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The effect of non-adiabatic coupling on the computed
rovibrational energy levels amounts to about 2 cm−1

for H+
3 and must be included in high-accuracy

calculations. Different strategies to obtain the
corresponding energy shifts are reviewed in the
article. A promising way is to introduce effective
vibrational reduced masses that depend on the
nuclear configuration. A new empirical method that
uses the stockholder atoms-in-molecules approach
to this effect is presented and applied to H+

3 .
Furthermore, a highly accurate potential energy
surface for the D+

3 isotopologue, which includes
relativistic and leading quantum electrodynamic
terms, is constructed and used to analyse the observed
rovibrational frequencies for this molecule. Accurate
band origins are obtained that improve existing data.

This article is part of a discussion meeting issue
‘Advances in hydrogen molecular ions: H+

3 , H+
5 and

beyond’.
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1. Introduction
Rovibrational molecular states are routinely computed within the Born–Oppenheimer
approximation using standard quantum chemical electronic structure methods and standard
basis sets. The precision that can be obtained with such a procedure is far from reaching that
of spectroscopic measurements. The first problem is related to the use of standard Gaussian basis
sets that, even when extrapolated to the so-called complete basis set limit, are not satisfactory
as they do not satisfy the boundary conditions of the electronic Schrödinger equation at both
short and large distances. The introduction of electronic basis functions that depend explicitly
on inter-particle (inter-electron) distances, even if they still have Gaussian forms, allows one to
better satisfy the cusp conditions [1,2] as two particles approach each other, and greatly improves
the Born–Oppenheimer electronic energy. One of the first potential energy surfaces of this type
was published in 1998 by Cencek et al. [3]. Adding the energy of the diagonal adiabatic correction
to the Born–Oppenheimer energy yielded an adiabatic surface accurate to about 0.1 microhartree
or 0.02 cm−1. The effect of the diagonal adiabatic correction on the vibrational energies is of the
order of 1–2 cm−1 for H+

3 , relative to the vibrational zero-point energy. The adiabatic correction
term is significant for light molecules, as it scales as one over the nuclear mass. With a very
accurate adiabatic potential energy surface at hand, it is appropriate to include relativistic [3] and
even quantum electrodynamic (QED) contributions [4], which both affect the vibrational energies
by about 0.2 cm−1. Very accurate potential energy surfaces have been published within recent
years [3,5–7]; for a review, see Tennyson et al. [8]. Adamowicz, Stanke and co-workers recently
developed algorithms for calculating the leading relativistic and QED terms with improved
precision for a molecule with an arbitrary number of electrons [9], and these algorithms have
been used in the present work, together with the adiabatic energy values published earlier [6].
However, non-adiabatic coupling, which is due to the off-diagonal terms of the nuclear kinetic
energy operator in the basis of the adiabatic electronic wave functions, affects the computed
vibrational energy levels by the same order of magnitude as the diagonal correction term. Hence
this effect needs to be accounted for in high-accuracy computations. Unlike the other above-
mentioned effects, due to its dynamical nature, the non-adiabatic effect cannot be described as
a correction to the Born–Oppenheimer potential energy surface.

For the diatomic H2, with two electrons just as H+
3 , impressive accuracy has been achieved,

starting from the seminal work of Kołos & Wolniewicz [10], and culminating in the latest
achievements by Pachucki, Komasa and co-workers [11–14] and by Nakatsuji and co-workers [15,
16]. In these works, non-adiabatic, relativistic and QED corrections were computed from first
principles.

The procedures used to calculate the non-adiabatic effects in the above-cited works are highly
specialized and cannot be easily transferred to the triatomic H+

3 . Empirical approaches have
instead been developed and will be reviewed in this article. Obviously, empirical approaches
cannot compete with the sophisticated ab initio approaches used for H2, and cannot be expected to
recover 100% of the non-adiabatic energy shifts for H2 and H+

2 . However, they are straightforward
to use and yield physical insight. Due to the developments by Adamowicz and co-workers, we
now have electronic energies calculated with outstanding accuracy for several systems, including
H+

3 , at our disposal. If these can be represented and interpolated with the same accuracy, any
deviation between computed and experimentally derived rovibrational energies can be attributed
to non-adiabatic effects, thus providing a testbed for the development of non-adiabatic models.

2. Effective mass approaches
In principle, the effect of non-adiabatic coupling on rovibrational states can be evaluated by
integration of the system of coupled equations for the nuclear motion resulting from the adiabatic
ansatz, in which the total wave function is expanded in a basis of electronic eigenfunctions. If
the electronic state of interest is sufficiently decoupled from other electronic states, the multi-state
problem may be reduced to an effective one-state problem, as has first been shown for diatomic
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molecules by Herman & Asgharian [17] using perturbation theory and by Bunker & Moss [18]
using contact transformations. Their formulations lead to effective Hamiltonians, in which the
vibrational and rotational reduced masses are not only different but have now also become
functions depending on the nuclear coordinates. Furthermore, there is an additional correction
term to the potential, WNA, which enters the nuclear-motion equation:

H = − ∇2
R

2μvib(R)
+ J(J + 1)

2μrot(R)R2 + W(R) (2.1)

and
W(R) = W0(R) + WA(R) + WNA(R). (2.2)

The other quantities in the above equations are R, the internuclear distance, J, the angular
momentum quantum number, W0(R), the Born–Oppenheimer energy curve, and WA(R), the
diagonal adiabatic correction; μvib(R) and μrot(R) are the R-dependent vibrational and rotational
reduced masses, respectively. Atomic units have been used.

Different approaches to determine vibrational reduced masses have been proposed by
Kutzelnigg [19], Jaquet & Kutzelnigg [20] and Mátyus [21,22], all applicable to diatomic
molecules. Bunker & Moss [18] extended the formalism to triatomic molecules [23], and it was
applied to the water molecule by Schwenke [24]. Khoma & Jaquet [25], starting from the work of
Herman & Asgharian [17], derived an effective rovibrational Hamiltonian for H+

3 and computed
vibrational [26] and rovibrational [27] states for this molecule. Their results demonstrated, as
did the application of the Bunker & Moss [18] theory to the LiH molecule by Tyuterev and co-
workers [28], that, despite considerable computational and numerical difficulties, the numerical
results were not yet satisfactory. More practical, empirical approaches to the rovibrational
problem have also been developed. Moss [29] derived a constant vibrational mass for the H+

2
molecule, which is mMoss = mp + 0.47531me, where mp and me denote the proton and electron
masses, respectively. In his approach, the rotational mass was left equal to the nuclear mass.
Mass mMoss, which has become known as Moss mass, was then introduced to the theoretical
spectroscopy of H+

3 by Polyansky & Tennyson [30]. It worked extraordinarily well, but, as has
been demonstrated later, the excellent performance was fortuitous and partially due to error
cancellation [4]. These authors computed vibrational states using the very accurate adiabatic
GLH3P potential energy surface [6], to which relativistic corrections were added. Unfortunately,
inclusion of QED effects made the agreement with the experimental data slightly worse, as can
be seen from table VI of Lodi et al. [4].

(a) Vibrational and rotational shifts by scaling
The non-adiabatic vibrational shifts are one order of magnitude stronger than the non-adiabatic
rotational shifts. The reason is that the vibrating nuclei change their direction of motion at the
classical turning points and the electrons lag behind. This interpretation of the non-adiabatic
effects has led to an empirical formula for the vibrational shifts that incorporates the derivative
of the potential with respect to the nuclear displacement from equilibrium [31,32]. The method
reproduces approximately 90% of the non-adiabatic shift in the case of H2 and its isotopologues,
which for these molecules amounts to about 5 cm−1. The approach has never been tested for H+

3 .
In their earlier work on H+

3 , Alijah and co-workers applied the empirical shifts obtained as
differences between computed and experimental data to the band origins, first to the deuterated
isotopologues, H2D+, D2H+ and D+

3 [33–35], and later to H+
3 [36]. For the latter system, the shifts

determined for states below the barrier to linearity (≈ 10 000 cm−1) can be expressed as

�E = Eobs − Ecalc = a0 + a1J(J + 1) + a2G2, (2.3)

where G = |k − �| is Watson’s [37] quantum number, with k the a-axis projection of J and � the
vibrational angular momentum quantum number associated with the degenerate vibration ν2: � =
−v2, −v2 + 2, . . . , +v2. The constants a0, a1 and a2 are characteristic and specific to each vibrational
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band. They can be parametrized in an efficient way. The vibrational shift parameter, a0, is a linear
function of the energy and can be approximated as a0 = b1E0

calc, where E0
calc denotes the calculated

energy of the band origin. For the rotational parameters, unique average values derived from all
rotational transitions can be used. In this way, the following empirical formula was obtained:1

Eexact ≈ Ecalc + �E = Ecalc + b1E0
calc + ā1J(J + 1) + ā2G2. (2.4)

The numerical values of the parameters are b1 = −1.0123(41) × 10−4 cm−1, ā1 = −2.0436 ×
10−3 cm−1 and ā2 = −1.3600 × 10−3 cm−1. In the case where spectroscopic quantum numbers
have not been assigned to a computed rovibrational state, the energy, Ecalc, may be scaled
directly with the b1 parameter, however, with some loss of accuracy. With that, extrapolation
has become possible and has allowed predicting frequencies at higher energy range (up to
12 000 cm−1) for states not yet observed [38]. This was extended to the energy region of up to
15 300 cm−1 [39] after replacing the simple linear b1 scaling with a quadratic scaling, for which
numerical values of the scaling parameters were obtained with the help of the new experimental
data [40,41]. The predictions made in the above-mentioned papers were useful to guiding the
measurements performed by Wolf and co-workers [42] at the Max Planck Institute in Heidelberg.
Extremely weak vibrational overtone lines were measured using an action spectroscopy method.
The strongest lines were identified with the help of the line list provided by Neale et al. [43].
The line positions from that work provided an upper bound for the frequency scan, while
those from [38] provided a lower bound [44]. New computations performed with the use of
the GLH3P potential energy surface and the Moss vibrational masses gave close agreement
with the experimental frequencies [44]. The smallness of the rotational parameters, ā1 and ā2,
demonstrated that the rotational non-adiabatic correction is one order of magnitude smaller than
the vibrational correction. Furthermore, due to the fact that the rotational transitions obey the
angular momentum selection rule �J = 0, ±1, and hence the absolute J-dependent errors are
similar for the two states, these errors almost cancel out when energy differences are formed.
Therefore, the computed rotational transition frequencies are more accurate than the term values
themselves (10−3–10−2 cm−1 for moderate values of J).

(b) Vibrational and rotational shifts by effective mass models
In a paper published in 2007, Kutzelnigg [19] addressed the question of ‘Which masses are
vibrating or rotating in a molecule?’ and analysed the cases of H2 and H+

2 . Explicit formulae
for effective masses for these molecules were derived starting from an LCAO (linear combination
of atomic orbitals) approach. This inspired Mohallem and co-workers [45] to formulate a theory
of separation of motions of core and valence electrons. In their approach, the electronic density is
divided into a core density that closely follows the nuclei as they vibrate, and a valence density
that participates in the formation of the chemical bond and moves less with the vibrations. The
mass of the core fraction is then added to the nuclear mass, mA, to yield

mA(R) = mA + nAA(R)me. (2.5)

Different empirical approaches have then been tested to obtain the core fraction of the electronic
density, nAA. The first idea was to obtain this fraction from the Mulliken population analysis; more
precisely, from the diagonal elements of the population matrix. In the work by Diniz et al. [46],
this approach was applied to H+

2 , H2 and their isotopologues. Using the atomic core masses of
equation (2.5), the reduced vibrational mass of molecule AB was then obtained in the usual way as

1
μvib(R)

= 1
mA(R)

+ 1
mB(R)

. (2.6)

In the work of Diniz et al. [46], the electronic structure calculations to determine the Mulliken
populations were performed at the CI/cc-pV5Z level of theory. The non-adiabatic shifts of the

1In [36], �E was defined as �E = Ecalc − Eobs. The numerical values of the parameters are thus the negative of those given in
the present review.
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Figure 1. Visualization of the vibrationalmass surface for configurationswith the C2v symmetry. r1 is the atom–diatomdistance
and r2 the diatomic distance. Reproduced with permission from [50].

vibrational energies were then determined as a difference between the results obtained using the
effective reduced mass defined above and the results obtained using the nuclear reduced mass.
Very good agreement was found when the calculated shifts were compared with the exact values
of Wolniewicz & Poll [47] for H+

2 and of Wolniewicz [48,49] for H2. Moreover, after application of a
scaling factor, the agreement with the exact data was almost perfect. The agreement was also very
good for the mixed isotopologues, for which the non-adiabatic calculations using the traditional
approach are more complicated due to symmetry breaking. The need to use a scaling factor is
perhaps not surprising. It is well known that the electronic density does not always converge to a
single limit as the basis set is increased, in contrast to the energy, whose convergence is governed
by the variational principle.

The above method has then been also applied to H+
3 [50]. Note that, in general, the form of the

reduced mass depends on the coordinate system used. It can make sophisticated non-empirical
approaches for determining the vibrational mass very cumbersome. In our method, no particular
difficulty arises, as the reduced masses are obtained using the standard formulae, in which the
nuclear masses are simply replaced by the nuclear core masses. As the nuclear core masses are
configuration-dependent, so are the reduced masses. In the work of Diniz et al. [50], the first ever
vibrational mass surface for a triatomic molecule was obtained. That surface is shown in figure 1.
It is expressed in terms of Jacobi coordinates. At equilibrium, when all three bond lengths are
1.65a0, the electronic contribution to the core mass is about 0.3me. If effective masses are to be
used in rovibrational calculations, the algorithm used in the calculations needs to allow for the
use of masses that are dependent on the nuclear geometry of the molecule. Such algorithms (and
the corresponding computer programs) exist for diatomic [51] and for triatomic [52] molecules.
Alternatively, the rovibrational problem may be solved iteratively, starting from the nuclear
mass, as

m̄(i+1)
A,v = mA + me

∫
n̄(R)

[
χ

(i)
v (R)

]2
dR, (2.7)

where χ
(i)
v (R) is the vibrational wave function obtained with the mass m̄(i)

A,v , and n̄(R) denotes the
mass surface; v stands for the set of vibrational quantum numbers, which for H+

3 are v1, v2, �.
In our work, we used the DVR3D computer program [53]. A satisfactory convergence is typically
achieved after one iteration step. Note that such an iterative approach leads to a different constant
reduced vibrational mass for each vibrational state, v.

DVR3D does not use the full permutational symmetry of the nuclei. Thus, for H+
3 with

three identical nuclei the two components of the degenerate representations are obtained in two
independent calculations. Their energies should be the same within the numerical accuracy used
in the calculation. This was also numerically verified when the core masses were employed in
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Figure 2. Obs – calc frequency differences obtained with the Moss mass model.
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Figure 3. Obs – calc frequency differences obtained with the core mass model.

the calculation, even though the two vibrational masses were not identical. Conservation of the
degeneracy validates our empirical ansatz.

The core mass approach was tested by comparing the calculated transition frequencies of 12
lines of the ν2 band with the experimental frequencies that were measured with the outstanding
accuracy of ≈ 104 cm−1 by Wu et al. [54]. Figures 2 and 3 show the performance of the Moss mass
model by Polyansky & Tennyson [30] and the core mass model. Nuclear masses were used as the
rotational masses in both cases. Vibrational offsets can be identified from the four R-branch (�J =
0) transitions, which are about 0.1 cm−1 in the case of Moss masses and are reduced by a factor
of five in the case of core masses, without any additional scaling. There clearly is a J-dependent
rotational shift that is linear in J. This shift is consistent with the correction term in equation (2.4).
This deviation was modelled using the empirical rotational mass correction surface suggested
by Diniz et al. [46]. Additionally, when a scaling factor was applied to the vibrational mass, an
excellent agreement was observed, as shown in figure 4. The approach has also been proven
applicable to D+

3 in Diniz et al.’s work, using identical parameter values. The experimental paper
by Wu et al. [54] and our theory paper [50] were published back-to-back.

It should be mentioned that Mátyus and co-workers [52] extended the original GENIUSH
rovibrational code [55] to incorporate coordinate-dependent vibrational masses and used it to
optimize the vibrational mass in order to reproduce the 12 experimental lines. Their vibrational
mass is practically identical to our core mass before scaling.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 F

eb
ru

ar
y 

20
24

 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20180411

................................................................

–0.004

–0.002

0

0.002

0.004

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950

ob
s 

– 
ca

lc
 (

cm
–1

)

energy (cm–1)

J = 4 ¨ J = 3
J = 3 ¨ J = 2
J = 2 ¨ J = 1
J = 2 ¨ J = 2
J = 1 ¨ J = 1

Figure 4. Obs – calc frequency differences obtained with a model employing scaled core masses and empirical rotational
masses.

−1

0

1

2

3

4

5

0 5 10 15 20

ca
lc

 −
 o

bs
 (

cm
−

1 )

NU
HOLKA
AT
MSVB

υ

Figure 5. Calc – obs frequency differences for 7LiH. NU, nuclear masses; HOLKA, [28]; AT, atomicmasses; MSVB,multi-structure
valence-bond masses, equation (2.8). The experimental data are from Coxon & Dickinson [57].

Diniz et al.’s [46] strategy to extract the core fraction of the electronic density using the Mulliken
population analysis has been proven to be highly successful in describing the non-adiabatic
shifts for the molecules comprising only hydrogen. These are non-polar molecules. A question
has thus arisen whether the method performs equally well for polar molecules. An ideal test
molecule is lithium hydride, LiH. It has an ionic structure at equilibrium, but becomes covalent
at larger distances and dissociates into two neutral atoms. This behaviour has been explained
by Mulliken [56] and is due to an avoided crossing of the two lowest singlet adiabatic potential
energy curves. The method of Diniz et al. [46] yields results equivalent to those obtained using the
atomic masses in calculating the reduced vibrational mass. Figure 5 shows that such a mass is not
sufficiently large to reach satisfactory agreement with the experimental results. Disappointingly,
the sophisticated method by Holka et al. [28] that uses the Bunker & Moss [18] procedure,
performs worse than the simple ad hoc method that uses the atomic masses. Considering the
ionic–covalent nature of LiH, Diniz et al. [58,59] devised a different approach in which they
described the electronic wave function of LiH as a superposition of an ionic and a covalent
configuration. The distance-dependent weights of the two configurations in the wave function
were then used to superimpose the two corresponding reduced masses:

μvib(R) = cionic(R)
mLi+ mH−

mLi+ + mH−
+ ccovalent(R)

mLimH

mLi + mH
. (2.8)
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The ionic reduced mass is larger than the covalent reduced mass. For the 7LiH isotopologue,
for example, the nuclear, covalent (atomic) and ionic reduced masses are 1605.58701112me,
1606.39892550me and 1607.14764909me, respectively. Then μvib(R) is also larger than the atomic
reduced mass, for any non-zero ionic contribution, which we interpret as due to participation
of excited electronic states in the nuclear motion. It yields the best vibrational energies obtained
so far for the LiH molecule (figure 5). For v = 13, the deviation between the experimental and
theoretical data increases, as the probability of the average internuclear distance getting closer
to the distance where the avoided crossing between the two lowest electronic states occurs,
increases. Extended line lists and tables of cooling functions were compiled for LiH comprising
lithium isotopes 6Li and 7Li and hydrogen isotopes H, D and T [60].

(c) Vibrational shifts by effective mass models: a unifying AIM approach
Though the results obtained so far are encouraging, the fact that two different methods should
be used, depending on whether the molecule is polar or non-polar (e.g. in the LiH calculations),
is not satisfactory. Amaral & Mohallem [61] recently developed a unifying single method which
uses the stockholder atoms-in-molecules (AIM) approach by Hirshfeld [62], more precisely its
iterative variant, Hirshfeld-I due to Bultinck et al. [63], to separate the core and valence electron
density contributions. In his approach, Hirshfeld defined the density of a ‘promolecule’, which is
the sum of the densities of the isolated atoms, as

ρpro(r) =
∑

I

ρat
I (r). (2.9)

He then introduced the following atomic weight functions:

wI(r) = ρat
I (r)

ρpro(r)
, (2.10)

which, when applied to the molecular density, give the AIM densities. For atom I, this density is

ρAIM
I (r) = wI(r)ρmol(r). (2.11)

Within the iterative Hirshfeld-I scheme, the weight function and promolecule atomic densities
are updated such as to make the atomic populations in the promolecule identical to those of the
atoms in molecules. Amaral & Mohallem [61] defined an atomic potential within the molecule as

VI(R, r) = −
∫ r

|r′−RI |=0

ZI − ρmol(r′, R)
|r′ − RI|

dr′, (2.12)

where the dependence of ρ and of VI on the nuclear coordinates, R, is indicated for the sake of
clarity. The atomic potentials are used to divide the AIM electronic density into a core fraction
and a valence fraction, depending on whether, at a nuclear configuration R = R′, the potential of
atom A, VA(R′, r), is more attractive than the sum of the potentials of the other atoms, VB, VC, etc.,
or not:

VA(R′, r)

⎧⎪⎪⎨
⎪⎪⎩

< VB(R′, r) + VC(R′, r) + · · · , r ∈ core region,

= VB(R′, r) + VC(R′, r) + · · · , r on division line,

> VB(R′, r) + VC(R′, r) + · · · , r ∈ valence region.

(2.13)

Integrating the AIM electronic density over the core region and adding the result to the nuclear
mass,

mA(R) = mnuc
A + me

∫
core region

ρAIM
A (r, R) dr, (2.14)

yields the effective AIM mass. This is illustrated in figure 6.
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core
valence

potential atom A
potential atom B
potential atom C

Figure 6. Determination of core and valence fractions within the AIMmodel, shown here for atom A.

(d) Vibrational shifts by ab initio effective masses
Jaquet & Khoma developed a procedure for determining effective masses from first principles [64]
following the perturbative approach of Herman & Asgharian [17]. They also derived the kinetic
energy operator for a triatomic molecule taking into account coordinate-dependent masses [26]
and included the resulting correction terms in their rovibrational computer program [65]. Their
H+

3 mass surface contains contributions from as many as 499 excited singlet states. Rovibrational
energies obtained in the calculations that used their approach were recently reported [25,27].

3. Results for H+
3

In the present work, we have applied the stockholder AIM approach to H+
3 . The stockholder AIM

mass was computed for all configurations of the DVR grid that was later used to calculate the
energies of vibrational states with the DVR3D computer code. This ensures that the numerical
integration involved in the iterative determination of the state-dependent vibrational reduced
masses (see equation (2.7)) can be performed without loss of accuracy. We have then computed
the band origins for which experimentally derived data are available from the MARVEL
analysis [66] of 26 experimental sources. The GLH3P potential energy surface was employed. It
was augmented with relativistic and QED corrections as described by Lodi et al. [4]. The results are
presented in table 1, where they are contrasted with those obtained for the same surface with the
non-adiabatic Moss mass model of Polyansky & Tennyson [30], the effective mass model of Diniz
et al. [50] and the effective mass of Jaquet & Khoma [26]. The stockholder AIM results are clearly
the most accurate. This is quite amazing considering the simplicity of the approach. Furthermore,
both the Polyansky & Tennyson results and the Jaquet & Khoma results deteriorated when the
QED correction was included, while the results of Diniz et al. and the present ones obtained with
the AIM mass were improved.

4. Results for D+
3

Adamowic, Stanke and co-workers [9] have recently implemented a new method to determine
relativistic and leading QED (including the Araki–Shuchar term) corrections for wave functions
expanded in terms of explicitly correlated Gaussians. With this, they have computed these
terms for the same large grid defined in terms of hyperspherical coordinates as the one used
by Pavanello et al. [6] for the calculation of the Born–Oppenheimer energies and the diagonal
adiabatic corrections. The total energy that includes the Born–Oppenheimer, relativistic, QED and
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Table 1. Computed band origins and differences exp – calc, in cm−1. Nuc, nuclear mass; PT, Polyansky–Tennyson mass [30];
Din, Diniz mass [50]; this work, Stockholder AIM mass; JK, Jaquet–Khoma mass [26]. QED shifts were added to the JK values
using the nuc data from [4].

(v1, v�
2 ) exp this work (nuc) PT Din JK this work (AIM)

(0, 11) 2521.41 −0.14 0.16 0.05 0.10 0.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 22) 4998.04 −0.33 0.23 0.05 0.19 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1, 11) 5554.06 −0.71 −0.07 −0.28 −0.19 −0.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 33) 7492.91 −0.61 0.26 −0.03 0.35 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2, 22) 10645.38 −0.95 0.20 −0.16 0.08 0.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 51) 10862.90 −0.66 0.34 0.00 0.31 0.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3, 11) 11323.10 −1.14 0.11 −0.29 −0.08 −0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 55) 11658.40 −0.90 0.27 −0.10 0.32 0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2, 31) 12303.37 −0.95 0.22 −0.16 0.25 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 62) 12477.38 −0.98 0.18 −0.19 0.19 −0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 71) 13702.38 −1.12 0.00 −0.41 0.02 −0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 82) 15122.80 −1.06 0.38 −0.18 0.47 0.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RMS 0.85 0.23 0.20 0.25 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

adiabatic energies is

Etot(R) = EBO(R) + Erel(R) + EQED(R) −
3∑

I=1

〈∇2
I (R)

〉
2mI

, (4.1)

where the averaging of the adiabatic correction term is performed using the electronic wave
function. The latter term is mass-dependent.

A highly accurate local fit of Etot(R) has been obtained for the D+
3 isotopologue in a polynomial

form. In contrast to the previous work, the total energy has been fitted directly, rather than
through separate fits for each term in equation (4.1). The analytical form of the fit is

V(R) = PN(Γ1, Γ2, Γ3) =
∑

i+2j+3k≤N

cijkΓ
i

1Γ
j

2Γ k
3 , (4.2)

where the basis functions, Γi, are defined in terms of symmetry coordinates, Qi, as

Γ1 = Q1, Γ2 = Q2
2 + Q2

3 and Γ3 = Q3(Q2
3 − 3Q2

2). (4.3)

These functions form the so-called integrity basis [67] and thus any product of them is totally
symmetric with respect to any permutation of the three nuclei. The symmetry coordinates have
the following well-known form:

⎛
⎜⎝

Q1
Q2
Q3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

√
1
3

√
1
3

√
1
3

0
√

1
2 −

√
1
2

√
2
3 −

√
1
6

√
1
6

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

R̃1

R̃2

R̃3

⎞
⎟⎠ , (4.4)

in terms of the expansion coordinates, R̃i, for which we use, following Meyer et al. [68], the Morse
displacement coordinates

R̃i = 1 − e−βα(Ri/R0,α−1)

βα
. (4.5)
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Table 2. Lowest band origins of D+
3 , derived from experiment (exp) and computed using nuclear masses (nuc) and effective

masses (AIM).

(v1, v�
2 ) exp nuc exp – nuc AIM exp – AIM

(0, 11) 1834.674 1834.733 −0.059 1834.639 0.035
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1, 00) 2300.843 2301.198 −0.355 2301.076 −0.233
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 20) 3530.385 3530.650 −0.265 3530.477 −0.092
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0, 22) 3650.658 3650.829 −0.171 3650.644 0.014
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1, 11) 4059.470 4060.090 −0.620 4059.881 −0.411
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2, 00) 4553.792 4554.771 −0.979 4554.530 −0.738
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our fit for D+
3 covers the energy region up to 30 000 cm−1 above the minimum. Some 4249

data points on our dense grid fall into this energy region. In obtaining the fit, a polynomial of
degree N = 16 with 204 coefficients has been used. The root-mean-square deviation for the fit (of
≈ 4.5 × 10−3 cm−1) is one order of magnitude better than for our global fit GLH3P [6] obtained for
the same energy region. For up to 20 000 cm−1, the maximum deviation is only about 0.01 cm−1.

In 1994, Amano et al. [69] analysed the available spectroscopic data of D+
3 and fitted

the rovibrational transition frequencies (529 lines) to a six-parameter model Hamiltonian.
The transitions correspond to the following vibrational bands: (0, 00)–(0, 11), (0, 00)–(0, 22),
(0, 11)–(0, 20), (0, 11)–(0, 22), (0, 20)–(0, 33), (0, 22)–(0, 31), (1, 00)–(1, 11) and (1, 11)–(1, 22), observed
in the absorption and emission spectra. No further spectroscopic measurements have been carried
out since then. The band origins derived by Amano et al. [69] are shown in table 2 and are
compared there with our theoretical predictions. We note the relatively large differences for
the (1, 00), (1, 11) and (2, 00) bands, where the latter band origin is derived from the model
Hamiltonian and not directly supported by experimental data. However, if one directly compares
each observed transition frequency with the corresponding computed one, one finds that most
of the transitions are reproduced within about 0.045 cm−1. This root-mean-square value was
obtained in an analysis of all rovibrational transitions with J ≤ 10, a total of 381 lines, which are
compared in the electronic supplementary material, tables S3–S10. The deviations do not scale
with J, which indicates that the use of the nuclear rotational reduced mass is adequate. It seems
that the experimentally derived band origins are perhaps not accurate for some states. A similar
observation has been made by Polyansky & Tennyson [30] and shows that H+

3 and isotopologues
are difficult to describe with model Hamiltonians. MARVEL energy levels should not suffer from
this problem; however, the number of measured D+

3 lines is not sufficient for such an analysis [66].

5. Conclusion
Non-adiabatic coupling to excited electronic states causes energy shifts to the rovibrational
energy values computed on the electronic ground state potential energy surface of up to 2 cm−1.
Strategies to include non-adiabatic effects in the rovibrational computations are presented.
The so far most successful approaches consist in using coordinate-dependent reduced masses
for vibration and rotation. These can be constructed empirically. The iterative stockholder
atoms-in-molecules approach provides a general access to the vibrational reduced mass. Its
application, together with the use of a very accurate potential energy surface comprising the
Born–Oppenheimer energy, diagonal adiabatic correction terms as well as relativistic and QED
correction terms, has led to the most accurate energy levels obtained so far for H+

3 and D+
3 , which

approach the experimentally determined values to within a fraction of a wavenumber.
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