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Abstract

During a fault in a power distribution network, energy utilities can change the network
topology to reconnect all or at least a portion of disconnected clients, then minimiz-
ing the area affected by the fault. These changes in the network are defined by a
restoration plan that specifies a set of switches to be maneuvered. The faster energy
utilities reconnect disconnected clients, the lighter the penalties applied to them. Then,
the energy utilities have a tight time frame to define the restoration plan before dis-
patching maintenance teams to perform the required maneuvers. Besides, the total
time needed to perform the maneuvers has to be considered when determining the
restoration plan, since the new topology that restores/minimizes the affected clients
will be fully operational only after the maneuvers are completed. Although the problem
of restoring power distribution networks is widely studied in the literature, no study
has considered both the existence of multiple maintenance teams working in parallel
and the time taken by the teams to move between locations where the maneuverable
switches are located. Ignoring these characteristics results in inefficient restoration
plans, taking longer than expected. In this work, we address the problem of provid-
ing a better estimation of the time to perform the restoration plan by modeling the
assignment and sequencing of maneuver operations as a scheduling problem that mini-
mizes the makespan, i.e., the total time required to complete all maneuver operations.
Furthermore, we present specific heuristics for its solution that are fast enough to be
incorporated into existing restoration algorithms without compromising their perfor-
mance, since they already need to perform other time-consuming routines, e.g., power
flow algorithms. Computational experiments with different fault scenarios showed that
incorporating the proposed strategy in a restoration algorithm led to more efficient
restoration plans.
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Resumo

Na ocorrência de falhas em uma rede de distribuição de energia elétrica, as con-
cessionárias de energia podem alterar a topologia da rede para reconectar clientes
desconectados, minimizando a área afetada pela falha. Essas alterações na rede
são definidas por um plano de restauração que especifica um conjunto de chaves a
serem manobradas. Quanto mais rápido os forem clientes desconectados, menores
serão as penalidades aplicadas à concessionária. Portanto, as concessionárias têm um
curto período de tempo para definir um plano de restauração e enviarem equipes de
manutenção para realizarem as manobras de chaveamento. Além disso, o tempo total
necessário para realização das manobras deve ser considerado ao determinar o plano
de restauração, uma vez que a nova topologia que restaura/minimiza os clientes afe-
tados estará totalmente operacional somente após as manobras estarem concluídas.
Embora o problema de restauração de redes de distribuição de energia elétrica seja
amplamente estudado na literatura, nenhum estudo considerou, simultaneamente, a
existência de múltiplas equipes de manutenção trabalhando em paralelo e o tempo de-
mandado pelas equipes para se descolarem entre os locais onde as chaves de manobra se
encontram. Ignorar essas características resulta em planos de restauração ineficientes,
levando mais tempo do que o esperado. Neste trabalho, é proposta uma abordagem
para fornecer melhores estimativas de tempo de execução de planos de restauração. Isso
é feito através da modelagem da atribuição e sequenciamento das tarefas de chavea-
mento como um problema de sequenciamento de tarefas que minimiza o makespan,
ou seja, o tempo total para conclusão de todas as operações de manobra na rede.
Além disso, heurísticas específicas são apresentadas para solução desse problema de
sequenciamento. As heurísticas apresentadas são rápidas o suficiente para serem incor-
poradas em algoritmos de restauração existentes sem que a eficiência desses algoritmos
seja comprometida, uma vez que eles já devem realizar outras rotinas que consomem
tempo, por exemplo, algoritmos de fluxo de potência. Experimentos computacionais
considerando diferentes cenários de falhas mostraram que o uso da estrategia proposta
em um algoritmo de restauração resultou em planos de restauração mais eficientes.
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Chapter 1

Introduction

Electric power distribution systems are of great importance, both for the economy and
society. In Brazil, there are more than 61.5 million consumer units in 99% of the cities
and, from this total, 85% are residential [Aneel, 2008]. Distribution companies are
subject to a number of regulations with regard to the quality of service and other tech-
nical issues. Besides, the maintenance of distribution systems can present a high cost,
requiring the use of optimization techniques to support the operation of distribution
systems and guarantee their correct functioning, as well as efficient use of the available
resources [Carrano, 2007].

Although distribution networks are designed to meet the demands and operations
constraints, these networks are subject to the occurrence of unforeseen faults which
result in customers disconnected from their source. Such faults can be quite common
in distribution networks with a predominance of overhead lines, particularly in urban
regions with large tree canopy coverage, or in regions subject to seasonal rainstorms
– all which are quite common in developing countries. In face of fault events, a quick
response is required in order to minimize the penalties companies are subject, besides
minimizing the negative impact on the consumers. This quick response is achieved by
restoration strategies that temporarily change the topology of the distribution network
to reconnect customers disconnected from their source until the problem is properly
fixed.

There are many works that deal with restoration of electric power distribution
networks, employing from mathematical programming techniques to heuristic algo-
rithms as restoration strategies. However, no work has considered a proper estimation
of time required to perform the restoration plan. A frequently used approach considers
the number of maneuvers as a proxy of time, but this approach does not take into
account the presence of remotely controlled switches nor the location of the manually
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2 Chapter 1. Introduction

maneuverable switches, which may lead to restoration plans that seem to be efficient in
terms of time to be executed, when in fact they are not. Consequently, this approach
results in unnecessary degradation of the service reliability indices used to monitor the
quality of services offered by the distribution companies.

This work explores this issue in the restoration of electric power distribution net-
works by proposing an approach to estimate the actual time to perform the restoration
plan. In addition, the proposed methods can return a proper sequence in which the ma-
neuvers have to be performed by the available teams to be completed in the expected
time. While this work is inserted within the broader scope of service restoration in
electric power distribution networks, its focus is not on the definition of switching ma-
neuvers of a restoration plan, but instead on assigning maneuvers to maintenance teams
and sequencing their activities to minimize the time taken to perform the restoration
plan, given that another approach has already determined the maneuvers to be per-
formed. Then, the proposed approach assumes that the maneuvers to be executed are
already known, and attempts to minimize the time required to implement this given
restoration plan.

Although the smart grid concepts are being gradually implemented in distribution
grids, these networks are far away from being completely automated, especially in
developing countries. In the particular case of Brazil, except for a few recent pilot
projects in specific cities, we have aged distribution networks which are being updated
progressively, albeit slowly and in small incremental steps. In large cities, even for the
most automated Brazilian distribution utilities, we have around 90% of the switches
requiring manual operation. Up to our knowledge, this is the current scenario for
most developing countries. Therefore, the consideration of manual switches remains
a relevant challenge to be handled. In addition, it is important to highlight that the
proposed approach can be extended to highly automated networks as well, be it as a
means to deal with a smaller, but still relevant, proportion of manual switches; or as a
means to assign other tasks in the network to multiple maintenance teams.

1.1 Motivation

Previous works in the literature of electric power distribution networks consider neither
the displacement times nor the existence of multiple teams working in parallel when
attempting to generate load restoration plans. Ignoring these characteristics may lead
existing algorithms to return a restoration plan that seems to be fast to perform (e.g.,
when considering the number of maneuvers as a proxy of time), but in practice requiring
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an arbitrarily long time, since the location of switches to maneuver and teams are
completely ignored.

Given this gap in the relevant technical literature on service restoration for distri-
bution networks, this work is motivated by the need to develop a proper approach not
only to estimate the completion time of restoration but an approach that can return
the proper sequence in which the maneuvers have to be performed as well.

1.2 Objectives

The main objective of this work is to propose an approach capable of providing a
sequence for performing the switching maneuvers that minimizes the completion time
of a restoration plan and estimating the proper time of its completion. To achieve this
main objective, the specific objectives are defined:

• Modeling the maneuver scheduling problem in the restoration of electric power
distribution networks and formulate it as a mathematical programming problem.

• Developing specific heuristic methods that require little computational time, al-
lowing it to be embedded into existing restoration algorithms without compromise
their performance.

• Developing local search heuristics to minimize the time required by the maneuver
scheduling of the final solution (or candidate solutions) returned by a restoration
algorithm.

• Evaluate the proposed algorithms in a stand-alone way to validate the quality of
solutions and runtime performance.

• Evaluate the proposed approach when embedded in a restoration algorithm to
validate its efficacy and to compare it against the approach frequently used that
consider the number of maneuvers as a proxy for time to perform a restoration
plan.

1.3 Contributions

The main contributions of this work are:

• The proposal of a proper approach to estimate the time required to perform a
restoration plan, considering displacement times and multiple teams working in
parallel.
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• The proposal of specific heuristics that return the estimation of time and the
schedule of switching maneuvers, which are fast enough to be embedded into
existing load restoration algorithms without compromising their efficiency.

• To allow existing load restoration algorithms that do not provide a schedule of the
maneuvers to return this information with a proper estimation of time required
to perform it.

The contributions mentioned above, have resulted in two publications in scientific
journals specialized in the area of electrical engineering. These publications are:

Maravilha, A.L., Goulart, F., Carrano, E.G., and Campelo, F. Scheduling
maneuvers for the restoration of electric power distribution networks: formu-
lation and heuristics. Electric Power Systems Research, 163 Part A, 301–309,
2018. DOI: 10.1016/j.epsr.2018.06.020.

Goulart, F., Maravilha, A.L., Carrano, E.G., and Campelo, F. Permutation-
based optimization for the load restoration problem with improved time
estimation of maneuvers. International Journal of Electrical Power & Energy
Systems, 101, 339–355, 2018. DOI: 10.1016/j.ijepes.2018.03.030.

In the first article, the approach proposed in this doctoral dissertation that models
the estimation of time required to perform a restoration plan as a scheduling problem
is described. Besides, the specific heuristics proposed to solve the scheduling problem
are also described in the article.

In the second article, the restoration problem is formulated as a bi-objective op-
timization problem in which the energy not supplied and power not restored are mini-
mized. For calculating the energy not supplied, it is necessary to obtain an estimation
of the restoration time and, for this, the approach proposed in this doctoral disserta-
tion is used. Besides, an algorithm based on the meta-heuristic Simulated Annealing is
presented to solve the restoration problem, and therefore providing restoration plans.

1.4 Organization of the text

The current chapter has contextualized the main subject of this work and briefly de-
scribed the advantages of considering the scheduling of the switching maneuvers in a
proper way in the restoration of electric power distribution networks. The following
chapters are briefly described:
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Chapter 2 describes the load restoration in electric power distribution networks,
which is important to understand the problem of scheduling the switching maneuvers
that compose a restoration plan. The relevant quality indices used to quantify the
quality of a restoration plan are also presented, followed by a discussion of the main
works in the literature of load restoration problem.

Chapter 3 formally describes the maneuver scheduling problem and shows how it
can be mapped to an identical parallel machine scheduling problem with setup times
and precedence constraints. Furthermore, a mixed integer programming formulation is
proposed and the literature in scheduling problems related to this work are discussed.

In Chapter 4, specific algorithms are proposed for the solution of the maneuver
scheduling problem. Three algorithms are proposed: two greedy heuristics and one
improving heuristic. The greedy heuristics are meant to be used collaboratively with
restoration algorithms (i.e., embedded into them, although they can be used after the
restoration algorithm, as a sequential strategy) and the improving heuristics to be
applied at the end, as a polishing strategy, to improve the maneuver scheduling of the
final restoration plan.

Chapter 5 describes the computational experiments performed to evaluate the
proposed heuristics using a set of instances with different dimensions and characteris-
tics. In addition, the heuristics are also evaluated when embedded into a load restora-
tion algorithm and compared with another commonly used approach that considers
the number of maneuvers as a proxy for time.

Finally, in Chapter 6 the conclusions are presented, ending with some ideas of
continuity that can be explored in future works.





Chapter 2

Load restoration in electric power
distribution networks

Electrical distribution systems are often operated in a radial configuration, which pro-
vides numerous advantages such as easier fault current protection, voltage control,
lower cost, prediction and control of load flows, among others [Short, 2014]. As illus-
trated in Figure 2.1, a distribution system can be represented by an undirected graph
GDS = (V,E), with edges indicating maneuverable switches and solid/dashed lines de-
picting the currently closed (CC)/currently open (CO) switches, respectively. Nodes
indicate load sectors.

Despite the advantages of a radial configuration, the consequences of a fault in any
part of the system normally propagate to a larger portion of the network, as all loads
located downstream from the faulted point become out of service (oos), as illustrated
in Figure 2.2. As it may be evident from Figure 2.2, a fault at node E causes the
protection switch 2 to activate1, leaving (healthy) nodes H, I, J and L disconnected as
well. Such power outages can cause severe impacts on customers as well as on power
distribution companies, which may be fined by regulatory agencies.

The quality of service provided by power distribution companies is usually mea-
sured by (at least) two reliability indices [Short, 2014; IEEE, 2012], one relative to the
duration and the other to the frequency of outages:

• System Average Interruption Duration Index (SAIDI): it indicates the total du-
ration of interruption for the average customer during a predefined period and
usually measured in minutes or hours of interruption.

1Throughout this work we assume the protection system is properly coordinated [Yadav et al.,
2014].
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Figure 2.1: Example of a radial distribution network. Black circles (A, B, C) indicate
feeder nodes, while all other nodes represent load sectors. Solid lines indicate the
current configuration of the network (i.e., closed switches), while dashed ones represent
currently open switches.

A B C

D E F

G H I J K

L

M N O P

1

4

5

2 3

1210
8

6 7

9

11

13

161514

Figure 2.2: Example of the effect of a fault in a radial distribution network. Black
circles (A, B, C) indicate feeder nodes, while all other nodes represent load sectors.
Solid lines indicate the current configuration of the network (i.e., closed switches),
while dashed ones represent currently open switches. A fault on sector E disconnects
all loads downstream from it.

• System Average Interruption Frequency Index (SAIFI): it indicates how often the
average customer experiences a sustained interruption over a predefined period.

In terms of SAIDI, the longer a load is disconnected, the worse this index value
becomes, so there is a strong motivation for recovering healthy but oos loads after a
power outage, while the cause of the fault is not properly fixed.

The recovering of healthy oos loads is performed accordingly to a restoration
plan, which consists in changing the network topology (opening CC and closing CO
switches) to reconnect the disconnected (healthy) load sectors to one of the feeders,
subject to the network operational constraints. Let E′ ⊆ E be the set of switches
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(a) After fault, before restoration
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(b) After restoration

(8, O) (9, O) (6, C) (10, O) (11, C)

(c) Set of switching maneuvers

Figure 2.3: Example of a restoration plan performed after a fault in a radial distribution
network. Black circles (A, B, C) indicate feeder nodes, while all other nodes represent
load sectors. Solid lines indicate the current configuration of the network (i.e., closed
switches), while dashed ones represent currently open switches. (a) A fault on sector
E disconnects all loads downstream from it. (b) Resulting topology after a possible
restoration plan. In this example node L was not restored due to overload constraints.
(c) Switching maneuvers that compose the restoration plan applied at (a), resulting
the topology illustrated in (b).

maneuvered in a restoration plan. A switch e ∈ E′ can be opened or closed, depending
on its current state. Thus, the notation (e, θ) is used to describe a restoration plan,
in which θ ∈ {O,C} is the operation – O for opening and C for closing – to perform
on switch e ∈ E′. Figure 2.3 illustrates a restoration plan and the resulting network
configuration after a fault. The restoration plan consists of the following maneuvers:
(i) open switches 8 and 9 and close switch 6 in order to recover nodes H and I; (ii)
open 10 and close 11 to restore J. Notice that node L remained disconnected, which
may be necessary to prevent constraints violations.

It is important to highlight that some precedence rules must be satisfied when
performing the maneuvers to avoid reconnecting faulted sectors and other constraints
violations. For example, if the operation (6, C) is performed before (8, O), the faulted
sector E will be energized, which cannot happen; or a situation in which performing
(6, C) before (9, O) overloads feeder A. Therefore, it is important in a restoration plan
to inform the sequence in which the maneuvers should be performed, in addition to
the final network configuration.

The goal of load restoration is usually to restore as much oos loads as possible in
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the shortest time, without violating network operational constraints such as minimum
voltage in loads, maximum current in lines, feeder capacity, and radiality of the system.
Notice that the resulting topology after a restoration plan is temporary and the original
topology is restored after the fault is fixed.

There are many studies in the literature that address the load restoration problem
in electrical power distribution networks. However, there is a lack of a common formu-
lation. Then each work solves this problem using different quality indices discussed in
the following section.

2.1 Quality indices

The quality of a restoration plan is usually estimated by a variety of indices, three
of which are directly relevant to this work: power not restored (ISNR

), number of
maneuvers (IN) and time of maneuvers (IT ). These three indices are summarized in
Table 2.1.

Table 2.1: Relevant indices used for measuring quality of a restoration plan.

Quality Index Description

Power not restored (ISNR
)

The sum of apparent power in each node that remains oos
after a restoration plan. The smaller this index, the less
customers are disconnected.

Number of maneuvers (IN )

Number of switches to be operated in a sequence of
maneuvers. It does not take into account the distinction
between remotely operated and manually operated switches,
and not even the possible differences in time among these
last ones.

Time of maneuvers (IT )
The actual time taken to perform all operations in a
sequence of maneuvers. It depends on conditions such as
traffic, weather, initial position of the dispatch team(s) etc.

In a perfect scenario, all oos healthy loads are reconnected at the end of the
restoration process. However, such situation is not always possible, and some loads
may remain disconnected from a source at the end of the process. Then, ISNR

is an
important index to be considered when evaluating the quality of a restoration plan.
Even in a situation in which it is possible to restore all the oos healthy loads, this can
take excessively long that it is preferable to restore just a subset of the loads, while the
others remain disconnected until the fault is properly fixed. Then, the time required
to perform a restoration plan is important as well, and therefore the index IT should
be considered when determining the restoration plan.
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Although the index IN does not necessarily measure the time, it is frequently
used as a proxy for the time taken to perform a restoration plan. In this case, a greater
number of maneuvers is translated as a long time to perform a restoration plan. Despite
being quickly calculated, IN does not considers the displacement times required for the
teams to reach the switches location nor multiple teams working in parallel. Even more
importantly in the context of smart grids, the existence of remotely controlled switches
means that some maneuvers may require virtually no time to be performed.

2.2 Related works

There is a large number of works that deal with the load restoration in electric power
distribution networks, and therefore a large diversity of algorithms designed for this
problem. Some works approach the problem using mathematical programming [Hijazi
and Thiébaux, 2015; Borges et al., 2016; Romero et al., 2016], which may be prohibitive
due to the time constraints demanded by the problem. Other works propose heuristics
based on rules usually adopted by engineers when solving the restoration problem or
constructive heuristics to define the new configuration of the network [Aoki et al., 1989;
Hsu et al., 1992; Hsu and Huang, 1995; Chen et al., 2002; Dimitrijevic and Rajakovic,
2011; Gholami et al., 2015b,a]. These heuristic strategies run fast, but may result in
solutions of poor quality due to their limited capacity to explore the space of solutions.

To overcome the drawbacks presented by mathematical programming and simple
heuristic techniques, metaheuristic strategies and local search techniques have been
widely used for the load restoration problem [Watanabe, 2005; Garcia and França, 2008;
Camillo et al., 2016; Kumar et al., 2006b,a; Sanches et al., 2014; Carrano et al., 2016;
Marques et al., 2018]. Such strategies run faster than those based on mathematical
programming techniques and are able to explore the space of solutions broadly.

Despite the advantages brought by the use of metaheuristics and local search
techniques, most studies ignore the time of restoration or use approaches that do not
model the reality. For example, the works of Hsu and Huang [1995]; Garcia and França
[2008]; Dimitrijevic and Rajakovic [2011]; Mohammadi and Afrakhteh [2012]; Kumar
et al. [2006b,a]; Carvalho et al. [2007]; Sanches et al. [2014]; Gholami et al. [2015a];
Camillo et al. [2016]; Marques et al. [2018] use IN as a proxy for the time taken to
perform a restoration plan, despite the disadvantages discussed in Section 2.1.

Some works [Carrano et al., 2016; Watanabe, 2005] recognize that IT is actually a
more realistic index, and try to estimate it by defining a constant time required for each
switch to be operated. Watanabe [2005] arbitrarily sets this value to 1 for all switches,



12Chapter 2. Load restoration in electric power distribution networks

while Carrano et al. [2016] assume it to be provided by the engineer. In both cases the
total time would be the sum of the individual times for each operated switch, which
results in two fundamental issues: (i) it assumes the switches are operated sequentially,
ignoring the availability of more than one maintenance team whose coordinated actions
can considerably reduce the time; and (ii) the time to execute a maneuver depends
mostly on the relative position between the team and the switch, thus modeling it with
a constant value is not realistic. In effect, this index becomes a weighted IN , with
the weights bearing no physical interpretation of time, and thus provides little advance
with respect to what is customary in the literature.

Furthermore, not all algorithms are able to provide a proper sequence of maneu-
vers that can be performed on the time estimated by them. Table 2.2, summarizes
the strategies used by these works, showing the quality indices used by them and the
capability of providing a proper sequence of the maneuvers.

Table 2.2: Summary with some features (F1–F3, described at the bottom of the table)
the studies cited in this work should possess. Inside each cell, Y means ‘yes’ and N
stands for ‘no’.

Method Reference F1 F2 F3

Mathematical programming Hijazi and Thiébaux [2015] N N N
Romero et al. [2016] Y N N
Borges et al. [2016] N Y N

Constructive Heuristics Aoki et al. [1989] N Y N
Hsu et al. [1992] N Y N
Chen et al. [2002] N Y N
Dimitrijevic and Rajakovic [2011] Y N N
Gholami et al. [2015b] Y N N
Gholami et al. [2015a] Y N N

Metaheuristics-based Strategies Watanabe [2005] Y Y N
Kumar et al. [2006b] Y N N
Kumar et al. [2006a] Y N N
Camillo et al. [2016] Y N N
Carrano et al. [2016] Y Y N
Marques et al. [2018] Y Y N

F1: The strategy differentiates remotely from manually maneuvered switches.
F2: The strategy returns a sequence of maneuvers or it is evident from the algorithm.
F3: The strategy considers the actual time to perform the load restoration (i.e., the time of maneuvers).

It is important to keep in mind that the information provided in Table 2.2 does not
aim at comparing the strategies proposed by those works, since they consider different
quality indices and formulations for the load restoration problem. Nonetheless, it is
useful for contrasting these works with regard to the approach used to estimate the
time taken to perform the restoration plan and the capability of returning a proper
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sequence of maneuvers. For instance, none of the studies cited so far presents a proper
estimation of the actual time to implement a restoration plan, taking the number of
maintenance teams and their displacement times into consideration. This is probably
due to the necessity of assigning switching maneuvers to teams and sequencing them to
estimate the time of restoration. Then, to calculate IT is not as simple as to calculate
IN . Moreover, it is necessary a fast approach to calculate IT to make its use feasible
in practice.

The maneuver scheduling proposed in this work, and published in [Maravilha
et al., 2018], allows future works for the restoration of electric power distribution net-
works to provide a proper estimation of time to perform the load restoration. In
this sense, the work of Goulart et al. [2018] is the first study to embed the approach
proposed in this work into a restoration algorithm. In Goulart et al. [2018], the restora-
tion problem is modeled as a bi-objective optimization problem in which the energy
not supplied and power not restored are minimized. The estimation of the time taken
to perform a restoration plan is used to calculate the energy not supplied more accu-
rately. For solving the problem, an algorithm based on the metaheuristic Simulated
Annealing was also proposed, which resulted in significantly better results compared
to other approaches.





Chapter 3

Maneuver scheduling problem

As mentioned in Chapter 2, the quality of restoration plans is measured by quality
indices. While the power not restored ISNR

and the number of maneuvers IN can be
readily computed given the new configuration of the network, for the determination of
the actual time IT it is necessary to assign the tasks of operating (manually controlled)
switches to maintenance teams, and to determine the sequence in which the maneuvers
(manual and remote ones) are performed. Only after that, it is possible to have a
reliable estimation of the total time required to run the restoration plan.

For assigning and sequencing maneuvers, it is necessary to consider only the
switches that have to be operated. The remaining switches and the charges they
connect are irrelevant to this process. Then, the problem of assigning and sequencing
maneuvers in the restoration of an electric power distribution network can be modeled
over a directed graph G = (N,A). The nodes N = {0, 1, 2, . . . , n} represent the locations
of the teams and switches. Node 0 is the initial position of the maintenance teams, and
nodes 1, 2, . . . , n are the location of switches to maneuver. The switches are divided
into manually and remotely controlled ones. Thus, the set of nodes can be decomposed
into three disjoint sets N = {0}∪N′ ∪N′′, in which N′ is the set of manually controlled
switches and N′′ is the set of the remotely controlled ones.

The arcs in A represent the paths between two locations. Since it is not necessary
to dispatch any team to locations where remotely controlled switches are installed, the
set of arcs is defined as A = {(i, j) : i ∈ (N′ ∪ {0}), j ∈ N′, i 6= j}. Note that there
are no arcs entering or leaving the nodes in N′′, and also no arcs entering node 0.

Let M = {1, 2, . . . ,m} denote the set of available maintenance teams, and let
si,j,` ≥ 0 denote the time it takes for team ` ∈ M to transverse (i, j) ∈ A. The time
required to maneuver a switch i ∈ (N \ {0}) is given by pi ≥ 0. These parameters
account for possible practical delays, like checking if a team is cleared for operating

15
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(8, O) (9, O) (6, C) (10, O) (11, C)︸ ︷︷ ︸
Switching Maneuvers

(a) Network after fault, before restoration; and
the set of maneuvers of the restoration plan.

0 8

9

10 11

6

(b) Graph G = (N,A) of the maneuver schedul-
ing problem resulting from the restoration plan
in (a).

Figure 3.1: Example of an instance of the maneuver scheduling problem obtained from
the restoration plan in Figure 2.3. In (a), the network after a fault at node E and the
set of maneuvers that compose the restoration plan is presented. In (b) the graph used
to model the resulting instance of the maneuver scheduling problem is presented. The
node 0 represent the initial position of the maintenance teams.

the switch, and is usually known. To illustrate the maneuver scheduling problem,
Figure 3.1 shows the graph obtained from the restoration plan presented in Figure 2.3.

In addition, let G≺(N′∪N′′,P) be a precedence graph representing the precedence
relations between switch operations. An arc (i, j) ∈ P means the existence of a relation
i ≺ j, i.e., switch j can be maneuvered only after switch i is maneuvered. Notice that
the precedence graph is obtained from the precedence rules imposed by a restoration
plan, which are important to avoid the violation of constraints. For example, if ma-
neuver (11, C) is performed before (10, O), the fault in load E is re-energized, which
cannot happen, then (10, O) must precede (11, C). Figure 3.2 shows the precedence
graph obtained by the precedence rules imposed by restoration plan in Figure 3.1b.

3.1 Mixed integer programming formulation

The MIP formulation presented in this section is based on binary linear ordering vari-
ables [Dyer and Wolsey, 1990]. Linear ordering variables are also referred to as sequenc-
ing variables [Pinedo, 2016], as they allow the determination of the relative ordering
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8

9

6 10 11

Figure 3.2: Precedence graph associated to the restoration plan from Figure 3.1. An
edge (i, j) means that a switch (node in the graph) j can be maneuvered only after
switch i is maneuvered. For example, switches 8 and 9 cannot be maneuvered before
6, since there is paths that connect 8 and 9 to 6. However, nodes 8, 9 and 10 can
be operated in any sequence among them, since there are no paths in the graph that
connect them.

between pairs of maneuvers assigned to the same team. This formulation assumes that
the weak triangular inequality, si,j,` ≤ si,k,` + pk + sk,j,`, ∀` ∈ M and i, k, j ∈ N′, with
i 6= k 6= j, is satisfied.

Given the decision variables:

yi,` =





1, if the maneuver of switch i ∈ N′ is assigned to team ` ∈M;

0, otherwise.

zi,j =





1, if i ∈ N′ is maneuvered before j ∈ N′;

0, otherwise.

ti ≥ 0, the moment in which the maneuver of i ∈ N \ {0} is performed;

Cmax ≥ 0, the moment in which all maneuvers are completed (makespan);

the maneuver scheduling problem in the restoration of electric power distribution net-
works can be formulated as the following MIP problem:

Min. Cmax (3.1)

s.t.:
∑

`∈M
yi,` = 1 ∀i ∈ N′ (3.2)

zi,j + zj,i ≥ yi,` + yj,` − 1 ∀` ∈M; ∀i, j ∈ N′; i < j (3.3)

zi,j + zj,i ≤ 1 ∀i, j ∈ N′; i < j (3.4)
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zi,k + zk,j + zj,i ≤ 2 ∀i, k, j ∈ N′; i 6= k 6= j (3.5)

ti ≥
∑

`∈M
s0,i,` yi,` ∀i ∈ N′ (3.6)

tj ≥ ti + pi +
∑

`∈M
si,j,` yj,` −M(1− zi,j) ∀i, j ∈ N′; j 6= i (3.7)

tj ≥ ti + pi ∀(i, j) ∈ P (3.8)

Cmax ≥ ti + pi ∀i ∈ N \ {0} (3.9)

yi,` ∈ {0, 1} ∀i ∈ N′; ∀` ∈M (3.10)

zi,j ∈ {0, 1} ∀i, j ∈ N′; i 6= j (3.11)

ti ≥ 0 ∀i ∈ N \ {0} (3.12)

Cmax ≥ 0 (3.13)

in which the objective (3.1) is the minimization of the makespan, subject to the con-
straints:

• Each maneuver of a manually controlled switch has to be assigned to a single
maintenance team (3.2): for each i ∈ N′ the sum of all yi,` for ` ∈ M has to be
equal to 1, which means that one and only one yi,` = 1.

• If two switches are maneuvered by the same team, then there is an ordering
relation between them. The right side of (3.3) will be equal to one if switches
i ∈ N′ and j ∈ N′ are assigned to the same team ` ∈ M, forcing at least one of
zi,j or zj,i to be one, defining the ordering.

• If there is an ordering relation between i ∈ N′ and j ∈ N′, either i is maneuvered
before j, or j is maneuvered before i. Constraints (3.4) ensure that no more than
one of zi,j and zj,i assumes the value 1.

• Given three distinct switches i, k, j ∈ N′, if i is maneuvered before k and
k before j, then j cannot be maneuvered before i, i.e., the sum of the linear
ordering variables zi,k, zk,j, zj,i (3.5) cannot be greater than 2.

• The moment a switch i ∈ N′ is maneuvered, even if it is the first switch maneu-
vered by the team to which it is assigned, cannot be earlier than the time the
team takes to arrive at the switches. Constraints (3.6) ensure that ti is at least
equal to the time the team takes to arrive at the location of switch i.

• If j ∈ N′ is maneuvered after i ∈ N′, then the moment j is maneuvered cannot
be earlier than the moment i is maneuvered plus the processing time pi and
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the displacement time si,j,`. Disjunctive constraints (3.7) are defined to ensure
these requirements. Given a sufficiently large number M, if zi,j = 1 then the
M(1−zi,j) = 0 and the inequality tj ≥ ti +pi +

∑
`∈M si,j,` yj,` has to be satisfied.

When zi,j = 0,M must be larger than ti +pi +
∑

`∈M si,j,` yj,`, so that ti does not
limit the values tj can assume. Thus,M must be larger than the largest possible
value for ti + pi +

∑
`∈M si,j,` yj,`, which occurs when all switching maneuvers are

assigned to the same team. Then, a value forM can be calculated as:

M =
∑

j∈N′

(
pj + max

(i,`)
{si,j,` : i ∈ N′, ` ∈M, i 6= j}

)
. (3.14)

• The moment a switch (manually or remotely operated) is maneuvered must
satisfy the precedence constraints given by the precedence graph G≺. Con-
straints (3.8) ensure that all precedence constraints are satisfied.

• Constraints (3.9) are used to compute the makespan Cmax.

• Finally, constraints (3.10)–(3.13) define the domain of the decision variables:
yi,` and zi,j are binary variables, and ti and Cmax are non-negative continuous
variables.

The MIP formulation presented above uses a big-M formulation in the disjunctive
constraints (3.7), which usually leads to significant gaps between the integer solution
and that of the linear relaxation [Wolsey and Nemhauser, 1999]. Methods based on
linear relaxation may, therefore, require a large number of iterations until they can
find the proven optimal solution. However, small to medium-sized instances can be
solved with the formulation proposed above in a short amount of time, since the time
required to resolve its linear relaxation is smaller than the time required by tighter
formulations.

Different approaches can be used to formulate scheduling problem as a MIP prob-
lem. They mainly differ on the constraints used to calculate the moment in which each
task starts. Then, two other alternative MIP formulations were implemented and com-
pared against the formulation based on linear ordering variables. A full description of
these alternative formulations can be seen in Appendix A.

The first alternative formulation evaluated is based on binary precedence variables
[Manne, 1960], in which the sequence of maneuver operations performed by each team
is modeled as a flow starting at node 0 (the team’s initial position) that goes through
nodes of switching maneuvers. These flows determine the ordering in which each team
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must perform the switching maneuvers assigned to them. This formulation uses a
big-M constant also.

The second alternative MIP formulation evaluated is based on binary arc-time-
indexed variables [Pessoa et al., 2010]. Formulations based on arc-time-indexed vari-
ables do not use big-M constants and usually provides better linear relaxations. How-
ever, they lead to a rapid increase in the number of variables and constraints and
therefore may require the use of decomposition techniques to be solved.

3.1.1 Comparison of formulations

The MIP formulations were implemented in C++17 with Gurobi 8.0.1 [Gurobi Opti-
mization, Inc., 2017] through its API for C++. The code was compiled using GNU
Compiler Collection (GCC) version 8.1.1 with compiler optimization flag set to “-O2”.
It was used the default settings of Gurobi, but limited to a single thread and time limit
of 1 hour. All experiments were performed on a dual 2.10 GHz Intel(R) Xeon(R) Silver
4116 machine with 156 GiB of main memory running Fedora 28 (64-bits).

It was considered a set of random instances with different number of switching
maneuvers and teams available. Each instance was solved once with each formulation,
in which were registered: the value of objective function of the incumbent solution when
it stopped, the objective function of the linear relaxation, the status of the optimization
(if the solution returned is the optimal or not), the runtime, the number of MIP nodes
explored, and the gap between the upper and lower bound when the solver stopped.

Figure 3.3 shows, for each formulation, the proportion of instances in which at
least one feasible solution was found and the proportion of the instances optimally
solved within the time limit of 1 hour. Figures 3.4 and 3.5 show the same results
stratified by problem size. Notice that for instances with a number of maneuvers n ≥ 50

the formulation based on arc-time-indexed variables did not return any solution. In
fact, this formulation was not able to run on the available machine for instances of these
sizes. The formulation based on precedence variables was not able to find any feasible
solutions to some instances with n ≥ 50 within the time limit of 1 hour. However,
different from the arc-time-indexed formulation, it was able to run. For all instances,
the formulation based on linear ordering variables was able to find at least one feasible
solution.

Table 3.1 shows the results obtained with Gurobi for each formulation. These
results consider only the runs in which a feasible solution was found. Columns “n”
and “m” are, respectively, the number of maneuvers and the number of teams; column
“Obj.” contains the mean values of objective function of the incumbent solution; column
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Figure 3.3: Proportion of instances solved by each MIP formulation. The dark gray
part of the bars is the proportion of instances in which the respective formulation was
able to find at least one feasible solution but did not find the proven optimal solution in
the time limit of 1 hour. The light gray part of the bars is the proportion of instances
optimally solved.
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Figure 3.4: Proportion of small instances solved by each MIP formulation stratified by
instance size. The dark gray part of the bars is the proportion of instances in which
the respective formulation was able to find at least one feasible solution but did not
find the proven optimal solution in the time limit of 1 hour. The light gray part of the
bars is the proportion of instances optimally solved.

“Gap (%)” is the mean value of gap between the upper and lower bounds when Gurobi
stopped; column “RL” is the mean value of the linear relaxation; column “Nodes”
contains the mean number of nodes explored by the solver; and column “Time (s)” is
the runtime in seconds. Notice that the time was limited to 1h, i.e., 3600 seconds.

From the results presented at Figures 3.3, 3.4 and 3.5 together with the results
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Figure 3.5: Proportion of large instances solved by each MIP formulation stratified by
instance size. The dark gray part of the bars is the proportion of instances in which
the respective formulation was able to find at least one feasible solution but did not
find the proven optimal solution in the time limit of 1 hour. The light gray part of the
bars is the proportion of instances optimally solved.

from the Table 3.1, the MIP formulation based on linear ordering variables presents a
better trade-off among the number of solutions solved and strength of the formulation.
With this formulation, it was possible to find at least one feasible solution for all
instances.

The formulation based on precedence variables is dominated by the linear ordering
formulation since it solved fewer instances to optimality within the time limit and
demanded a longer time when both were able to find the optimal solution. Moreover,
the formulation based on precedence variables presented the worst values of linear
relaxation. The formulation based on arc-time-indexed variables, despite presenting a
better linear relaxation and demand less number of MIP nodes, demanded a long time
and was not able to run on large instances.

Since the context of load restoration requires a quick response to the maneuver
scheduling problem to make the use of the proposed approach feasible in practice, exact
methods to solve MIP formulations may be prohibitive as solution strategy. However,
their results can be used as a reference to evaluate the performance of heuristics.
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3.2 Problem’s complexity

The maneuver scheduling problem in the restoration of electric power distribution
networks can be seen as a scheduling problem of identical parallel machines with setup
times and precedence constraints. The correspondence is as follows: the teams ` ∈
M are the machines; each switching maneuver i ∈ (N′ ∪ N′′) is a job that must be
processed by some machine. The displacement times si,j,` are the setup times required
if the machine ` processes the job j immediately after the job i; the parameters pi are
the processing times required by each job i. Machine 0 is responsible for processing
the jobs related to remotely controlled switches, with setup times si,j,0 = 0 for all
(i, j) ∈ (N′′ ∪ {0})× N′′.

Using the notation usually employed for describing scheduling problems [Graham
et al., 1979; Lawler et al., 1993], the problem addressed in this work can be stated as
P | prec, si,j,k | Cmax, in which: P indicates that there are multiple identical (in terms
of processing times) parallel machines available; prec indicates the presence of general
precedence relations among jobs; si,j,k indicates the presence of setup times dependent
on the machine and sequence; and Cmax indicates that the objective is to minimize the
makespan, i.e., the completion time of the last job to leave the system. This problem
is known to be strongly NP-hard [Hurink and Knust, 2001; Garey and Johnson, 1979].

3.3 Related works on scheduling literature

The following subsections review some works in the scheduling literature that are re-
lated to the maneuver scheduling problem. The works are divided into two groups: the
first group includes works that deal with setup times without precedence constraints,
while the second group includes works that deal with both characteristics simultane-
ously. This review is not intended to be exhaustive, but to present how these scheduling
problems are usually handled in the literature and the difficulty to solve the scheduling
problems when setup times and precedence constraints are considered simultaneously.

3.3.1 Setup times only

While the study of scheduling problems dates from the mid-1950s [Allahverdi et al.,
1999], works considering parallel machines with sequence-dependent setup times have
appeared only in the beginning of the 1990s [Guinet, 1993; Ovacik and Uzhoy, 1993;
França et al., 1996]. Most scheduling literature ignores setup times [Allahverdi, 2015].
In fact, there are contexts in which setup times can be ignored or aggregated into
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the processing times – e.g., setup times non-dependent on the sequence. However,
there are many industrial and service applications in which ignoring setup times im-
pacts negatively into solution quality [Allahverdi et al., 2008]. This is what happens
when considering only the number of maneuvers performed in a restoration plan or its
weighted variants.

Comprehensive surveys on scheduling problems with setup times can be found in
the works of Allahverdi et al. [1999], Allahverdi et al. [2008] and Allahverdi [2015]. The
majority of the works addressing scheduling problems in an environment with sequence-
dependent setup times proposes heuristic methods since the presence of sequence-
dependent setup times leads to NP-hard problems.

In the context of identical parallel machines with sequence-dependent setup times,
Guinet [1993] proposes a constructive heuristic based on the Hungarian method to
minimize the makespan whereas Gendreau et al. [2001] propose a heuristic based on
a divide and merge method to construct feasible solutions. Although constructive
heuristics usually demands little time to return a solution, they have a limited potential
in finding solutions of good quality when the size of the problem increases. In this case,
heuristics based on local search are usually employed to find better solutions. França
et al. [1996] employ a heuristic based on Tabu Search [Glover, 1986; Gendreau and
Potvin, 2010] to solve this problem. In the work of Tahar et al. [2006], the makespan
is also minimized, and a heuristic based on linear programming is used as solution
strategy. Lee and Pinedo [1997] also solve this problem, but they minimize the sum of
the weighted tardiness of the jobs through a heuristic based on Simulated Annealing
[Kirkpatrick et al., 1983; Nikolaev and Jacobson, 2010].

On unrelated parallel machines environments with sequence-dependent setup
times, Logendran et al. [2007] minimize the total weighted tardiness through heuris-
tics based on Tabu Search and evaluate four constructive heuristics based on different
scheduling rules. Kim et al. [2003] propose a heuristic based on Simulated Annealing
with six different neighborhood movements to the same problem. In the work of Kim
and Shin [2003], the authors also propose a Tabu Search-based heuristics, but to mini-
mize the maximum lateness. In Chen [2005], Chen [2006] and Chen and Wu [2006], the
authors take into account some additional resource constraints and minimize, respec-
tively, the makespan, maximum tardiness and total tardiness. These three works use
a hybrid heuristic that combines the Guided Local Search heuristic [Voudouris et al.,
2010] with Simulated Annealing and tabu lists.

The works above consider setup times dependent on the sequence of the jobs
only. However, in some contexts, it is necessary to consider the dependency on the
machines as well. For this context, Rabadi et al. [2006] solve the unrelated parallel
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machines problem with setup times in which they use a Greedy Randomized Adaptive
Search Procedure (GRASP) [Feo and Resende, 1989, 1995] to minimize the makespan.
de Paula et al. [2007] also solve a very similar problem in which the objective is to
minimize the makespan plus the sum of the total weighted tardiness. As solution
strategy, the authors propose a Variable Neighborhood Search (VNS) [Hansen et al.,
2010] and compare its performance against three versions of GRASP. In the work of
Vallada and Ruiz [2011], the authors use a Genetic Algorithm [Holland, 1992] combined
with local search procedures to solve the problem, which outperformed the GRASP
proposed by Rabadi et al. [2006]. Avalos-Rosales et al. [2015] propose a hybrid heuristic
in which a GRASP rules the main framework, and a Variable Neighborhood Descent
(VND) [Hansen et al., 2010] algorithm is used as improving procedure, outperforming
the Genetic Algorithm of Vallada and Ruiz [2011]. The authors also introduced new
makespan linearizations for MIP formulations which allowed to solve instances larger
than those previously optimally solved. Muller et al. [2014] also use MIP to solve the
problem, but different from Avalos-Rosales et al. [2015], they use MIP to define and
explore neighborhoods. Recently, Santos et al. [2019] evaluate different heuristics and
propose a heuristic based on Simulated Annealing with pruned neighborhoods, which
performed better than all previous algorithms.

3.3.2 Setup times and precedence constraints simultaneously

Scheduling problems that present setup times or precedence constraints, but not both
simultaneously, can be solved by list scheduling algorithms, i.e., there is an ordering
among the jobs such that when an assignment rule is applied, the optimal solution
is found [Schutten, 1996]. However, it does not hold when both setup times and
precedence constraints are considered simultaneously [Hurink and Knust, 2001].

Regarding scheduling problems that consider sequence-dependent setup times and
precedence constraints simultaneously, the literature is more restricted. One of the first
works to jointly consider sequence-dependent setup times and precedence constraints
is due to Kusiak and Finke [1987], in which the authors proposed a flow-based MIP
formulation and branch-and-bound algorithm to minimize the makespan, but the au-
thors considered a single machine environment. He and Kusiak [1992] also propose a
MIP formulation for the problem with a reduced number of variables and constraints.
Besides, a constructive heuristic is proposed by the authors. Uzsoy et al. [1991] also
consider the single machine environment but, unlike Kusiak and Finke [1987] and He
and Kusiak [1992], they aim at minimizing the maximum lateness. For solving the
problem, the authors proposed a branch-and-bound algorithm.
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Hurink and Knust [2001] addressed the identical parallel machine with sequence-
dependent setup times and precedence constraints with the objective of minimizing
the makespan. They show that this problem is strongly NP-hard and a dominant set
of schedules, i.e., a set of schedules containing at least one optimal schedule, is very
unlikely to be calculated efficiently with list scheduling techniques. Driessel and Mönch
[2009] and Driessel and Mönch [2011] also addressed the parallel machine scheduling
with sequence-dependent setup times and precedence constraints but, instead of min-
imizing the makespan, their work focus on the minimization of the total weighted
tardiness. The authors evaluate different versions of the VNS as a solution strategy.
Gacias et al. [2010] solves a similar problem, but consider two versions of the problem.
In one the maximum lateness is minimized, while the other minimizes the sum of com-
pletion times. For both versions, the authors employ a branch-and-bound algorithm
and a heuristic based on the Climbing Discrepancy Search [Milano and Roli, 2002].

3.3.3 Overview of the related works

Tables 3.2 and Table 3.3 summarize the works cited above. They present the works
in terms of machine environment, constraints, objective function and solution strategy
and/or main contribution of the work. Although the works consider different objective
functions and some additional constraints, they share relevant features to the present
work, which is the sequence-dependent setup times and precedence constraints.

Notice that the majority of the works employ heuristic algorithms to solve the
problems since exact approaches become prohibitive to large-scale (and even for some
medium-scale) instances. This is due not only to the fact that the problems belong to
the NP-hard class, but exact approaches usually tend to return poor quality solutions
for large and medium instances when runtime is limited, even if allowed to run for a
few hours.
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Chapter 4

Proposed algorithms

Before presenting the proposed heuristics to the maneuver scheduling problem, we
introduce the structure used to encode candidate solutions to this problem as well as
the method used to evaluate the objective function and feasibility of the solutions.
After that, the greedy heuristics are detailed, followed by the ILS-based heuristic.

4.1 Solution encoding

A candidate solution is encoded as a set of schedules, Π = {Π0,Π1, . . . ,Πm}, in which
a schedule Π` = 〈π1

` , π
2
` , . . . , π

|Π`|
` 〉 is a sequence of switches assigned to team ` and

πr
` ∈ (N \ {0}) is the r-th switch maneuvered by team `. An example of a set of

switching maneuvers, a set of precedence relations, and a possible candidate solution
under this encoding is shown in Figure 4.1. Jointly with maintenance teams 1 to m,
an additional sequence Π0 is used for assigning the remotely controlled switches, e.g.,
switch 5 in Figure 4.1.

(1, O) (2, O) (3, C) (4, O) (5, O) (6, C)︸ ︷︷ ︸
Set of switching maneuvers

P = {(1, 3), (2, 3), (3, 6), (4, 6), (5, 6)}︸ ︷︷ ︸
Set of precedence relations

(a) Set of maneuvers to perform of a restoration plan and its
precedence relations.

Π0 = 〈 5 〉
Π1 = 〈 2, 3, 4 〉
Π2 = 〈 1, 6 〉

(b) A candidate solution.

Figure 4.1: Example of a solution with the proposed encoding. Team 1 maneuvers
switches 2, 3, and 4, and team 2 maneuvers 1 and 6. The maneuver of the remotely
controlled switch (switch 5) is assigned to sequence Π0.

31
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4.2 Objective function and feasibility evaluation

To evaluate a solution, i.e., calculate its makespan, the moments ti at which the ma-
neuvers are performed must be calculated. Let Pj = {i : (i, j) ∈ P} be the set of
switches that have to be maneuvered before j, and Pj = {i : (j, i) ∈ P} the set of
switches that can be maneuvered only after j is maneuvered. Algorithm 4.1 describes
the evaluation procedure of a given solution.

First, the data used by this procedure is initialized (lines 1–9). The flag feasible
(used to track the feasibility of the solution) is initialized with true; ∆ is a counter for
the number of switches with maneuvering time already calculated, initialized as 0; t0
is the initial moment in which the work of the teams start, then it is initialized as 0;
tj is the maneuvering moment of switch j, initially set as infinity; γj is the number of
switches with undefined maneuvering moments that must be maneuvered before j; ϕ`

is the current position of team `, initially set as 0, i.e., its initial position; and σ` is the
index of the next switch to calculate the maneuvering time in schedule Π`, starting at
1.

After initializing the data, the schedule of each team is evaluated switch by switch
until all maneuvering times tj are calculated or an infeasibility is detected (lines 10–26).
The variable δ is initialized as 0 (line 11), which counts the number of maneuvering
moments (tj) calculated at the current iteration. The inner loop (lines 12–23) tries,
for each team ` ∈ M, to calculate the maneuvering time (lines 15–18) of the σ-th
switch in Π`, referenced as j, which is done only if γj = 0, i.e., the maneuvering
moments of all switches that must precede j were already calculated. After that,
the counters of pending precedents are updated (line 19), the makespan is updated
(line 20), the current position of the team is updated (line 21), the index of the next
switch to calculate the maneuvering time is incremented (line 22), and the counter
of maneuvering times calculated at the current iteration is incremented. At the end
of the iteration, the counter of maneuvering times calculated so far is updated (line
24). Besides, the feasibility is also by verifying if at least one maneuvering time was
calculated at the iteration, i.e., δ > 0. If the solution is unfeasible (delta is equal to
zero), then the flag feasible is set to false (line 26) and the makespan is set to infinity
(line 27).

The procedure presented at Algorithm 4.1 has a computational complexity of
O(n2), as the precedence constraints have to be verified for each maneuver. Besides
calculating the makespan, it also checks the solution feasibility, returning a makespan
equal to infinity for unfeasible solutions. Unfeasible solutions are those in which (i) a
sequence of maneuvers assigned to a team does not satisfy the precedence constraints;
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Algorithm 4.1: Procedure for solution evaluation and feasibility check.
Input: Π, N, N′, N′′, M, Pj , Pj , pi, ci,j,`
Output: Cmax, ti

// Initialization
1 feasible← true;
2 ∆← 0;
3 t0 ← 0;
4 foreach j ∈ N′ ∪ N′′ do
5 tj ←∞;
6 γj ← |Pj |;
7 foreach ` ∈M do
8 ϕ` ← 0;
9 σ` ← 1;

// Compute the operation moments and makespan
10 while ∆ < |N′|+ |N′′| ∧ feasible do
11 δ ← 0;
12 for ` ∈M : σ` ≤ |Π`| do
13 Let j be the σ`-th switch in Π`;
14 if γj = 0 then

// Moment in which j is operated
15 if ` = 0 then
16 tj ← max

k∈Pj

{tk + pk};

17 else

18 tj ← max

{
tϕ`

+ pϕ`
+ cϕ`,j,`, max

k∈Pj

{tk + pk}
}
;

// Update the counters of pending precedents
19 foreach k ∈ Pj do γk ← γk − 1 ;

// Update the makespan
20 Cmax ← max {Cmax, tj + pj};

// Update the other algorithm’s data
21 ϕ` ← j;
22 σ` ← σ` + 1;
23 δ ← δ + 1;

// Check feasibility
24 ∆← ∆ + δ;
25 if δ = 0 then
26 feasible← false;
27 Cmax ←∞;
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or (ii) the maneuver of a switch i assigned to a team `1 depends on the completion
of the maneuver of a switch j assigned to another team `2, but to maneuver j, team
`2 has to wait for the maneuvering of k assigned to team `1 that appearing after i in
the sequence Π`1 , which results in a deadlock. An example of an unfeasible solution is
shown in Figure 4.2.

1 2 3 4

5 6

7 8

9 10

(a) Precedence graph

Π0 = 〈 〉
Π1 = 〈 1, 5, 10, 6, 7 〉
Π2 = 〈 2, 3, 8, 4, 9 〉

(b) Infeasible solution

Figure 4.2: Example of an unfeasible solution. Team 1 must wait for team 2 to ma-
neuver switch 9, before it can operate switch 10. However, team 2 has to maneuver
switches 8 and 4 before 9, and for maneuvering switch 8 it has to wait for team 1 to
maneuver 7, which results in a deadlock.

In scheduling problems with precedence constraints, the start of some tasks can
be postponed without increasing the makespan. These tasks are referred to as the
“slack” tasks. The tasks that cannot be postponed without increase the makespan are
referred to as the “critical” tasks and the set of critical tasks is referred to as “critical
path” [Pinedo, 2016]. It is noteworthy that in a local search procedure, only changes
that affect tasks in the “critical path” may improve the makespan. However, changes
that minimize the total completion time, i.e., the sum of the completion time of the
schedule of all teams, makes the solution more flexible to changes which may result in a
makespan minimization, since the teams will be less overloaded. Therefore, throughout
this work, when the values of objective function of two solutions are compared, a
lexicographic comparison is performed in which the makespan is considered first, then
the total completion time is considered.

4.3 Greedy heuristics

4.3.1 A simple greedy heuristic

The proposed greedy heuristic builds a solution iteratively. At each iteration, all re-
motely controlled switches with precedence constraints satisfied have their maneuver-
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ing moments calculated, and then the maneuver of a manually controlled switch with
precedence constraints satisfied is assigned to a maintenance team, and its maneuvering
moment is calculated. The choice of the manually controlled switch and maintenance
team to assign it to follows the earliest start time rule. Once a switch is chosen, its
maneuvering moment is set as the largest value between the moment the team reaches
the switch location and the moment of conclusion of all switches that have to pre-
cede it. For describing the greedy heuristic in more detail, the following notations are
introduced:

• 〈Π`, i〉 is the concatenation of the maneuvering of switch i at the end of the
sequence of maneuvers performed by the maintenance team `, which results in
〈π1

` , π
2
` , . . . , π

|Π`|
` , i〉.

• 〈 〉 is an empty sequence.

Algorithm 4.2 details the proposed greedy heuristic. First, the data used by this
heuristic is initialized (lines 1–8). Sets S′ and S′′ contain, respectively, the manually
controlled and remotely controlled switches with maneuvering moments still undefined;
tj is the maneuvering moment of switch j, initially set as 0; γj is the number of switches
with undefined maneuvering moments that must be maneuvered before j; ϕ` is the
current position of team `, initially set as 0, i.e., its initial position; and Π` is the
schedule of team `.

After initializing the data, the assignment of manually controlled switches and
the definition of maneuvering moments, including for remotely controlled switches, are
performed (lines 9–21). First, as long as S′′ contains remotely controlled switches with
precedence constraints satisfied, their maneuvering moments are calculated (line 11).
After determining the maneuvering moment of a switch j, the values γk of switches
preceded by j are updated (line 12). Then, the maneuver of switch j is included at the
end of the schedule Π0 (line 13), and it is removed from S′′ (line 14).

When no more remotely controlled switches with precedence constraints satisfied
are available in S′′, a manually controlled switch j ∈ S′ is chosen, and its maneuvering
is assigned to a maintenance team `. The choice of j and ` (line 16) is performed
according to the earliest start time rule,

arg min
(j,`)∈S′×M

{tϕ`
+ pϕ`

+ cϕ`,j,` : γj = 0} . (4.1)

Once j and ` have been chosen, the maneuvering moment tj is defined as the
maximum between the moment in which team ` reaches switch j and the moment in
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Algorithm 4.2: Simple greedy heuristic.
Input: N, N′, N′′, M, Pj , Pj , pi, ci,j,`
Output: Π, Cmax, ti

// Initialization
1 S′ ← N′;
2 S′′ ← N′′;
3 foreach j ∈ N do
4 tj ← 0;
5 γj ← |Pj |;
6 foreach ` ∈M do
7 ϕ` ← 0;
8 Π` ← 〈 〉;

// Assignment and sequencing
9 while |S′|+ |S′′| > 0 do

// Remotely controlled switches
10 while ∃j ∈ S′′ : γj = 0 do

11 tj ← max

{
0, max

i∈Pj

{ti + pi}
}
;

12 foreach k ∈ Pj do γk ← γk − 1 ;
13 Π0 ← 〈Π0, j〉;
14 S′′ ← S′′ \ {j};

// Manually controlled switch
15 if |S′| > 0 then
16 Choose some j ∈ S′ and ` ∈M according to Eq. (4.1);

17 tj ← max

{
tϕ`

+ pϕ`
+ cϕ`,j,`, max

i∈Pj

{ti + pi}
}
;

18 foreach k ∈ Pj do γk ← γk − 1 ;
19 Π` ← 〈Π`, j〉;
20 ϕ` ← j;
21 S′ ← S′ \ {j};

// Compute the makespan
22 Cmax ← max

i∈N′∪N′′
{ti + pi};

which all switch operations that must precede it are completed (line 17). After that,
the values γk of all k preceded by j are updated (line 18). The maneuver is appended
at the end of Π` (line 19), the current position of team ` is updated (line 20) and j is
removed from S′ (line 21). After all switch operations are assigned, the makespan is
computed (line 22).

The worst case complexity of this heuristic happens when no remotely controlled
switches are present, i.e., when N′′ is empty. In this case, the while loop (lines 9–21)
will loop n times, and all switch/team pairs have to be evaluated at each iteration for
deciding the next assignment. This results in a worst-case complexity of O(n2m) for
this heuristic.
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4.3.2 NEH-based heuristic

The Nawaz-Enscore-Ham (NEH) heuristic [Nawaz et al., 1983] initially proposed for
solving the Permutation Flow-Shop Scheduling Problem is one of the most efficient
constructive heuristics to minimize the makespan for that problem [Kalczynski and
Kamburowski, 2007]. Since then, many works have proposed adaptations of this strat-
egy to solve other variants of scheduling problems due to its good performance as
constructive heuristics.

In this section, we employ the insertion criterion of the NEH heuristic in the
construction of a solution. Different from the simple greedy heuristic presented in the
previous section, the insertion criterion of NEH allows switching maneuvers to be placed
in positions of the schedule other than the last, on the condition that the relative order
of the maneuvers already scheduled does not change. The criterion adopted to choose
the next switching maneuver to schedule is similar to the one used in the previous
heuristic. However, instead of evaluating the insertion at the end of the schedule only,
it evaluates the insertion at all positions of the schedule of each maintenance team.
Algorithm 4.3 describes the NEH-based heuristic in more details.

Algorithm 4.3: NEH-based heuristic.
Input: N, N′, N′′, M, Pj , Pj , pi, si,j,`
Output: Π, Cmax, ti

// Initialization
1 S′ ← N′;
2 S′′ ← N′′;
3 foreach j ∈ N do
4 tj ← 0;
5 γj ← |Pj |;

// Assignment and sequencing
6 while |S′|+ |S′′| > 0 do

// Remotely controlled switches
7 while ∃j ∈ S′′ : γj = 0 do
8 foreach k ∈ Pj do γk ← γk − 1 ;
9 Π0 ← 〈Π0, j〉;

10 S′′ ← S′′ \ {j};

// Manually controlled switch
11 if |S′| > 0 then
12 Find j ∈ S′, ` ∈M and r with lowest value of Φ(Π, j, `, r);
13 Insert j at the r-th position of Π`;
14 foreach k ∈ Pj do γk ← γk − 1 ;
15 S′ ← S′ \ {j};

16 Compute Cmax and tj for all j ∈ N according to Algorithm 4.1;
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The evaluation of the increase in the objective function with the insertion of a
switching maneuver j in the r-th position of scheduling of the `-th team of a partial
solution Π is given by Φ(Π, j, `, r) (line 12). It can be calculated using the Algorithm 4.1
but considering the partial solution after the insertion of j at the r-th position of Π`,
and the inputs N and N′ containing only those switching maneuvers that are present
in the partial solution Π.

This NEH-based heuristic presents a worst-case complexity of O(n4), since it has
to perform the Algorithm 4.1 at each iteration for all unscheduled switch operations
in all possible positions. Despite a greater complexity compared to the simple greedy
heuristic of the previous section, the NEH-base heuristic is still fast enough to be used
inside a load restoration method to estimate the restoration time.

4.4 ILS-based heuristics

As the size of the problems increases, the performance of constructive heuristics may
deteriorate in terms of solution quality. In this case, an improving heuristic can be
applied on the schedule of the final restoration plan to find a better one. For this, we
present an improving heuristics based on the Iterated Local Search (ILS) metaheuristic
[Baxter, 1981; Lourenço et al., 2010]. The ILS explores the space of solutions by
repeatedly applying a local search method to a solution obtained by a perturbation on
the incumbent one. Despite its simple structure, the ILS has been shown to be effective
in solving combinatorial optimization problems, including scheduling ones [Allahverdi,
2015].

The general structure of the proposed ILS-based heuristic is presented at the
flow chart in Figure 4.3 and its pseudo-code is presented in Algorithm 4.4. The ILS
has as input parameters: an initial solution x (e.g. obtained by a greedy heuristic); a
function f : X 7→ R that evaluates solutions; a set N = {η1, . . . , η|N |} of neighborhood
functions; a perturbation function ρ : X → X ; and the maximum number of passes of
the perturbation function, δ ≥ 1.

Initially, a locally optimal solution x∗ is found (line 1) and the counter δ is
initialized (line 2). At any given iteration (lines 3–12), the perturbation function
is applied δ times (lines 4–6). The larger the δ, the greater the perturbation of the
incumbent solution tends to be. The Ejection Chain strategy [Glover, 1996] is employed
as perturbation. For the problem addressed in this work, Ejection Chain transfers
a maneuver assigned to a team `1 to another team `2, then a maneuver assigned
to team `2 to a team `3 and so on, until all teams have transferred and received a



4.4. ILS-based heuristics 39

ILS(x0, f, N, , )

x* := LS(x0, f, N)

 := 1

x' := perturb(x*, )

x'' := LS(x', f, N)

f(x'') < f(x*)

 > 

 :=  + 1

x* := x''

 := 1

End

yes

no

no

yes

Figure 4.3: General structure of the ILS-based heuristic.

maneuver to/from another. If a team has no switching maneuver assigned to it, then it
is ignored and the process just continues from the next team. When moving a switching
maneuver between teams, only moves that result in feasible solutions are considered,
with Algorithm 4.1 used for checking feasibility. Once the perturbed solution x′ is
obtained, the local search is performed, resulting in a new local optimal solution x′′

(line 7). If f(x′′) < f(x∗) then x′′ becomes the incumbent solution (line 9) and δ is
reset (line 10). Otherwise, δ is incremented (line 12). It is important to highlight that
the comparison between f(x′′) and f(x∗) is the lexicographic comparison, in which the
makespan is considered first, and then the sum of completion times of all teams. This
secondary criterion is important because a reduction may allow improvements in the
makespan at next iterations of the ILS.
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Algorithm 4.4: General structure of the proposed ILS-based heuristic.
Input: x, f , N , ρ, δ
Output: x∗

// Find a first local optimal solution
1 x∗ ← local_search(x, N );
2 δ ← 1;
3 while δ ≤ δ do

// Perform a perturbation in solution x∗

4 x′ ← x∗;
5 for i in 1 to δ do
6 x′ ← ρ(x′)

// Perform a local search
7 x′′ ← local_search(x′, f , N );

// Update the best solution found
8 if f(x′′) < f(x∗) then
9 x∗ ← x′′;

10 δ ← 1;

11 else
12 δ ← δ + 1;

4.4.1 Neighborhood functions and local search strategy

Let X be the set of all feasible solutions for the problem and P(X ) the set of all possible
subsets of X , a neighborhood function is a function η : X → P(X ) that, for any feasible
solution x ∈ X , maps a set of other feasible solutions, denoted as neighborhood.

Five neighborhood functions were used in this work: Shift, Exchange, Reassign-
ment, Swap, and Direct-Swap. These neighborhood functions are described below and
Figure 4.4 illustrates them.

• Shift : the maneuver of a switch j is shifted to another position within the same
schedule, as shown in Figure 4.4b, where switch 2 is shifted to the second position
of the schedule. Notice that this is the only possible shift for that maneuver, since
it has to be operated before the switch 6.

• Exchange: two switches i and j maneuvered by the same team ` have their
position exchanged in the schedule. In Figure 4.4c switches 1 and 2 have their
position exchanged in the schedule assigned to team 1.

• Reassignment : a maneuver is assigned to a different team, as shown in Figure
4.4d, where switch 1 is reassigned from team 1 to team 2. The only feasible
position to place it on the schedule of the team 2 is before the maneuvering of
switch 3, since the maneuvering of switch 1 must precede it.
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(1, O) (2, O) (3, C) (4, O) (5, O) (6, C)︸ ︷︷ ︸
Set of switching maneuvers

P = {(1, 3), (2, 3), (3, 6), (4, 6), (5, 6)}︸ ︷︷ ︸
Set of precedence relations

(a) Restoration plan (with switch 5 remotely con-
trolled) and the set of precedence rules.

Π0 = h 5; i

Π1 = h 2; 1; 6 i

Π2 = h 3; 4; i

(b) Shift

Π0 = h 5; i

Π1 = h 2; 1; 6 i

Π2 = h 3; 4; i

(c) Exchange

Π0 = h 5; i

Π1 = h 2; 1; 6 i

Π2 = h 3; 4; i

(d) Reassignment

Π0 = h 5; i

Π1 = h 2; 1; 6 i

Π2 = h 3; 4; i

(e) Swap

Π0 = h 5; i

Π1 = h 2; 1; 6 i

Π2 = h 3; 4; i

(f) Direct-Swap

Figure 4.4: Example of movements performed by the neighborhood functions imple-
mented for the maneuvers scheduling problem.

• Swap: a maneuver currently assigned to a team `1 is transferred to a team `2,
with `1 6= `2, and a maneuver currently assigned to team `2 is transferred to team
`1. In Figure 4.4e, the maneuvering of switch 2, currently assigned to team 1, is
transferred to team 2, and switch 4, currently assigned to team 2, is transferred
to team 1.

• Direct-Swap: it is similar to the Swap function. However, the positions changed
in the teams are maintained. In Figure 4.4f, the maneuvering of switches 2 and
4 currently assigned to teams 1 and 2, respectively, are swapped. The switch 2
is placed at the previous position of the switch 4 at team 2 and the switch 4 is
placed at the previous position of the switch 2 at team 1.

Some characteristics of the neighborhoods are summarized in Table 4.1. The
second column (Teams) contains the number of teams involved in the movement, the
third column (Cardinality) shows the number of neighbor solutions depending on the
number of maneuvers (n) and teams (m), and the fourth column (Complexity) shows
the complexity of growth of the neighborhood. The values presented in columns Cardi-
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nality and Complexy consider a neighborhood from a solution with maneuvers equally
distributed among the teams.

Table 4.1: Summary of some characteristics of the neighborhood functions

Neighborhood Teams Cardinality† Complexity†

Shift 1
n2 − nm

m
O(n2)

Exchange 1
n2

m
O(n2)

Reassignment 2
−n2

m
+ n2 + nm− n O(n2)

Swap 2
( n
m

)4
O(n4)

Direct-Swap 2
( n
m

)2
O(n2)

† n is the number of switching maneuvers and m is the number of teams available.

Regarding the maneuvering of remotely controlled switches, only Shift and Ex-
change functions can be applied. The other ones would result in unfeasible solutions,
since they would assign a remote maneuver to a maintenance team or a manual ma-
neuver to Π0 (no team).

Some movements performed by the neighborhood functions may result in un-
feasible solutions. However, since the resulting solutions are evaluated using Algo-
rithm 4.1, any unfeasible solution is guaranteed to be attributed a value of infinity for
its makespan. Then, the objective value of unfeasible solutions will be equal to infinity.

In the proposed ILS-based heuristic, local search is performed according to Vari-
able Neighborhood Descent (VND) strategy [Hansen et al., 2010], which allows the use
of different neighborhood functions. The key idea of the VND search is to escape from
local minimum from a given neighborhood by iteratively alternating the neighborhood
functions. Algorithm 4.5 shows the general structure of the VND search. The neigh-
borhood functions are considered in the following sequence on the VND implemented:
Shift, Exchange, Reassignment, Direct-Swap and Swap.

Initially, the start solution x0 is set as the current best solution x∗ (line 1), and
the index i that defines which current neighborhood function is initialized as 1 (line 2).
At any given iteration (lines 3–9), the best neighbor solution x′ from ηi(x

∗) is found
(line 4). If x′ is better than the current best solution x∗, then x∗ is updated (line 6)
and the index i is reset (line 7). Otherwise, the index i is incremented, then the next
neighborhood function will be used in the next iteration of the VND.

The VND stops when none of the neighborhood functions in N can produce a
solution better than the current best solution x∗. Then, the solution x∗ is a local



4.4. ILS-based heuristics 43

minimum for all neighborhoods defined by the functions ηi ∈ N .

Algorithm 4.5: General structure of the VND search.
Input: x0, f , N = {η1, η2, . . . , ηk}
Output: x∗

1 x∗ ← x0;
2 i← 1;
3 while i < |N | do

4 x′ ← arg min
x∈ηi(x∗)

f(x);

5 if f(x′) < f(x∗) then
6 x∗ ← x′;
7 i← 1;

8 else
9 i← i+ 1;





Chapter 5

Computational experiments

5.1 Experimental design

The computational experiments are divided into two parts. The first evaluates the
performance of the proposed algorithms in terms of solution quality and running time.
The running time is important due to the time constraints imposed by the context of
load restoration problems, as discussed earlier in Chapter 2. The second part of the
experiment evaluates the contribution in the final restoration plan (or set of restoration
plans) when considering the proposed approach incorporated into a restoration strategy
to obtain a proper estimation of time.

For the first part of the experiment, a set of random instances with different
dimensions and characteristics were considered. Initially, each instance was modeled
as a MIP problem (using the MIP formulation proposed in Section 3.1) and solved
with Gurobi, limited to 1 hour of runtime. The values of linear relaxation, objective
function of the incumbent solution, runtime, number of MIP nodes explored and gap
of duality were recorded. These values were used as reference to compare the quality
of solutions returned by the proposed heuristics.

After that, each instance was solved with the two greedy heuristics proposed in
Section 4.3. Their performance in terms of value of objective function and runtime
were compared. The greedy heuristic with the best performance was used to generate
the initial solution for the ILS-based heuristic. Then, each instance was solved 10
times with the ILS-based heuristic considering different random seeds for each run.
The running time and value of the objective function of the solution returned were
recorded.

For the second part of the experiment, three scenarios of fault with different levels
of severeness, based on a real network, were constructed. The candidate restoration

45
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(a) Sequential (b) In-tree

(c) Independent (d) General

Figure 5.1: Schemes of precedence graph.

plans returned using the proposed approach were compared against those returned
when considering only the number of maneuvers as proxy of time.

5.2 Test instances

A set of 576 random instances of different sizes were created to serve as a benchmark
set to perform the first part of the experiment that evaluates the performance of the
algorithms. The set of instances is divided into two groups: small and large instances.
In the group of small instances, the number of maneuvers varied as n ∈ {6, 8, 10, 12}
and, for each value of n, the number of teams varied as m ∈ {2, 3, 4}. For the group of
large instances, the number of maneuvers varied as n ∈ {50, 75, 100, 125} and, for each
value of n, the number of teams varied asm ∈ {10, 15, 20}. The times of operation pi for
the manually controlled switches were randomly generated from a uniform distribution
U(1, 4) and, for the remotely controlled ones, these times were set to 1. For all instances,
10% of the switches were considered as remotely controlled. The displacement times
si,j,` were randomly generated from a uniform distribution U(7, 14) and then corrected
to satisfy the weak triangular inequality using a modified Floyd-Warshall algorithm
[Rocha et al., 2008]. For all parameters, it was considered integer values only.

For each pair (n, m), four schemes of precedence graph were considered: sequen-
tial, in-tree, independent, and general. Examples of these four schemes are given in
Figure 5.1. For each configuration (n, m, precedence graph), three instances were
generated using different seeds for the random number generator.

The naming convention used for the instances was
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ORCS-<n>-<m>-<prec>-<s>-<seed-id>, in which: <n> is the number of maneu-
vers; <m> is the number of maintenance teams; <prec> is the scheme of the precedence
graph (S for sequential, T for in-tree, I for independent, and G for general); <s> is
the number of stages (for precedence graphs of type S, T or I ) or the desired density,
also referred as order of strength [Vanhoucke et al., 2008] (for precedence graphs of
type G); and <seed-id> is an ID for the seed used to initialize the random number
generator of the instance generator script.

5.3 Implementation details and benchmark

machine

The proposed heuristics were implemented in C++17. The code was compiled using
GNU Compiler Collection (GCC) version 8.1.1 with compiler optimization flag set to
“-O2”. The MIP formulation was solved with Gurobi 8.0.1 [Gurobi Optimization, Inc.,
2017] through its API for C++ using default settings, but limited to a single thread.
All experiments were performed on a dual 2.10 GHz Intel(R) Xeon(R) Silver 4116
machine with 156 GiB of main memory running Fedora 28 (64-bits).

The source code of the MIP formulation and heuristics, the instance files and
the script used to create them, the scripts of the experiments performed, and the data
obtained from the experiments are available for download at https://github.com/

andremaravilha/phd.

5.4 Performance of the proposed algorithms

Table 5.1 shows the results obtained by Gurobi for the set of instances using the pro-
posed MIP formulation (3.1)–(3.13) as well as the results obtained by the simple greedy
heuristic and NEH-based greedy heuristic. The results in this table are summarized
as mean values for each instance size. Columns n and m are, respectively, the num-
ber of maneuvers and the number of teams; column “MIP Obj.” contains the mean
values of objective function obtained with Gurobi (limited to 1 hour of runtime); the
next columns contain the results obtained by the greedy heuristics, in which “Obj” and
“Time (s)” columns contain, respectively, the mean values of objective function, and
the mean values of runtime in seconds. Notice that a value equal to zero in column
“Time (s)” means a runtime smaller than 0.0001 seconds.

For small instances, i.e., n ∈ {6, 8, 10, 12}, Gurobi was able to find the proven
optimal solution in a few seconds for all of the instances. However, even a few seconds
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Table 5.1: Results obtained by solution of the MIP formulation using Gurobi solver
and greedy heuristics. The results presented in this table are the mean values for each
instance size.

NEH-based Greedy Heur. Simple Greedy Heur.

n m MIP Obj.† Obj Time(s)‡ Obj Time(s)‡

6 2 33.42 35.21 0.0000 34.00 0.0000
3 25.67 27.71 0.0000 27.42 0.0000
4 21.29 23.67 0.0000 23.62 0.0000

8 2 43.42 47.67 0.0000 48.08 0.0000
3 31.21 34.42 0.0000 34.71 0.0000
4 23.62 25.21 0.0000 25.71 0.0000

10 2 51.79 56.62 0.0000 57.08 0.0000
3 35.29 38.92 0.0000 40.00 0.0000
4 29.25 33.04 0.0000 32.17 0.0000

12 2 55.88 60.25 0.0000 61.12 0.0000
3 39.17 44.04 0.0000 44.38 0.0000
4 30.71 35.12 0.0000 35.46 0.0000

50 10 61.46 65.38 0.0101 65.88 0.0000
15 49.04 52.38 0.0110 52.04 0.0000
20 45.25 49.29 0.0137 48.25 0.0000

75 10 92.33 88.21 0.0347 86.54 0.0000
15 66.79 68.00 0.0468 66.04 0.0000
20 56.42 59.58 0.0539 58.08 0.0000

100 10 130.58 110.46 0.1176 108.67 0.0000
15 95.79 83.67 0.1393 83.67 0.0000
20 77.42 72.12 0.1589 69.83 0.0000

125 10 177.50 133.71 0.2808 131.46 0.0000
15 125.42 95.83 0.3500 93.29 0.0000
20 102.71 83.38 0.4056 81.58 0.0000

† For most instances with n ≥ 50 Gurobi was not able to find the proven optimal solution within the time
limit of 1 hour. ‡ Values equal to 0.0000 mean a runtime smaller than 0.0001 seconds.

is prohibitive to a method that intends to be embedded into a restoration algorithm.
For large instances, i.e, n ∈ {50, 75, 100, 125}, Gurobi was not able to find the proven
optimal solution within the time limit of 1 hour for all instances.

Regarding the instances with n = 50, Gurobi performed better than the greedy
heuristics in terms of mean value of objective function, but it took a much longer time
than the heuristics. Despite not being suitable as solution strategy for the context of
load restoration, the results obtained with Gurobi are used as reference to evaluate the
performance of the proposed heuristics. Notice that the greedy heuristics, in addition
to run faster than Gurobi, achieved better results in terms of objective function for
the instances with n ≥ 75. These results reinforce the choice of heuristics rather than
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Figure 5.2: Mean value of objective function obtained for small instances. The results
are stratified by heuristic and instance size.
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Figure 5.3: Mean value of objective function obtained for large instances. The results
are stratified by heuristic and instance size.

exact approaches for this problem.

In addition to the results presented on the table above, Figures 5.2 and 5.3 show
boxplot graphs for the mean values of objective function of the solutions returned by
the greedy heuristics. The results are stratified by instance size.

From the results presented in the Table 5.1 and Figures 5.2 and 5.3, it can be
observed that both NEH-based greedy heuristic and the simple greedy heuristic present
similar performance in terms of mean value of objective function of the solutions re-
turned by them. However, the simple greedy heuristic outperforms the NEH-based
greedy heuristic in terms of runtime, mainly for the set of large instances, which is
evident in the boxplot presented in Figure 5.4.
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Figure 5.4: Mean value of runtime (in seconds) by heuristic and instance size. As the
number of maneuvers increase, the NEH-based Greedy Heuristic presents a significant
increase in runtime, while the Simple Greedy Heuristic continues to demand a low
runtime (less than 0.0001s) for all problem sizes. The results for small instances were
omitted in this figure because they were very small (less than 0.0001s) for both Simple
Greedy Heuristic and NEH-based Greedy Heuristic.

It was already expected that the NEH-based greedy heuristic would demand
a longer time than the simple greedy heuristic, since its insertion criterion leads to
a greater worst-case complexity. However, this additional effort did not result in a
significant improvement to the quality of the solutions. From these results, we can
assume the simple greedy heuristic is the better choice as a constructive heuristic
for the maneuver scheduling problem to be embedded into a restoration algorithm to
estimate the time required to perform restoration plans, and therefore it was also used
as strategy to generate initial solutions to the ILS-based heuristic.

Table 5.2 shows the results obtained with the ILS-based heuristic. Columns
“n” and “m” contain, respectively, the number of maneuvers and the number teams
available; column “Start Obj.” contains the mean values of objective function of the
start solutions used by the ILS; column “Final Obj.” contains the mean values of
objective function of final solutions returned by the ILS; column “Improv (%)” is the
average percent improvement by the ILS over the start solution; and column “Time
(s)” contains the mean values of runtime in seconds.

Focusing on instances in which Gurobi was not able to find the proven optimal
solution (i.e., on the instances with 50 maneuvers or more), it is possible to observe
that the ILS found better solutions than Gurobi for several instances. Also, even
for instances in which ILS was not able to match or outperform Gurobi, the gap
was generally small enough for practical purposes. Furthermore, it is important to
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Table 5.2: Results obtained by the ILS-based heuristic. The results presented are the
mean values for each size of problem.

n m MIP Start Obj. Final Obj. Improv (%) Time (s)

6 2 33.42 34.00 33.58 1.16 0.0000
3 25.67 27.42 25.96 5.08 0.0001
4 21.29 23.62 21.46 8.42 0.0003

8 2 43.42 48.08 44.21 7.67 0.0007
3 31.21 34.71 31.79 7.98 0.0010
4 23.62 25.71 24.38 4.95 0.0007

10 2 51.79 57.08 52.88 7.19 0.0026
3 35.29 40.00 36.17 9.46 0.0026
4 29.25 32.17 30.42 5.20 0.0019

12 2 55.88 61.12 56.58 7.32 0.0044
3 39.17 44.38 40.71 8.12 0.0041
4 30.71 35.46 33.21 6.09 0.0035

50 10 61.46 65.88 61.67 6.78 0.6679
15 49.04 52.04 50.12 4.73 0.6587
20 45.25 48.25 46.58 4.49 0.7118

75 10 92.33 86.54 82.62 4.63 4.1344
15 66.79 66.04 62.88 5.43 2.7165
20 56.42 58.08 56.33 3.44 2.9667

100 10 130.58 108.67 104.29 4.05 13.4255
15 95.79 83.67 79.83 4.89 9.8188
20 77.42 69.83 67.54 3.65 7.5887

125 10 177.50 131.46 126.17 3.98 56.5374
15 125.42 93.29 89.96 3.59 20.9732
20 102.71 81.58 78.62 3.76 19.1502

emphasize that the mean runtime of the ILS was from a few milliseconds to under 57
seconds, compared to the 1 hour allowed to Gurobi.

It is interesting to highlight that the proposed ILS-based heuristic reached the
same solution in all runs for each instance. This behavior, combined with the gap
between the objective function of the final solution returned by the ILS and Gurobi,
suggests the ILS as a robust strategy in terms of the variability of quality of the
solutions returned to be used in a real environment.

The results reinforce the choice of heuristics rather than exact approaches for
this problem, allowing us to draw tentative conclusions regarding their performance.
However, the precise advantages of using them as part of the restoration planning
process remain to be investigated. In the next section three case studies, based on a
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real network, are used to evaluate the gains when considering the maneuver scheduling
problem to estimate the time of performing a restoration plan when compared to the
usual strategy of considering the number of maneuvers as a proxy of time.

5.5 Performance analysis in network restoration

As explained in Chapter 2, the SAIDI index gets worse as more loads stay out of
service. The time to perform the maneuvers IT should, therefore, be an indicator to be
minimized. However, current literature tends to focus on minimizing only the number
of maneuvers IN , which is easier to compute but far less accurate. In this section,
we compare these two approaches in different scenarios and show how an apparently
good result with respect to IN could cause needless increases in SAIDI. For that, we
adopt a system from a Brazilian distribution utility with 5 feeders, 703 buses, and
132 switches (see Figure 5.5). Loads were estimated according to average consumption
at peak hours on a weekday, and the load flow parameters (voltage and current) for
each new configuration were computed using a matrix-based Forward-Backward sweep
[Lisboa et al., 2014].
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Figure 5.5: Distribution system used as basis for the computational experiments. For
simplicity of presentation only the nodes are numbered, and we refer to a switch by
the pair of nodes it connects.
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We compare two different formulations for the load restoration problem: f (1) =

[ISNR
, IN ] and f (2) = [ISNR

, IT ]. Both are multi-objective, with the first objective
to minimize the power not restored, while the second being either the number or
time of maneuvers. The outcome in both cases is a set of Pareto-optimal solutions
which is computed here by enumeration1 with each stage limited to a maximum of
five maneuvers (up to four openings, including an isolation switch, followed by on
closing) which we believe is a large enough number to represent real-world cases. Only
restoration plans that result in feasible configurations were considered to be Pareto-
optimal.

The proposed procedure of this work is to perform the optimization using the
greedy heuristic (as its processing time does not hinder the process), and then employ
the ILS to improve the estimation in the returned solutions. This approach is used
here with the formulations f (1) and f (2). In what follows, we consider three different
scenarios of faults to compare both methodologies.

5.5.1 Scenario 1: a single fault at a source

This first scenario consists of a single fault at a source node, but it can be considered
serious since it leaves a whole feeder out of service. The source 493 was arbitrarily
chosen to illustrate this scenario. A simplified view is shown in Figure 5.6. Despite its
severeness, we can recover the whole oos region with an isolation maneuver and the
closing of any CO switch shown in Figure 5.6, so for the problem considering IN all of
these possibilities are deemed optimal candidates, as shown in Table 5.3.
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Figure 5.6: Scenario 1: Fault at the source 493.

The problem with the approach which uses IN becomes clear in this case: it
considers all five solutions described in Table 5.3 as equally good, when in reality some

1It is appropriate to highlight that this approach should not be recommended due to the elevate
processing time to compute the set of Pareto-optimal solutions. Since the focus on this work is in the
implications of disregarding the actual time of maneuvers, this is not of concern here. In a practical
context, a heuristic would be more adequate.



54 Chapter 5. Computational experiments

Table 5.3: Optimal sequences of maneuvers obtained for Scenario 1 by each objective
formulation. The post-fault conditions (equivalent to a no maneuver solution) are
shown for comparison. IILST is the estimation returned by the ILS. Both time indices
are given in an appropriate time unit.

f2 Sequence of maneuvers ISNR (pu) IN IT IILS
T

Post-fault Open: {}; Close: () 0.0185 0 0.000 0.000

IN

Open: {(493,496)}; Close: (302,524) 0.0000 2 25.758 25.758
Open: {(493,496)}; Close: (488,536) 0.0000 2 81.607 81.607
Open: {(493,496)}; Close: (92,541) 0.0000 2 148.947 148.947
Open: {(493,496)}; Close: (471,552) 0.0000 2 161.563 161.563
Open: {(493,496)}; Close: (34,552) 0.0000 2 164.065 164.065

IT Open: {(493,496)}; Close: (302,524) 0.0000 2 25.758 25.758

maneuvers require less time to be performed, conditional on the initial positions of the
teams. The utility may experience an unnecessarily large contribution to SAIDI if the
decision maker chooses a plan that takes longer. In contrast, considering IT , only the
fastest plan is returned as optimal, which minimizes economic penalties due to longer
disconnections. Notice in this case that the time estimations provided by the heuristic
and the ILS are equal due to the small size of the solutions.

5.5.2 Scenario 2: simultaneous faults on multiple non-source

nodes

The second scenario consists of simultaneous faults at non-source nodes. Albeit less
severe, each fault leaves fewer loads disconnected. Such a scenario can be quite common
in distribution networks with a predominance of overhead lines, particularly in urban
regions with large tree canopy coverage, or in regions subject to seasonal rainstorms
– all of which are quite common in developing countries. Nodes 27, 536 and 681 were
arbitrarily chosen to illustrate this scenario.

In this scenario the enumeration of possible restoration plans returned 38 non-
dominated solutions for f (1) and 27 for f (2). Figure 5.7 shows the optimal solutions
according to both approaches, with respect to ISNR

and IILST (using the ILS) to allow
for comparisons.

A few important points are evident from this figure. First, there are many dif-
ferent sequences that yield the same objective values, as shown as parentheses in the
figure. Second, all possible sequences that recover the most power were found using
both approaches. However, for the sub-sequences with larger ISNR

(which demand
less maneuvers), the total time taken to implement these plans is basically the same
(notice all points returned for f (1) define a horizontal line), meaning that the f (1) con-
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Figure 5.7: Results for scenario 2. The number of different sequences of maneuvers
that recover the same ISNR

and demand the same time IILST is shown in parentheses.
If unspecified, this number is equal to 1.

cept cannot reach solutions with lower times. On the contrary, the approach using
time directly, instead of the number of maneuvers, found three other restoration plans
that may recover fewer loads but can actually be executed in a considerably shorter
time, providing the decision maker with reasonable alternatives from which the desired
course of action can be selected.

Finally, we would like to remark that the final decision of the plan to be executed,
among the non-dominated ones, is left to the operator. This decision should be taken
considering factors such as distribution utility policies, accumulated SAIDI before and
after the maneuvers, expected financial penalties, current network conditions, plan
risk, and operator experience. It is important to emphasize that if a decision criterion
was defined a priori (e.g. accumulated SAIDI), this criterion could be adopted as the
objective function of the optimization algorithms, without the need of a multiobjective
approach. However, this kind of strategy is often unfeasible, since decision criteria tend
to vary depending on the feeders affected by the fault and the current scenario of the
network.

5.5.3 Scenario 3: simultaneous faults on multiple sources

This is the most severe case of failure, which leaves multiple feeders out of service. Keep
in mind that there can be more than one feeder per substation, so sometimes a single
failure can cause such a serious scenario. To illustrate this scenario, the sources 68 and
294 were arbitrarily chosen. Given its large dimension, complete enumeration would
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demand an unreasonably long time (a few months) to finish. We, therefore, decided
to prune nodes from the enumeration tree that resulted in dominated solutions. This
procedure corresponds more closely to what would be performed in practice. Even
with this pruning strategy, the final number of solutions is too large to be shown in a
tabular form, so a graphical representation is shown in Figure 5.8. There were 35 and
66 solutions returned by the f (1) and f (2) approaches, respectively.
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Figure 5.8: Results for scenario 3. Left: all solutions returned by both approaches.
Right: only the non-dominated sequences.

As seen in the left panel, both approaches returned some dominated solutions.
This was already mentioned in previous scenarios for f (1) and, in this case, because
some solutions had more maneuvers to be executed, the heuristic used in f (2) possibly
overestimated the actual total maneuver time. Thus, in this scenario, the unnecessary
contribution to SAIDI could happen with both approaches. However, if the complete
procedure as proposed here is followed, after the execution of the ILS in each solution
and the removal of the non-dominated ones, the total number of alternatives reduces
to 13 with f (1) and 43 with f (2), as shown in the right panel of Figure 5.8. There are
two observations that can be made in this case. First, only about 37% of the sequences
are not dominated when considering only the number of maneuvers, contrasting with
65% when using the time heuristic. Second, even by looking at effectively different
solutions, some alternatives are only found with the f (2), which could represent more
promising trade-offs to the decision maker but which would remain unattainable if the
time is not used directly as objective.



Chapter 6

Final remarks

6.1 Overall conclusions

In the literature of load restoration, some works recognize the importance of consid-
ering a more reliable estimation of the time required to perform the maneuvers of a
restoration plan. However, most of them consider the number of maneuvers as a proxy
of time. The works that try to improve this estimation define a fixed time for each
switch to be maneuvered, which becomes nothing more than a weighted version of
the number of maneuvers, with the weights bearing no physical interpretation of time.
Since it is necessary to assign switching maneuvers to teams and sequence them to
obtain a proper estimation of time, this is not as simple as the usual approach that
considers only the number of maneuvers. Moreover, the approach adopted to esti-
mate the time required to perform the maneuvers need to be fast, since the process of
defining a restoration plan is already time-consuming due to repeatedly calculations of
power flow. These may be some of the reasons why previous works have not considered
a more reliable estimation so far.

In this work, we proposed the estimation of maneuvering time for the restoration
of electric power distribution networks through the solution of a scheduling problem.
The scheduling problem that needs to be solved is equivalent to the parallel machine
scheduling problem with sequence-dependent setup times and precedence constraints,
which is an NP-hard problem. To allow the proposed approach to be used in practice,
some efficient heuristics, in terms of runtime and solution quality, were also proposed.
The use of the proposed formulation and heuristics avoids the issues that arise when
employing the usual approach in the literature, namely that of using the number of
maneuvers as a proxy of time.

The proposed formulation that considers the estimation of time to perform the

57
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restoration plan was compared against the usual approach that considers the number
of maneuvers when formulating a plan in different fault scenarios with different levels
of severeness, based on a real network. The results of this comparison show that the
main drawback of using the number of maneuvers is that it tends to regard inferior
solutions (in terms of time) as if they were equally good. Thus, this procedure may
deceive the dispatch engineer into executing a plan that causes additional increases in
SAIDI, which could otherwise be prevented with the proposed technique. Moreover,
some alternatives may be inaccessible if only the number of maneuvers is considered,
as shown in Scenarios 2 and 3. This setback would be even more evident if the Pareto-
front was approximated with high-level heuristics (such as multi-objective Variable
Neighborhood Search), which are more common in practice. These methods usually
incorporate built-in diversity mechanisms that prevent solutions that are equivalent in
terms of objective values. In this case, among the sub-sequences with the same value of
ISNR

, only one would remain in the final non-dominated set. With the f (2) approach,
this would not be a problem since solutions are equivalent if they take the same time,
but with the f (1) concept we would keep or lose the fastest plan by blind chance. These
results should provide enough reason for adopting a time-based formulation to avoid
these pitfalls.

6.2 Further works

Scenarios that require 12 maneuvers or more, like the ones used in the experiments, can
be very large compared to what commonly happens in practice, but the experiments
performed with large instances were used to evaluate how the proposed heuristics scale
when the size of the problem increases.

Although scenarios with a large number of maneuvers are unlikely in the context
of load restoration, other similar scheduling problems that need to consider setup times
and precedence constraints can be found in the area of electrical engineering, among
others. As an example, we can cite the weekly scheduling of maintenance and services
in the distribution network, which can easily require tens to hundreds of jobs to be
performed by maintenance teams. Thus the proposed heuristics can be extended to
solve these problems as well, without much additional effort, since they scale well with
problem size.

Other aspects that can be investigated in future works are: the inclusion of
stochastic parameters, such as travel times, which may change due to traffic conditions
or other events; and a non-fixed number of available teams, such as the possibility of
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requesting outsourced teams to speed up the restoration process.
Future works can also investigate the behavior of neighborhood functions for the

maneuver scheduling problem. Since the objective of the problem is to minimize the
makespan, this objective function has a fitness landscape with many plateaus, which
may difficult local search methods escape from these regions.
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Appendix A

Alternative mixed integer
programming formulations

There are different strategies for writing scheduling problems as mixed integer program-
ming problems. They mainly differ on the constraints used to calculate the moment
in which each job starts. One of the most common strategies is based on disjunctive
constraints with big-M values. However, it is well known that the use of big-M tends to
lead to weak formulations, i.e., the gap between the values of objective function of the
optimal solution of the linear relaxation and the complete formulation is large. On the
other hand, arc-time-indexed formulations usually provide better linear relaxations,
but lead to a rapid increase in the number of variables and constraints, which makes
prohibitive the use of default branch-and-cut strategies to solve them.

In the next subsections, we present two alternative mixed integer formulations
for the maneuver scheduling problem. The first formulation uses big-M values for
the disjunctive constraints, while the second formulation is based on arc-time-indexed
variables.

A.1 Precedence variables

In this formulation based on binary precedence variables [Manne, 1960], the sequence
of maneuver operations performed by each team is modeled as a flow starting at node
0 (the team’s initial position) that goes through nodes of switch maneuvers. These
flows determine the ordering in which each team must perform the switch maneuvers
assigned to them.
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Given the decision variables:

xi,j,` =





1, if i ∈ N′ ∪ {0} and j ∈ N′ are maneuvered by team ` ∈M, with i

maneuvered immediately before j;

0, otherwise.

ti ≥ 0, the moment in which the maneuver of i ∈ N \ {0} is performed;

Cmax ≥ 0, the moment in which all maneuvers are completed (makespan);

the maneuver scheduling problem in the restoration of electric power distribution net-
works can be formulated as the following MIP problem:

Min. Cmax (A.1)

s.t.:
∑

j∈N′
x0,j,` ≤ 1 ∀` ∈M (A.2)

∑

i∈N′∪{0}:
i 6=j

∑

`∈M
xi,j,` = 1 ∀j ∈ N′ (A.3)

∑

j∈N′:
j 6=i

∑

`∈M
xi,j,` ≤ 1 ∀i ∈ N′ (A.4)

∑

h∈N′∪{0}:
h6=i, h6=j

xh,i,` ≥ xi,j,` ∀i, j ∈ N′; ∀` ∈M; i 6= j (A.5)

tj ≥ s0,j,` −M(1− x0,j,`) ∀j ∈ N′; ∀` ∈M (A.6)

tj ≥ ti + pi + si,j,` −M(1− xi,j,`) ∀i, j ∈ N′; ∀` ∈M; i 6= j (A.7)

tj ≥ ti + pi ∀(i, j) ∈ P (A.8)

Cmax ≥ ti + pi ∀i ∈ N \ {0} (A.9)

xi,j,` ∈ {0, 1}
∀i ∈ N′ ∪ {0}; ∀j ∈ N′;

∀` ∈M; i 6= j
(A.10)

ti ≥ 0 ∀i ∈ N \ {0} (A.11)

Cmax ≥ 0 (A.12)

in which the objective (A.1) is the minimization of the makespan, subject to the con-
straints:

• Each team has to start their work from its initial location. Then, constraints (A.2)
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ensure that for each ` ∈ M, the sum of all x0,j,`, for j ∈ N′, has to be 1 if the
team has some maneuver assigned to it, or 0 otherwise.

• Each maneuver of a manually controlled switch has to be performed by a single
maintenance team. Constraints (A.3) ensure for each j ∈ N′, the sum of all xi,j,`
for i ∈ N′ ∪ {0} and ` ∈ M is equal to 1, which means that one and only one
xi,j,` = 1 for a given j.

• If a maneuver is the last one performed by a maneuver team, then it has no suc-
cessors. Otherwise, the maneuver has only one successor maneuvers. Constraints
(A.4) ensure, for each i ∈ N′, the sum of all xi,j,` for j ∈ N′ and ` ∈ M is less or
equal to 1.

• If team ` maneuvers switches i and j, with i maneuvered immediately before j,
there is a switch h maneuvered immediately before i by the same team. The left
side of (A.5) ensures the sum of all xh,i,`, for h ∈ N′ ∪ {0}, to be equal equal to
1 if xi,j,` is equal to 1.

• If a switch j is the first one maneuvered by a team `, then the moment in which
it is maneuvered has to be satisfy the displacement time of team ` from its initial
location to the switch location. The disjunctive constraints (A.6) ensure ti ≥ s0,j,`

if j is the first switch maneuvered by a team.

• If switches i and j are maneuvered by the same team `, with i maneuvered
immediately before j, then the moment in which j is maneuvered must not be
before the moment in which the maneuver of i is completed increased by the
displacement time from i to j. The disjunctive constraints (A.7) ensure tj ≥
ti + xi,j,` if xi,j,` = 1.

• The moment a switch (manually or remotely operated) is maneuvered must
satisfy the precedence constraints given by the precedence graph G≺. Con-
straints (A.8) ensure that all precedence constraints are satisfied.

• Constraints (A.9) are used to compute the makespan Cmax.

• Finally, constraints (A.10)–(A.12) define the domain of the decision variables:
xi,j,` are binary variables, and ti and Cmax are non-negative continuous variables.

The formulation above also uses big-M values at disjunctive constraints (A.5) and
(A.6). A value for the this constantM can be defined as described in Eq. (3.14).
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A.2 Arc-time-indexed variables

The MIP formulation presented in this section is based on binary arc-time-indexed
variables [Pessoa et al., 2010]. This approach segments the time horizon in discrete
units. Then, it assumes the parameters pi and si,j,` are non-negative integer values.

In addition to the parameters introduced so far, let T be the upper limit for the
makespan, the time horizon is discretized in values 0, 1, . . . , T . The value of T can be
computed as the big-M in Eq. (3.14), but the larger this value the larger is the number
of variables and constraints in the formulation. Then, T can be set as the makespan
of a solution obtained by a heuristic.

Given the decision variables:

wi,j,`,r =





1, if i and j ∈ N′ are maneuvered by team ` ∈M with j maneuvered

at moment r;

0, otherwise.

ti ≥ 0, the moment in which the maneuver of i ∈ N \ {0} is performed;

Cmax ≥ 0, the moment in which all maneuvers are completed (makespan);

the maneuver scheduling problem in the restoration of electric power distribution net-
works can be formulated as the following MIP problem:

Min. Cmax (A.13)

s.t.:
∑

j∈N′

H−pj∑

r=s0,j,`

w0,j,`,r ≤ 1 ∀` ∈M (A.14)

∑

i∈N′∪{0}:
i 6=j

∑

`∈M

H−pj∑

r=s0,i,`+
pi+si,j,`

wi,j,`,r = 1 ∀j ∈ N′ (A.15)

∑

j∈N′:
j 6=i

∑

`∈M

H−pj∑

r=s0,i,`+
pi+si,j,`

wi,j,`,r ≤ 1 ∀i ∈ N′ (A.16)

∑

h∈N′∪{0}:
h6=i, h6=j

r−pi−si,j,`∑

v=s0,h,`+
ph+sh,i,`

wh,i,` ≥ wi,j,`,r

∀i, j ∈ N′ : i 6= j; ∀` ∈M;

r = s0,i,` + pi + si,j,`, . . . , H − pj;
(A.17)
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tj =
∑

i∈N′:
i 6=j

∑

`∈M

H−pj∑

r=s0,i,`+
pi+si,j,`

rwi,j,`,r ∀j ∈ N′ (A.18)

tj ≥ ti + pi ∀(i, j) ∈ P (A.19)

Cmax ≥ ti + pi ∀i ∈ N \ {0} (A.20)

wi,j,`,r ∈ {0, 1}
i ∈ N′ ∪ {0}; j ∈ N′ : i 6= j; ` ∈M;

r = s0,i,` + pi + si,j,`, . . . , H − pj;
(A.21)

ti ≥ 0 ∀i ∈ N \ {0} (A.22)

Cmax ≥ 0 (A.23)

in which the objective (A.13) is the minimization of the makespan, subject to the
constraints:

• Each team has to start their work from its initial location. Then, con-
straints (A.14) ensure that for each team ` ∈ M, there is at most one variable
w0,j,`,r equal to one, for j ∈ N′ and values of r available. Notice that the values
of r start from s0,j,`, which ensure that if a switch j is the first one maneuvered
by team `, then it can not be maneuvered before the time required to team ` to
arrive its location.

• Each maneuver of a manually controlled switch has to be performed by a single
maintenance team. Constraints (A.15) ensure that for each j ∈ N′ there is only
exactly one variable wi,j,`,r = 1 for a given j.

• Each maneuver has at most one successor maneuver if it is not the last one
maneuvered by a team. Otherwise, it has no successor maneuver. The left side
of constraints (A.16) are equal to 1 if switch j ∈ N′ is not the last one maneuvered
by a team, or equal to 0 otherwise.

• The predecessor of each maneuver must be assigned to the same team (A.17).
This set of constraints, together with constraints (A.15) and (A.16) also ensure
that variables wi,j,`,r are equal to one only if the respective value of r respect the
displacement and processing times between consecutive maneuvers.

• The moment tj in which a switch j is maneuvered must be the equal to the value
of r in which the binary variable wi,j,`,r is active. Constraints (A.18) just ensure
this condition to be satisfied.
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• The moment a switch (manually or remotely operated) is maneuvered must
satisfy the precedence constraints given by the precedence graph G≺. Con-
straints (A.19) ensure that all precedence constraints are satisfied.

• Constraints (A.20) are used to compute the makespan Cmax.

• Finally, constraints (A.21)–(A.23) define the domain of the decision variables:
wi,j,`,r are binary variables, and ti and Cmax are non-negative continuous variables.




