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Karen Moreira Antunes1,2,9*

1 Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo,
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Universidade de São Paulo, São Paulo – SP, Brazil, 6 Programa de Pós-Graduação emCiências da Saúde,
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Abstract

Background

Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothala-

mus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The

beneficial effects of resistance training are related to hemodynamic, metabolic and hor-

monal homeostasis. We hypothesized that resistance training can prevent the cardiac

remodeling and dysfunction caused by paradoxical sleep deprivation.

Methods

MaleWistar rats were distributed into four groups: control (C), resistance training (RT), para-

doxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep depri-

vation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac

histomorphometry, hormonal profile and molecular analysis were evaluated.

Results

Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart

rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle

cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also

observed. Along with these alterations, reduced levels of serum testosterone and insulin-

like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were
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MT, Souza HdS, Tufik S, Lee KS, et al. (2016)

Paradoxical Sleep Deprivation Causes Cardiac

Dysfunction and the Impairment Is Attenuated by

Resistance Training. PLoS ONE 11(11): e0167029.

doi:10.1371/journal.pone.0167029

Editor: Paula A. da Costa Martins, Maastricht

University, NETHERLANDS

Received: February 22, 2016

Accepted:November 8, 2016

Published: November 23, 2016

Copyright: © 2016 Giampá et al. This is an open
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observed in the PSD96 group. Prophylactic resistance training attenuated most of these

changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventri-

cle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic

cardiac hypertrophy pathway.

Conclusions

Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance

induced by paradoxical sleep deprivation.

Introduction

In plurality, sleep is defined as a vital state of homeostatic regulation with specific behavioral

and electrophysiological characteristics. Whose sensory feedback and motor capacity is

reduced, differing from coma or anesthesia by its rapid reversibility [1,2]. Sleep is divided into

two phases, non- rapid eye movements (NREM) and rapid eye movements (REM). The former

is associated with progressive reduced neuronal activity with three defined phases: N1, N2, N3

(slow wave sleep) [3]. The latter, is characterized by vivid dreaming and a high level of brain

activity despite the muscular atony that suggests a deep sleep. This phase is also known as para-

doxical sleep in rats [4,5].

Among the important functions of sleep, its role in the cardiovascular system has been

highlighted in recent years. Part of this interest is related to the intriguing hemodynamic

changes found during the period of sleep in contrast to those observed during wakefulness

[6,7]. During NREM sleep, a reduction of cardiovascular activity is observed. On the other

hand, during REM sleep this activity appears to be very similar to the cardiovascular acitivity

observed during wakefulness [7,8]. Considering that the period of sleep is mainly composed of

NREM, it is quite likely that this stage is related to a period of quiescence of the cardiovascular

system. This is observed in the physiological variables such as heart rate (HR) and blood pres-

sure (BP) [6].

Therefore, during sleep is observed an increased parasympathetic activity [8], whereas,

sleep deprivation (SD) causes an increase in sympathetic activity and a decrease in parasympa-

thetic activity [9]. These phenomena can be explained by changes in baroreflex sensitivity,

which would result in an increase of BP and consequently cardiovascular changes [10–12].

Although, there is not a consensus yet for this plausible mechanism [11,13].

Regarding the endocrine axis, SD is also recognized for changing the secretion of hor-

mones, increasing catabolic hormones (catecholamines and corticosterone) and reducing ana-

bolic hormones (testosterone and Insulin-like growth factor-1(IGF-1)) [14,15]. These changes

can influence cardiac cellular mechanisms such as Ca2+ handling proteins, which are involved

in the maintenance of normal cardiac Ca2+ homeostasis and in the contractile function.

Among these proteins, sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and its regulator

phosphorylatable protein (phospho-Ser16-Thr17-phospholamban (PLN)), which in its dephos-

phorylated form (PLN) inhibits SERCA2a activity, both former and latter are responsible for

Ca2+ uptake by the sarcoplasmic reticulum; ryanodine receptor (RyR), that is responsible for

releasing the Ca2+ by the sarcoplasmic reticulum and; Na+/Ca2+ exchanger (NCX) involved in

the Ca2+ extrusion by sarcolemma. [16–18].

When both, the hormones and the cardiac cellular mechanisms are altered they can

increase the myocardium demands triggering the pathological cardiac hypertrophy, a
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compensatory adaptation to an increase in heart workload [19]. Pathological cardiac hypertro-

phy is associated with loss of myocites and fibrotic replacement, which impairs the cardiac

function [20]. Angiotensin II (Ang II) and proteins such as nuclear factor of activated T-cells 3

(NFATc3) and GATA binding protein 4 (GATA-4) are factors associated with this remodeling

process of the heart [20–22].

If SD can cause an autonomic, endocrine, moleculars and morphological disruption,

thereby increasing the risk for cardiovascular diseases, there are strategies that may benefit the

cardiac function. Among them, we highlight resistance training. Studies demonstrate that

resistance training reduces resting BP and HR and triggers physiological concentric hypertro-

phy of cardiac tissue [23,24]. In addition, increased levels of IGF-1 and testosterone are also

evident after resistance training [25,26]. Thus, the purpose of this study was to evaluate the

effects of paradoxical sleep deprivation (PSD) on cardiac function in rats and to explore the

benefits of resistance training.

Materials and Methods

Experimental Animals and Environmental Conditions

Wistar male rats aged 3 months and weighing 300–350 g at the beginning of the experiment

were housed in groups of five inside standard polypropylene cages in a temperature-controlled

(23±1˚C) room with a 12:12 h light-dark cycle (light starting at 07:00 am) and were allowed

free access to food and water. All procedures used in the present study complied with the

Guide for the Care and Use of Laboratory Animals and the experimental protocol was

approved by the UNIFESP Ethical Committee (#0764/10).

Experimental Groups

The animals were distributed into four groups: 1) the control group (C) was maintained in

their cages and was minimally manipulated during the experimental period (n = 30); 2) the

resistance training group (RT) was composed of animals subjected to 8 weeks of resistance

training (n = 30); 3) the PSD96 group consisted of animals submitted to PSD for 96 continuous

hours (n = 30); and 4) the RT/PSD96 group was composed of animals subjected to 8 weeks of

resistance training followed by the PSD for 96 continuous hours (n = 30).

Resistance Training Protocol

Resistance training was performed with a ladder which is 110 cm high and 18 cm wide, with 2

cm intervals between the steps, and the stairs are placed at an 80˚ angle [27]. These specific

dimensions and angulations facilitates the animals to climb to the top, where it is located a

shelter (20x20x20 cm) for the animals to rest between climbing attempts.

The animals were allowed to familiarize themselves with the ladder for three consecutive

days and then the maximum load was tested [27]. The animals had to climb the stairs carrying

a load that was fixed to the base of the tail by self-fusing tape (Scotch1 23 Rubber Tape-

Scotch1 3M) and was also connected to wires to increase the cylinders’ load as training pro-

gressed. During the training sessions, the animals were placed at the bottom of the ladder to

climb the stairs 4–8 times while carrying a load, with 60-second intervals between the series.

Animals took 8 to 12 steps to climb from the base to the top of the ladder [28].

For determining the load in the first week and start the resistance training protocol, we

used the body weight as reference, thus animals were loaded with 50% of their body weight,

and this load was gradually increased to 75%, 90% and 100% of the body weight on climbing

attempts 2, 3 and 4, respectively. In subsequent climbing attempts, the load was increased by
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30 g at each attempt until failure. Thus, to determine the new load in subsequent weeks of

resistance training, we used the maximal carrying capacity determined in the previous maxi-

mal load test. The protocol was the same used with body weight, however, using the maximum

load as reference. The sessions were conducted five times per week (Monday to Friday), and

the Monday training session was replaced by the maximum load test to readjust the load. To

avoid overtraining due to the high loads, prophylactic rest was introduced onWednesday of

weeks 6, 7, and 8 [28].

In order to evaluate the resistance training protocol efficiency on strength gains, and the

importance of continuous physical exercise to acquire its benefits, we also evaluate the animals

of C group. This group was submitted only to the session of maximum load determination,

that occurred only once a week. With the data of the maximum load in C group we established

a comparison with animals that trained 5 times per week, during 8 weeks.

Paradoxical Sleep Deprivation

PSD was performed for 96 hours using the modified multiple platform method, which con-

sisted of placing the rats inside a tiled water tank (123x44x44 cm), containing 14 circular plat-

forms, 6.5 cm in diameter, with water within 1 cm of their upper surface. The rats could thus

move around inside the tank by jumping from one platform to another. During paradoxical

sleep, rats tend to fall off the platform due to muscular atonia and to wake upon contact with

the water [29]. This SD method results in a complete loss of paradoxical sleep and promotes a

37% decrease in slow-wave sleep (a specific phase of NREM sleep) [30]. The water in the tank

was changed daily. Prior to the protocol, the animals were placed on the platform for 1 h per

day for 3 days for habituation.

Euthanasia

Immediately after PSD or 48 h after the last training session, the animals were transferred to

an adjacent room in a random order and were decapitated (between 08:00 and 10:00 am).

Blood Sampling

For the blood sampling, 10 animals were used from each groups. Immediately after euthanasia,

blood samples were collected and centrifuged to separate the plasma and serum and were

stored at -80˚C until the assays were performed. Serum testosterone levels were measured by a

chemiluminescent enzyme immunoassay (Unicell DXI 8001, Beckman Coulter1, Brea, CA,

USA). The plasma corticosterone concentrations were assayed using a commercial kit employ-

ing a double antibody radioimmunoassay specific for rats (MP Biomedicals1, Santa Ana, CA,

USA). Plasma IGF-1 was assayed using a commercial ELISA kit specific for rats (USCN Life

Science1, Houston, TX, USA). Serum T3 (triiodothyronine) and T4 (thyroxine) were mea-

sured by a chemiluminescent enzyme immunoassay (Unicell DXI 8001, Beckman Coulter1,

Brea, CA, USA). C-reactive protein (CRP) concentrations were measured using a kinetic

nephelometry method (IMMAGE1, Beckman Coulter1, Brea, CA, USA). Angiotensin II

(Ang II) measurements was performed by the method of enzyme-linked immunosorbent

assay using the specific commercial kit (Cloud-Clone Corp1, Houston, TX, USA).

Histological Studies

PlantarisMuscle. Plantaris is the primary muscle used to climb the resistance training

apparatus. The Plantaris muscle from the right leg of each rat was excised and dried for a few

seconds using filter paper. The distal fragment of the Plantaris muscle was wrapped with a
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mixture of powdered milk and optimal cutting temperature compound (Tissue-Tek1O.C.T. ™

Compound–Sakura, AJ Alphen aan den Rijn, The Netherlands, Europe) and serial cross-sec-

tions of 10 μmwere obtained using a cryostat (Leica Microsystem-CM18501, Nussloch, Ger-

many, Europe) at -22˚C. Then, the sections were placed on silanized glass slides. For the

morphological analysis, the samples were subjected to hematoxylin-eosin (HE) staining and

analyzed using a light microscope (Olympus BX501, brightfield, and camera DP71- Melville,

NY, USA) with 40x objective. The muscle fiber cross sectional area (CSA) was analyzed in a

blind manner, and 300 fibers per muscle were counted using AxioVision 4.6 software (Carl

Zeiss MicroImaging GmbH1, Jena, Germany, Europe). This parameter was assessed in six

animals randomly chosen from each group.

Heart Morphometric Study

After euthanasia, the hearts were arrested in diastole with 100 mM KCl and were washed with

a solution of NaCl 0.9%. Both the atria and ventricles were dissected. The left atrium index

(mg/mm) was calculated by normalizing then left atrium weight to the tibia length.

The left ventricle (LV) was cut in the equatorial plane. The middle to apex portion was

fixed in 4% formaldehyde and embedded in paraffin, to cut into 4 μm sections. Tissue sections

were stained with hematoxylin-eosin (HE) and Picro-Sirius red and were examined using a

computerized image system (Leica QWin1 (version 3) software and Leica DFC1 295 micro-

scope, Cambridge, UK, Europe).

To estimate cardiomyocyte hypertrophy, HE-stained sections were examined under 40x

objective to select transversally cut myocytes with central and visible nuclei. The CSA (μm2) of

20 cardiomyocites were calculated.

The collagen volume fraction was estimated in Picro-Sirius red stained sections under 40x

objective. The collagen volume fraction was determined as the percentage of red-stained con-

nective tissue areas per total myocardial area, excluding areas with fibrosis of the perivascular,

endocardial and epicardial areas. For each animal, 20 visual fields of the myocardium were

analyzed.

To determine the LV cavity diameter, digital images of whole LV were acquired using a

light microscope (Olympus BX501, brightfield, and camera DP71- Melville, NY, USA) with

1.25x objective. The LV cavity diameter was assessed with the AxioVision 4.6 software (Carl

Zeiss MicroImaging GmbH1, Jena, Germany, Europe).

These analyses were assessed in six animals randomly chosen from each group.

Western Blotting

Left ventricle (six animals per group, randomly selected) were homogenized using PBS (pH

7.2), containing Sigma-Aldrich, St. Louis, MO Complete Protease Inhibitor Cocktail Tablets

(Roche Applied Science Inc. Penzberg–Germany) and PhosSTOP Phosphatase Inhibitor

Cocktail Tablets (Roche Applied Science Inc. Penzberg–Germany). After four freezing and

thawing cycles, the homogenate was centrifuged at 7,250 g for 5 minutes at 4˚C; then, the

supernatant was collected, and the pellet was discarded. The protein content of the supernatant

was measured using BCA Protein Assay Reagent (Thermo Scientific Pierce Protein Biology).

Aliquots from each sample were subjected to SDS-PAGE (4%, 6%, 10% or 20% depending on

protein molecular weight) and transferred to a polyvinylidene fluoride (PVDF) membrane,

which was incubated in a blocking solution (5% bovine serum albumin (BSA) in TBS-T (50

mM Tris, pH 7.4, 150 mMNaCl, and 0.1% Tween 20)) for 60–120 minutes at room tempera-

ture. The membrane was then incubated with primary antibodies diluted in blocking solution

for two hours at room temperature and then rinsed three times (five minutes each) with
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TBS-T. Peroxidase-conjugated secondary antibody and luminol substrate (SuperSignal West

Pico–Thermo Scientific Pierce Substrates) were used to detect the protein of interest. A digital

image of the membrane was acquired using a gel documentation system (Uvitec: Cambridge—

Alliance mini 4 m), and the band intensity was measured using commercial software (Uvitec1:

Cambridge—UVIband).

The antibodies were used at the following dilutions: RyR (Thermo Scientific, 1:5000); SER-

CA2a (Cell Signaling, 1:1000); PLN (Cell Signaling, 1:1000); phospho-Ser16-Thr17-PLN (Cell

Signaling, 1:1000); NCX (Millipore, 1:1000); NFATc3 (R&D Systems, 1:500) and GATA-4

(Millipore, 1:500). The proteins were measured and normalized based on the amount of pro-

tein GAPDH (Cell Signaling, 1:10000).

Cardiovascular Measurements

Doppler Echocardiogram. This analysis was performed in all experimental groups

(n = 10 per group) before the start of the experimental protocol and immediately after PSD

(PSD96 and RT/PSD96 groups), 48 hours after the last session of resistance training for trained

animals and after an equivalent number of hours for the C group.

The non-invasive cardiac function was performed by a blinded observer, using an HP

Sonos 55001 transducer (Philips Medical System1, Andover, MA, USA) with a 12 mHz trans-

ducer at a depth of 3.0 cm. The animals were anesthetized with a mixture of ketamine (50 mg/

kg i.p., Dopalen, VetBrands) and xylazine (10 mg/kg, i.p., Anasedan, VetBrands). The rats

were imaged in the left lateral decubitus position with three electrodes placed on their paws for

the electrocardiogram. Briefly, the 2-dimensional and M-mode images from the parasternal

longitudinal, transverse and apical views were obtained and recorded on a 0.5-inch videotape,

and the imaging analysis and measurements were performed off-line. The following data were

acquired and analyzed: E wave: maximum protodiastolic mitral flow velocity; A wave: maxi-

mum telediastolic mitral flow velocity; E/A: ratio between E and A waves; EDT: E-wave decel-

eration time; LA: left atrium diameter; LVAWd: diastolic LV anterior wall thickness; LVPWd:

diastolic LV posterior wall thickness; LVSA: LV systolic area; LVDA: LV diastolic area and

LVEF: LV ejection fraction.

Hemodynamic Study. The hemodynamic evaluation was performed only at the end of

the protocols (n = 10 per group), on a heated operating table (37˚C), under adjusted anesthesia

(urethane chloride, 0.3 ml/100 g, i.p., Sigma–Aldrich1, St. Louis, Mo, USA) and oxygen-

enriched ventilation with a closed chest. The left femoral vein was accessed for drug or saline

administration. A micromanometer (MikroTip1 2F; Millar Instruments Inc., Houston, Texas,

USA) was inserted from the right carotid artery into the LV cavity to assess the intraventricular

pressure, and a flow ultrasound probe (Transonic Systems Inc., Ithaca, NY, USA) was posi-

tioned around the ascending aorta, after a brief right thoracotomy, to estimate the LV ejection.

Subsequently, bilateral vagotomy was performed to eliminate ANS interference and anesthesia

bradycardic reflex. The following data were acquired and analyzed (LabChart1 7 Pro—ADIn-

struments, Australia): the LV systolic (LVSP) and end-diastolic pressures (EDP), the rate of

change of LV pressure (dP/dt), HR, cardiac index (CI), stroke volume index (SVI) and stroke

work index (SWI).

Statistical Analysis

Statistica 12 (StatSoft Inc., Tulsa, USA) was used for all statistical analyses. The data are pre-

sented as the mean ± standard deviation. The distribution of the data was assessed by the Sha-

piro Wilk’s test. Student’s t test was used to compare the plantaris muscle between the C and

RT groups. For the other variables, one-way or two-way analysis of variance (ANOVA)
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complemented by Duncan’s post hoc test were performed. The level of statistical significance

was set at p� 0.05.

Results

Resistance Training

Fig 1 show the resistance training responses. In Fig 1A, the maximum load in the RT group

increased every week from the 2nd to the 6th week (F(7,63) = 29.76, p = 0.001) in comparison

with the C group. The maximum load test was increased in the C group only from the 1st to

the 2nd week. In Fig 1B and 1C, the Plantaris muscle CSA was higher in the RT group com-

pared to the C group (t = -2.51, df = 8, p = 0.03). These results indicate that the resistance train-

ing protocol was efficient in promoting skeletal muscle remodeling.

Variation of BodyWeight during 8 weeks of Resistance Training and 96
h of Sleep Deprivation

The body weight (BW) was evaluated throughout 8 weeks, as well as its Δ (final weight–initial

weigth), in order to measure the gain or loss in weight during this period. As shown in Table 1,

we can see the significant differences regarding time (F(7,245) = 105.03, p = 0.001). Groups C,

RT and PSD96 presented body weight variations throughout the weeks. Regarding Δ, RT and

RT/PSD96 groups showed body weight loss when compared to C and PSD96 groups (F(3,30) =

9.83, p = 0.001).

Fig 1. Resistance training responses in themaximum load test and the CSA of the Plantarismuscle fiber. (A) Evolution of maximum load (g) of
the C (n = 5) and RT (n = 6) groups during 8 weeks of the RT protocol. Repeated measure ANOVA followed by Duncan’s post hoc. (B) Representative
images (40x magnification) of Plantarismuscle fibers stained with HE from the C (n = 5) and RT (n = 6) groups. (C) CSA of Plantarismuscle fiber
calculated from the HE-stained posterior sections using Student’s t tests for independent samples. The data are presented as the mean ± standard
deviation, significance accepted: p� 0.05. *—Different than the previous maximum load in the same group; †—Different than the maximum load in the
C group at the same time; ‡—Different from the C group.

doi:10.1371/journal.pone.0167029.g001

Sleep Deprivation and Cardiac Function

PLOSONE | DOI:10.1371/journal.pone.0167029 November 23, 2016 7 / 22



Forty-eight hours after the last training session, the PSD96 and RT/PSD96 groups were sub-

mitted to SD. Every day of this protocol the body weight was evaluated for calculated the varia-

tion throughout 4 days, by the equation: current weight–previous weight (Fig 2). While the Δ
of the C group did not vary significantly, the PSD96 and RT/PSD96 groups had negative Δ
during 96 hours, indicating weight loss. Drastic weight loss occurred during the first 24 hours

for both groups submitted to PSD, but the reduction in body mass in the RT/PSD96 group was

Table 1. Changes in body weight during 8 weeks of resistance training.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Δ (g)

C 364±27 377±29* 384±29 398±29* 406±30 416±33 425±35 429±39 70±15
RT 382±41 394±48* 398±48 403±49 407±49 419±50* 420±45 419±40 38±11†,‡

PSD96 372±35 381±38 387±38 398±40* 409±39 418±40 425±34 425±30 62±13
RT/PSD96 371±23 374±22 382±22 393±22 401±27 404±26 407±25 405±26 39±20†,‡

Repeated Measure ANOVA with post hoc Duncan Test. The data are expressed in gram and presented as the mean ± standard deviation, significance

accepted: p� 0.05. N = 10.

*—Different from the previous week in the same group
†—Different from the C group
‡—Different from the PSD96 group

Δ value: weight variation (calculated by the equation: weight of week 8 –weight of week 1). This analysis was realized with one way ANOVA with post hoc

Duncan Test. Note: during the training period, the C and PSD96 groups remained in their home box and received no intervention.

doi:10.1371/journal.pone.0167029.t001

Fig 2. Body weight variation throughout 4 days of paradoxical sleep deprivation. Body weight change (g) of the C (n = 10), RT (n = 10), PSD96
(n = 10), RT/PSD96 (n = 10) groups during 4 days of PSD. The variation was calculated by the equation: current weight—previous weight. Repeated
measure ANOVA followed by Duncan’s post hoc. The data are presented as the mean ± standard deviation, significance accepted: p� 0.05. *—
Different from the previous body weight in the same group; †—Different from the C group at the same time; ‡—Different from the RT group at the same
time; x—Different from the PSD96 group at the same time.

doi:10.1371/journal.pone.0167029.g002
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milder. The ΔBWwas reduced at 72 and 96 hours for both groups, which indicates that the

animals adapted to the experimental procedure.

Hormone Profiling

In Table 2, IGF-1 (F(3,11) = 11.968, p = 0.001) and total testosterone (F(3,35) = 17.030, p = 0.001)

were increased in the RT group and were decreased in the PSD96 group compared to the C

group. The RT/PSD96 group had similar levels of these hormones compared to the C group.

The plasma corticosterone level was increased in the PSD96 and RT/PSD96 groups compared

to the C group. However, the RT/PSD96 group had lower levels compared to the PSD96 group

(F(3,35) = 16.087, p = 0.001). T4 was lower in the RT/PSD96 compared to the RT group (F(3,36) =

5.1489, p = 0.004). The T3 (p = 0.30) and CRP (p = 0.50) were similar among the groups. The

Ang II measurements was increased in the PSD96 and RT/PSD96 groups compared to the C

group. RT/PSD96 group was also different from RT group (F(3,35) = 5.54, p = 0.004).

Heart Morphometric Study

According to the left atrium index of the groups: C (0.62±0.09 mg/mm); RT (0.60±0.13 mg/

mm); PSD96 (0.78±0.04 mg/mm) and RT/PSD96 (0.65±0.11 mg/mm); we only observed that

this was higher in the PSD96 group compared to C group, indicating left atrium hypertrophy

(F(3,17) = 3,2120, p = 0.02).

The LV cardiomyocytes CSA were higher in the RT, PSD96 and RT/PSD96 groups when

compared to the C group (Fig 3A and 3D). However, this increase was more expressive in

PSD96 group, which was differ from RT and RT/PSD96 groups. These latter were also differ-

ent from each other (F(3,19) = 98.841, p = 0.001).

The collagen volume fraction of the myocardium was higher in the PSD96 and RT/PSD96

groups compared to the C or RT groups (F(3,18) = 8.0797, p = 0.001), (Fig 3B and 3E).

Additionally, a reduction in the LV cavity diameter was observed in the PSD96 (p = 0.02)

and RT/PSD96 (p = 0.01) groups when compared with the C group (Fig 3C and 3F). The RT/

PSD96 group was also different from the RT group (p = 0.03) (F(3,17) = 4.0898, p = 0.02).

Western Blotting

Expression of Proteins Involved in the Pathologic Cardiac Hypertrophy Pathway. In

Fig 3G, 3H and 3I we can see that both proteins involved in this pathway, NFATc3 (F(3,16) =

Table 2. Biochemical variables.

Variables C RT PSD96 RT/PSD96

IGF-1 (pg/mL) 292±66 512±106* 149±34*
.† 365±130†.‡

Testosterone Total (ng/dL) 231±67 423±109* 146±31*
.† 275±110†.‡

Corticosterone (ng/mL) 24±17 27±25 192±113*
.† 114±46*

.†.‡

T3 (ng/mL) 59±14 62±14 65±14 69±9
T4 (ng/dL) 6.5±2.4 7.6±1.2 5.0±1.4† 5.3±1.0†

CRP (mg/dL) 0.28±0.09 0.27±0.08 0.31±0.07 0.32±0.05
Angiotensin II (pg/mL) 12.93±3.69 14.51±1.39 18.04±3.68* 19.38±3.58*

†

One way ANOVA followed by Duncan’s post hoc. The data are shown as the mean ± standard deviation, significance accepted: p� 0.05. N = 10.

*—Different from the C group
†—Different from the RT group
‡—Different from the PSD96 group

doi:10.1371/journal.pone.0167029.t002
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Fig 3. Ventricular remodeling, fibrosis and expression of proteins involved in the pathologic cardiac hypertrophy pathway.Representative
images (40x magnification) of HE-stained cross sections (A) of the LV of rats without manipulation (C; n = 6) or submitted to RT (RT; n = 6) or PSD
(PSD96; n = 6) or RT followed by PSD (RT/PSD96; n = 6). (B) The images (40x magnification) are the LV tissue sections stained with picrosirius red.
Red color stretches are collagen depositions. (C) Images (1.25x magnification) of HE-stained the LV cavity diameter of the heart. (D) Myocyte CSA
calculated from the HE-stained sections as shown in A. (E) Histogram showing collagen volume fraction in the LV tissues. (F) Results of the analysis of
the LV cavity diameter as shown in C. (G) Quantification of NFATc3 expression. (H) Representative blots of NFATc3, GATA-4 and GAPDH. (I)
Quantification of GATA-4 expression. For analysis, we utilized one way ANOVA followed by Duncan’s post hoc. The data are shown as the
mean ± standard deviation, significance accepted: p� 0.05. *—Different from the C group; †—Different from the RT group; ‡—Different from the
PSD96 group.

doi:10.1371/journal.pone.0167029.g003
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2.22, p = 0.05) and GATA-4 (F(3,15) = 1.60, p = 0.05), were higher in the PSD96 group com-

pared to C group, suggesting pathologic cardiac hypertrophy.

Expression of Proteins Involved the Maintenance of Normal Cardiac Ca2+ Homeosta-

sis. In Fig 4A, 4B and 4D, we observed that RyR (F(3,16) = 0.263, p = 0.80); SERCA2a (F(3,20) =

0.917, p = 0.40) and NCX (F(3,20) = 0.37, p = 0.70) did not change among the groups. However,

the ratio of phospho-PLN to total PLN (Fig 4C) was decreased in both groups submitted the

PSD when compared to C and RT groups (F(3,16) = 11.57, p = 0.001), suggesting a reduction of

the active form of this protein and consequently diastolic dysfunction.

Doppler Echocardiogram

Table 3 shows that the RT group had lower E waves after the resistance training protocol. The

comparison of the E waves obtained at the end among groups found higher values in the RT/

PSD96 group compared to the RT group (F(3,20) = 4.488, p = 0.01). Similarly, the post protocol

A wave increased in the PSD96 and RT/PSD96 groups compared to the C and RT groups, and

the PSD96 group was also different from its baseline (F(3,20) = 3.502, p = 0.03). EDT was higher

post protocol (F(3,26) = 7.454, p = 0.006) in the RT group compared to baseline. In the PSD96

group, the inverse behavior was observed and characterized by a reduction post protocol com-

pared to baseline and the C group, which also differed from the RT/PSD96 group.

Regarding cardiac structure, LVAWd was higher in the RT group post protocol compared

to baseline and was higher in the PSD96 group compared to the C and RT/PSD96 groups

(F(3,26) = 5.07, p = 0.006). The LVPWd was higher in the PSD96 and RT/PSD96 groups post

protocol compared to their respective baselines (F(3,21) = 3.666, p = 0.02).

LVSA was reduced post protocol in the PSD96 group compared to the C group (F(3,22) =

1854.01, p = 0.03) and increased at the post protocol time point compared to baseline. Simi-

larly, LVDA was higher in the C group post protocol when compared to baseline (F(3,25) =

5.537, p = 0.02). The Fig 5 show the main results of this analysis.

Hemodynamic Study

As show in Table 4, LVSP was higher in the PSD96 group compared to other groups (F(3,30) =

4.1978, p = 0.01). The RT/PSD96 group had higher +dP/dt levels than the RT group (F(3,27) =

5.2348, p = 0.005). The -dP/dt levels was increased in the RT/PSD96 group when compared to

others (F(3,26) = 2.3063, p = 0.04).

The HR was enhanced in the PSD96 and RT/PSD96 groups compared to the C and RT

groups (F(3,26) = 6.7190, p = 0.001). CI (F(3,25) = 5.3321, p = 0.005) and SVI (F(3,25) = 8.8011,

p = 0.001) increased in the RT and PSD96 groups compared to the C and RT/PSD96 groups.

SWI was higher in the PSD96 group compared to the C and RT/PSD96 groups (F(3,27) =

4.2166, p = 0.01). The Fig 6 show the main results of this analysis.

Discussion

The main results demonstrate the efficiency of the resistance training protocol, as well as the

harm caused by PSD96, in the cardiovascular and hormonal scope. When resistance training

was performed before PSD96, it could prevent some changes caused by PSD such as increased

LVSP and hormonal dysregulation.

Hormonal Profiling

PSD causes stimulation of sympathetic activity of the HPA axis and consequently an increase

in corticosterone secretion was observed, as seen in the PSD96 group. The levels became
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Fig 4. Expression of Proteins Involved the Maintenance of Normal Cardiac Ca2+ Homeostasis. (A) Representative blot of RyR and their
normalization for total protein and the demonstrative graph of statistical analysis. (B) Representative blot of SERCA2a and their normalization for
GAPDH and the demonstrative graph of statistical analysis. (C) Representative blot of phospho-Ser16-Thr17-PLN (p.PLN) and their normalization for
total PLN and the demonstrative graph of statistical analysis. (D) Representative blot of NCX and their normalization for GAPDH and the demonstrative
graph of statistical analysis. For analysis, we utilized one way ANOVA followed by Duncan’s post hoc. The data are shown as the mean ± standard
deviation, significance accepted: p� 0.05. *—Different from the C group; †—Different from the RT group.

doi:10.1371/journal.pone.0167029.g004
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Table 3. Echocardiographic variables.

C RT PSD96 RT/PSD96

Variables Before After Before After Before After Before After

E wave (cm/s) 86±11 88±12 94±5.0 77±16* 91±13 96±14‡ 90±6.6 96±10‡

A wave (cm/s) 47±7.6 45±8.2 47±7.8 42±7.4 44±5.9 58±16*
,†,‡ 48±5.9 56±4.7†,‡

E/A 1.9±0.3 2.1±0.6 2.0±0.3 1.8±0.2 2.0±0.4 1.9±0.5 1.7±0.3 1.8±0.5
EDT (ms) 48±12 50±9.4 37±7.1 55±6.6* 55±11 39±7.7*

,†,‡ 41±9.3 39±10†,‡

LA (cm) 0.5±0.08 0.6±0.09* 0.6±0.06 0.7±0.07* 0.6±0.04 0.7±0.04‡ 0.6±0.04 0.6±0.08
LVAWd (cm) 0.16±0.008 0.16±0.01 0.15±0.009 0.17±0.009* 0.17±0.01 0.19±0.01*

,†,‡ 0.16±0.02 0.17±0.01x

LVPWd (cm) 0.17±0.01 0.17±0.01 0.15±0.008 0.16±0.007 0.16±0.01 0.18±0.01*
,‡ 0.15±0.01 0.17±0.01*

LVSA (cm2) 0.09±0.01 0.13±0.03* 0.12±0.02 0.11±0.01 0.11±0.01 0.10±0.02† 0.10±0.01 0.12±0.01
LVDA (cm2) 0.3±0.05 0.4±0.08* 0.4±0.04 0.4±0.08 0.4±0.03 0.4±0.06 0.4±0.02 0.5±0.02
LVEF (%) 67±0.8 62±0.9 60±0.5 66±0.3 63±0.4 66±0.7 67±0.4 66±0.6

Repeated Measure ANOVA with post hoc Duncan Test. The data are presented as the mean ± standard deviation, significance accepted: p� 0.05. N = 10.

*—Different from the baseline of the same group
†—Different from the C group at the same time
‡—Different from the RT at the same time
x—Different from the PSD96 group at same time

E wave: maximum protodiastolic mitral flow velocity; A wave: maximum telediastolic mitral flow velocity; E/A: ratio between E and A waves; EDT: E-wave

deceleration time; LA: left atrium diameter; LVAWd: diastolic left ventricle anterior wall thickness; LVPWd: diastolic left ventricle posterior wall thickness;

LVSA: left ventricle systolic area; LVDA: left ventricle diastolic area; and LVEF: left ventricle ejection fraction.

doi:10.1371/journal.pone.0167029.t003

Fig 5. Main echocardiographic variables.Results of (A) E wave: maximum protodiastolic mitral flow velocity; (B) A wave: maximum telediastolic
mitral flow velocity; (C) EDT: E-wave deceleration time; (D) LA: left atrium diameter; (E) LVAWd: diastolic left ventricle anterior wall thickness; (F)
LVPWd: diastolic left ventricle posterior wall thickness. Repeated Measure ANOVAwith post hoc Duncan Test. The data are presented as the
mean ± standard deviation, significance accepted: p� 0.05. N = 10. *—Different from the baseline of the same group; †—Different from the C group at
the same time; ‡—Different from the RT at the same time; x—Different from the PSD96 group at same time.

doi:10.1371/journal.pone.0167029.g005
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elevated after only 24 hours of PSD [15], and remained for up to 96 hours [14,15]. This

increase in plasma concentrations of glucocorticoids is directly responsible for the apoptosis of

Leydig cells, and consequently for the suppression of testosterone synthesis [31,32], which was

reduced in the PSD96 group in our study.

Another anabolic hormone that was reduced in our study is IGF-1, which declined by 51%

in the PSD96 group when compared to the C group. Everson and Crowley [33] justify this

behavior by emphasizing that animals deprived of sleep have significantly decreased GH. In

contrast to PSD96 group, we found that the RT/PSD96 group did not modified its levels of

IGF-1 and testosterone when compared to the C group. This profile characterizes the preven-

tive effect of resistance training, in which testosterone and IGF-1 pathways, in a synergistic

action, culminate in protein synthesis and consequently in muscle hypertrophy [25,26], which

may explain the attenuation of the catabolic response observed in the RT/PSD96 group.

Regarding thyroid hormones, both groups submitted to SD protocol showed reduction in

the T4 levels compared to the RT group, while T3 levels did not change. Falling levels of T4 was

also noted by previous studies [34,35], that attributed these results to changes in the central

mechanisms, which cause a lack of thyrotropin-releasing hormone (TRH) secretion and

Table 4. Hemodynamic variables.

Variables C RT PSD96 RT/PSD96

LVSP (mmHg) 126±9.8 122±14 147±17*
,† 130±19‡

LVEDP (mmHg) 4.1±1.6 5.2±1.2 3.2±1.3 4.5±3.5
+dP/dt (mmHg)/s 9540±2822 7933±1625 12144±748† 12408±4275†

-dP/dt (mmHg)/s -7129±908 -7163±2059 -7054±3864 -9729±892*
,†,‡

HR (beats/min) 406±45 388±21 443±33*
,† 452±18*

,†

CI (mL/kg/min) 119±20 154±24* 161±37* 118±21†,‡

SVI (mL/kg/beat) 0.3±0.05 0.4±0.07* 0.4±0.07* 0.3±0.04†,‡

SWI (g�m//beat) 0.5±0.09 0.6±0.12 0.7±0.22* 0.5±0.15‡

One way ANOVA followed by Duncan’s post hoc. The data are presented as the mean ± standard deviation, significance accepted: p� 0.05. N = 10.

*—Different from the C group
†—Different from the RT group
‡—Different from the PSD96 group

LVSP: left ventricular systolic pressure; LVEDP: left ventricular end-diastolic pressure; +dP/dt: maximum positive time derivative of developed pressure;

-dP/dt: maximum negative derivative of developed pressure; HR: heart rate; CI: cardiac index; SVI: stroke volume index and SWI: stroke work index.

doi:10.1371/journal.pone.0167029.t004

Fig 6. Main hemodynamic variables.Results of (A) LVSP: left ventricular systolic pressure; (B) +dP/dt: maximum positive time derivative of
developed pressure; (C) HR: heart rate. One way ANOVA followed by Duncan’s post hoc. The data are presented as the mean ± standard deviation,
significance accepted: p� 0.05. N = 10. *—Different from the C group; †—Different from the RT group; ‡—Different from the PSD96 group.

doi:10.1371/journal.pone.0167029.g006
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consequently affect the pituitary release of thyroid-stimulating hormone (TSH) and the thyroi-

dal response of T4. Another justification for this finding is the accelerated activity of type 2

iodothyronine deiodinase enzyme in brown adipose tissue, which increased the systemic frac-

tional conversion of T4 to T3 and consequently reduced serum T4 levels [36].

Another point to highlight was the behavior of CRP. Our results are compatible with most

clinical studies, which also have not found increased CRP in SD conditions [37,38], while the

only study with animal model showed the reduces of CRP in rats with lesions in the ventrolat-

eral preoptic area, which spontaneously made them sleep about 30% less. This setback results

should be explained by differences in protocols used, included method, duration of SD, circa-

dian rhythm, light exposure, among others [39]. Further studies are needed to clearly under-

stand this relationship.

Finally, referring to Ang II, we observed an increase in PSD96 and RT/PSD96 groups. This

result can be explained by altering neuroendocrine function and activating renin-angiotensin

system [40,41]. The Ang II potently enhances catecholamine releases [42], which are also

increased in SD conditions [15]. Thus, together, these will play a crucial role in modulating

cardiovascular pathology at the molecular level and consequently in their morphology and

function [17,43].

Paradoxical Sleep Deprivation

The loss of body weight was more pronounced during the first 24 hours of PSD, however, it

remained different from C and RT groups up to 96 hours. These findings corroborate the

results of Galvão and colleagues [44], which showed a body weight loss in the first 24 hours of

PSD, distinguishing from the 48, 72 and 96 hours as well as the control group at all periods.

Although body mass loss was evident in both groups submitted to PSD, this was attenuated in

the first 24 hours in the group that was submitted to previous resistance training. The occur-

rence of this behavior can be explained by the hormonal profile minimized by resistance train-

ing, which was able to attenuate both IGF-1 and testosterone at basal levels, and decreased the

level of corticosterone when compared to the PSD96 group [25].

The reduction of body weight of rats associated with SD is well-established in the literature,

and it is strongly influenced by the hormonal profile derived from the condition imposed,

thereby resulting in the reduction of adipose tissue [45] and also the reduction of muscle mass,

leading to muscle atrophy [14,46].

Both rats and humans present a high metabolic activity followed by an increase of corti-

costerone [14,15] and cortisol [47] levels, respectively. In rats, this profile triggers an

increase in total daily energy expenditure, i.e., negative energy balance that translates into an

important weight loss, despite hyperphagia observed [45]. On the other hand, in humans,

this adverse condition appears to be more closely linked to the extended wakefulness, where

are observed changes in appetite hormones, with a decrease in the levels of leptin and an

increase in levels of ghrelin [48,49]. Corroborating, this increase of time awake caused an

increased need of energy to sustain, in addition it represents more opportunities for eating,

mainly calorie-dense nutrients with high carbohydrate content, which may contribute to

weight gain [48].

Regarding the method adopted, it is worth highlighting that it was given a standard period

of adaptation for the animals allowing them to familiarize themselves with the platforms, and

letting them know that the platforms are safe places for them to keep themselves dry. Many

questions arose concerning the thermoregulatory changes in PSD protocols for rats, however

information about these changes were only found for the disc-over-water method. In this

method, paradoxical sleep deprived rats presented a decrease of intraperitoneal temperature,
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which is compensated by the increase in self-selected ambient temperature. This is a compen-

satory mechanism for the stress caused by PSD [50].

Cardiac Remodeling and Molecular Function

There was hypertrophied heart tissue in all experimental groups compared with the C group.

The cardiac hypertrophy observed in the RT group was possibly mediated by an increase in BP

during the course of physical exercise [51–54]. This type of hypertrophy triggered by resistance

training is known as physiological concentric LV hypertrophy, characterized by increased wall

thickness of the heart without a reduction in cavity size [20].

In contrast, pathological concentric hypertrophy is characterized by an increase in the wall

thickness of the heart with concomitant reduction in the cavity size and fibrosis presence. This

response can be triggered by supraphysiological levels of glucocorticoids [17,20,43] and Ang II

[20,21], by activation of Ang II type 1 (AT1) receptor, causing an increased of BP, which when

sustained long-term culminates in increased production of collagen [43].

Among the molecular determinants of this response, calcineurin-NFAT pathway can be

highlighted [22]. Calcineurin is a serine/threonine-specific phosphatase that is activated by the

increase of intracellular Ca2+. This activation evokes a dephosphorylation of NFATc3 within

the cytoplasm, which translocates to the nucleus, where it associates with transcription factor

like GATA-4, to regulate the cardiac genes and develop cardiac hypertrophy [20,22,55].

Thus, the hypertrophy associated with heart cavity reduction and fibrosis, as observed in

the PSD96 group, may indicate a pathological condition, due to increase the corticosterone,

Ang II and expression of proteins like NFATc3 and GATA-4. It is worth to emphasize that our

study is the first to examine the effecst of SD on cardiac morphology scope, so the relationships

established to justify this important finding refers to the hormonal and proteic expression pro-

file. Considering that many researches within this subject establish long-term protocols, unlike

the protocol chosen for this study (approximated 96 hours or less), it is not possible to com-

pare them.

In addition, regarding the molecular functioning, we observed that the phospho-Ser16-

Thr17-PLN:PLN ratio decreased in PSD96 and RT/PSD96 groups. In conditions that demand

arises, such as SD, the release of adrenaline is observed allowing that heart respond to stress in

a few seconds [56]. Adrenaline and other hormones related to stress initiate an important sig-

nal-transduction pathway by activating the receptor in the cardiac cell membrane [17,56]. This

signal can affect the function of cardiac protein related to overall cardiac function like phos-

pho-Ser16-Thr17-PLN. The latter regulates the activity of SERCA2a whose function is Ca2+

uptake by the sarcoplasmic reticulum. When the PLN is in its dephosphorylated state it

reduces the affinity of SERCA2a for Ca2+inhibiting this Ca2+pump activity [56]. Despite we

not observed statistical significance at SERCA2a expression, the reduce at phospho-Ser16-

Thr17-PLN:PLN ratio, probably triggered by higher levels of corticosterone, Ang II and adren-

aline, can indicate a long-term impair of the diastolic function. Any defect in the removal Ca2+

would impair cardiac relaxation and consequently affect the preparation for the next contrac-

tion, i.e, systolic function [57].

Doppler Echocardiogram

We noticed a rise in the E wave and A wave and a reduction in the EDT in the PSD96 and RT/

PSD96 groups. These results are similar to those observed in animals with supravalvular aortic

stenosis [58]. The increase in the A wave probably culminates in a higher velocity of transmi-

tral flow during the end diastole. Furthermore, the evaluation of the LA is also a way to deter-

mine the severity of diastolic dysfunction [59], which in turn corroborated our morphological
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findings, which showed an increase in the weight of the LA in the PSD96 group. During ven-

tricular diastole, the LA is exposed to intraventricular pressure, thus, rises in ventricular filling

pressures cause an increase in atrial pressure and consequently atrial remodeling is observed

[60].

Considerable changes in the diastolic thickness of the posterior and anterior walls of the LV

in the PSD96 group were observed. These findings, when combined with histological data of

the cavity size, resemble data from nephrectomized animals, suggesting concentric pathologi-

cal cardiac hypertrophy [20].

Hemodynamic Measurements

Under the same anesthetic plane and the bilateral vagotomy condition, we observed the reduc-

tion in LVSP in the RT group compared to other groups can be attributed to the pressure

reduction effect commonly observed after resistance training. This behavior is associated with

exercise intensity so, as the resistance training protocol adopted in our study was high inten-

sity, a reduction in LVSP was observed, probably caused by a decrease in BP [23,61].

In the PSD96 group, the increase in LVSP compared with all groups demonstrates the influ-

ence of PSD on the cardiac tissue, even in the absence of stimuli from the ANS. In this context,

Joukar and colleagues [11] reported that rats deprived of sleep for 72 hours showed an increase

in average BP at 24 and 96 hours of PSD, which was not observed by Perry and colleagues [62].

Studies involving humans also highlight the rise of BP after SD. Sauvet and colleagues [63]

observed this behavior in individuals deprived of sleep continuously for 40 hours, while Kato

and colleagues [64] only observed that profile at 24 hours of SD. In this context, it was

observed that sleep time below the average of between 7–8 hours is associated with an

increased prevalence of hypertension [65]. On the other hand, the REM SD caused by antide-

pressant drugs did not show any cardiac alterations [66].

Among the explanations for this association stands out the arterial baroreflex, characterized

by a loss of sensitivity to BP variation and consequently elevated BP [12,13]. This change was

similar to that reported by Qian and colleagues [67] in a study of stress in an animal model

and was reversed by the intracerebroventricular administration of an Ang II antagonist, sug-

gesting that stress and consequently the baroreflex dysfunction are caused by the activation of

Ang II in the central nervous system. Thus, it is possible that this mechanism is one of the fac-

tors responsible for the baroreflex resetting after SD corroborating our results.

The AT1 receptor is activated by corticosterone, which at high levels, as observed in our

study, triggers a cascade of signaling in cardiomyocytes and cardiac fibroblasts culminating in

fibrosis, increased oxidative stress, and consequently in functional damage of the cardiovascu-

lar system [17,43].

Another possible mechanism is the decreased expression of the GABAA receptor in the

paraventricular nucleus [68]. The rostroventrolateral medulla and the paraventricular nucleus

of the hypothalamus are primarily involved in the control of the cardiovascular system, and so

any imbalance in the excitation and inhibition of these neurons may interfere with the organi-

zation and function of neural circuits in terms of hypertension [69].

As for HR, an increase was observed in the PSD96 and RT/PSD96 groups. This profile is

consistent with the view that the adjustment of BP also influences other variables such as car-

diac contractility, peripheral vascular resistance and HR [70]. The parameters related to ven-

tricular ejection, SVI and SWI, also had higher values in the PSD96 group.

As for the derivatives of ventricular pressure, these were lower in animals with cardiac dys-

function [71,72] and those that were treated long-term with synthetic glucocorticoids [43].

Our results demonstrate that both +dP/dt and -dP/dt increased significantly in the PSD96 and

Sleep Deprivation and Cardiac Function

PLOSONE | DOI:10.1371/journal.pone.0167029 November 23, 2016 17 / 22



RT/PSD96 groups. However, this increase is not related to an improvement in the functional-

ity of the LV. This increase is associated with the rise in the values of LVSP and HR, which

together lead us to suggest a sympathetic hyperactivity associated with the neuroendocrine

dysregulation generated by PSD.

Therefore, this work brings together a set of results that allows us to conclude about the

importance of sleep, showing that PSD is able to trigger significant damages to the function

and cardiac structure, which may be related autonomic dysfunction associated with the cata-

bolic frame. Thus, establishing strategies such as, sleep well, exercise and eat well can contrib-

ute for attenuating or reversing the effects observed.

Study Limitations

The present study assessed the impact of 96 hours of continuous SD on cardiac function to

understand the mechanisms involved in this relationship, including resistance exercise as a

strategie to improve the alterations observed. The lack of cardiovascular measurements like

telemetry in freely-behaving animals, during resistance exercise and PSD protocols should also

be acknowledged as a limitation. In addition, it is worth highlighiting that the study was

designed to determine the effect of SD on cardiac profile (molecular, morphologic and func-

tional) in rats in order to understand the impact of this condition in the absence of co-morbi-

dies, which is observed in clinical studies and may confound the results. Thus, it is necessary

to use caution in applying these findings in clinical investigations.

Conclusion

In conclusion, PSD96 had a negative impact on cardiac morphofunction and on the hormonal

axis, and resistance training effectively attenuated the main alterations observed after PSD.
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