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Resumo

Ao desenvolver um sistema de aprendizado de máquina, existem duas preocupações além

do desempenho do algoritmo. O primeiro é se o sistema é justo, isto é, se ele trata in-

div́ıduos de grupos distintos da mesma maneira, os classificando de forma similar. O

segundo é se o sistema é privado, isto é, se ele não revela informações privadas de in-

div́ıduos que fazem parte do conjunto de treino quando a sáıda é exibida a um observador.

Inicialmente, essas duas preocupações foram consideradas independentemente, mas recen-

temente, a conexão entre os dois tem atráıdo cada vez mais atenção na comunidade de

aprendizado de máquina. Nesse trabalho, nós exibiremos uma expansão do arcabouço do

fluxo de informação quantitativo para descrever de maneira completa todas as situações

que podem ocorrer em termos de privacidade e justiça. Além disso, modelaremos essas

duas quantidades como duais. Depois, modelaremos quatro métricas de justiça já exis-

tentes usando nosso arcabouço. Por fim, descreveremos experimentos que mostram como

nosso modelo se comporta em cenários com dados reais, o testando com diferentes bases

de dados e algoritmos.

Palavras-chave: Teoria da Informação, Aprendizado de Máquina, Justiça, Privacidade



Abstract

When developing a machine learning (ML) system, there are two common concerns be-

sides the algorithm’s performance. The first one is whether the system is fair, that is,

if it treats individuals from different groups similarly, giving them similar classifications.

The second is whether the system is private, that is, if it does not reveal private infor-

mation about individuals on the training set when the output is shown to an observer.

Initially, they were considered separately, but recently, the connection between these two

concerns has gathered increased attention in the ML community. In this work, we will

show an expansion of the quantitative information flow framework to fully describe which

situations can happen in terms of fairness and privacy and model them as duals. After

that, we model four different existing fairness notions using our framework. Ultimately,

we describe experiments showing how our model behaves in real-world scenarios, testing

it with different datasets and ML algorithms.

Keywords: Information Theory, Machine Learning, Fairness, Privacy



List of Figures

5.1 The feasibility region for direct and reverse average multiplicative Bayes flow. 47

5.2 Pareto curves in the multiplicative case. The legend shows the characteristics

of each part of the curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 The feasibility region for direct and reverse average additive Bayes flow. . . . . 50

5.4 Pareto curves in the additive case. The legend shows the characteristics of

each part of the curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 The feasibility region for direct and reverse maximum multiplicative Bayes flow. 52

5.6 The feasibility region for direct and reverse maximum additive Bayes flow. . . 54

5.7 The feasibility region for direct and reverse multiplicative capacity. . . . . . . 56

5.8 The feasibility region for direct and reverse additive capacity. . . . . . . . . . 58

6.1 Heatmap showing the density of direct and reverse average multiplicative Bayes

flow for all joints up to a precision of 2−8. . . . . . . . . . . . . . . . . . . . . 62

7.1 Accuracy for every dataset and every algorithm. . . . . . . . . . . . . . . . . . 74

7.2 F1-score for every dataset and every algorithm . . . . . . . . . . . . . . . . . . 75

7.3 Direct and reverse average multiplicative Bayes flow in the channel where the

input is the sensitive variable and the output is the classification in the original

datasets. The dataset is the main factor behind the amount of flow, and the

communities dataset is the one with the highest flow. The direct and reverse

flows seem to be always close to one another. . . . . . . . . . . . . . . . . . . . 76

7.4 Scatter plot showing the different direct and reverse average multiplicative

Bayes flow for different datasets. Every point is a different partition of training

and test set. The communities dataset has the highest flow, while COMPAS

and adult are in the middle, and German has the lowest flow of information.

The points are all near the identity line, showing that one flow is highly cor-

related with the other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.5 Both boxplots show how the flow of each dataset compares to the mean of

all datasets. They are all normalized by the mean of all executions. The

communities dataset has the highest variance and mean in both cases. The

German dataset has the least variance, but the mean is slightly higher than

that of adult and COMPAS. The communities dataset has such a high flow

that all others are below the mean. . . . . . . . . . . . . . . . . . . . . . . . . 78



7.6 Scatter plot showing the difference in flow between the communities and COM-

PAS dataset case by case. The input of the channel is the sensitive feature and

the output is the prediction of the classifier. In most cases, the communities

dataset has a higher flow, but in some cases, the opposite happens. In all

cases, the dataset with higher direct flow also has higher reverse flow. When

the communities dataset has a higher flow, it is much higher. . . . . . . . . . . 79

7.7 Scatter plot showing the difference in flow between the adult and COMPAS

dataset case by case. Both datasets’ behavior is similar, so most points are

near the origin. The points distant from the origin have a high direct and

reverse flow difference. There are a few points with one dimension close to

zero while the other is larger. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.8 Boxplot showing the difference in relation to the mean of different algorithms.

The median of all of them is close to zero, meaning that they are all very

similar. However, naive Bayes is almost completely below the mean, while

Random Forest and Gradient Boosting are above the line. This is true for

both direct and reverse flow. Logistic Regression is almost evenly distributed

above and below the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.9 Scatter plot showing the difference in flow between the random forest and

naive Bayes algorithms case by case. They have similar flows in about half the

cases, but random forest has much more flow in the other half. There is no

case where naive Bayes has more flow of information. . . . . . . . . . . . . . . 81

7.10 Scatter plot showing the difference in flow between the random forest and

gradient boosting algorithms case by case. Most points are close to the origin,

showing that the algorithms are similar. There is a point where the reverse

flow is significantly larger than the direct one. In this point, gradient boosting

is the algorithm with higher flow. . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.11 Scatter plot showing different flow values for different sensitive features. Sev-

eral examples are near the origin of all three sensitive features, but there is

a cluster of points with slightly higher flow with age as the sensitive feature.

Higher on the plot, two other clusters represent sex and race. . . . . . . . . . . 83

7.12 Two scatter plots show the relation between direct and reverse flows with

statistical parity. On both of them, the greater the flow, the greater the

statistical parity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



7.13 Two scatter plots showing how direct and reverse flow change when the thresh-

old for the sensitive attribute changes. When it approaches the median, 0.85,

in this case, both flows increase significantly. The reverse flow of points with

the threshold far from the median goes to the minimum possible value, 1. The

direct flow is above zero for most points but peaks near the median. The lines

on top of the points are confidence intervals. A point with no dot represents

an experiment where all the results were equal. . . . . . . . . . . . . . . . . . 85

7.14 Two scatter plots showing how the direct and reverse flow change when the

fraction of positive classifications in the dataset changes. In both cases, the flow

increases when the fraction is close to zero. The direct case is zero on multiple

scenarios where the fraction is close to 0 or 1. The reverse flow is almost always

greater than 1 but approaches 1 when the classes are unbalanced. The lines

on top of the points are confidence intervals. A point with no dot represents

an experiment where all the results were equal. . . . . . . . . . . . . . . . . . 87

7.15 Two scatter plots showing how direct and reverse capacity change when the

threshold for the sensitive attribute changes. The reverse capacity stays roughly

the same through all thresholds. The direct capacity increases when it is close

to the median of the sensitive attribute. The lines on top of the points are

confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.16 Two scatter plots showing how direct and reverse capacity change when the

fraction of positive classifications change. The direct capacity stays approxi-

mately the same through all fractions. The reverse capacity increases when the

fraction is close to 0.5 and goes to zero when it approaches 0 or 1. The lines

on top of the points are confidence intervals. Some examples near the border

have very large errors because the sample size is not big enough, making the

results unstable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1 Scatter plot showing the value of direct and reverse capacity by dataset. The

values for the communities dataset are the larger ones, while the German

dataset has the smallest ones. Most points are distributed near the identity line.108

B.2 Scatter plot showing the value of direct and reverse capacity by sensitive at-

tribute. Race is the sensitive feature with the higher values of capacity. Most

points are distributed near the identity line. . . . . . . . . . . . . . . . . . . . 109

B.3 Boxplot showing the difference of multiplicative capacity in relation to the

mean of different algorithms. The median of all of them is close to zero,

meaning that they are all very similar. But naive Bayes is almost completely

below the mean, while Random Forest and Gradient Boosting are above the

line. This is true for both direct and reverse flow. Logistic Regression is almost

evenly distributed above and below the mean. . . . . . . . . . . . . . . . . . . 110



B.4 Two scatter plots show the relation of capacity with mean difference. In the

first one, we see that direct capacity is equal to mean difference, so all points

are in the identity line. In the second one, we see that they are correlated, so,

the greater one of them is, the greater the second one is as well. . . . . . . . . 111



List of Tables

4.1 Redefining the names of already presented concepts. . . . . . . . . . . . . . . . 38

4.2 Possible gain function modeling a bigoted employer . . . . . . . . . . . . . . . 42

4.3 Channel describing a skewed classifier. . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Feasibility region if α is the reverse flow and β the direct one. . . . . . . . . . 45

6.1 Channel C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Joint J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Direct channel
−→
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Values of posterior vulnerability and flow in function of a. . . . . . . . . . . . 65

6.5 Channel that satisfies statistical parity. a can be any value in [0, 1]. . . . . . . 67

6.6 Channel that satisfies statistical parity. a can be any value in [0, 1]. . . . . . . 68

6.7 channel to analyze equal opportunity. . . . . . . . . . . . . . . . . . . . . . . . 69

6.8 channel to analyze equalized odds. y is in the set {+,−}. . . . . . . . . . . . . 69

6.9 channel to analyze conditional statistical parity. ℓ can assume any value that

is in the domain of L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1 Information on the adult dataset . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Information on the German credit dataset . . . . . . . . . . . . . . . . . . . . 72

7.3 Information on the COMPAS dataset . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Information on the communities and crimes dataset . . . . . . . . . . . . . . . 73



Contents

1 Introduction 14

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 16

2.1 Quantitative information flow . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 What is QIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Main concepts surrounding QIF . . . . . . . . . . . . . . . . . . . . 17

2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 What is machine learning . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.1 The task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.2 The performance measure . . . . . . . . . . . . . . . . . . 21

2.2.1.3 The experience . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Specific algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2.3 Random forest . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2.4 Gradient boosting . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3.2 Pearson correlation . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Fairness in machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Fairness notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Fairness measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2.1 Statistical parity . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2.2 Equal opportunity . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2.3 Equalized odds . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2.4 Conditional statistical parity . . . . . . . . . . . . . . . . 28

2.3.3 Types of fairness measures . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3.1 We are all equal . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3.2 What you see is what you get (WYSIWYG) . . . . . . . . 29

3 Literature review 30



3.1 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Fairness outside of Computer Science . . . . . . . . . . . . . . . . . 30

3.1.2 Fairness in Computer Science . . . . . . . . . . . . . . . . . . . . . 31

3.2 Privacy in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Threats to privacy in Machine Learning systems . . . . . . . . . . . 32

3.2.2 Privacy-aware Machine Learning . . . . . . . . . . . . . . . . . . . 34

3.3 Relation of privacy and fairness . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Extending QIF with direct and reverse flows 37

4.1 Reverse flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Direct flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 The differences between reverse and direct flow . . . . . . . . . . . . . . . 40

4.4 Privacy and fairness in machine learning . . . . . . . . . . . . . . . . . . . 41

4.4.1 Using gain functions . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Considering the prior distribution . . . . . . . . . . . . . . . . . . . 43

5 Theoretical bounds 45

5.1 Average Bayes flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Multiplicative Bayes flow . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1.1 An observation about differential privacy . . . . . . . . . . 48

5.1.2 Additive Bayes flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Maximum Bayes flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Multiplicative Bayes flow . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Additive Bayes flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Multiplicative capacity . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Additive capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 On QIF and fairness 60

6.1 A QIF model to privacy and fairness . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 The duality aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.2 Interpretation of the theoretical bounds . . . . . . . . . . . . . . . . 61

6.1.3 Interpretation of the metrics . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Modeling existing notions of fairness with QIF . . . . . . . . . . . . . . . . 63

6.2.1 Statistical parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.1.1 Direct flow and statistical parity . . . . . . . . . . . . . . 63

6.2.1.2 Reverse flow and statistical parity . . . . . . . . . . . . . . 66

6.2.1.3 Binary statistical parity . . . . . . . . . . . . . . . . . . . 67

6.2.2 Other measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.2.1 Equal opportunity . . . . . . . . . . . . . . . . . . . . . . 68



6.2.2.2 Equalized odds . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2.3 Conditional statistical parity . . . . . . . . . . . . . . . . 69

7 Experiments 71

7.1 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 Performance of the algorithms . . . . . . . . . . . . . . . . . . . . . 74

7.2.2 Baseline flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.3 How does the dataset influence the results . . . . . . . . . . . . . . 76

7.2.4 How does the algorithm influence the results . . . . . . . . . . . . . 80

7.2.5 How does the sensitive feature influence the results . . . . . . . . . 82

7.2.6 Comparison with statistical parity . . . . . . . . . . . . . . . . . . . 83

7.2.7 Limitations of average Bayes flow . . . . . . . . . . . . . . . . . . . 85

7.2.8 Using capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Conclusion 90

References 91

Appendix A Proofs of the theoretical bounds 97

A.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.1.1 Proof for the average multiplicative Bayes flow . . . . . . . . . . . . 97

A.1.1.1 Pareto bounds . . . . . . . . . . . . . . . . . . . . . . . . 102

A.1.2 Proof for the average additive Bayes flow . . . . . . . . . . . . . . . 104

A.1.2.1 Pareto bounds . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix B Complementing experiments 108

B.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



14

Chapter 1

Introduction

Machine learning (ML) classifiers can be used to make decisions about an individual.

Banks, for example, use these classifiers to predict whether a person will default if they

receive a loan. These classifiers are not explicitly programmed. They are created by

algorithms that receive data from previous observations and detect patterns that are then

used to classify future individuals. Generally, the more data used to train the algorithms,

the better the predictions. This fact incentivizes data scientists to use all their data,

including possibly sensitive features like gender, race, and medical conditions.

In some scenarios, the use of those characteristics causes two problems. The first

one is fairness. If a minority group often receives worse classifications than a majority, the

algorithm is said to be unfair. The second issue is privacy. If an adversary can observe

the prediction given to an individual and infer the value of those sensitive features, the

algorithm has a privacy problem.

For years, academia has been focused on these concepts as separate phenomena.

The study of fairness has focused on how to measure it, build algorithms that avoid it, and

change the data to mitigate biases. Simultaneously, most of the study in privacy has been

on building algorithms that ensure it and on transforming the training data to protect

the identity of members. However, privacy and fairness have a clear relationship. If the

classifier is unfair, then knowing the value of the sensitive attribute gives information

about the classification. If it is not private, the predicted class influences the sensitive

feature. Recently, there has been some development in the relationship between the two

concepts. Some studies have shown the link between statistical notions of fairness and a

measure of privacy called differential privacy, but there is still work to be done.

One tool that has yet to be thoroughly explored for this use is the quantitative

information flow (QIF) framework. It was initially designed to measure how informa-

tion flows through a computer system when executed, mainly in applications concerning

security. However, it is possible to model both fairness and privacy using it.

The main goal of this master’s thesis is to characterize the relationship between

privacy and fairness completely. To do this, we need to formally define an expansion

of the QIF framework, model existing notions of fairness with QIF, create a new pure

QIF model to capture fairness, and perform experiments to show how they perform on
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real-world data.

1.1 Contributions

There are five main contributions in this work.

• A new notation for an existing expansion of the QIF framework to deal with infor-

mation flow in two directions.

• A complete characterization of all combinations of flow that can happen concerning

average and maximum Bayes flow and capacity, in both the additive and multiplica-

tive cases.

• A modeling of existing fairness metrics using QIF, specifically statistical parity,

equal opportunity, equalized odds, and conditional statistical parity.

• Expansion of a QIF model that simultaneously captures fairness and privacy in ML.

• Experiments that show the feasibility of all these points in real-world data. They

have to confirm that the measures are non-trivial and how different factors (dataset,

algorithm, sensitive feature) change the information flows.

1.2 Outline of the thesis

We begin with a background covering QIF, ML, and fairness in Chapter 2. After

that, Chapter 3 has a brief literature review summarizes the related research. Then,

Chapter 4 reformulates an expansion of the QIF framework to include two flow directions

and a model where these directions represent the privacy and fairness of an ML classifier.

The main contributions follow these parts. We show all theoretical bounds that

govern the values of information flow that can happen simultaneously in several situations

in Chapter 5. After that, Chapter 6 models several existing notions of fairness using QIF.

Finally, experiments with four different ML algorithms and four different datasets show

how our new metrics behave in Chapter 7.
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Chapter 2

Background

This chapter provides the necessary background information for all the new concepts that

will be introduced in this thesis. In the first section, we will describe the quantitative

information flow framework. After that, we will briefly review what is a machine learning

task, some algorithms that can perform them and some other related concepts. Finally,

we study what fairness is in machine learning. We present four metrics and divide them

into two groups.

2.1 Quantitative information flow

2.1.1 What is QIF

When dealing with security threats, it is not enough to know if some secret has

been leaked or not. Consider, for example, someone trying to log into somebody else’s

account by guessing a password. Even if the snooper guesses incorrectly, they will discover

that a possible password is incorrect, so information flows when the system outputs the

message “incorrect password”. Therefore, there is a need to create a framework that

measures information flow quantitatively.

Besides that, not all bits are equal [4]. Imagine a situation where a hacker is trying

to find out the bank’s password of several people. The password corresponding to Bill

Gate’s account is certainly worth more than the password of the author of this thesis,

even though the number of bits of both passwords is roughly the same. Furthermore,

there are occasions where the same system is run twice in different contexts, so there is

a need to know how the security of such a system changes when the value of the secrets

changes as well.

Quantitative Information Flow (QIF) is a framework that can handle both de-
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mands. It can measure precisely the amount of information that flows through a system,

considering the value of such information.

It has been used to model different scenarios, like multi-party computation and

flow of information due to side channels. Now, we will measure the privacy of sensitive

machine learning systems and their fairness.

2.1.2 Main concepts surrounding QIF

Because QIF was created with a focus on security and privacy, the first thing we

need to model are secrets. We suppose that an adversary will observe a system running

and wants to know the value of a secret. A probability distribution models this secret to

show the uncertainty of the adversary in their belief.

Definition 1 (Prior distribution). A prior distribution π is a distribution on a set X of

possible values and represents the adversary’s knowledge of the secret before the system is

run.

We will use DX to denote the set of all distributions over the set X .

With this knowledge, there are several decisions that the adversary can take. This

is captured by gain functions that model the adversary’s actions and possible rewards.

Definition 2 (Gain function). Given a set X of possible values for a secret and a set

W of possible actions, the gain function is a function of type g : W × X → R. g(w, x)

represents the gain of the adversary when he takes action w ∈ W and the secret is x ∈ X .

The set of all possible gain functions is G and the set of all non-negative gain

functions is G+.

In a scenario with a given prior distribution and gain function, it is possible to

compute the expected gain of the adversary. This is the g vulnerability of the prior with

respect to the gain function. It measures how unsafe a situation is.

Definition 3 (Prior g-vulnerability). The prior g-vulnerability of a prior distribution π

given a certain gain function g measures the expected gain of an optimal adversary. It is

defined as

Vg(π) = max
w∈W

∑
x∈X

πxg(w, x).

One of the most straightforward gain functions is the identity gain function. It

represents a scenario where the adversary wants to guess exactly the secret, but they only
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have one chance. The corresponding Vg is called Bayes vulnerability and measures the

probability of an optimal adversary guessing the secret correctly.

Definition 4 (Bayes vulnerability). Denoted by Vid, Bayes vulnerability is the vulnera-

bility with respect to the gain function where W = X and g(w, x) = 1 if w = x and 0

otherwise.

From the definition, we have that

Vid(π) = max
x∈X

πx.

The channel abstraction is used to model a scenario where a computational system

uses the secret as an input and returns an output.

Definition 5 (Channel). Let X be a set of inputs (secrets) and Y a set of outputs. A

channel of type C : X → DY receives an input from X and produces an output from Y
according to a pre-defined distribution for each X . Cx,y is the probability of outputting y

when the secret is x.

When a channel is run with the input coming from a prior distribution, a joint is

defined. The joint establishes the probability of each pair of input and output occurring.

Definition 6 (Joint). In a scenario where a channel C receives a secret from a prior π

as a distribution, a joint is defined. It is denoted by π ▷ C. The value of an entry is

(π ▷ C)x,y = πxCx,y.

Running a system using the input drawn from a prior π also defines a hyper-

distribution, often called a hyper for brevity. A hyper is a distribution on distributions.

That is, it defines the probability that each distribution can happen. The first probability

is the probability of outputs, each of which defines a probability on the secrets.

Definition 7 (Hyper distribution). A hyper-distribution ∆ of a set X is a distribution

on distributions of X , i.e. it has type DDX , abbreviated to D2X .

Each distribution in DX is called an inner distribution, and the distribution of the

inners is the outer distribution.

With the joint, it is possible to compute the adversary’s expected gain after observ-

ing a channel’s output. This is computed by taking the weighted average of the expected

vulnerabilities with respect to all possible outputs.

Definition 8 (Posterior g-vulnerability). The posterior g-vulnerability of a prior π : DX
and a channel C : X → DY with respect to a gain function g : W×X → R represents the
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expected gain of an adversary with knowledge of C after observing the output of a channel

that received a secret from π. It is denoted

Vg(π,C) =
∑
y∈Y

max
w∈W

∑
x∈X

πxCx,yg(w, x).

The posterior is the expected g-vulnerability after the output is observed, given

that the adversary has complete knowledge of the channel. In some cases, the average

case is not the one that matters the most because some extremely risky situations may

only happen sometimes. Thus, another possible measure is the worst-case scenario. The

scenario where the adversary is expected to gain the most is captured by the maximum

posterior g vulnerability.

Definition 9 (Maximum posterior g-vulnerability). The maximum posterior g-vulnerability

of a channel C : X → DY and a prior π : DX with respect to a prior g : W×X → R rep-

resents the expected gain of the adversary in a worst-case scenario, that is, the situation

where the output y ∈ Y reveals the most. It is written as

V max
g (π,C) = max

y∈Y
max
w∈W

∑
x∈X

πxCx,yg(w, x)∑
x∈X πxCx,y

.

The information flow of a system measures how much information the adversary

has gained after the system is executed. There are two possible ways to measure this: the

ratio or the difference between the adversary’s posterior and prior gain. We present both

of them; the first is called multiplicative flow, and the second is additive flow.

Definition 10 (Multiplicative information flow). The multiplicative information flow of

a channel C, a prior π with respect to a gain function g is the ratio of the posterior and

the prior g-vulnerabilities. It is defined by

L×
g (π,C) =

Vg(π,C)

Vg(π)
.

Definition 11 (Additive information flow). The additive information flow of a channel

C, a prior π with respect to a gain function g is the difference between the posterior and

the prior g-vulnerabilities. Is it defined by

L+
g (π,C) = Vg(π,C)− Vg(π).

In some situations, the g-function may change, and we are worried about what

happens to the flow in this case. We can define capacity as how much the g-vulnerability

can change when the g-function is altered, but the prior distribution and joint stay the

same. There are other notions of capacity in the literature, but in this work, we will focus

only on the capacity with respect to the gain function.

Just like with information flow, we can measure capacity in two ways: multiplica-

tive and additive.
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Definition 12 (Multiplicative capacity). The multiplicative capacity of a prior π and a

channel C is

ML×
G+(π,C) = max

g∈G+

Vg(π,C)

V (π)
.

Definition 13 (Additive capacity). The additive capacity of a prior π and a channel C

is

ML+
G↕(π,C) = max

g∈G↕
Vg(π,C)− V (π),

where G↕ is the set of all 1-bounded gain functions.

There are formulas that can compute both these quantities.

Theorem 1. [3] The multiplicative capacity of a prior π and a channel C can be obtained

by computing

ML×
G+(π,C) =

∑
y∈Y

max
x∈⌈π⌉

Cx,y,

where ⌈π⌉ denotes the support (the non-zero values) of π.

The additive capacity of a prior π and a channel C can be obtained by computing

ML+
G↕(π,C) = 1−

∑
y∈Y

min
x∈⌈π⌉

Cx,y.

2.2 Machine learning

Some tasks, such as playing chess or deciding if an applicant is suitable for a given

job, are very hard for a human to code a computer program that can deal with all possible

scenarios.

To deal with these problems, machine learning (ML) was created. The idea is to

create a general-purpose algorithm to learn from the data for a specific scenario and build

a classifier. Formally, Mitchell et al. [50] defines an ML program as “A machine learning

program is said to learn from experience E with respect to some class of tasks T and

performance measure P , if its performance at tasks in T , as measured by P , improves

with experience E”.

This section will give the necessary background on machine learning. We begin by

defining it. This is done by dividing ML into these three parts: the task T, the performance

measure P, and the experience E. After that, we will present some algorithms that were

used in the thesis as examples.
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2.2.1 What is machine learning

2.2.1.1 The task

A task in machine learning corresponds to how a model should process an example.

An example consists of a feature vector x ∈ Rn, where n is the number of dimensions, and

each xi represents the value of feature i. A feature is one characteristic of an example. It

can be a categorical feature, representing that the individual belongs to a group, such as

race. Or it can be a numerical feature, described by a number, such as height. The set of

all possible feature vectors is X .

In this thesis, we will only deal with classification problems. In this scenario, each

example belongs to one of k possible classes {1, 2, · · · , k}, and the goal is for the ML

model to specify which class is the class of the example provided as input. The set of all

possible classifications is Y .

An example of a classification problem is determining what object is on an image.

The feature vector x ∈ Rn represents the brightness of each pixel on the image of size n,

and the classes can represent different classifications, such as {cat, dog, car, ...}.
In this thesis, we will focus on binary classification tasks. In this scenario, there

are only two possible classifications for each individual: positive and negative.

2.2.1.2 The performance measure

When training a model, it is necessary to have an objective and qualitative way

to measure how good (or bad) the algorithm is to optimize it. This is the performance

measure.

Some of the relevant measures are

• Accuracy : the probability that the model will determine correctly the class of an

example [9].

• Precision: the probability of an example being positive given that the classification

given by the model was positive.

• False positive rate (recall): the probability of an example being classified as positive

given that it is positive.
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• F-score: the harmonic mean between precision and recall [59].

To get a precise estimate on any metrics, it is not recommended to use the data

used to train the algorithm to estimate it. Instead, a test set is used to measure these

quantities. It consists of a set of examples and labels with no intersection with the training

data and is a significant sample of the population being considered [31].

2.2.1.3 The experience

The experience is usually the dataset. It consists of a set of examples. In a classi-

fication problem, each example comprises a vector feature and the target classification.

2.2.2 Specific algorithms

In the experiments chapter, we used four common ML algorithms. In this section,

we explain how each of them works.

2.2.2.1 Naive Bayes

The naive Bayes algorithm is a classical algorithm in statistics and machine learn-

ing [33].

Consider that each example is drawn from a joint probability distribution on the

set X ×Y . The goal of a classifier when it receives x as input is to choose one class ŷ ∈ Y
such that

ŷ = argmax
y∈Y

P (y|x).

Using Bayes rule, we can write

ŷ = argmax
y∈Y

P (y)P (x|y)
P (x)

.

Because the probabilities P (x) are the same for every class y ∈ Y , we do not need to
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consider it. The prediction then becomes

ŷ = argmax
y∈Y

P (y)P (x|y).

Now, we need to find a way to compute this term for every class.

The probability P (y) is estimated as the fraction of examples in the dataset that

belong to the class y. This is called the frequentist approach.

Estimating P (x|y) is more complicated. The first assumption we will make is that

all the features are independent. This is why the algorithm is called naive. Thus, we can

write

P (x|y) =
∏

i∈{1,··· ,n}

P (xi|y).

There are two ways to compute P (xi|y). If the i-th feature is discrete, then the

probability is estimated as the fraction of entries with this feature as xi and are on class

y. If the i-th feature is continuous, then the probability is estimated as

P (xi|y) =
1

σi,y

√
2π

exp

(
−1

2

(
xi − µi,y

σi,y

))
,

where µi,y is the mean of the i-th feature when the label is y in the training dataset, and

σi,y is the standard deviation. In other words, the probability is estimated as being a

normal variable [55].

As we said at the beginning, the class that is predicted is the one that has the

highest probability according to this model.

2.2.2.2 Logistic regression

We will only explain the logistic regression algorithm applied to the binary classi-

fication case.

The goal is to create a function that predicts the probability that an example x is

on the positive class. The first step is to create a function f : X → R that will produce a

real number for every example. It is an affine function of all parameters. It is written as

f(x) = β0 +
∑

i∈{1,··· ,n}

xiβi.

The second step is to apply this function to the sigmoid function to get

P̂ (+|x) = 1

1 + exp(−f(x))
,
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and then we can interpret the result as being the probability that it is on the positive class,

according to the model. The logistic function always produces a real number between 0

and 1, so using it as a probability estimate makes sense.

Training a logistic regression model is finding a good choice of βi for all i. We refer

to the vector of all βi as βββ. To do this, we first need a metric of how good is a choice of

βββ. We will use mean squared error as a loss function. It is defined as

MSE =
∑

i∈{1,··· ,m}

(
I(i)− P̂ (xi)

)2
,

where m is the size of the dataset, xi is the feature vector of the i-th entry on the dataset

and I(i) is equal to one if the i-th entry is positive and zero otherwise, and P̂ (xi) is the

prediction for the i-th example.

Using a black-box optimizer, like gradient descent or Newton’s method [31], it is

possible to find good values for βββ.

2.2.2.3 Random forest

To understand the random forest method, it is necessary to explain what is a

decision tree.

Decision tree. A decision tree is a flowchart structure that outputs a classifi-

cation. It is represented by a tree with one root. The decision process starts with the

root as the current node. At every node, a test is made about one feature of the example

being considered. With the test result, the current node decides which child becomes the

current node. This process is repeated recursively in the sub-trees of the decision tree

until a leaf becomes the current node. Each leaf has a constant output that can be the

class the classifier predicts or the probability of the model being in each class.

Random forest. A random forest is a collection of decision trees. Each decision

tree only has access to a subset of the features that is randomly selected [38]. In the train-

ing phase, each decision tree is trained separately. Each tree is trained separately when

making a classification, and the predictions are aggregated later. If the predictions are in

the form of a class, the random forest predicts the most voted class. If the predictions

are probabilities, they are averaged to form a general prediction.
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2.2.2.4 Gradient boosting

The idea of gradient boosting is to have simple predictors that we will denote

by h(x) that produce classifications. These predictors can assume different forms. For

instance, it can predict that x belongs to the positive class if and only if xi ≥ α for a

given i and α.

These predictors are going to be used in M steps. At every step, we begin with an

incomplete classifier Fm. To improve Fm, the algorithm adds a new simple classifier such

that Fm+1(x) = Fm(x) + hm(x).

The idea is to fit the new classifier hm(x) to the residual y−Fm(x), the prediction

error. By doing this multiple times, we can get a good classifier.

2.2.3 Observations

In this subsection, we will present some observations on notation and some other

useful concepts that are not related to QIF or ML.

2.2.3.1 Nomenclature

In this work, the word classifier will refer to a program that gets a feature vector

and outputs a classification. The word algorithm refers to a method where some data is

used to produce a classifier. So, for instance, we can use the random forest algorithm to

create a set of decision trees called a classifier. This classifier receives feature vectors as

inputs and produces classifications.

The word model can refer to a machine learning algorithm in some works. Here,

the word model will refer to scenarios where QIF will describe a machine learning system.
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2.2.3.2 Pearson correlation

In the experiments, we are going to show that two variables are closely related. To

measured this relation, we are going to use the Pearson correlation [55].

We first need the covariance between two random variables to define the Pearson

correlation.

Definition 14 (Covariance). The covariance of two random variables X and Y is equal

to the expected value of the product of their deviations from the mean. That is

cov(X, Y ) = E[(X − µX)(Y − µY )],

where µA is the expected value of the random variable A.

The Pearson correlation or Pearson correlation coefficient measures the correlation

between two random variables. It is equal to the covariance of both variables divided by

the product of both standard deviations.

Definition 15 (Pearson correlation). The Pearson correlation of two random variables

X and Y is equal to

ρXY =
cov(X, Y )

σXσY

,

where σA is the standard deviation of the random variable A.

When dealing with samples, there is an approximation for the Pearson correlation,

usually written as rXY .

Theorem 2. The Pearson correlation of a sample can be computed by

rXY =

∑
i∈{1,...,n}(xi − x̄)(yi − Ȳ )√∑

i∈{1,...,n}(xi − X̂)2
√∑

i∈{1,...,n}(yi − Ŷ )2
,

where n is the number of samples of both variables, and Â is the sample mean of the

variable A.

2.3 Fairness in machine learning

In this section, we will enumerate four different fairness metrics and group them

into two different types of metrics. However, first, we need to show some notation.
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2.3.1 Fairness notation

In this work, we will only deal with binary classification problems, so there are

only two possible classifications: positive and negative. We will also suppose that the

favorable classification is the positive one. So, in a scenario where we want to predict if a

loan should be accepted, the acceptance of such a loan is the positive class. In a situation

where we predict if a person is going to commit a crime, we will predict if they are not

going to commit crimes, such that the positive classification predicts that no crime will

be committed. The positive classification is denoted by +, and the negative is −.

There are two classifications we may refer to. The first one is the correct one that

is present in the dataset. This random variable is denoted by Y . The second one is the

classification that is predicted by a classifier. Ŷ denotes this random variable.

When we deal with fairness, there are usually two groups. The first is the unpro-

tected group, sometimes called the majority. We will denote it using s0 and refer to it as

unprotected. The other group is the protected group; we denote it by s1.

2.3.2 Fairness measures

2.3.2.1 Statistical parity

The first and most simple measure is statistical parity. It measures the difference

of the probabilities of getting a positive classification for both groups.

Definition 16 (Statistical parity [22, 57, 68]). The statistical parity α of a classifier is the

absolute value of the difference between the probabilities of getting a positive classification

for the unprotected and protected group:

α = |P (+|s0)− P (+|s1)|.

It is also called mean difference, equal acceptance rate, or benchmarking.
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2.3.2.2 Equal opportunity

The second measure is a version of statistical parity where we only consider indi-

viduals with a positive classification. Ideally, we would know which individuals deserve a

positive classification. In this thesis, we approximate it using the label from the dataset.

Definition 17 (Equal opportunity [34]). The equal opportunity α of a classifier is the

absolute value of the difference between the probabilities of getting a positive classification

for the unprotected and protected groups given that the classification is positive in the

dataset:

α = |P (Ŷ = +|Y = +, s0)− P (Ŷ = +|Y = +, s1)|.

2.3.2.3 Equalized odds

Equalized odds is an expansion of equal opportunity. The intuition behind it is

that the probability of getting a correct classification must be independent of the group.

Definition 18 (Equalized odds [35, 7, 64]). Equalized odds is satisfied if the probability

of getting a correct classification is the same for both groups in the scenario of positive

and negative classifications. That is:

P (Ŷ = +|Y = i, s0) = P (Ŷ = +|Y = i, s1), ∀i ∈ {+,−}.

It is also called conditional procedure accuracy equality and disparate mistreat-

ment.

2.3.2.4 Conditional statistical parity

The idea of conditional statistical parity is to have statistical parity given that

some relevant features are equal.

Definition 19 (Conditional statistical parity [17]). Given a set L of relevant features,

conditional statistical parity is satisfied when the two groups have the same probability of
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getting a correct classification given that they have the same value of L. That is:

P (+|L = ℓ, s0) = P (+|L = ℓ, s1),∀ℓ ∈ L.

2.3.3 Types of fairness measures

Now, we will distinguish these metrics into two groups. They were introduced in

[29] and show two different world views.

2.3.3.1 We are all equal

The first notion of fairness is we are all equal (WAE). The underlying principle is

that all individuals have the same probability of satisfying specific criteria, regardless of

their group.

Statistical parity falls under this group of fairness measures because it states that

the probability of the protected and unprotected groups getting a positive classification

must be the same.

2.3.3.2 What you see is what you get (WYSIWYG)

The second notion of fairness is what you see is what you get (WYSIWYG). The

idea is that individuals with similar characteristics must receive similar treatments. So,

according to this notion, a classifier can be considered acceptable if it treats the protected

and unprotected groups differently overall.

Equal opportunity is in this group because given that the dataset considers that

two individuals should get a positive classification, then a classifier must give them a

positive classification with the same probability. The same is true for equalized odds and

conditional statistical parity.
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Chapter 3

Literature review

This master’s thesis will discuss how the quantitative information flow framework can be

used to measure fairness in machine learning systems. Thus, it is necessary to present

a literature review discussing fairness in a broader context and how it can be applied to

computer science, followed by different definitions and measures. Afterwards, possible

unfairness causes will be listed, and how some algorithms try to mitigate each. Finally,

there will be a review of privacy in machine learning and how the QIF framework models

different applications.

3.1 Fairness

This section will present related works in fairness. We begin by listing some notions

of fairness outside of computer science. Then, we analyze different studies in computer

science.

3.1.1 Fairness outside of Computer Science

The discussion about concepts such as justice and fairness has been present in

Western Society as long as it exists. The book Theory of Justice by Plato is one of the

first books on the subject and states that justice is the most important trait of a person

[8]. More recently, political philosophers like John Rawls have stated that justice happens

when all individuals have fair equality of opportunity [54].

These notions of fairness and justice have inevitably been used when writing leg-

islation. The Universal Declaration of Human Rights, a document made by the United

Nations to state the rights and freedoms of all human beings, declares that “Everyone is
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entitled to all the rights and freedoms set forth in this Declaration, without distinction of

any kind, such as race, colour, sex, language, religion, political or other opinion, national

or social origin, property, birth or other status” [5].

In Brazil, two relevant pieces of legislation on the subject are the Constitution

and federal law 7.716/1989. The fifth article of the constitution guarantees that men and

women have the same rights and duties and that no one can lose a right based on religion.

Law 7.716/1989 establishes that no individual can suffer discrimination based on race,

ethnicity, religion, or nationality.

These rules were all created at a time when only humans made decisions. However,

in recent years, computers running machine learning algorithms have started to work in

situations such as hiring individuals, granting loans, and university applications. So, the

notions of fairness and justice have to be reassessed in a scenario where not only people

make calls. This involves defining what justice is and how to measure it, as well as

techniques that follow these definitions.

3.1.2 Fairness in Computer Science

In the last few years, Machine Learning algorithms have been used extensively

in academia and industry. This resulted in more diverse applications, like predicting

if a person applying for a loan would default. Because of the delicate nature of some

applications, part of the attention from academics and general society turned to how fair

those methods are, creating the area of fairness in machine learning [11], [12].

The field has several smaller divisions. The first works were in fairness on simple

classification tasks. Naturally, it evolved to monitor fairness in increasingly complicated

scenarios, e.g., fairness in Reinforcement Learning and how it affects the impact of each

variable on a model [41], [45].

An important area tries to define what causes unfairness. There are a few different

ways to make a machine learning model unfair. The first one arises when there is bias

in data, and the model mimics the data. [11] showed that models trained using a sexist

corpus also ended up being sexist. One other reason that can make an ML system unfair

is that when training to minimize average error, it makes sense for the model to fit the

majority. That leads to a different distribution of errors in the minority populations [16].

One last way to create a system that is not fair is that when joining different components

that are all independently fair, their composition may be unfair [23]. A feedback loop can

happen when the output of a classification system is used to enforce a policy in real life

that can lead to data that is even more biased [47].
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Academics also started creating ways to overcome fairness problems. [65] intro-

duced fair representation learning, where the data is progressively transformed in a way

that it stays relevant for the classification task, but the correlation with the sensitive

variable is erased, making it harder for redlining (phenomena where the classifier learns

to distinguish the protected and unprotected groups without this information being ex-

plicit in the input data) to happen. [25] showed a possible way to break a feedback loop

in a machine learning pipeline, using different data sources to minimize the bias. There

are works concerning fairness outside of classification problems, such as ranking [15] and

reinforcement learning [21].

Another field of study is measuring unfairness. Individual notions of fairness try to

guarantee that if two individuals have similar characteristics, they will probably receive

the same treatment[22]. The problem with this approach is that it is extremely hard

to create measures that can capture what similar characteristics mean, so they are not

widely used [43].

A second technique to measure unfairness is to consider statistical properties. If

all groups have similar rates of positive and negative classifications, then the algorithm is

considered fair [14]. It is widely used, and many measures were created that follow this

reasoning [49]. All of the metrics shown in the background fall under this category.

3.2 Privacy in Machine Learning

This thesis concerns the relationship between fairness and privacy in machine learn-

ing algorithms.

Thus, reviewing the main concepts of privacy in artificial intelligence is necessary.

This section is divided into two parts: the threats of an ML system and how to deal with

those threats.

3.2.1 Threats to privacy in Machine Learning systems

Attacks on ML systems can be partitioned into attacks on the party that holds

the data and attacks on the party with the trained classifier. Both these attacks aim to

discover the training set’s characteristics, but they achieve this in different ways. Because

this thesis is focused on the machine learning aspect of privacy, we will not explain how
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attacks on the party with the data happen. We will focus on attacks on the ML classifier.

There are two main groups of attacks: black-box attack and white-box.

In black-box attacks of a classifier, the attacker has access only to predictions of

the ML classifier. Every time an input is given to the classifier, the attacker can view

the input and the probability of it being in each possible class. It is very similar to what

happens with “Machine Learning as a service”, for example, Amazon ML1 and Google

Prediction API2. With only this information, the attacker wants to determine whether

the input given is a member of the training dataset. There are three main ways to do

this.

The first one is to compute several statistics, for example, the entropy of the

probability distribution predicted and its greatest value, and claim that the entry is a

member of the training set if these values exceed certain thresholds. The idea is that in

entries that were used to train the classifier, the classifier is more confident in its answer,

thus, these values are more extreme. This approach is already implemented in popular

libraries of Machine Learning [46]. A second, and only slightly different, path is to feed

these statistics into another ML algorithm. It can be trained to detect whether the values

are from a member of the original dataset.

The third kind of black-box attack is slightly different. It creates a lot of ML

classifiers that mimic the original one. These are called shadow models. These are fed

data similar to the data fed to the classifier being attacked, and then they are combined to

get a better prediction if a new entry was or was not used in the training. This method was

tested in ML on-demand services (without any prior knowledge about the algorithms that

were internally used) with sensitive data (location data, medical and purchase history),

and the result was accurate [56]. These three approaches depend on the quality of the

data used to feed the black-box attacks, thus, they depend on the amount of knowledge

the attacker has.

In a white-box attack, the attacker knows the architecture used and the value of

each parameter after training. An example of a white-box attack is an attack on a deep

neural network [44]. When training this kind of algorithm, the gradient descent algorithm

performs steps where the partial derivative of each neuron in the network is minimized.

Thus, when an entry is fed to the net and most derivatives are close to zero, this is evidence

that this input was already used to train the net [58]. Attacks on other algorithms have

also been developed [39].

A slight variation of this attack starts with a random image and changes it in an

iterative way to make the gradients get close to zero. Doing this with multiple random

images allows the attacker to reconstruct a large part of the original dataset [28]. This

works not only in applications concerning images but also in cases where algorithms train

1https://aws.amazon.com/machine-learning
2https://cloud.google.com/prediction

https://aws.amazon.com/machine-learning
https://cloud.google.com/prediction
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on natural language [67].

3.2.2 Privacy-aware Machine Learning

These attacks show that traditional algorithms can not be naively trusted to guar-

antee the privacy of their data. Thus, some other techniques were developed to ensure

that Machine Learning systems are private. In this subsection, some general ideas that

guide the construction of these algorithms will be listed.

There are four main ways to increase privacy in Machine Learning.

The first two ideas are based on each data owner keeping their data on their servers

and doing the machine learning procedure in a distributed way.

In federated learning, each node (machine with stored data that wants to train a

classifier) performs a step of optimization of some parameters of a classifier locally using

only their data. After each optimization round, all nodes send the updated parameters

to a central server. This server performs the averages of these values and returns them to

each node that repeats the process. It continues until a convergence metric is satisfied [48].

The main advantage of this technique is that when using more machines, it is possible

to significantly improve the speed of the computation [40]. From the point of view of

privacy, no data is explicitly shared, increasing the data owners’ privacy. Nevertheless,

this method is not foolproof, and sharing the updates can be a privacy risk as well [30].

Another security problem related to Federated Learning is that all nodes must

trust the central server to update, but the node can be an adversary or fail. To avoid this

issue, Decentralized Learning was created. There is no central machine in this method,

and the network can change with time [37]. Each data owner can choose with whom

they will share updates, and there is not one node that every machine needs to trust.

This technique can also be adapted so it is more resistant to byzantine faults, that is,

nodes that can fail or design attacks to hinder the progress of others or even try to get

information about the private datasets [63].

The other idea is to use data encryption. In data encryption, the computations

needed to train the algorithm are made with encrypted data, not raw values. It is possible

to do it using a technique called homomorphic encryption [26], where all the computations

are done without revealing the actual value of the variables being used. Another option is

to use garbled circuits [10]. They allow two parties that do not trust each other to compute

a function of values that are distributed between them so that neither can find out the

values of other secrets. Another way is to use a Trusted Execution Environment (TEE).

These are modules in some modern processors that allow computation in encrypted data.
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Thus, part of the training or the prediction phase can be made in those modules to not

use the raw unprotected data. Different algorithms can be adapted to work on TEEs in

decentralized environments [51] [20].

The final idea is adding noise to the original data so that ML algorithms can still

be used, but the data can not serve malicious purposes. The main technique in this branch

is called Differential Privacy (DP)[24].

Definition 20 (Differential Privacy). A mechanism M is ϵ-differentially private if, given

two datasets d, d′ that are only different in one line, the probability of every output S

changes at most eϵ when the datasets change. That is:

P (M(d) = S) ≤ eϵP (M(d′) = S).

The idea behind the concept is that taking part or not in a poll or census does

not change significantly the results, so there is no risk in responding. DP was originally

conceived so that statisticians could disclose queries about census data without worry-

ing that information about particular individuals could be revealed. However, because

DP mechanisms give mathematical certainties without making any assumptions about

attackers, this technique has been growing in popularity and is used in many contexts

[36] [19] [66] [61]. In Machine Learning, many algorithms have been tweaked so that noise

is added so that the training algorithm becomes ϵ-differentially private. [1] [32].

These methods add noise when the parameters of the classifier are being set. An-

other way to add noise to the Machine Learning pipeline is to add it to the data that

will then be fed to the system. This is usually called local differential privacy, because

the most secure way to do it is when it is done locally, by the data producer. This hap-

pens because even if the data is leaked in any part of the process after it is produced, it

is already secure. One example of such a technique is RAPPOR, a technology used by

Google to add one extra layer of security and anonymization to diagnose data created by

their browser [27].

3.3 Relation of privacy and fairness

As mentioned in the previous sections, there are two very active fields of study in

ML: privacy and fairness. So, it is natural that both were studied at the same time. And

this indeed has happened.

Some results show how to adapt existing algorithms so that they satisfy definitions

of both fairness and privacy [62].
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However, there are other interesting results. [2] showed a trade-off between certain

notions of privacy and fairness, and it is impossible to create an algorithm that can

always satisfy both conditions. Similarly, [18] showed that some definitions of fairness and

privacy cannot be satisfied simultaneously. However, by relaxing the fairness definition,

it is possible to build an algorithm that is private and approximately fair simultaneously.

Using the QIF framework, [60] created a new modeling that unifies fairness and

privacy. It is interesting because it shows that the two properties are dual of one another.

This modeling will be the main focus of this thesis.
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Chapter 4

Extending QIF with direct and

reverse flows

As we mentioned in the literature review, QIF was initially proposed to model situations

where security is a concern. There is always a variable, called a secret, that is not known

by an observer, and another variable is revealed to them. The goal is to measure how

much information flows from the first variable through the observation of the second.

However, there are some cases where there is some information flow, but there

may not be a hidden variable. There are also scenarios where there are two agents, and

each knows only one variable. To model these scenarios, we will need to expand the QIF

framework.

In this chapter, we will discuss the concepts of reverse and direct flow. Chapter 2

has already defined the traditional notion of flow, but we will revisit it and change the

nomenclature slightly to reverse flow. Direct flow is going to be defined formally. After

that, we will discuss the differences between both of them.

The reverse and direct flow concepts were originally presented in [60]. We will

revisit them here to present some new terminology and notation.

4.1 Reverse flow

In the background section, we defined flow of information as the knowledge we

gain about the input of a channel when the output is observed. Since the observation of

output revealed something about the input, we call this reverse flow of information. We

need to add this definition because there is another flow of information (knowledge gained

about the output when the input is observed) that will be important to distinguish.

So, to further differentiate the QIF concepts we have defined in Chapter 2, we will

present new names for old concepts in table 4.1

We will also present some new names for old concepts to make the text more
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precise. They are shown in table 4.1.

Table 4.1: Redefining the names of already presented concepts.

Original name New name
Prior distribution Reverse prior distribution
Prior vulnerability Reverse prior vulnerability
Posterior vulnerability Reverse posterior vulnerability
Flow Reverse flow
Capacity Reverse capacity

Sometimes, the original names will be used, but only when it is clear from context

what they mean.

4.2 Direct flow

As we mentioned, QIF has only been used to measure the flow of information when

the output is observed. However, this does not capture all possible scenarios. capture

all possible scenarios, we need the concept of direct flow that will measure the flow of

information when the input is observed and we want to infer information about the output.

Nevertheless, before presenting it, we need a few extra concepts.

The first definition we are going to introduce is the direct prior distribution. While

the reverse prior distribution is the distribution of inputs from the set X , the direct prior

represents the distribution of the outputs drawn from the set Y .

Definition 21 (Direct prior distribution). The direct prior distribution of a prior π : DX
and a channel C : X → DY is denoted by ρπ,C : DY and represents the distribution of the

outputs . It is obtained by marginalizing the joint on Y: ρπ,Cy =
∑

x∈X (π ▷ C)x,y for all

y∈Y.

We then can use this to compute the direct prior vulnerability. The idea behind

the concept is the expected gain of an observer who does not know what the input is and

takes an action that rewards them according to the output. It is precisely the same idea

as the reverse prior vulnerability, but the secret is in the set Y , not the set X .

Definition 22 (Direct prior vulnerability). Given a set of actions W and a gain function

g : W×X → R, the direct prior vulnerability of a prior distribution π : DX and a channel

C : X → DY is

Vg(ρ
π,C) = max

w∈W

∑
y∈Y

ρπ,Cy g(w, y).
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Just like we expanded the definition of prior vulnerability, it is possible to expand

the definition of posterior vulnerability. The direct posterior vulnerability of a prior and

a channel is the expected gain of an observer who knows the input and takes an action

that rewards them according to the output.

Definition 23 (Direct posterior vulnerability). Given a set of actions W and a gain

function g : W ×X → R, the direct posterior vulnerability of a prior distribution π : DX
and a channel C : X → DY is

−→
Vg(π,C) =

∑
x∈X

max
w∈W

∑
y∈Y

πxCx,yg(w, y).

We can extend this definition to the case where we care about the worst-case

scenario, not the average case.

Definition 24 (Direct maximum posterior vulnerability). Given a set of actions W and

a gain function g, the direct maximum posterior vulnerability of a prior distribution π and

a channel C is
−→
Vg

max(π,C) = max
x∈X

max
w∈W

∑
y∈Y

πxCx,yg(w, y).

With these two concepts, we can extend the definition of a third concept: flow.

The direct flow of a prior and a channel with respect to a gain function is how much the

vulnerability increases after the system is run, considering only direct vulnerabilities.

Definition 25 (Direct flow). The multiplicative direct flow is the ratio between the poste-

rior vulnerability and the prior vulnerability of a prior π, a channel C and a gain function

g. It is denoted by
−→
L×

g (π,C) =

−→
Vg(π,C)

Vg(ρπ,C)
.

The additive direct flow is the difference between posterior vulnerability and the

prior vulnerability of a prior π, a channel C and a gain function g. It is denoted by

−→
L+

g (π,C) =
−→
Vg(π,C)− Vg(ρ

π,C).

Again, it makes sense to extend this definition to a scenario where the vulnerability

that matters is the vulnerability of the maximum-case scenario. So, we define a metric

that is the flow concerning the maximum posterior flow.

Definition 26 (Direct maximum flow). The direct maximum multiplicative flow is the

ratio between the posterior vulnerability and the prior vulnerability of a prior π, a channel

C and a gain function g. It is denoted by

−→
L×,

g
max(π,C) =

−→
Vg

max(π,C)

Vg(ρπ,C)
.
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The maximum additive reverse flow is the difference between the posterior vulner-

ability and the prior vulnerability of a prior π, a channel C and a gain function g. It is

denoted by
−→
L+,

g
max(π,C) =

−→
Vg

max(π,C)− Vg(ρ
π,C).

In some scenarios, the gain function of interest may not be already defined. So,

it is interesting to study the worst-case scenario, that is, of all gain functions, which one

represents the largest flow. This is only defined for the average case flow. It is analogous

to the original definition of capacity.

Definition 27 (Direct capacity). The direct multiplicative capacity of a prior π and a

channel C is given by
−−−−→
ML×

G+(π,C) = max
g∈G+

−→
Vg(π,C)

Vg(ρπ,C)
.

The additive capacity is

−−−−→
ML+

G↕(π,C) = max
g∈G↕

−→
Vg(π,C)− Vg(ρ

π,C).

4.3 The differences between reverse and direct flow

Now that we have the tools to measure direct and reverse flows, we need to explain

when they are useful. The short answer is that they are used when analyzing a situation

where we care about what each variable reveals about the other.

Let us consider two examples. In the first one, we have a traditional QIF scenario

that concerns the privacy of a security system.

Example 1 (Password checker). A login website has a prompt that receives a password and

a username. If the inserted password corresponds to the actual password of the username

provided, the user is authenticated. If the password is wrong, a message shows that the

password or username is incorrect.

In this example, the primary concern of a privacy expert is that the displayed

message may give information about the secret password. If many queries are made,

a malicious agent can discard a user’s possible passwords and then guess a password

correctly. In this case, the only concern is the information we gain about the password

when the message is displayed — the reverse flow of information.

Now, let us consider an example where we care about more than one flow of

information.
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Example 2 (Census). A country performs a census on the population and publishes data

regarding education and income. The annual income of several people is coupled with their

level of education. It is natural that there is a correlation between the two variables, that

is, the higher the education, the higher the income.

The two variables, income and education, influence each other. People with higher

incomes have children who can study for more time instead of directly joining the work-

force, and people with advanced degrees can get better jobs with better salaries. In this

case, there are two distinct (but related) flows of information: from the income to the

education level and from the education level to the income.

Our extended QIF framework is made to deal with the second scenario. We want

to consider an interaction between variables when both directions of information matter.

We must observe that it makes little sense to define a scenario where the only

flow we want to measure is the direct flow. If such a case exists, we can build the joint,

marginalize it to build the direct prior and channels, swap the inputs with the outputs,

and use traditional QIF. After doing this, direct flow becomes reverse flow, and then we

can work with QIF as usual.

4.4 Privacy and fairness in machine learning

Now, let us consider the main focus of the thesis.

Definition 28 (Privacy and fairness as reverse and direct flows). Consider a machine

learning classifier that takes several features of an individual and produces a binary clas-

sification Ŷ that can have two possible values: + for a positive classification and − for a

negative classification. The positive classification is always the preferred one. Let one of

the features be a sensitive binary feature with two possible values: s0 for the unprotected

group and s1 for the protected group. This feature is named S.

Let C be a QIF channel where the input is the sensitive feature S and the output

is the classification Ŷ . The prior distribution π is the distribution of the groups s0, s1.

Pushing π through C is the equivalent of running the classifier.

We will study two flows of information that happen when this channel is executed.

The first is the knowledge gained about the input (the sensitive feature) when the output

(the classification) is observed. We will call this the privacy flow because we get knowledge

about potentially private information.



4.4. Privacy and fairness in machine learning 42

The other flow is the knowledge gained about the classification when the group is

observed. If there is no flow of information, being in a different group does not change

the probability of getting a positive classification. However, if this probability is not the

same for the protected and unprotected groups, then the system is unfair. Therefore, this

is a fairness flow.

Because both flows matter in a sensitive scenario, we cannot disregard one of the

flows and focus only on one direction. We must consider both simultaneously. That is

why we need the expansion of the QIF framework to deal with the reverse flow instead of

just switching the inputs for outputs.

Besides being able to model privacy and fairness within the same representation,

the QIF framework has other benefits that show that it is a good model for both quantities.

We will now show two advantages: The ability to model different scenarios using gain

functions and the power to incorporate prior distributions into the model.

4.4.1 Using gain functions

Most fairness measures, like statistical parity, shown in Definition 16, and equal

opportunity, shown in Definition 17, use the difference between probabilities to define

unfairness. In the QIF framework, average Bayes flow works similarly. However, there

are situations where using only the probabilities does not capture the scenario completely.

To show this, consider Example 3.

Example 3 (The bigoted employer 1). Let the secrets of a channel represent whether an

individual is HIV-positive. Suppose that there is a bigoted employer who wants to hire

a worker, but they want the worker to be HIV-negative. A possible gain function that

represents this employer is shown in Table 4.2.

Table 4.2: Possible gain function modeling a bigoted employer

gHIV y = HIV+ y = HIV−
w = hire -10 10

w = dismiss 5 -1

This gain function shows that the maximum possible gain for the employer is to hire

an HIV-negative employee, and the maximum loss is to hire an HIV-positive individual.

The other two situations, dismissing employees, are not as bad or as good for the employer.

1This example is a slight modification of an example in [60]. In turn, it is inspired by [22].
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Using only probabilities, such as P (hire|HIV+) or P (dismiss|HIV-) would not cap-

ture the fact that hiring an HIV-positive worker is ten times worse than dismissing an

HIV-negative person from the perspective of the bigoted employer, for example.

Other fairness scenarios may have similar characteristics. For example, an ML

system that decides whether to hire an individual will probably have a high loss on

misclassifying someone from the protected group, compared to misclassifying someone

from the unprotected group. Such error may lead to a lawsuit or other legal consequences,

for example.

4.4.2 Considering the prior distribution

Another advantage of using QIF to model privacy and fairness is the capacity to

take the prior distribution into account. This is illustrated in Example 4.

Example 4 (Brazilian Embassy in the United States). Suppose that the Brazilian Em-

bassy in the United States is looking for employees. It is going to create an admission

process that will happen both in Brazil and in the US. For transparency reasons, Brazilian

law mandates that the result of the admission process must be publicly available.

Suppose an ML classifier is used to pre-select part of the candidates. For this

example, suppose that this classifier is skewed regarding race. So, the unprotected group

has a higher probability of being accepted. Table 4.3 shows a possible channel.

Table 4.3: Channel describing a skewed classifier.

C y = hire y = dismiss
s0 = non-black 0.5 0.5
s1 = black 0.4 0.6

Now, consider this system being run in two scenarios. In the first one, the Em-

bassy is considering applications from Brazil, so the prior distribution in terms of race is

πBrazil = (0.46, 0.54) [53]. In this case, the reverse average multiplicative Bayes flow is

1.03. In the second scenario, applications from the US are being processed. The popula-

tion distribution is πUS = (0.86, 0.14) [13]. In this case, the reverse average multiplicative

Bayes flow is 1.0.

Suppose we consider this system being run in terms of statistical parity. In that

case, nothing changes from one situation to the other because it only considers the channel,

not the population. Nevertheless, this does not happen with Bayes flow. Because it is

a measure of both the prior and the channel, the flow of information is different in both
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scenarios. In the Brazilian case, an observer can change his guess of what group an

individual belongs based on the result of the admissions process. However, this does not

happen in the American case because the distribution is skewed, and the observer does

not gain knowledge when observing the classification.

Although this example concerns privacy, we can create a similar example where

the preoccupation is fairness. In this case, we would need to change the distribution of

the classifications, not the groups.

In the next chapter, we will show bounds that govern what can happen when the

two flows are observed.
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Chapter 5

Theoretical bounds

Now that we have defined a new type of metric, direct flow, a new class of problem was

created. When the reverse flow is equal to a constant α, what possible direct flow values

can be achieved?

In this chapter, we will answer this question for six different cases. For the metrics

of average Bayes flow, maximal Bayes flow and capacity, we will show the feasibility

region for direct and reverse flow for the multiplicative and additive cases. The results

are summarized on table 5.1.

Table 5.1: Feasibility region if α is the reverse flow and β the direct one.

Multiplicative case Additive case

Avg. Bayes β
3−β

≤ α ≤ 3β
β+1

, 1 ≤ α, β ≤ 2 −1
2
+ 2β ≤ α ≤

1
2
+β

2
, 0 ≤ α, β ≤ 1

2

Max. Bayes 1 ≤ α, β ≤ 2 0 ≤ α, β ≤ 1
2

Capacity 1 ≤ α, β ≤ 2 0 ≤ α, β ≤ 1
2

All proofs are for binary channels, where |X | = |Y| = 2. It is easier to write the

proofs in terms of the joints, so every combination of prior π and channel C will result in

a joint J that will be written as

[π ▷ C] = J =

(
a b

c d

)
=

(
πs0Cs0,+ πs0Cs0,−

πs0Cs1,+ πs0Cs1,−

)
. (5.1)

This joint’s entry i, j represents the probability of input i and output j happening

together, that is Jij = [π ▷ C]ij.

Because a joint uniquely defines a prior and a channel and vice versa, every proof

for the flow of a joint is equivalent to a proof for a combination of prior and channel.

We generated 3 million joints for every cell in table 5.1 and computed the direct

and reverse flows. These joints account for all possible joints that have all probabilities as

multiples of 1
28
. Then, we plotted them in a scatter plot to visualize the feasibility region.

These plots are going to be shown after each theorem defining the feasibility bounds.
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5.1 Average Bayes flow

The Bayes vulnerability of a prior distribution, shown in Definition 4, is the ex-

pected probability over all possible observations that an optimal adversary will guess

correctly a value drawn from this distribution. The Bayes vulnerability of a prior and a

channel is the probability of an optimal adversary guessing the secret correctly after the

secret was fed to the channel and they saw the output. Finally, the multiplicative Bayes

flow is the fraction between these two quantities and, the additive is the subtraction and

the additive Bayes flow is the difference between the two.

We will now deal with the case where both the reverse and direct gain functions

are Bayes vulnerability. In this section, we will only talk about average Bayes flow, so we

will refrain from saying it is the average and not the maximal case.

5.1.1 Multiplicative Bayes flow

We begin by defining Bayes flow with regard to the joint. We will call the reverse

flow α and the direct flow β. This will make the notation more clear for the proofs. Thus,

we have

α = L×
id(J) =

max(a, c) + max(b, d)

max(a+ b, c+ d)

and

β =
−→
L×

id(J) =
max(a, b) + max(c, d)

max(a+ c, b+ d)
,

Where a, b, c, d are the elements of the joint, as in equation 5.1.

We want to describe all possible situations, that is, all combinations of direct and

reverse flow values simultaneously. To do this, we present the following lemma that was

proved in the Appendix A.1.1.

Lemma 1. For every point in the set{
(α, β)| β

3− β
≤ α ≤ 3β

β + 1
, 1 ≤ α, β ≤ 2

}
there is a prior and a channel with α as the reverse average multiplicative Bayes flow and

β as the direct average multiplicative Bayes flow. There are no joints with values of direct

and reverse flows that are not in this set.

Figure 5.1 shows the feasibility region described in Lemma 1 generated as we

described in 5. It is possible to see that only part of the square defined by the points
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(1, 1) and (2, 2) is feasible. The value of flow has to be in the interval (1, 2) [3]. Another

interesting property we can see from the figure is that in general the greater one of the

flows, the greater the other. And this makes sense. If one of the variables defines the

value of the other, it is natural that the other will define the value of the one.

Figure 5.1: The feasibility region for direct and reverse average multiplicative Bayes flow.

Source: created by the author.

This region guarantees that in a situation where the multiplicative Bayes flow is

the measure of interest, guaranteeing a high enough direct flow guarantees a high reverse

flow. The same can be said of low-flow scenarios.

Joints in the Pareto curve.

Another question we may ask is, what are the joints (or priors and channels) in

the Pareto curves of direct and reverse flows?

There are four Pareto curves that define this region. The first one is highlighted

in blue in Figure 5.2. If there is a joint in this region, there is no other joint with a higher

reverse flow with the same amount of direct flow. The second one is the pink one. If there

is a joint in this region, there is no other joint with less direct flow and the same amount

of reverse flow. The other two curves, in yellow and in green, are analogous.

Figure 5.2 shows this division and a characterization of each component. This is

not the only possible characterization, and others can be made. In Appendix A.1.1.1,

there is another proof showing that these joints are, in fact, in the Pareto curve.
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Figure 5.2: Pareto curves in the multiplicative case. The legend shows the characteristics
of each part of the curve.

Source: created by the author.

5.1.1.1 An observation about differential privacy

To prove the feasibility region shown on Figure 5.1, we use the following lemma.

Lemma 2. The joint

π ▷ C = J =

(
αβ+α−β
αβ+α+β

0
−αβ+α+β
αβ+α+β

αβ−α+β
αβ+α+β

)
has reverse average multiplicative Bayes flow equal to α and direct average multiplicative

Bayes flow equal to β for every α, β in the set

{(α, β) | β

3− β
≤ α ≤ 3β

β + 1
, 1 ≤ α ≤ 2, 1 ≤ β ≤ 2}

This joint has an interesting property: one of the entries is a zero. This may seem

unimportant, but it matters.

One of the many notions of privacy is differential privacy. As we said in Chapter

3, a mechanism M is ϵ-differentially private if no input makes an output ϵ times more

likely than another input (if they differ slightly).

Suppose an entry of the joint is zero, for example, b = 0. In that case, when

the output corresponding to the second column is shown, the input corresponding to the

second row is infinitely more likely than the output corresponding to the first row. So,

the mechanism represented by the joint cannot be ϵ-differentially private for any value of

ϵ, which may not be acceptable in scenarios where differential privacy is required.
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Considering this scenario, we propose a conjecture.

Conjecture 1. For any values of α and β in [1, 2], the joint(
a b

c d

)
where

b ≤


3α−β−αβ

4α
if α < β,

α+β−αβ
4α

otherwise,

a =
−α + bα + αβ + bβ − bαβ

−α + β + αβ
,

c = 1− α + aα− b+ bα

d = 1− a− b− c

has reverse Bayes flow equal to α and direct Bayes flow equal to β.

Our belief that the conjecture holds comes from the fact that we have tested it for

56 million different values of α, β and b, and they were all correct. That is, the reverse flow

was α, the direct flow was β, and the values of a, b, c, d formed a probability distribution.

One interesting characteristic about this joint is that the value b is not exact.

It is limited from below by zero (it is part of a joint probability distribution), and our

conjecture provides a bound from above. Thus, it is possible to choose a value for it, and

the other values will change accordingly.

Having all entries of the joint being non-zero is an interesting property because of

differential privacy. Having a zero entry makes the mechanism ∞-differentially private.

If all elements are non-zero, than the mechanism is ϵ-differentially private for a constant

ϵ.

5.1.2 Additive Bayes flow

Now, let us redefine α, β to use it to discuss the additive case. Let

α = L+
id(J) = max(a, c) + max(b, d)−max(a+ b, c+ d)

and

β =
−→
L+

id(J) = max(a, b) + max(c, d)−max(a+ c, b+ d).

With these definitions, we can present another lemma. It was also proved in

Appendix A.1.2.
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Lemma 3. For every point in the set{
(α, β)| − 1

2
+ 2β ≤ α ≤ 1

4
+

β

2
, 0 ≤ α ≤ 1

2
, 0 ≤ β ≤ 1

2

}
there is a prior and channel with α as the reverse average additive Bayes flow and β as the

direct average additive Bayes flow. There are no joints with values of direct and reverse

flows that are not in this set.

Figure 5.3 shows the plot of the feasibility region, it was generated as described

in 5. Like in the multiplicative case, only part of the square defined by the maximal and

minimum flows is feasible. But now, the edges of the region are straight lines.

Figure 5.3: The feasibility region for direct and reverse average additive Bayes flow.

Source: created by the author.

This gives similar guarantees as the multiplicative case. The reverse flow will also

be high if the direct flow is high enough. And this makes sense, both the multiplicative and

additive flows are measuring the same quantities, prior and posterior Bayes vulnerabilities,

the only thing that changes is how they are combined.

Joints in the Pareto curve Again, we show joints in the Pareto curve in Figure

5.4. These joints are not unique; other joints can achieve these values of direct and reverse

flow. In Appendix A.1.2.1, we prove that these joints are, in fact, in the Pareto curves.
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Figure 5.4: Pareto curves in the additive case. The legend shows the characteristics of
each part of the curve.

Source: created by the author.

5.2 Maximum Bayes flow

Again, because we will only talk about maximum flow in this section, we sometimes

omit the word maximum.

5.2.1 Multiplicative Bayes flow

We begin by defining Bayes flow with regard to the joint. We will call the reverse

flow α and the direct flow β. This will make the notation more clear. Thus, we have

α = L×,max
id (J) =

max
(

max(a,c)
a+c

, max(b,d)
b+d

)
max(a+ b, c+ d)

and

β =
−→
L×,

id
max(J) =

max
(

max(a,b)
a+b

, max(c,d)
c+d

)
max(a+ c, b+ d)

.

Now, let us analyze the feasibility region of this metric. Figure 5.5 shows the direct

and reverse flow of various joints generated according to the specification given in Chapter
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5. Unlike the average case, it is possible to get almost every combination of α and β. We

show this in lemma 4.

Figure 5.5: The feasibility region for direct and reverse maximum multiplicative Bayes
flow.

Source: created by the author.

Lemma 4. There is at least one joint that has reverse maximum multiplicative Bayes

flow α and direct maximum multiplicative Bayes flow β for every pair in the set:

{(α, β)|1 < α < 2, 1 < β < 2}.

We now give a simple proof of this lemma.

Proof. Consider the joint

J =

(
0 α−1

α
β−1
β

α+β−αβ
αβ

)
.

We will show that this is, in fact, a joint probability distribution and then that it

has direct flow equal to α and reverse flow equal to β.

To prove it is a joint, we must show that all values sum to one. So, let us sum

them

a+ b+ c+ d = 0 +
α− 1

α
+

β − 1

β
+

α + β − αβ

αβ
=

αβ

αβ
= 1.

The second part is to show that all the values are greater or equal to zero. Both b

and c are greater than zero because α, β > 1. d is also greater to zero because αβ < α+β

when 1 < α, β < 2.
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Now, let us compute the reverse flow

max
(

max(a,c)
a+c

, max(b,d)
b+d

)
max(a+ b, c+ d)

Because a = 0, we have that max(a,c)
a+c

= c
c
= 1. And this is always going to be at least as

big as max(b,d)
b+d

. So, the reverse flow is

1

max(a+ b, c+ d)
.

The value of a + b is equal to b, and the greatest value it can take is when α = 2. Then

b = 0.5. And, because a, b, c, d form a joint, they sum to one. Thus, c + d must be at

least 0.5 and c+ d ≥ a+ b. Computing this sum, we get

c+ d =
β − 1

β
+

α + β − αβ

αβ
=

αβ − α + α + β − αβ

αβ
=

β

αβ
=

1

α
.

Finally, the reverse flow is

1

max(a+ b, c+ d)
=

1
1
α

= α.

Now, we need to compute the direct flow. The reasoning is the same, so we will

be more direct now. The direct flow is

max
(

max(a,b)
a+b

, max(c,d)
c+d

)
max(a+ c, b+ d)

=
1

b+ d
=

1
1
β

= β.

An interesting consequence is that there is no way to be safe if the modelled scenario

is captured under the maximum multiplicative Bayes flow. There can always be a joint

probability distribution that can lead the channel to leak the most information possible.

The direct flow does not bound the reverse flow at all. No matter the value of one of the

flows, the other can attain any value.

5.2.2 Additive Bayes flow

We will redefine α, β so they refer to additive Bayes flow. Now, we have

α = L×,max
id (J) = max

(
max(a, c)

a+ c
,
max(b, d)

b+ d

)
−max(a+ b, c+ d)



5.2. Maximum Bayes flow 54

and

β =
−→
L×,

id
max(J) = max

(
max(a, b)

a+ b
,
max(c, d)

c+ d

)
−max(a+ c, b+ d).

Figure 5.6 shows the direct and reverse flow for several joints, according to the

specification given on 5. We can see from the image that all the points in the square

defined by the points (0, 0) and (0.5, 0.5) should be reached if we choose the correct joint.

This is shown in lemma 5.

Figure 5.6: The feasibility region for direct and reverse maximum additive Bayes flow.

Source: created by the author.

Lemma 5. There is at least one channel that has reverse maximum additive Bayes flow

α and direct maximum additive Bayes flow β for every pair in the set:

{(α, β)|0 < α <
1

2
, 0 < β <

1

2
}.

Now, let us prove this statement.

Proof. Consider the joint

π ▷ C = J =

(
0 α

β 1− α− β

)
.

We will prove it is a joint with reverse flow α and direct flow β.

We begin by showing that it is a joint. The sum of all values is 1, and because

0 < α, β < 0.5, all values are greater or equal to zero.

Now, computing the reverse flow, we have

max

(
max(a, c)

a+ c
,
max(b, d)

b+ d

)
−max(a+ b, c+ d).



5.3. Capacity 55

Because a = 0, we have that max(a,c)
a+c

= 1, and this will always be chosen as the max, so

the reverse flow is

1−max(a+ b, c+ d).

We are only interested in the region where α < 0.5, so a + b = b = α < 0.5. Thus, we

have that c+ d > a+ b and the reverse flow is

1− (c+ d) = 1− (β + 1− α− β) = α,

as we wanted.

Now, we only need to show that the direct flow is β. Because the arguments are

similar to the ones in the direct flow part, we will make it shorter. The direct flow is

1− (b+ d) = 1− (α + 1− α− β) = β,

and this concludes the proof.

Just like in the multiplicative case, we have that all of the possible combinations

of direct and reverse flow are possible. The main conclusion is that the direct and reverse

maximum flows do not bound each other.

5.3 Capacity

The third group of metrics we will analyze is different. Suppose that a prior and a

channel that model a system will be deployed, but the exact situation is not exactly clear

in the sense that the gain function that models the adversary is not known. In this case,

we cannot analyze the Bayes flow or any other gain function and be satisfied. We have

to analyze the capacity.

In this thesis, the capacity (shown in Definitions 12 and 13) will be applied to a

prior and a channel and is defined by the flow regarding the gain function that maximizes

it. So, it represents a scenario where the joint is fixed, but the gain function can change.

(In other circumstances, capacity may refer to a fixed gain function and a variable channel

or prior (or both), but only the gain function can change here.)

The capacity is the result of maximizing the flow. However, we can maximize the

average flow or the maximal flow. Here, we will focus only on the average flow because it

is the most common metric.
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5.3.1 Multiplicative capacity

As always, we begin by defining capacity with regard to the joint. The reverse

capacity is α, and the direct is β. So, we have

α = ML×
G+(π,C) = max

(
a

a+ b
,

c

c+ d

)
+max

(
b

a+ b
,

d

c+ d

)
and

β =
−−−−→
ML×

G+(π,C) = max

(
a

a+ c
,

b

b+ d

)
+max

(
c

a+ c
,

d

b+ d

)
.

Figure 5.7, generated according to the specification given on 5, shows that the

feasibility region for the multiplicative capacity encompasses all possible values of direct

and reverse capacity. This is shown formally in lemma 6.

Figure 5.7: The feasibility region for direct and reverse multiplicative capacity.

Source: created by the author.

Lemma 6. There is at least one channel that has reverse multiplicative capacity α and

direct multiplicative capacity β for every pair in the set:

{(α, β)|1 < α < 2, 1 < β < 2}.

Now, let us prove this lemma.
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Proof. Consider the joint (
(α−2)(β−1)
αβ−α−β

0
−(α−2)(β−2)

αβ−α−β
(α−1)(β−2)
αβ−α−β

)
We begin by proving that it is, in fact, a joint probability distribution. The sum

must be one:

a+ b+ c+ d =
(αβ − α− 2β + 2) + 0 + (−αβ + 2α + 2β − 4) + (αβ − 2α− β + 2)

αβ − α− β
,

a+ b+ c+ d =
αβ − α− β

αβ − α− β
= 1.

And all elements must be greater than zero. First, note that because 1 < α, β < 2

we have that αβ − α− β, the denominator, is always smaller than zero. (α− 2)(β − 1) is

the product of a positive number and a negative one, so it is negative, and the value of a

will be positive. The same can be said for d. c will be positive because it is a product of

two negative terms divided by something negative and multiplied by -1, so it is positive

in the end.

Now, we will check if the capacities are α and β. The reverse capacity is:

ML×
G+(J) = max

(
a

a+ b
,

c

c+ d

)
+max

(
b

a+ b
,

d

c+ d

)
.

Because b = 0, then max
(

a
a+b

, c
c+d

)
= a

a+b
= 1 and max

(
b

a+b
, d
c+d

)
= d

c+d
. Thus,

ML×
G+(J) = 1 +

d

c+ d
= 1 +

(α− 1)(β − 2)

(α− 1)(β − 2)− (α− 2)(β − 2)
,

ML×
G+(J) = 1 +

αβ − 2α− β + 2

β − 2
=

αβ − 2α

β − 2
=

α(β − 2)

β − 2
= α,

The reverse capacity is

−−−−→
ML×

G+(J) = max

(
a

a+ c
,

b

b+ d

)
+max

(
c

a+ c
,

d

b+ d

)
.

Because b = 0, then max
(

a
a+c

, b
b+d

)
= a

a+c
and max

(
c

a+c
, d
b+d

)
= d

b+d
= 1. Thus,

−−−−→
ML×

G+(J) = 1 +
αβ − α− 2β + 2

α− 2
=

αβ − 2β

α− 2
=

β(α− 2)

α− 2
= β.

This completes the proof.

When we were looking at the Bayes flow, the question we were trying to answer is:

in a system where the Bayes vulnerability gain function models the adversary, what are

all possible values of direct and reverse flow?

Now, we are looking at a scenario we do not know which gain function will model

the situation, so we use the capacity of the joint as a conservative estimate of risk. And

the question we ask now is: In a system where the measure of risk is the capacity, what

are all possible values of direct and reverse flow?

We conclude that we cannot guarantee any value of direct and reverse flow. All

possible combinations are valid scenarios, and one value does not bound the other, unlike

the average Bayes flow case.
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5.3.2 Additive capacity

Now, the final bound is the additive capacity. Again, we redefine α and β as reverse

and direct additive capacities.

α = ML+
G↕(J) = 1−min

(
a

a+ b
,

c

c+ d

)
−min

(
b

a+ b
,

d

c+ d

)
and

β =
−−−−→
ML+

G↕(J) = 1−min

(
a

a+ c
,

b

b+ d

)
−min

(
c

a+ c
,

d

b+ d

)
.

Figure 5.8, again generated using the specification explained on 5, shows possible

direct and reverse additive capacity values. They occupy the whole possible region one

more time, and one does not bound the other. We formalize this on lemma 7.

Figure 5.8: The feasibility region for direct and reverse additive capacity.

Source: created by the author.

Lemma 7. There is at least one channel that has reverse additive capacity α and direct

additive capacity β for every pair in the set:

{(α, β)|0 < α <
1

2
, 0 < β <

1

2
}.

Now, we are going to prove lemma 7.
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Proof. Consider the joint (
(α−1)β
αβ−1

0
−(α−1)(β−1)

αβ−1
(β−1)α
αβ−1

)
We will show that it is a joint distribution with reverse capacity α and direct

capacity β.

First, the elements sum to 1:

a+ b+ c+ d =
(α− 1)β

αβ − 1
+

−(α− 1)(β − 1)

αβ − 1
+

(β − 1)α

αβ − 1
= a+ b+ c+ d =

αβ − 1

αβ − 1
= 1

To check that they are all positive, first note that the denominator is negative. Because

α, β < 1, all numerators are also negative, so the values are positive.

Now, let us compute the reverse capacity. It is

1−min

(
a

a+ b
,

c

c+ d

)
−min

(
b

a+ b
,

d

c+ d

)
.

The minimum between b
a+b

and d
c+d

is the first term because b = 0. This also implies that
a

a+b
= a

a
= 1 and we have

1− c

c+ d
= 1− α + β − αβ − 1

β − 1
=

α(β − 1)

β − 1
= α.

We can use the same arguments to compute the direct capacity, and we get

1− c

a+ c
= 1− α + β − αβ − 1

α− 1
=

αβ − β

α− 1
= β.

As we wanted.

Just like in the multiplicative capacity, we conclude that if we use additive capacity

as a measure of risk, there are no guarantees we can give with respect to the values of

direct and reverse flow. All the values can be achieved, and direct capacity does not

bound reverse capacity.
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Chapter 6

On QIF and fairness

We will now show the relationship between fairness and QIF in two ways. We begin by

revisiting Definition 28, where we modeled fairness and privacy as direct and reverse flows,

and interpret this using our results from the previous chapters. After that, we show that

QIF can capture existing notions of fairness from the literature.

6.1 A QIF model to privacy and fairness

This section will analyze the model described in Definition 28.

As a brief reminder, this model consists of a channel in which the binary input indi-

cates if an individual is part of a sensitive group, and the output is the binary classification

given by a machine learning classifier. There is always a protected group and a preferred

classification class. The direct flow of information measures the system’s fairness, while

the reverse flow is a privacy metric.

We can further analyze several aspects of this model using what we described in

the previous chapter. We begin with the duality aspect.

6.1.1 The duality aspect

Note that, using this definition, fairness and privacy become interlinked. If we

replace the input set with the output set and vice versa, the flow we measured to assess

fairness now assesses privacy. And the same happens with the measure that was analyzing

privacy. It now measures fairness. In mathematical terms, these two aspects are duals of

one another. If we switch the inputs for the outputs, reverse and directed flow are also

switched.
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This has several benefits. First, it aids with interpretation. Both privacy and

fairness can be interpreted similarly. An interpretation used in only one context can be

expanded to explain the other problem. Besides that, the tools we have developed to

study and improve each of these concepts can also be modified to deal with the other.

All of the mathematical properties that have been proved about fair datasets, models and

systems can be adapted to guarantee that they are also private.

6.1.2 Interpretation of the theoretical bounds

We can now look at the theoretical bounds we studied in the previous chapter in a

new light. The reverse flow can be seen as “unprivacy”, and the direct flow is unfairness.

One of the main characteristics of the feasibility regions we describe is that all

of them can be arbitrarily close to the point of minimal direct and reverse flows. This

means that, under these metrics, there is no trade-off between fairness and privacy. It is

always possible to create a classifier that has minimum unfairness and “unprivacy” (not

considering utility metrics, such as accuracy).

To show two more characteristics, we need another plot. Figure 6.1 is a heatmap

of all possible joints up to 2−8 precision and has direct and reverse average multiplicative

Bayes flow on both axes. It shows that many points are near the point with minimal flow

of information. In fact, around a third of points are in this region. We can also see that

the plot is symmetrical in relation to the identity line. This makes sense because both

axes are duals that measure the same thing. Both distributions of points are equal and

symmetric.

Pareto curves One interesting aspect is what the Pareto bounds mean regarding

fairness and privacy. Let us consider the upper part of the curve in the plot of Figures

5.2 and 5.4, the blue part. For every level of direct flow, meaning unfairness, we have

the greatest amount of reverse flow possible, that is, “unprivacy”. So, the Pareto bound

guarantees how bad one aspect can be given the value of the other. Now consider the

lower part of the curve, the yellow part. We have the best-case scenario regarding pri-

vacy for every level of direct flow. Considering the four curves, we have the complete

characterization of the bounds.

Zeros in the joints In the proofs of the feasibility regions, we frequently have used

joint distributions without full support. In the context of ML systems, this implies that

one of the groups has one classification that never happens. This is extremely unlikely in

this context and does not model the scenario well. However, it is still helpful as a tool to

show what can happen in other scenarios.
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Figure 6.1: Heatmap showing the density of direct and reverse average multiplicative
Bayes flow for all joints up to a precision of 2−8.

Source: created by the author.

6.1.3 Interpretation of the metrics

We have discussed the bounds with respect to our new measure of fairness and

privacy just using “information flow” as our core concept. However, in the previous

chapter, we describe six different metrics. So let us go over them quickly to analyze them

in fairness and privacy terms.

Average Bayes flow The average Bayes flow is the most straightforward measure.

It computes how much the probability of guessing the group or classification increases

when the other value is known. From the feasibility region, we can see that, in general,

when one of the measures increases, the other increases, so the more private a system is,

the more fair it is and vice versa. Moreover, when fairness or privacy is at its best level,

the minimum flow, the other measure is bounded from above to at most half of the range

of values, so there is a strong guarantee.

Maximal Bayes flow and capacityMaximal Bayes flow and capacity are slightly

more complicated. The maximal Bayes flow measures how much the probability of guess-

ing an individual’s group increases in the worst-case scenario when the other value is

known. The capacity measures the greatest gain of a possible adversary when one of the

variables is observed.

They measure different things, but the guarantees we have for them are the same:

there are no guarantees. All possible combinations of direct and reverse flow are possible
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in these cases, and, as a consequence, fairness does not bound privacy and vice versa. So,

knowing the value of one of them does not give information about the other.

6.2 Modeling existing notions of fairness with QIF

Besides the new modeling of fairness we have just shown, several existing notions

of fairness exist in the literature. This section will model some of them using quantitative

information flow.

6.2.1 Statistical parity

As we have introduced in Chapter 2, statistical parity is defined as

γ = |P (+|s0)− P (+|s1)|.

It is one of the simplest fairness measures and falls under the WAE categorization, defined

in subsection 2.3.3.1.

Now, we will show two ways that QIF can model it. First, we will show how the

reverse Bayes flow can capture statistical parity exactly. After that, we prove that direct

flow can also be equal to statistical parity under the right circumstances.

6.2.1.1 Direct flow and statistical parity

We begin by showing the relation between direct flow and statistical parity.

Theorem 3. Let C : X → DY be a channel and π : DX = (p, 1 − p) a prior. If the

statistical parity of this channel is equal to γ, then the maximal value that the direct

average additive Bayes flow of channel C and prior π can attain is

2γp(1− p), ∀p ∈ [0, 1].

The maximal value that the direct average multiplicative Bayes flow can assume is

4pγ − 4p2γ + 1,∀p ∈ [0, 1].



6.2. Modeling existing notions of fairness with QIF 64

Proof. Let us define the prior distribution of the unprotected and protected groups to be

π = (p, 1− p).

The channel C that receives the group as input and produces a classification is defined as

Table 6.1: Channel C

C + −
s0 a+ γ 1− a− γ
s1 a 1− a

With this, we can compute the joint probability J as

Table 6.2: Joint J

J + −
s0 p(a+ γ) p(1− a− γ)
s1 (1− p)a (1− p)(1− a)

Taking the marginal on Y , we have the prior distribution of the classes. We are

going to write this as
−→π = (a+ pγ, 1− a− pγ).

This enables us to compute the direct channel:

Table 6.3: Direct channel
−→
C

−→
C s0 s1
+ pa+pγ

a+pγ
a−pa
a+pγ

− p−pa−pγ
1−a−pγ

1−a−p+pa
1−a−pγ

The Bayes vulnerability of the direct prior is

V (−→π ) =

a+ pγ, if a ≥ 1−2pγ
2

,

1− a− pγ, if a < 1−2pγ
2

The posterior Bayes vulnerability of passing the direct prior through the direct

channel is

V [−→π ▷
−→
C ] =



a+ pγ, if a ≥ 1−2γ
2

and a ≥ 1
2
,

2pa+ pγ − p− a+ 1, if a ≥ 1−2γ
2

and a < 1
2
,

p− pγ − 2pa+ a, if a < 1−2pγ
2

and a ≥ 1
2
,

1− a− pγ, if a < 1−2pγ
2

and a < 1−2γ
2

,
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Table 6.4: Values of posterior vulnerability and flow in function of a.

a < 1−2γ
2

1−2γ
2

≤ a < 1−2pγ
2

1−2pγ
2

≤ a < 1
2

a ≥ 1
2

V (−→π ) 1− a− pγ 1− a− pγ a+ pγ a+ pγ

V [−→π ▷
−→
C ] 1− a− pγ 2pa+ pγ − p− a+ 1 2pa+ pγ − p− a+ 1 a+ pγ

L+ 0 p(2a+ 2γ − 1) (1− p)(1− 2γ) 0

L× 1 2pa+pγ−p−a+1
1−a−pγ

2pa+pγ−p−a+1
a+pγ

1

We can split a into intervals and compute the direct Bayes flows. This is shown in

table 6.4.

When 1−2γ
2

≤ a < 1−2pγ
2

, the derivative of the additive flow with respect to a is 2p,

and this is positive. When 1−2pγ
2

≤ a < 1
2
, the derivative with respect to a is −2 ∗ (1− p),

and this is negative. Thus, the largest value of flow is achieved when a = 1−2pγ
2

, and that

is 2γp(1− p).

When 1−2γ
2

≤ a < 1−2pγ
2

, the derivative of the multiplicative flow with respect to

a is p(1+2e−2pe)
(a+pe−1)2

. The numerator is greater or equal to zero, and (a+ pγ − 1) is smaller or

equal to zero. Thus, the multiplicative flow grows when we increase a in this interval.

When 1−2pγ
2

≤ a < 1
2
, the derivative with respect to a is (p−1)(2px+1)

(a+px)2
, and this

is negative. Thus, the largest value of flow is achieved when a = 1−2pγ
2

, and that is

4pγ − 4p2γ + 1. As we wanted.

This shows a clear relationship between our new notion of fairness and one of the

existing notions, indicating that our measure is an adequate metric.

These bounds are a function of the statistical parity and the prior distribution.

We can change the prior to maximize the flow and get a bound that only depends on the

statistical parity of the channel.

Corollary 1. Let C : X → DY be a channel. If the statistical parity of this channel is

equal to γ, the prior is π = (p, 1 − p) and a = 1−2pγ
2

then the maximal direct average

additive Bayes flow is
γ

2
.

And the maximal direct average multiplicative Bayes flow is

γ + 1.

Proof. For the additive case, the derivative of 2γp(1 − p) with respect to p is 2γ − 4γp.

Pluggint the value of a and making it equal to 0, we get p = 1
2
. The value of flow when

p = 1
2
is γ

2
, as we wanted.

In the multiplicative case, the derivative of 4pγ − 4p2γ + 1 with respect to p is

4γ− 8pγ. Making it equal to 0, we get p = 1
2
. The value of flow, in this case, is γ+1.
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6.2.1.2 Reverse flow and statistical parity

Similarly to what we did concerning direct flow, we can relate reverse flow and

statistical parity.

Theorem 4. Let C be a binary channel and π a prior with full support. Let the statistical

parity of the channel be γ. The reverse additive capacity over all gain functions is equal

to γ, and the reverse multiplicative capacity is equal to γ + 1.

Proof. Let π = (πs0 , πs1). The reverse additive capacity is

ML+(C, π) = 1−
∑
y∈Y

min
x∈X

Cx,y

= 1−min(P (+|s0), P (+|s1))−min(P (−|s0), (−|s1))

= 1−min(P (+|s0), P (+|s1))−min(1− P (+|s0), 1− P (+|s1))

= 1−min(P (+|s0), P (+|s1))− 1−min(−P (+|s0),−P (+|s1))

= −min(P (+|s0), P (+|s1)) + max(P (+|s0), P (+|s1))

= |P (+|s0)− P (+|s1)| = γ

The reverse multiplicative capacity is

ML×(C, π) =
∑
y∈Y

max
x∈X

Cx,y

= max(P (+|s0), P (+|s1)) + max(P (−|s0)), P (−|s1))

= max(P (+|s0), P (+|s1)) + max(1− P (+|s0)), 1− P (+|s1))

= max(P (+|s0), P (+|s1)) + 1 + max(−P (+|s0)),−P (+|s1))

= max(P (+|s0), P (+|s1)) + 1−min(P (+|s0)), P (+|s1))

= 1 + max(P (+|s0), P (+|s1))−min(P (+|s0)), P (+|s1))

= 1 + |P (+|s0)− P (+|s1)| = 1 + γ

As we wanted.

The capacity is a function of both the channel and the prior, given that we need to

know the support of the prior to compute the capacity. But statistical parity is a function

of only the channel. This indicates that we may be able to use a function of only the

channel to get statistical parity. We do this on the following lemma.

Lemma 8. Let C be a channel with statistical parity γ. If we push a uniform prior

through this channel, the reverse average additive Bayes flow is γ
2
, and the multiplicative

one is γ + 1.
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Proof. The Bayes vulnerability of a binary uniform prior is 1
2
.

Now, let us compute the posterior Bayes vulnerability of this function.

V1[π ▷ C] =
∑
y∈Y

max
x∈X

πxCx,y

=
1

2

∑
y∈Y

max
x∈X

Cx,y

=
1

2
(max(P (+|s0), P (+|s1)) + max(P (−|s0)), P (−|s1)))

=
1

2
(1 + γ)

The additive flow is
1

2
(1 + γ)− 1

2
=

γ

2

and the multiplicative flow is
1
2
(1 + γ)

1
2

= 1 + γ,

as we wanted.

These theorems let us conclude that both flows are closely related and can be used

to measure fairness.

6.2.1.3 Binary statistical parity

So far, our measure of statistical parity has been the absolute value of a difference

of probabilities. We can also interpret statistical parity as a binary value, that is, whether

or not the probabilities are the same. In this way, a channel that satisfies statistical parity

is of the form shown in 6.5. It is called the null channel.

Definition 29. The null channel is a channel that has all lines equal. It is of the form

represented in channel 6.5.

Table 6.5: Channel that satisfies statistical parity. a can be any value in [0, 1].

+ −
s0 a 1− a
s1 a 1− a

We can then ask if, for every null channel and every prior, the reverse channel also

satisfies statistical parity. And the answer is yes. This result is on lemma 9.
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Lemma 9. If a reverse channel C satisfies statistical parity, the direct channel obtained

using any prior π also satisfies statistical parity.

Proof. C is of the form shown in table 6.5. Let π = (p, 1− p). Then, the joint is(
ap (1− a)p

a(1− p) (1− a)(1− p)

)
The direct prior is then −→π = (a, 1− a), and the direct channel is in table 6.6.

Table 6.6: Channel that satisfies statistical parity. a can be any value in [0, 1].

s0 s1
+ p 1− p
− p 1− p

This direct channel also satisfies statistical parity, as we wanted.

So the reverse channel of a null channel is also going to be a null channel. What

changes is that the probability distribution for the outputs given an input is the prior π,

instead of the prior (a, 1− a).

6.2.2 Other measures

Analogous results to the ones we presented can be shown to work for other fairness

metrics. We begin with equal opportunity.

6.2.2.1 Equal opportunity

As we have introduced in the Chapter 2, the definition of equal opportunity is

γ = |P (Ŷ = +|s0, Y = +)− P (Ŷ = +|s1, Y = +)|.

We can build the channel in table 6.7.

Note that this channel and the definition of equal opportunity are equal to their

counterparts from the statistical parity section. Thus, if we analyze the dataset with only

positive classifications as the ground truth, we conclude that all results valid for statistical

parity are also valid for equal opportunity. They are Theorem 3, Corollary 1, Theorem 4,

Lemma 8 and Lemma 9.
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Table 6.7: channel to analyze equal opportunity.

+ −
s0 P (Ŷ = +|s0, Y = +) P (Ŷ = −|s0, Y = +)

s1 P (Ŷ = +|s1, Y = +) P (Ŷ = −|s1, Y = +)

6.2.2.2 Equalized odds

As mentioned before, equalized odds is usually described as a binary measure where

P (Ŷ = y|s0, Y = y) = P (Ŷ = y|s0, Y = y).

There are different ways we can enforce this using QIF. We begin by building two

channels of the form shown in Figure 6.8.

Table 6.8: channel to analyze equalized odds. y is in the set {+,−}.

+ −
s0 P (Ŷ = +|s0, Y = y) P (Ŷ = −|s0, Y = y)

s1 P (Ŷ = +|s1, Y = y) P (Ŷ = −|s1, Y = y)

If these two channels are null channels, then equalized odds are satisfied. Other-

wise, we must create a measure of how much it is deviating from the fair scenario. The

simplest way is to use a similar technique to the one used in statistical parity and sum

both of them for the two values of y, that is:

γ = |P (Ŷ = +|s0, Y = +)−P (Ŷ = +|s1, Y = +)|+|P (Ŷ = +|s0, Y = −)−P (Ŷ = +|s1, Y = −)|.

After this, we can also use the results from the previous subsection. Again, they

are Theorem 3, Corollary 1, Theorem 4, Lemma 8 and Lemma 9.

6.2.2.3 Conditional statistical parity

The last metric we are going to study is conditional statistical parity. As it was

mentioned in the background, for a set of valid features L, conditional statistical parity

is satisfied when

P (+|s0, L = ℓ) = P (+|s1, L = ℓ),∀ℓ.

This is similar to the scenario of equalized odds, where we have multiple conditions

to satisfy. The solution is the same: we build one channel for every ℓ, as shown in 6.9.
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Table 6.9: channel to analyze conditional statistical parity. ℓ can assume any value that
is in the domain of L.

+ −
s0 P (Ŷ = +|s0, L = ℓ) P (Ŷ = −|s0, L = ℓ)

s1 P (Ŷ = +|s1, L = ℓ) P (Ŷ = −|s1, L = ℓ)

The problem is that we do not have a fixed number of channels. So, in the case

where we do not want conditional statistical parity to be a binary characteristic, we want

it to describe how fair a system is from being fair, we must be more careful. We must

choose an aggregation function that can deal with multiple existing channels, such as max

or average. If we sum all of the deviations

|P (+|s0, L = ℓ)− P (+|s1, L = ℓ)|,

a scenario with more possible values of ℓ can be described as more unfair, but only because

it has more terms. This does not happen with sum or average.
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Chapter 7

Experiments

In this chapter, we will measure several metrics presented in this work. The goal is to

check how they perform on real-world data.

7.1 The setup

To test our metrics, we assembled four different datasets with different sensitive

features and tested them with four different algorithms. In this section, we will briefly

describe them.

During the preparation of the dataset, several numerical features had to be trans-

formed into binary features so that we could apply the techniques described in the thesis.

In general, we chose to transform all the values smaller than the median of the feature

into false and the other into positive. We chose the median so that the proportion of

positive and negative classes was close to half, and we would not need to worry about

unbalanced classes.

We used a computer system running Ubuntu 20.04.6 LTS. All the intervals shown

in the images have a 95% confidence using a two-sided normal distribution. We repeated

the experiment 30 times with different random seeds for every combination of parameters.

The dataset was divided into 50% for the training data and 50% for the test data randomly

for every run. In all executions, the test data was used to estimate the accuracy and the

direct and reverse flows of information.

To compute the joint distribution, we used the frequentist approach. That is, the

probability of classification i and group j is equal to the fraction of times in the test data

that the classification was i and the group was j. This idea was taken from [60].
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7.1.1 Datasets

Now, let us briefly present the datasets.

Adult dataset: This dataset contains data from the 1994 American Census. Each

row corresponds to a group of the population. The objective is to predict if the average

salary of this group is higher than fifty thousand dollars per year. There are 45 thousand

rows after removing the ones that have missing entries. Categorical features have been

transformed using one-hot encoding [9]. The sensitive features we use are whether the

age is higher than the median, whether the person is white, and the sex. Table 7.1 gives

some more information about the dataset.

Table 7.1: Information on the adult dataset

Number of rows 45222
Number of columns 96
Positive classifications 22654
Size of first protected group 23027 (age)
Size of second protected group 30527 (sex)
Size of third protected group 38903 (race)

German dataset: This dataset contains data for 1000 German individuals with

employment, credit history, housing, and education information. The objective is to

predict if each person has a good or bad credit score. The sensitive features we chose are

whether the age is above or below the median age and the sex of the individual. It is the

only dataset that does not contain information about race, so this will not be used. Table

7.2 describes the main characteristics of the dataset.

Table 7.2: Information on the German credit dataset

Number of rows 1000
Number of columns 48
Positive classifications 700
Size of first protected group 516 (age)
Size of second protected group 452 (sex)

Compas dataset: COMPAS (an acronym for Correctional Offender Management

Profiling for Alternative Sanctions) is a tool created by a company called Northpointe that

is used in some parts of the United States to predict if a defendant is going to commit

crimes after being released from prison. A report made by ProPublica showed that the

tool had higher chances of giving a high-risk score to black defendants than white ones

[42]. We used the data from the report as a third dataset. It contains information about

3000 defendants after removing missing data. The sensitive features we use are whether
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the age is higher than the median, whether the person is white, and the sex. Table 7.3

gives some more information about the dataset.

Table 7.3: Information on the COMPAS dataset

Number of rows 3172
Number of columns 12
Positive classifications 2809
Size of first protected group 3164 (age)
Size of second protected group 4997 (sex)
Size of third protected group 2103 (race)

Communities dataset: The communities and crimes dataset contains informa-

tion about several communities in the United States. There are 123 relevant features, and

the objective is to predict whether the crime rate in the community is higher or lower

than the median. After removing columns and rows with blank data, 1993 rows, and 100

columns are left. The sensitive features used are whether the percentage of people older

than 65 is higher than the median, whether the percentage of white people is higher than

the median, and whether the percentage of divorced women is higher than the median.

Table 7.4 gives some more information about the dataset.

Table 7.4: Information on the communities and crimes dataset

Number of rows 1993
Number of columns 100
Positive classifications 992
Size of first protected group 966 (age)
Size of second protected group 969 (sex)
Size of third protected group 992 (race)

7.1.2 Algorithms

The algorithms we used were the ones described in the Chapter 2. The naive

Bayes and logistic regression algorithms represent a relatively simple class of algorithms

with few hyperparameters. The random forest and gradient boosting algorithms are more

complicated. There are many hyperparameters to be set, and we decided to use the

default values implemented in the Scikit-learn library [52]. This library was used to run

all experiments.
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Figure 7.1: Accuracy for every dataset and every algorithm.

Source: created by the author.

7.2 Results

In this section, we will describe several experiments performed to measure the flow

of information under different circumstances. The goal is to measure the effect of the

datasets, the algorithms, and the sensitive features in the flow.

There are several possible measures of flow to use. We mainly used average mul-

tiplicative Bayes flow because it has a good interpretation, and the feasibility region is

more restricted. At the end of the chapter and in Appendix B, we present some plots

using different measures.

7.2.1 Performance of the algorithms

We begin by testing the accuracy of the different algorithms on different datasets.

For every combination of algorithm and dataset, we performed 30 executions and mea-

sured the accuracy. The confidence intervals were extremely small, so they did not appear

on the images. Figure 7.1 shows the results.

Figure 7.1 shows that the most relevant factor on the accuracy is the dataset,

not the algorithm being used. However, some algorithms perform slightly better than

the others. Random forest, for example, has accuracy values strictly greater than the

accuracy of naive Bayes.

The problem is that accuracy can be misleading. An algorithm that always predicts

true in a problem with more true examples has high accuracy, although it is trivial. To

avoid this, we will use F1-score, a metric that considers the precision and the recall.
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Figure 7.2: F1-score for every dataset and every algorithm

Source: created by the author.

Figure 7.2 shows the results.

Again, the most relevant factor on the performance is the dataset, not the algo-

rithm. However, there are some differences here. The algorithm influences a lot more.

The F1-score of naive Bayes on the COMPAS dataset is extremely bad, for example, but

not so bad in the rest.

The general result that both plots show is that the algorithms perform well. Ran-

dom Forest and Gradient Boosting are slightly better than the rest, while naive Bayes

performs poorly. This may be because these algorithms have a greater capacity [9] and can

be more precise in complicated prediction tasks. The conclusion is that these algorithms

may be used in these datasets in real-life scenarios, so we can get valid conclusions from

these experiments. If the accuracy or F1-scores were extremely low, these algorithms

would not be used, and we would not be able to get any meaningful conclusions from

them.

7.2.2 Baseline flow

Before we start measuring the flow of every experiment, there is one baseline we

should assess: the flow of information between the sensitive variable and the target clas-

sification when no classifier is involved, that is, the flow of the original dataset. Average

multiplicative Bayes flow can be measured between any two variables, one of them does

not need to be a prediction from an algorithm. So, we can use the correct classification

and the sensitive feature to get a baseline for what we should expect from an algorithm

trying to make a good prediction. Figure 7.3 shows the results.

We can see that the dataset that flows the most is the communities one, although

the flow concerning the age is relatively small. Besides that, the German and COMPAS
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Figure 7.3: Direct and reverse average multiplicative Bayes flow in the channel where the
input is the sensitive variable and the output is the classification in the original datasets.
The dataset is the main factor behind the amount of flow, and the communities dataset
is the one with the highest flow. The direct and reverse flows seem to be always close to
one another.

Source: created by the author.

datasets flow is also small. The adult dataset is somewhere in the middle. Overall, the

direct and reverse flows are quite similar. Indeed, the Pearson correlation between direct

and reverse flow is 0.9395.

7.2.3 How does the dataset influence the results

Now, we will analyze the effect of different factors on the flow. We are going to

begin by studying the datasets. For every dataset and algorithm, we ran 30 executions

with different random seeds, such that the training and test datasets were always different.

Then, for every sensitive feature, we measure the direct and reverse average multiplicative

Bayes flow. Figure 7.4 shows the result in a scatter plot.

We can see that the direct and reverse flows are correlated because most points are

near the identity line. There are three main clusters in the image: The first is the green

cluster with high flow, which represents the communities dataset. The second cluster is

formed by the blue and red points, with low flow but greater than one. The third cluster,

near the origin, where several points, mainly from the German dataset, have very low

flow. All the points are inside the region delimited by the black line, representing the

feasibility region proved in Chapter 5.

Figure 7.5 shows another way to compare the different datasets. For every dataset,

we plot the boxplot showing the flow difference in relation to the mean of all measures

from all combinations of algorithms and datasets. We see clearly how the communities

dataset has large flow and variance, while the German dataset has a pretty consistent
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Figure 7.4: Scatter plot showing the different direct and reverse average multiplicative
Bayes flow for different datasets. Every point is a different partition of training and test
set. The communities dataset has the highest flow, while COMPAS and adult are in
the middle, and German has the lowest flow of information. The points are all near the
identity line, showing that one flow is highly correlated with the other.

Source: created by the author.

value of flow, mainly in the reverse flow. The COMPAS and adult datasets have lower

means but higher variance.

These aggregations of results let us do some interesting analyses, but there is a

limitation. We cannot compare how different datasets behave when executed in the same

setup, that is, the same algorithm and sensitive feature. We are running all experiments,

aggregating them, and then comparing the aggregated results. There may be a situation

where the behavior of the datasets is very different, but the aggregate is similar.

So, we perform another experiment. For every pair of datasets, we run experiments

with the same algorithm and sensitive feature. Then, we compute the difference between

the two datasets’ direct and reverse flow values. In the end, we plot every point in a

scatter plot.

Figure 7.7 is a scatter plot comparing the difference between the communities

and COMPAS datasets. In most cases, the flow on the communities dataset is much

higher, but sometimes COMPAS has a higher flow. We could not see these examples

in the previous plots. In all cases, the dataset with higher direct flow also has higher

reverse flow, one more evidence that these variables are highly correlated. To explain

that COMPAS has a lower mean, even though the flow is higher in about one third of the
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Figure 7.5: Both boxplots show how the flow of each dataset compares to the mean of
all datasets. They are all normalized by the mean of all executions. The communities
dataset has the highest variance and mean in both cases. The German dataset has the
least variance, but the mean is slightly higher than that of adult and COMPAS. The
communities dataset has such a high flow that all others are below the mean.

Source: created by the author.

cases, note that when communities has higher flow, it is much higher.

Figure 7.7 is different. The adult and COMPAS datasets are similar, so the dif-

ference in flow is much smaller. We can see this by noting how different the values on

the axes are on Figures 7.7 and 7.7. While the greatest difference between communities

and COMPAS was close to 0.6, the maximal difference between COMPAS and adult was

only 0.1, so they are similar. Some examples do not lie where both flows are negative, or

both are positive. At first, this may be evidence that the flows are not correlated, but

considering that the differences were small, it is not relevant.

We conclude that some datasets can have more information flow than others. More-

over, when there is a lot of flow in one direction (direct or reverse), the other direction

will probably also have high flow.
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Figure 7.6: Scatter plot showing the difference in flow between the communities and
COMPAS dataset case by case. The input of the channel is the sensitive feature and the
output is the prediction of the classifier. In most cases, the communities dataset has a
higher flow, but in some cases, the opposite happens. In all cases, the dataset with higher
direct flow also has higher reverse flow. When the communities dataset has a higher flow,
it is much higher.

Source: created by the author.

Figure 7.7: Scatter plot showing the difference in flow between the adult and COMPAS
dataset case by case. Both datasets’ behavior is similar, so most points are near the
origin. The points distant from the origin have a high direct and reverse flow difference.
There are a few points with one dimension close to zero while the other is larger.

Source: created by the author.
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Figure 7.8: Boxplot showing the difference in relation to the mean of different algorithms.
The median of all of them is close to zero, meaning that they are all very similar. However,
naive Bayes is almost completely below the mean, while Random Forest and Gradient
Boosting are above the line. This is true for both direct and reverse flow. Logistic
Regression is almost evenly distributed above and below the mean.

Source: created by the author.

7.2.4 How does the algorithm influence the results

Now, we will do a similar analysis for the different algorithms we tested.

Figure 7.8 is a boxplot showing how the different algorithms deviate from the mean.

They all have the median close to zero, meaning the overall mean. This can be attributed

to the fact that the dataset, not the algorithm, mainly defines the flow. So, they will

have similar values for all datasets and similar values overall. However, the naive Bayes

algorithm is below the mean for the rest of the cases, while random forest and gradient

boosting are almost all above it. This may be due to their accuracy or higher capacity

than the other algorithms.

Now, we will analyze some algorithms pair by pair like we did in the previous

section. Again, we will use scatter plots that show how two different algorithms behave

when executed in the same scenario.

Figure 7.9 is a scatter plot where each point represents the difference between an
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Figure 7.9: Scatter plot showing the difference in flow between the random forest and
naive Bayes algorithms case by case. They have similar flows in about half the cases, but
random forest has much more flow in the other half. There is no case where naive Bayes
has more flow of information.

Source: created by the author.

execution with random forest and one with naive Bayes and all else equal. About half of

the points are near the origin, showing a similar response. Nevertheless, the other half

has a large direct and reverse flow. This shows that the random forest algorithm flows

more in some cases. Again, both flows being larger support the idea that they are related.

The reason that makes some flows the same and others really different, is because most

of the flow is defined by the dataset, not the algorithm. So, when both algorithms deal

with a dataset with almost no flow, they will have information flow close to zero. When

dealing with a dataset with a large flow of information, random forest can have a much

larger information flow than naive Bayes.

Figure 7.10 shows a similar plot but for the case of random forest and gradient

boosting. These are similar methods, both relying on ensemble techniques, so their per-

formance is also similar. Both algorithms have similar plots in Figure 7.8, and the scatter

plot in Figure 7.10 shows that they have similar behavior in almost all cases, not only in

the average.

In conclusion, the algorithms can make the system have larger information flow,

thus higher privacy and fairness risks. Algorithms with high capacity, such as gradient

boosting and random forest, have more information flow than low-capacity algorithms,

such as naive Bayes. However, overall, the effect of the algorithm is smaller than the

effect of the dataset.
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Figure 7.10: Scatter plot showing the difference in flow between the random forest and
gradient boosting algorithms case by case. Most points are close to the origin, showing
that the algorithms are similar. There is a point where the reverse flow is significantly
larger than the direct one. In this point, gradient boosting is the algorithm with higher
flow.

Source: created by the author.

7.2.5 How does the sensitive feature influence the results

Now, the last analysis of what affects the flow value we will make is regarding the

sensitive feature.

Figure 7.11 shows a scatter plot discerning different experiments by the sensitive

feature. A large cluster near the origin represents that experiments with all features have

had a small flow in some settings. There are three other clusters: one for age, one for

sex, and one for race. This may show that the sensitive feature is extremely relevant to

the flow, but if we compare this plot with Figure 7.4, we see that the clusters of sex and

race, the ones with higher flow, correspond to the cluster of the communities dataset.

From this, the effect of the sensitive feature depends on the dataset, so there is little

we can explore because every dataset can have a feature that will flow more information

than the other.

In short, comparing different sensitive features is similar to comparing different

datasets.
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Figure 7.11: Scatter plot showing different flow values for different sensitive features.
Several examples are near the origin of all three sensitive features, but there is a cluster
of points with slightly higher flow with age as the sensitive feature. Higher on the plot,
two other clusters represent sex and race.

Source: created by the author.

7.2.6 Comparison with statistical parity

Another aspect of our metrics we have to check is how they compare to existing

metrics.

Some of the existing metrics are qualitative, that is, they can only be satisfied or

not satisfied, they do not indicate how far they are from being satisfied. One measure that

is different from this is statistical parity. It can give a value on how fair the algorithm is.

The lower, the better. So, we have decided to compare statistical parity with direct and

reverse flow.

Figure 7.12 shows two scatter plots comparing the value of statistical parity and

direct and reverse flow. In both cases, the flow and statistical parity are correlated. The

correlations between the variables are high. They are shown in table 7.2.6. This shows

that the average multiplicative Bayes flow is a reasonable fairness metric.

Variables Correlation
Direct and reverse flow 0.9395
Statistical parity and reverse flow 0.9257
Statistical parity and direct flow 0.9110

The fact that the correlation is higher between statistical parity and reverse flow,
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Figure 7.12: Two scatter plots show the relation between direct and reverse flows with
statistical parity. On both of them, the greater the flow, the greater the statistical parity.

Source: created by the author.
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Figure 7.13: Two scatter plots showing how direct and reverse flow change when the
threshold for the sensitive attribute changes. When it approaches the median, 0.85, in
this case, both flows increase significantly. The reverse flow of points with the threshold
far from the median goes to the minimum possible value, 1. The direct flow is above zero
for most points but peaks near the median. The lines on top of the points are confidence
intervals. A point with no dot represents an experiment where all the results were equal.

Source: created by the author.

instead of direct flow, is another argument to say that statistical parity is, in fact, a

privacy metric, not a fairness one. However, the correlation between reverse flow and

statistical parity above 0.9 shows that it can also be used as a fairness measure.

Nevertheless, there are some problems. On the left of both plots of Figure 7.12,

there are points with high statistical parity but with no flow. In the following subsection,

we will investigate why this can happen.

7.2.7 Limitations of average Bayes flow

Consider the communities dataset. To check if a community was in the protected

group, we checked if the percentage of white people was below 85%, the feature’s median.

However, we do not need to split the groups in the median. We can define the protected

group as communities with less than 70% of white people, for example. Nevertheless, this

threshold affects the amount of information that flows through the system. To study this,

we measured it for 100 different thresholds. The result is in Figure 7.13.
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Note that when the threshold is near the median, both flows increase until they

reach their maximum value. However, when the threshold is far from the median, the re-

verse flow reaches the minimum possible value, and the direct flow decreases significantly.

To explain why this happens, consider the 2× 2 joint depicted below:(
a b

c d

)
.

Suppose, without loss of generality, that c+d ≥ a+ b. This makes the prior Bayes

vulnerability equal to c+d. Now, consider the posterior Bayes vulnerability. It is equal to

max(a, c)+max(b, d). If both c ≥ a and d ≥ b, then max(a, c)+max(b, d) = c+d and the

posterior is equal to the prior vulnerability. To make the posterior bigger than the prior,

we need to have either a > c or b > d. However, if the classes are not well distributed,

for example, if the threshold is far from the median, this will not happen because most of

the probability mass will be on c and d. So, if the protected and unprotected groups are

not roughly the same size, the prior and posterior vulnerabilities will be the same, and

the reverse flow will be minimal.

But this only affects the reverse flow a little. The prior reverse Bayes vulnerability

is max(a+ c, b+ d) and the posterior is max(a, b) + max(c, d). In the scenario of most of

the probability mass being on c and d, this will not affect any of these terms a lot. The

only difference is that max(c, d) will probably be bigger than max(a, b), but this does not

change the flow a lot.

In this explanation, we have supposed that the rows of this joint distribution

correspond to the protected or unprotected groups, and the columns are the classification.

If we flip this, we will have a similar effect. Suppose one of the classes is much larger than

the other. Then, the prior Bayes vulnerability will be close to the posterior, and the flow

will be small.

To test this, we performed 100 experiments. On the i-th experiment, some rows

of the dataset were removed such that the probability of someone being on the positive

class is equal to i%. The results are in Figure 7.14.

The result is exactly as we predicted. When the fraction of positive examples is

close to 0.5, the flow is maximal in both directions. When it gets close to 0 or 1, the

direct flow goes to zero, while the reverse flow decreases significantly.

The conclusion is that the average Bayes flow can be used as a fairness and privacy

metric. However, it works best when the protected and unprotected groups are roughly

the same size, as are the positive and negative classes.
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Figure 7.14: Two scatter plots showing how the direct and reverse flow change when the
fraction of positive classifications in the dataset changes. In both cases, the flow increases
when the fraction is close to zero. The direct case is zero on multiple scenarios where the
fraction is close to 0 or 1. The reverse flow is almost always greater than 1 but approaches
1 when the classes are unbalanced. The lines on top of the points are confidence intervals.
A point with no dot represents an experiment where all the results were equal.

Source: created by the author.

7.2.8 Using capacity

The problem with using Bayes flow is that it uses the joint instead of the channel.

When the joint is unbalanced, the Bayes flow approaches 1 in the multiplicative case and

0 in the additive one, the smallest values possible. So, one way to avoid this is to use the

capacity. The capacity of a channel uses only the channel instead of the joint (prior and

channel). So, there will not be a problem with the classes being unbalanced. To show

this, Figure 7.15 is analogous to Figure 7.13, but it uses capacity instead of Bayes flow.

Figure 7.15 shows the capacity when the sensitive attribute threshold changes.

The reverse capacity stays approximately the same because what changes is the fraction

of examples that are in each group, protected or unprotected. The fraction of individuals

getting positive or negative classifications inside these groups is the same. The capacity

takes into account only this fraction, not the absolute number. Because this fraction is

near constant, the capacity is near constant. This does not happen in the reverse capacity,

so the behavior is similar to the Bayes flow scenario.

Figure 7.16 shows an analogous plot to Figure 7.14. Because we are changing the

fraction of positive classifications in the dataset, the reverse capacity is close to constant.
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Figure 7.15: Two scatter plots showing how direct and reverse capacity change when the
threshold for the sensitive attribute changes. The reverse capacity stays roughly the same
through all thresholds. The direct capacity increases when it is close to the median of the
sensitive attribute. The lines on top of the points are confidence intervals.

Source: created by the author.

Figure 7.16: Two scatter plots showing how direct and reverse capacity change when the
fraction of positive classifications change. The direct capacity stays approximately the
same through all fractions. The reverse capacity increases when the fraction is close to 0.5
and goes to zero when it approaches 0 or 1. The lines on top of the points are confidence
intervals. Some examples near the border have very large errors because the sample size
is not big enough, making the results unstable.

Source: created by the author.
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The reverse capacity behaves similarly to the reverse flow, although it is smoother.

This shows that using the capacity in cases where the classes or groups are not

well-balanced works well. Appendix B has a few plots showing the capacity instead of

Bayes flow in the plots shown in this chapter.

In conclusion, capacity can capture the same thing as Bayes flow, but its usage is

not constrained to a situation where classes and groups are balanced. But Bayes flow can

be a good measure in a scenario where we want to know how much information is gained

about the input when the output is observed in a specific population.
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Chapter 8

Conclusion

As was said in previous chapters, the widespread use of machine learning algorithms in

sensitive contexts requires that these algorithms are safe from two perspectives. They

have to be fair and adequately treat different groups. Furthermore, they must be private

and protect the information about individuals fed to the system. This work has studied

these two problems simultaneously.

We begin by expanding the quantitative information flow framework. Although

this has been done in previous works, we formalized it and derived theoretical bounds

in this framework. We showed that not every combination of direct and reverse average

Bayes flow can happen. However, maximal Bayes flow and capacity with respect to gain

functions allow for every value of direct and reverse flows.

Then, we used this framework and these results to model fairness and privacy

in machine learning. We first interpreted the theoretical bounds from the perspective

of fairness and privacy. Then, we showed that both flows can capture existing notions

of fairness, such as statistical parity, equalized odds, equal opportunity, and conditional

statistical parity.

Finally, we created experiments that indicate that our new metrics make sense

when we run them in real-world datasets and standard machine learning algorithms.



91

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings

of the 2016 ACM SIGSAC conference on computer and communications security,

pages 308–318, 2016.

[2] Sushant Agarwal. Trade-offs between fairness, interpretability, and privacy in ma-

chine learning. Master’s thesis, University of Waterloo, 2020.

[3] Mário S Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Morgan,

Catuscia Palamidessi, and Geoffrey Smith. The Science of Quantitative Information

Flow. Springer, 2020.

[4] Mário S Alvim, Andre Scedrov, and Fred B Schneider. When not all bits are equal:

Worth-based information flow. In POST, pages 120–139, 2014.

[5] UN General Assembly et al. Universal declaration of human rights. UN General

Assembly, 302(2):14–25, 1948.

[6] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
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Appendix A

Proofs of the theoretical bounds

A.1 Appendix

In this appendix, we are going to prove some of the results shown in the main text.

Multiple times, we are going to use SMT solvers to prove several small statements

at once. The SMT solver we used is cvc5 [6] and we are going to show the snippets of

code used to prove the results shown.

A.1.1 Proof for the average multiplicative Bayes flow

We begin the proof of the feasibility region of the average multiplicative Bayes

region by showing a joint distribution that can be modified to have every value of direct

and reverse flow. We will use the fact that α is the reverse flow and β is the direct flow,

in the same way as section 5.1.1. Because we are trying to prove only that values in the

feasible region can be achieved, we will only consider these values.

Lemma 10. The joint

π ▷ C = J =

(
αβ+α−β
αβ+α+β

0
−αβ+α+β
αβ+α+β

αβ−α+β
αβ+α+β

)
has reverse average multiplicative Bayes flow equal to α and direct average multiplicative

Bayes flow equal to β for every α, β in the set

{(α, β)| β

3− β
≤ α ≤ 3β

β + 1
, 1 ≤ α, β ≤ 2}

Proof. The reverse flow is

L×
id(π,C) =

max(a, c) + max(b, d)

max(a+ b, c+ d)
.
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The maximum between a and c is always a, because αβ ≥ β, given that 1 ≤ α, β ≤ 2.The

maximum between b and d is always d, because b = 0. To prove that max(a+ b, c+ d) =

c+ d, consider

(c+ d)− (a+ b) =
3β − αβ − α

αβ + α + β
.

Now, using an SMT solver, we can check if this can be smaller than zero in the viable

region.

alpha , beta = Reals ( ’ alpha beta ’ )

s = So lve r ( )

#g ivens

s . add ( alpha >= 1 , alpha <= 2 , beta >= 1 , beta <= 2)

s . add ( beta/(3−beta ) <= alpha , alpha <= 3∗ beta /( beta+1))

s . add ( alpha/(3−alpha ) <= beta , beta <= 3∗ alpha /( alpha+1))

#by con t r ad i c t i on suppose that

s . add (3∗ beta − alpha − alpha ∗beta < 0)

p r i n t ( s . check ( ) )

The output of the code is unsat, so this is always larger than zero. So c+d >= a+ b and

L×
id(π,C) =

max(a, c) + max(b, d)

max(a+ b, c+ d)
=

a+ d

c+ d
=

2αβ

2β
= α.

So the reverse flow is equal to α, as wanted.

The direct flow is

L×(JT ) =
max(a, b) + max(c, d)

max(a+ c, b+ d)
.

The maximum between a and b is a, because b = 0. The maximum between c and

d is always d because αβ > β. To prove that max(a+ c, b+ d) = a+ c, consider that

(a+ c)− (b+ d) =
3α− αβ − β

αβ + α + β
.

The proof is exactly the same as in the previous case. So,

L×
id(π,C) =

max(a, b) + max(c, d)

max(a+ c, b+ d)
=

a+ d

a+ c
=

2αβ

2α
= β.

The only thing left is to prove that J is in fact a joint probability matrix. The

first part is straightforward:

a+ b+ c+ d =
αβ + α− β

αβ + α + β
+ 0 +

−αβ + α + β

αβ + α + β
+

αβ − α + β

αβ + α + β
=

αβ + α + β

αβ + α + β
= 1.

To prove that a ≥ 0, consider only the numerator

αβ + α− β = α + β(α− 1) ≥ β(α− 1) ≥ β ≥ 0.

The same argument shows that d ≥ 0. Now, consider the denominator of c:
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alpha , beta = Reals ( ’ alpha beta ’ )

s = So lve r ( )

#g ivens

s . add ( alpha >= 1 , alpha <= 2 , beta >= 1 , beta <= 2)

s . add ( beta/(3−beta ) <= alpha , alpha <= 3∗ beta /( beta+1))

s . add ( alpha/(3−alpha ) <= beta , beta <= 3∗ alpha /( alpha+1))

#by cont rad i c t i on , suppose that

s . add ( alpha + beta − alpha ∗beta < 0)

p r i n t ( s . check ( ) )

The output is also unsat, so the element c is also non-negative.

The result is a joint with reverse flow α and direct flow β.

Now, let us prove another lemma.

Lemma 11. Any point that is not in the set

{(α, β)| β

3− β
≤ α ≤ 3β

β + 1
, 1 ≤ α, β ≤ 2}

can not be achieved as a pair of direct and reverse flow for average multiplicative Bayes

flow.

Proof. We begin by noting that, according to [3], the posterior vulnerability is never

smaller than the prior vulnerability, so the flow is at least one. By the definition of Bayes

vulnerability, the smallest value possible for the prior is 1
2
for a binary channel, in the

case of a uniform prior, and the greatest value for the posterior is 1, when it is guaranteed

that the observer can guess the secret correctly. So the maximum value for the flow is 2.

This proves that 1 ≤ α, β ≤ 2.

Using the fact that 2max(a + b) = a + b + |a − b|, it is possible to rewrite the

definition of reverse flow as

α =
a+ c+ |a− c|+ b+ d+ |b− d|
a+ b+ c+ d+ |(a+ b)− (c+ d)|

a, b, c, d form a distribution, so their sum is 1, and the previous equation can be simplified

to

α =
1 + |a− c|+ |b− d|
1 + |(a+ b)− (c+ d)|

Because flow is invariant to transpositions of rows and columns, we can write, without

loss of generality, that a+ b ≥ c+ d. Thus,

α =
1 + |a− c|+ |b− d|
1 + (a+ b)− (c+ d)

,
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α =
1 + |a− c|+ |b− d|

2(a+ b)
.

Now we can break these absolute values into cases.

1 + |a− c|+ |b− d| =



1 + a− c+ b− d if a ≥ c and b ≥ d

1 + a− c− b+ d if a ≥ c and b < d

1− a+ c+ b− d if a < c and b ≥ d

1− a+ c− b+ d if a < c and b < d

The last of these cases can never happen because a+ b ≥ c+ d. The remaining cases can

be written as a max:

1 + |a− c|+ |b− d| = max(1 + a− c+ b− d, 1 + a− c− b+ d, 1− a+ c+ b− d).

Using the fact that a+ b+ c+ d = 1, we can write

1 + |a− c|+ |b− d| = 2max(a+ b, a+ d, c+ b).

α =
max(a+ b, a+ d, c+ b)

a+ b

Analogously, we can say without loss of generality that a+ c ≥ b+ d and conclude

β =
max(a+ c, a+ d, c+ b)

a+ c
.

To prove that only points in the set S are feasible, we can assume that β
3−β

> α and

derive a contradiction. (There is no need to do this in the other equation because they

are symmetric). But this is tedious work because there are nine cases, 3 ways to choose

the first max and 3 ways to choose the latter. So, we are going to use a computer assisted

proof.

a , b , c , d = Reals ( ’ a b c d ’ )

alpha , beta = Reals ( ’ alpha beta ’ )

de f new so lver ( ) :

s = So lve r ( )

#g ivens

s . add ( a >= 0 , b >= 0 , c >= 0 , d >= 0 , a + b + c + d == 1)

s . add ( alpha >= 1 , alpha <= 2 , beta >= 1 , beta <= 2)

#wlog

s . add ( a+b >= c+d , a+c >= b+d)

re turn s

l 1 = [ a+d , b+c , a+b ]
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l 2 = [ a+d , b+c , a+c ]

i = 0

f o r t1 in l 1 :

f o r t2 in l 2 :

i+=1

pr in t ( t1 , ’ / ’ , t2 )

i f i in [ 1 , 5 ] :

p r i n t ( ’ undetermined ’ )

cont inue

s = new so lver ( )

f o r t in l 1 :

s . add ( t1 >= t )

f o r t in l 2 :

s . add ( t2 >= t )

s . add ( alpha == t1 / ( a+b ) )

s . add ( beta == t2 / ( a+c ) )

s . add (3∗ beta / ( beta+1) < alpha )

p r i n t ( s . check ( ) )

This code runs through the Cartesian product of the sets {a+ b, a+ d, c+ d} and

{a + c, a + d, c + b} and for each pair assumes that they are the largest of the set and

checks if there is a way for this conditions to be met and the pair of direct and reverse

flow be outside the bound. It is impossible for all cases and, because these are all of the

cases, then it is impossible.

Observation: There is an if statement in the code to avoid two cases because

in some computers, if there is not enough memory, the program may crash. We have the

following proofs for these two cases.

1. a+ d ≥ (b+ c), (a+ b) and a+ d ≥ (b+ c), (a+ c)

2. b+ c ≥ (a+ d), (a+ b) and b+ c ≥ (a+ d), (a+ c)

Let us begin by proving 1. We have that

β

3− β
=

a+ d

3(a+ c)− (a+ d)
.

Suppose α < β
3−β

, then

a+ d

a+ b
<

a+ d

2a+ 3c− d

2a+ 3c− d < a+ b
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[(a+ c)− (b+ d)] + 2c < 0

This is a contradiction because a+ c ≥ b+ d and c ≥ 0.

Now, let us prove 2. We have

β

3− β
=

b+ c

3(a+ c)− (b+ c)
.

Suppose α < β
3−β

, then

b+ c

a+ b
<

b+ c

3a− b+ 2c

3a− b+ 2c < a+ b

2[(a+ c)− b] < 0

This is a contradiction because a+ c ≥ b+ d.

Lemma 1 follows directly from lemma 10 and 11.

A.1.1.1 Pareto bounds

Now, we have to prove that the joints we showed in Figure 5.2 are in fact in the

Pareto curves.

We begin with the left curve in the plot.

Lemma 12. The joint where d ≥ c ≥ a, d = a+c, b = 0 has reverse average multiplicative

flow equal to 1.

Proof. The reverse flow is

L×
id(π,C) =

max(a, c) + max(b, d)

max(a+ b, c+ d)
.

Because c ≥ a, d ≥ b = 0 and c+ d ≥ a+ b = a, we have

L×
id(π,C) =

c+ d

c+ d
= 1.

Now, the lower part of the plot.

Lemma 13. The joint where a ≥ c ≥ d, a = d+ c, b = 0 has direct average multiplicative

flow equal to 1.
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Proof. The direct flow is

−→
L×

id(π,C) =
max(a, b) + max(c, d)

max(a+ c, b+ d)
.

Because c ≥ d, a ≥ b = 0 and a+ c ≥ b+ d = d, we have
−→
L×

id(π,C) =
a+ c

a+ c
= 1.

Now, for the upper part of the curve.

Lemma 14. Consider a joint such that a, d ≥ c, d = a + c, b = 0. If the reverse flow is

α, then the direct flow is 3α
α+1

.

Proof. Because a ≥ c, d ≥ b = 0 and c+ d ≥ a+ b, we have

L×
id(π,C) = α =

a+ d

c+ d

for the reverse flow.

Because a ≥ b = 0, d ≥ c and a+ c = b+ d = d, we have

−→
L×

id(π,C) =
a+ d

d

as the direct flow.

Now, let us compute 3α
α+1

,

3α

α + 1
=

3a+d
c+d

a+d
c+d

+ 1
=

3a+d
c+d

a+c+2d
c+d

=
3(a+ d)

a+ c+ 2d
=

3(a+ d)

3d
=

a+ d

d
,

and this is the direct flow, as we wanted.

The only part left is the right part of the plot.

Lemma 15. Consider a joint such that a, d ≥ c, a = d + c, b = 0. If the reverse flow is

α, then the direct flow is α
3−α

.

Proof. Because a ≥ c, d ≥ b = 0 and c+ d = a+ b = a, we have

L×
g (π,C) = α =

a+ d

c+ d

for the reverse flow.

Because a ≥ b = 0, d ≥ c and a+ c ≥ b+ d = d, we have

−→
L×

g (π,C) =
a+ d

a+ c

as the direct flow.

Now, let us compute α
3−α

,

a+d
c+d

3− a+d
c+d

=
a+ d

3c+ 2d− a
=

a+ d

2c+ d
=

a+ d

a+ c
,

and this is the direct flow, as we wanted.
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A.1.2 Proof for the average additive Bayes flow

We will now prove lemma 3. Let α be the reverse average additive Bayes flow and

β the direct one. We begin by showing a joint that has reverse flow α and direct flow β.

Lemma 16. The joint

π ▷ C = J =

(
1−α−β

3
1+2β−α

3
1+2α−β

3
0

)
has reverse average additive Bayes flow equal to α and direct average additive Bayes flow

equal to β for every α, β in the set

{(α, β)| − 1

2
+ 2β ≤ α ≤ 1

4
+

β

2
, 0 ≤ α, β ≤ 0.5}

Proof. First, we have to prove that this is in fact a joint. The sum of all values is

1− α− β

3
+

1 + 2β − α

3
+

1 + 2α− β

3
+ 0 =

3

3
= 1,

which is necessary. Now, we have to prove that every value is larger or equal to zero.

Because the maximum value of α, β is 0.5, 1−α−β
3

is always at least zero. To prove, that

the value of 1+2α−β
3

is also valid, we run the following program

alpha , beta = Reals ( ’ alpha beta ’ )

s . add ( alpha >= 0 , alpha <= 1/2)

s . add ( beta >= 0 , beta <= 1/2)

s . add ( beta <= 1/4 + alpha /2)

s . add ( beta >= −1/2 + 2∗ alpha )
s . add (1 + 2∗ alpha − beta < 0)

s . check ( )

which give us the output unsat, as we wanted.

Now, let us compute the reverse flow

L+
id(π,C) = max(a, c) + max(b, d)−max(a+ b, c+ d)

L+
id(π,C) = c+ b− (a+ b) = c− a =

3α

3
= α,

as we wanted.

The direct flow is

−→
L+

id(π,C) = max(a, b) + max(c, d)−max(a+ c, b+ d)

−→
L+

id(π,C) = b+ c− (a+ c) = b− a =
3β

3
= β.
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Now, we just need to prove that every α and β outside of the region that was

describe can not be reached.

Lemma 17. Any point that is not in the set

{(α, β)| − 1

2
+ 2β ≤ α ≤ 1

4
+

β

2
, 0 ≤ α, β ≤ 0.5}

can not be achieved as a pair of direct and reverse flow for average additive Bayes flow.

Proof. We are also going to use an SMT for this proof. The program that checks this is

a , b , c , d = Reals ( ’ a b c d ’ )

alpha , beta = Reals ( ’ alpha beta ’ )

de f new so lver ( ) :

s = So lve r ( )

#g ivens

s . add ( a >= 0 , b >= 0 , c >= 0 , d >= 0 , a + b + c + d == 1)

s . add ( alpha >= 0 , alpha <= 1/2 , beta >= 0 , beta <= 1/2)

#wlog

s . add ( a+b >= c+d , a+c >= b+d)

re turn s

de f maxx(x , y , l ) :

r e turn x i f l . index (x ) < l . index (y ) e l s e y

f o r perm in permutat ions ( [ a , b , c , d ] ) :

i = l i s t ( perm)

s = new so lver ( )

s . add ( alpha == maxx(a , c , i ) + maxx(b , d , i ) − ( a + b ) )

s . add ( beta == maxx(a , b , i ) + maxx( c , d , i ) − ( a + c ) )

f o r t1 , t2 in z ip ( i [ : −1 ] , i [ 1 : ] ) :

s . add ( t1 >= t2 )

s . add ( beta > 1/4 + alpha /2)

p r i n t ( s . check ( ) )

What this proof does is test all possible permutations in the sense of which value of

the probability distribution is the largest, the second largest, and so on. Then, it checks

if it is possible for the direct and reverse flow to be outside the stated region. The output

is unsat for every permutation. Because this is an exhaustive list of all cases, it is not

possible.
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A.1.2.1 Pareto bounds

Now, we need to prove the Pareto bound for additive case. Lemma A.1.1.1 shows

that the additive reverse flow is 0, and lemma A.1.1.1 shows that the additive direct flow

is zero, as we want. Now we need to prove the upper part and the right part. We begin

with the upper one.

Lemma 18. Consider a joint such that a, d ≥ c, d = a + c, b = 0. If the reverse flow is

α, then the direct flow is 1
4
+ α

2
.

Proof. Because a ≥ c, d ≥ b = 0 and c+ d ≥ a+ b, we have

L+
id(π,C) = α = a+ d− (c+ d) = a− c

for the reverse flow.

Because a ≥ b = 0, d ≥ c and a+ c = b+ d = d, we have

−→
L×

id(π,C) = a+ d− d = a

as the direct flow.

Because b = 0, we have that a + c + d = 1. But if a + c = d, then a + c = 1
2
and

c = 1
2
− a.

Now, let us compute 1
4
+ α

2
,

1

4
+

α

2
=

1

4
+

a− c

2
=

1

4
+

2a− 1
2

2
= a,

and this is the direct flow, as we wanted.

The only part left is the right part of the plot.

Lemma 19. Consider a joint such that a, d ≥ c, a = d + c, b = 0. If the reverse flow is

α, then the direct flow is −1
2
+ 2α.

Proof. Because a ≥ c, d ≥ b = 0 and c+ d = a+ b = a, we have

L×
g (π,C) = α = a+ d− (c+ d) = a− c

for the reverse flow.

Because a ≥ b = 0, d ≥ c and a+ c ≥ b+ d = d, we have

−→
L×

g (π,C) = a+ d− (a+ c) = d− c

as the direct flow.
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Because b = 0, we have that a + c + d = 1. But if a = d + c, then d + c = 1
2
and

c = 1
2
− d.

Now, let us compute 2α− 1
2
,

2α− 1

2
= 2(a− c)− 1

2
,

because a = d+ c, we get:

2α− 1

2
= 2(d+ c− c)− 1

2
= d+ d− 1

2
.

Now, using the fact that c = 1
2
− d, we have

2α− 1

2
= d− c,

and this is the direct flow, as we wanted.
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Appendix B

Complementing experiments

B.1 Appendix

This appendix presents some of the plots from Chapter 7 replacing average multi-

plicative Bayes flow with multiplicative capacity. The conclusion from most plot is very

similar, so we will discuss them all briefly, because the discussion from the chapter is valid

here as well.

The first two plots are scatter plots showing the values for direct and reverse

capacity by dataset and sensitive features. They are in Figures B.1 and B.2. Both plots

are similar to the ones in Chapter 7, we can see that the same groups that have higher

flow are the ones who have higher capacity. One thing that changes is that direct and

Figure B.1: Scatter plot showing the value of direct and reverse capacity by dataset. The
values for the communities dataset are the larger ones, while the German dataset has the
smallest ones. Most points are distributed near the identity line.

Source: created by the author.
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Figure B.2: Scatter plot showing the value of direct and reverse capacity by sensitive
attribute. Race is the sensitive feature with the higher values of capacity. Most points
are distributed near the identity line.

Source: created by the author.

reverse capacity are more correlated than direct and reverse flow, so he points are closer

to the identity line. Another difference is that there are not so many points with minimal

capacity as there are with minimal flow.

Figure B.3 shows the direct and reverse capacities for every model in relation to the

mean. Just like in the Bayes flow case, Naive Bayes has the smallest flows of information,

while gradient boosting and random forest have the largest values.

Figure B.4 has two scatter plots. One comparing mean difference and direct ca-

pacity, and the other showing mean difference and reverse capacity. The second plot is

very close to the previous plot of Chapter 7, that shows that mean difference and reverse

flow of information are highly correlated. But there is a small difference in the first one.

As was proved in Chapter 6, mean difference is equal to multiplicative capacity, so all

points are on the identity line.
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Figure B.3: Boxplot showing the difference of multiplicative capacity in relation to the
mean of different algorithms. The median of all of them is close to zero, meaning that
they are all very similar. But naive Bayes is almost completely below the mean, while
Random Forest and Gradient Boosting are above the line. This is true for both direct
and reverse flow. Logistic Regression is almost evenly distributed above and below the
mean.

Source: created by the author.
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Figure B.4: Two scatter plots show the relation of capacity with mean difference. In the
first one, we see that direct capacity is equal to mean difference, so all points are in the
identity line. In the second one, we see that they are correlated, so, the greater one of
them is, the greater the second one is as well.

Source: created by the author.
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