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Resumo
A dinâmica de sistemas quânticos fechados (ideais), i.e., sistemas em que não consideramos
interações com um meio externo (ambiente), é governada por uma evolução unitária,
que pode ser geralmente descrita pela equação de Schrödinger - ou, na linguagem de
operadores densidade, a equação de von-Neumann. No entanto, sistemas reais, ou seja,
sistemas que podem ser medidos no laboratório, nunca estão completamente fechados e
inevitavelmente irão interagir com os diversos graus de liberdade de seus ambientes. Nesse
cenário, a equação de Schrödinger é apenas uma descrição válida da evolução do sistema
por pequenos períodos de tempo, e uma nova descrição se torna necessária. Uma das
formas de fazer isso é através do uso de equações mestras, que são equações de movimento
que consideram os efeitos dissipativos no sistema devido às interações com o ambiente.
Entre as possiveis formas das equações mestras, a equação de Lindblad é uma das mais
extensivamente estudadas. Ela descreve evoluções markovianas, que geralmente são válidas
no regime de interações fracas entre sistema e ambiente. Nessa perspectiva, ela tem sido
aplicada com sucesso em muitos contextos, como medição contínua e ótica quântica. No
contexto de problemas de sistemas quânticos abertos de muitos corpos, nem sempre é
possível descrever a dinâmica dos sistemas através de uma equação mestra na forma
de Lindblad. No entanto, essa aproximação pode ser usada em uma classe especial de
sistemas atômicos, moleculares e ópticos (AMO). O objetivo desta dissertação é estudar a
dinâmica de sistemas quânticos abertos de muitos corpos AMO, que são aproximadamente
descritos pelo modelo de Hubbard, através do uso de métodos numéricos. Para isso, vamos
focar nossa atenção em uma técnica de simulação particular conhecida como trajetórias
quânticas, que em muitos contextos se mostra muito eficiente - o que pode ser melhorado
se integrarmos esse método com outros, como Tensor Networks, t-DMRG e diagonalização
exata.

Palavras-chave: sistemas quânticos abertos; sistema quânticos de muitos corpos; modelo
de Hubbard; trajetórias quânticas; sistemas quânticos de muitos corpos abertos; efeito
Zenão contínuo; preparação de estados.



Abstract
The dynamics of closed (ideal) quantum systems, i.e., systems which are not considered to
be interacting with an external media (environment), are governed by unitary evolution
which can be generally described by the Schrödinger -or, in the language of density
operators, the von-Neunmann - equation. Nevertheless, real systems, i.e., systems which
can be measured in the laboratory, are never completely closed and are inevitably going
to interact with the various degrees of freedom of their environments. In this scenario,
Schrödinger’s equation is only a valid description of the system’s evolution for small
periods of time and a new description of its dynamics becomes necessary. One of the ways
to do this is through the use of master equations, which are equations of motion that
consider the dissipative effects in the system due to interactions with its environment. The
Lindblad master equation is one of the most extensively studied. It describes Markovian
evolutions, which are usually the case in the regime of weak interactions between system
and environment. It has been successfully applied in many contexts, such as those of
continuous measurement and quantum optics. In the context of open quantum many body
problems it is not always possible to describe the system dynamics through a master
equation in Lindblad form. Nonetheless, this approxmation can be used in a special class
of atomic, molecular and optical (AMO) systems. The goal of these thesis is to study the
dynamics of open many body quantum AMO systems which are approximately described
by the Hubbard model through the use of numerical methods. To that end we will focus
our attention on a particular simulational technique known as quantum trajectories which
in many contexts proves to be very efficient - even more so if we integrate this method
with others such as Tensor Networks, t-DMRG and exact diagonalization.

Keywords: Open quantum systems; many body quantum systems; Hubbard model;
quantum trajectories; open many body quantum systems; continuous quantum Zeno effect;
state preparation.
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1 Introduction

The study of open quantum systems has great impact in many areas of physics,
such as quantum optics, continuous measurements, quantum information and quantum
computation. The application of its results have proved to offer new insights in both
theoretical and experimental setups.

In an ideal setup, where no interaction with the system’s environment is consid-
ered, the dynamics of the state of the system is described by unitary evolution, i.e. by
Shcrödinger’s equation. Nevertheless, this description does not hold for long when we
study open quantum systems, i.e., real quantum systems, whose interactions with an
environment have to be considered. In the real world, no system measured is completely
closed and, therefore, a more precise description of the system dynamics when in contact
with its environment is required in order to make correct predictions and have a deeper
understanding of the system’s dynamics mechanisms.

In this spirit, many formalisms were created in order to describe these systems,
such as quantum maps and master equations. The latter are equations of motion analogous
to the Schrödinger equation, which take into consideration the coupling between system
and environment, and may describe markovian or non-markovian dynamics depending on
the system under consideration [11].

In this regard, even though non-markovian dynamics is dominant in physical
systems, there are many fields, such as quantum optics and continuous measurements,
in which important approximations may be done to consider the evolution of systems
as being markovian. The extensive studies over such markovian master equations led to
many methods to numerically solve them. One of these methods, the so called quantum
trajectories technique, will be one of the focus of this thesis.

In recent years, advances in the control over many body systems composed of
ultracold atoms and molecules, as well as trapped ions and optical systems (usually
known as AMO systems) have brought interest in their application to the study of many
areas, such as analog quantum simulation [5, 12], quantum computation [13] and quantum
information [14, 15].A great example is that of the study on optical cavities done by
Haroche et al [1], where detection of single photons were made by continuously probing
the state of the cavity with two level atoms - the so called quantum non-demolition
measurements(QND). The fact that, under the right parameter range, these systems
dynamics may be described by well known models in quantum many body problems, e.g.,
the Hubbard and Heisenberg models, and also that their open dynamics may be described
by markovian master equations turned their research very appealing, since many techniques
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used to study open quantum systems, such as numerical methods and theoretical results,
may be conveniently used in this many body context.

In this thesis we shall focus our attention on the study of open many body AMO
systems whose dynamics may be described by the Hubbard model, giving emphasis in
the quantum trajectories numerical method as a means to obtain results about them. In
Chapter 2, we cover the fundamental notions of open quantum systems, introducing the
quantum trajectories technique and discussing some results on master equations through it.
In Chapter 3, we give an overview of quantum many body systems focusing our attention
on the Hubbard model and AMO systems. In Chapter 4.1, we present a review of the
progress of open many body AMO systems and the use of quantum trajectories to study
them. We focus our attention on two specific features caused by dissipation on those
systems, namely, the continuous quantum Zeno effect and state preparation. Finally, in
Chapter 5, we give our final considerations and conclusions on this work.
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2 Open Quantum Systems

The postulates of quantum mechanics are usually formulated in an ideal setup, i.e.,
an isolated system that does not interact with the environment around it. This idealization
is an important step towards understanding the causes of numerous quantum phenomena
and also provides us with a mathematical framework for the development of physical
theories [16]. Nevertheless, in reality there are no isolated systems and interactions with the
various degrees of freedom of the environment are inevitable. In this viewpoint, the system
evolution can only be accurately described by Shrödinger’s (or von-Neumann’s) equation
for very short timescales before the dynamics of the open quantum system becomes
dominated by its coupling with the environment, which will lead to decoherence and a
more classical behavior ( [9], [11]. A clear example of an open system, given by Nielsen et
al [16], can be seen in the context of quantum information. If we consider the state of a
qubit to be represented by two positions of an electron in an atom, the interactions with
the electric and magnetic fields of other particles will become an uncontrollable source of
noise and affect the system state.

In this context, a number of formalisms to describe open quantum systems were
developed such as quantum maps (also known as quantum operators), that describe the
evolution of an open system in discrete time intervals, and master equations which allow
us to evolve the system state continuously. We shall briefly describe them.

2.1 Quantum Maps
In the quantum maps formalism we consider a composite system Hs⊗He formed by

the system Hilbert space Hs and the environment Hilbert space He. We then consider the
composite system as a closed system - described by the postulates of quantum mechanics-
which implies that the system will undergo unitary dynamics. Thus, if the initial state of
the composite system is |ψs⟩ ⊗ |ψe⟩ the evolution of the system will be given by:

|ψs⟩ ⊗ |ψe⟩ → Use |ψs⟩ ⊗ |ψe⟩ (2.1)

where Use is a unitary operator. Let {|ms⟩} and {|me⟩} be an orthonormal basis for the
system and environment, respectively. If we use the explicit identity Ie = ∑

m |me⟩ ⟨me| in
equation 2.1 we get:

(Use |ψs⟩ ⊗ |ψe⟩) = (Is ⊗ Ie)Use(|ψs⟩ ⊗ |ψe⟩) =⇒

Use(|ψs⟩ ⊗ |ψe⟩) = (Is ⊗∑
m |me⟩ ⟨me|)Use(|ψs⟩ ⊗ |ψe⟩).

(2.2)
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Defining the operator:

⟨me|Use(|ψs⟩ ⊗ |ψe⟩) ∈ Hs := Am |ψs⟩ (2.3)

we can rewrite the equation 2.2 as:

Use(|ψs⟩ ⊗ |ψe⟩) =
∑
m

Am |ψs⟩ ⊗ |me⟩ (2.4)

where ∑mA
†
mAm = Is. Thus, we have the map:

T (ρ = |ψs⟩ ⟨ψs|) → Tre
[∑

m

∑
m′ Am |ψs⟩ ⊗ |me⟩ ⟨m′

e| ⊗ ⟨ψs|A†
m′

]
= ∑

mAmρsA
†
m

(2.5)
where the trace Tre is taken over the environment. Equation 2.5 is called the Kraus
representation for the quantum map:

T (ρ) =
∑
m

AmρA
†
m (2.6)

It is also possible to define a quantum map through the use of three axioms [16,17]:

1. 0 ≤ Tr[T (ρ)] ≤ 1 e Tr[T (ρ)] represents the probability the process has happened.

2. T (ρ) is convex-linear:
T (
∑
i

piρi) =
∑
i

piT (ρi) (2.7)

3. The map T must be completely positive, that is, T (χ) must be positive for any
positive operator χ. If we introduce a new system, M , it must be true that IM ⊗T (χ)
is also positive.

A simple example of a quantum map are generalized measurements (also known in
some contexts as Positive Operator Valued Measurement, or POVM) which are essential
in the context of continuous measurements [18], and can be defined as follows:

• A generalised measurement is composed by operators {Ωm}, which satisfy∑m Ω†
mΩm =

I where the index m indicates the possible measurement results. If the state of the
system before the measurement is ρ then we have that:

• the probability of obtaining the result m is given by Tr[Ω†
mΩmρ].

• the state after the measurement is given by ΩmρΩ†
m

Tr[Ω†
mΩmρ]

.
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2.2 Master Equations
Another important formalism that gives us a mechanism to evolve an open quantum

system are the master equations. It consists of deriving an equation of motion for the
system state ρ, where the dissipative effects due to coupling with the environment are
taken into consideration. The state of the system is defined as the trace over the degrees of
freedom of the environment for the density operator ρtotal of the total (closed) composite
system, i.e. ρ = Trenv[ρtotal], as in the last section.

Generally, a master equation may take a very complicated form, since the state
of the system at a specific time, ρs(tn), may depend on the state at previous times
(ρ(t1), ρ(t2), ...), i.e., the equation may be non-Markovian. Nevertheless, on specific regimes
it is possible to approximate the dynamics as Markovian, which makes it easier to derive a
master equation for it. This can be done through different routes [11,19,20] (see B for one
of such routes).

The most general representation of the systems equation of motion for a Markovian
evolution take the Lindblad form:

ρ̇ = − i

ℏ
[H, ρ] − 1

2
∑
m

γm[C†
mCmρ+ ρC†

mCm − 2CmρC†
m] (2.8)

where H is the system Hamiltonian, the operators Cm are called Lindblad operators (or
jump operators) and describe the dissipative dynamics which happen at rates γm. The
initial state is usually assumed to be uncorrelated, i.e., ρtotal = ρ⊗ ρenv. We can absorb
the term γm into the operators Cm making lm = √

γmCm in order to simplify the equation:

ρ̇ = − i

ℏ
[H, ρ] − 1

2
∑
m

[l†mlmρ+ ρl†mlm − 2lmρl†m]. (2.9)

Another representation of 2.8 is:

ρ̇ = − i

ℏ
(Heffρ− ρH†

eff ) +
∑
m

lmρl
†
m, (2.10)

where Heff represents a non hermitian Hamiltonian which accounts for the effects of
dissipation and decoherence and is given by

Heff = H − i

2
∑
m

l†mlm. (2.11)

This definition of the effective Hamiltonian is very useful for the implementation of
numerical methods such as the quantum trajectories technique. The second term on the
right handside of equation 2.10(∑m lmρl

†
m) is also called the recycling term since it recycles

the lost population of states after the action of the non-Hermitian effective Hamiltonian.
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2.3 Quantum Trajectories
The term quantum trajectories was first coined by Carmichael [21] for the numerical

technique designed to obtain the evolution of a master equation as stochastic averages
over individual evolution of pure initial states (i.e. individual trajectories) in his studies of
generation of non-classical states of light. Similar methods have been developed parallel to
his work by different research groups under different names such as the Monte Carlo Wave
Function method [22–24]. The numerical technique presented advantages in comparison to
solving the master equation exactly when the dimensions of the Hilbert spaces involved in
the calculation were significantly large. This is because instead of evolving an object of
size D2 (where D is the dimension of the Hilbert space), which becomes very costly as the
dimensions of the space become larger, an object of size D was evolved which, depending
on the system, would cost much less memory.

The quantum trajectory method is more easily understood in the viewpoint of
Mølmer et al [22, 23]. We begin by expanding the master equation

dρ

dt
= − i

ℏ
[H, ρ] + L(ρ) (2.12)

where ρ is the system state, H the system Hamiltonian and L is the Liouvillian superoper-
ator:

L = −1
2
∑
m

(l†mlmρ+ ρl†mlm) +
∑
m

lmρl
†
m (2.13)

to first order, representing the state in an equivalent vector form. Suppose the system
state at time t is |ϕ(t)⟩. The idea is to define a stochastic process for the state vector, such
that, for every instant of time, its average over all realization matches the solution of the
Linblad equation at that instant of time. Then, to first order in δt, we have

∣∣∣ϕ(1)(t+ δt)
〉

=
(

1 − iHeffδt

ℏ

)
|ϕ(t)⟩ . (2.14)

Since Heff is non-Hermitian the state
∣∣∣ϕ(1)(t+ δt)

〉
is not normalized and

〈
ϕ(1)(t+ δt)

∣∣∣ϕ(1)(t+ δt)
〉

=

⟨ϕ(t)|
(

1 + iH†
eff

δt

ℏ

)(
1 − iHeff δt

ℏ

)
|ϕ(t)⟩ = 1 − δp,

(2.15)

where
δp = δt iℏ ⟨ϕ(t)|Heff −H†

eff |ϕ(t)⟩
= ∑

m δpm
(2.16)

and δpm = δt ⟨ϕ(t)| l†mlm |ϕ(t)⟩. After the evolution we randomly decide whether a quantum
jump will occur. This is done by choosing a uniformly distributed random number ϵ in the
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interval [0,1] and using the following rule:

|ϕ(t+ δt)⟩ =


|ϕ(1)(t+δt)⟩√

(1−δp)
if ϵ ≥ δp,

lm |ϕ(t)⟩ , otherwise.
(2.17)

where we choose the operator lm with probability

Πm = δpm
δp

. (2.18)

Therefore after a time interval δt the state of the system is randomly chosen to
be one of the possible states in equation 2.17. Since it is a first order approximation this
procedure is only valid for intervals δt such that δp ≪ 1.

This process should then be repeated to the point that the average over an infinite
number of trajectories converge to the solution of the master equation.

2.3.1 Equivalence to the Master Equation

To show that the stochastic average over trajectories lead to the solution of the
master equation we consider the density operator σ(t) = |ϕ(t)⟩ ⟨ϕ(t)|.The propagation of
σ(t) is given by:

σ(t+ δt) = (1 − δp) |ϕ(1)(t+δt)⟩√
(1−δp)

⟨ϕ(1)(t+δt)|√
(1−δp)

+δp∑m Πm
lm|ϕ(t)⟩√

( δpm
δp

)

⟨ϕ(t)|l†m√
( δpm

δp
)

. (2.19)

Using definitions 2.14 2.13 2.11 we get:

σ(t+ δt) = σ(t) +
(
iδt

ℏ

)
[σ(t), H] + δtL(σ(t)). (2.20)

Therefore we see that taking the stochastic average over trajectories we have

dσ

dt
= i

ℏ
[σ,Hs] + L(σ), (2.21)

where σ indicates the average. This shows that the quantum trajectories technique gives
the solution of the master equation.

In order to obtain the values of observables a similar approach as the one described
above can be taken. For several trajectories,|ϕi(t)⟩, the expected value of an observable A
is calculated, i.e.⟨ϕi(t)|A |ϕi(t)⟩. Defining the stochastic average over trajectories for the
observable as

⟨A⟩n(t) = 1
n

n∑
i=0

〈
ϕi(t)

∣∣∣A ∣∣∣ϕi(t)〉 (2.22)
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where n is the number of trajectories that have been run in the simulation. As a consequence
of equation 2.21 and from the definition of the quantum mechanical expectation value
⟨A⟩ = Tr{ρA}, in the limit of n ≫ 1 we have

⟨A⟩n(t) ≈ ⟨A⟩(t). (2.23)

According to Dallibard et al [22] and Daley [9] we can also have a direct physical
interpretation of the numerical technique, in the sense that we have a system evolving
under the Hamiltonian Heff and there is the possibility of a quantum jump happening
with a certain probability. The interpretation is clearer when we consider the example of a
two level atom whose ground and excited states are |g⟩ and |e⟩, respectively. The system
Hamiltonian is given by:

H = ℏω0σ
+σ− (2.24)

where
σ+ = |e⟩ ⟨g| , σ− = |g⟩ ⟨e| , (2.25)

and ℏω0 is the difference in energy between the two states.

Let the state of the system, |ψ(t)⟩, at t = 0 be given by the superposition:

|ψ(0)⟩ = α0 |g⟩ + β0 |e⟩ . (2.26)

Assuming the system undergoes a process analogous to the one descibed in equation 2.12,
the effective Hamiltonian is, then, given by:

Heff = ℏω0σ
+σ− − iℏΓ

2 σ+σ−, (2.27)

where Γ is the decaying rate of the two level atom.

After a sufficiently long time, interaction with the environment will lead the atom
to decay into the ground state. Evolving the state |ψ(0)⟩ for a time interval δt we have

∣∣∣ψ(1)(δt)
〉

= α0 |g⟩ + β0 exp(−iω0δt) exp
(

−Γ
2 δt

)
|e⟩ (2.28)

and
δp = δtΓ ⟨ψ(0)|σ+σ− |ψ(0)⟩ = δtΓ|β0|2, (2.29)

with δp being the the probability of a photon being emitted on the time interval δt.
Therefore, we can see that obtaining a random number ϵ < δp corresponds to the detection
of a photon emitted by the atom (a quantum jump), whereas if we have ϵ > δp the system
state will be proportional to

∣∣∣ψ(1)(δt)
〉

and, using the fact that δt is small, it can be
rewritten as (see [22]):

|ψ(δt)⟩ = α0

(
1 + Γ

2 δt|β0|2
)

|g⟩ + β0

(
1 − Γ

2 δt|α0|2
)

exp(−iω0δt) |e⟩ . (2.30)
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This manner of writing the evolved state after no photon is detected is crucial in order to
get the realistic solution to the dynamics of the system. Note that if we had written the
normalized evolved state as

|ψ(δt)⟩ = α0 |g⟩ + β0 exp(−iω0δt) |e⟩ , (2.31)

the probability of having a quantum jump in the interval (0, δt) would be the same as in
the interval (δt, 2δt), meaning there would be no real change in the probability the system
is in the excited state since the state would change only by a global phase, i.e.,

| ⟨e|ψ(δt)⟩ |2 = |β2
0 |(exp{iω0δt} exp{(−iω0δt)}) = |β2

0 |. (2.32)

Thus, in this scenario the only possible way for the system to decay into the ground
state would be by photon emition. But in the physical evolution there is a probability for
the system decaying to its ground state without emitting a photon. Therefore the states
are coupled and their accurate evolved representation should be given by (2.30). The
probability of the atom being in each state is then time dependent and the evolution of
the parameters α0 and β0 are given by:

α(t) = α0[|α0|2 + |β0|2 exp(−Γt)]− 1
2 (2.33)

β(t) = β0 exp(−Γ/2t)[|α0|2 + |β0|2 exp(−Γt)]− 1
2 (2.34)

and the probability that no quantum jump occur in the time interval (0, t) is given by:

P (t) = |α0|2 + |β0|2 exp(−Γt) (2.35)

and, hence, there is a probability |α0|2 that no photon will be detected in the interval
(0,∞).

2.3.2 Statistical Errors

Assuming the random numbers generated in the numerical calculation of the
trajectories are statistically independent, the expected value ⟨Ω⟩ of an operator should be
approximately described by the mean:

Ω̄ = 1
N

∑
i

Ωi = 1
N

∑
i

⟨ψi(t)| Ω |ψi(t)⟩ (2.36)

where the subscript i indicates the i-th trajectory and N is the total number of trajectories
used in the estimate.

For sufficiently large N the central limit theorem tells us that the probability
distribution for Ω̄ is approximately Gaussian with mean ⟨Ω⟩. The statistical error of this
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distribution is, then, calculated in terms of the variance of Ω̄:

Var[Ω̄] =
〈

(Ω̄ − ⟨Ω⟩)2
〉

=
〈 1

N

∑N
i=1 Ωi

2

− 2Ω̄⟨Ω⟩ + ⟨Ω⟩2
〉

= 1
N2
∑N
i=1

∑N
j=1⟨Ω⟩ − ⟨Ω⟩ = 1

N2
∑N
i=1⟨Ω2

i ⟩ + 1
N2
∑N
i=1

∑N
j=1⟨Ωi⟩2⟨Ωj ̸=i⟩2 − ⟨Ω⟩2

= 1
N2
∑N
i=1⟨Ω2

i ⟩ + N2−N
N2 ⟨Ωi⟩2 − ⟨Ω⟩2 = 1

N2
∑N
i=1⟨Ω2

i ⟩ + N−1
N

⟨Ω⟩2 − ⟨Ω⟩2

= 1
N

(⟨Ω2⟩ − ⟨Ω⟩2) = 1
N

Var[Ω].
(2.37)

where we have assumed ⟨ΩiΩj ̸=i⟩ = ⟨Ωi⟩⟨Ωj ̸=i⟩ and ⟨Ω̄⟩ = ⟨Ω⟩. It can be shown that we
could use the approximator [25]

Var[Ω] ≈
∑N
i=1(Ωi − Ω̄)2

N − 1 . (2.38)

The statistical error is, then, the standard deviation of the values Ωi which is given by:

σ = ∆O√
N
, (2.39)

where ∆O =
√

Var[⟨O⟩] the standard deviation of the observable O.

The number of trajectories needed for good conversion will depend on the kind of
variable being measured. Tipically, it is desired that σ

⟨O⟩ ≪ 1 which leads to the conclusion
that √

N ≫ ∆O
⟨O⟩

. (2.40)

2.3.3 High Rank quantities vs Low Rank quantities

According to Mølmer et al [22] there is a difference in the number of trajectories
needed in order to estimate high rank and low rank quantities. High rank quantities
such as the total energy of the system OG = Etot should need a number of trajectories
that has no dependence on the size of the Hilbert space associated with the system. One
example given by Daley et al [9] is the brownian motion of a particle in a thermalized
system at temperature T , whose energy expectation value is ⟨Etot⟩ ≈ 3

2kBT where kB is
the Boltzmann constant. In this case the requirement on the number of trajectories should
be N ≫ 1 and the estimative for the error should be approximately given by 1√

N
.This is

also expected in Many body systems where we expect global averages involving all the
particles in the system to be efficiently calculated with quantum trajectories.

The situation is different for low rank quantities in single particles systems, such
as the population of a given eigenstate of O. In this case the mean and variance of the
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observable will scale with the inverse of the number of quantum levels -size of the Hilbert
space of the system- involved in the simulation [22], then it will be expected that the
number of trajectories needed for good accuracy of the solution will be given by N ≫ D,
where D is the dimension of the Hilbert space of the system. This follows from the
observation that low rank quantities should behave as ⟨OL⟩ ∼ 1/D and ∆⟨OL⟩ ∼ 1/

√
D.

Substitution of this result in equation 2.40 leads to
√
N ≫

√
D.

In the case of many particle systems the behavior of low rank quantities may not be
so clear as when dealing with single particle systems. If we try to calculate the population
of an eigenstate of some local many body observable out of D many body eigenstates
of that observable the situation is the same. On the other hand, if the quantities of a
finite-size system are local in momentum or space they will often scale as the size of the
system L. In this perspective, quantities such as the local occupation on a site in a lattice
with L sites tend to scale as ⟨OL⟩ ∼ 1

L
and we require a number of trajectories N ≫ L for

good convergence. Even though more trajectories will be needed than in the case of high
rank quantities it is still advantageous to use quantum trajectories in the case of these
local quantities.

2.3.4 Alternative formulation

The method of evolving the trajectories given in the beginning of this section is
only accurate to first order in t. It may be possible to use this first order time step for
dissipative dynamics if dissipation is much slower then the dynamical timescales of the
system. However, the fact that it takes an entire time step δt for a quantum jump to occur
leads to a systematic overestimation of jumping rates.

An improved algorithm has been developed by Dum et al. [24], which is approached
by the viewpoint of continuous measurement [18]. The algorithm steps are the following

1. Sample the initial state and evolve it under the effective Hamiltonian Heff as in Eq.
(2.14)

2. Sample a random number ϵ, uniformly distributed between 0 and 1

3. Numerically solve the equation:∥∥∥∥exp
{

− i

ℏ
Heff t1

}
|ψ(t0)⟩

∥∥∥∥2
= ϵ (2.41)

in order to find the time t1 at which the next jump occurs given that the last jump
or the beginning of the calculations occurred at time t0

4. |ψ(t)⟩ is then calculated in the time interval [t0, t1] as

|ψ(t)⟩ =
exp

{
− i

ℏHeff (t− t0)
}

|ψ(t0)⟩∥∥∥exp
{
− i

ℏHeff (t− t0)
}

|ψ(t0)⟩
∥∥∥ (2.42)
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5. At time t1 a quantum jump is applied, with probabilities of using each lm given by
the second step of the method in the beginning of this section, i.e., choosing lm with
probabilities

Pm = δpm
δp

, (2.43)

and apply the jump as:
|ψ(t1)a⟩ = lm |ψ(t1)b⟩

∥lm |ψ(t1)b⟩∥
, (2.44)

where |ψ(t1)a⟩ is the state of the system after applying the jump and |ψ(t1)b⟩ is the
state of the system after the evolution under the effective Hamiltonian up to time t1.

6. Repeat the process from step 2 choosing a new random number ϵ.

This algorithm will be the only one used throughout this text.

2.3.5 Examples

• Optical Bloch Equations

To give a better understanding of the method we begin by studying the simple
dissipative single particle system, a two level atom coupled to a (classical) laser field
[26], with detuning ∆ between the laser frequency and the frequency associated with
the atomic transition. In the case where there is no dissipation the atom undergoes
Rabi oscillations between the excited and ground states, |e⟩ , |g⟩, respectively. This
leads to the Rabi Hamiltonian for spin half systems. When the system goes through
spontaneous emissions( in the presence of damping) it can be described by the
following master equation:

ρ̇ = − i

ℏ
[Hopt, ρ] + Γ

2 (2σ−ρσ+ − {σ+σ−, ρ}) (2.45)

where
Hopt = −Ω

2 σx − ∆σ+σ−. (2.46)

This master equation leads to the so-called optical Bloch equations which are the
differential equations that govern the dynamics of the matrix elements of ρ.

We show on Fig 1 the solutions of the master equation using the quantum trajectory
technique. As it can be seen in the in Fig 1-a the single trajectories undergo rabi
oscillations and quantum jumps to the ground state are happening stochastically. In
Fig 1-b shows the comparison of the solution of the master equation for an average
over 500 trajectories and the exact solution of the master equation.
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(a)

(b)

Figure 1 – Illustrative example of quantum trajectories averaging for a two-level system.
(a) Probability of finding the atom in the excited state, ρee, as a function of
time tΩ, for three example trajectories (with blue solid, green dashed and
orange dotted lines showing different random samples). We see the effect of
quantum jumps, where the atom is projected onto the ground state. Here the
detuning ∆ = 0, and Γ = Ω/6. (b) Expected value of ρee averaged over 500
sample trajectories (dotted line), compared with the exact result from direct
integration of the master equation (solid line). We have also estimated the error
over the number of trajectories used (doted green line).
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• Dephasing for hardcore lattice Bosons

A second example is a gas of hard-core bosons which move on a lattice. The effective
model for this many body system can be given by the Hubbard Model(see section
3.5):

HBH = −J
∑
⟨j,l⟩

a†
jal + U

2
∑
l

a†
lal(a

†
lal − 1) (2.47)

where ai, a†
i are the annihilation and creation operators, respectively (see C.3), on

site i, J is the hopping amplitude and U is the on-site interaction.

In this model the first term is associated with the hopping of particles between lattice
sites and the second term is associated with the on-site interaction. Effectively, we can
describe the system of a gas of hard-core bosons by taking the limit U

J
→ ∞ so that

conservation of energy strongly defavors double occupancy on one site. Considering
a one dimensional system, this leads to the following Hamiltonian for the system:

H = −J
∑
l

(a†
lal+1 + a†

l+1al) (2.48)

and we apply the constraint (a†)2 := 0

An example of dissipative process occurs when we consider spontaneous emission in
the system, i.e., incoherently scattering light from lattice lasers, for example. This
tends to localize particles in the system, providing the environment with information
about the location of the particles. A master equation that describe such process is
given by:

ρ̇ = − i

ℏ
[H, ρ] +

∑
l

Γ
2 (2n2

l ρn
2
l − {n2

l , ρ}) (2.49)

where H is the Hamiltonian given by equation 2.48 and nl = a†
lal is the number

operator. This equation may be solved numerically using quantum trajectories
technique and we may calculate quantities considered global (such as the total energy
of the system) and local (such as the occupation density). In figure 2 we show the
results for the evolution of the total energy starting from the ground state of the
Hamiltonian 2.48. From figure 2-a we see the evolution of random single trajectories
and in Fig 2 -b we see the comparison between the average over 1000 trajectories
and the exact evolution of the master equation. It is clear that there is very good
agreement between the two methods.

In order to study local quantities in this system we take as an example the evolution
of the occupation density on site 5 of the lattice (see Fig. 3).The evolution for three
different randomly chosen trajectories are shown in figure 3-a. The results of figure
3-b show that the average over 1000 trajectories agrees with the exact results from
direct integration of the master equation within statistical errors, thus, proving
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(a)

(b)

Figure 2 – Illustrative example of quantum trajectories averaging for a gas of hard-core
bosons on a lattice, analogous to the example for a two-level system in Fig. 3.
Here we show results from exact diagonalisation calculations with 5 particles
on 10 lattice sites. (a) Kinetic energy of the system of hard-core bosons as a
function of time tJ for two example trajectories (with blue solid and red dashed
lines showing different random samples). We see the effect of quantum jumps,
where the kinetic energy increases as individual atoms are localised in space.
Here the scattering rate Γ = 0.1J . (b) Values for the kinetic energy averaged
over 1000 sample trajectories, compared with the exact result from eq. (50).
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(a)

(b)

Figure 3 – Illustrative example of quantum trajectories averaging for a gas of hard-core
bosons on a lattice, showing results form calculations of the occupation density
with 5 particles on 10 lattice sites, as in Fig. 5. (a) Density on site 5 of the
lattice as a function of time tJ for two example trajectories (with blue (solid),
red (dashed) and green (dotted) lines showing different random samples). We
see the effect of quantum jumps, where nearby jumps give rise to fluctuations
either up or down of the local mean density. (b) Values for ⟨n5⟩ averaged
over 1000 sample trajectories, and compared with the exact results computed
through direct integration of the master equation. We have also estimated the
error over the number of trajectories used (doted green line).

that quantum trajectories may be advantageous when working with certain local
quantities (as was explained in the last sections).

2.4 Quantum Trajectories: Physical Viewpoint
It is important to emphasize that the quantum trajectories technique is not simply

a mathematical tool to obtain the evolution of master equations. It can be interpreted
experimentally as a physical process used to obtain the dynamics of the expectation values
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of observables. This interpretation can be more readily seen in the context of continuous
measurement, where weak measurements1 are used in very small timesteps to monitor
observables in repeated experiments (a process which may be understood as quantum
trajectories). Averaging over the experiments(trajectories) leads to the dynamical evolution
of the expected value of the observable being monitored.

To see this more clearly we use the example of Haroche et. al. [1], in which by
continuously monitoring an optical cavity they were able to detect the decay of a photon
inside it. The experiment setup (shown in Fig. 4) was done using a method of detection
which consisted of sending a beam of two level atoms in a specific superposition of its
states through the cavity and detecting phase shifts produced by the photon on the atoms
as they exit the cavity.

Figure 4 – Experiment setup used by Haroche et. al. to detect the creation and destruction
of photons inside a resonant cavity. A beam of two level atoms are ejected
from B. The atoms are configured in a specific superposition of their states
in the microwave cavity R1 before entering the cavity optical cavity C. Upon
interaction with the cavity the atoms are reconfigured in R2 in order to be
detected on D. Image extracted from [1]

Preparing the optical cavity with a single photon2 it was possible to use the
apparatus to monitor the existence of the photon and its decay over a time period. The
dynamics of each repetition of the experiment represent single trajectories. Averaging over
trajectories it was possible to obtain expectation value for the photon number inside the
cavity over time ⟨P (t)⟩, which is shown in Fig.5 for different number of trajectories.

1 In the context of continuous measurements these measurements are usually POVM’s. The measurements,
therefore, do not project the system into specific states, causing only small disturbances to its evolution.

2 The experiment was configured so there was at most one photon inside the cavity
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Figure 5 – Expectation value of the photon number inside the optical cavity for different
number of trajectories.(a) A typical trajectory obtained in the experiment.(b)-
(d) averages over 5, 15 and 904 quantum trajectories. The dashed line in (c)
and (d) represent the theoretical evolution of the photon number obtained by
solving the problem’s master equation with the experimental parameters.
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3 Many Body Quantum Systems

The possibility of representing the evolution of a certain class of AMO (atomic,
molecular and optical) many body quantum systems with master equations opened the
opportunity to understand open many body quantum systems dynamics much more deeply.
This is because well understood techniques already applied to study single or few particle
quantum systems with such equations can be extended to the context of many body
physics.

Many body quantum systems are studied in a variety of setups, such as in condensed
matter physics or statistical mechanics, in order to understand macroscopic observed effects
that emerge out of specific microscopic configurations. Here we shall focus on magnetic
models such as the transverse Ising and Heisenberg models, which are instances of the
so-called quantum spin systems. Another model which will be the main focus of this work
is the Hubbard model, which was first thought of as a model that could describe the
origin of superconductivity in matter. Under some regimes of AMO systems this model
can approximately describe their dynamics and can be used in order to study how these
systems are affected by dissipation.

3.1 Many Body Quantum Systems
The field of many body quantum physics focuses on understanding the problem of

emergent macroscopic phenomena on systems with many interacting building particles at
a microscopic scale, and has a wide range of applications from the electronic structure
problems (that are of great importance on chemistry and drug development [27]), to the
development of new quantum technologies [16].

The starting point is that, in order to completely describe a material (e.g. a metal)
and its properties it is virtually impossible to take into consideration every possible
variable that is playing a role in its state [2]. This happens due to the number of degrees
of freedom and possible interactions happening at each moment in the material, which are
essentially impossible to compute since we would need to know the state of each atom in
the the material and that would require knowing the state of each electron and nucleus.
Also, the geometry of the material would be of great importance for its description and,
generally, it is highly irregular, augmenting the complexity of this complete description (the
complexity may go even deeper if we consider interactions with the materials environment,
the behavior of the protons and neutrons in the nucleus and so on). Thus approximations
ought to be made in order to have a grasp of how a many body system behaves. Moreover,



Chapter 3. Many Body Quantum Systems 35

the description of important classes of properties of theses systems might emerge from
(very) simplified models built with the intent of describing them. In this perspective, one
way in which this models may be built is through discretizing space and building the
systems dynamics in the so called point lattice models. These models have been successfully
applied to explain properties such as magnetism, superconductivity and Bose-Einstein
condensation [2].

Nevertheless, even in such systems computation of dynamics may become unfeasible
very fast. In fact if we consider a system composed of N particles each of which with k

available states (and considering no other constraints), the number of possible configurations
in this system is kN i.e. there is an exponential growth of computational complexity with
the number of particles for such systems.

For instance a one dimensional spin 1
2 chain, whose possible local states are

{↑, ↓} have 210 = 1024 possible configurations with only 10 particles in the system and
a 1024 × 1024 Hamiltonian matrix would be needed to describe its dynamics. In this
perspective the computational cost of even such system may become highly dependent on
their size.

This problem has led to the search and development of efficient numerical techniques
in order to calculate dynamics such as exact diagonilization, which is a technique specially
useful to obtain eigenvalues and eigenvectors of the systems Hamiltonian, density matrix
normalization groups (DMRG) methods and tensor networks.

3.2 Quantum Spin Systems
One of the simplest examples of a many body models are quantum spin systems.

Such idealized systems are used in order to understand quantum magnetism. In real
materials the relevant spin-spin interacting source for the emergence of magnetism is given
by electrons, whose spin quantum number is 1/2 (eventhough this quantum number may
be effectively different in some atoms [2]). Therefore, the most simple ideal example of a
system whose constituent parts can give rise to magnetism is composed of a collection of
spin 1/2 systems, each of which have a two dimensional Hilbert space.

3.2.1 Lattice and Spin States

To define a quantum spin system we begin with a definition for a lattice. Let Λ be
an arbitrary finite set whose elements are called sites. Typically, each site is associated with
an atom in a magnetic material. We shall fix a spin quantum number S = 1/2, 1, 3/2...
and assume that each site i ∈ Λ has a spin quantum number S.

Associated with each site (i ∈ Λ) there is a Hilbert Space hi with dimension (2S+1)
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and the state of the site i is defined as |ψσi⟩ where σi = −S, ..., S − 1, S is associated with
its spin. The Hilbert space of the spin system on Λ is H := ⊗

i∈Λ hi and its dimension is
(2S + 1)|Λ| where |Λ| is the number of elements of Λ.

A possible basis state is given by |Ψσ⟩ := ⊗
i∈Λ |ψσi

i ⟩ where σ := (σi)i∈Λ. As an
example, consider a spin system with S = 1/2. If we have Λ = {1, 2} then one possible
basis state is

∣∣∣Ψ(↑,↓)
〉

= |↑⟩1 ⊗ |↓⟩2 where ↑, ↓, are σ = 1/2 and σ = −1/2, respectfully.

A bond {j, l} ⊂ Λ, j ̸= l is a set of two sites in Λ. Defining B to be a set of bonds
in Λ, the pair (Λ,B) determines the structure of the lattice.

3.2.2 The Spin Operator on a Lattice

The spin operator represent the (quantum mechanical) spin angular momentum
and can be defined as Ŝ = ( ˆS(x), ˆS(y), ˆS(z)) where x, y, z are three mutually orthogonal
directions. From elementary theory of quantum angular momentum the operators that
constitute the spin operator are self-adjoint and satisfy the commutation relations

[ ˆS(α), ˆS(β)] = i
∑

γ=x,y,z
ϵαβγ

ˆS(γ) (3.1)

for α, β = x, y, z where ϵ is the Levi Civita tensor(to work with the tensor we consider
x = 1, y = 2 and z = 3). Ŝ is such that the relation Ŝ2 = S(S + 1) where S is the spin
quantum number, holds for all S.

The spin operators act on a (2S + 1) Hilbert space and their action on the basis
states are characterized by the properties

Ŝ(z) |Ψσ⟩ = σ |Ψσ⟩ , (3.2)

and
Ŝ± |Ψσ⟩ =

√
S(S + 1) − σ(σ ± 1)

∣∣∣Ψσ±1
〉
. (3.3)

Considering the {|↑⟩ , |↓⟩} basis for S = 1/2 we can extract spin operators in matrix
form, obtaining:

Ŝ(x) = 1
2

0 1
1 0

 , Ŝ(y) = 1
2

0 −i
i 0

 , Ŝ(z) = 1
2

1 0
0 −1

 . (3.4)

We may define operators which rotate the spin states by an arbitrary angle θ about
one of the axis by Û (α)

θ := exp
(
−iθŜ(α)

)
where α ∈ {x, y, z} and we define the exponential

of an operator Â by the series expansion:

exp
(
Â
)

:=
∞∑
n=0

1
n!Â

n (3.5)

where 3.5 will always converge on a finite Hilbert space.
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From the properties of the exponential of an operator (see for example [2] we
have that Û (α)

θ Û
(α)
ϕ = Û

(α)
θ+ϕ. From the definition of the rotation operator e also have

(Û (α)
θ )† = Û

(α)
−θ . It is also possible to show that the operators Û (α)

θ form a representation of
an SU(2) group 1.

3.2.3 Spin Operators on Lattices

Spin operators may also be defined on lattices by denoting Ŝ(α)
j the spin operator

which acts nontrivially only on site j i.e.

Ŝ
(α)
j = 1̂ ⊗ 1̂ ⊗ 1̂ ⊗ · · · ⊗ Ŝ(α) ⊗ · · · ⊗ 1̂ ⊗ 1̂ ⊗ 1̂ (3.6)

where Ŝ(α) acts on the sites Hilbert space hj. We may then write Ŝj = (Ŝ(x)
j , Ŝ

(y)
j , Ŝ

(z)
j ).

The commutation relations for spin operators on a lattice are given by:

[Ŝ(α)
j , Ŝ

(β)
l ] = iδj,l

∑
γ=x,y,z

ϵα,β,γŜ
(γ)
j (3.7)

for any j, l ∈ Λ and α, β = x, y, z. An important quantity is the total spin operator, whose
definition is given by:

Ŝtot :=
∑
j∈Λ

Ŝj (3.8)

and write Ŝtot = (Ŝ(x)
tot , Ŝ

(y)
tot , Ŝ

(z)
tot ) to define

Ŝ±
tot = Ŝ

(x)
tot ± iŜ

(y)
tot =

∑
j∈Λ

Ŝ±
j (3.9)

where Ŝ±
j = Ŝ

(x)
j ± iŜ

(y)
j . As in the case of a single spin, we also define the eigenvalue of

(Ŝtot)2 as Stot(Stot + 1). A state such that (Ŝtot)2 |ψ⟩ = Stot(Stot + 1) |ψ⟩ is said to have
a total spin Stot. It holds that Stot may take |Λ| values and there are 2|Λ|S + 1 possible
eigenvalues M of S(z)

tot . It is also possible to define a rotation operator of the total spin
state:

Û
(α)
θ := exp

(
−iθŜ(α)

tot

)
=
∏
j∈Λ

exp
(
−iθŜ(α)

j

)
. (3.10)

3.2.4 The Operator Ŝj · Ŝl

An important operator in the context of quantum spin systems is given by Ŝj · Ŝl =∑
α=x,y,z Ŝ

(α)
j Ŝ

(α)
l for j ̸= l. This operator is applied to some Hamiltonian models and has

interesting properties. A useful representation of such an operator is given by

Ŝj · Ŝl = 1
2(Ŝ+

j Ŝ
−
l + Ŝ−

j Ŝ
+
l ) + Ŝ

(z)
j Ŝ

(z)
l . (3.11)

1 A SU(2) group is a special group whose elements are unitary matrices and have determinant 1, for a
definintion on groups and their properties see for example [28]
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It is also possible to show that
[Ŝj · Ŝl, Ŝ(α)

tot ] = 0, (3.12)

for any α = x, y, z, which means Ŝj · Ŝl is SU(2) invariant2.

We can also obtain the eigenvalues of Ŝj · Ŝl from the relation:

Ŝj · Ŝl = 1
2[(Ŝj + Ŝl)2 − (Ŝj)2 − (Ŝl)2] = 1

2(Ŝj + Ŝl)2 − S(S + 1). (3.13)

From equation 3.13 and the theory of addition of angular momenta we obtain that the
minimum and maximum eigenvalues of (Ŝj · Ŝl) are given by −S(S+1) and S2, respectfully.
This lack of symmetry between minimum and maximum values of the the eigenvalues
indicates that the ground state of spin systems show quantum phenomena emerging from
many body systems in a more explicit manner [2].

3.3 The Heisenberg Model
The Heisenberg model is a minimal model developed in order to describe magnetism

in materials. It is also very helpful, as will be seen, as an approximation to more realistic
models that consider magnetism arising from electrons interacting and moving through a
lattice, e.g., the Hubbard Model. We shall study the results and properties of this model
both in the antiferromagnetic and ferromagnetic limit.

3.3.1 Ferromagnetic

Consider a lattice Λ as defined in section 3.2.1. The Hamiltonian of the ferromagnetic
Heisenberg model on a spin quantum system on Λ is given by

Ĥ = −
∑

{j,l}∈B
Ŝj · Ŝl. (3.14)

From the properties of the operator Ŝj · Ŝl we find that

[Ĥ, Ŝ(α)
tot ] = 0 (3.15)

for α = x, y, z, which shows that the Hamiltonian is SU(2) invariant.

A ground state of the system is given by the state∣∣∣Ψ↑
〉

=
⊗
j∈Λ

|↑⟩j , (3.16)

in which all the spins are pointing in the positive z-direction. This state satisfies Ŝ2
tot

∣∣∣Ψ↑
〉

=
Smax(Smax+1)

∣∣∣Ψ↑
〉

and Ŝ(z)
tot

∣∣∣Ψ↑
〉

= Smax
∣∣∣Ψ↑

〉
, where Smax = |Λ|S is the largest magnitude

2 This means that the Ŝj · Ŝl is invariant under a global rotation of spins
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of the total spin. Note that
∣∣∣Ψ↑

〉
minimizes each term of the Hamiltonian separately i.e.

−Ŝj ·Ŝl
∣∣∣Ψ↑

〉
= −{1

2(Ŝ+
j Ŝ

−
l +Ŝ−

j Ŝ
+
l )+Ŝ(z)

j Ŝ
(z)
l }

∣∣∣Ψ↑
〉

= −Ŝ(z)
j Ŝ

(z)
l

∣∣∣Ψ↑
〉

= −S2
∣∣∣Ψ↑

〉
(3.17)

where we used the fact that Ŝ+
∣∣∣ψS〉 = 0 and Ŝ(z)

j

∣∣∣ψS〉 = S
∣∣∣ψS〉. Thus we have that −S2

is the minimum eigenvalue of −Ŝj · Ŝl. From this it can be shown that
∣∣∣Ψ↑

〉
is a ground

state of the Hamiltonian associated with the ferromagnetic Heisenberg model [2].

We can also find a simple class of excited states on the ferromagnetic Heisenberg
model3. Consider the set N (j) defined on a pair (Λ,B) whose elements are defined by
N (j) = {l ∈ Λ; {j, l} ∈ B} are the sites directly connected to the site j i.e. the nearest
neighbors of j. Let f = (fj)j∈Λ, fj ∈ C, and λ ∈ R be the solutions to the “Schrödinger
equation”

−
∑
l∈Λ

∆j,lfl = λfj for each j ∈ Λ, (3.18)

where the lattice Laplacian ∆ is a real symmetric |Λ| × |Λ| matrix defined by

∆j,l =


− |N (j)|, if j = l,

1, if {j, l} ∈ B,
0, otherwise.

(3.19)

An important relation involving the Laplacian matrix is given by

∑
j∈Λ

(gj)∗∆j,lgl = −
∑

{j,l}∈B
|gj − gl|2 (3.20)

where gj ∈ C is an arbitrary complex function and j ∈ Λ. If we multiply the Schrödinger
equation 3.18 by f ∗

j and sum over j ∈ Λ, and substitute the result of equation 3.20 we
obtain

λ
∑
j∈Λ

|fj|2 =
∑

{j,l}∈B
|fj − fl|2. (3.21)

Thus we see that any eigenvalue satisfies λ ≥ 0. If we rewrite the left hand side of
equation 3.21 as ∑l∈N (j)(fj − fl) we can see that a constant fj is an eigenvector satisfying
3.18 with λ = 0 and, when the lattice is connected 4 it follows from 3.21 that this eigenvector
is unique and the eigenvalues, i.e., energies of the remaining eigenvectors satisfy λ > 0.

The connection between the eigenvalue problem described above and the spin
system discussed in this section is the following. Consider the states:∣∣∣Ψf

〉
:=

∑
j∈Λ

fj |ϕj⟩ , (3.22)

3 Usually these states are called spin wave excitations.
4 A lattice (Λ, B) is connected when for any j, l ∈ Λ such that j ̸= l, there exists a finite sequence

{z}n
1 = (z1 = j, z2..., zn = l) with {zj , zj+1} ∈ B.
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where
|ϕj⟩ = Ŝ−

j |↑⟩j (3.23)

is the state obtained by applying the lowering spin operator on site x with a initial “all
up” state. It can be shown that

Ĥ
∣∣∣Ψf

〉
= (E + λS)

∣∣∣Ψf
〉
, (3.24)

where E is the ground state energy of the Hamiltonian. In this case, when we have fα
constant, i.e. λ = 0,

∣∣∣Ψf
〉

is a ground state, whereas an eigenstate
∣∣∣Ψf

〉
with an f associated

with a nonvanishing λ is an exited state.

3.3.2 Antiferromagnetic

The antiferromagnetic Hamiltonian for the Heisenberg model takes the form:

Ĥ =
∑

{j,l}∈B
Ŝj · Ŝl. (3.25)

This Hamiltonian is SU(2) invariant as was made clear on the last section. Finding the
ground state in this case is a lot harder and a special condition upon the lattice is necessary
in order to obtain a characterization of this state, namely the lattice will be assumed to
be bipartite - which are lattices that can be decomposed into two sublatices in such a way
that any bond connects sites in different sublattices - which facilitates the extraction of
the properties of the ground state.

Intuitively we expect that the energy of an antiferromagnetic quantum spin sys-
tem should be minimized when every spin is pointing in the opposite direction to its
neighbors 5(See figure 6). Nevertheless this intuition is wrong since, from the arguments
presented in 3.17:

−Ŝj · Ŝl
∣∣∣ψSj 〉 ∣∣∣ψ−S

l

〉
= −{1

2(Ŝ+
j Ŝ

−
l + Ŝ−

j Ŝ
+
l ) + Ŝ

(z)
j Ŝ

(z)
l }

∣∣∣ψSj 〉 ∣∣∣ψ−S
l

〉

= −S2
∣∣∣ψSj 〉 ∣∣∣ψ−S

l

〉
+ S

∣∣∣ψSj 〉 ∣∣∣ψ−S
l

〉
,

(3.26)

since the last term on the right hand site of equation 3.26 does not vanish in this state, we
have that this cannot be an eigenstate of the spin system. Moreover, its energy is not the
lowest possible energy of the system.

A characterization of the ground state of the antiferromegnetic Hamiltonian was
provided in a theorem which was proved by Marshall, Lieb and Mattis [29,30]. A simplified
version of the theorem states that for a connected, bipartite lattice in which the sublattices
have the same amount of elements, the ground state of the antiferromagnetic Heisenberg
5 This state is known as the Néel state.
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Figure 6 – 2 dimensional lattice with a Néel state configuration.Image extracted from [2]

model is unique and has total spin Stot = 0 [2]. The theorem also states that the ground
state may be expanded in terms of the total spin system state |Ψσ⟩ in the following way

|γgs⟩ =
∑
σ,σ̄=0

{
∏
j∈Λ

(−1)σj−S}cσ |Ψσ⟩ . (3.27)

with coefficients satisfying cσ > 0.

3.4 The Ising Model
The Ising model is one of the simplest model used to describe phase transitions in

materials. To that end, the model considers short distance interactions on a D−dimensional
lattice. Classically, the (spin) variables of the model may be used to describe several types
of physical systems, such as magnets, materials composed of two kinds of particles, and
materials which present atoms and holes in the lattice [31, 32]. In the quantum regime
the model cannot be described by classical statistical mechanics and may give rise to
interesting properties and phases.

3.4.1 Classical Ising Model

The classical Ising model on a D−dimensional lattice is described by the Hamilto-
nian

H(σ) :=
∑

{j,l}∈B
σjσl (3.28)

where σj is a random variable which has two possible values, e.g., ±1 on sites j = 1, 2, ..., N
of the lattice. Frequently only nearest neighbors interactions are considered and, therefore,
the Ising Hamiltonian may be rewritten as

H(σ) =
∑
⟨j,l⟩

σjσl (3.29)

where the symbol ⟨j, l⟩ indicates a sum over the nearest neighbors of a site. This Hamiltonian
represents interaction energies capable of producing a ferromagnetic ordered state. The
spin variables may be thought of in three different ways:
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• As spin components of atoms, which may have an “up” or “down” directions.

• As a material composed of two types of molecules in which each site may be occupied
by exactly one of them.

• As the occupation number of a given site, in which the site may be either occupied
(σα = 1) or unoccupied (σα = −1).

The equilibrium state of this model is described by the statistical mechanical
expectation value

⟨Ω⟩ := 1
Z(β)

∑
σ

Ω(σ)e−βH(σ), (3.30)

where Ω is an arbitrary function of spin configurations σ, β = (KBT )−1 > 0 and Z(β) =∑
σ e

−βH(σ) is the partition function.

3.4.2 Transverse Ising Model

The quantum version of the Ising model is given by the transverse field Ising Model
with S = 1/2, whose Hamiltonian is given by

Ĥ = −
∑
⟨j,l⟩

Ŝ
(z)
j · Ŝ(z)

l − h
∑
j

Ŝ
(x)
j . (3.31)

The first term alone is exactly the same as the classical Ising Hamiltonian. The second
term, which describes an external magnetic field with magnitude h ≥ 0 in the 1-direction,
is what raises the quantum nature of the problem since the commutator [Ŝ(z), Ŝ(x)] does
not vanish for quantum spin angular momentum.

The simplest case where phase transitions may be studied for this model is in the
one dimensional regime. Then the Hamiltonian can be written as

Ĥ = −
L−1∑
j=1

Ŝ
(z)
j · Ŝ(z)

j+1 − h
L∑
j=1

Ŝ
(x)
j . (3.32)

From this Hamiltonian we can see that, for h ≪ 1, the ground state of this system is
approximately the same as for the classical Ising model, i.e., either all spins ↑ or all spins
↓. On the other hand, for h ≫ 1, the first term on the righthand side of equation 3.32
becomes negligible and the ground state is unique and described by all spins pointing in
the Ŝ(x) direction. It can be analytically shown that there exists a critical field strength hc
such that the system is in an ordered state for h < hc (which is a ferromagnetic state) and
a disordered state for h > hc (which characterizes a paramagnetic states). This happens
because the transverse field parameter causes fluctuations on the spin directions leading
the system to a disordered state.
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3.4.3 Other Quantum Spin Models

There exists a variety of quantum spin models and modifications of them. Between
this models it is worth mentioning the XX, XY , XXZ models which add anisotropy or
variations to the Ising and Heisenberg models (see for example [33] for an introduction to
such systems).

3.5 The Hubbard model
In light of the models seen so far one element which is often present in various types

of materials has not been considered, i.e., particle movement on the lattice. Quantum spin
systems were developed as simple models used to understand the emergence of certain
properties and behaviors of materials such as magnets, alloys and gases [31].

But it is experimentally known that there exists materials which exhibited ferromag-
netic properties and present electron movement between its atoms. A more sophisticated
model was introduced by John Hubbard in the early years of the decade of 1960 in order
to approximate the behavior of electronic correlations in narrow energy bands [34].

To the present day the Hubbard model (named after Hubbard) is studied for two
main reasons, understanding the mechanism of ferromagnetism and electron conductivity
in certain kinds of materials. The model is believed to exhibit various phenomena, such
as ferromagnetism, antiferromagnetism and superconductivity. Recent works have also
explored the idea off analog quantum simulation in order to study high energy physics
in systems represented by the model (and variations of it) [35]. The model is also used
to describe systems of bosons and Bose Einstein condensation [2]. In order to write the
Hamiltonian of the Hubbard model we usually work on the framework of the second
quantization (see appendix C.3).

3.5.1 Fermi-Hubbard Hamiltonian

The Hamiltonian of the Hubbard model consists of a kinetic part, which dictates
how particles move, by the process of annihilation of one particle in one site and creation
of the particle on the other (usually this process is assumed to happen between nearest
neighboring sites), and normally called a hopping between sites. The second part consider
the interactions between particles (in this case, fermions), which are assumed to occur
only when two particles occupies the same site. Therefore the Fermi-Hubbard model is
written as

HFH = −
∑

⟨j,l⟩,σ=↑,↓
J(j,l)a

†
jσalσ +

∑
l

Ul(a†
l↑al↑a

†
l↓al↓) (3.33)
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where a†
jσ and ajσ are the fermionic creation and annihilation operators, respectively

(see appendix C.3). J(j,l) represents the hopping amplitude between sites j and l (which
represent the probability a hopping between those specific sites may occur). Finally, U
represents the coulomb repulsive interaction magnitude between to particles on the same
site.

The Hamiltonan presents SU(2) invariance, since if we define:

Ŝ(α)
j :=

∑
σ,τ=↑,↓

â†
j,σŜ(α)

σ,τ âj,σ (3.34)

as the spin operator on the α direction and site x on the lattice, it is possible to show that
the commutation relations

[Ŝ(α)
j , Ŝ

(β)
l ] = iδj,l

∑
γ=x,y,z

ϵα,β,γŜ
(γ)
j (3.35)

remains valid and, therefore, the operator 3.34 represents a spin operator. Thus, we can
define the total spin on the lattice as:

Ŝtot :=
∑
j∈Λ

Ŝj. (3.36)

Using the same definition of a spin rotation as defined in section 3.2.2 for the total spin of
the system, we can show that the Hamiltonian satisfies

[ĤFH , U
(α)
θ ] = 0 (3.37)

and is, thus, invariant under rotations about any of the α = x, y, z directions.

On the case of the Fermi-Hubbard model a site may be occupied with at most two
electrons due to the Pauli exclusion principle. The principle states that the total wave
function describing the state of any number of electrons must be antisymmetric, which
implies that electrons cannot occupy the same energy state. Thus, since electrons have 2
possible spin states (↑, ↓) only two electrons are allowed to be on a single site.

A commom form of the Hamiltonian used to study its properties considers that
both the hopping amplitude and the interaction magnitude do not change on any site, i.e.
they are constants in the whole lattice,

HFH = −J
∑

⟨j,l⟩,σ=↑,↓
a†
jσalσ + U

∑
l

a†
l↑al↑a

†
l↓al↓. (3.38)

What occurs in the dynamics of the system after it starts its evolution from an arbitrary
state will depend on values of parameters in this state. One possible parameter which
is important in this perspective is the electron number. This number has to be on the
interval [0, 2|Λ|]. In the case of the extreme number of electrons (0 or 2|Λ|) the system
should remain on its initial state since no hopping should occur. On the other hand, much
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interesting physics may happen on half filling, i.e., when there is,initially, one electron on
each site, which now depends on J and U .

When we neglect the interaction parameter, i.e., make U → 0, particles with
opposite spin should move on the lattice without any interactions. If all the spins point
in a single direction, then there should be no hopping between sites (because of the
Pauli exclusion principle). On the other extreme i.e., when U → ∞, the strong Coulomb
repulsion leads to a regime where no site has more then one electron, and electrons can
only move if there is a vacant neighboring site. This regime is called a Mott-Insulator.

3.5.2 Bose-Hubbard Hamiltonian

The Bose-Hubbard Hamiltonian is used as a good approximation in the context
of AMO physics to describe low energy band dynamics in systems composed of ultracold
atoms and molecules [6, 8].

Since bosons have a symmetric total wave function in the lattice, they can be on
the same total state,having the same spin quantum number quantum number. Thus the
Hamiltonian of the (simplified) Bose-Hubbard Model becomes,

HBH = −J
∑
⟨j,l⟩

a†
jal + U

2
∑
l

a†
lal(a

†
lal − 1), (3.39)

where al is the bosonic annihilation operator. The model presents a Bose-Einstein
condensate phase as a ground state when we consider the particles are non interacting. On
interacting systems the criterion for establishing that a Bose-Einstein condensate is formed
becomes more intricate. In this case the system should present off-diagonal long-range
order (ODLRO)6.

3.6 AMO Open Quantum Systems and Approximation of its Dy-
namics by the Hubbard Model
A key starting point to understanding how these descriptions and models can be

applied to open many body AMO systems is the level of control achieved in systems
composed of ultracold cold gases in optical lattices. Such a control level is possible because
magnetic and optical trapping physics from these systems are well understood [36, 37].
This makes it possible to use external magnetic fields and optical traps to obtain precise
configurations and effective interactions between particles. Moreover, because of the low
energy of the particle collisions in those systems it is possible to make an important
6 Here we consider a system of hard-core bosons,i.e. U → ∞ and the condition for (ODLRO) considering

the system’s ground state to be |ΨGS⟩ is given by ⟨ΨGS| a†
xay |ΨGS⟩ → (constant) > 0 for large

enough |x − y| see [2].
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simplifying approximation with regard to the the description of the scattering dynamics of
the atoms which,in this regime, can be described by a single parameter called the s-wave
scattering ascatt [38].

For cold bosonic particles the Hamiltonian of the systems can then be described in
terms of bosonic field operators ψ̂(r) which satisfy the commutation relation:

[ψ̂(x), ψ̂†(y)] = δ(x − y),

and it can be written as [9]:

Huca ≈
∫
d3r ψ̂†(r)

[
− ℏ2

2m∇2 + V0(r)
]
ψ̂(r) + g

2

∫
d3r ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) (3.40)

where m is the atomic mass, g = 4πℏ2ascatt/m characterizes the the strength of the
interaction processes upon elestic colisions between particles and V0(r) is the effective
single-particle potential generated by external magnetic fields and optical traps.

The first term on the right handside of equation 3.40 characterizes the action of the
Hamiltonian on single particles in the system. The kinetic part accounts for the tunneling
between potential wells and the term V0(r) [36] refers to a controlled potential interaction
with the optical lattice. Whereas the second term is related to the interaction between
particles once they are in the same potential well.

In addition, since it is possible to achieve energy scales and temperatures much
smaller then the band gap in an optical lattice potential [39], simple hamiltoninans for
particles in a single band can be engineered in this context, such as the Bose-Hubbard
model:

HBH = −J
∑
⟨j,l⟩

a†
jal + U

2
∑
l

a†
lal(a

†
lal − 1), (3.41)

or the Fermi-Hubbard model:

HFH = −J
∑

⟨j,l⟩,σ
a†
lσalσ + U

∑
l

a†
l↑al↑a

†
l↓al↓. (3.42)

3.6.1 Special Case: Obtaining the Dissipative Hamiltonian Model for a Gas of
Hardcore Bosons

The description of one type of system which can be studied in such a way was done
by Garcia-Ripoll et al [40] where a hard-core boson gas description for polar molecules in
an optical lattice was done by modeling the system through a Markovian master equation

ℏ
dρ

dt
= −i[H, ρ] + Dρ (3.43)
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where H is the systems Hamiltonian describing unitary evolution and D is a superoperator
acting on the density operator which describes the dissipative processes. In terms of bosonic
field operators (ψ) they are given by

H =
∫
d3xψ†H ′ψ + Re(g)

2

∫
d3xψ†2ψ2 (3.44)

Dρ = −Im(g)
2

∫
d3x(2ψ2ρψ†2 − ψ†2ψ2ρ− ρψ†2ψ2) (3.45)

where H ′(r) = −ℏ2∇2/2m+ Vtrap(r) is the single particle Hamiltonian and the strength of
particle interactions is given by g = 4πℏ2ascatt/m, where m is the mass of the particle and
ascatt is the s-wave scattering length. The parameter ascatt describes both elastic, Re(a),
and inelastic, Im(a), collisions.

It is possible to expand the bosonic field operator using Fock space operators a†
k

which obey the commutation relations

[aj, al] = [a†
j, a

†
l ] = 0 (3.46)

[aj, a†
l ] = δj,l (3.47)

ψ† may then be expanded as:

ψ†(r) =
∑
j

a†
jw(r − rj) (3.48)

where w(r) are Wannier wavefunctions associated with states on each site7

It is, then, possible to make a tight binding aproximation where the overlap in
between Wannier functions is neglected. The system is, thus, approximately described by
a Bose-Hubbard model and the terms in the master equation 3.43 are given by [40]:

HBH = −J
∑
⟨j,l⟩

a†
jal + U

2
∑
l

a†
lal(a

†
lal − 1) (3.49)

Dρ = ℏΓ
4
∑
k

(2a2
kρa

†2
k − a†2

k a
2
kρ− ρa†2

k a
2
k) (3.50)

The master equation can be rewritten in terms of an effective Hamiltonian

dρ

dt
= −i(Heffρ− ρH†

eff ) + Γ
∑
k

a2
kρa

†2
k (3.51)

7 Wannier wavefunctions are localized funtions defined on a lattice. They can be defined in terms of
Bloch states and form a complete set of orthonomal states for a single band on a lattice. See [41,42]
For quantitative definitions of these functions.
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where
Heff = HBH − i

Γ
2
∑
k

a†2

k a
2
k. (3.52)

In the next chapter, a more in depth study of the consequences of this master
equation will be given . In particular, the continuous quantum Zeno effect on many body
systems which undergo particle losses shall be our main focus in this regard.
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4 Quantum Trajectories Technique Applied
to Open Many Body Quantum Systems

4.1 Open Many Body Quantum Systems
So far the many body models and Hamiltonians studied have neglected interactions

with the system’s environment, i.e., the systems were considered to be closed. The dynamics
of many body systems, as in the case of few body systems, may change drastically when
we take these interactions into consideration. In order to understand a special class of
open many body quantum systems (namely systems whose evolution can be described
by a master equation in Lindblad form such as described in Chapter 2.2), we shall focus
on AMO quantum systems whose Hamiltonians are well approximated by the Hubbard
model. The research of these systems have become of great importance in many fields of
physics and have implications on understanding analog quantum simulations [43], quantum
computers [44], production of specific states in condensed matter physics [6] suppression of
body losses in the system due to continuous quantum Zeno effect [4, 40, 45–47], changing
magnetic states on Mott insulators [3] to name a few.

The fact that these systems may be approximately described by a master equation
in Lindblad form (meaning the approximations discussed in 2.2 are still valid) makes
it possible to immediately apply widely known numerical techniques to solve them in
the context of many body systems. In particular, the quantum trajectories approach has
been successfully implemented in open many body AMO systems in order to understand
the dynamics and obtain important results, making it possible to extend the sizes of the
systems simulated by exploiting other methods which are commonly used in the study of
many body systems, such as t-DMRG, tensor networks and exact diagonalization [6, 7, 9].
In this thesis we shall focus on these applications to continuous quantum Zeno effect and
state preparation.

4.2 Particle-Loss Dissipative Processes
The quantum trajectories technique can be used to study and understand various

properties of open many body quantum systems described by a master equation. One
interesting application is seen when particle loss type dissipation is involved in the evolution
of the system.

Systems which undergo particle losses have been observed in a variety of different
setups, including lattices comprised of polar molecules [4] and trapped ions [3]. Those
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configurations may lead to interesting physics and even some counter intuitive results, as
will be seen in the next sections.

4.2.1 Reversal of Magnetic Order by Particle Losses

We first turn our attention to an interesting example given by Nakagawa et al. [3]
where the study of the evolution of a chain of trapped ions which undergo particle loss
leads to the sign reversal of the magnetism of a Mott insulator. A 1-dimensional Mott
insulator composed of spin-1

2 particles (electrons) can be described by a Fermi-Hubbard
model whose lattice is half filled, i.e., there is one particle in each site1, and the system is
in the regime of strong interaction.

More specifically, the Hamiltonian that describes a Mott insulator is given by

HFH = −J
∑
lσ=↑↓

(a†
lσal+1σ + alσa

†
l+1σ) + U

∑
l

nl↑nl↓, (4.1)

where nlσ is the number operator on site l, and U ≫ J . In this regime double occupation
becomes unlikely due to strong repulsion and particles are essentially frozen, leading to a
configuration where there is a single spin on each lattice site.

Even though hopping is strongly suppressed in the model, quantum mechanics tells
us there can be virtual jumps of the particles in the lattice. A second order process which
involves a virtual exchange of particles lead to an effective spin exchange interaction, which
offers an explanation towards the fundamental origin of magnetism [2,48](see 7). Indeed,
assuming the system is at half filling and has SU(2) invariance, we can approximate the
Hamiltonian 4.1 through second order perturbation theory to the Heisenberg model:

Hspin = t
∑
⟨j,l⟩

(Sj · Sl − 1
4) (4.2)

as explained in A. Here, t = 2|J |2/U .

Figure 7 – Schematic ilustration of a second-order process mediating the spin-exchange
interaction. This process lead to the origin of antiferromagnetic order on Mott
insulators. Image extracted from [2].

1 As a consequence of Pauli exclusion principle, a fermionic particle with spin 1/2 cannot occupy the
same state as another spin 1/2 particle, i.e., the same site may only be doubly occupied if the particles
spinors in the site are |↑⟩ and |↓⟩, respectfully. This means that a lattice Λ composed of electrons may
have at most 2|Λ| electrons. Thus, the lattice is half filled when only one electron occupy each of its
sites.
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When we consider particle loss dissipative processes on Mott insulators, the mech-
anism responsible for the quantum magnetism achieved in the system has a different
explanation. As will be seen, particle loss induced by inelastic collisions in the lattice
makes the system stabilize at high energies states(ferromagnetic order), as opposed to the
expected relaxation to low energy states(antiferromagnetic order). In Fig. 8 a schematic
illustration of the second order process which leads to spin exchange or particle loss is
shown. Since the second step in the process involves a doubly occupied site with opposite
spins, it will have a finite life time due to the dissipative effect. However, spins pointing in
the same direction are not allowed on the same site due to the pauli exclution principle
and, thus, do not decay (no dissipation occurs if the particles cannot occupy the same
site). This mechanism leads ferromagnetic states (spins pointing in the same direction), to
survive longer then anti-ferromegnetic (alternate spin direction configuration) ones.

Figure 8 – Schematic ilustration of a second-order process mediating the spin-exchange
interaction in the dissipative Hubbard system. On the first part we have two
possible configurations, i.e, spins pointing in the same direction and spins
pointing on opposite directions. Due to the pauli exclusion principle, only the
latter can go through the second order process that leads to spin exchange
(second part). Since the particles have to occupy the same site for the interaction
to occur they can also go through innelestic collisions and therefore be ejected
from the system to the environment (second process on the third part). Since
spins which point in the same direction cannot occupy the same site these
(ferromagnetic) states survive longer, leading to ferromagnetic order. Image
extracted from [3].

To see this more concretely, we can consider a dissipative Hubbard model whose
unitary part of the dynamics satisfy Eq. (4.1). The master equation can then be derived
for the system which takes the form:

dρ

dt
= − i

ℏ
[ρ,HFH ] +

∑
j,σ′σ

(Lj,σ′σρL
†
j,σ′σ − 1

2{L†
j,σ′σ†Lj,σ′σ, ρ}) (4.3)

where Lj,σ′σ =
√

2γcjσcjσ′δσ,↑δσ′,↓. The cjσ are annihilation operators at site j with spin
σ and the Kronecker deltas are used to ensure the dissipation interaction occurs only
between particles with opposite spins.

It is also possible to derive an effective Heisenberg Hamiltonian through second
order perturbation theory substituting U for U − iγ in 4.1 [3]. This leads to the following
effective Hamiltonian:
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Heff = (Jeff + iΓ)
∑
⟨j,l⟩

(Sj · Sl − 1
4) (4.4)

where Jeff = 4Ut2/(U2 + γ2) and Γ = 4γt2/(U2 + γ2). From Heff , we can see that the
spin-spin interactions will be affected by dissipation even in the strong repulsive regime.
The eigenvalues of the effective Hamiltonian will be given by En = (Jeff +iΓ)E(0)

n

J
, where E(0)

n

are the eigenvalues of the hermitian Hamiltonian 4.2. In this case the decaying rate, ηn, of
the n-th eigenstate will be given by the imaginary part of En,i.e. ηn = −(Γ/J)E(0)

n . Since
E(0)
n < 0, we get that the smaller the energy E(0)

n the higher the decay rate, which leads
to the conclusion that higher energy states will survive longer in this regime. Moreover,
this implies that after sufficient long times the Hamiltonian 4.4 will develop ferromagnetic
correlations.

Using the quantum trajectories technique it is possible to study the evolution of
the spin correlation functions on the system. Let us consider the case where the system
has,initially, 8 sites and 8 particles in which no particle loss happens, i.e., the avarages are
made only over the trajectories which, after a certain span of time, have had no quantum
jumps. It is clear from Fig. 9 that the correlation functions C(0)(i, j, τ) = ⟨ψ(τ)|Si·Sj |ψ(τ)⟩

⟨ψ(τ)|ψ(τ)⟩
2

turn from a negative value (indicating antiferromagnetism) to a positive value (indicating
ferromagnetism) saturating at 0.25.

Figure 9 – Dynamics of the spin correlations C(0)(0, j, τ) for a dissipative 8-site Fermi-
Hubbard system in the absence of quantum-jumps.The initial state of the
system is chosen to be a Néel state |↑↓↑↓↑↓↑↓⟩. The parameters are set to
U/J = 10 and γ/J = 10. The unit of time is the inverse hopping rate τh = 1/J .
Image extracted from [3]

2 the upper symbol C(α) indicate the number of quantum jumps in the evolution and i, j indicate the
sites on which the function is being calculated. In the figure the correlation functions are taken with
respect to the first site
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Including quantum jumps in the evolution of single trajectories, i.e., evolving
the full master equation, also leads sign reversal of the spin correlation functions. To
see that, the dynamics of spin correlations for the first and second spin in the chain
were studied considering that only a specific number of quantum jumps happened in the
process. The results (shown in fig. 10) show that the formation of holes in the lattice have
considerable influence on the magnitude of the correlation function. Analysis of the results
also show that, despite the smaller magnitude of C(n)(0, 1, τ) (compared to the case where
no quantum jumps ocuur) the sign reversal still happens.

Figure 10 – Dynamics of spin correlations C(n)(0, 1, τ) average over quantum trajectories
which involve n quantum jumps for the dissipative Fermi-Hubbard model.
The label “master” indicates the average over all possible numbers n, i.e. the
solution to the master equation. The sign reversal of the spin correlations
happens for all cases. The initial state of the system is chosen to be a Néel
state |↑↓↑↓↑↓↑↓⟩. The parameters are set to U/J = 10 and γ/J = 10. The
unit of time is the inverse hopping rate τh = 1/J . Image extracted from [3]

4.2.2 Particle loss Continuous Quantum Zeno Effect

The quantum Zeno effect was first brought to light by Misra and Sudarshan [49]
and can be described as a phenomenon where frequent measurements in quantum systems
inhibit state changes. It is well illustrated by an example given by Daley [9] of the case
of a two-level atom coupled to a laser. Suppose the atom is initially in its ground state
|g⟩ and is coupled resonantly to the excited state |e⟩ with Rabi frequency Ω. Under this
conditions, the atom periodically oscilates between the excited and the ground state. After
a measurement to find weather the state of the system is |e⟩ when an interval of time ∆t
has passed, the probability of the atom being in the excited state takes the form Pe ≈ Ω∆t

4

which is proportional to ∆t. If we reduce the interval in which the measurements occur
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such that ∆t → 0 the probability the state of the system is |e⟩ reduces monotonically to
zero, that is, if the measurements are done frequently enough, the state of the atom is
frozen in the ground state. This effect has been seen on experiments with trapped ions [50].

4.2.2.1 Continuous Zeno Effect

When dealing with open quantum systems a generalization of the quantum Zeno
effect in the context of continuous measurements can be realized, i.e., the continuous
quantum Zeno effect [50, 51]. In this case, the system is considered to be measured
continuously by the environment and strong dissipative processes can suppress coherent
dynamics. The simplest example of this phenomenon is again given by a two level atom
coupled to a laser. As was seen in Chapter 2, this system can be described by the master
equation

dρ

dt
= − i

ℏ
(Heffρ− ρHeff ) + Γσ−ρσ+, (4.5)

where
Heff = −Ω

2 σx − ∆σ+σ− − i
Γ
2σ+σ−, (4.6)

Ω is the Rabi frequency, ∆ is the detuning and Γ the Dissipation rate. In the case the
system has a strong dissipation Γ ≫ Ω the probability of a transition from the ground
state |g⟩ to the excited state |e⟩ (considering that the atom starts on the state |g⟩) becomes
increasingly lower as Γ grows. Figure 11 shows the value for the probability of the state to
be |g⟩ for several values of Γ. As is expected, when the system has no dissipative processes
(Γ = 0), it undergoes Rabi oscillations. As the value of Γ increases, ρgg also grows, making
jumps to the excited state |e⟩ less likely. In the limit of Γ ≫ Ω the system will continue in
the state |g⟩ indefinitely.

In this case it is also interesting to see the effects of the dissipation strength on
single trajectories. As is shown in figure 12, the quantum zeno effect is already explicit on
the evolution of pure states when the dissipation strength increases.

An interesting example of this effect in the field of open many body AMO quantum
systems have been seen to occur experimentally on an optical lattice whose component
particles were polar molecules and were subjected to particle losses [4]. In this setup, the
polar KRb molecules are loaded into an optical lattice formed by three mutually orthogonal
standing waves, and their interaction is controlled in such a way as to be described by an
XY model Hamiltonian:

H = J⊥

2
∑
j≥l

Vdd(S+
j S

−
l + S−

j S
+
l ), (4.7)

where J⊥ characterizes the spin-exchange interaction energy. The interaction between
any two molecules depends on their relative position and is also characterized by the
geometrical factor Vdd.
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Figure 11 – Evolution of the probability of a two level atom to be found in the ground
state |g⟩ as a function of time for several Γ.

Figure 12 – Evolution of the probability of a two level atom to be found in the ground
state |g⟩ as a function of time for several Γ on three separate trajectories.
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In the experiment, the lattice molecules were initially prepared in such a way that
the lattice had a 50:50 proportion of the particles with spins |↑⟩ and |↓⟩ in order for
on site interactions to occur. This is because the lattice is approximated by a spin 1/2
system and, thus, Pauli blocking strongly suppresses particles with the same spin state
on a single site. The potential wells of the lattice started at the same depth in all three
orthogonal directions and the trap potential along one direction was then reduced to favor
the interaction (collisions) between molecules and subsequent particle loss as is shown
in Fig 13- a. Fig 13-b shows the number of lost particles versus time for two different ŷ
direction potential depths.

The on site loss rate Γ0 is proportional to the rate of chemical reactions between
two molecules on the same site and results in a particle loss process (the chemical reaction
energy is much higher than the lattice potential, so the resulting particles are ejected from
the lattice). It was observed that Γ0 is much larger when molecules have distinguishable
spin states [4]. This is a desired effect in this context, since it is important that the system
is in the strong interacting regime, i.e. Γ0 ≫ Jt/ℏ where Jt is the tunneling amplitude, for
the observation of the quantum Zeno effect. The effect is indeed observed, since increasing
the on site dissipative process actually decreases the effective two-body loss rate between
neighbouring molecules. In terms of J and Γ0, an effective dissipative rate parameter for
the process may be written as [52]

Γeff = 2(Jt/ℏ)2

Γ0
, (4.8)

and the time evolution of the number of molecules in state |↓⟩, i.e., N↓(t) is described
through a two-body loss equation [52]

dN↓

dt
= − κ

N↓,0
N2

↓ , (4.9)

where N↓,0 is the initial number of molecules on state |↓⟩ and κ is the loss rate coefficient
(which is proportional to Γeff ).

The continuous quantum Zeno effect has been verified by measuring the dependency
of the loss rate, κ, on Γ0 and Jt as can be seen in figure 13 b − c, respectively. It is clear
from the graphs that κ scales with 1/Γ0 13 c and obeys a square power law for the
Tunneling rate Jt/ℏ as expected from Eq. 4.8.

4.2.2.2 Continuous Quantum Zeno Effect and Quantum Trajectories

As was seen in the last section, the level of control reached in experiments with cold
molecules in optical lattices has opened opportunities to study dissipative effects and see
how systems experimentally evolve through simple Hamiltonians, such as the transverse
Ising, Heisenberg and XY models. Nevertheless, the possibility of describing these systems
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Figure 13 – Quantum Zeno effect for polar molecules in a 3D lattice.a The lattice depths
along x̂ and ẑ are kept at 40Er and the depth along ŷ is decreased to allow
tunnelling along the ŷ directionat a rate Jt/ℏ.b Number of |↓⟩ molecules versus
time is shown for lattice depths along ŷ for two different potential depths.c
The number loss rate,κ, has a 1/Γ0 dependence, which is consistent with the
quantum Zeno effect. d The number loss rate, κ, has a J2

t dependence, as
predicted from the quantum Zeno effect. Image extracted from [4]

dynamics using a master equation in Lindblad form open new oportunities to study them
by well known numerical methods.

One of those methods is the quantum trajectories approach described in Chapter 2,
which may be transferred to the context of many body quantum systems in a straightforward
manner. As an example, we numerically studied the continuous quantum zeno effect on
systems which undergo 2-particle loss making use of both exact integration and the
quantum trajectories approach. Our study on the subject was separated into three main
parts. Firstly, we simulated how the behavior of local densities may vary as a function
of the dissipation strength, Γ, on one-dimensional systems. Secondly, we have sought to
understand the mechanisms behind quantum Zeno effect by making use of the relationship
between important variables in a simple, intuitive model. Lastly we provided numerical
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data on the particle density of minimal systems in order to find evidence that support the
viewpoint previously presented.

• Particle Density and Decaying Rates

We used the quantum trajectories technique to obtain the behavior of local densities
in the one-dimensional Bose-Hubbard model as a function of time for different
dissipative strengths. The dissipative process was set to be a two particle loss
dissipation, for which the master equation is given by

dρ

dt
= − i

ℏ
(Heffρ− ρH†

eff ) + Γ
∑
k

a2
kρa

†2
k , (4.10)

where
Heff = HBH − i

Γ
2
∑
k

a†2

k a
2
k (4.11)

and the Hubbard Hamiltonian HBH is given by Eq. 3.41.

The results are shown in figure 14, where the parameters were set to J = 1 and
U = 10J and the system started with one boson in each site. From results we can
infer that the average density on a single site reduces more slowly with time when the
strength of the dissipation, i.e. Γ, is increased. In E we show that the same behavior
is seen for the other sites. This effect is attributed to the continuous quantum Zeno
effect.

In order to better understand how loss of particles is affected by the dissipation
strength, Γ, we obtained the time average of the density of particles on a single site
as a function of Γ. The results (see Figure 15) show that, as dissipation strength
increases from zero, at first we get the intuitively expected result, i.e. the average
density is reduced when Γ is increased. On the other hand after Γ reaches the value
Γ = U this decrease stops and an increase of the average density starts. Our data
shows that for a sufficiently large Γ the density gets arbitrarily close to unit (Inset
figure 15).

• Intuition Behind the Quantum Zeno Effect

To understand the mechanisms of particle loss vs dissipation strength dynamics we
started by considering a minimal model composed of a three level system. As shown
in figure 16. In this model the two upper energy levels (|1⟩ , |2⟩) are coupled to a laser
and the resonance frequency between those levels is given by ω0. We further make the
assumption that a particle on energy state |1⟩ decays into a much less energetic level
|0⟩ (which would correspond to particle loss as presented in the previous sections).
The particle is set to oscillate between the energy states |1⟩ and |2⟩ with Rabi
frequency J and the dissipative parameter for the decay into the energy state |0⟩ is
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Figure 14 – Time evolution of particle density on site 3 on a lattice with 6 bosons and 6
sites for 5 different values of dissipation strength Γ. It is qualitatively seen
that stronger dissipation reduces density loss over time

Figure 15 – Time average of the particle density as a function of Γ. The lattice comprises
of 5 sites and (at the begining of the evolution) five bosons. From the results
we are able to see how Γ affects particle loss in the lattice showing an expected
decay in the interval [0, U ] and the counter intuitive increase after that. In
the inset we show the same results for Γ ∈ [980, 1000]
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Figure 16 – Ilustrative diagram of the minimal model used as an example to describe the
intuition behind the Continuous quantum Zeno effect

given by Γ. In order to get more intuitive results we further assume the system is in
one of two regimes i.e., either J

Γ ≪ 1. or J
Γ ≫ 1 We then ask how long would it take

for the population of state |2⟩ to decay into the zero state once we increase/decrease
Γ?

– In the limiting case where J
Γ ≪ 1 we start by evaluating how the system would

behave if J ≪ 1. In this case, since the change of states between |1⟩ and |2⟩
is negligible, the period of time τ , it would take for the populations of state
|2⟩ to decay into the state |0⟩ would grow indefinitely as J approaches zero i.e.,
J → 0 =⇒ τ → ∞ (there would essentially be no oscillation between states
|1⟩ and |2⟩ and therefore the population of |2⟩ would not decrease). Moreover,
since J

Γ ≪ 1 is the same as Γ ≫ 1 and J > 0 (constant) or J ≪ 1 and Γ > 0
(constant), we can conclude that, in this regime, increasing Γ is the same as
decreasing J and the time the population on |2⟩ survives will grow indefinitely
as Γ grows.

– Following analogous arguments, the regime where J
Γ ≫ 1 is the same whether

J ≫ 1 and Γ > 0 (constant) and or Γ ≪ 1 and J > 0 (constant). Thus, we
see that this limit is the same as Γ → 0 and, since if there is essentially no
dissipation then no decay into the |0⟩ state would occur, the time interval, τ
would also grow indefinitely.

Therefore, since in both limiting cases τ will grow indefinitely, there must be a
minimum value τ0 in the interval 0 < τ < ∞ with J/Γ ∈ (0,∞) in which dissipation
is maximum.

• Numerical Data on τ

We explored the idea presented on the last section numerically in order to find
evidence that the quantum Zeno effect may be intuitively seen in an analogous
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manner for many body systems. In this case we chose a simple minimal system that
could reproduce the results above. The model is composed of a two site lattice and
a single particle. The dissipative process considered in this case is that of single
particle loss in only one site and the effective Hamiltonian (still cosidered to be that
of the Bose-Hubbard model) may be written as

Heff = −J(a†
1a2 + a†

2a1) − i
Γ
2 (a†

1a1), (4.12)

where we consider the dissipation to happen on site 1, and we do not have to consider
the interaction term since there is only one particle in the system.

Since the system considered is small it is more efficient to solve the master equation
exactly to obtain the expected value of the total particle number operator as a
function of time ⟨N̂(t)⟩ = n̂1(t) + n̂2(t). In figure 17 we show the results of the time
span, τ , for dissipation as a function of Γ/J . We define τ as the time it takes for
N̂(t) to reach a certain value α, i.e., ⟨N̂(τ)⟩ ≤ α; In the case of 17 α = 0.6.

Figure 17 – Exact integration results for the Lindblad master equation with effective
Hamiltonian(4.12. Here τ is the time it takes for the total occupation number
to satisfy ⟨N̂(τ)⟩ ≤ 0.6. We can see that for small Γ, τ decreases fast with
small variations of Γ. On the other hand after a certain minimum point, τ
grows monotonicaly, albeit slowly when compared with the decrease rate for
Γ ≪ 1.

The results show that the total occupation number has the behavior deduced in the
last section, i.e., τ ≫ 1 when Γ ≪ 1 and τ ≫ 1 when Γ ≫ 1, supporting the idea
that the factor J

Γ is strongly related to the occurrence of the continuous quantum
Zeno effect.



Chapter 4. Quantum Trajectories Technique Applied to Open Many Body Quantum Systems 62

To see that this characteristic behavior may be extended to systems with higher
number of particles we have simulated the total occupation number of a system with
2 particles in 2 sites, whose dissipative processes is of two particle loss type, as a
function of time and dissipation strength. The results, shown in figure 18, stresses
that with stronger dissipative effects the two particles survive longer (as for very
weak Γ also).

Figure 18 – Results for exact integration of the the expected value of total occupation
number as a function of time and dissipation strength supporting the ideas
discussed in the text. The system is composed of 2 sites and 2 bosons and the
effective Hamiltonian is given by 4.11

Similar consequences of particle loss dissipative effects may be seen for systems which
undergo both three and single body loss. More details on the consequences of such
dissipative effects may be seen on appendix D.

4.3 State Preparation
As was previously said, the control over AMO systems has reached the precision of

a single atom, ion or molecule [5,53]. This, in return, allowed specific Hamiltonians, such as
the ones for the Fermi or Bose-Hubbard models, to be engineered in order to evolve those
systems [5] and paved the way for realizing analog quantum simulations, which can be
largely advantageous to study such models than using classical computing. This is because
the level of complexity of these systems scales exponentially with system size - which
make large size systems classically intractable. The preparation of those systems has been
possible mostly thanks to the use of dissipative processes to control the coherent evolution
of AMO systems, a technique well understood and utilized in quantum optics [1, 26].
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In the context of quantum optics, the idea behind state preparation is to find a
dissipator D for the master equation such that the dynamics of the system will lead its
state asymptotically to a desired state. An interesting example is the optical pumping of a
three level atom into a stable pure state, which shall be discussed below 4.3.1. Moreover,
in the next sections, extensions of this quantum optics protocol for obtaining specific many
body states, such as Bose-Einstein condensates and superconducting, BCS-type, states are
discussed.

4.3.1 Optical Lattices Immersed in Ultra-Cold Gasses

One of the simplest examples of an open many body system which can be used to
drive an arbitrary initial state into a pure state in a long time evolution may be described
by an optical lattice composed of bosons which is subjected to driving fields that can
lead the system to a lower energy state [5]. In this scenario the lattice is immersed in a
superfluid as is shown in Figure 19. The BEC works as a bath of Bogoliubov excitations
and provides an efficient way as to lead particles to decay into the lowest energy bands.
Moreover, the Bloch band energies3 ϵ are larger than both the possible kinetic energy
of the particles and the energy produced from collisions of lattice bosons with the BEC
particles. This allows for the necessary approximations as to describe the system through
the extended Bose-Hubbard model:

H = −J
∑
j

(a†
jaj+1 + aja

†
j+1) − µ

∑
j

nj + U

2
∑
j

nj(nj − 1). (4.13)

In order to realise the decay of the system into a specific state (A BEC in this
context) it is possible to drive the system into dark states with the help of external fields
provided by lasers in specific frequencies. This is done by extending the concept of state
preparation via optical pumping from quantum optics.

To this end, consider a three level system in a Λ configuration. The lower energy
states, are coupled to the most excited state, by two fields of antisymmetric Rabi frequencies
Ω+ and Ω−4 as illustrated in figure 20(a).Consider that dissipation Γ leads to decay into
one of the lower energy states via spontaneous emission. For suficient detuning between
excited and ground states the state of the system will evolve in such a way that the
stationary solution of the master equation governing the system is a pure state, which is
composed of the linear combination of the lower energy states. This linear combination is
3 Bands formed from close energy states that emerge from Bloch theorem for periodic potentials.
4 The term "antisymmetric Rabi frequencies" refer to two frequencies which will couple separately to the

degenerate ground states in this case. From this coupling, spontaneous emission leading back to the
ground states occur symmetrically
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Figure 19 – Illustrative representation of the system setup for obtaining a many body
state driven by dissipative dynamics. The optical lattice is immersed in a BEC
and driving fields are used to lead the system to a low energy state. Image
extracted from [5].

called a dark state and in the long time limit will be occupied by the entire population of
the system (Fig 20a).

This idea can be extended to a optical lattice when the external fields are applied
to the entire system and in the long time limit the system should eventually relax to a
completely symmetric state which is a BEC (Fig 20b,c),

|BEC⟩ = 1
N !

 1√
M

∑
j

a†
j

N |V AC⟩ , (4.14)

where N is the particle number and M is the number of sites.

The dissipative processes can be described in terms of the operators:

cβ = (a†
j + a†

l )(aj − al) (4.15)

acting on each pair of adjacent lattice sites β = ⟨j, l⟩. These operators describe the
annihilation of an anti-symmetric state and the creation of a symmetric one. It is then
possible to write a master equation for the evolution of the optical lattice state under
these conditions:

ρ̇ = −i
ℏ

[H, ρ] + Γ(
∑
j

cjρc
†
j − 1

2{c†
jcj, ρ}) (4.16)

Where the anti-commutator {A,B} is defined as {A,B} = AB +BA.

This master equation was studied by Diehl et al [6] where the authors found
evidence that, under the appropriate conditions, the system should decay into a pure state
(BEC) and have long range order as is shown in figure 21. This allowed the study of the
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Figure 20 – Qualitative picture of state preparation in many body systems in analogy with
optical pumping. a) Two degenerate low energy levels are coherently coupled
to a higher energy level with anti-symmetric Rabi frequencies, this leads the
system to populate a dark state entirely (symmetric linear combination of the
two low energy states in this case), the anti- symmetric linear combination is
still coupled to the higher energy state. b) implementation for a two particle
optical lattice of the configuration that leads to the dark state occupation c)
extension of the case in b for a many-particle system (which leads to a BEC
state in the long time limit). Image extracted from [5]

Figure 21 – Appearance of quasi long-range order during the time evolution: the correlation
function Gt(x, 0) = ⟨aα(t1)a†

β(t0)⟩ (where α and β are the considered sites)
is shown for various times tκn/2 = 0,10,102, 103, 104, 105, 106,∞. The initial
disordered state has a correlation length = xi = 2a, and the system parameters
are chosen at Teff/(4TKT ) = 1/18 and x0 = 0.55a. Figure extracted from [6]
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evolution of the dissipative systems at long times using quantum trajectories and analyse
if the system decays into a BEC state under the dissipative processes.

4.3.2 Dissipative Ferminonic System Driven into Dark State

The logic applied to bosons in the last section has also been applied to fermions on
2D systems by Yi et al [7] where they focused on the preparation of paring states, this
time using quantum trajectories to study the driven dissipative dynamics of the system
whose dark state is of a BCS type (a state which is not altered by quantum jumps).

A key mechanism for obtaining a dissipation into a dark state in these kind of
systems is the Pauli blocking, which is a property of such systems of fermions where
spontaneous emission to an already occupied state is inhibited due to Pauli exclusion
principle as is shown in figure 22. This phenomenon leads to a different non-equilibrium
paring mechanism which does not rely on attractive forces.

Figure 22 – a) When two low energy states are occupied there cannot be a decay from an
excited to an the already occupied state due to the Pauli exclusion principle.b)
When the state |g2⟩ is free the decay can happen. Image extracted from [7]

The states involved in the research were the ones that could be described through
a homogeneous product of N identical fermion pairs such as:

|ψ⟩ = η†N |V AC⟩ (4.17)

where η† = ∑
a,b ηa,bc

†
ac

†
b with a and b being pairs of values (σ, q) that represent spin and

position on the 2D lattice, respectively. For large enough systems (in the thermodynamic
limit) the states represented in equation 4.17 can be described with the grand canonical
ensemble and Fourier transformed so it can be evaluated in the momentum representation,
for states of paired Fermions they will be described by BCS-type states:

|ψ⟩ = F exp
∑
A,B

fA,Bc
†
Ac

†
B

 |V AC⟩ = F
∏
A,B

(1 + fA,Bc
†
Ac

†
B) |V AC⟩ (4.18)
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where fA,B = ∑
i,j ηa,be

(qkri+qk′rj), A,B are the pairs of values (σ,k) which respectively
represent the spin and momentum and F is a normalization factor.

According to Yi et al [7], in general the evolution of such a fermionic system into a
pairing state as in 4.18 involves multiple particle dissipative processes. In the case of two
particle processes the dissipative dynamics can be viewed as phase locking between pairs
of Fermions [7] and jump operators in 1D systems may be written as

Jq = C†Mcq↑ (4.19)

where M = (cq+1↓ + cq−1↓)(cq+1↓ − cq−1↓) and C† is an arbitrary superposition of single-
fermion creation operator with spin up. It can be shown from symmetry arguments that the
dark state reached after sufficiently long times is unique for all initial states [7]. Another
important condition necessary for state preparation after dissipative dynamics is that
there should not be any other stationary state, i.e. only the dark state can be a stationary
solution of the master equation. In that regard, numerical simulations can be used to
find evidence that the system relaxes to the dark state no matter the initial state. The
results obtained by Yi et al are shown in figures 23 and 24. On figure 23 the fidelity and
entropy obtained from the evolution of the master equation have been evaluated for 1D
systems whose initial states were chosen to be the antiferromagnetic Neél (figure 24-a) and
spin-singlet (figure 24-b) states. The results show that both the fidelity and entropy of the
system point to the conclusion that the state of the system relaxes to the desired dark
state on both systems. The the evolution systems for 2D is shown in in figure 23 and was
done using quantum trajectories to solve the master equation. The results show evidence
that there is an exponential decay to a steady state, and, from that, the existence of a
dissipative gap can be inferred (analogous to the energy gap for the ground state of the
BCS-paring state).

Figure 23 – Fidelity and entropy evolution for 4 atoms on a 1D chain with 4 sites. (a) The
fidelity is with respect to an antiferromagnetic Néel state. The dashed curve
represents the evolution of the fidelity with respect to the other antiferromag-
netic state of the system with a total spin flip; (b) The fidelity is with respect
to a 1-D singlet pairing state. The dashed curve shows the evolution without
{Jzq } jump operators. Image extracted from [7].
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Figure 24 – Quantum trajectory evolution of the master equations for d-wave and p- wave
states in 2 dimensions. (a) Evolution with d-wave jump operators on a 2×6
ladder with 4 atoms; (b) evolution with p-wave jump operators on a 4×4
plaquette with 4 atoms. The insets indicate the existence of dissipative gaps
in both cases, which render the convergence to the steady states exponentially
fast. This result is robust in the thermodynamic limit as revealed by mean-
field theory in [7]. The fidelity (solid) is calculated by averaging over 1000
trajectories. These trajectories are then bunched into 100-trajectory groups,
whose standard deviations are then calculated to show the sampling errors
(dashed). Image extracted from [7]
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5 Conlcusions

We have done a review on open many body AMO systems, exploring the conse-
quences of dissipative dynamics on them. These dynamics are proving to have promising
effects which can lead towards having better control over systems and a better under-
standing of phenomena in many areas of physics, including quantum simulation, quantum
information and quantum magnetism.

Our focus was concentrated on particle loss dissipative processes and the mechanisms
behind the continuous quantum Zeno effect on systems which could be approximated
by the Hubbard model. In this perspective, we found numerical evidence that suggests
the relationship between hopping amplitude and dissipative strength is essential for the
process to occur on one dimensional bosonic systems, meaning the effect will occur once we
are in the regime Γ ≫ J . This was also seen experimentally, as was shown in chapter 4.1.
The continuous quantum Zeno effect may be a promising process in many body problems,
leading to a greater experimental control over time of system properties such as magnetism
and particle density.

We were also able to use the quantum trajectories method to study state (and
observable) evolution on dissipative many body systems, which proved to be an efficient
method to obtain expected values and states of global observables as well as a class of
local ones. However, although the method shows an improvement on memory cost in
comparison with direct integration of the master equation, it may take extensive time
periods to be performed in many body problems depending on the degree of accuracy
(number of trajectories) needed for the results. In this context, possible improvements
on the method were found in the literature. Those improvements rely on the use of
other numerical methods for state evolution in between quantum jumps, such as exact
diagonalization, t-DMRG and Tensor Networks, and may considerably improve the size of
systems simulated.
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APPENDIX A – Derivation of Heisenberg
Hamiltonian from Second Order Perturbative

Theory on the Hubbard Hamiltonian

We follow the arguments given by Tasaki [2]. Considering the Hubbard Hamiltonian
given by

H = Hhop +Hint (A.1)

we assume the unperturbed Hamiltonian as being formed by the term Hint which is defined
as:

Hint =
∑
j

U(nj↑ + nj↓) (A.2)

we also assume the system is at half-filing, i.e. the total number of electrons in the lattice
is equal to the number of sites and U ≫ 1.

Let Γ↓ ∈ Λ be the set of sites where the spin state of the electrons are ↓ and
Γ↑ ∈ Λ where their spin states are ↑. A ground state with zero energy of the interaction
Hamiltonian is relized when Γ↑,Γ↓ satisfy Γ↓ ∩ Γ↑ = ∅. These ground states can be
represented as

|Ψσ⟩ = (
∏
j∈Λ

c†
j,σj

) |ψvac⟩ (A.3)

here σ = (σj)j∈Λ with σj =↑, ↓ is a spin configuration. Since any spin configuration is
allowed, the ground states are 2|Λ| fold degenerate.

We find that there is no effect of the perturbation Hhop to first order. This is
because by operating Hhop once onto |Ψσ⟩ we inevitably and up with an empty site and a
doubly occupied one. This new state is no longer a ground state of Hint and, therefore,
the lowest order contribution from this perturbation theory comes from the second order.
This second order contribution generates spin exchange as is illustrated in figure 25.

Figure 25 – Illustration of the second order process which is the lowest contribution from
perturbation theory on this model (x and y represent sites in the figure)

Let H′ be the Hilbert space spanned by all possible spin configurations of the
ground state |Ψσ⟩, and H⊥ the orthogonal space to H′ . Let P0 be the orthogonal projection
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onto H′. Consider the perturbation Hamiltonian

H(λ) = Hint + λHhop. (A.4)

Then, the exact Schrödinger equation for H(λ) can be written as

(Hint + λHhop)(|ψ⟩ + |Γ⟩) = E(|ψ⟩ + |Γ⟩ , (A.5)

where |ψ⟩ ∈ H′ and |Γ⟩ ∈ H⊥. Operating P0 to this equation we get

λP0Hhop |Γ⟩ = E |ψ⟩ (A.6)

where we we used the fact that Hint |ψ⟩ = 0 and Hint |Γ⟩ ∈ H⊥. If we now apply (1 − P0)
to equation A.5 we get

λHhop |ψ⟩ +Hint |Γ⟩ + λ(1 − P0)Hhop |Γ⟩ = E |Γ⟩ (A.7)

which implies

λHhop |psi⟩ = {−Hint + E + λ(1 − P0)Hhop} |Γ⟩ ≈ −Hint |Γ⟩ (A.8)

where we assumed that E and λHhop is much smaller than the energy difference between
eigenstates of Hint. We then find

|Γ⟩ ≈ −λH−1
intHhop |ψ⟩ (A.9)

where H−1
int is well defined in the space H⊥. Inserting A.9 into A.6 we get

−λ2P0HhopH
−1
intHhop |ψ⟩ ≈ E |ψ⟩ (A.10)

which means that by second order perturbation theory, low-energy eigenstates of H(λ) are
determined by the effective Hamiltonian

Heff = −P0HhopH
−1
intHhopP0 (A.11)

substituting Hhop = J
∑
j,l∈Λ c

†
j,σcl,σ and Hint = 1

U
(since there is only one particle on each

site) we find

−P0HhopH
−1
intHhopP0 =

∑
j,l∈Λσ,τ=↑,↓

J2

U
c†
j,τcl,τc

†
j,σcl,σP0. (A.12)

This can be rewritten in a spin operator form by using the relations∑
σ,τ=↑,↓

c†
j,τcl,τc

†
j,σcl,σ =

∑
σ=↑,↓

c†
j,σcj,σ −

∑
σ,τ=↑,↓

c†
j,τcj,σc

†
l,τcl,σ (A.13)

which implies [2]∑
σ,τ=↑,↓

c†
j,τcl,τc

†
j,σcl,σ = nl − (S+

l S
−
j + S−

l S
+
j ) −

∑
σ=↑,↓

nj,σnl,σ (A.14)

also, ∑σ=↑,↓ nj,σnl,σ = 2(S(z)
j S

(z)
l + 1

4njnl) and (S+
l S

−
j + S−

l S
+
j ) = 2(S(x)

j S
(x)
l + S

(y)
j S

(y)
l ).

Which leads to the desired effective Hamiltonian∑
j,l∈Λ

2|J |2

U
(Sj · Sl − 1

4) (A.15)
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APPENDIX B – Derivation of the Master
Equation

We follow the derivation given by Breuer et al [11]. Consider the hamiltonian of
the total sistem given by:

H = Hs +HB +HI (B.1)

where Hs, HB are the isolated system and bath hamiltonians, respectfully, and HI

is the interaction hamiltonian. We assume that we are working on the weak coupling limit.
The Markovian quantum master equation is more conveniently derived on the interaction
picture. We shall denote the interaction picture Hamiltonian simply by HI(t). The Von
Neunmann equation in the interaction picture is written as:

d

dt
ρ(t) = −i[HI(t), ρ(t)] (B.2)

which can be rewritten in its integral form

ρ(t) = ρ(0) − i
∫ t

0
ds[HI(s), ρ(s)] (B.3)

substituting ρ(t) on equation B.2 and tracing over the environment we get
d

dt
ρs(t) = −

∫ t

0
dstrB[HI(t), [HI(s), ρ(s)]] (B.4)

where we assumed that
trB[HI(t), ρ(0)] = 0 (B.5)

We see from equation B.4 that the differential equation is still in terms of the total density
operator ρ(t). To discard this term we first perform a Born approximation, which assumes
that, since coupling between system and environment is weak, we can consider the bath
state does not change in the evolution, i.e.

ρ(t) ≈ ρs ⊗ ρB (B.6)

inserting B.6 in equation B.4 we get
d

dt
ρs(t) = −

∫ t

0
dstrB[HI(t), [HI(s), ρs(s) ⊗ ρB]] (B.7)

In order to make this equation simpler we perform the second approximation,i.e. We
consider the state evolution of the system depends only on the present state. This is called
the Markovian approximation and results in the equation

d

dt
ρs(t) = −

∫ t

0
dstrB[HI(t), [HI(s), ρs(t) ⊗ ρB]] (B.8)
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where we made the substitution ρs(s) → ρs(t). The equation cannot yet be considered a
markovian master equation, since it stil depends on the explicit choise for the initial stat
at time t = 0. In order to obtain a markovian master equation we make the substitution
s → t − s and let the upper limit go to infinity (which is permissible if the integrand
disapears suffitiently fast for s ≫ τB, where τB is the characteristic time scale for the
correlation functions of the bath to decay). Thus, we obtain the markovian master equation

d

dt
ρs(t) = −

∫ ∞

0
dstrB[HI(t− s), [HI(s), ρs(t) ⊗ ρB]] (B.9)

In order to obtain the final Lindblad equation we perform a third approximation, which
is known as the rotating wave (or secular) approximation. This approximation involves
averaging over rapidly oscillating terms in the master equation. To understand it, consider
the Schrödinger picture hamilnonian:

HI =
∑
k

Ak ⊗Bk (B.10)

Where both Ak and Bk are Hermitian operators. The secular approximation is easily ob-
tained if we decompose the hamiltonian B.10 into eigenoperators of the system Hamitonan
HS. Assuming the spectrum of HS is discrete, let the eigenvalues of the system hamiltnon-
ian be represented by the values ϵ and the projection onto the eigenspace belonging to the
eigenvalue ϵ by ∏(ϵ). We can, then, define the operators

Ak(ω) :=
∑

ϵ′−ϵ=ω

∏
(ϵ)Ak

∏
(ϵ′). (B.11)

where the sum is over the energy eigenvalues with fixed energy difference ω. From the
definition we get:

[HS, Ak(ω)] = −ωAk(ω),
[HS, Ak(ω)†] = +ωAk(ω)†.

(B.12)

where the operators Ak and A†
k are said to be eigendoperators of HS belonging the

frequencies ∓ω,respectfully. The corresponding interaction picture operators are given by

exp(iHst)Ak(ω) exp(−iHst) = exp(−iωt)Ak(ω),
exp(iHst)Ak(ω)† exp(−iHst) = exp(iωt)Ak(ω)† (B.13)

Summing B.11 over all energy differences and invoking the completeness relation we get:
∑
ω

Ak(ω) =
∑
ω

A†
k = Ak. (B.14)

Thus, we can cast the interaction Hamiltonian in the following form:

HI =
∑
k,ω

Ak(ω) ⊗Bk =
∑
k,ω

Ak(ω)† ⊗B†
k, (B.15)
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which in the interaction picture is written as

HI =
∑
k,ω

e−iωtAk(ω) ⊗Bk(t) =
∑
k,ω

eiωtAk(ω)† ⊗B†
k, (B.16)

where Bk(t) = eiHBtBke
−iHBt. Inserting the interaction picture operator into the master

equation we obtain

d

dt
ρs(t) =

∫ ∞

0
dstrB{HI(t− s)ρs(t)ρBHI(t) −HI(t)HI(t− s)ρs(t)ρB} + h.c. (B.17)

which leads to
d

dt
ρs(t) =

∑
ω,ω′

∑
k,l

ei(ω
′−ω)tΓkl(Al(ω)ρS(t)A†

k(ω′) − A†
k(ω′)Al(ω)ρs(t)) + h.c. (B.18)

where
Γkl =

∫ ∞

0
dseiωs⟨B†

k(t)Bl(t− s)⟩, (B.19)

and
⟨B†

k(t)Bl(t− s)⟩ := trB{B†
k(t)Bl(t− s)ρB}. (B.20)

Let us denote τs as the time scale of the intrinsic evolution of the system, which is
defined by a typical value fo |ω′ − ω|, ω′ ̸= ω. If τs is large compared to the open system
relaxation time τR the terms for which ω′ ̸= ω may be neglected. This condition is known
as rotating wave approximation, and, from this approximation, we get

d

dt
ρs(t) =

∑
ω

∑
k,l

Γkl(Al(ω)ρS(t)A†
k(ω) − A†

k(ω)Al(ω)ρs(t)) + h.c. (B.21)

We can also decompose the Fourier transformation of the reservoir correlation functions as
follows

Γkl(ω) = 1
2γkl(ω) + iSkl(ω) (B.22)

where for fixed ω coefficients

Skl(ω) = 1
2i(Γkl(ω) − Γ∗

kl(ω)) (B.23)

form a Hermitian matrix and the matrix defined by

γkl = Γkl(ω) + Γ∗
kl(ω) (B.24)

is positive. This leads to the interaction picture master equation

d

dt
ρs(t) = −i[HLS, ρs(t)] +

∑
ω

∑
kl

γkl(ω)
Al(ω)ρsA†

k(ω) − 1
2{A†

k(ω)Al(ω), ρs}
 (B.25)

where
HLS =

∑
ω

∑
kl

Skl(ω)A†
k(ω)Al(ω) (B.26)

which can be written in Lindblad form if we diagnonalize the matrix γkl
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APPENDIX C – Second Quantization

In this chapter, we follow the description of [2] of the second Quantization (or Fock
space representation) for tight binding electron systems.

C.1 Fermionic Anticommutation Relations
To each lattice site j ∈ Λ and spin index σ =↑, ↓ we associate a fermion operator

cj,σ. Those operators satisfy the anticommutation relations

{c†
j,σ, c

†
l,τ} = {cj,σ, cl,τ} = 0 (C.1)

and
{cj,σ, c†

l,τ} = δj,lδσ, τ (C.2)

for any j, l ∈ Λ and σ, τ =↑, ↓, where the anticommutator is defined as {A,B} = AB+BA.
Eq. C.1 implies c2

j,σ = (c†
j,σ)2 = 0. The operators c†

j,σ, and cj,σ may be considered the
creation and annihilation operators,respctfully, of an electron at site j with spin σ. We
define the number operator (which represents the number of electrons with a determied
spin state on a site) as

nj,σ = c†
j,σcj,σ (C.3)

From C.1 and C.2 we get

n2
j,σ = c†

j,σcj,σc
†
j,σcj,σ = c†

j,σ(1 − c†
j,σcj,σ)cj,σ = c†

j,σcj,σ = nj,σ. (C.4)

Therefore we obtain nj,σ(1 − nj,σ) = 0, which implies that nj,σ have only the eigenvalues
0 and 1, which is a consequence of Pauli’s exclusion principle. Other properties of the
number operators are

[nj,σ, c†
l,τ ] = δj,lδσ,τc

†
j,σ (C.5)

and
[nj,σ, nl,τ ] = 0 (C.6)

for any j, l ∈ Λ and σ, τ =↑, ↓.

The number operator for a single site j is defined as nj = nj,↑ + nj,↓, and the total
number operator is defined as

N :=
∑
j∈Λ

nj =
∑

j∈Λ,σ=↑,↓
nj,σ. (C.7)
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C.2 Hilbert Space
To construct the Hilbert space for many-electrons. Let |ψvac⟩ be a normalized state

which represent the state where the lattice has no electrons. This is respresented by

cj,σ |ψvac⟩ = 0. (C.8)

For an electron system, the total number of particles,N , is such that 1 ≤ N ≤ 2|Λ|.
We define a state where N arbitrary sites, j1, j2, ..., jN ∈ Λ with spins σ1, σ2, ..., σN =↑, ↓
are occupied by ∣∣∣ψ(j1,σ1),...,(jN ,σN )

〉
= c†

j1,σ1 ...c
†
jN ,σN

|ψvac⟩ . (C.9)

All possible states of type C.9 are allowed, given that the anticommutation relations
C.1,C.2 are sattisfied. In particular, the state C.9 vanishes whenever (ji, σi) = (jk, σk) for
some j ̸= k (which is nothing but Pauli Exclusion principle).

Supposing that
∣∣∣ψ(j1,σ1,...,(jN ,σN )

〉
is nonvanishing, we find by using C.5 and nj,σ |ψvac⟩ =

0 that

nj,σ
∣∣∣ψ(j1,σ1),...,(jN ,σN )

〉
=


∣∣∣ψ(j1,σ1),...,(jN ,σN )

〉
if (ji, σi) = (j, σ) for some i

0 otherwise
(C.10)

The hilbert space which contains all possible eclectron numubers, namely

F := H0 ⊕ H1 ⊕ ...⊕ H2|Λ| (C.11)

is known as Fock space. Both the operators cj,σ and c†
j,σ act on this space, which is why

this formalism of quantum mechanics is called the Fock space representation.

C.3 Bosonic Second Quantization
The derivation of Fock Space representation for bosons is analogous to the de-

velopment made in the last sections. The difference being that the creation, a†
j,σ and

annihilation,aj,σ, operators must satisfy the commutation relations

[a†
j,σ, a

†
l,τ ] = [aj,σ, al,τ ] = 0 (C.12)

[aj,σ, a†
l,τ ] = δj,lδσ,τ (C.13)
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APPENDIX D – 3-particle and 1-particle
Loss Dissipation

D.0.1 3-Particle Loss

It is common for 3 body loss events to occur on different kinds of many body
systems, usually leading to undesired effects which may jeopardise the control over the
system being studied. Neverthelss it is an interesting result that strong dissipative processes
may be used in AMO systems which undergo three-body loss events in order to induce
effective three body interactions that are normally difficult to produce in dilute quantum
gases. This is possible due to the quantum Zeno effect that can be used to suppress
three-body losses in these systems. Under proper approximations the systems which have
such loss processes may be described by a Markovian master equation, as was the case
shown for two-body loss events in the last section.

A typical way to picture three-body loss processes is shown in figure 26. There,
collision processes between two atoms give rise to molecules which have a large binding
energy when compared to the trap potential. As a result of the three-body interaction
between a particle and a molecule a three body loss happens and they are ejected from
the system. In the case where the binding energy released in the collision is much greater
then the trap energy and the particles are ejected immediately after the interaction, the
system evolution can be described by a master equation which is given by

Figure 26 – Schemetics of bosons in an optical lattice in the presence of three-body loss at
a rate γ3. Figure extracted from [8]

dρ

dt
= −i(Heffρ− ρH†

eff ) + γ3

6
∑
i

a3
i ρ(a

†
i )3 (D.1)

where the effective Hamiltonian is given by:

Heff = HBH+ − i
γ3

12
∑
i

(a†
i )3a3

i (D.2)
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where HBH+ is the Bose-Hubbard Hamiltonian with an elastic interaction term:

HBH+ = −J
∑
⟨j,l⟩

a†
jal + U

2
∑
l

a†
lal(a

†
lal − 1) +

∑
i

ϵia
†
iai (D.3)

According to Daley et al. [8], in the regime where γ3 ≫ J, U it is possible to use
perturbation theory in order to derive an efective Hamiltonian in terms of the subspace
where the system has at most two particle per site. The effective Hamiltoninan, given by
second order perturbation theory, is

HP
eff ≈ PHBH+P − i

6J2

γ3
P
∑
i

c†
iciP (D.4)

where ci = (a2
i /

√
2)∑j∈Ni

aj , Ni is the set of nearest neighbours of the site i, and P is the
projector onto the subspace of states which have a maximum number of two atoms per
site. The first term on the right handside of equation D.4 describes the Hubbard dynamics
with the constraint (b†)3. Moreover, it can be shown that the effective loss rate decreases
as J2

γ3
which is also expected when the quantum Zeno effect happens in systems which

undergo two-particle loss [4, 40].

In ref [8] the study of the full non-equilibrium dynamics of the system was realized
with a combination of t-DMRG and the quantum trajectories technique. After a close
look at the behavior of the system in the limit of large γ3 (so as to to have an account
of the phase transitions for the projected Hamiltonian PHP ), it was observed that, for
U/J > 0, the system had the Mott-Insulator and Atomic Superfluid Phases. Nevertheless,
the three-body loss constraint also had the system stabilized for U/J < 0 where a dimmer
superfluid phase was found. The dimmer superfluid phase arises when the order parameter,
which indicates superfluidity of single atoms (ASF) (⟨bi⟩ = 0), vanishes while a dimmer
superfluidity (DSF) order parameter continues to be observed (⟨b2

i ⟩ ≠ 0). According to
Romans et al. [45] these regimes are assotiated with quantum phase trasitions that lead to
the spontaneous braking of a discrete Z2 symmetry. Figure 27 shows a phase diagram of
U/J as a function of the density n of particles with the constraint n ≤ 2. The diagram was
obtained using mean-field theory via the homogeneous Gutzwiller ansatz wavefunction.
We can see that for n → 1 the ASF-DSF transitions occur at the same coupling strength
as the ASF-MI transition with opposit sign.

In order to understand the dynamics of the material undergoing phase transition
from Mott insulator to Dimmer superfluid, the quantum trajectories approach was used.
The results of the simulations are shown in figure 28. The change of the total energy(sum
of the kinetic and interaction energies) for two types of lattices were analysed, i.e. for
"lossless" (meaning only the evolution of effective Hamiltonian was considered) and "lossy"
(evolution of the complete master equation) processes. Figure 28 (a) (i) shows the first
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Figure 27 – Mean-field phase diagram of U/J as a function of the density, n, for the
projected Bose-Hubbard model. Figure extracted from [8]

lattice type, which is a Mott Insulator with one particle on each site. The second lattice
type is shown in figure 28 (a) (ii) where a superposition of lattices rose the energy of
certain sites and formed a Mott insulator with two particles per site in the lowest wells.
The interaction strength was adiabatically altered as the systems evolved in order to reach
the dimmer superfluid regime. In lattice (i) U/J was ramped from U/J = 30 to U/J = −8
whereas the initial value of U/J in (ii) was changed to the value U/J = −8 in a timescale
much faster than the tunnelling between the lowest wells, then the superlattice was ramped
down.

In figure 28b,c the sum of kinetic and interaction energies vs time is shown for
single trajectories. Two types of trajectories were evaluated for each ramp type, the first
is a "lossless" trajectory where the ground state is reached adiabatically and the second
in a "lossy" trajectory, where three particle ejections happen in the system as it evolves
creating heat. The probability of each type of lattice to produce a "lossless" trajectory
(which means that after the evolution of a "lossy" trajectory no quantum jumps occured)
is shown in figure 28 d. It is clearly seen that the type (ii) lattice is much more likely to
decay to the ground state without losing particles on the time span considered.

Finally, figure 29 shows the the local density versus time and the matrix D(i, j)
which represents the matrix elements of ⟨a†

ia
†
iajaj⟩ which are the off diagonal elements

that characterize the dimmer superfluid phase. Part (a) represents a lossless trajectory
while part (b) a "lossy" one for the systems of figure 28. It can be seen that even with
loss of particles some elements of the dimmer matrix persist which indicates that dimmer
superfluid behavior can be seen experimentally.
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Figure 28 – Dynamics of adiabatic ramps into a dimer superfluid regime. (a) We begin
with (i) a Mott-insulator state (ramping U/J), and (ii) a state with pre-
prepared dimers in a superlat- tice (removing the superlattice). (b)-(c) The
sum of kinetic (EK ) and interaction (EI ) energy and (inset) particle number
as a function of time for two example trajectories, one with no loss events
(dashed lines) and one with several loss events (solid lines). Here, (b) shows
a ramp from U/J = 30 to U/J = −8, with U(t) = αJ/(100 + 3tJ) + γ,
with α and γ ramp parameters, and (c) shows a ramp with a superlattice
potential, ϵl = V 0cos(2πl/3), where V0 ≈ 30Jexp(−0.1tJ), adjusted so that
V0(tJ = 100) = 0, with fixed U/J = −8. In each case, γ3 = 250J . For (b), we
use 20 atoms on 20 lattice sites, for (c), 14 atoms on 23 lattice sites. (d) Plot
showing the probability that no loss event has occurred after time t for the
ramps in (b) (dashed line) and (c) (solid). Image extracted from [8]

D.0.2 1-Particle Loss

Single particle loss events can be seen in a variety of setups, such as ionizing atoms
in a Bose Einstein condensate (BEC) with an electron beam [46, 47] as is illustrated
in figure 30 and driving atoms to momentum states that have greater energy than the
lattice depth through photon scattering [54,55]. Localized single particle losses have been
achieved experimentally using high-resolution electron microscopy to probe a BEC with
high precision [46]. The one dimensional Bose-Einstein condensate may be represented (in
a considerable parameter range) by the Bose-Hubbard model

HBEC =
∑
l

[
− J(b†

l bl+1 + b†
l+1bl) + U

2 nl(nl − 1)
]

(D.5)
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Figure 29 – Comparison of (a) lossless and (b) lossy trajectories from figure 28. The mean
density ⟨ni⟩ is shown as a function of position and time, and the magnitude
of the dimer correlation at the ∥D(i, j)∥(i ̸= j). Figure extracted from [8]

where we consider a system with open boundaries ranging from l = −(L − 1)/2 to
l = (L− 1)/2 (L being the number of sites).

In an experiment the initial state of the system without any dissipative effects may
be set to the BEC ground state. Considering an electron beam or a scattering light beam
is used to probe this condensate at site l = 0 at time t = 0 the interactions with the BEC
gas lead to particle loss in the system, i.e. the emission of single particles from site 0. If the
the atoms are expelled quickly enough, we can use the approximations needed to describe
the system dynamics with a master equation:

ρ̇ = −i[HBEC , ρ] + Γ(b0ρb
†
0) − Γ

2 (n0ρ) − Γ
2 (ρn0). (D.6)

According to Barmettler and Kollath [10] the strength of dissipation will depend on
the cross-section of the scattering between the atoms and the type of probing method e.g.
the electron beam. The master equation can then be solved by using quantum trajectories
with effective Hamiltonian Heff = HBEC − iΓn0 which should represent the dynamics of
the system given that no atom loss is detected, and, as in the case with 2 and 3 particle
losses seen in the last sections, atom loss detection can be simulated by stochastically
applying annihilation bosonic field operators to the system state vector. This was done
in [10] by using t-DMRG to evolve the system state between quantum jumps, which
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Figure 30 – Illustrative image of the ionization of atoms of a Bose Einstein condensate by
an electron beam. Figure extracted from [9]

allowed for the simulation of a system with a considerable number of sites (L = 105).
To study how the system behaves at long times we can focus on how occupation density
at site 0 affects the total state of the BEC, this is shown in figures 31, 32 for weak and
strong dissipations, respectfully. In Figure 31(a-b) the normalized occupation density is
presented for three different times and for different interaction parameters. In the strong
interaction limit a dark density modulation caused by the loss at site zero propagates at
sound speed (close to 2Jat/ℏ where a is the distance between sites), this behavior is seen
both for a Tonks-Girardeau gas 1 and Mott Insulator states [10]. On the other hand, in
the weak interaction limit there is a formation of a shock wave which travels at a speed
that strongly exceeds Jat/ℏ, only after the this wave the dark density modulation caused
by dissipative effects propagates as expected. Analysing single trajectories in which atom
losses have been both detected ,ψhole(t), and not detected ,ψnd(t), as is shown in figure
31(a) it is possible to see that the non detection dynamics has the most important role
to explain the origin of the shock wave, eventhough ψhole(t) causes a larger perturbation
than ψnd(t).

In figure 31(c) it is possible to see that the the underlying dynamics of the system
goes unnoticed i.e. has no apparent effect on the evolution of the total loss number
(N(t)/nin) in short time scales the evolution of N(t) is given by N(t) = 1 − e−Γt as
expected for any type of system. More interestingly, the initial state, interaction strength,
as well as the initial number of particles have little effect on the total number of particles
detected in time. It can also be seen that the time dependence of N(t) is approximately
linear. In order to see clearly the differences in the behavior of N(t) the occupation
1 A Tonks-Girardeu gas is a one dimensional bose gas with hard-core constraint in the strong interaction

regime
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number at site 0 (n0(t)) was plotted as a function of time. The figure shows n0 reaches a
quasi-steady state after a slowly decaying regime for the respective interaction strengths
shown in Figure 31(d). Barmettler and Kollath [10] have found through the analysis of
these results that this behavior (short time exponential decay followed by a long time
linear rise) is general and should be encountered in a broad range of parameters for this
system type.

Figure 31 – Weak dissipative coupling Γ/J = 0.25, L = 105 and 53 or 105 particles. (a)
and (b) show density profiles at different times. Densities are rescaled by
their initial values and size-dependent features in the vicinity of the edges of
the systems are discarded. The ’light- cone’ of waves moving with the sound
velocity [20] is depicted by vertical lines. Star and cross symbols represent
|ψnd⟩, |ψhole⟩ respectively. In the lower panels the total atom loss is ploted in
(c) and the central density in (d), both rescaled by the initial density nin. In
(c) 4 curves almost lie on top of each other. Boundary effects are eliminated
by interrupting simulations before reaching the recurrence times. Statistical
errors are either marked by bars or smaller than line width or symbol size.
Image extracted from [10]

Figure 32 (a,b) shows that the behavior of the BEC for strong dissipative effect
(Γ ≫ J, U) is very similar to the one observed for weak dissipation. The major difference is
that now the total number of particle loss is very sensitive to the initial state as is shown
in figure 32(c). In this case the Von Neumann entropy was also calculated (Figure 32(d))
and it is shown to have an interesting behavior i.e. the site 0 defect can generate strong
entanglement increase between the sub systems formed by it. In small time scales the
entropy decreases due to the projection performed by the measurements and , after that,
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Figure 32 – Numerical results for strongly dissipative coupling, Γ/J = 8. (a-b) are explained
in figure 31. (d) represents the Von Neunmann entropy between the bipartite
system formed by the defect at l = 0.

it grows approximately linearly. It is also seen that this dissipative system presents the
quantum Zeno effect. In fact, using perturbation theory to analyse the master equations
behavior considering an adiabatic particle loss process at the center of the lattice we find
that [10]:

Ṅ(t ≫ ℏ/J) ≈ 8J2

Γ n∓(L−1)/2(t = 0) (D.7)

the effect was also numerically avaluated by Barmettler and Kollath and is shown
in figure 33

Figure 33 – Zeno effect perceived in the total loss rate for various three initial total
occupation numbers (nin = 1(triangle) and nin=0.5(circle and square) and
also interaction strengths (U/J = 4(triangle), U/J = 8(square) and U/J =
1(circle))
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APPENDIX E – Further Results on the
Dynamics of Particle Density of Section 4.2.2.2

We use the one dimensional Hubbard model given by Eq. 4.10 to otain the particle
density of the sites of a 5-site lattice that starts its evolution with 5 bosons. The results
are shown in figure 34 .
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(a) (b)

(c) (d)

(e)

Figure 34 – Particle density dynamics for different Γ at each site of a lattice with 5 sites
and (initially) 5 bosons. The Evolution was done using quantum trajectories.
Here we see that the average density at each site tend to decay more slowly
with time as we increase the dissipation strength (see green, red and purple
lines). As a means to comparison, we have obtained the dynamics of the
density for weak dissipation(Orange dashed lines). It is clear from the figures
that as we increase dissipation strength the particle density loss over time get
close to the case of weak dissipation.


