the collaborator recommendation strategies.

Strategy 1 Strategy 2
in number of commits number of changed LoC
out ranked developers ranked developer

5.2. CoopFinder Overview 75

5.2 CoopFinder Overview

This section presents the overview of CoopFinder2, a collaborator recommenda-
tion prototype tool based on co–changed files for improving the opportunities of collabo-
rations in a specific project.

Implementation Technologies. CoopFinder is implemented as a Web ap-
plication. We designed our Web tool using client-server architecture and visualization
techniques. In addition, we used Python 3 language3 and a free machine learning li-
brary for Python, called scikit-learn libraries4 for the server-side. To implement views in
CoopFinder, we used the analytical data visualization components called HighCharts5,
a JavaScript library for manipulating documents based on data. Finally, we built the
tool using components provided by the Bootstrap Framework6, which includes several
stylesheets and jQuery plugins for establishing interactive Web sites or application user
interfaces. All these technologies were employed for realizing a dynamic exploration and
visualization experience.

How to use CoopFinder. Figure 5.4 shows the screenshots of CoopFinder
related to the list of contributors of a selected project. This list corresponds to all con-
tributors that modified any files in their copies. Frame (A) shows the project information
to which the collaborators belong to, such as repository name, number of stars, number
of forks, and number of open issues. Frame (B) shows the table of all collaborators of
the focused project. For each collaborator, this table presents the developer information,
such as their avatar, name, fork, number of their followers, following, merged commits,
non–merged commits, and the last commit date.

Frame (C) shows the code activities related to the number of commits in upstream,
number of the non–merged commits, and the last commit date. With this information
aggregated, the user is able to know the status of the collaborator in the project. For
instance, users can investigate whether collaborators are still active in the project based
on the number of merged commits and the last commit date. On the other hand, the non–
merged commits associated with the last commit date indicate that the collaborator may
need some help. In this scenario, the maintainer can overview all collaborators interested
in the project or create a team based on co–changed files.

Figure 5.5 illustrates the screenshot of CoopFinder with the list of recommended
collaborators for the target developer. This list may vary depending on the strategy
selected. It also depends on the rank of relevant files for each project developer (Section

2https://homepages.dcc.ufmg.br/ kattiana/coopfinder/welcome.html
3https://www.python.org/
4https://scikit-learn.org/stable/index.html
5https://www.highcharts.com/
6https://getbootstrap.com/

5.2. CoopFinder Overview 76

A

B

C
Developer 1 Fork 1

Developer 3 Fork 3

Developer 2 Fork 2

Developer 4 Fork 4

Developer 6 Fork 6

Developer 5 Fork 5

Developer 7 Fork 7

Developer 9 Fork 9

Developer 8 Fork 8

Developer 10 Fork 10

Project Name

Figure 5.4: Contributors information.

D

H

I

fork 1

fork 2

fork 3

fork 4

fork 5

developer 1

developer 2

developer 3

developer 4

developer 5

developer target

developer target developer 4

developer 4

fork 4

developer target

fork target

E

F

G

Project Name

Figure 5.5: Exploring collaborator recommendations.

5.1). Frame (D) shows the project information to which the collaborators belong to,
such as repository name, number of stars, number of forks, and number of open issues.
Frame (E) shows the target developer and their information, for example, name, avatar,
last commit date, the number of total commits, followers, and followings. Frame (F)
shows a list of recommended developers with similar interests based on co–changed files.
Information of developers is their name, fork, number of the merged commits, number of
the non–merged commits, and last commit date.

5.3. Concluding Remarks 77

Users can select one of the recommended collaborators on frame (F) to compare
with the target developer on frame (E). Then, frame (G) presents these two collaborators
selected, their names, and their fork linked with their GitHub profile. After that, the users
can analyze the common files of the two developers, as shown in frame (H). Finally, frame
(I) presents the expertise of recommended developer (programming language) related to
the focused project. The developer expertise refers to the percentage of files changed in
each programming language.

5.3 Concluding Remarks

In this chapter, we presented and discussed two strategies for recommending de-
velopers based on co–changed files. We recommend collaborators to engage in the project
and enhance the opportunities for collaborations, not only core members, code-reviewers,
or mentors but also any collaborator that is commonly interested. We also presented the
CoopFinder tool to help developers find collaborators in a specific project. CoopFinder
supports both strategies presented in this chapter. When the developer is looking for col-
laboration among developers of the same project, our tool analyzes their histories based
on records of changed files. As a result, CoopFinder suggests a ranked list of suitable
collaborators of the project for connecting them. In the next chapter, we discuss a sur-
vey study to evaluate these two recommendation strategies based on perspective of who
receive the recommendations (project developers).

78

Chapter 6

Evaluating Recommendations from
the Developer Perspective

Software developers must collaborate at all stages of the software life-cycle to create
successful complex software systems. However, for large projects with hundreds of involved
developers, such as several successful open–source projects, it can be complicated to find
developers with the same interest and familiarity with a part of the software and, thus,
achieve suitable collaborations and new insights. Resources and efforts may be wasted in
this context, discouraging many developers from contributing. Moreover, it can be costly
to manage many contributions, which is another challenge for the maintainer who wants
to take advantage of this small, timid, but valuable contribution made by a volunteer
developer in a short time.

This chapter presents a survey study to evaluate two collaborator recommendation
strategies based on co-change files (Section 5) from the perspective of who receives the
recommendations. We evaluated these strategies based on an extensive survey with 102
real–world developers. The remainder of this chapter is organized as follows. Section
6.1 describes the survey study settings. Section 6.2 analyzes and reports the perceptions
of the developers of this study. Section 6.3 presents the analysis of the joint strategy
results. Section 6.4 reports a qualitative analysis. In Section 6.5, some threats to the
study validity are discussed. Finally, we end this chapter with some concluding remarks
(Section 6.6).

6.1. Study Design 79

6.1 Study Design

This section presents the design of the survey study to evaluate the recommenda-
tion strategies based on co-changed files (Strategy 1 and Strategy 2) with perspective
of who receives the recommendations. We describe bellow our goal, research questions,
formulated hypotheses, and the research method.

Goal and Research Questions. We set the goal of our study using the Goal/Ques-
tion/Metric template (GQM) [Basili and Weiss, 1984]. Following such a goal definition
template, the scope of this study is outlined below.

Analyze Strategy 1 and Strategy 2
for the purpose of evaluation
with respect to precision of recommendations
from the point of view of who receives the recommendations (developers)
in the context of developer recommendations based on co-changed files in the
open–source environment.

To achieve our goal, we based our evaluation method on the following research
questions.

RQ1 - Are developers interested in code changed by recommended de-
velopers? First, we aim to know the interests of surveyed developers on files changed by
other developers in the same project. The lack of interest in the code of the project may
be one of the reasons why developers do not participate or leave the project, impacting
directly on collaborative work among developers.

RQ2 - Are developers familiar with code changed by recommended de-
velopers? With RQ2, we aim to know the familiarity of surveyed developers with files
changed by other developers in the same project. Developers who know about the specific
parts of the project can provide the necessary technical expertise that a project needs and
encourage other developers to contribute to the project.

RQ3 - How precise are the recommendation strategies based on co–
changed files? With RQ3, we aim to know the precision of each recommendation strategy
(Strategy 1 and Strategy 2). We answered this RQ3 with the surveyed developers
that declared the preference to work strictly in collaboration with other developers.

RQ4 - Do the recommendations contribute to the discovery of potentially
new collaborators? In recommendation systems, it is consensus among researchers that
the correctness of recommendations is not enough to guarantee the effectiveness and utility
of recommendations [Ge et al., 2010; Belém et al., 2016]. One important aspect that must
be considered is the recommendation novelty, usually defined as the ability to recommend

6.1. Study Design 80

items that are different from what is known. Therefore, with RQ4, we aim at verifying if
the recommendations constitute new possibilities for collaborations in the project. That
is, collaborators that the target developer is not likely to be aware of.

We defined below hypotheses for RQ1 aiming to verify which strategy (Strategy 1
or Strategy 2) is the most effective to recommend, to a given target developer d, other
developers with similar interests in co-changed files. To answer RQ1 we evaluated the
effectiveness of the strategies in terms of the agreement measure. That is, the percentage
of the agreement of the GitHub developers with recommendations. Thus, RQ1 was turned
into the null and alternative hypotheses as follows.

H0: There is no statistically significant difference in agreement related to interests
in co–changed files among developers identified by strategies 1 and 2.
Ha: There is statistically significant difference in agreement related to interests in
co–changed files among developers identified by strategies 1 and 2.

We coined the following two hypotheses for RQ2 to investigate which strategy
(Strategy 1 or Strategy 2) is the most effective to recommend, to a given target
developer d, other developers with similar familiarity with co-changed files?

To answer RQ2 we also evaluated the effectiveness of the strategies in terms of the
agreement measure.

H0: There is no difference in agreement related to familiarity with co–changed files
among developers identified by strategies 1 and 2.
Ha: There is difference in agreement related to familiarity with co–changed files
among developers identified by strategies 1 and 2.

Finally, we also designed hypotheses for RQ3: which strategy (Strategy 1 or
Strategy 2) is more effective to recommend collaborators. As mentioned, to answer
RQ3, we evaluated the effectiveness of the strategies in terms of the precision measure; that
is, the percentage of the acceptance answers according to surveyed GitHub developers.
Thus, the null and alternative hypotheses are:

H0: There is no statistically significant difference in precision for developer recom-
mendations among strategies 1 and 2.
Ha: There is statistically significant difference in precision for developer recommen-
dations among strategies 1 and 2.

Let µ be the average amount of agreement (RQ1 and RQ2) or precision measure
(RQ3). Thus, µ1 and µ2 denote the average amount of agreement or accepted answers by
surveyed developers using exclusively either Strategy 1 or Strategy 2, respectively.

6.1. Study Design 81

Then, the aforementioned set of hypotheses can be formally stated as:

H0: µ1 and µ2 are statistically tied.
Ha: µ1 and µ2 are not statistically tied.

To test all aforementioned hypotheses, we considered 95% confidence levels (ρ =
0.05).

Precision Measure. Precision measures the correctness of the recommended
strategies, i.e., the ratio of correctly recommended developers by the total developers in
the recommendation list. To compute precision, we need to know the values of true pos-
itives (TP) and false positives (FP). In our context, TP and FP quantify the number of
correctly and wrongly recommended developers by the strategy evaluated by the surveyed
developers (the oracle), respectively. The computation of precision is: Precision = TP /
(TP + FP). Precision varies from 0 to 1, and higher values are related to better correct-
ness. In this work, given the time consuming task of manually verifying the relevance of
recommendations, volunteer participants were able to evaluate only one recommendation.
Thus, for individual recommendations, the obtained values for precision are either 0 or
1. However, we evaluate the recommendation effectiveness in a collective perspective, in
which the average precision over all recommendations gives us the expected proportion of
top-1 recommendations that are considered relevant by the users1.

6.1.1 Research Method

To answer the research questions, we planned and performed a survey study, as
shown in Figure 6.1. In summary, we select public projects hosted on GitHub. We used
GitHub REST API version 3 to retrieve data from the original repositories and their
contributing forks. Additionally, based on the two recommendation strategies, we chose
the surveyed participants and their similar developers based on co–changed files; we used
both merged and non–merged commits. Each participant analyzed only one recommended
developer (the recommendation in the first position of the rank) of one (randomly chosen)
strategy. Furthermore, we evaluated both strategies in a single inspection, when they

1Another measure to evaluate the effectiveness of recommendations is the Recall, which measures the
completeness of the recommendations, defined by the ratio of correctly recommended developers over the
total number of developers which are relevant for the target user (Recall = TP / (TP + FN), where
FN is the amount of false negative recommendations). However, the already mentioned costs in the
evaluation constitute a very limiting factor to compute recall. Thus, we focus our evaluation on the
precision measure, leaving the recall analysis as future work.

6.1. Study Design 82

Opinion Survey Quantitative and
Qualitative Analyses

Participant C 1 and 2

Top-1
Recommended

 Developer

Strategy 1

Strategy 2

Surveyed
Developer

Participant A

Participant SelectionPilot Study Population Sampling

Figure 6.1: Research method overview.

produced the same top-1 recommendation. The survey study was executed under the
following steps (see Figure 6.1).

Pilot Study. We executed a pilot study in order to validate the study protocol
and the questionnaire. For the pilot study, we sent 158 invitation emails to answer our
survey. In total, 10 participants completed the survey in our pilot study. The main im-
provement from the pilot study was related to one question in the questionnaire. Initially,
we asked participants about their current collaboration practices (questionnaire item SQ1,
in Table 6.3). However, during the pilot study, we noticed that the current work practice
may not reflect the participant preferences. Therefore, we added another question to the
questionnaire (SQ4). Another change is related to the number of recommended developers
presented for each participant. First, we started with three developers for each partici-
pant. However, we realized that it turns the questionnaire too long and very complicated
for participants to answer (e.g., low response rate). Thereby, we decided to reduce for
one recommended developer per participant. For the same reason, we decided to present
only one strategy (either based on the number of commits or based on the number of
changed LoC) for each participant, randomly. Finally, for comparison purposes, we also
surveyed when these two recommenders provided the same top1-developer recommenda-
tion. In Section 6.3, we present this result that could help us to find some insights from
participants to merge or improve the developer recommendation strategies.

Population Sampling. The target population sample is composed of devel-
opers working in contributing public forks of open–source projects hosted on GitHub,
as presented in Figure 6.1. Therefore, we first selected candidate open–source projects
from GitHub according to the following criteria: they must be public, have at least 1K
stars, and must be active with ongoing development. For survey purposes, we considered
projects with at least 50 contributors and avoided large projects, for instance, projects
with more than 30K forks or 10K commits. This yielded 3,464 repositories, from which
we randomly selected 50. The selected repositories include many famous and popular

6.1. Study Design 83

projects, such as Eclipse Deeplearning4J 2 (Version 1.0.0, 12K stars, 5K forks and
Java as predominate language), Pandas 3 (Version 1.1.3, 31K stars, 13K forks and Python
as predominate language), and Vue 4 (Version 3.0, 26K stars, 4K forks and TypeScript as
predominate language). Afterward, through the GitHub REST API, for both strategies,
we collected all merged and non–merged commits of the whole life of the project and its
forks. Besides, we automatically collected the name and public emails of project devel-
opers with at least four accepted commits (with their last commit within the last year).
Based on the last commit date, we try to guarantee that the developers may be currently
involved or still familiar with the project [Krüger et al., 2018; Miller et al., 2019]. This
filtering of the participants was a matter of evaluation methodology, to have enough data
to evaluate the strategies.

Participants Selection. We had tree groups of participants, for Strategy
1, Strategy 2, and Joint Strategy. We sent an equal number of inviting emails
for GitHub developers, totalizing 1,113 e-mails. Besides, we invited developers that had
common recommendations in both strategies. We had an overall response rate of around
9%. In total, 130 participants completed the survey. We analyzed their responses, and
filtered incomplete responses, excluding 12 participants. For this analysis, we also ex-
cluded the participants that claimed the preference to work independently because no
recommendation strategy would work for them (16 participants). Table 6.1 summarizes
the number of participants assigned in each strategy completely randomized. The first
line of the table corresponds to all participants who completed the survey. The second
line of the table corresponds to the participants eligible for the analysis of this work. All
subjects signed a consent form before participating in the study. All subjects already
had prior experience with open–source software development. Each subject evaluated
only one strategy. We nicknamed the participants as follows: (i) S1.1 to S1.32 worked
with Strategy 1, (ii) S2.1 to S2.23 worked with Strategy 2, and (iii) S3.1 to S3.47
worked with recommendations common to both strategies (joint strategy), which means
these two recommenders provided the same top1-developer recommendation. Our goal is
to use these nicknames while keeping the anonymity of the participants, separating them
by the strategy since we did not repeat participants in the study.

Participants Selection. We had tree groups of participants, for Strategy
1, Strategy 2, and Joint Strategy. We sent an equal number of inviting emails
for GitHub developers, totalizing 1,113 e-mails. Besides, we invited developers that had
common recommendations in both strategies. We had an overall response rate of around
9%. In total, 130 participants completed the survey. We analyzed their responses, and
filtered incomplete responses, excluding 12 participants. For this analysis, we also ex-

2https://github.com/eclipse/deeplearning4j
3https://github.com/pandas-dev/pandas
4https://github.com/vuejs/vue-next

6.1. Study Design 84

Table 6.1: Completely randomized design.

Strategy 1 Strategy 2 Joint Strategy Total

Participants that answered the survey (#) 37 31 62 130
Participants eligible for this analysis (#) 32 23 47 102

cluded the participants that claimed the preference to work independently because no
recommendation strategy would work for them (16 participants). Table 6.1 summarizes
the number of participants assigned in each strategy completely randomized. The first
line of the table corresponds to all participants who completed the survey. The second
line of the table corresponds to the participants eligible for the analysis of this work. All
subjects signed a consent form before participating in the study. All subjects already
had prior experience with open–source software development. Each subject evaluated
only one strategy. We nicknamed the participants as follows: (i) S1.1 to S1.32 worked
with Strategy 1, (ii) S2.1 to S2.23 worked with Strategy 2, and (iii) S3.1 to S3.47
worked with recommendations common to both strategies (joint strategy), which means
these two recommenders provided the same top1–developer recommendation. Our goal is
to use these nicknames while keeping the anonymity of the participants, separating them
by the strategy since we did not repeat participants in the study.

Survey Demographic Information. Again, through the GitHub REST API, we
collected the public and available demographic information of the survey participants in
their GitHub profiles. Table 6.2 shows demographic information, such as the number
of public repositories they have been interested in following or participated in and the
number of contributions in the last three years. Likewise, they have a median of 29 public
repositories and 804 commits. Moreover, we mined the public and available roles and
technologies information self–declared by participants in their bios. The roles are Com-
piler Developer, Community Team Manager, Data Engineer, Data Scientist, Front-End
Developer, Maintainer, Programmer, Researcher, Software Engineer, Software Developer,
Tutor, UI Designer, and Web Developer. The languages used are Java, JavaScript, MAT-
LAB, Python, Rust, and TypeScript. Besides, the technologies they use involve Apache
Framework, API maker, BootStrap, Build tools, CLI, Dataviz, Gatsby, Git, JIT compi-
lation, B, Node.js, Plugins, and React/Redux. We also collected the number of followers
and following as indicators of social interaction and popularity of the participants. They
have a median of 20 followers and 4 following. Finally, Figure 6.2 presents the location of
the survey participants. Many of them are from the USA, UK, and India, but we observe
a wide distribution among other unspecified countries, because this information was not
always available (total of 33).

Opinion Survey. We created a questionnaire on Google Forms composed of
questions about the project developer perceptions of their similar interests on co-changed
files and collaborative works with other developers of the project (Figure 6.1). Appendix

6.1. Study Design 85

Table 6.2: Participants demographics.

Mean St. Deviation Min Median Max
Public Repos 48 51 2 29 244
Contributions 1,716 2,290 38 804 11,093
Followers 80 209 0 20 1,505
Following 11 16 0 4 104

*We recorded the values in July of 2021.

0

5

10

15

20

25

Figure 6.2: Location of the survey participants for analysing the recommendations of this
study.

B shows the list of questions for the final version (after the pilot study) related to evaluate
the recommendation strategies. This questionnaire is the same presented in Chapter 4,
but with another focus. The SQ1 item is to filter out the developers that are not open
to work collaboratively with other developers. Developers who prefer to work strictly
independent task may not be open for any recommendation. The items SQ2 and SQ3
of the questionnaire are related to relevant co-changed files for both participant and the
recommended developer for identifying similar interests.

In the SQ4 item of the questionnaire, we presented for participants a list of possi-
ble opportunities for collaborative works with the recommended developer that whether
participant chose at least one of the options presented, it means they accepted the rec-
ommended developer. Besides, the participant still could add a new task that was not
on the list, or even any other comment about other possible collaborative works. On the
other hand, whether the participate choose the option “I did not work or may not work in
partnership with the owner of fork”, it means that participant rejected the recommenda-
tion. The SQ5 item allows the participant to identify whether there is any other suitable
developer. It is essential information for us to check or to improve the strategies. Finally,
SQ6 item is an open space for comments and observations that the participants considered

6.1. Study Design 86

Table 6.3: Survey questions.

ID Questions
SQ1 How do you prefer to work on the project?

[] In collaboration with the core team
[] In collaboration with owners of other forks
[] Independently

SQ2 I am interested in some of these changed files in this fork:
[] Strongly Disagree, [] Disagree, [] Neither Agree or Disagree,
[] Agree, and [] Strongly Agree

SQ3 I am familiar with some fork changes in these files:
[] Strongly Disagree, [] Disagree, [] Neither Agree or Disagree,
[] Agree, and [] Strongly Agree

SQ4 I worked or may work in partnership with the owner of this fork on some
tasks of the project, such as:
[] software development tasks (e.g., feature or test suites developing, or
code review)
[] issues management tasks (e.g., reporting, triaging, or solving issues)
[] community building (e.g., motivating/recruiting collaborators, or
promoting/directing the project)
[] maintainability (e.g., improving code/project quality)
[] mentorship/knowledge sharing (e.g., for giving/asking help to develop
a new feature or fix an issue)
[] repository management tasks
[] I did not work or may not work in partnership with the owner of fork
[] other (open question)

SQ5 Are there other active forks in this project that you know about that you
would consider to be of your interest? Which are they? (open question)

SQ6 Other important observations or suggestions (open question)

relevant. These additional questions aim to catch any important issues to participants
not asked in the questionnaire.

Quantitative and Qualitative Analyses. First, we collect quantitative and
qualitative data from the opinion survey and mined data, such as demographic informa-
tion. Section 6.2 presents the descriptive analysis of these data and Chi–Squared (χ2) test
[Rayner and Best, 1990; Mendenhall et al., 2012]. We applied the Chi-Squared test to
analyze categorical grouped responses to Likert scale questions and to test the hypothe-
ses of no association between the two groups (i.e., to check independence between two
variables) [Wohlin et al., 2012]. Furthermore, to apply the Chi-Squared test, we should
fulfill three prerequisites: (1) Random data from a population; (2) The expected value of
any cell should not be less than five; (3) if the value in any cell is less than five, it should
not occupy more than 20% of cells, i.e., in two by two table, no cell should contain an

6.2. Results 87

expected value less than five. Violation of this assumption needs to be corrected by Yate’s
correction or Fisher’s Exact test [Miller and Siegmund, 1982]. To show the effect size the
difference between the groups, we compute the phi coefficient for a 2 × 2 contingency ta-
ble. A value of 0.1 is considered a small effect, 0.3 a medium effect, and 0.5 a large effect.
For non 2 × 2 contingency tables, we use the Cramer’s V which is an extension of the phi
effect size. Following the guideline (Cohen) [Cohen, 1988], the interpretation depends on
the degrees of freedom (df). For example, for the df* = 2, V = 0.07 represents a small
effect, V = 0.21 represents a medium effect and V = 0.35 represents a large effect.

We used the R language, RStudio5, and some statistical R packages. Finally, we
qualitatively analyzed the open question in items SQ4 and SQ6 of the questionnaire. In
Section 6.4, we applied the open-coding techniques for qualitative research [Corbin and
Strauss, 2014]. Afterward, we analyzed the responses and marked relevant segments with
codes. Later, we grouped these codes into relevant categories to extract key findings.
Conflicts in labelling is resolved by joint discussion among the researchers involved in this
study.

6.2 Results

This section presents the results according to each research questions of this study.
These results provide insights into the perspectives of developers.

Overview of Participants. This section summarizes the participant responses
for the SQ1 item of the questionnaire (How do you prefer to work in the project?) (Ap-
pendix B). They had the following options to answer (more than one option is allowed):
(1) In collaboration with the core team members, (2) In collaboration with the other de-
velopers (owners of forks), and (3) Independently. Table 6.4 shows all combinations of
these groups based on developer preferences. As detailed in Section 6.1, we focus on
analyzing the answers from developers open to work collaboratively (102 developers). It
means that we excluded all participants that preferred to work strictly in independent
tasks (16 developers). Thus, most participants (68%) declared that they prefer to work
collaboratively only with members of the core team. The other participants were open
to collaborating with other developers or independent tasks, depending on the project
demands.

5https://www.rstudio.com/

6.2. Results 88

Table 6.4: Developer expectations (preference).

Group of Preferences #
core team members 70
core team members, other developers, and independently 12
core team members and other developers 11
core team members and independently 7
other developers and independently 1
other developers 1
Total 102

RQ1 - Are developers interested in code changed by recommended developers?

To answer RQ1, we used the participant responses for the SQ2 item of the question-
naire (I am interested in some of these changed files in this fork) (Appendix B). For each
participant, we presented another developer of the same project and a set of co-changed
files. This developer is one of the top-3 recommended developers identified by one of the
two scenarios we exploit.

Table 6.5 summarizes of data collected with Likert rating scales [Robbins et al.,
2011] for the survey question (SQ2). Participants answered the question with the following
options for each statement: (1) “Strongly Disagree”, (2) “Disagree”, (3) “Neither Agree
or Disagree”, (4) “Agree”, and (5) “Strongly Agree”. For this RQ, we make two analyses.
First, we analyzed data about precision of similar interests from the sum of levels 3, 4,
and 5 of the Likert scale. Afterward, we followed a more conservative criterion with the
levels 4 and 5 of the Likert scale, as presented in the last row of Table 6.5. Thereby,
considering the first analysis (3-4-5 of the Likert scale), we obtained the level of 88%
and 48% of precision related to the interests in the works of recommended developers
from Strategy 1 and Strategy 2, respectively. To check the independence of the
strategies, we applied the Chi-Squared (χ2) test with Yates’ continuity correction [Wohlin
et al., 2012]. According to Chi-Squared test, the p–value is 0.003, which allows us to
conclude that the precision is statistically different for strategies (χ2 = 8.37, α = 0.05).
We used the Phi Coefficient to calculate the effect size, which was medium (ϕ=0.43).

Besides, by analyzing the more conservative criterion (4-5 of the Likert scale), we
also classified the interest of the developer that informed a higher (≥ 4) concordance
with interest in co-changed files (Table 6.5). We obtain 64% and 48% of precision for
Strategy 1 and Strategy 2, respectively. The comparison of precision with Fisher’s
Exact test showed that there were statistically significant differences between strategies
(p–value = 0.001, α = 0.05). In this case, we utilized Cramer’s V as a measure of effect
size. The calculated value of V was 0.48, indicating a large effect size. Therefore, being
interested in code changes of other developers may indicate an openness to creating ties

6.2. Results 89

Table 6.5: Percentage of the surveyed participants related to interest in co-changed files.

Interest in co-changed files
Likert Scale* Strategy 1 Strategy 2
1 9% 35%
2 3% 17%
3 22% 0%
4 44% 31%
5 22% 17%
3-4-5 88% 48%
4-5 64% 48%

*Using Likert type rating scale of (1) Strongly Disagree, (2) Disagree,
(3) Neither Agree or Disagree, (4) Agree, and (5) Strongly Agree.

of collaboration. From that perspective, we conclude that most surveyed developers from
Strategy 1 are interested in the works of recommended developers.

RQ1 summary: We observe that developers have interests with other developers
based on their co–changed files, especially for Strategy 1. This consideration
is relevant because coding tasks may indicate opportunities for contributions to
the project. Thus, the interest of the developer in a specific code may motivate
them to become a long-term developer in the project or be willing to engage in
collaborations.

RQ2 - Are developers familiar with code changed by recommended developers?

To answer the RQ2, we used the participant responses for the SQ3 item (I am
familiar with some fork changes in these files) (Appendix B). We followed the same pro-
cedures as explained before for RQ1 (Section 6.2). That is, we also presented another
recommended developer of the same project and their set of co-changed files. Table 6.6
summarizes of data collected with Likert rating scales for the SQ3 question.

We expect that developers familiar with the code may be open to collaborate. They
may help each other, give tips for code improvement, code together, or other possibilities.
Table 6.6 also presents the percentages of participant answers related to the familiarity
with works of recommended developers by each strategy. Again, if we consider the sum of
levels 3, 4, and 5 of the Likert–type scale, as presented in Table 6.6, the results are 75%
and 52% of precision for Strategy 1 and Strategy 2, respectively. We highlight that
Strategy 1 presents a slightly better result. Chi–Squared test with Yates’ continuity
correction shown that no significant statistical difference for the two samples with small
effect size (χ2 = 2.15, p–value = 0.14, α = 0.05, ϕ = 0.23).

6.2. Results 90

Table 6.6: Percentage of the surveyed participants related to familiarity with co-changed
files.

Familiarity with co-changed files
Likert Scale* Strategy 1 Strategy 2
1 12.5% 35%
2 12.5% 13%
3 3% 4%
4 25% 26%
5 47% 22%
3-4-5 75% 52%
4-5 72% 48%

*Using Likert type rating scale of (1) Strongly Disagree, (2) Disagree,
(3) Neither Agree or Disagree, (4) Agree, and (5) Strongly Agree.

For the levels 4 and 5 of the Likert–type scale, i.e., a conservative analysis, the
results are 72% and 48% of precision for Strategy 1 and Strategy 2, respectively. In
this case, the Fisher’s Exact test also shown that no significant statistical difference for
the two samples (p-value = 0.135, α = 0.05). Cramer’s V was 0.24, indicating a medium
effect size. In that way, the results were different, but the strategies maintained the same
order of precision based on familiarity with co–changed files.

Moreover, the changed files may highlight the opportunities of collaborations among
them as participant S2.07 declared “These are not long-term forks. My fork, as well as
the one linked to, are places where we, as core contributors of the project, prepare work
before sending it for review. For all of these examples (co–changed files), in fact, we made
the changes together.”

Overall, about half of all surveyed developers from Strategy 2 are familiar with
other developers based on co–changed files. One of the reasons for these results is that
Strategy 2 promotes the files based on the number of lines of code added or removed
(sum). Some large and unusual commits based on this strategy are considered important
for developers [Goyal et al., 2018]. However, in both contexts of analysis, we observed
that the developers from Strategy 2 were a little less confident in the co–changed files
than the other strategy.

RQ2 summary: Concerning the level of familiarity, we observe that developers iden-
tified by Strategy 1 are more familiar with co–changed files than developers from
Strategy 2. Familiarity with code from other developers may indicate one less
barrier for improving collaborations and providing code quality.

6.2. Results 91

Table 6.7: Survey results on the task categories of developers to work collaboratively with
others in the project.

Task Category # %
software development tasks 66 69
maintenance tasks 52 54
issues management tasks 48 50
mentoring tasks 37 39
community building tasks 22 23
repository management tasks 22 23
no tasks 22 23

RQ3 - How precise are the recommendation strategies based on co–changed
files?

The purpose of RQ3 is to evaluate if the participants accept or reject the recom-
mended developer of the same project after the analysis of interest and familiarity with
the relevant co-changed files. To this end, we used the choice of the participants for the
item SQ3 of the questionnaire (I worked or may work in partnership with the owner of
this fork on some tasks of the project, such as...) (Appendix B). Besides, software devel-
opment tasks are the most prominent category regarding what participants understand
as collaborative contributions to projects, as observed in our prior works [Constantino
et al., 2020, 2021]. Each participant analyzed the contributions of another developer of
the same project, as presented in Figure 6.1. These contributions were the result of one
of the two strategies. As detailed above, each strategy is based on co-changed files across
participants and recommended developers. Thus, we asked participants which types of
tasks they could work collaboratively with the recommended developer. Note that, we
excluded the answers of 6 participants who gave inconsistent responses (they would not
work collaboratively in any task). Table 6.7 summarizes the responses of 96 participants.
The task categories are: software development tasks (e.g., feature or test suites devel-
oping, or code review), maintenance tasks (e.g., improving code/project quality), issues
management tasks (e.g., reporting, triaging, or solving issues), and mentoring tasks (e.g.,
giving/asking help to develop a new feature or fix an issue, and sharing knowledge with
the team), community building tasks (e.g., motivating/recruiting developers, or promot-
ing/directing the project), and repository management tasks.

Most developers collaborate in software development tasks (69%). Maintenance
tasks (54%), issues management tasks (50%), and mentoring tasks (39%) are also tasks
to work collaboratively with other recommended developers. Community building and
repository management are the least selected tasks for collaborative work. Participants
had the opportunity to further provide an optional comment within the survey. In this op-
tional answer, they commented that Documentation is another category for collaborative

6.2. Results 92

tasks. On the other hand, 23% of them claimed that they would not work collaboratively
on any task in the presented recommended developer (“no task”). It means that the
developers did not accept the recommendations in this case. Table 6.8 summarizes the
responses of participants for non–acceptance or acceptance of the developer recommen-
dation in each strategy. Our results show that the recommendation precision were 80%
and 65% for Strategy 1 and Strategy 2, respectively. Chi-Squared test with Yates’
continuity correction shown no significant statistical difference for the two samples with
a small effect size (χ2 = 0.73, p-value = 0.392, α = 0.05, ϕ = 0.16). As results show that
when applied in isolation, Strategy 1 performs better than Strategy 2.

Table 6.8: Percentage of non–acceptance or acceptance the recommended developers in
each strategy.

Strategy 1 Strategy 2
Non-Acceptance 20% 35%
Acceptance 80% 65%

For SQ5 item of the questionnaire (Are there other active forks in this project
that you know about that you would consider to be of your interest? Which are they?)
(Appendix B), it was impossible to make a quantitative analysis because most surveyed
developers did not answer this open question. Few surveyed developers stated general an-
swers, such as, “yes, the member of core team” or “yes, many other developers”. Besides,
other developers claimed on three specific developers (active forks), but one was private,
another was the own repository (origin), and the last one was another branch owned by
the same developer. Thus, we could not compare these answers with the recommend de-
veloper lists. As mentioned before, we received some responses for the open question SQ8,
commenting on the co-changed files or recommended developer presented to participants.
For instance, some participants emphasized the collaborative relationship among them
interacting with each other. Participant S2.08 confirmed this case: “I and all of the other
core contributors are employed to work on this project, we report to the same management
chain and communicate frequently outside of GitHub about the project.”

RQ3 Summary: We observe that Strategy 1 performs better than Strategy
2. The precision of acceptance of the former was 80%, while the latter was 65%.

6.2. Results 93

RQ4 - Do the recommendations contribute to the discovery of potentially new
collaborators?

Towards answering RQ4, we manually categorized each surveyed participant and
recommended developers by the type of committer (core developer, casual developer, and
newcomer). To categorize as a core developer, we first considered that the core contributor
is highly involved and usually contributes to 80 percent of the source code [Yamashita
et al., 2015; Barcomb et al., 2018]. Hence, we analyzed the ranking of commits made by
GitHub based on the total number of commits and their recent activities. Besides, we
also considered the public information (e.g., maintainer of <name of project>) on their
GitHub profile and some self–declaration as claimed by S2.08 “I and all of the other core
contributors are employed to work on this project...” (from the open question in items
SQ4 or SQ6, see Table 6.3). To categorize developers as newcomers, we considered the
developers with no commits accepted in the project and a total of non–merged commits
greater than zero [Begel and Simon, 2008; Yamashita et al., 2015; Steinmacher et al.,
2018]. The others were categorized as casual developers, as defined in previous studies
[Yamashita et al., 2015; Lee and Carver, 2017; Lee et al., 2017; Barcomb et al., 2018].

To verify the novelty of the developer recommendations, we assume that, for a
given project, the core developers already know each other and work collaboratively to-
gether, while most casual developers and newcomers are not well known by other develop-
ers. Thus, for this analysis (RQ4), we are interested in investigating if the strategies can
present new developers to each other. That means, either recommending casual or new-
comers for any developer or recommending core developers for the other groups. Although
some of these novel recommendations were not accepted by the surveyed participants (in
particular, casual developers, since there were only two cases of a core developer rejecting
a recommended casual or newcomer developer), we verified that they still have poten-
tial relevance, given that the survey answers indicate that they do not know well the
recommended developers.

Tables 6.9 and 6.10 show the recommendations categorized by groups for Strat-
egy 1 and Strategy 2, respectively. The columns are the recommended developers
categorized by the core developers, casual developers, and newcomer groups. Besides,
these rows in these tables indicate the surveyed participants categorized by the core de-
veloper and casual developer groups. As mentioned before (Section 6.1), we consider
developers with the last commit accepted in the last year and with at least four commits
accepted to ensure knowledge of the project. Therefore, no newcomer participated in the
survey.

Table 6.9 shows the percentage of the recommended developers accepted by each
surveyed group from Strategy 1. We defined each recommendation type as <group1>-
to-<group2>. It means that recommendations consist of a developer in group1 being

6.2. Results 94

Table 6.9: Percentage of the recommended developers accepted by surveyed groups of the
Strategy 1.

Recommended Developers
Strategy 1 Core Dev. Casual Dev. Newcomer
Core Dev. 13% 7% 0%
Casual Dev. 23% 54% 3%

recommended to a developer in group2. For instance, a recommendation of type core-to-
casual consists of a core developer being recommended to a casual developer. Our results
show that 23% of the recommendations are core-to-casual. Other 54% of recommendations
are casual-to-casual. Exploring the novelty of the recommendations, the prior knowledge
of developers of the project is not an indicator that they already work together. Thus,
it is still possible to explore these opportunities of collaboration in the same or different
components of the project. Participant S1.32 (casual developer) detailed this situation: “I
don’t work with the specified developer <fork name/project name>. I (independent) work
on one component of the concerned module and they (who is also a member of the core
team) work on another. Some files are common for both of us.” Furthermore, participant
S1.09 (casual developer) stated that they might work in collaboration with a recommended
developer (casual developer). We can understand that this recommendation may be novel
for this participant when the participant S1.09 explains their routine of interaction with
the other developers (core team members) of the project: “I am not familiar with other
forks (developers) of the <project name>. Usually, I discuss my ideas and thoughts in a
designated GH Issue/PR with the core team...”

Table 6.10: Percentage of the recommended developers accepted by surveyed groups of
the Strategy 2.

Recommended Developers
Strategy 2 Core Dev. Casual Dev. Newcomer
Core Dev. 5% 15% 0%
Casual Dev. 5% 55% 20%

Table 6.10 shows the percentage of the recommended developers accepted by each
surveyed group from Strategy 2. For this strategy, 55% of the developer recommen-
dations were casual-to-casual and 20% are newcomer-to-casual. Another evidence from
developer perspective about the novelty is when participant S2.16 (casual developer) tries
to explain the criteria used to find the developer recommended (casual developer) for
them. The participant S2.16 accepted the developer recommendation and explained: “I
do not know how these relevant commits were picked for me, but the only connection is
that both of us made independent contributions that affect the same set of files (which is
not surprising since they are closely linked).”

6.3. Joint Strategy 95

RQ4 summary: The two recommendation strategies shown favorable results related
to novelty. That is, they did not overload the group of core developers. The group
of casual developers evaluated developers from all groups, mainly from casual devel-
opers and newcomers groups. We emphasize that developers should pay attention
to new recommendations (novelty).

6.3 Joint Strategy

As mentioned in Section 6.1, we also decided to analyze the joint strategy for
helping us to find some insights from participants to merge or improve the developer
recommendation strategies. Table 6.11 presents the percentages of 47 participant answers
(Table 6.1) related to interest (RQ1) and familiarity (RQ2) with works of recommended
developers for joint strategy. Again, if we consider the sum of levels 3, 4, and 5 of the
Likert-type scale, the result was 75% for both perspectives. For the levels 4 and 5, i.e., a
conservative analysis, the result are 58% and 62% for interest and familiarity, respectively.

Table 6.11: Percentage of the surveyed participants related to interest and familiarity
with co–changed files.

Joint Strategy
Likert Scale* Interest Familiarity
1 10% 12%
2 15% 13%
3 17% 13%
4 32% 34%
5 26% 28%
3-4-5 75% 75%
4-5 58% 62%

*Using Likert type rating scale of (1) Strongly Disagree, (2) Disagree,
(3) Neither Agree or Disagree, (4) Agree, and (5) Strongly Agree.

The precision related to the joint strategy was 81% (RQ3). This result was bet-
ter than for the other strategies (1 and 2) that may indicate potential for improvements
when combining both aforementioned strategies. Although the joint strategy is the best in
terms of precision, it does not provide recommendations when Strategy 1 and Strat-
egy 2 do not present recommendations in common, which could affect recommendation
completeness as accepted by the recall measure.

6.3. Joint Strategy 96

Table 6.12: Percentage of the recommended developers accepted by surveyed groups of
the joint strategy.

Recommended Developers
Core Dev. Casual Dev. Newcomer

Core Dev. 2% 2% 2%
Casual Dev. 11% 70% 13%

Table 6.12 shows the percentage of the recommended developers accepted by each
surveyed group from joint strategy (RQ4). Most of the developer recommendations were
casual-to-casual (70%), followed by newcomer-to-casual (13%). Participant S3.13 (casual
developer), who accepted the recommendation for working collaboratively with a new-
comer, explained that not all changes get his attention in projects with too many forks.
Generally, they are most interested in changes that can impact the architectural design of
the project. However, participant S3.13 is open for collaborating with any other developer
interested in the project, as declared: “I am open to working together with anyone who
has the capability to bring open–source projects further.”

As mentioned before, we analyzed the joint strategy for comparison purposes.
It could help us finding insights from participants to merge or improve the developer
recommendation strategies. For example, the number of respondents was higher than the
other strategies (even with the same number of invitations as the other strategies), and
the acceptance percentage was slightly higher for the joint strategy than for Strategy
1. These examples are positive indicators for combining the strategies. However, the
joint strategy could not always provide a recommendation, thus, we need to provide an
heuristic, as future work, to decide when using the joint strategy.

Summary: First, in comparison with the other surveyed groups, we observed that
participants of this group answered the survey more. Concerning the level of famil-
iarity, we observe that at least 48% are interested in and at least 62% are familiar
with co–changed files by the recommended developer. Besides, this joint strategy
presented the best precision (81%), which raises evidence of the benefits of combin-
ing both Strategies 1 and 2.

6.4. Qualitative Analysis 97

6.4 Qualitative Analysis

In this section, we analyze the answers from the open questions of the survey to
extract new insights, suggestions, or criticism.

For the data analysis, we employed an approach inspired by the open and axial
coding phases of ground theory [Corbin and Strauss, 2014]. The open coding examines
the raw textual data line by line to identify discrete events, incidents, ideas, actions,
perceptions, and interactions of relevance that are coded as concepts [Corbin and Strauss,
2014]. To do so, one researcher analyzed the responses individually and marked relevant
segments with “codes” (i.e., tagging with keywords) and organized them into concepts
grouped into more abstract categories. Afterward, a second researcher reviewed and
verified the categories created (the conflicts in labelling were resolved by researchers).

Consequently, it is possible to count the number of codes, corresponding percent-
ages, and items in each category to understand frequent feedback from participants. In
total, 42% (43/102) of participants filled this field in the questionnaire. Table 6.13 lists
the categories and codes from participants. As we can see, the categories are Opportu-
nity of Collaboration, Type of Contributions, Set of Features, Collaborative Workflow,
and Characteristic of Changes.

Opportunity of Collaboration. For 21% of participants mentioned their
experience in collaboration with the recommended developer or other developers of the
project. For instance, participant S2.20 “I became a maintainer for <project name> in
2017 which was after the specific change on <recommended developer name> was made.
It is interesting to see it. In the past 1.5 years, I have become aware of this developer work
and may collaborate more with him in the future”. Besides, participant S2.17 mentioned
related to openness for collaboration (12%) “I am on the core team, and we review PRs
regularly, so really any active fork will be of interest.” Finally, participant S2.16 had a
positive view related to this study, declaring “So, what you are really discovering here is
that there is a cool way to detect which groups of files are correlated”.

Type of Contributions. For this category, the top-4 type of contributions
are code review (19%), fixing bugs (14%), managing pull requests (14%), and discuss
ideas (9%). First, participants declared which are their main contributions to the project.
They also stated how collaboration happens. For instance, S3.33 explained “collaboration
occurs when I submit a pull request into the main repository of the project, and those code
changes undergo review. Collaboration also occurs when issues are discussed, again in the
main repository”.

Set of Features. We did not present for participants which strategy we applied
to recommend a developer to them. Hence, we can identify some features that participants
mentioned. Following, we can explore them in future works to improve our strategies. For

6.4. Qualitative Analysis 98

Table 6.13: Categories and codes for the feedback of (43) participants.

Category Codes # %
Opportunity of collaborative experience 9 21
Collaboration openness for collaboration 5 12

positive view 3 7
Type of code review 8 19
Contributions fixing bugs 6 14

pull requests 6 14
discuss ideas 4 9
developing feature 2 5
merging changes 2 5

Set of Features committer type 7 16
functionality 5 12
organization (company) 5 12

Collaborative “fork & pull” development model 7 16
Workflow GitHub is practical environment 2 5
Characteristic changes out of date 6 14
of Changes relevance of changes 6 14

size of changes 3 7

instance, 16% of participants mentioned the type of committer, i.e., either participant or
the recommended developer was a member of the core team or a casual contributor.
Furthermore, 12% of participants mentioned that they worked in the same functionality
(or feature) of the project. Besides, some participants (12%) suggested that they are from
the same company, organization, or team. For instance, participant S3.07 explained “the
owner of this fork and I work on the same team at <company name>.”.

Collaborative Workflow. For 16% of the participants explained that they
use the “fork & pull” development model in their project. In this model, the developers
can make a copy of the original project and made any changes without any permission
request. Next, when the changes are ready, they can submit them to review and after to be
integrated or not to the original repository. Furthermore, of participants declared that the
GitHub repository is a practical environment to develop projects. For instance, participant
S3.35 declared “the general development of this project is interesting and important, but
my ability to contribute is limited. That makes working in a GitHub setting very practical”.

Characteristic of Changes. As mentioned earlier, we presented a set of rel-
evant files for participants to analyze the recommendation further. Even though these
files were in a recent time window (Section 6.1), about 14% of participants claimed that
the changes were outdated and could impact the collaboration. For instance, participant
S2.22 declared “this fork did not have any recent changes, so potential collaboration seems
less likely”. Besides, 14% of participants reported the relevance of commits. For some

6.5. Threats to Validity 99

participants, fixing typos and minor changes are not relevant. On the other hand, par-
ticipant S3.31 pointed out “It is rare to work directly on a fork together, unless we are
prototyping a big feature”.

6.5 Threats to Validity

We designed and conducted carefully the opinion survey described in this study.
For instance, we delimited our scope prior to its execution, defined our hypotheses, and
how to assess them. However, some threats to validity may affect our research findings.
In this section, we discuss these threats with respective treatments based on the proposed
categories of Wohlin et al. [2012].

Construct Validity. The construct validity regards the relationship between
theory and observation [Wohlin et al., 2012]. We run our script to filter the GitHub
repositories and include project with different rising curve of collaborations among their
developers, domains, number of contributors, etc; we defined, as inclusion criteria, the
number of stars > 1,000. Another threat is that many casual developers copy the project,
contribute back for some time, lose interest and abandon the project. Because they are
casual developers and their copies are still active, we cannot guarantee that they still
are interested in the project. Interest and familiarity with the source code of the project
can impact our study results. Therefore, we try to minimize this threat by inviting only
developers who have contributed to the project in the past year.

Internal Validity. The internal validity is related to uncontrolled aspects
that may affect the study results [Wohlin et al., 2012]. Our findings may be affected
by the unbalance among participant groups or the low number of participants in each
strategy. Besides, only certain types of contributors of GitHub may volunteer for a survey
(e.g., contributors that modified any files or contributors that their forks are public).
However, we carefully mined, using code script, for popular projects (>1,000 stars) to
obtain distributed samples of developers of different domain and origin projects for all
strategies. Another threat is the use of statistical tools. We paid particular attention
to the suitable use of statistical tests (i.e., Chi-Squared test) when reporting our results.
This decreases the possibility that our findings are due to random events.

External Validity. The external validity concerns the ability to generalize the
results to other environments [Wohlin et al., 2012]. A primary external validity can be the
selected projects and participants. We analyzed public and different open–source projects
hosted on GitHub, different community sizes, and programming languages, among many
available ones. We cannot guarantee that our observations can be generalized to other

6.6. Concluding Remarks 100

projects. For example, participants may not reflect the state of the practice developers.
Furthermore, our results could also be different if we were analyzed projects hosted on
other repositories, such as private or industrial projects.

Conclusion Validity. The conclusion validity concerns issues that affect the
ability to draw the correct conclusions from the study [Wohlin et al., 2012]. The approach
used to analyze our survey results represents the main threat to the conclusions we can
draw from our study. Thus, we discussed our results by presenting descriptive statistics
and statistical hypothesis tests. Besides, all researchers participated in the data analysis
process and discussions on the main findings to mitigate the bias of relying on the inter-
pretations of a single person. Nonetheless, there may be several other important issues in
the collected data, not yet discovered or reported by us.

6.6 Concluding Remarks

In this chapter, we presented and discussed the survey study to evaluate two strate-
gies based on co-changed files in the perspective of who receives the recommendations.
We collected the data from an opinion survey answered by 102 GitHub developers. One
of our results showed that the acceptance rates were 80% and 65% for Strategy 1 and
Strategy 2, respectively. The joint strategy presented the best acceptance rate (81%),
which rises evidence of the benefits of combining both Strategies 1 and 2. Besides, the
two recommendation strategies showed favorable results related to novelty. In the next
chapter, we conducted a controlled experiment to evaluate the developer recommenda-
tion strategies. This user evaluation concerned usability and user satisfaction with the
proposed strategies and their supporting tool (CoopFinder).

101

Chapter 7

User Evaluation

Successful software projects demand active collaborators interacting with each other across
the complete development life-cycle. Unfortunately, in social coding platforms, such as
GitHub, it is still challenging for developers to identify potential collaborators with whom
they could engage to create new/stronger ties and enhance the quality of contributions. In
Chapter 5, we detailed developer recommendation strategies to help project contributors
improve their collaborations. Besides, we described the prototype toll that implements
them. Furthermore, in Chapter 6, we evaluated the recommendation strategies from
the point of view of who receives the recommendations. Once the strategies and tool
are presented, in this chapter, we describe a quantitative and qualitative evaluation of
strategies and tool using the state of the practice as a baseline.

To this end, we conducted a controlled experiment to evaluate the developer rec-
ommendation strategies and tool. This user evaluation concerned usability and user satis-
faction involving 35 participants. We asked participants to perform the experiment tasks
to find collaborators with similar interests using a prototype recommendation tool and
GitHub. Each participant completed the following tasks: fill a background questionnaire
before the experiment, execute two set of tasks, and fill a post–assignment questionnaire
about their opinion on the developer recommendations. The remainder of this paper is
organized as follows. Section 7.1 describes the user study design. Furthermore, we analyze
and report the results of this study (Section 7.2). Section 7.3 discusses some threats to the
study’s validity. Finally, we end this paper with some concluding remarks (Section 7.4).

7.1 Study Design

This section presents the design of an experiment study to evaluate the devel-
oper recommendations based on co–changed files supported by a prototype tool, namely
CoopFinder. Due to the Covid-19 pandemic, we performed the experiment remotely.
However, all required instructions were available for the participants. Besides, we were

7.1. Study Design 102

available while participants perform the experiment tasks to clarify any doubts. To col-
lect the data, we adopted questionnaires specially designed for this evaluation by using
the Google Forms1 service. Finally, we describe our goal, research questions, formulated
hypotheses, and the research method, as follows.

Goal and Research Questions. We set the goal of our study using the Goal/Ques-
tion/Metric (GQM) template [Basili and Weiss, 1984], as outlined below.

Analyze a tool–supported recommendation strategy
for the purpose of evaluation
with respect to ease of use and user satisfaction
from the point of view of developers
in the context of developer recommendations based on co–changed files in the
open–source environment.

To achieve this goal, we consider the following research questions.

RQ1 – How easy is it to find collaborators using CoopFinder? We compared
CoopFinder with GitHub (state-of-the-practice) related to ease of use to find
collaborators. Davis [1989] defined ease of use as the degree to which a user believes
that using a specific system would be effort free.

RQ2 – Does the expertise with GitHub impact on the effectiveness of
finding collaborators? With RQ2, we relate the background of participants with
their experience with GitHub when using the analyzed tools.

RQ3 – How fast is it to find a collaborator using CoopFinder? In this RQ,
we also compared CoopFinder with GitHub (state-of-the-practice) in regard to
the time required to perform all tasks for finding collaborators.

RQ4 – How do participants perceive CoopFinder? In this RQ, we report
the perceptions of the participants about the CoopFinder tool, as commented by
them in the post–assignment questionnaire of the experiment.

RQ5 – How could the developer recommendations be improved? In this
last RQ, we report the suggestions of the participants related to developer recom-
mendations features to improve the developer recommendations.

Hypotheses Formulation. We defined hypotheses for RQ1, RQ2, and RQ3, as
follows. However, for RQ4 and RQ5, we did not define hypotheses. We analyzed and
answered them qualitatively. Thus, for RQ1, we defined: Which tool (CoopFinder or
GitHub) would it be easier for finding collaborators with similar interests. To answer

1https://docs.google.com/forms, accessed in April 2022

7.1. Study Design 103

RQ1, we evaluated the ease of use of the tools in terms of the scale: 1 (very easy), 2
(easy), 3 (hard), and 4 (very hard). Thus, RQ1 was turned into the null and alternative
hypotheses as follows.

H0: There is no significant difference related to ease of use between CoopFinder
or GitHub.
H1: There is significant difference related to ease of use between CoopFinder or
GitHub.

We defined hypotheses for RQ2: which group (GitHub user or non–GitHub
user) would impact the use of CoopFinder or GitHub. To answer RQ2, we evaluated
the answers (correct, incorrect and the blank) that participants provide for each task
proposed. Thus, the null and alternative hypotheses are:

H0: There is no significant difference in the hit rate between the GitHub users and
non–GitHub users.
H1: There is significant difference in the hit rate between the GitHub users and
non–GitHub users.

Finally, we designed hypotheses for RQ3: which tool (CoopFinder or GitHub)
requires more time for finding collaborators with similar interests in co–changed files
among developers. As mentioned, to answer RQ2, we evaluated the duration of the
tasks in terms of the time required to perform all tasks. Thus, the null and alternative
hypotheses are:

H0: There is no significant difference related to time (in minutes) to perform all
tasks using CoopFinder or GitHub.
H1: There is significant difference related to time (in minutes) to perform all tasks
using CoopFinder or GitHub.

Research Method. To answer the research questions, we planned and performed an
experiment study, as shown in Figure 7.1.

Participant selection. We selected the participants by convenience and using
the snowball recruitment technique (i.e., one participant indicates another one, and so
on) [Flick, 2018]. To be eligible to participate in this study, they must be collaborators of
software development projects (developers or maintainers), especially collaborators who
work on open–source projects in GitHub. Section 7.2 presents the overview of the selected
participants. We received responses from 43 participants. Eight participants did not
complete all questionnaires; thus, they were excluded. Therefore, we have valid answers
from 35 participants.

7.1. Study Design 104

Experiment (~ 1:10 hour)

Latin Square Design -

Experiment Tasks (1 hour)

Data Collection

Quantitative and Qualitative Analyses

Group 2

Session Training First Tool Second Tool

Group 1

(10 min)

Pre-assignement
questionnaire

Answering (10 min)

Demographic

Information

Post-assignement
Questionnaire

Answering (10 min)

CoopFinder

Feedback

Participant Selection

Convenience and
Snowball

Recruitment
Technique

Figure 7.1: Research method overview.

Experiment design. First, we asked participants to complete a demographic and
background questionnaire (10 minutes). After, we provided a training and explanation
session about the experiment related to CoopFinder and GitHub (10 minutes) (Figure
7.1). After the training session, we asked participants to perform a set of seven tasks for
each tool - CoopFinder and GitHub (1 hour). We instructed the participants to perform
the tasks using both tools. To reduce the learning effect on the assessment results, we
used the Latin square [Fisher, 1992] to distribute the tasks and tools between two groups
of participants, as presented in Figure 7.1. Each treatment appears only once in each
row (group of participants) and only once in each column (tools), allowing a broader
evaluation concerning the tool and the group of participants. Finally, we presented a
post–assignment questionnaire with open-ended questions, allowing participants to give
feedback about the strategies and tool.

Experiment tasks. We defined and adapted the tasks for each tool to have the
same goal (Table 7.1) and difficulty level. Moreover, we presented a brief scenario for
each task to direct the activity of the participant to achieve the task goal. For each
task, participants should provide an answer for the activity proposed and indicate their
perception on how easy it was to perform the task. All questionnaires and tasks are
available on Appendix C.2 to C.5.

Post–assignment questionnaire. After the experiment, we sent a short ques-
tionnaire to the participants regarding their perceptions about CoopFinder. In this
questionnaire, we asked the following questions; and we received responses from all 35
participants.

• What did you think about the CoopFinder tool?

• What are the strengths of the CoopFinder tool?

7.1. Study Design 105

Table 7.1: List of tasks to be performed by participants.

Task ID Goal
Task 1 Exploring project information
Task 2 Exploring collaborators of a specific project
Task 3 Exploring (non–merged and merged) commits of the collaborators
Task 4 Exploring similar interests among collaborators
Task 5 Exploring contributions to identify relevant files for the collaborators
Task 6 Exploring developer recommendations
Task 7 Exploring expertises of a specific collaborator

• What are the points to improve this tool?

• What other technical or social information do you think could be explored to improve
developer recommendations?

• Would you use and/or recommend this tool? Why?

Data collection. We collected data from the demographic and background ques-
tionnaire, the questionnaires of experimental tasks for both tools (CoopFinder and
GitHub) and the post–experiment questionnaire related to the feedback of the partici-
pants for the CoopFinder tool (Figure 7.1). All data were analyzed, interpreted and
reported in the results.

Quantitative and qualitative analyses. First, we collected quantitative and
qualitative data from the opinion survey and mined data about the participants in social
platforms, such as GitHub. Section 7.2 presents the descriptive analysis of these data
and Wilcoxon (W) test [Wilcoxon, 1992]. We applied the Wilcoxon test for testing the
statistical significance. This test is non–parametric; it makes no assumptions about the
data distribution. Thus, we can use this test when comparing two groups by continuous
or ordinal non–normally distributed dependent variables [Wohlin et al., 2012].

We applied the Chi-Squared test to analyze categorical grouped responses to Likert
scale questions and to test the hypotheses of no association between the two groups (i.e.,
to check independence between two variables). Furthermore, to apply the Chi-Squared
test, we should fulfill three requirements: (1) random data from a population; (2) the
expected value of any cell should not be less than five; (3) if the value in any cell is less
than five, it should not occupy more than 20% of cells, i.e., in two by two table, no cell
should contain an expected value less than five. Violation of this assumption needs to
be corrected by Yate’s correction or Fisher’s Exact test [Miller and Siegmund, 1982]. All
three assumptions were met in our case.

We used the R language, RStudio2, and some statistical R packages, such as “gg-
plot2”, “scales”, and “rstatix”. Finally, we qualitatively analyzed the open questions

2https://www.rstudio.com/

7.2. Study Results 106

from the post–assignment questionnaire using open and axial coding techniques [Corbin
and Strauss, 2014]. In Section 7.2, we applied open coding techniques for qualitative
research [Corbin and Strauss, 2014]. To do so, we analyzed the responses and marked
relevant segments with codes (tagging with keywords). Later, we grouped these codes
into relevant categories to extract key findings. Conflicts in labelling were resolved by
joint discussion among the researchers involved in this study [?].

Ethical considerations. This study involves experiments with human subjects.
All participants gave the consent for their answers to be used in this research (Appendix
C.1). Regarding participant data, all sensitive information (i.e., names or GitHub profile)
has been previously anonymized to ensure the privacy of participants. Last, we submitted
this research for the Ethical Committee of our institution before performing this study
(CAAE: 55476922.0.0000.5149).

7.2 Study Results

This section presents the results regarding each research question of this study.
These results provide insights into the perspective of the participants.

Participant Overview. A user study was conducted with 35 participant to
evaluate the usefulness and satisfaction of users with the CoopFinder tool. Table 7.2
shows some profiling information of the participants related to gender (26 males and
9 females participants), the time of experience in software development contributions.
Finally, if they are or not a GitHub contributor. For 51% of the participants who are
not GitHub contributors declared that they already have tried to make contributions to
a GitHub project. We also asked them which kind of actions they have taken on GitHub.
Participants P02, P20, and P035 noted that they only opened issues for a project. On
the other hand, participant P03 faced some difficulties and declared “I found exciting
projects, but due to entry barriers (understanding of the code, time of dedication) I ended
up postponing my work.” This kind of declaration is in accordance with the literature on
barriers faced by developers when trying to collaborate in a project [Steinmacher et al.,
2015b; Gousios et al., 2016].

Furthermore, participant P21 also declared “I had difficulty in understanding the
code or the lack of help from the leading developers of the project so that I could make the
contributions.” This finding is consistent with literature [Bird, 2011; Zhou and Mockus,
2011; Gousios et al., 2016] related to the barriers of collaboration, such as lack of knowledge
about the code–base and lack of interaction with project members. Besides, this result
also reinforces the importance of providing support for developers to find appropriate

7.2. Study Results 107

Table 7.2: Profiling information of the participants.

%
Gender Female 9 26

Male 26 74
Software None 8 23
Development Less than 1 year 9 25
Contributing 1 year to 3 years 11 31

More than 3 years 7 20
GitHub Yes 18 51
Contributor No 17 49

developers to help them and strengthen the ties among them for improving collaborations
in the project.

RQ1 - How easy is it to find collaborators using CoopFinder?

In this section, we present the results related to the ease of use of each tool
(CoopFinder and GitHub), i.e., the degree of effort demanded by participants. We
applied the same set of tasks with little adaptations for each tool. The tasks are related
to exploring information on the project, collaborators, and their contributions and inter-
ests. Each task has a specific goal, as detailed in Table 7.1. However, the general goal of
this set of tasks is to make it easier to find a suitable collaborator with similar interests
based on co–changed files. Table 7.3 shows the statistical descriptive (Median (Med),
Minimum (Min), Maximum (Max), Distribution (D)), and Wilcoxon (W) test result for
each task performed by participants using both tools (CoopFinder and GitHub). After
participants performed each task, they could express their experience related to ease of
use with a scale ranging from 1 (very easy), 2 (easy), 3 (hard), and 4 (very hard).

We applied the Wilcoxon test to compare how easy the tasks were for participants
when using CoopFinder and GitHub. According to the Wilcoxon test, the p–value for
Task 1 is 0.03, and for the others, the p–value is less than 0.001, which allows us to conclude
that the ease of use is statistically different for CoopFinder and GitHub (Table 7.3).
Indeed, CoopFinder is a visual and interactive tool for finding suitable collaborators to
improve collaborations into projects. Moreover, the tool provides metadata and links to
different attributes that could not be analyzed efficiently using the GitHub interface. For
example, this information is related to the source code activities of the collaborators of
a specific project. Furthermore, this information can help finding collaborators based on
similar interests in files that they have modified.

7.2. Study Results 108

Table 7.3: Statistic Table.

CoopFinder GitHub W
Tasks Med Min Max D* Med Min Max D* p**

1 2 3 4 1 2 3 4

Task 1 1 1 1 1 2 2 0.037
Task 2 1 1 2 4 1 4 <0.001
Task 3 1 1 2 4 1 4 <0.001
Task 4 1 1 3 4 1 4 <0.001
Task 5 1 1 4 4 1 4 <0.001
Task 6 1 1 3 4 1 4 <0.001
Task 7 1 1 2 1 1 4 <0.001

The acronyms used in the columns stand for: Median (Med), Minimum (Min), Maximum (Max),
Distribution (D), and Wilcoxon test (W).
* Note: The scale ranges from 1 (very easy) to 4 (very hard), on experience of participants for
each task. ** p–value < 0.05.

RQ1 Summary: We observed that participants were able to perform tasks more
easily using CoopFinder than GitHub. Wilcoxon test showed that there is sta-
tistical difference related to ease of use between CoopFinder or GitHub.

RQ2 - Does the expertise with GitHub impact on the effectiveness of finding
collaborators

In this section, we analyze whether the background related to GitHub expertise
of participants can impact the use of the analyzed tools. To this end, we separated
the participants into two independent groups (GitHub User group and non–GitHub User
group). The former group is for participants who are developers or maintainers of, at
least, one open–source project hosted on GitHub. The latter group is for participants
who do not have experience with GitHub. Tables 7.4a and 7.4b present the results about
the correct (C), incorrect (I) and the blank (B) answers that participants should provide
for the activity proposed.

For each independent group, the first and second columns show the number of
correct (C) and incorrect (I) answers for each task, respectively. Finally, the “blank” (B)
column indicates when participants could not answer correctly and left them blank. For
this analysis, we applied the Fisher’s exact test to compare the hit rate between groups
that are GitHub users and non–GitHub users (independent variable) and the answers
(“correct”, “incorrect”, and “blank”), both are qualitative nominal variables.

Table 7.4a shows the predominance of correct answers when participants performed
the tasks using the CoopFinder tool. On the other hand, Table 7.4b shows the answers

7.2. Study Results 109

Table 7.4: Results of tasks performed by GitHub users and non–GitHub users.

(a) CoopFinder

User (#) Non-User (#)
Tasks C I B C I B p*
Task 1 16 2 0 15 2 0 1.00
Task 2 18 0 0 17 0 0 **
Task 3 16 2 0 17 0 0 0.48
Task 4 15 3 0 16 1 0 0.60
Task 5 17 1 0 12 3 2 0.15
Task 6 11 7 0 12 5 0 0.72
Task 7 18 0 0 17 0 0 **

(b) GitHub

User (#) Non-User (#)
Tasks C I B C I B p*
Task 1 18 0 0 17 0 0 **
Task 2 7 0 11 9 4 4 0.02
Task 3 2 2 14 2 3 12 0.86
Task 4 2 5 11 2 5 10 1.00
Task 5 3 2 13 4 3 10 0.68
Task 6 2 0 16 3 0 14 0.65
Task 7 15 1 2 14 0 3 1.00

The acronyms used in the columns stand for: correct answers (C),
incorrect answers (I), and in blank (B).
* Fisher’s exact test (p–value < 0.05).
** Test was not applied because the task contains fewer than 2 levels.

were more distributed when participants used GitHub. The “blank” column draws at-
tention to the fact that, except for Task 1, in all other questions, at least half of the
participants left the answer blank when they performed the tasks using GitHub. Com-
ments such as “I didn’t find this information” or “I don’t know” were common during the
execution of the tasks. Participant P22 (GitHub user) explored GitHub to try to answer
the tasks correctly. However, P22 stated “I found it very difficult to find the necessary
information on GitHub to do the analyses”. It reinforces that CoopFinder provides
metadata and links to different attributes that could not be explored efficiently using the
GitHub interface. Fisher’s exact test showed there was no significant difference in the hit
rate between the users and non–users groups for almost all tasks (p–value > 0.05). When
participants used GitHub to perform the task, exploring collaborators of a specific project
(Table 7.3), the Fisher’s exact test showed a significant statistical difference for the two
samples (p–value = 0.02).

7.2. Study Results 110

CoopFinder GitHub

10

20

30

40

50

60

M
in

ut
es

Figure 7.2: Distribution of time (in minutes) of the tasks performed by participants when
they used CoopFinder and GitHub.

RQ2 Summary: We observed the predominance of correct answers when partici-
pants used CoopFinder. On the other hand, we also observed the predominance
of blank answers when using GitHub indicating that participants either did not
know or did not find the correct answers. In general, Fisher’s exact test showed no
significant difference in the hit rate between the users and non–users groups for all
tasks.

RQ3 - How fast is it to find a collaborator using CoopFinder?

In this section, we analyzed the amount of time it took participants to perform tasks
using CoopFinder and GitHub. This amount of time could be taken as an indicator
of each tool’s ease of use. Figure 7.2 shows the amount of time spent performing the
set of tasks using CoopFinder and GitHub. The boxplot represents the median as the
horizontal line within the box. Besides, the 25th and 75th percentiles are the lower and
upper sides of the distribution box, respectively. Visually, we can notice that performing
tasks using GitHub took more time than when using CoopFinder. Table 7.5 presents
the descriptive statistic for both tools. For CoopFinder, the median of time spent
performing all tasks was 11.2 minutes, and the 25th and 75th percentiles were 7.58 and
13.1 minutes, respectively. On the other hand, the median of minutes spent on GitHub
was 25.9. The percentiles in minutes were 19.7 and 38.8 for the 25th, and 75th percentiles,
respectively.

We use the Shapiro-Wilk test to verify if the data followed a normal distribuition.
Shapiro-Wilk result is 0.659 and p–value < 0.001. This p–value suggests a violation of

7.2. Study Results 111

Table 7.5: Descriptive statistic. Minutes spent performing the tasks using both tools.

Mean Med SD Min Max
CoopFinder 11.4 11.2 5.4 3.3 26.7
GitHub 36.1 25.9 33.6 5 159

The acronyms used in the columns stand for: Median (Med), Minimum (Min),
Maximum (Max).

the assumption of normality. Afterward, the non–parametric Wilcoxon test showed that
there is a difference related to time (in minutes) to perform all tasks using CoopFinder or
GitHub (W=9 and p–value < 0.001). It shows that the time required for performing all
tasks using CoopFinder and GitHub was significantly different. Combined with Figure
7.2, we observed that participants spent less time using CoopFinder, than using GitHub
to perform the tasks.

RQ3 Summary: We observed that participants spent less time using
CoopFinder than GitHub to perform the tasks. This result could also indicate
that CoopFinder is easier to use.

RQ4 - How do participants perceive CoopFinder?

In this section, we report the results of the Post–assignment questionnaire of the
experiment. We received responses from 35 participants. For the data analysis, we em-
ployed an approach inspired by the open and axial coding phases of ground theory [Corbin
and Strauss, 2014]. The open coding examines the raw textual data line by line to identify
discrete events, incidents, ideas, actions, perceptions, and interactions of relevance that
are coded as concepts [Corbin and Strauss, 2014]. To do so, one researcher analyzed
the responses individually and marked relevant segments with “codes” (i.e., tagging with
keywords) and organized them into concepts grouped into more abstract categories. Af-
terward, a second researcher reviewed and verified the categories created (the conflicts in
labelling were resolved by researchers).

Perceptions of the participants. In general, the participants commented posi-
tive impressions related to CoopFinder. That is, about 49% of the participants pointed
out that CoopFinder is exciting and supports project maintainers. For instance, par-
ticipant P14 remarked “CoopFinder shows exciting information about developers and
projects they are involved.” Furthermore, for other 37% of participants, the tool is easy
to use (intuitive or simple). For instance, participant P03 stated, “Much more practical
than GitHub. I could not find any of the requested information in git. The tool clearly
shows what I need to do and is much more intuitive”. Besides, other participants (34%)

7.2. Study Results 112

considered this tool helpful in finding new developers to collaborate with and manage a
possible project. For instance, participant P10 noted “It is useful both for finding new
people to collaborate with and managing a potential project.” Finally, three participants
pointed out that the tool needs some improvements.

Strengths. About 43% of participants indicated the easy and intuitive interface
as strengths of the tool. For example, P01 pointed out that “the information about de-
velopers and projects would not be easy to retrieve using more popular tools.” Other 40%
of participants mentioned that CoopFinder readily provides aggregated and organized
information on GitHub projects and their developers, representing an improvement re-
lated to finding information or collaborators on CoopFinder. For instance, P02 noted,
“We can quickly locate information about contributors. Besides, we carried out the tasks
quickly. I also consider the column with the contributor’s fork name very useful. Un-
fortunately, this information is unclear on the GitHub interface.” Moreover, about 31%
of participants voted as a strength the purpose of connecting developers to improve col-
laborations to project. Furthermore, they mentioned the collaborator rankings, the rec-
ommendation based on similar interests, and the general management of collaborators.
For instance, P17 commented, “the strength point of this tool is the comparison of the
skills and parts of the project that collaborators have the most in common. Another one
is collaborators management.” Finally, 11% of participants mentioned the use of data
visualization techniques, participant P09 said “CoopFinder is a visualization tool for
collaboration with a clean and well-organized interface and no visual clutter.”

Weaknesses. We received 32 responses pointing out limitations in CoopFinder.
For example, 60% of the participants gave some suggestions to improve the interface.
For instance, participants suggested improvements to the design of the buttons to click.
Besides, they asked for an interface in “dark mode”. About 20% of participants indicated
some new functionalities to the tool, such as opening the repository link or direct the
user to GitHub, adding textual search, adding some similarity metrics between developer
profiles. Besides, the participants also suggested adding new features to improve the way
to group collaborators and adding the possibility to analyze other projects.

Recommending the tool. We asked if participants would use or recommend
CoopFinder to others. About 66% of the participants answered that they would use
or recommend this tool. They explained that CoopFinder may help to better under-
stand the progress of the project concerning the collaborators and who can help whom.
For instance, P01 commented, “Yes. CoopFinder helps a lot in managing collaborators
on a project. Besides, you can allocate people with the same interests/skills to work to-
gether and other features that GitHub does not have.” On the other hand, 14% of the
participants answered negatively and justified that the tool was inappropriate for their
work context. For example, participant P28 remarked, “I would not use it because I do
not have or maintain a project with many users where it is needed.” Other participants

7.2. Study Results 113

(20%) conditioned the use or recommendation of the tool. For example, participant P01
mentioned “I do not see much use in my daily life, as I work with smaller projects. How-
ever, putting myself in the position of the maintainer of large projects, I believe the tool
should be handy. If I knew a developer with the mentioned profile, I would recommend it.”

RQ4 Summary: Participants mentioned that CoopFinder is exciting and sup-
ports project maintainers. As for the strengths of the tool, they pointed out its easy
and intuitive interface. Besides, about 66% of the participants answered that they
would use or recommend this tool. However, other participants (20%) conditioned
the use or recommendation of the tool.

RQ5 - How could the developer recommendations be improved?

In this research question, we asked for participants which social or technical fea-
tures we could explore to improve the developer recommendation. Table 7.6 summarizes
the responses of participants. “Programming language” is the most common suggestion
to improve the developer recommendation algorithms (97%); followed by “communication
in the project forums” and “professional experience level”, with 66% and 63% (Table 7.6).

Table 7.6: Other features to improve the recommendations.

GitHub
User non–User Total

Tasks # # # %
Programming language 18 16 34 97
Communication in the project forums 13 10 23 66
Professional experience level 12 10 22 63
Language 11 10 21 60
Source code (libraries, APIs, features) 15 5 20 57
Location 3 10 13 37
Followers and following 6 5 11 31
Gender 1 4 5 14

Furthermore, participants also mentioned “language” and “source code (libraries,
API, feature)”. Several works [Oliveira et al., 2019, 2020] identified developers with
expertise in specific libraries from GitHub. Moreover, about 31% of participants indicated
the followers and following (Table 7.6). Previous works [Wu et al., 2014; Blincoe et al.,
2016] used it as an awareness mechanism to discover new projects and trends. Certainly,
these features can be interesting in improving the developer recommendations.

“Gender” is the least common suggestion, with just 5%. It was mentioned mainly
for non–GitHub users which may reflect the barriers faced by newcomers collaborators.

7.3. Threats to Validity 114

For instance, participant P02 noted “Considering gender issues can be interesting. For
example, women will be able to look for other women to collaborate with them. As a result,
they feel more comfortable with people of the same gender. That is, they would be in a
safe environment.” This result coincides with literature, for instance, Vasilescu et al.
[2015a,b] argue that there is discrimination in online software engineering communities,
and women are known to face more significant barriers than men. As gender diversity
increases, team productivity increases.

Finally, participants cited freely other features, such as participation in issues,
previous communication, and openness to answer issues/doubts. Besides, they suggested
the developers who participated in new projects and complementary technologies. Finally,
they suggested exploring personal profiles, soft skills, and collaboration on similar projects,
checking programming language skills based on personal repositories.

RQ5 Summary: Participants suggested mainly features to improve the developer
recommendation system, such as programming language, communications, and pro-
fessional experience level. They also suggested gender issues, soft skills, and collab-
oration in similar projects.

7.3 Threats to Validity

Even with careful planning, this research can be affected by different factors which
might threaten our findings. We discuss these factors and decisions to mitigate their
impact on our study divided into categories of threats to validity proposed by Wohlin
et al. [2012].

Construct Validity. This validity is related to whether measurements in the
study reflect real-world situations [Wohlin et al., 2012]. This kind of threat can occur in
formulating the questionnaire in our experiment (quantitative and qualitative analysis).
We designed the questionnaire with open questions as a qualitative study to list users’
satisfaction provided by the CoopFinder tool. To minimize this threat, we cross-discuss
all the experimental procedures. Basili et al. [1999] and Kitchenham et al. [2002] argue
that qualitative studies play an essential role in experimentation in software engineering.

Internal Validity. The validity is related to uncontrolled aspects that may affect
the strategy results [Wohlin et al., 2012]. Since we employed a snowballing approach to
sampling our participants, we acknowledge that sampling bias affects the selection of the
participants, namely self-selection and social desirability biases. However, we counteracted

7.3. Threats to Validity 115

this effect by inviting people with different profiles, from various projects, and with diverse
backgrounds, seeking out different perspectives. Another threat is the use of statistical
tools. We paid particular attention to the suitable use of statistical tests (i.e., Wilcoxon
test) when reporting our results. This decreases the possibility that our findings are due
to random events.

External Validity. The external validity concerns the ability to generalize the
results to other environments [Wohlin et al., 2012]. There are three major threats to the
external validity of our study, such as baseline tool, the selected projects and participants.
First, we chose GitHub as baseline of the experiment, and we cannot guarantee that our
observations can be generalized to other tools. Second, we analyzed public and different
open–source projects hosted on GitHub, different community sizes, and programming lan-
guages, among many available ones. Moreover, we cannot guarantee that our observations
can be generalized to other projects. Finally, participants may not reflect the state of the
practice developers. Furthermore, our results could also be different if we had analyzed
another software development network or projects hosted on other repositories, such as
private or industrial projects.

Conclusion Validity. The conclusion validity concerns issues that affect the
ability to draw the correct conclusions from the study [Wohlin et al., 2012]. The approach
used to analyze our experiment results represents the main threat to the conclusions
we can draw from our study. Thus, we discussed our results by presenting descriptive
statistics and statistical hypothesis tests. Besides, all researchers participated in the data
analysis process and discussions on the main findings to mitigate the bias of relying on
the interpretations of a single person. Nonetheless, several other important issues in the
collected data may not yet be discovered or reported by us.

7.4. Concluding Remarks 116

7.4 Concluding Remarks

This chapter described a controlled experimental study to investigate the devel-
opers’ perceptions of using CoopFinder, a prototype tool to support two strategies for
recommending collaborations. These developer recommendation strategies aim to con-
nect developers of a specific project based on their similar interests. The study involved
35 participants, 18 of which were GitHub users, and 17 were non–GitHub users. As re-
sults, participants pointed out that CoopFinder is easy to use, intuitive, exciting, and
supports project maintainer. Besides, we observed that participants were able to perform
tasks more easily using CoopFinder than GitHub. For instance, they spent less time
using CoopFinder. While GitHub required more time to perform the tasks. It may in-
dicate the ease of use of the CoopFinder tool. Moreover, about 66% of the participants
answered that they would use or recommend this tool. The next chapter concludes this
thesis by summarizing the main findings of this work.

117

Chapter 8

Conclusion

Software developers must collaborate at all stages of the software life-cycle to create qual-
ity software systems. However, for large projects with hundreds of dynamic developers,
such as several successful open–source projects, it can be very complex to find developers
with the same interests and, thus, gain suitable collaborations and new insights. Re-
sources and efforts may be wasted in the project context, discouraging many developers
from staying. It can be costly to manage so many contributions, which is another ques-
tion for the maintainer who wants to take advantage of this small, modest, but useful
contribution made by a volunteer developer in the shortest possible time. Therefore, this
doctoral thesis proposes an investigation of collaborative development based on co-change
files to improve the collaborations of a specific project.

This chapter summarizes the results of this doctoral thesis, regarding its goals, and
future work. Section 8.1 summarizes the key findings of this thesis. Finally, Section 8.2
outlines possible ideas for future work.

8.1 Summary of the Work and Contributions

This doctoral thesis proposed to investigate how to find collaborations based on
co-changed files. To achieve this goal, we defined five specific goals as follows.

• SG1 Investigate the motivations, processes, interactions, and barriers involved in
collaboration during open–source software development.

• SG2 Investigate how open the developers are for collaboration with others.

• SG3 Provide tool–supported strategies based on co-changed files to find suitable
collaborators.

• SG4 Evaluate developers recommendations based on co-change files from the point
of view of who receives the recommendations.

8.1. Summary of the Work and Contributions 118

• SG5 Evaluate the effectiveness of developer recommendation tools in supporting
developers and maintainers, considering both perspectives (GitHub user and non–
user).

For SG1, we analyzed data collected through interviews conducted with developers
from different open–source software communities to know how collaborations happen, the
process, the barriers, and challenges developers face (Chapter 3). Some interesting findings
from SG1 are:

• Collaboration transcends coding, and includes documentation and management
tasks.

• The collaboration process has different nuances and challenges when considering
members of the core team interacting with each other and members of the team
interacting with peripheral developers. Collaboration is heavily driven by issue
management, and management skills impact it in defining, categorizing, and siz-
ing tasks accordingly, in such way that the community (including newcomers) can
collaborate independently.

• Knowledge management is a challenge in collaboration, and it is important to care-
fully define communication policies to mitigate and avoid problems related to knowl-
edge retention and decentralization.

For SG2, we designed and performed a survey study to understand better how
collaboration happens in software development projects based on developers’ behavior. In
particular, we focus on how open developers are to work collaboratively with others and
the main tasks that increase collaboration opportunities (Chapter 4). Some interesting
findings from SG2 are:

• Most participants (86%) prefer to work collaboratively with the core team, 29%
prefer to work in independent tasks.

• When exposed to the project’s collaborative scenario, the majority of participants
selected the category related to software development (65%), maintenance (50%),
issues management (45%), and mentorship/knowledge sharing (35%) as the main
tasks to work collaboratively with other developers.

• Despite personal preferences to work independently, some developers still consider
collaborating with others in some scenarios, especially in development tasks.

The findings from SG1 and SG2 are inputs for the next step related to the SG3,
which proposes tool-supported strategies to help developers find collaborators in the open-
source projects. Thus, we propose two developer recommendation strategies based on

8.1. Summary of the Work and Contributions 119

coding activities, especially in co–changed files, that is, modifications made by developers
on the same file (Chapter 5). This set of files can indicate that developers have interests
and familiarity with a specific part of the project, impacting directly on collaborative work
among developers. To extract these changes, we used the number of commits for Strat-
egy 1. For Strategy 2, we used the number of lines of changed code (code churns).
Furthermore, we proposed CoopFinder, a visual and interactive tool that implements
the two strategies (Strategy 1 and 2) to connect collaborators based on a set of files of
their interest.

For SG4, we evaluated two developer For SG4, we evaluated two developer recom-
mendation strategies based on coding activities from the point of view of who receives
the recommendations. Besides, we analyzed the joint of these two strategies and the
novelty of their recommendations, i.e., how recommended developers are different from
what is known. Thus, we mined data from GitHub public repositories and surveyed 102
developers from these repositories. Besides, we collected the data from an opinion survey
answered by 102 GitHub developers of popular projects (Chapter 6). Some exciting
findings from SG4 are:

• Concerning the level of interest in and familiarity with co-changed files, we can con-
clude that developers have a similar interest in the co-change files for two strategies,
especially for Strategy 1. These considerations are of relevance because many
opportunities for contributions to the project are linked with coding. Thus, this
result may indicate one less barrier to improving developers’ collaboration.

• The acceptance rates were 80% and 65% for Strategy 1 and Strategy 2, re-
spectively.

• The joint strategies presented the best precision (81%), which raises evidence of the
benefits of combining both Strategies 1 and 2.

• The two recommendation strategies have shown favorable results related to novelty.
That is, they did not overload the group of core developers. The casual developers
evaluated developers from all groups, mainly casual developers and newcomers. We
highlight that developers should pay attention to new recommendations (novelty).
Many developers are expecting an opportunity to make pertinent contributions to
the project.

Finally, for SG5, we conducted a controlled experiment to evaluate the developer
recommendation strategies and the CoopFinder. This user evaluation concerned usabil-
ity and user satisfaction involving 35 participants, of which 18 were GitHub users, and 17
were non-users. All of them are maintainers and/or developers of software projects. As

8.2. Future Work 120

required, the study was submitted and approved to the Brazilian Committee for Ethics
in Research1. Some interesting findings from SG5 are:

• We observed that participants could perform tasks more easily using CoopFinder
than GitHub. For instance, they spent less time using CoopFinder. While GitHub
required more time to perform the tasks. It may indicate the ease of use of the
CoopFinder tool.

• Participants mentioned that CoopFinder is exciting and helps project maintainers.
They also said, as a strength of the tool, that it is easy and has an intuitive interface.
Besides, about 66% of the participants confirmed they would use or recommend this
tool. On the other hand, some participants did not see the benefits of using the
tool in smaller teams, where collaborators are known. However, other participants
(20%) conditioned the use or recommendation of the tool.

• Participants mainly suggested features to improve the developer recommendations,
such as programming language, communications, and professional experience. They
also suggested gender issues, soft skills, and collaboration in similar projects.

8.2 Future Work

During this research, we perceived many future directions to this doctoral thesis.
Cross-platform solution. The approaches proposed in this thesis to strengthen

the collaboration ties among developers can be served in future work as a base to pro-
vide a solution for cross-platform, such as Stack Overflow, Linkedin, or other git-based
repositories.

Other text mining techniques. We applied classical algorithms such as TF–IDF
and Cosine Similarity to rank the files of developers and connect them, respectively. Thus,
future work could also explore other algorithms, such as deep learning, active learning,
or BERT [Kenton and Toutanova, 2019], which have been the state-art in numerous text
mining tasks.

Developer interaction by comments/discussions. In this doctoral thesis, we
used the number of commits and the number of lines of code changed (change volume) as
metrics to connect project developers. In future work, we could complement the developer
recommendations, considering the communication among them, for example, with whom
and the frequency of interaction in the question & answer forum. Exploring the potential

1Protocol CAAE:55476922.0.0000.5149

8.2. Future Work 121

of these communication metrics or joining them with metrics related to code activities
can bring interesting results.

Developer recommendations based on social network features. In the
same sense, exploring the social relationships between developers can be a good line. For
example, some developers want to contribute to a project due to the project’s popularity.
As well as they want to contribute to a project of a specific “influencer”. Therefore,
identifying which social network feature most attracts developers to a particular project
or to work on a particular issue can further strengthen the ties between them and the
project.

Developer recommendation based on non-coding activities. Considering
that our attempt to recommend developers based on co-changed files was positive, these
results are only preliminary indications of the relevance of this work for improving col-
laborations in the project. Therefore, we also could expand this work to other activities,
such as documentation, issue tracking, and repository management activities, that is, the
other activities mentioned by the interview and survey study participants (Chapter 3 and
4).

Supporting newcomers. A promising line of research could be to give specific
support to newcomers. In this thesis, we consider all developers who took the initiative
to implement some coding activity, independently this coding was updated or not to the
main project. We highlight these developers that tried. The core team knew some of
them, but others were not. Thus, we could pay special attention to newcomers trying to
participate and provide them more support (i.e., recommending mentors) to strengthen
their ties to the team.

Supporting women or minority groups. Using this work as base, another
possibility for future work is to provide recommendations based on a specific group, such
as women, or other groups that consider themselves to be minorities and would like a
safer environment to start their collaboration on the project. That is, find people aware
of these groups.

Group recommendation. In the same direction as the work mentioned above,
it is possible to provide recommendations from developers based on their roles in the
project. For example, a tester would like to connect with other testers on the project and
thus, share more knowledge related to the tests needed for the project.

Recommendation based on technical expertise. This doctoral thesis focused
on developers who performed some coding activity on the project. However, we know that
there are experienced developers who fork or follow the project but have never tried or
had the opportunity to collaborate on the project. In this context, as a future direction,
we could identify or even classify the technical expertise of these developers, e.g., coding
languages or libraries. Next, we could highlight them to the core team, recommending
these developers as promising for the project.

8.2. Future Work 122

Task recommendation. Another future direction is task recommendation. This
work aimed to recommend developers to developers. Thus, they together can choose
which activities they want to iterate or collaborate on in the project. Thus, we could also
complement our developer recommendation, including specific activities. For example, if
the project needs a set of suite tests, we could suggest that the developer collaborates to
create these tests based on their coding activities/experience.

Evaluating in real context of use. We also intend to evaluate CoopFinder in
real context of use, to see how often the recommendations actually foster collaboration.

123

Bibliography

Abbattista, F., Calefato, F., Gendarmi, D., and Lanubile, F. Incorporating social software
into distributed agile development environments. In Proceedings of the 23rd Interna-
tional Conference on Automated Software Engineering (ASE), pages 46–51, 2008.

Adomavicius, G. and Tuzhilin, A. Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge
and Data Engineering, 17(6):734–749, 2005.

Allenby, G. M. and Rossi, P. E. Marketing models of consumer heterogeneity. Journal of
Econometrics, 89(1-2):57–78, 1998.

Amati, G. and Van Rijsbergen, C. J. Probabilistic models of information retrieval based
on measuring the divergence from randomness. ACM Transactions on Information
Systems (TOIS), 20(4):357–389, 2002.

Avelino, G., Passos, L., Hora, A., and Valente, M. T. A novel approach for estimating truck
factors. In Proceedings of the 24th International Conference on Program Comprehension
(ICPC), pages 1–10, 2016.

Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval, volume 463. 1999.

Balali, S., Annamalai, U., Padala, H. S., Trinkenreich, B., Gerosa, M. A., Steinmacher,
I., and Sarma, A. Recommending tasks to newcomers in oss projects: How do mentors
handle it? In Proceedings of the 16th International Symposium on Open Collaboration
(OpenSym), pages 1–14, 2020.

Barcomb, A., Kaufmann, A., Riehle, D., Stol, K.-J., and Fitzgerald, B. Uncovering the
periphery: A qualitative survey of episodic volunteering in free/libre and open source
software communities. IEEE Transactions on Software Engineering (TSE), 46(9):962–
980, 2018.

Barcomb, A., Stol, K.-J., Riehle, D., and Fitzgerald, B. Why do episodic volunteers stay
in floss communities? In Proceedings of the 41st International Conference on Software
Engineering (ICSE), pages 948–959, 2019.

Basili, V. R. and Weiss, D. M. A methodology for collecting valid software engineering
data. IEEE Transactions on Software Engineering (TSE), (6):728–738, 1984.

Bibliography 124

Basili, V. R., Shull, F., and Lanubile, F. Building knowledge through families of experi-
ments. IEEE Transactions on Software Engineering (TSE), 25(4):456–473, 1999.

Beel, J., Gipp, B., Langer, S., and Breitinger, C. Paper recommender systems: A literature
survey. International Journal on Digital Libraries (JODL), 17(4):305–338, 2016.

Begel, A. and Simon, B. Novice software developers, all over again. In Proceedings of
the 4th International Workshop on Computing Education Research (ICER), pages 3–14,
2008.

Belém, F. M., Batista, C. S., Santos, R. L., Almeida, J. M., and Gonçalves, M. A.
Beyond relevance: Explicitly promoting novelty and diversity in tag recommendation.
ACM Transactions on Intelligent Systems and Technology (TIST), 7(3):1–34, 2016.

Berkani, L. A semantic and social-based collaborative recommendation of friends in social
networks. Software: Practice and Experience, 50(8):1498–1519, 2020.

Bernard, H. R. Research Methods in Anthropology: Qualitative and Quantitative Ap-
proaches. Rowman & Littlefield, 2017.

Billsus, D. and Pazzani, M. J. User modeling for adaptive news access. User Modeling
and User-Adapted Interaction, 10(2):147–180, 2000.

Billsus, D., Pazzani, M. J., et al. Learning collaborative information filters. In Proceedings
of the 15th International Conference of Machine Learging (ICML), volume 98, pages
46–54, 1998.

Bird, C. Sociotechnical coordination and collaboration in open source software. In Pro-
ceedings of the 27th International Conference on Software Maintenance (ICSM), pages
568–573. IEEE, 2011.

Bissyandé, T., Lo, D., Jiang, L., Réveillere, L., Klein, J., and Le Traon, Y. Got is-
sues? who cares about it? a large scale investigation of issue trackers from github. In
International Symposium on Software Reliability Engineering (ISSRE), 2013.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., and Damian, D. Understanding the
popular users: Following, affiliation influence and leadership on github. Information
and Software Technology (IST), 70:30–39, 2016.

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. Recommender systems survey.
Knowledge-Based Systems, 46:109–132, 2013.

Breese, J. S., Heckerman, D., and Kadie, C. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the International Conference on Uncertainty
in Artificial Intelligence (UAI), 1998.

Bibliography 125

Burke, R. Hybrid recommender systems: Survey and experiments. User Modeling and
User-Adapted Interaction, 12(4):331–370, 2002.

Butler, B., Sproull, L., Kiesler, S., and Kraut, R. Community effort in online groups:
Who does the work and why? pages 187–210. 2002.

Cai, Y. and Zhu, D. Reputation in an open source software community: Antecedents and
impacts. Decision Support Systems (DSSs), 91:103–112, 2016.

Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S. Who is going to mentor
newcomers in open source projects? In Proceedings of the 20th International Symposium
on the Foundations of Software Engineering (FSE), pages 1–11, 2012.

Cataldo, M. and Herbsleb, J. D. Coordination breakdowns and their impact on develop-
ment productivity and software failures. IEEE Transactions on Software Engineering
(TSE), 39(3):343–360, 2012.

Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M. Identification of
coordination requirements: Implications for the design of collaboration and awareness
tools. In Proceedings of the 20th Conference on Computer Supported Cooperative Work
(CSCW), pages 353–362, 2006.

Cataldo, M., Herbsleb, J. D., and Carley, K. M. Socio-technical congruence: A framework
for assessing the impact of technical and work dependencies on software development
productivity. In Proceedings of the 2nd International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 2–11, 2008.

Choi, K., Yoo, D., Kim, G., and Suh, Y. A hybrid online-product recommendation system:
Combining implicit rating-based collaborative filtering and sequential pattern analysis.
Electronic Commerce Research and Applications, 11(4):309–317, 2012.

Cohen, J. The effect size. Statistical power analysis for the behavioral sciences, pages
77–83, 1988.

Constantino, K. and Figueiredo, E. Coopfinder: Finding collaborators based on co–
changed files. Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1–3. IEEE, 2022.

Constantino, K. and Figueiredo, E. Finding collaborations based on co-changed files. In
Anais Estendidos do XVIII Simpósio Brasileiro de Sistemas Colaborativos, pages 57–66,
Porto Alegre, RS, Brasil, 2023. SBC. doi: 10.5753/sbsc_estendido.2023.229735. URL
https://sol.sbc.org.br/index.php/sbsc_estendido/article/view/24226.

https://sol.sbc.org.br/index.php/sbsc_estendido/article/view/24226

Bibliography 126

Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and Kästner, C. Understanding
collaborative software development: An interview study. In Proceedings of the 15th
International Conference on Global Software Engineering (ICGSE), page 55–65, 2020.

Constantino, K., Souza, M., Zhou, S., Figueiredo, E., and Kästner, C. Perceptions of
open-source software developers on collaborations: An interview and survey study.
Journal of Software: Evolution and Process, 33:e2393, 2021.

Constantino, K., Belém, F., and Figueiredo, E. Dual analysis for helping developers to
find collaborators based on co-changed files: An empirical study. Software: Practice
and Experience, pages 1–27, 2023a. doi: https://doi.org/10.1002/spe.3194.

Constantino, K., Prates, R., and Figueiredo, E. Recommending collaborators based on
co–changed files: A controlled experiment. In Anais do XVIII Simpósio Brasileiro de
Sistemas Colaborativos, pages 154–168, Porto Alegre, RS, Brasil, 2023b. SBC. doi: 10.
5753/sbsc.2023.229104. URL https://sol.sbc.org.br/index.php/sbsc/article/
view/24191.

Corbin, J. and Strauss, A. Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. 2014.

Costa, C., Figueirêdo, J., Pimentel, J. F., Sarma, A., and Murta, L. Recommending par-
ticipants for collaborative merge sessions. IEEE Transactions on Software Engineering
(TSE), 47(6):1198–1210, 2021.

Creswell, J. W. and Creswell, J. D. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications, 2017.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Leveraging transparency. IEEE
Software, 30(1):37–43, 2012a.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social soding in github: Transparency
and collaboration in an open software repository. In Proceedings of the ACM 2012 Con-
ference on Computer Supported Cooperative Work (CSCW), pages 1277–1286, 2012b.

Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of informa-
tion technology. MIS quarterly, pages 319–340, 1989.

De Campos, L. M., Fernández-Luna, J. M., Huete, J. F., and Rueda-Morales, M. A. Com-
bining content-based and collaborative recommendations: A hybrid approach based on
bayesian networks. International Journal of Approximate Reasoning, 51(7):785–799,
2010.

https://sol.sbc.org.br/index.php/sbsc/article/view/24191
https://sol.sbc.org.br/index.php/sbsc/article/view/24191

Bibliography 127

Dey, T., Karnauch, A., and Mockus, A. Representation of developer expertise in open
source software. In Proceedings of the 43rd International Conference on Software En-
gineering (ICSE), pages 995–1007, 2021.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. Selecting empirical methods
for software engineering research. In Guide to advanced Empirical Software Engineering,
pages 285–311. 2008.

Eckert, R., Stuermer, M., and Myrach, T. Alone or together? inter-organizational af-
filiations of open source communities. Journal of Systems and Software (JSS), 149:
250–262, 2019.

Engelfriet, A. Choosing an open source license. IEEE software, 27(1):48–49, 2009.

Fang, Y. and Neufeld, D. Understanding sustained participation in open source software
projects. Journal of Management Information Systems (JMIS), 25(4):9–50, 2009.

Farias, V., Wiese, I., and Santos, R. What characterizes an influencer in software ecosys-
tems? IEEE Software, 36:42–47, 2019.

Ferreira, M., Valente, M. T., and Ferreira, K. A comparison of three algorithms for com-
puting truck factors. In Proceedings of the 25th International Conference on Program
Comprehension (ICPC), pages 207–217, 2017.

Fisher, R. A. The arrangement of field experiments. In Breakthroughs in statistics, pages
82–91. 1992.

Flick, U. Designing Qualitative Research. 2018.

Foucault, M., Palyart, M., Blanc, X., Murphy, G. C., and Falleri, J.-R. Impact of developer
turnover on quality in open-source software. In Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering (FSE/ESEC), pages 829–841, 2015.

Franco, M. F., Rodrigues, B., and Stiller, B. Mentor: The design and evaluation of
a protection services recommender system. In Proceedings of the 15th International
Conference on Network and Service Management (CNSM), pages 1–7, 2019.

Gamalielsson, J. and Lundell, B. Sustainability of open source software communities
beyond a fork: How and why has the libreoffice project evolved? Journal of Systems
and Software (JSS), 89:128–145, 2014.

Ge, M., Delgado-Battenfeld, C., and Jannach, D. Beyond accuracy: Evaluating recom-
mender systems by coverage and serendipity. In Proceedings of the 4th Conference on
Recommender Systems (RecSys), pages 257–260, 2010.

Bibliography 128

Giuffrida, R. and Dittrich, Y. A conceptual framework to study the role of communi-
cation through social software for coordination in globally-distributed software teams.
Information and Software Technology, 63:11–30, 2015.

Gong, W., Lv, C., Duan, Y., Liu, Z., Khosravi, M. R., Qi, L., and Dou, W. Keywords-
driven web apis group recommendation for automatic app service creation process.
Software: Practice and Experience, 51(11):2337–2354, 2021.

Gousios, G., Pinzger, M., and Deursen, A. v. An exploratory study of the pull-based
software development model. In Proceedings of the 36th International Conference on
Software Engineering (ICSE), pages 345–355, 2014.

Gousios, G., Zaidman, A., Storey, M.-A., and Deursen, A. v. Work practices and chal-
lenges in pull-based development: The integrator’s perspective. In Proceedings of the
37th International Conference on Software Engineering (ICSE), pages 358–368, 2015.

Gousios, G., Storey, M.-A., and Bacchelli, A. Work practices and challenges in pull-based
development: The contributor’s perspective. In Proceedings of the 38th International
Conference on Software Engineering (ICSE), pages 285–296, 2016.

Goyal, R., Ferreira, G., Kästner, C., and Herbsleb, J. Identifying unusual commits on
github. Journal of Software: Evolution and Process, 30(1):e1893, 2018.

Greiler, M., van Deursen, A., and Storey, M.-A. Test confessions: A study of testing
practices for plug-in systems. In Proceedings of the 34th International Conference on
Software Engineering (ICSE), pages 244–254, 2012.

Gunawardana, A. and Shani, G. A survey of accuracy evaluation metrics of recommen-
dation tasks. Journal of Machine Learning Research, 10(12), 2009.

Herbsleb, J. D. Global software engineering: The future of socio-technical coordination.
In Future of Software Engineering (FOSE), pages 188–198, 2007.

Hippel, E. v. and Krogh, G. v. Open source software and the “private-collective” in-
novation model: Issues for organization science. Organization Science, 14(2):209–223,
2003.

Hu, L., Jian, S., Cao, L., Gu, Z., Chen, Q., and Amirbekyan, A. Hers: Modeling influential
contexts with heterogeneous relations for sparse and cold-start recommendation. In
Proceedings of the 33rd Conference on Artificial Intelligence (AAAI), volume 33, pages
3830–3837, 2019.

Hu, R. and Pu, P. Using personality information in collaborative filtering for new users.
Recommender Systems and the Social Web, 17, 2010.

Bibliography 129

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., and Zhang, L. Why and how developers
fork what from whom in github. Empirical Software Engineering (EMSE), 2017a.

Jiang, J., He, J.-H., and Chen, X.-Y. Coredevrec: Automatic core member recommenda-
tion for contribution evaluation. Journal of Computer Science and Technology (JCST),
30(5):998–1016, 2015.

Jiang, J.-Y., Cheng, P.-J., and Wang, W. Open source repository recommendation in
social coding. In Proceedings of the 40th International Conference on Research and
Development in Information Retrieval (SIGIR), pages 1173–1176, 2017b.

Jones, K. S. A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, 2004.

Jung, K.-Y., Park, D.-H., and Lee, J.-H. Hybrid collaborative filtering and content-based
filtering for improved recommender system. In International Conference Computational
Science (ICCS), 2004.

Kagdi, H. and Poshyvanyk, D. Who can help me with this change request? In Proceedings
of the 17th International Conference on Program Comprehension (ICPC), pages 273–
277, 2009.

Kagdi, H., Gethers, M., Poshyvanyk, D., and Hammad, M. Assigning change requests to
software developers. Journal of software: Evolution and Process, 24(1):3–33, 2012.

Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., and German, D. Open source-style
collaborative development practices in commercial projects using github. In Interna-
tional Conference on Software Engineering (ICSE), 2015.

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of NAACL-HLT, pages 4171–
4186, 2019.

Kim, H.-N., Alkhaldi, A., El Saddik, A., and Jo, G.-S. Collaborative user modeling with
user-generated tags for social recommender systems. Expert Systems with Applications,
38(7):8488–8496, 2011.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam,
K., and Rosenberg, J. Preliminary guidelines for empirical research in software engi-
neering. IEEE Transactions on Software Engineering (TSE), 28(8):721–734, 2002.

Kononenko, O., Baysal, O., and Godfrey, M. W. Code review quality: How developers
see it. In Proceedings of the 38th International Conference on Software Engineering
(ICSE), pages 1028–1038, 2016.

Bibliography 130

Krüger, J., Wiemann, J., Fenske, W., Saake, G., and Leich, T. Do you remember this
source code? In Proceedings of the 40th International Conference on Software Engi-
neering (ICSE), pages 764–775, 2018.

Lakhani, K. R. and Hippel, E. v. How open source software works:“free” user-to-user
assistance. In Produktentwicklung mit virtuellen Communities, pages 303–339. 2004.

Lanubile, F., Ebert, C., Prikladnicki, R., and Vizcaíno, A. Collaboration tools for global
software engineering. IEEE Software, 27(2):52–55, 2010.

Laurent, A. Understanding open source and free software licensing: guide to navigating
licensing issues in existing & new software. 2004.

Lee, A. and Carver, J. C. Are one-time contributors different? a comparison to core and
periphery developers in floss repositories. In International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2017.

Lee, A., Carver, J. C., and Bosu, A. Understanding the impressions, motivations, and
barriers of one time code contributors to floss projects: A survey. In Proceedings of the
39th International Conference on Software Engineering (ICSE), pages 187–197, 2017.

Li, Q. and Kim, B. M. Clustering approach for hybrid recommender system. In Proceedings
of the International Conference on Web Intelligence (WI), pages 33–38, 2003.

Lima, A., Rossi, L., and Musolesi, M. Coding together at scale: Github as a collaborative
social network. In Proceedings of the 8th International Conference on Weblogs and
Social Media (ICWSM), 2014.

Lin, B., Robles, G., and Serebrenik, A. Developer turnover in global, industrial open
source projects: Insights from applying survival analysis. In Proceedings of the 12th
International Conference on Global Software Engineering (ICGSE), pages 66–75, 2017.

Linåker, J., Munir, H., Wnuk, K., and Mols, C. Motivating the contributions: An open
innovation perspective on what to share as open source software. Journal of Systems
and Software (JSS), 2018.

Liu, C., Yang, W., Li, Z., and Yu, Y. Recommending software features to designers: From
the perspective of users. Software: Practice and Experience, 50(9):1778–1792, 2020.

Marlow, J., Dabbish, L., and Herbsleb, J. Impression formation in online peer production:
Activity traces and personal profiles in github. In Proceedings of the Conference on
Computer Supported Cooperative Work and Social Computing (CSCW), pages 117–128,
2013.

Bibliography 131

Matragkas, N., Williams, J. R., Kolovos, D. S., and Paige, R. F. Analysing the ’biodiver-
sity’ of open source ecosystems: The github case. In Proceedings of the 11th Interna-
tional Conference on Mining Software Repositories (MSR), pages 356–359, 2014.

McDonald, N. and Goggins, S. Performance and participation in open source software on
github. In Proceedings of the International Conference on Human Factors in Computing
Systems (CHI), pages 139–144. 2013.

Melville, P., Mooney, R. J., and Nagarajan, R. Content-boosted collaborative filtering for
improved recommendations. Aaai/iaai, 23:187–192, 2002.

Mendenhall, W., Beaver, R. J., and Beaver, B. M. Introduction to Probability and Statis-
tics. Cengage Learning, 2012.

Miller, C., Widder, D. G., Kästner, C., and Vasilescu, B. Why do people give up floss-
ing? a study of contributor disengagement in open source. In Proceedings of the 15th
International Conference on Open Source Systems (OSS), pages 116–129, 2019.

Miller, R. and Siegmund, D. Maximally selected chi square statistics. Biometrics, pages
1011–1016, 1982.

Minto, S. and Murphy, G. C. Recommending emergent teams. In Proceedings of the 4th
International Workshop on Mining Software Repositories (MSR)), pages 5–13, 2007.

Mockus, A., Fielding, R. T., and Herbsleb, J. A case study of open source software
development: The apache server. In Proceedings of the 22nd International Conference
on Software Engineering (ICSE), pages 263–272, 2000.

Mooney, R. J. and Roy, L. Content-based book recommending using learning for text
categorization. In Proceedings of the 5th International Conference on Digital Libraries
(ICDL), pages 195–204, 2000.

Morrison, P., Pandita, R., Murphy-Hill, E., and McLaughlin, A. Veteran developers’
contributions and motivations: An open source perspective. In Proceedings of the
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages
171–179, 2016.

Morse, J. M. Designing funded qualitative research. 1994.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and Ye, Y. Evolution patterns
of open-source software systems and communities. In Proceedings of the International
Workshop on Principles of Software Evolution (IWPSE), pages 76–85, 2002.

Nembhard, D. A. and Osothsilp, N. An empirical comparison of forgetting models. IEEE
Transactions on Engineering Management (IEEE-TEM), 48(3):283–291, 2001.

Bibliography 132

Oliveira, J., Fernandes, E., Vale, G., and Figueiredo, E. Identification and prioritization of
reuse opportunities with jreuse. In International Conference on Software Reuse (ICSR),
pages 184–191, 2017.

Oliveira, J., Viggiato, M., and Figueiredo, E. How well do you know this library? mining
experts from source code analysis. In Proceedings of the 18th Brazilian Symposium on
Software Quality (SBQS), pages 49–58, 2019.

Oliveira, J., Pinheiro, D., and Figueiredo, E. Jexpert: A tool for library expert identifica-
tion. In Proceedings of the 34th Brazilian Symposium on Software Engineering (SBES),
pages 386–392, 2020.

Oliveira, J. A., Viggiato, M., Pinheiro, D., and Figueiredo, E. Mining experts from source
code analysis: An empirical evaluation. Journal of Software Engineering Research and
Development (JSERD), 9:1–16, 2021.

Oliveira, M. D. R. F. M. F. E., Johnatan; Souza. Can source code analysis indicate
programming skills? a survey with developers. In Proceedings of the 15th International
Conference on the Quality of Information and Communications Technology (QUATIC),
pages 804–809, 2022.

Onoue, S., Hata, H., and Matsumoto, K.-i. A study of the characteristics of develop-
ers’ activities in github. In Proceedings of the 20th Asia-Pacific Software Engineering
Conference (APSEC), volume 2, pages 7–12, 2013.

Pazzani, M. J. A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review (AIR), 13(5):393–408, 1999.

Pfleeger, S. L. and Kitchenham, B. A. Principles of survey research part 1: Turning
lemons into lemonade. SIGSOFT Software Engineering Notes, 26(6):16–18, 2001.

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and Schneider, K. Creating a shared
understanding of testing culture on a social coding site. In Proceedings of the 35th
International Conference on Software Engineering (ICSE), pages 112–121, 2013.

Pinto, G., Steinmacher, I., and Gerosa, M. More common than you think: An in-depth
study of casual contributors. In Proceedings of the 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pages 112–123, 2016.

Ponzanelli, L., Scalabrino, S., Bavota, G., Mocci, A., Oliveto, R., Di Penta, M., and Lanza,
M. Supporting software developers with a holistic recommender system. In Proceedings
of the 39th International Conference on Software Engineering (ICSE), pages 94–105,
2017.

Bibliography 133

Popescul, A., Pennock, D. M., and Lawrence, S. Probabilistic models for unified collabo-
rative and content-based recommendation in sparse-data environments. In Proceedings
of the International Conference on Uncertainty in Artificial Intelligence (UAI), pages
437–444, 2001.

Porcel, C., Tejeda-Lorente, A., Martínez, M., and Herrera-Viedma, E. A hybrid rec-
ommender system for the selective dissemination of research resources in a technology
transfer office. Information Sciences, 184(1):1–19, 2012.

Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., and Vasilescu, B. Going farther together:
The impact of social capital on sustained participation in open source. In Proceedings
of the 41st International Conference on Software Engineering (ICSE), pages 688–699,
2019.

Qureshi, I. and Fang, Y. Socialization in open source software projects: A growth mixture
modeling approach. Organizational Research Methods, 2011.

Rahman, M. M., Riyadh, R. R., Khaled, S. M., Satter, A., and Rahman, M. R. Mmruc3:
A recommendation approach of move method refactoring using coupling, cohesion, and
contextual similarity to enhance software design. Software: Practice and Experience,
48(9):1560–1587, 2018.

Rahman, M. M., Roy, C. K., Redl, J., and Collins, J. A. Correct: Code reviewer recom-
mendation at github for vendasta technologies. In IEEE/ACM International Conference
on Automated Software Engineering (ASE), page 792–797, 2016.

Rastogi, A. and Nagappan, N. Forking and the sustainability of the developer community
participation: an empirical investigation on outcomes and reasons. In International
Conference on Software Analysis, Evolution, and Reengineering (SANER), 2016.

Rayner, J. and Best, D. Smooth tests of goodness of fit: an overview. International
Statistical Review/Revue Internationale de Statistique, pages 9–17, 1990.

Rehman, I., Wang, D., Kula, R. G., Ishio, T., and Matsumoto, K. Newcomer oss-
candidates: Characterizing contributions of novice developers to github. Empirical
Software Engineering (EMSE, 27(5):1–20, 2022.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW), pages 175–186, 1994.

Ricci, F., Rokach, L., and Shapira, B. Introduction to Recommender Systems Handbook.
2011.

Bibliography 134

Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh, B.,
and Odenwald, T. Open collaboration within corporations using software forges. IEEE
Software, 26(2):52–58, 2009.

Robbins, N. B., Heiberger, R. M., et al. Plotting likert and other rating scales. In
Proceedings of the Joint Statistical Meeting (JSM), pages 1058–1066, 2011.

Robertson, S. E. and Jones, K. S. Relevance weighting of search terms. Journal of the
American Society for Information Science, 27(3):129–146, 1976.

Robillard, M., Walker, R., and Zimmermann, T. Recommendation systems for software
engineering. IEEE software, 27(4):80–86, 2009.

Sajedi-Badashian, A. and Stroulia, E. Vocabulary and time based bug-assignment: A
recommender system for open-source projects. Software: Practice and Experience, 50
(8):1539–1564, 2020.

Salton, G. The smart retrieval system: Experiments in automatic information retrieval,
1971.

Salton, G. Automatic text processing: The transformation, analysis, and retrieval of.
Reading: Addison-Wesley, 169, 1989.

Salton, G. and Buckley, C. Term-weighting approaches in automatic text retrieval. In-
formation Processing & Management, 24(5):513–523, 1988.

Salton, G. and Harman, D. Information retrieval. In Encyclopedia of Computer Science.
2003.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference on
World Wide Web (WWW), pages 285–295, 2001.

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. Collaborative filtering recom-
mender systems. In The Adaptive Web, pages 291–324. 2007.

Schilling, A., Laumer, S., and Weitzel, T. Who will remain? an evaluation of actual
person-job and person-team fit to predict developer retention in floss projects. In
Proceedings of the 45th Hawaii International Conference on System Sciences (HICSS),
pages 3446–3455, 2012.

Shah, S. K. Motivation, governance, and the viability of hybrid forms in open source
software development. Management Science, 52(7):1000–1014, 2006.

Bibliography 135

Stănciulescu, Ş., Schulze, S., and Wąsowski, A. Forked and integrated variants in an
open-source firmware project. In Proceding of 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 151–160, 2015.

Steinmacher, I., Gerosa, M. A., and Redmiles, D. Attracting, onboarding, and retaining
newcomer developers in open source software projects. In Workshop on Global Software
Development in a CSCW Perspective held in conjunction with the 17th ACM Conference
on Computer Supported Cooperative Work & Social Computing (CSCW), 2014.

Steinmacher, I., Conte, T., Gerosa, M. A., and Redmiles, D. Social barriers faced by
newcomers placing their first contribution in open source software projects. In Proceed-
ings of the 18th ACM Conference on Computer Supported Cooperative Work & Social
Computing (CSCW), pages 1379–1392, 2015a.

Steinmacher, I., Silva, M. A. G., Gerosa, M. A., and Redmiles, D. F. A systematic
literature review on the barriers faced by newcomers to open source software projects.
Information and Software Technology (IST), 59:67–85, 2015b.

Steinmacher, I., Pinto, G., Wiese, I. S., and Gerosa, M. A. Almost there: A study on quasi-
contributors in open-source software projects. In Proceedings of the 40th International
Conference on Software Engineering (ICSE), pages 256–266, 2018.

Stol, K.-J., Avgeriou, P., and Ali Babar, M. Identifying architectural patterns used in
open source software: Approaches and challenges. In Proceedings of the 14th Inter-
national Conference on Evaluation and Assessment in Software Engineering (EASE),
page 91–100, 2010.

Storey, M.-A., Singer, L., Cleary, B., Figueira Filho, F., and Zagalsky, A. The (r) evolution
of social media in software engineering. Future of Software Engineering Proceedings
(FOSE), pages 100–116, 2014.

Storey, M.-A., Zagalsky, A., Figueira Filho, F., Singer, L., and German, D. M. How social
and communication channels shape and challenge a participatory culture in software
development. IEEE Transactions on Software Engineering (TSE), 43(2):185–204, 2016.

Su, X., Greiner, R., Khoshgoftaar, T. M., and Zhu, X. Hybrid collaborative filtering
algorithms using a mixture of experts. In Proceedings of the International Conference
on Web Intelligence (WI), pages 645–649, 2007.

Surian, D., Liu, N., Lo, D., Tong, H., Lim, E.-P., and Faloutsos, C. Recommending people
in developers collaboration network. In Proceedings of the 18th Working Conference on
Reverse Engineering (WCRE), pages 379–388, 2011.

Bibliography 136

Tamburri, D. A., Kruchten, P., Lago, P., and Van Vliet, H. Social debt in software
engineering: Insights from industry. Journal of Internet Services and Applications, 6
(1):1–17, 2015.

Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S. A recommendation system
for repairing violations detected by static architecture conformance checking. Software:
Practice and Experience, 45(3):315–342, 2015.

Thongtanunam, P., Tantithamthavorn, C., Kula, R. G., Yoshida, N., Iida, H., and Mat-
sumoto, K.-i. Who should review my code? a file location-based code-reviewer recom-
mendation approach for modern code review. In Proceedings of the 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pages 141–
150, 2015.

Tsay, J., Dabbish, L., and Herbsleb, J. Influence of social and technical factors for eval-
uating contribution in github. In Proceedings of the 36th International Conference on
Software Engineering (ICSE), pages 356–366, 2014.

Tymchuk, Y., Mocci, A., and Lanza, M. Collaboration in open-source projects: Myth or
reality? In Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR), pages 304–307, 2014.

Vale, G., Hunsen, C., Figueiredo, E., and Apel, S. Challenges of resolving merge conflicts:
A mining and survey study. IEEE Transactions on Software Engineering (TSE), 2021.

Vasilescu, B., Filkov, V., and Serebrenik, A. Perceptions of diversity on github: A user
survey. In Proceedings of the 8th International Workshop on Cooperative and Human
Aspects of Software Engineering, pages 50–56, 2015a.

Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G., Serebrenik, A., Devanbu, P.,
and Filkov, V. Gender and tenure diversity in github teams. In Proceedings of the 33rd
Conference on Human Factors in Computing Systems (CHI), pages 3789–3798, 2015b.

Viggiato, M., Oliveira, J., Figueiredo, E., Jamshidi, P., and Kästner, C. Understand-
ing similarities and differences in software development practices across domains. In
International Conference on Global Software Engineering (ICGSE), 2019a.

Viggiato, M., Oliveira, J., Figueiredo, E., Jamshidi, P., and Kästner, C. How do code
changes evolve in different platforms? a mining-based investigation. In International
Conference on Software Maintenance and Evolution (ICSME), 2019b.

Von Krogh, G., Spaeth, S., and Lakhani, K. R. Community, joining, and specialization in
open source software innovation: A case study. Research Policy (RP), 32(7):1217–1241,
2003.

Bibliography 137

Von Krogh, G., Haefliger, S., Spaeth, S., and Wallin, M. W. Carrots and rainbows:
Motivation and social practice in open source software development. MIS quarterly,
pages 649–676, 2012.

Whitehead, J. Collaboration in software engineering: A roadmap. In Future of Software
Engineering (FOSE), pages 214–225, 2007.

Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. 1992.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. Experi-
mentation in Software Engineering. Springer Science & Business Media, 2012.

Wu, Y., Kropczynski, J., Shih, P. C., and Carroll, J. M. Exploring the ecosystem of
software developers on github and other platforms. In Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work & Social Computing (CSCW),
pages 265–268, 2014.

Xu, W., Sun, X., Hu, J., and Li, B. Repersp: Recommending personalized software
projects on github. In Proceedings of the 33rd International Conference on Software
Maintenance and Evolution (ICSME), pages 648–652, 2017.

Yamashita, K., McIntosh, S., Kamei, Y., Hassan, A. E., and Ubayashi, N. Revisiting the
applicability of the pareto principle to core development teams in open source software
projects. In Proceedings of the 14th International Workshop on Principles of Software
Evolution (IWPSE), pages 46–55, 2015.

Yang, X., Guo, Y., Liu, Y., and Steck, H. A survey of collaborative filtering based social
recommender systems. Computer Communications, 41:1–10, 2014.

Yu, C. T. and Salton, G. Precision weighting—an effective automatic indexing method.
Journal of Association for Computing Machinery, 23(1):76–88, 1976.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B. Wait for it: Determinants
of pull request evaluation latency on github. In Proceedings of the 12th International
Conference on Mining Software Repositories (MSR), pages 367–371, 2015.

Zanjani, M. B., Kagdi, H., and Bird, C. Automatically recommending peer reviewers
in modern code review. IEEE Transactions on Software Engineering, 42(6):530–543,
2016.

Zhou, M. and Mockus, A. Does the initial environment impact the future of developers?
In Proceedings of the 33rd International Conference on Software Engineering (ICSE),
pages 271–280, 2011.

Bibliography 138

Zhou, M. and Mockus, A. What make long term contributors: Willingness and opportu-
nity in oss community. In Proceedings of the 34th International Conference on Software
Engineering (ICSE), pages 518–528, 2012.

Zhou, M. and Mockus, A. Who will stay in the floss community? modeling participant’s
initial behavior. IEEE Transactions on Software Engineering (TSE), 41(1):82–99, 2014.

Zhou, S., Vasilescu, B., and Kästner, C. What the fork: a study of inefficient and
efficient forking practices in social coding. In Proceedings of the 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE/ESEC), pages 350–361, 2019.

139

Appendix A

Interview Documents

In this appendix, we present the email (in Portuguese) used to recruit the participants of
the interview, details of the interview process, verbal consent (Portuguese and English),
and the interview guides.

A.1 Recruitment email

The email sent to potential answerers was based on the following:

Prezado <nome do convidado>,

Meu nome é Kattiana Constantino, sou estudante de doutorado do Departamento de
Ciências da Computação da Universidade Federal de Minas Gerais (DCC/UFMG).

Gostaria de convidá-lo para participar de uma entrevista para a avaliação de uma abordagem
e do suporte ferramental para identificar colaborações e também, minimizar as contribuições
não mescladas em projeto de desenvolvimento de software baseado em forks. Esse projeto de
pesquisa é uma parceria com o Institute for Software Research da Carnegie Mellon University
(ISR/CMU). Considerando os desenvolvedores no GitHub, você foi escolhido por ter mais
de <número de contribuições> contribuições nos últimos 2 anos, como também por ter
feito forks e contribuído em alguns deles. Atualmente, você é um dos mantenedores do
projeto <nome do projeto>. Essas informações foram coletadas do seu perfil no GitHub
(https://github.com/<user no github>). Abaixo segue mais detalhes sobre o projeto de
pesquisa e demais informações. Por favor, responda esse e-mail me informando seu interesse
em participar.
Desde já agradeço, Kattiana Constantino (kattiana@dcc.ufmg.br ou kattiana@gmail.com)
Departamento de Ciências da Computação/Universidade Federal de Minas Gerais

A.2. Recruitment email - Details of the research 140

A.2 Recruitment email - Details of the research

Avaliação da Abordagem e Suporte Ferramental para Identificar Colaborações e
Minimizar as Contribuições Não Mescladas em Projeto de Desenvolvimento de
Software Baseado em Forks.

Estamos realizando um estudo de entrevistas com desenvolvedores de software que
contribuem para repositórios de código aberto baseados em forks, para aprender
mais sobre as questões levantadas, minimizar o desperdício de recursos de software
e esforços humanos e também entendermos como a nossa abordagem e o suporte
ferramental pode ajudar em nessas questões.

Elegibilidade: Você deve ter 18 anos ou mais e ter contribuído para um projeto de
código aberto por meio de uma estratégia baseada em forks.

Procedimento: Se você decidir participar, definiremos um horário para uma entrevista
de acordo a sua conveniência. A entrevista pode ser presencial ou por Skype e tem a
duração de 30 a 60 minutos. O áudio da entrevista será gravado para posteriormente
fazermos uma transcrição mais precisa. Além disso, como trata-se da avaliação de
uma ferramenta web, o recurso de compartilhamento de tela do próprio Skype será
utilizado para gravar a sua interação com a ferramenta. O vídeo será usado para
posteriormente contextualizarmos melhor as suas respostas.

Queremos enfatizar que a sua identidade e a sua participação nesta pesquisa serão
mantidas em sigilo e os dados divulgados pela pesquisa não conterão nomes ou
quaisquer outras informações que permitam identificá-lo(a). Os arquivos contendo as
gravações e transcrições da entrevista não serão acessados por outras pessoas do de-
partamento ou da universidade, além de mim, meu orientador e demais pesquisadores
colaboradores desse projeto de pesquisa. Você não terá nenhum gasto com a sua
participação no estudo e também não receberá pagamento ou indenização pelo mesmo.

Se você quiser participar ou tiver alguma dúvida sobre o estudo, envie um e-mail
para kattiana@dcc.ufmg.br ou kattiana@gmail.com.

A.2. Recruitment email - Details of the research 141

A.3 Consentimento Verbal [Portuguese]

Obrigado por aceitar participar deste estudo de pesquisa para avaliar a abordagem
e suporte ferramental para identificar colaborações e minimizar as contribuições não
mescladas em projeto de desenvolvimento de software baseado em bifurcação. Do
nosso lado, Kattiana Constantino e Eduardo Figueiredo estão na reunião.

O objetivo desta reunião/entrevista é entender melhor como os desenvolvedores
buscam por colaborações, quais os tipos de colaborações são mais interessantes,
como eles lidam com as contribuições não mescladas e como a ferramenta é útil para
suportar essas questões e demandas. Gostaríamos de conversar com você sobre suas
experiências em buscar colaborações e minimizar as contribuições não mescladas no
contexto de desenvolvimento baseado em bifurcação.

A entrevista não deve durar mais que 60 minutos; Sua participação é voluntário e
você tem o direito de desistir a qualquer momento. Nós também precisamos que voce
responda se tem mais de 18 anos? <Esperar pela resposta>.

Além disso, gostaríamos de gravar o áudio da conversa. Na transcrição do áudio, re-
moveremos as informações que identifiquem você ou sua empresa antes de começarmos
as análises. Pedimos, ainda, que durante a entrevista você evite qualquer informação
privada sobre outras pessoas e informações confidenciais. Você concorda em prosseguir
com a entrevista?

A.5. Interview Protocol [English] 142

A.4 Verbal Consent [English]

Thanks for agreeing to participate in our research study to evaluate our approach and
tooling support to identify collaborations and minimize the non-merged contributions
within fork-based development. On our side only Kattiana Constantino is in the
meeting.

The purpose of this meeting/interview is to better understand how participants look
for collaborations, what kinds of collaborations are interesting, how they deal with
non-merged contributions, and how the tool is useful to support those issues and de-
mands. We would like to talk to you about your experiences in seeking collaborations
and minimizing non-merged contributions within fork-based development context.

This should not last longer than 60 minutes; it is voluntary, and you have the right
to withdraw at any time. I also need to ask if you are 18 or older? <wait for response>.

We would like to audio-record this meeting, but we will transcribe and remove iden-
tifying information before we analyze it further. Personal identifiers (your name,
organization, and phone number) are stored separate from interview transcripts and
are only linked by a code. During the interview, please do not share any private,
identifiable information about other individuals or disclose confidential proprietary
information. Do you agree with this procedure?

A.5 Interview Protocol [English]

A.5.1 Part 1

Objective: To understand how the participant is familiar with the OSS project
hosted on GitHub.

1. What are the main OSS projects hosted on GitHub that you are involved in? What
is your role in each of them (project owner/maintainer/developer)?

2. Have you recently been involved in OSS project development on GitHub?

A.5. Interview Protocol [English] 143

3. In the OSS project hosted on GitHub, which you are most involved in, do you prefer
to work alone or with other developers? Why?

A.5.2 Part 2

Objective: To understand participants experiences of collaborations in forks-based
development.

1. In the <project name> project, in which you are involved in, do you usually visit
the forks of other developers to find something that might be useful for you?

2. Do you usually open some communication channel with any of the project developers
<project name> for more collaborations?

3. In the <project name> project, what kind of collaboration are the most common
among developers?

4. Are there other collaborations that are important, but little explored in the <project
name> project that you participate in?

Task 1: Let suppose you want to find a collaborator. Looking for a developer or
fork in the <project name> project that is most similar to your fork.

1. What is the name of the fork chosen?

2. Detail the strategy adopted to find this fork.

3. How easy is to find this information? Why?

Task 2: Now, let suppose you have two forks (collaborators), but you want to
choose the most similar of them with your work(the interview presents two recommended
developer for interviewee (top 1 and 5)).

1. What these two forks are more similar with your work? Why?

2. Based on the similar of these forks with your work, how likely would you collaborate
with these developers? Why?

3. How easy is to make this decision? Why?

144

Appendix B

Survey Documents

In this appendix, we present the email used to recruit the participants to survey stud-
ies, consent term, and the opinion survey. We applied these documents for two studies
(Chapter 4 and Chapter 6).

B.1 Recruitment email

Dear <Developer name>,

You are invited to participate in our scientific research to encourage developers to
collaborate with each other into the project community (main repository or forks).

We have explored the commits from the <projec name>project in which you are a
contributor with at least 5 commits. And, we have identified some forks of the project
that share similar commits to yours.

Thus, we would like to hear your thoughts on the similarity of this developer’s works
below, with yours. And, how openness you are for working in partnership with
him/her into the project community.

Your Fork: <fork of the developer>

Fork: <fork of the recommended developer >

B.2. Opinion survey 145

Examples of relevant files for you both are:

1. <change file path> (e.g., commit <link for the commit>)

2. <change file path> (e.g., commit <link for the commit>)

3. <change file path> (e.g., commit <link for the commit>), or others.

The one-page survey should only take a few minutes. All your personal details
will be kept confidential. Moreover, we will release data in aggregated format only,
without any personally identifiable information. By answering this survey, you agree
to provide the data for the propose of our scientific research.

Our Survey <link for the opinion survey>)

I would greatly appreciate your contribution to this matter – future support for
working in partnership among developers in the open-source community could
certainly benefit from your comments.

Yours sincerely,
Kattiana Constantino, Ph.D. student (kattiana@dcc.ufmg.br)
Federal University of Minas Gerais - Brazil

B.2 Opinion survey

We have explored the commits from a project in which you are a contributor. We
have identified some contributing forks which share similar changes as yours.

We would like to invite you to share your thoughts on a specific fork we have listed
in the email we sent you. Thank you for your time to complete this survey. Every
answer is important to me.

Kattiana Constantino (Federal University of Minas Gerais - Brazil)

B.2. Opinion survey 146

Table B.1: Survey Questions.

ID Questions
SQ1 How are you working on the project?

[] In collaboration with the core team
[] In collaboration with owners of other forks
[] Independently

SQ2 How do you prefer to work on the project?
[] In collaboration with the core team
[] In collaboration with owners of other forks
[] Independently

SQ3 I am interested in some of these changed files in this fork
[] Strongly Disagree, [] Disagree, [] Neither Agree or Disagree,
[] Agree, and [] Strongly Agree

SQ4 I am familiar with some fork changes in these files
[] Strongly Disagree, [] Disagree, [] Neither Agree or Disagree,
[] Agree, and [] Strongly Agree

SQ5 I worked or may work in partnership with the owner of this fork on some
tasks of the project, such as:
[] software development tasks (e. g., feature or test suites developing,
or code review)
[] issues management tasks (e. g., reporting, triaging, or solving issues)
[] community building (e.g., motivating/recruiting collaborators,
or promoting/directing the project)
[] maintainability (e. g., improving code/project quality)
[] mentorship/knowledge sharing (e. g., for giving/asking help to develop
a new feature or fix an issue)
[] repository management tasks
[] I did not work or may not work in partnership with the owner of fork
[] other (open question)

SQ6 Are there other active forks in this project that you know about that you
would consider to be of your interest? Which are they? (open question)

SQ7 Other important observations or suggestions (open question)

147

Appendix C

User Evaluation Documents

In this appendix, we present the instruments used to perform the user evaluation, i.e., the
contexts and tasks for each tool. Moreover, we present the questionnaire applied before
and after the evaluation. The post-assignment questionnaire also brings the open ques-
tions used to collect feedback from participants regarding the recommendation strategies
and the prototype. We performed the following steps before starting the experiment:

Project presentation: Presenting the consent form to the participant, explaining the
purpose of the project and the evaluation. Besides, explaining briefly some GitHub basics,
e.g., fork-based development and commits/pull-requests.

Participant profile: Collecting basic information about the profile of participants, such
as gender and education. In addition to identifying the participant’s knowledge of software
development, GitHub, and the frequency they are carried out.

C.1 Free and enlightened consent

Title: A Recommendation Framework to Support Collaborations - Evaluation of the
CoopFinder Prototype-Tool

Date: April/2022
Institution: DCC/ICEx/UFMG

C.1. Free and enlightened consent 148

Responsible researchers:
Researcher’s name: Kattiana Constantino (kattiana@dcc.ufmg.br)
Function: Doctoral student at the Department of Computer Science at UFMG

Professor Eduardo Figueiredo (figueiredo@dcc.ufmg.br)
Function: Advisor and professor at the Department of Computer Science at UFMG

Professor Raquel O. Prates (rprates@dcc.ufmg.br)
Function: Professor at the Department of Computer Science at UFMG

Introduction: This “Free and Enlightened Consent” contains information about the
survey indicated above. To ensure that you are informed about your participation in this
research, we ask that you read this document. If you have any questions, do not hesitate
to ask the responsible researcher.

Evaluation goals: We aim evaluate the collaborator recommendations using the CoopFinder
prototype-tool. This Web tool supports project contributors to find suitable collaborators
based on similar interests. This research study investigates how data visualization, in-
teraction, and analysis can help developers find appropriate collaborators based on their
changed files.

Survey information: We will ask for you to perform some simple tasks using the
CoopFinder web tool and GitHub for comparison purposes. We can record the per-
formance of these tasks for later analysis by the researchers. In addition, during this
phase, we can ask some questions (through interviews and/or questionnaires) about your
perceptions and experience using the tools.

Data collection and use: We will use the data collected during the evaluation for the
research study and maintenance of CoopFinder. We ensure the anonymity of partic-
ipants for any data used for publication. The activities carried out may be recorded in
audio and/or video. All information collected is confidential, and only the research team
will have access to it. Confidentiality also applies to the identity of the participants. No
one (apart from the research team) will know who the participants are, as they will not
have access to the data, and we will not tell other people. We will store the data on the
researcher’s computer for a maximum legal period of 05 years. Besides, we will analyze
the data focusing on the proposed methodology and activities. We will use the research
results in scientific work published or orally presented at conferences or lectures. In this
case, we will remain anonymous in submitting any data relevant to the submission publi-

C.1. Free and enlightened consent 149

cation. We guarantee that we will not reveal your identity at any time. If your wish, you
can request a copy of the data generated by you.

Risks and benefits: The risks involved in the research consist of fatigue or embarrass-
ment caused by participating in the proposed evaluation (through interviews/question-
naires). If this happens, the assessment will stop immediately. We will only continue if
you feel up to it again and agree to continue. In case of damages resulting from participa-
tion in the research, we will indemnify you. Regarding the benefits of your participation
in the study, you will be able to reflect on how to support and strengthen the ties between
project collaborators. In addition, you will be able to share your experiences and percep-
tions about the points that you consider relevant, which can contribute to the project and
the customization and improvement of the evaluated tool. If you decide not to participate
in the research: You are free to decide, at any time, whether or not to participate in this
research. Your decision will not affect any relationship with the evaluators, researchers,
teachers, or the Institution behind it.

Compensation: Participation in this research is voluntary, and we will not offer any
compensation to participants. You can contact the researchers at any time in the emails
mentioned earlier if you have any problems or any other questions. For example, if you
have any problems that you think may be related to your participation in this research,
or if you have any questions about the research, please, contact them.

New conditions: If you wish, you can specify new conditions in order for you to partic-
ipate in this assessment.

Research ethics committee: This study was approved by the Research Ethics Com-
mittee of the Federal University of Minas Gerais. If you have questions about the ethical
aspects of the research, you can contact COEP.

Research Ethics Committee of the Federal University of Minas Gerais (COEP-UFMG).
Av. Antônio Carlos, 6627. Administrative Unit II – 2nd floor – Room 2005. Pampulha
Campus. Belo Horizonte, MG – Brazil. CEP: 31270–901.
E–mail: coep@prpq.ufmg.br. phone: (31)3409–4592.

This consent term is printed in two original copies: The responsible researcher
will keep one, and the other will be with you. The researchers will treat your name
in secret, complying with Brazilian legislation (Resolution No. 466/12 of the National
Health Council). If the evaluation is done remotely due to the Covid–19 pandemic, the
participant consent term can be sent and answered by email OR consented in the Google

C.1. Free and enlightened consent 150

Docs form. The evaluation data will only be used if the participant gives explicit autho-
rization. If you do not wish to give authorization for the use of the data, please choose
the option “No, the data must not be used in any scientific research.” on the first page
of the “Participant Characterization” form.

Free and informed consent (voluntary agreement): The document mentioned above
describing the benefits, risks, and procedures of the research entitled “A Recommendation
Framework to Support Collaborations - Evaluation of the CoopFinder Prototype-Tool”
was read and explained. I had the opportunity to ask questions about the survey (or
email them), answered to my satisfaction. Therefore, I agree to participate as a volunteer.

Participant’s signature:
Name of participant:
Signature of the researcher:
Name of researcher:
Place:
Date:
Document printed in two copies (Participant/Researcher).

C.2. Pre-assignment questionnaire 151

C.2 Pre-assignment questionnaire

Table C.1: Pre-assignment Questionnaire - Part 1.

Topics covered
Personal data Participant ID:

Formation:
University (and period) or company:
Course:
Gender: [Female | Male | I prefer do not inform | Other]

Previous knowledge How do you rate your knowledge of technical English reading?
[Basic| Intermediate| Advanced]

Do you have work experience (including internship) in the
field of software development?
[I have no work experience
I have experience of up to 1 year
I have experience from 1 year to 3 years
I have more than 3 years experience]

Previous knowledge How do you rate your knowledge in relation to the following
topics?
Object Oriented Programming
Software Modeling (UML)
Automated Software Testing
Version Control System (example, GitHub)
Software reuse (example, library, framework, etc.)
Software Measurement
[None| little| Moderate| Expert]

Describe any other observations that you think are important
about your training and professional experience in software
development. (optional answer)

C.2. Pre-assignment questionnaire 152

Table C.2: Pre-assignment Questionnaire - Part 2.

Physical condition Do you have any vision problems?
[astigmatism| color blindness| myopia| others]
(Optional answer)

OSS collaboration Are you a project contributor on GitHub?
on GitHub [Yes| No]

[If so],
Are you or have you been a maintainer of GitHub project(s)?
[Yes| No]

How many years of experience do you have as a GitHub
project(s) contributor?
[I have no work experience
I have experience of up to 1 year
I have experience from 1 year to 3 years
I have more than 3 years experience]

How often do you contribute to GitHub project(s)?
[Every day
A few times a week
A few times a month
A few times a year
Rarely]

[If no],
Have you tried contributing to any projects on GitHub?
[Yes| No]
What situations did you face? (optional answer)

C.3. Context and tasks using GitHub 153

C.3 Context and tasks using GitHub

Context: You are part of the core team of a project hosted on GitHub, you
know the demands of the project and also the importance of collabora-
tions made by volunteer contributors with different motivations to col-
laborate. For example, some prefer to work collaboratively to increase
the quality of the project, while others contribute to the project out
of personal interests. In addition, the project attracts several potential
volunteer collaborators. However, due to the large number of them, it is
difficult to interact or follow the collaboration of all, running the risk of
demotivating them and, consequently, leaving the project. Therefore,
you consider and understand the importance that contributors should
approach and interact more with each other in this development envi-
ronment. You are also aware that some contributors may have difficulty
expressing their opinions publicly in this environment. On the other
hand, they may feel more secure when interacting with other specific
contributors, especially those with the same interests or familiarity with
certain parts of the project. They may be already known contributors
and those who have some reference or recommendation. Note: If you
feel it necessary when performing the task and answering the question,
report any information to understand the reason for your answer.

Table C.3: Context and Tasks Using GitHub - Part 1.

ID Task description
Task 1 You are part of the core team of projects that are hosted on

GitHub. You are using GitHub to review projects. Thus, access
the tool and answer: How many stars does the project <project
name> have?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

C.3. Context and tasks using GitHub 154

Table C.4: Context and Tasks Using GitHub - Part 2.

ID Task description
Task 2 Review the contributors to the <project name> project.

Thus, as part of the core team of the <project name>
project, you want to know about the contributors who are
collaborating on this project. Therefore, you search for
contributors based on the number of commits updated in
the project (merged commits). Thus, you have noticed that
a given contributor has 28 commits updated and 6 commits
not yet updated (commits ahead) in the main project. What
is the name of this contributor?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 3 You realize the risk of losing those contributors who put some
effort and time into the project. Thus, now you want to know
who they are, thus look for the contributors by the number of
commits not yet updated (commits ahead) in the project and
answer. Which contributor has the most commits not yet up–
dated in the main project?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 4 You have a high-priority open issue and would like to assemble
a dedicated team to solve it. For that, you are analyzing the
list of contributors and based on the number of commits, you
think that the contributor <collaborator name (fork name)>
could be the one you are looking for. <collaborator name>
has 23 commits updated in the main project, plus its last
commit was on Aug20. Concerned about the lack of engagement
in the project, you want to find other contributors who have
similar interests as the contributor <collaborator name> (i.e.,
they are interested in the same parts, features, or source files of
the project). How many other collaborators have interests in
common with <collaborator name>?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

C.3. Context and tasks using GitHub 155

Table C.5: Context and Tasks Using GitHub - Part 3.

ID Task description
Task 5 Comparing the contributions of <collaborator name> and

<another collaborator name> (<fork name>), which files
are relevant and common to them?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 6 Considering the changed lines of code in the files that correspond
to common interests among the project’s contributors, which
other contributors can be considered to work with <collaborator
name>?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 7 What is the expertise related to the programming languages
of the contributor <another collaborator name>?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Would you like to make any observations or comments?
Any questions or suggestions?

C.4. Context and tasks using CoopFinder 156

C.4 Context and tasks using CoopFinder

Context: You are part of the core team of a project hosted on GitHub. You
know the demands of the project and the importance of collaborations
made by volunteer contributors with different motivations to collab-
orate. For example, some prefer to work collaboratively to increase
the quality of the project, while others contribute to the project out
of personal interests. In addition, the project attracts several potential
volunteer collaborators. However, due to the large number of them, it is
difficult to interact or follow the collaboration of all, running the risk of
demotivating them and, consequently, leaving the project. Therefore,
you consider and understand the importance that contributors should
approach and interact more with each other in this development envi-
ronment. You are also aware that some contributors may have difficulty
expressing their opinions publicly in this environment. On the other
hand, they may feel more secure when interacting with other specific
contributors, especially those with the same interests or familiarity with
certain parts of the project. They may be already known contributors
and those who have some reference or recommendation. Note: The
following tasks must be performed exclusively using the CoopFinder
tool. If you feel it necessary when performing the task and answering
the question, report any information to understand the reason for your
answers.

Table C.6: Context and Tasks Using CoopFinder - Part 1.

ID Task description
Task 1 You are part of the core team of 4 GitHub projects. You are using the

CoopFinder tool to analyze these projects. Thus, using the tool, order
the projects based on the creation date, and answer: Which project is
the most recent?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

C.4. Context and tasks using CoopFinder 157

Table C.7: Context and Tasks Using CoopFinder - Part 2.

Task 2 Choose the <project name> project to review the contributors. As
part of the core team of the <project name> project, you want to
know about the contributors contributing to the project. Thus, you
have sorted the list of contributors by the number of commits
updated in the project (merged commits). Thus, you have noticed
that a given contributor has 50 updated commits and 24 non-merged
commits in the main project. What is the name of this contributor?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 3 Now you have realized that some contributors contribute to the project.
However, they do not constantly update all of their contributions to the
main project for some reason. Thus, you realize the risk of losing those
contributors who put some effort and time into the project. Thus, now
you want to know who they are. Thus, you can sort the contributors by
the number of commits not yet updated (non-merged commits) in the
project and answer. Which contributor has the most commits not yet
updated in the main project?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 4 You have a high–priority open issue and would like to form a dedicated
team to solve it. You are analyzing the list of contributors based on the
number of commits. You think that the contributor <collaborator name>
could be what you are looking for. Thus, <collaborator name> has 13
commits updated in the main project and 33 not, and his last commit
was in Mar/21. Concerned about the lack of engagement in the project,
you want to find other contributors who have similar interests as a
contributor <collaborator name>. The CoopFinder tool can help you
find them. How many other contributors did the CoopFinder tool
recommend to work with <collaborator name>?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

C.4. Context and tasks using CoopFinder 158

Table C.8: Context and Tasks Using CoopFinder - Part 3.

Task 5 Comparing the contributions of <collaborator name> and
<recommended collaborator name>, which files are relevant and
common to them?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 6 Based on the “Changed LoC” strategy (changed lines of code),
which different contributors were recommended to work with
<collaborator name>?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

Task 7 Still based on the “Changed LoC” strategy, what is the expertise
related to the programming languages of the recommended
contributor <recommended collaborator name>?
Answer:
This task was. . . [Very Difficult| hard | Easy | Very easy]

C.5. Post-assignment questionnaire 159

C.5 Post-assignment questionnaire

Table C.9: Post–assignment questionnaire.

ID Open–question
Q1 What did you think about the CoopFinder tool?
Q2 What are the strengths of the CoopFinder tool?
Q3 What are the points to improve in this tool?
Q4 What other technical or social information do you think could

be explored to improve collaborator recommendation algorithms?
Q5 Would you use and/or recommend this tool? Why?
Q6 Would you like to make any observations or comments? Any questions

or suggestions?

	1 Introduction
	1.1 Problem Statement
	1.2 Research Goals
	1.3 Method
	1.4 Contributions and Publications
	1.5 Results
	1.6 Doctoral Thesis Outline
	1.7 Funding

	2 Background and Related Work
	2.1 Collaborative Software Development
	2.2 Recommender Systems
	2.3 Recommendation Algorithms
	2.4 Related Work
	2.5 Concluding Remarks

	3 Software Developer Perceptions on Collaborations
	3.1 Interview Study Design
	3.2 Results of the Interview Study
	3.3 Limitations and Threats to Validity
	3.4 Concluding Remarks

	4 Openness for Collaborations
	4.1 Survey Design
	4.2 Surveyed Participant Overview
	4.3 Survey Results
	4.4 Threat to Validity
	4.5 Concluding Remarks

	5 Tool-Supported Strategies to Find Collaborators
	5.1 Strategies of Recommending Collaborators
	5.2 CoopFinder Overview
	5.3 Concluding Remarks

	6 Evaluating Recommendations from the Developer Perspective
	6.1 Study Design
	6.1.1 Research Method

	6.2 Results
	6.3 Joint Strategy
	6.4 Qualitative Analysis
	6.5 Threats to Validity
	6.6 Concluding Remarks

	7 User Evaluation
	7.1 Study Design
	7.2 Study Results
	7.3 Threats to Validity
	7.4 Concluding Remarks

	8 Conclusion
	8.1 Summary of the Work and Contributions
	8.2 Future Work

	Bibliography
	A Interview Documents
	A.1 Recruitment email
	A.2 Recruitment email - Details of the research
	A.3 Consentimento Verbal [Portuguese]
	A.4 Verbal Consent [English]
	A.5 Interview Protocol [English]
	A.5.1 Part 1
	A.5.2 Part 2

	B Survey Documents
	B.1 Recruitment email
	B.2 Opinion survey

	C User Evaluation Documents
	C.1 Free and enlightened consent
	C.2 Pre-assignment questionnaire
	C.3 Context and tasks using GitHub
	C.4 Context and tasks using CoopFinder
	C.5 Post-assignment questionnaire

