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Abstract
Lamb waves are a promising technique for structural health monitoring (SHM) of thin-
walled structures due to their sensitivity to various types of damage and their ability to
cover large areas with minimal sensor deployment. The main objective of this Thesis is
to propose new contributions in the application of 1D Convolutional Neural Networks
(CNNs) in damage detection on composite structures using Lamb waves, focusing mainly
on evaluating the impact of experimental data availability and proposing ways to reduce
experimental data limitations related to training machine learning algorithms. The first
part of the study examines the sensitivity of 1D CNNs to the volume of training data and
damage localization accuracy, using these algorithms to analyze minimal pre-processed
Lamb wave signals and compares them with traditional neural Multi-Layer Perceptrons
(MLPs) networks fed with damage indices obtained from the signals. In the second
part, a novel stochastic updating framework for FE models simulating Lamb waves
based on Bayesian inference is proposed to incorporate experimental uncertainty into
numerical simulations. The stochastic updating procedure is divided into two steps: a
sensitivity analysis using Sobol Indices and a Bayesian inference process using Markov-
chain Monte Carlo (MCMC) simulations and the Metropolis-Hastings sampling algorithm.
Additionally, a novel surrogate model based on neural networks is introduced to substitute
the FE model in the Bayesian inference process. Finally, in the third part, the study
evaluates the performance of 1D CNNs using a Bayesian data-driven training approach,
focusing on scenarios with constrained experimental data availability and varying tem-
peratures. Comparative analyses are made using experimental, numerical, and hybrid
datasets during the training phase. The study demonstrates the enhanced adaptability
and robustness of the machine learning model when trained with a combination of
experimental and numerically generated data. Key contributions of this thesis include
(i) developing a minimal pre-processing 1D CNN strategy for SHM, (ii) a framework for
stochastic FE model updating considering experimental uncertainties and temperature
effects, (iii) the proposition of a neural network surrogate model to accelerate the Bayesian
inference process on Lamb wave applications, and (iv) a methodology for training 1D
CNNs with a limited experimental dataset.

Keywords: Structural health monitoring; Composite materials; Lamb waves; Convolu-
tional neural networks; Bayesian inference; Finite element models; Surrogate modeling;
Sobol Indices.



Resumo
As ondas Lamb são uma técnica promissora para monitoramento da saúde estrutural
(SHM) de estruturas de paredes finas devido à sua sensibilidade a vários tipos de danos.
O principal objetivo desta Tese é propor novas contribuições na aplicação de redes
neurais convolucionais unidimensionais (1D CNNs) na detecção de danos em estruturas
compostas usando ondas Lamb, focando principalmente na avaliação do impacto da
disponibilidade de dados experimentais e propondo maneiras de reduzir as limitações
de dados experimentais relacionadas ao treinamento de algoritmos de aprendizado de
máquina. A primeira parte do estudo examina a sensibilidade das 1D CNNs ao volume
de dados de treinamento e a precisão na localização de danos, utilizando esses algoritmos
para analisar sinais de ondas Lamb e comparando os resultados com os obtidos por redes
neurais tradicionais (MLPs) alimentadas com índices de danos calculados a partir dos
sinais. Na segunda parte, é proposto um método de atualização estocástico baseado
em inferencia Bayesiana para modelos de elementos finitos, com o intuito de incorporar
incerteza experimental em simulações numéricas. O método de atualização estocástica
é dividido em duas etapas: uma análise de sensibilidade usando Índices de Sobol e um
processo de inferência Bayesiana usando simulações de Cadeia de Markov Monte Carlo
(MCMC) e o algoritmo de amostragem de Metropolis-Hastings. Além disso, é proposto
um novo modelo de substituição baseado em redes neurais para substituir o modelo de
elementos finitos no processo de inferência Bayesiana. Finalmente, na terceira parte,
o estudo avalia o desempenho das 1D CNNs em cenários com disponibilidade limitada
de dados experimentais e variação de temperaturas. Análises comparativas são feitas
usando conjuntos de dados experimentais, numéricos gerados por um modelo estocástico
e híbridos durante a fase de treinamento. As principais contribuições desta tese incluem
(i) o desenvolvimento de uma estratégia de localização de danos utilizando 1D CNNs, (ii)
um método para atualização estocástica de modelos de elementos finitos considerando
incertezas experimentais e efeitos de temperatura, (iii) a proposição de um modelo de
substituição baseado em rede neurais para acelerar o processo de inferência Bayesiana
em aplicações de ondas Lamb, e (iv) uma metodologia para treinar 1D CNNs com um
conjunto de dados experimentais limitado.

Palavras-chave: Monitoramento da saúde estrutural; Materiais compostos; Ondas de
Lamb; Redes neurais convolucionais; Inferência Bayesiana; Modelos de elementos finitos;
Modelagem substituta; Índices de Sobol.
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1 INTRODUCTION

This chapter first introduces the structural health monitoring (SHM) approach, with
a particular focus on the use of ultrasonic waves. The discussion then shifts to the
motivation of the thesis, highlighting the main challenges associated with this type
of inspection technique and recent strategies employing machine learning algorithms.
Subsequently, the scope of the thesis delineates all the steps that are covered throughout
this work. Objectives and main contributions of the thesis are also articulated, and the
chapter concludes with an outline of the work.

1.1 CONTEXTUALIZATION

Monitoring performance, conducting damage prognosis, and assessing the aging of
structures hold critical significance in the field of engineering. As structures age, they
become increasingly susceptible to damage, leading to a decline in their reliability (YUAN,
2016). The consequences of structural damage are severe, often resulting in substantial
financial losses and eventually loss of lifes. For example, data from the US National
Transportation Safety Board including all types of aircraft incidents reveals that between
2000 and 2019, there were 29,093 aircraft accidents globally, encompassing both general
and commercial aviation airplanes. Out of these incidents, 6,376 (21.9%) were fatal,
leading to 17,907 fatalities. In Brazil alone, there were 185 accidents during this period,
with 155 being fatal and resulting in 574 fatalities (National Transportation Safety Board,
2023).

The process of structural monitoring began with non-destructive inspection (NDI)
and its variants. A systematic NDI approach, conducted at regular intervals, aims to
detect structural damage or material degradation during routine inspections. This is
done to avert potential structural failures that could otherwise lead to more severe and
disastrous outcomes. Traditional NDI techniques include visual inspection, ultrasonic
scanning, radioscopy, dye penetrant testing, shearography, magnetic resonance imagery,
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laser interferometry, infrared thermography, eddy current, etc. (ACHENBACH, 2000).

While crucial in preventing structural failures, many NDI-based inspections are
carried out periodically, often overlooking changes in operating conditions or ongoing
structural deterioration. For instance, Yuan (2016) highlights two examples to illustrate
the limitations of NDI: the detachment of the vertical stabilizer from Flight TS 961
(Airbus A310) in 2005 and the grounding of 128 Boeing 737 aircraft in the Southwest
Airlines fleet in 2015. The former incident occurred just five days after a routine check,
with the next major inspection scheduled for the following year. The latter incident was
due to missed mandatory inspections, leading to approximately 80 flight cancellations in
a single day. Consequently, traditional inspection methods encounter challenges in NDI,
particularly in achieving automatic and real-time assessments, owing to their point-by-
point approach and reliance on bulky devices suited for offline, periodic maintenance.

In recent decades, the application of composite materials has increased across various
industries, including aerospace, civil engineering, and energy generation. Particularly
in the aerospace industry, the utilization of composite materials, such as carbon fiber
reinforced plastics (CFRP) and glass fiber reinforced plastics (GFRP) is a reality for
commercial aircraft. However, composite structures are susceptible to multiple failure
modes, including fiber damage, matrix cracking, delamination between different plies,
fiber debonding, and shear-driven fracture (ZHANG et al., 2020). This vulnerability
presents additional challenges for current NDI techniques, necessitating the development
of more advanced and sensitive methods for detecting and assessing damage in composite
materials.

Enabled by technological advances and breakthroughs in sensor technology, some
NDI methods have evolved into SHM (MITRA; GOPALAKRISHNAN, 2016). The
primary distinction between SHM and NDI lies in their operational timing: SHM aims for
systems that operate in real-time, whereas NDI involves systems used during scheduled
maintenance stops. The fundamental objective of SHM is to identify changes at the
earliest possible opportunity, enabling the scheduling of corrective action to minimize
downtime, operational costs, and maintenance expenses, while also reducing the risk of
catastrophic failures during operation.

Various types of SHM systems have been studied in recent decades, among which
those based on vibrations (LI et al., 2022), eddy current (HA; LEE; LEE, 2021), and
piezoelectric (PARK et al., 2006) sensors can be highlighted. One of the main candidates
are techniques based on ultrasonic guided waves, which have been especially developed in
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the last two decades (IHN; CHANG, 2008; MITRA; GOPALAKRISHNAN, 2016; YANG
et al., 2023). The main advantages of guided wave-based techniques are: (i) the involved
transducers are inexpensive and can be easily incorporated into the production process of
structures, (ii) they have the ability to inspect large areas with a relatively small number of
sensors, (iii) they involve high excitation frequencies, which enables the detection of small
flaws, (iv) low-frequency environmental components do not interfere with the techniques,
and (v) the damping effects of the structure are not very prominent due to the transient
nature of the method. The main problems are linked to the complexities associated with
wave propagation and their interaction with damage.

Among the various forms of guided waves, Lamb waves are utilized when dealing with
thin structures with free boundaries. Due to their applications in thin-walled structures,
Lamb wave inspections are versatile and can be applied to several industries, including
aeronautical (De LUCA et al., 2020), wind turbines (KHAZAEE; DERIAN; MOURAUD,
2022), and piping and pressure vessels (CARRINO; MAFFEZZOLI; SCARSELLI, 2021).
For use in SHM, Lamb waves can be generated and captured in the structure through
Lead-Zirconium-Titanium - Pb-Zi-Ti (PZT) - sensors (GIURGIUTIU, 2014). These
sensors are attached to the structure in an array pattern and can inspect it on demand.
Figures 1a, 1b and 1c describe circular, square and rectangular arrays, respectively.

(a) (b) (c)
Source: Adapted from Wang et al. (2020).

Figure 1 – Commom PZT arrays found on literature: (a) circular; (b) square; and (c)
rectangular.

PZT sensors deform when subjected to electrical voltage and induce an acoustic
vibration in the structure. This vibration propagates and can be measured by other
sensors scattered throughout it. By measuring the behavior of Lamb waves in an
undamaged structure, a ‘‘signature’’ (also called Baseline) can be obtained. Subsequent
measurements are compared with the signature, and detection techniques can be used
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to locate and quantify the damages. Figure 2a presents a NASA benchmark dataset
(SAXENA et al., 2015) that uses Lamb wave to evaluate progressive damage on a CFRP
coupon, Fig. 2b depicts the covered area by de combined sensor mesh, and Fig. 2c
compares wave packages without and with damage to the structure.

(a) (b) (c)
Source: Adapted from (a) and (c) Paixao et al. (2021), and (b) Wu et al. (2021).

Figure 2 – Example of experimental dataset made available by Saxena et al. (2015) (a)
experiemental setup; (b) sensor layout; and (c) measured signals without and with damage
between sensors one and nine.

Figure 2c illustrates the complex influence of damage on Lamb wave signals. The
received signal exhibits delay and attenuation. Moreover, the presence of noise, envi-
ronmental variations, multiple reflections due to damage and/or plate borders, and the
multimodal nature of Lamb waves compound the difficulty of signal processing.

There has been substantial work in the signal processing of Lamb wave responses.
Various techniques employ time-frequency analysis to isolate wave packets, identify wave
modes, and assess changes in time of flight (TOF) (STASZEWSKI, 2002). These methods
can implement multiple transformations, including wavelet transform (FENG; RIBEIRO;
RAMOS, 2018), short-time Fourier transform (STFT) (KE et al., 2019), Hilbert transform
(SU et al., 2019a), among others. However, time-frequency techniques often depend on
isolating wave packets, a task that becomes challenging in scenarios with higher-order
modes or multiple reflections. This complexity underscores the need for advanced signal
processing strategies to accurately interpret Lamb wave signals, particularly in complex
damage scenarios.

Other traditional damage localization methods are based on a damage index (DI) that
represents changes in the state of the structure (ZHAO et al., 2007; MUSTAPHA et al.,
2016). Generally, the DI should be designed to be sensitive to the presence of damage,
and the accuracy of damage localization depends on the validity of the DI. However,
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Figure 3 – Number of publications in the last 23 years, according to SCOPUS, involving
keyworks: (a) Lamb waves and Lamb waves + composites; (b) Lamb waves with neural
networks, convolutional neural networks (CNN) or Bayes/Bayesian.

underlying but non-negligible influences, including temperature variations and changes
in boundary conditions, can be sufficient to mask the damage-related features in signals
and further weaken decision-making (YAN et al., 2005; CROXFORD et al., 2007; LIU et
al., 2015; SALMANPOUR; KHODAEI; ALIABADI, 2017).

In the last two decades, machine learning techniques, including Support Vector
Machines (SVM) (ISA; RAJKUMAR, 2009; MECHBAL; URIBE; REBILLAT, 2015),
Gaussian processes (SILVA et al., 2020), and Artificial Neural Networks (ANN) (LIU
et al., 2013; DWORAKOWSKI et al., 2015), have been employed in the processing of
Lamb wave signals. Furthermore, deep-learning-based approaches (AZUARA; RUIZ;
BARRERA, 2021; WU et al., 2021; ZHANG et al., 2022) utilize the high-dimensional
feature mapping capabilities intrinsic to deep-learning algorithms. This enables the
establishment of a relationship between Lamb wave signals and damage information,
potentially enhancing the accuracy and efficiency of damage detection in SHM.

Figure 3 showcases a comprehensive survey conducted on the Scopus platform. It is
evident from the data that the number of publications involving Lamb waves has been
on a steady incline over the last two decades, culminating in an all-time high of 392
publications as of November 2023, as depicted in Fig. 3a. Research that use Lamb waves
for composite materials inspection are also relevant, with an average of more than 100
studies per year in the last decade.

The data reveals a noteworthy trend in the field of Lamb waves and neural networks
(Fig. 3b). Prior to 2019, the average number of publications per year in this domain



29

hovered around 4.4 articles. However, post-2019, there has been a significant surge in
the usage of the term, resulting in the publication of 110 articles between 2019 and 2022.
Out of these 110 articles, 69 focus on convolutional neural networks (CNNs), highlighting
the prominence of this type of architecture in the area. The earliest work combining
CNNs with Lamb waves dates back to 2019. By 2023, this theme accounts for 20 out of
the 29 articles published, underlining its growing importance and adoption in the field.
Additionally, the number of publications simultaneously addressing Lamb waves and
Bayes or Bayesian inference is notably low, with fewer than 5 works per year. This trend
highlights a potentially underexplored area within the field, suggesting an opportunity
for further investigation and development on the uncertainty quantification strategies on
Lamb wave analysis.

1.2 MOTIVATION

Over the past decade, there has been a surge in application of deep-learing algorithms
across various fields, ranging from image processing (MAHADEVKAR et al., 2022) to
large language models (LLMs) and generative AIs (HADI et al., 2023). The area of SHM
using Lamb waves also experienced this trend, and the scientific community proposed
several new algorithms and applications using deep-learning. Section 2.3.3 showcases
details of this evolution, and Yang et al. (2023) present a comprehensive literature review
about machine learning for ultrasonic waves analysis.

Among promising algorithms, CNNs stand out due to their natural ability for feature
extraction and classification within the same architecture (KIRANYAZ et al., 2021).
These algorithms are already state-of-the-art in some fields, as image recognition and
video processing, and recent works have evaluated the use of classical two-dimensional
CNNs for analyzing Lamb wave signals and detecting damage (LIU; ZHANG, 2019a;
LOMAZZI et al., 2023). In this architecture, the input data is a tensor with at least
two dimensions, height and width, and an optional depth dimension. This approach is
common in image processing, where each depth layer, also known as a channel, represents
color information (for instance, red, green, and blue - RGB). This approach has been
adapted to Lamb wave analysis, with the use of transformation algorithms that represent
the wave propagation signal in some form of image to be classified by a CNN (SU et
al., 2019b; WU et al., 2021). However, this method has the drawback of requiring
some kind of transformation between the Lamb wave signal and the input image, which
can be computationally expensive and/or may result in information loss. Very recently,
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one-dimensional convolutional neural networks (1D CNNs) have emerged as a promising
research area for Lamb wave analysis (RAI; MITRA, 2022), as these networks can work
directly with vector inputs, such as a time-domain signal representing a Lamb wave.
Section 2.3.3 presents an extensive discussion about works using 2D CNNs and the recent
proposals of 1D CNNs in Lamb wave analysis and other SHM applications. This work
explores 1D CNNs for damage detection, localization and quantification, and provides
guidelines for best practices in implementing these algorithms.

Furthermore, machine learning algorithms, especially neural networks, require sub-
stantial amount of data for training. Generating such a volume of data solely through
experimental campaigns is not feasible for many applications. It is not cost-effective to
test all possible damage scenarios, nor it is feasible to introduce certain types of damage
into a structure simply to measure its response. Consequently, the use of numerical
models to simulate scenarios and generate training data becomes integral to SHM. For
these numerical models to be reliable, they must be calibrated with experimental data.
Numerous studies have proposed training machine learning models to interpret Lamb
wave signals using data generated from numerical simulations (SU; YE, 2005a; LU et
al., 2009; SBARUFATTI; MANSON; WORDEN, 2014), indicating a demand for reliable
numerical models. Recent works, for instance, try to account for experimental uncertainty
by introducing noise into the numerical results, often using random or Gaussian noise
(RAI; MITRA, 2021). However, there has not yet been a study where experimental
uncertainty is incorporated directly into the numerical model from experimental results.
The author sees Bayesian inference as a promissing path to incorporate experimental
uncertainty into finite element (FE) models that generate training datasets. These
datasets would be able to include the experimental dispersion and help to train better
machine learning algorithms. This is a subject of investigation addressed in this work.

Additionally, there is a lack of research in the literature that addresses the influence
of temperature on Lamb wave simulations. This influence is usually included at material
level through material tests in low and high temperatures, with property interpolation
between them (MARIANI et al., 2021). This work proposes an inverse approach that uses
Lamb wave signals to estimate probability density function (PDF) for material properties
and obtain a stochastic FE model that can be simulated within confidence intervals.
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1.3 SCOPE OF THE THESIS

Having briefly addressed the main objectives and motivations behind SHM and the
recent developments in the application of machine learning algorithms for Lamb wave
signal analysis, the thesis delves into three pertinent topics concerning these algorithms:
(i) the application of recent 1D CNN techniques to process Lamb wave signals in composite
materials, exploring this promising and relatively new field, and the potential of these
algorithms to enhance accuracy and efficiency of damage detection systems; (ii) the
development of a reliable data generation strategy to complement experimental data
with numerically generated data, aiming to provide a comprehensive dataset for training
machine learning models; (iii) the evaluation of CNNs sensitivity to the type and amount
of data used in the training stage, assessing the performance of the algorithm in scenarios
with limited experimental data and temperature variations. Therefore, the thesis is
organized into the three main parts presented below.

The first part of the thesis focuses on the development of an experimental system
for the collection of Lamb wave signals. The Acoustics and Vibrations Group (GRAVi)
of the mechanical engineering department at UFMG has a Lamb wave detection and
analysis system called LaWaDe (Lamb Wave Detection System). LaWaDe consists of
a signal acquisition platform for collecting Lamb waves signals integrated with post-
processing software developed entirely within the research group. The signal acquisition
platform is build using hardware and software from National Instruments®, i.e., the
PXI® modular system automated with LabView® routines (BITTER; MOHIUDDIN;
NAWROCKI, 2006). The post-processing routines are implemented using MATLAB®.
In this part of the thesis, LaWaDe is enhanced, both in its physical aspect, with the
inclusion of a signal switching platform that enables the automatic capture of multiple
signals in a pitch-catch configuration, and modifications in its LabView interface to adapt
the system to this new automation. Subsequently, the automated version of the system
is evaluated in two tests for damage detection in a composite material structure using 1D
CNNs: (i) a global position localization, and (ii) a local position analysis. Both tests are
evaluated using a multilayer perceprtron (MLP) neural network approach fed by damage
indices and a new proposal of 1D CNN fed directly with Lamb wave signals, without a
pre-processing stage for damage index calculation. This part of the thesis aims to assess
the capacity of the 1D CNNs and their sensitivity to the amount of data used in the
training phase for damage localization.

The second part of the thesis introduces a stochastic updating framework for FE
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models, employing verification and validation steps. The core idea is to develop a
stochastic model that incorporates experimental uncertainty and can supplement the ex-
perimental data with numerically generated data for the training step of machine learning
algorithms. This model potentially reduces the number of experiments needed to create a
machine learning classifier. The proposed framework is based in Bayesian inference and is
structured in a three-step model update strategy: (i) initially, a deterministic analysis is
conducted to determine optimal values for unknown properties, (ii) a sensitivity analysis
using Sobol indices is performed to minimize the number of system parameters in the
Bayesian inference stage, and (iii) a stochastic adjustment is applied using Markov-Chain
Monte Carlo Simulations (MCMC) with the Metropolis-Hastings sampling algorithm to
assign probability distribution functions (PDF) to relevant properties.

To reduce the computational time required for the MCMC process, the thesis proposes
the use of a surrogate model based on ANNs, which offers faster computation compared
to traditional FE models. The ANN model can be trained using parallelized Monte Carlo
simulations, which contrasts with the sequential nature of the MCMC process, thereby
further accelerating the updating procedure. This approach significantly reduces the
time required for model updating without compromising the accuracy of the resulting
probability density functions for uncertain parameters. The proposed framework for
model updating and the surrogate modeling technique are evaluated using the CarbON-
epoxi CompositE PlaTE (CONCEPT) database, provided by Silva (2018). Additionally,
the framework is assessed under varying temperature conditions, aiming to compensate
for temperature effects and incorporate this influence directly into the FE model, without
prior knowledge of material properties.

Finally, the third part of the thesis employs the stochastic FE model to evaluate a
Bayesian data-driven strategy for training 1D CNNs in different scenarios of experimental
and numerical data availability. The performance of the classifiers is assessed based on
the training strategies and the influence of temperature. The model updating strategy is
evaluated for its effectiveness in generating numerical data at multiple temperatures and
damage severities for training the classifier. This approach aims to enhance the robustness
and adaptability of the classifier, ensuring its effectiveness across a range of conditions
and data availability scenarios.
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1.4 OBJECTIVES

The main objective of this doctoral thesis is to propose new contributions in the appli-
cation of 1D CNNs in damage detection using Lamb waves, focusing mainly on evaluating
the impact of experimental data availability and proposing ways to reduce experimental
data limitations related to training machine learning algorihms. Furthermore, this work
evaluates the performance of 1D CNNs on evaluating Lamb wave signals under varying
temperature. In summary:

• to evaluate the performance of 1D CNNs when compared to classical MLP networks
in tasks of detection and localization of damage in composite strutuctures using
Lamb waves;

• to develop a framework for numerical data generation with the addition of experi-
mental uncertainty and temperature effects into a FE model;

• to investigate performance of 1D CNNs in scenarios of limited experimental data,
evaluating the impact of different strategies for training and the effect of tempera-
ture variation on model’s accuracy;

1.5 MAIN CONTRIBUTIONS OF THE THESIS

The main contributions of this thesis to the literature are:

• The development of a 1D CNN strategy for evaluating Lamb wave signals with
minimal pre-processing in SHM applications. The 1D CNNs are evaluated against
classical MLP networks for damage localization under various scenarios of experi-
mental data availability. Additionally, guidelines for training and utilizing these
algorithms are provided;

• The development of a novel framework for stochastic updating of an FE model for
a composite plate, taking into account experimental uncertainty and the influence
of temperature on Lamb wave propagation. This updating approach, based on
Bayesian inference, accommodates the uncertainty in Lamb wave data and the
temperature effects on the measurement process, integrating them into the FE
model. The updated FE model includes a confidence interval within which it can
replicate the experimental setup accurately;
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• The introduction of a surrogate modeling technique based on neural networks
to address the computational challenges associated with Bayesian inference using
MCMC simulations. This integration of Bayesian inference and machine learning
in model updating can significantly reduce the computational cost associated with
MCMC iterations;

• The proposal and evaluation of a Bayesian data-driven machine learning strategy
for training 1D CNN models with constrained experimental data. This method
employs Bayesian inference to update an FE model when experimental data is scarce,
augmenting the dataset with synthesized Lamb wave signals that fall within the
model’s confidence bounds. The stochastic FE model is capable of generating data
for multiple damage cases and varying temperatures, enriching the training dataset
for 1D CNNs. By incorporating insights from the stochastic FE model during the
training phase, the machine learning algorithm can leverage the model’s inherent
uncertainty and improve generalization across unobserved experimental data.

1.6 OUTLINE

This thesis is structured into the following chapters:

• Chapter 1 - INTRODUCTION: This chapter covers the motivation, objectives,
main contributions, and scope of the Thesis.

• Chapter 2 - A BRIEF STATE-OF-THE-ART REVIEW: This chapter
presents a brief literature review concerning SHM inspections using ultrasonic waves,
neural networks for Lamb wave signal processing, and model updating techniques.

• Chapter 3 - DAMAGE LOCALIZATION USING LAMB WAVES AND
1D CONVOLUTIONAL NEURAL NETWORKS: This chapter begins by
introducing the LaWaDe system developed by the Group of Acoustics and Vi-
brations (GRAVi), followed by detailing both physical and software modifications
implemented to automate pitch-catch measurements. It then describes the collection
of Lamb wave signals using this system for two different case studies involving
simulated damage on a composite plate. Subsequently, the chapter presents an
application for both global and local damage localization using a novel 1D CNN
approach and compares the results with a traditional method employing DIs and
an MLP network. Finally, the chapter provides practical guidelines for determining
the CNN structure and concludes with final remarks.
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• Chapter 4 - BAYESIAN UPDATING FOR A LAMB WAVE MODEL
UNDER VARYING TEMPERATURE: This chapter introduces a proposed
framework for updating FE models for Lamb wave propagation in composite
structures. It then delves into the Bayesian inference strategy, detailing the
MCMC/Metropolis-Hastings algorithm used to update the probability density func-
tions of key model parameters. This process results in a stochastic FE model that
accounts for experimental uncertainty. The chapter also proposes a novel surrogate
modeling strategy using artificial neural networks to decrease the computational
time required for the MCMC process. Furthermore, it showcases an experimental
application of the proposed framework on a carbon plate under varying tempera-
tures, illustrating the steps and benefits of creating a stochastic numerical model.
Finally, final remarks are addressed.

• Chapter 5 - BAYESIAN DATA-DRIVEN FRAMEWORK FOR SHM
UNDER LIMITED DATA: This chapter expands the updating framework
introduced previously to encompass the identification of damage parameters within
an experimental setup featuring simulated damage. Employing Bayesian inference
through MCMC simulations in conjunction with the Metropolis-Hastings algorithm,
the framework updates an FE model by integrating observed uncertainties on
experimental data. The updated model is then employed to generate supplemental
data for the actual experimental data. A 1D CNN is subsequently trained on this
hybrid dataset to analyze Lamb wave signals for damage assessment. Comparative
analysis of different training strategies indicates that the hybrid approach provides
the most accurate damage size predictions, surpassing those obtained using solely
experimental data or exclusively numerically generated data. The chapter concludes
with final remarks.

• Chapter 6 - FINAL REMARKS:This chapter comprises a discussion on the
contributions to the literature, main conclusions, and path forward for future work.
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2 A BRIEF STATE-OF-THE-ART
REVIEW

This Chapter extends some discussions started in the motivation of the Thesis with a
brief literature review on the state-of-the-art in SHM using Lamb waves, neural networks
algorithms for damage diagnosis and strategies for numerical models updating. To
facilitate the Chapter’s flow, Fig. 4 presents a graphical abstract with the main presented
themes.
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Figure 4 – Graphical abstract.

• SHM: This Section presents the definition of SHM and exemplifies available
techniques for structures inspection.
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• Lamb waves: This Section presents the general formulation of Lamb waves, their
propagation modes, and the influence of temperature on Lamb wave propagation.
Additionally, it covers numerical techniques for Lamb wave simulation, and methods
available for damage detection using this type of ultrasonic wave.

• Neural networks: This Section consists of a theoretical background of how neural
networks are built, especially MLP and CNN, followed by a summary of applications
of these algorithms in the field of SHM. Special attention is given to recent
applications of CNNs. A list of the main works, along with their methodologies using
2D and 1D CNNs, is provided, and possible research opportunities are presented.

• Model updating: This Section presents methods available for updating models
using experimental observations. It presents Sobol indices for sensitivity analysis,
methods available for substituting a numerical model with a surrogate model,
and both deterministic and stochastic updating strategies for updating model
parameters.

2.1 STRUCTURAL HEALTH MONITORING

SHM has evolved from heuristic condition assessments, up to offering real-time mon-
itoring systems that detect early anomalies or damage in aerospace, civil, or mechanical
structures. According to Giurgiutiu (2014), an SHM system can be classified as either
passive or active. A passive system relies on measuring operational factors to determine
the state of the structure based on them. For instance, in an aircraft, one might monitor
parameters such as speed, vibration levels, turbulence levels, and then employ algorithms
to assess the structural state based on these metrics. In contrast, active systems utilize
sensors and actuators distributed across the structure aiming to detect the presence and
extent of damage. The premise of an active SHM system are similar to those of NDI
systems, although there is a distinguishing feature: SHM systems are geared towards the
permanent installation of sensors within the structure, allowing for analyses whenever
required.

As described by Farrar, Doebling and Nix (2001), damage entails changes compromis-
ing the structure’s performance and safety. Two core SHM methods exist: (i) the physics-
based approach, using inverse problem techniques and finite element (FE) models to
understand physical relations, and (ii) the data-based approach, which relies on machine
learning algorithms to interpret structural behavior from past data, mainly when physics-
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based solutions are impractical due to accuracy or efficiency limits. Available algorithm
options include K-nearest neighbor (SARMADI; KARAMODIN, 2020), support vector
machines (SVM) (MECHBAL; URIBE; REBILLAT, 2015), and artificial neural networks
(ANNs) (LEE; JANG; PARK, 2022). In the domain of SHM of plate-like structures, a
particular focus has been placed on assessing structural conditions using Lamb waves.

2.2 LAMB WAVES

This Section discusses the theory behind a specific type of guided wave, known as
the Lamb waves (2.2.1), and the influence of temperature on these waves (2.2.2). It also
covers available techniques for simulating Lamb waves (2.2.3), and their applications in
SHM (2.2.4).

2.2.1 General formulation

Guided waves are ultrasonic mechanical waves that propagate within structures and
remain confined within their boundaries. Lamb waves, also known as plate guided waves,
are a type of guided wave that propagate between two parallel free surfaces of a thin-
walled structure. This property allows Lamb waves to travel long distances, and enables
their application in ultrasonic inspections of aircraft, missiles, pressure vessels, storage
tanks, and more (GIURGIUTIU, 2014). Lamb waves are multimodal in nature. At any
given frequency, there are at least two modes that coexist, leading to multiple wave
packets in the acquired signal. Lamb waves are also dispersive, meaning that the velocity
of each mode varies with respect to its frequency. Added to the multimodal nature,
this property makes the acquired signal complex in appearance. Therefore, analysis and
implementation of Lamb waves are more challenging than traditional ultrasonic NDI
techniques, as ultrasound inspection (MITRA; GOPALAKRISHNAN, 2016).

Generally, the analysis of wave propagation begins with the derivation of governing
differential elasto-dynamic equations along with their associated boundary conditions.
Frequently, these equations are transformed into the frequency-wavenumber domain to
discern the dispersion characteristics. Dispersion relations, specifically the variation of
group/phase velocity with frequency, delineate the nature of wave propagation. This
includes the identification of propagating modes and the determination of wave velocity
as a function of frequency. Beyond determining dispersion characteristics, the governing
equations are also resolved in the time domain. This allows for the examination of
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wave amplitudes, reflections from edges and boundaries, and interactions with damages.
Methods for Lamb wave simulations are discussed in Section 2.2.3.

A complete theoretical discussion of Lamb waves propagation can be found in text
books on wave propagations (CHEEKE, 2017; GIURGIUTIU, 2014; LEVY, 2003), and
Wang and Yuan (2007a) presents a comprehensive discussion about the formulation
behind Lamb wave propagation in composite structures. However, to discuss the
multimodal and dispersive natures of Lamb waves, Eqs. 1 and 2 presents the general
description of these waves on a plate, which are known as the Rayleigh-Lamb equations:

tan(qh)
tan(ph) = −

4k2qp

(k2 − p2)2 , (Symmetric modes), and, (1)

tan(qh)
tan(ph) = −

(k2 − p2)2
4k2qp

, (Antisymmetric modes) (2)

where p2 = ω2

c2
L
− k2, q2 = ω2

c2
T
− k2, and k = 2π

λ . In these expressions, h represents the half
thickness of the plate; k, ω and λ are wavenumber, circular frequency, and wavelength of
the wave, respectively; and cL and cT are the longitudinal and transverse wave velocities
of the bulk material comprising the plate, respectively. Eqs. 1 and 2 describes that Lamb
waves can exist in two basic types of modes: symmetric and antisymmetric. Symmetric
modes are labeled as S0, S1, S2,..., whereas antisymmetric modes are referred to as A0,
A1, A2,... Symmetric modes correspond to axial propagation modes, while antisymmetric
modes are equivalent to bending propagation modes. Figures 5a and 5b provide a cross-
sectional representation of a structure’s thickness and the displacement field of each mode
at a specific instant in time. Figure 5c presents the wave group velocity disperion curves
for a plate made of A606 steel.

Note that at low frequency-thickness values in Fig. 5c, the S0 mode velocity exceeds
that of A0, making them relatively easy to differentiate. However, as the frequency-
thickness value approaches 1.6 MHz.mm, the velocity of the S0 mode decreases while that
of the A0 mode increases, leading to an inversion of their velocities and the emergence of
the A1 mode. Traditional techniques for damage detection using Lamb waves typically
focus on the lower region of the frequency-thickness chart, as they often depend on the
separation of wave modes (IHN; CHANG, 2008; HU et al., 2010; NAGY; SIMONETTI;
INSTANES, 2014).

Lamb waves can be generated through various methods, including the use of laser,
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(a)

(b) (c)
Source: Adapted from and Yuan (2016).

Figure 5 – Lamb wave modes: (a) displacement field of symetrical mode; (b) displacement
field of anti-symetrical mode; and (c) group velocity dispersion curves in an A606 steel
plate structure.

ultrasound, electromagnetic acoustic transducers, and Lead Zirconate Titanate (PZT)
transducers. PZTs, in particular, are widely used due to their practical benefits; they are
compact, energy-efficient, and can be permanently attached to structures for continuous
monitoring (PARK et al., 2006; GIURGIUTIU, 2014). These sensors deform when
subjected to an electric voltage, thereby inducing an acoustic vibration in the structure.
As these waves are sensitive to modifications in the propagation medium, the structure’s
condition can be inspected by evaluating changes in the measured waves.

2.2.2 Temperature influence on ultrasonic waves

In addition to challenges related to the inherent complexity of guided wave propaga-
tion, one of the primary factors complicating the use of SHM systems based on this type of
wave is their sensitivity to changes in environmental and operational conditions (MITRA;
GOPALAKRISHNAN, 2016). Factors such as humidity, temperature, and boundary
conditions affect the guided wave propagation. Temperature variations are among the
most influential environmental aspects affecting guided waves applications, impacting
propagation characteristics such as wave speeds and amplitude ratios of different wave
modes. It affects the wave response through changes in the propagation medium, such as
thermal expansion/contraction, and through modifications in the transducers (MARZANI;
SALAMONE, 2012).

The study conducted by Konstantinidis, Drinkwater and Wilcox (2006) addresses the
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(a) (b) (c)
Source: Adapted from Konstantinidis, Drinkwater and Wilcox (2006)

Figure 6 – Temperature influence on Lamb wave propagation: (a) temperature cycle; (b)
change in wave package arrival time; and (c) change in central frequency.

influence of temperature variations on SHM evaluations with Lamb waves. The authors
performed an experiment with two PZT sensors on an aluminum plate. To assess the
influence, they varied the specimen’s temperature between 22○C and 32○C, as depicted
in Fig. 6a. The study’s findings show that temperature influences propagation speed,
signal amplitude, and frequency. Figure 6b illustrates the arrival time variation of the
A0 wave packet, and Fig. 6c shows the variation in central signal frequency. In methods
based on amplitude relations or the group speed of wave packets, these variations can
lead to misinterpretations in both damaged and undamaged structures, resulting in false
negatives and false positives.

In the study by Konstantinidis, Drinkwater and Wilcox (2006), the temperature
range assessed spanned only 10 degrees. A broader temperature range was examined
by Scalea and Salamone (2008). The authors varied the temperature between -40°C and
+60○C, corresponding to the operational range of commercial aircraft. They developed an
analytical model of the interaction between the PZT sensor and an aluminum plate with
the temperature as variable. This model was subsequently validated with experimental
results. Figure 7 shows the normalized amplitude variation of the S0 wave packet at
temperatures below ambient (-40○C to +20○C) and above ambient temperature (+20○C to
+60○C). The data indicate that amplitude variation can reach up to 20% at temperatures
lower than the initial ambient temperature.

The Baseline Signal Stretch (BSS) and Optimal Baseline Subtraction (OBS) methods
have been proposed by several authors to compensate for temperature effects, including
Konstantinidis, Wilcox and Drinkwater (2007) and Croxford et al. (2010).

In the BSS method, the baseline signal is adjusted by either compressing or stretching
it using a stretching factor to align it with the signal under analysis. This factor is
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THEORY

(a)

EXPERIMENT

(b)

(c) (d)
Source: Adapted from and Scalea and Salamone (2008).

Figure 7 – Pitch-catch response to S0 Lamb mode in a 1.58-mm-thick aluminum plate
for the PZT actuator-sensor pair under changing temperature in the ranges: (a) and (b)
above ambient +20 and +60○C; and (c) and (d) below ambient -40 to +20○C. Figures
(a) and (c) represents theoretical results, and figures (b) and (d) represents experimental
results.

determined using a cross-correlation-based criterion between the signals. A significant
advantage of this method is that it requires only one signature collected at a specific
temperature value, with subsequent signatures obtained by altering the baseline signature.
However, its applicability is constrained to very narrow temperature ranges (±2○C, as per
(KONSTANTINIDIS; WILCOX; DRINKWATER, 2007)) and does not allow for signal
amplitude variations.

Conversely, the OBS method employs a large number of signatures for each tem-
perature within the operating range, typically spaced at 1 °C intervals. The optimal
signature is chosen based on an error criterion, such as the mean square deviation. While
this method enables a more precise correction for temperature effects, it requires the
collection of a large number of signatures, which can be challenging in practical scenarios
According to Croxford et al. (2010), a combined approach of BSS and OBS methods
provides a more robust solution for temperature compensation.
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2.2.3 Ultrasonic waves simulation

Lamb wave simulation techniques have been extensively reviewed by Willberg et al.
(2015). Among the available techniques, three methods stand out in the literature: the
wave finite element (WFE) method, the Local Interaction Simulation Approach (LISA),
and the FE method.

The WFE method is a semi-empirical method that employs the principles of the
FE method to simulate wave propagation (MEAD, 1973). It involves discretizing the
structure into finite elements, formulating the wave equation, and solving it in either the
frequency or time domain to analyze wave behavior. This approach is advantageous for its
ability to handle complex geometries and material properties, providing detailed insights
into wave phenomena such as dispersion and mode conversion (MACE; MANCONI,
2008a; THIERRY; BROWN; CHRONOPOULOS, 2018; APALOWO; CHRONOPOU-
LOS, 2019)

The LISA, as described by Packo et al. (2012), is based on the finite differences (FD)
method. The elasto-dynamic wave equations are converted into FD equations in time and
space. LISA is effective for simulating Lamb waves in complex structures due to its ability
to handle heterogeneous materials and irregular geometries. It is also computationally
efficient for large-scale simulations. However, LISA’s accuracy is dependent on the
medium’s discretization and the fidelity of local interaction rules (WILLBERG et al.,
2015), which must be carefully defined for each case using the FD approach.

The LISA and WFE methods stand out for their relatively modest computational
demands when contrasted with the FE method. Despite this advantage, a significant
limitation is their lack of standardized integration in commercial softwares. Consequently,
they necessitate custom implementation for each problem being investigated.

The FE method stands out among available approaches due to its relative ease of
implementation and commercial codes with extensive element libraries that are readily
available. As the FE method assumes a full 3D displacement field, it can accurately
capture the wavefront propagation in complex structures (LUCA et al., 2020). Multiple
works applied the FE method for simulating Lamb waves in aluminum (MOSER; JA-
COBS; QU, 1999; GRESIL et al., 2013) and composite structures (YANG et al., 2006;
MACE; MANCONI, 2008b; NG et al., 2012).

For FE models, the choice of mesh size and simulation time-step is essential for
achieving accuracy and stability in elastodynamic simulations. To ensure accuracy, it is
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advisable to employ a minimum of 6 to 10 elements per the shortest propagating wave-
length (MACE; MANCONI, 2008b). To maintain stability, adherence to the Courant-
Friedrichs-Lewy condition is essential (COURANT; FRIEDRICHS; LEWY, 1967). This
condition stipulates that the fastest propagating wave should not traverse more than one
element in a single time-step. Satisfying these two conditions usually makes FE models
for Lamb wave simulations very computationally expensive.

Only a few works address the problem of simulating Lamb waves under variable tem-
perature conditions. The author found three works in literature addressing temperature
effect on Lamb waves simulation:

• Han (2007) referred to charts from MIL-HDBK-5J to derive properties for Alu-
minum 2024-T3 and simulate Lamb waves in temperatures ranging from 0○C to
300○C;

• Mariani et al. (2021) accounted for the impact of temperature in a FE model for
Lamb waves by linearly shifting the excitation signal in the time domain; and

• Perfetto et al. (2022) studied both experimentally and numerically the propagation
characteristics of Lamb waves in a CFRP plate. The authors imposed a linear
variation for all material parameters to account for varying temperature.

Among the identified studies, the effect of temperature is incorporated into numerical
simulations by either linearly modifying the mechanical properties of materials or the
excitation signal. Therefore, the implementation of reliable FE models for simulating
Lamb waves that include experimental uncertainties remains an open research field.

2.2.4 Damage detection using Lamb waves

Damage detection and localization techniques using Lamb waves are broadly cate-
gorized into two groups: theoretical model-based methods and data-driven approaches.
The former involves assessing structural degradation by integrating theoretical analysis
with experimental data, and the latter essentially process and interpret the captured
wave signals. Theoretical techniques often evaluate metrics like degradation, stiffness
reduction, and energy dissipation. However, a significant drawback of these methods
is the need for specific adjustments and reanalysis for each application, limiting their
generalization capabilities.
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Data-driven techniques apply signal processing and identification techniques to ex-
tract information from Lamb wave signals. By assessing the behavior of Lamb waves in
an undamaged structure, one can obtain a "signature" (often referred to as a Baseline).
Subsequent measurements are compared with this baseline, and damage detection tech-
niques can be employed to locate and quantify damage. Among data-driven approaches,
there are several algorithms to interpret Lamb wave information, including support vector
machines (SVM) (MECHBAL; URIBE; REBILLAT, 2015), autoregressive (AR) models
(SILVA, 2018), Gaussian process (PAIXAO et al., 2021), K-nearest neighbor (SARMADI;
KARAMODIN, 2020), and neural networks (SU; YE, 2004; De Fenza; SORRENTINO;
VITIELLO, 2015; AZUARA; RUIZ; BARRERA, 2021; ZHANG et al., 2022; LOMAZZI
et al., 2023). These algorithms are often supported by signal pre-processing techniques,
including time of flight (TOF) estimation (STASZEWSKI, 2002), Hilbert transform (SU
et al., 2019a), Fourier transform (HORA; ČERVENÁ, 2012), and wavelet transform
analysis (FENG; RIBEIRO; RAMOS, 2018). Section 2.3.3 addresses neural networks
algorithms for Lamb waves processing.

2.3 NEURAL NETWORKS

Artificial intelligence emerged as a branch of computer science in the 1950s. Since then,
it has produced tools with potential applications in engineering to solve problems that
require human intelligence (Pham and Pham, 1999). Among the available algorithms, ar-
tificial neural networks (ANNs) have gained prominence due to their ability to generalize,
handle non-linearities, and extrapolate knowledge from an incomplete dataset. A neural
network is a computational model loosely inspired on the brain of mamals. Models based
on neural networks are composed of basic units called neurons, which are interconnected
and perform parallel calculations (GOODFELLOW; BENGIO; COURVILLE, 2016).

In terms of structure, neural networks can be divided into two types: feedforward and
recursive. In feedforward networks, all computation flows in one direction, from the input
to the output, with the output at any given moment depending solely on the input at that
moment. In contrast, recursive networks feature outputs from some neurons feeding back
into earlier layers, endowing these networks with dynamic memory; thus, the output at
any given time depends on both the current input and previous information.

The learning process of a neural network is called training, which can be supervised
or unsupervised. In supervised training, the neural network is exposed to a series of
input data and the expected output. Based on the provided data, the network adapts
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and adjusts its parameters, storing the knowledge in the weights of the connections
between the neurons. In unsupervised training, the network only receives input data
and learns by grouping data into classes with common characteristics. After training,
the network’s efficiency is evaluated with a new, previously unseen dataset, with its
performance measured by its accuracy with this data.

Throughout this work, two architectures of neural networks are utilized, the multi-
layer perceptron and the convolutional neural network. In the following subsections, the
theoretical bases of both architectures are examined (Sections 2.3.1 and 2.3.2), followed
by a comprehensive summary of their respective applications in the field of SHM (2.3.3).

2.3.1 Multilayer perceptron

According to Pham and Pham (1999), the most commonly used neural network type
is the multilayer perceptron (MLP) due to its ease of implementation and robustness.
MLP networks consist of a series of interconnected layers of neurons that receive the
information from the previous layer neurons, process it, then pass it forward.

Assuming a training dataset with dimension M ×N , where M is the number of points
per array, and N is the number of samples in the dataset, the l-th sample vector is
represented by x(l) ∈ RM×1. In a supervised learning scheme, the expected output for
a training sample is represented by y(l) ∈ RP×1, where P is the number of outputs.
The objective of the neural network is to map the function F ∶ x(l) → y(l). A neural
network with at least one hidden layer can act as a universal approximator (HORNIK;
STINCHCOMBE; WHITE, 1989). Each neuron in a hidden layer performs part of this
mapping in the form:

xi+1,k = T (
m

∑
j=1

wij,kxij + bi,k) . (3)

Considering the kth unit (or neuron) of the ith layer, it receives the output xij from
each jth unit of the (i − 1)th layer. The values xij are then multiplied by a weight wijk,
and these products are added. A bias bi,k is added to the result, and then an activation
function (T ) is applied to the result that is propagated to the next layer. The activation
function is responsible for adding non-linearity to the system, and it can assume multiple
forms, from Rectified Linear Unit (ReLU) and leaky ReLU functions, to sigmoid functions,
e.g., logistic function and tanh.

The mapping of the inputs (or features) X to the outputs (or labels) Y is achieved
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Source: ANN structure adapted from De Fenza, Sorrentino and Vitiello (2015).

Figure 8 – Structure of a feedforward MLP network.

through the training process, in which the parameters ΘNN of the networkN are updated
using a set of sample pairs (X(l), Y (l)) through the minimization of a loss function
L(ΘNN) = L(N (X, ΘNN) − Y ). The choice of loss function depends on the task at
hand: cross-entropy is typically used for classification tasks, while the mean squared
error (MSE) is favored for regression tasks.

Algorithm 1 outlines the standard procedure for training a neural network. Available
data is usually divided in three datasets: training, validation and test. The training
dataset is used to adjust the weights of the network, essentially ‘‘teaching’’ it the
desired behavior. The validation dataset, separated from the training data, is utilized
to evaluate the model during training, allowing for tuning of hyperparameters. Finally,
the test dataset, not used during training, is employed to assess the performance of
the fully trained model, offering an unbiased evaluation of its effectiveness. Initially,
network weights are assigned small random values to break symmetry and ensure that
gradients are neither too small nor too large at the onset of training, as suggested by
He et al. (2015b). During forward propagation, the network generates predicted outputs,
which are then compared to the actual outputs to compute the loss. Backpropagation
(RUMELHART; HINTON; WILLIAMS, 1986) follows, where network parameters are
updated. This involves computing the gradients of the loss function with respect to
the network parameters and applying an optimization algorithm to adjust the weights
in the direction of the negative gradient, commonly referred to as gradient descent.
Popular optimization algorithms include Stochastic Gradient Descent (SGD), SGD with
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momentum (SGDM), and Adaptive Moment Estimation (Adam). The magnitude of
weight updates during each training pass is controlled by a hyperparameter known as the
learning rate, denoted by α. The learning rate is a critical element that determines the
step size at each iteration while moving toward a minimum of the loss function. A higher
learning rate can indeed accelerate the training process by permitting larger updates to the
weights. However, if the learning rate is set excessively high, it may render the training
process unstable, potentially causing the optimization algorithm to overshoot minima or
even diverge, failing to converge to an optimal solution. Conversely, an overly low learning
rate may lead to a slow convergence process. The learning rate is typically selected based
on empirical evidence and experimentation and is often adjusted dynamically in response
to the neural network’s performance on validation data. The training process progresses
through multiple epochs, continuing until it meets the predefined stopping criteria.

Algorithm 1: Training steps of a neural network with gradient descent
Result: Trained Neural Network
Input: Training data (X(T r), Y (T r)

), validation data (X(V al), Y (V al)
), network architecture

N

1 Initialize network weights ΘNN ;
2 while Stopping criterion not met do
3 Shuffle the training data (X(T r), Y (T r)

);
4 Divide the training data into mini-batches;
5 foreach mini-batch do
6 Perform a forward pass through the network;
7 Calculate the loss (e.g., cross-entropy loss or );
8 Perform a backward pass to compute gradients (backpropagation);
9 Update weights with gradients (e.g., using SGD, SGDM, Adam);

10 end
11 Evaluate performance on validation set;
12 If performance satisfies the criterion, or no improvement, stop training;
13 end

Source: Prepared by the author.

To manage computational resources more efficiently and to improve convergence,
the training data is typically divided into smaller subsets known as mini-batches. This
approach, known as mini-batch training, allows for more frequent updates of the network
parameters, contributing to a smoother and often faster convergence process. After
training, the performance of the network is evaluated on a separate test set to gauge
its generalization capabilities.

As the training process consists of a multivariate optimization, ΘNN is not necessarily
unique and can produce multiple networks that fit the data. To encode the preference for
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certain sets of weights and remove part of this ambiguity, it is common to add a regular-
ization loss in the form of: R(ΘNN) = λ∑i∑j (ΘNN)2ij, in which λ > 0 is a regularization
parameter. This is commonly called L2 regularization, and it induces the optimization
algorithm to select models with smaller parameters. This regularization strategy also
impacts reducing overfitting, as highly specialized networks with concentrated parameters
are penalized over the ones with a more uniform weight distribution.

2.3.2 Convolutional neural networks

CNNs are feedforward neural networks inspired by animals’ visual cortex. The first
version of a CNN was proposed by Fukushima and Miyake (1982), based on the receptive
fields of monkeys’ visual cortex. The fundamental difference between a convolutional
network and a traditional network is that the former employs the convolution operation
instead of multiplication in at least one of its layers. CNNs have become dominant in the
deep learning field when it comes to tasks like object recognition in images and videos
and voice recognition (KRIZHEVSKY; SUTSKEVER; HINTON, 2012a).

Acording to Kiranyaz et al. (2021), the popularity of CNNs can be attributed to the
following advantages:

• CNNs fuse the feature extraction and feature classification processes into a single
learning body. They can learn to optimize the features during the training phase
directly from the raw input;

• Since CNN neurons are sparsely-connected with tied weights, CNNs can process
large inputs with a great computational efficiency compared to the conventional
fully-connected MLP networks;

• CNNs are robust to small transformations in the input data including translation,
scaling, skewing and distortion;

• CNNs can adapt to different input sizes.

According to Abdeljaber et al. (2017), a typical CNN is a feedforward network that
comprises a series of convolutional and subsampling layers. The network operates by
conducting convolution operations between a kernel and the input data in each layer,
followed by subsampling to reduce the spatial dimensions before forwarding it to the next
layer. They are capable of detecting patterns in input data such as images or time series
with minimal preprocessing required prior to input, and they are classified according to
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the input layer. In 2D networks, two-dimensional tensors, such as images, are used as
input, while in 1D networks, 1D tensors, such as time series, are used. In both cases, the
input signals may have multiple parallel channels, such as RGB channels in images or
multiple parallel series in the case of 1D time series.

A CNN performs a similar mapping F ∶ x(l) → y(l) as described for the MLP network,
but it uses a sequence of convolution and pooling operations. Throughout this work,
network layers are named using the convention I (Input), FC (Fully-Connected), C
(Convolution), R (ReLU), P (Pooling), D (Dropout), and O (Output), respectively. And
for enhanced visibility, each basic building block, i.e., convolution, pooling, and ReLU,
or fully-connected and ReLu, is grouped and presented within parentheses in the naming
convention. For instance, a:

I − (C −R − P ) −D − (C −R − P ) −D − (FC −R) −O (4)

network consists of an input layer, followed by a convolution layer with ReLU activation
and pooling, a dropout layer, one more convolution-ReLU-pooling block, another dropout
layer, a fully-connected layer, a ReLu layer, and finally the output layer. This structure
enables the extraction of increasingly complex features from the input data. The following
subsections present each of these layers.

Convolution layer

The main layer in a CNN is the convolutional layer, in which a filter or kernel is
convolved with the input tensor. This operation can be represented mathematically as
Y = X ∗W , where Y is the output feature map obtained by convolving the kernel W

with the input tensor X. Figure 9 depicts the convolution operation for a 6 × 6 × 1 input
tensor with a 3 × 3 × 1 kernel. The resulting feature map is a tensor with dimensions
4 × 4 × 1.

It is important to notice that the kernel depth matches the last dimension of the input
tensor (one in Fig. 9), while the resulting feature map has always one as last dimension.
Howerver, multiple kernels can be used as different feature extractors, as depicted in Fig.
10. The resultant feature maps for all kernels are stacked and passed to subsequent layers.

Besides kernel size, the convolutional layer has other two parameters: stride and
padding. Padding refers to the addition of extra points (or pixels in the case of images)
around the border of the input volume or feature map. The primary purpose of padding
is to control the spatial size of the output feature maps. Commonly, ‘‘zero padding’’ is
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Figure 9 – Demonstration of convolutional operation.

(a)

(b) (c) (d)
Source: Adapted from Yamashita et al. (2018).

Figure 10 – Examples of how kernels in convolutional layers extract features from an
input tensor: (a) input tensor; and multiple kernels working as different feature extractors,
such as (b) vertical edge detector; (c) horizontal edge detector; and (d) outline detector
(bottom). Note that red color intesity represents magnitude, each small image is kernel,
and those in the right are output feature maps.
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used so the convolutional filters can process the border regions effectively. Alternatively,
‘‘same padding’’ maintains the size of the output feature map to be the same as the input,
and ‘‘valid padding’’ refers to the absence of padding. Stride in CNNs is the step size the
filter takes when moving across the input. A stride of one moves the filter pixel by pixel,
yielding detailed outputs, while larger strides reduce output size and computational load
by skipping pixels. After the convolution operation, a bias b is added to the result, and
the result is allocated in the proper position of the feature map.

Algorithm 2 presents the convolution operation in an input array X. The dimensions
of the output feature map are calculated based on the input dimensions, filter size, number
of filters, stride, and padding. The algorithm then iterates over each filter and applies it
to the corresponding region in the input volume. The sum of the element-wise product of
the filter and the input region is calculated and assigned to the feature map region. This
process is repeated for each position in the output volume and for each filter.

Algorithm 2: Forward pass through a convolutional layer in a CNN
Result: Feature maps after convolution
Data: Input volume X, convolutional filters W , bias b, stride s, padding p

1 Calculate output dimensions based on X, W , s, and p;
2 Initialize output feature maps to zero;
3 for each filter w in W do
4 for each position x, y in the output feature map do
5 Define a region R in the input image corresponding to the current x, y position,

considering stride and padding;
6 Perform element-wise multiplication of R and filter w;
7 Sum the result and add bias b to get a single value;
8 Assign the result to the appropriate position in the output feature map;
9 end

10 end

Source: Prepared by the author.

The output of a convolutional layer is passed to an activation layer, usually a ReLU
function in deep learning applications. This activation function is applied element-wise
to the feature map , introducing non-linearity, and resulting in an activated feature map
Z. Therefore, a convolutional layer with activation function can be described as:

Z = ReLU(X ∗W + b) (5)

in which ReLU represents the activation function.
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ReLU layer

The Rectified Linear Unit (ReLU) has emerged as one of the most widely used
activation functions in deep learning, despite the existence of several other activation
functions such as sigmoid, tanh, and Leaky ReLU. Its popularity in deep learning networks
can be attributed to its simplicity. The ReLU function operates on a simple principle:
it outputs the input directly if it is positive; otherwise, it outputs zero. Mathematically,
it is defined as f(x) = max(0, x). This means that for any positive input, the output is
identical to the input, and for any negative input, the output is zero. This activation
function introduces non-linearity into the network, enabling the learning of complex
patterns and relationships within the data (KRIZHEVSKY; SUTSKEVER; HINTON,
2012b).

One of the primary advantages of ReLU in deep learning networks is its ability
to alleviate the vanishing gradient problem. This issue occurs when gradients become
too small to drive effective learning, particularly in deep networks with many layers.
Since the gradient of the ReLU function is either zero (for negative inputs) or one (for
positive inputs), it ensures that during backpropagation, the gradients do not diminish
exponentially as they pass through multiple layers. Additionally, the ReLU function is
computationally inexpensive compared to other activation functions like sigmoid or tanh,
as it involves a simple max operation (SZANDALA, 2020).

Pooling layer

The pooling operation is responsible for reducing the spatial dimensions of the feature
map while preserving essential information in CNNs. This operation is relevant in
progressively decreasing the spatial size of the representation, which in turn reduces the
number of parameters and computational load in the network.

Max pooling and average pooling are the two commonly employed pooling operations.
Max pooling selects the maximum value within a pooling window, while average pooling
computes the average of the values within the window. The pooling layer operates
independently on each depth slice of the input and resizes it spatially. It typically employs
the MAX or AVERAGE operations.

In 2D CNNs, the most common pooling layer comprises a 2x2 filters applied with a
stride of 2, which downsamples every depth slice in the input by 2 along both the width
and height dimensions. In this context, each pooling operation involves evaluating four
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Figure 11 – Demonstration of pooling layer principle: (a) Max pooling operation; and (b)
dimensionality reduction.

numbers, corresponding to a small 2x2 region in some depth slice, as illustrated in Fig.
11a. This process discards 75% of the activations but retains the spatial information of
the original array (see Fig. 11b). Importantly, the depth dimension of the feature map
remains unchanged. For shallow networks, larger pooling filters sizes and stride can be
used to speed the data subsampling from large inputs, at the cost of loss of information.
Additionally, pooling layers typically do not employ zero-padding.

Normalization and dropout layers

Along the network, normalization layers, such as batch normalization, are utilized to
normalize the activations within a layer to address the problem of internal covariate shift.
Batch normalization applies a transformation that maintains the mean output close to
0 and the output standard deviation close to 1. By normalizing the activations, these
layers help stabilize and regularize the learning process, enable faster convergence, and
improve the network’s generalization capabilities (IOFFE; SZEGEDY, 2015).

A dropout layer can also be applied to randomly set a subset of activations to zero
during training. The primary purpose of dropout is to prevent overfitting and enhance
the generalization performance of the network. By dropping out neurons, dropout layers
promote the development of a more robust network that does not depend too heavily on
specific neuron connections (SRIVASTAVA et al., 2014).

Fully connected layer

At the end of the network, the pooled feature map is flattened into a vector and fed
into one or more fully connected layers, similar to an MLP network, and the output layer
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of the CNN applies an activation function suitable for regression or activation.

Output layer

An output layer is capable of performing either classification or regression tasks. Each
task requires a distinct loss function, which assesses the discrepancy between the network’s
predictions and the true labels during the training phase.

- Classification layer

Classification layers implement the cross-entropy loss for classification tasks involving
mutually exclusive classes. In standard classification networks, a softmax layer typically
precedes the classification layer (BISHOP, 2006).

The softmax function of a single ith unit of a layer with K ⩾ 1 units is given by:

ŷi(z) =
ezi

∑k
j=1 ezj

(6)

in which z is the input of the softmax unit, i = 1, 2, ...K, z = (z1, z2, ...zK) ∈ RK , 0 < ŷi < 1
and ∑k

i=1 ŷi = 1. The softmax function normalizes the input values of each unit between 0
and 1, and assures that the sum off all units output is equals to one.

During training, the softmax function outputs are used to assign each input to one of
the K mutually exclusive classes, employing the cross-entropy function in a 1-of-K coding
scheme:

loss = −
K

∑
i=1

yi ln ŷi (7)

where yi is the true label for the i-th neuron, i.e., zero or one.

- Regression layer

A regression layer calculates the half-mean-squared-error (MSE) loss as metric used
to optimize the network. The MSE for a single observation is represented as:

MSE = 1
R

R

∑
i=1
(yi − ŷi)2 (8)

where R is the number of responses, yi is the target output, and ŷi is the network’s
prediction for response i.
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Source: Kiranyaz et al. (2021).

Figure 12 – CNN network structure with two blocks convolution-pooling.

For a network with multiple neurons in the output layer, the MSE is defined as as:

MSE = 1
M ×R

M

∑
i=1

R

∑
i=1
(yi − ŷi)2 (9)

where M is the number of neurons. When training, the optimzation algorithm calculates
the mean loss over the observations in the mini-batch.

Figure 12 illustrates the classical structure of a CNN. The output layer can be adapted
to represent a classification or a regression layer.

2.3.3 Neural networks applications on SHM and Lamb waves

One of the pioneering works in the application of neural networks to SHM is that
of Kudva, Munir and Tan (1992), conducted by researchers from the Northrop Aircraft
Division, now part of Northrop Grumman Corporation. This study introduced a novel
approach for detecting and quantifying significant damage in aeronautical structures,
utilizing strain measurements interpreted through a neural network. Although Lamb
waves were not the focus for damage detection in this instance, with strain measurements
being the primary data source, the research is noteworthy for its early adoption of neural
networks and utilization of numerical models in SHM.

The initial network training was carried out using strain information obtained from
a finite element model of the structure. Once trained, the network was exposed to
experimental strain data measured on a real structure and was expected to provide the
location and size of the damage. The authors monitored strain measurements from an
aluminum panel with stiffeners, as depicted in Fig. 13b, using a MLP network with two
hidden layers and 40 neurons each, as shown in Fig. 13b. The panel was divided into 16
regions, named from A to P, and 40 strain gages were positioned in the center of each
edge of the regions. As an applied force, a constant compression stress was applied to
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(a) (b)
Source: Adapted from Kudva, Munir and Tan (1992).

Figure 13 – One of the first applications of ANNs on the field of SHM, with (a) strain
sensor locations and bays A to P; and (b) MLP that uses strain measurements to define
damage size and location

the ends of the panel. The network was trained to detect holes inside the 16 regions and
inform the diameter.

The results were mixed. When the network was trained using data from a single bay,
it demonstrated the capability to predict the radius. However, as the complexity of the
task increased with the addition of more bays and a greater variety of possible diameters,
the neural network encountered difficulties. This challenge was largely attributed to the
lack of sufficient training examples. This research highlights a key drawback of neural
networks: their require a lot of data and computational power for training. In practical
terms, a neural network necessitates examples from the entire operational domain to
effectively learn and generalize. This can be a big hurdle, especially in SHM. Introducing
every conceivable type of damage into a structure for training purposes is impractical.
Kudva, Munir and Tan (1992) also evaluated that employing numerical simulations for
generating data is a simpler and more cost-effective alternative. Nonetheless, at the time
of this study, simulating complex structures or conducting explicit simulations, as those
needed for Lamb wave analysis, was not feasible.

The application of neural networks to Lamb wave detection algorithms remained un-
derexplored in subsequent years. The computational cost and the extensive data required
for training machine learning algorithms posed barriers to their widespread adoption.
Moreover, it is impractical to feed an entire Lamb wave signal into a traditional MLP
network due to the exponential increase in parameters within a fully connected network.
Consequently, classical machine learning approaches typically necessitate preprocessing
steps and depended on hand-crafted features, such as damage indices (DIs), as inputs,
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which could result in suboptimal classifiers and high computational demands. This focus
led to the majority of research efforts being directed toward detection algorithms based
on the physical principles of Lamb waves, as discussed in Section 2.2. Until the beginning
of the last decade, only a handful of studies dealt with neural networks, specifically
using MLPs combined with various pre-processing techniques, such as discrete wavelet
transform ((SU; YE, 2004; LU et al., 2009), (LIU et al., 2013)), and DI calculations
((DWORAKOWSKI et al., 2015), (De Fenza; SORRENTINO; VITIELLO, 2015)).

This scenario changed in the mid-2010s, as deep learning began to rapidly advance
across various fields, from image processing (KRIZHEVSKY; SUTSKEVER; HINTON,
2012a), to medical applications (LITJENS et al., 2017; YAMASHITA et al., 2018) and
natural language processing (ABDEL-HAMID et al., 2012; BUBECK et al., 2023). This
shift can be attributed to the exponential increase in computational power, coupled with
the advent of the ‘‘Big Data’’ era, where collecting and storing large volumes of data
has become feasible and cost-effective. Specifically for Lamb wave applications, CNN
algorithms have seen a notable surge in popularity. CNNs have a significant advantage
over traditional ANNs because they can integrate feature extraction and classification
tasks within a single framework (KIRANYAZ et al., 2021). Unlike conventional machine
learning approaches that often rely on hand-crafted features, which can be sub-optimal
and computationally demanding, CNN-based methods directly extract features from the
input data, thereby potentially maximizing accuracy.

The first work addressing damage detection using Lamb waves and CNNs was
proposed by Su et al. (2019b). In this study, the authors proposed a methodology
summarized in Fig. 14a . They used a square laminate (600 mm x 600 mm x 2 mm) made
of carbon fiber and epoxy resin with 16 layers. The PZT mesh used had four sensors, with
only one actuator and three receivers. Damages were simulated as concentrated masses
positioned at 64 points on the structure. For damage severity analysis, the authors
used three masses glued to the plate: 50 g, 100 g, and 200 g. The time responses
were transformed into the frequency domain, resulting in a vector of 300 points for each
sensor, totaling 900 points. This vector was then rearranged into a 30 x 30 matrix
and provided as input to a 2D convolutional neural network. For training, a total
of 140 signals were collected for each damage at each position, totaling (64 × 3 × 140)
samples. The neural network consisted of a CNN with 7 layers, with the configuration
(I −C1 − P1 −C2 − P2 − F −O). The network was trained with all collected data. The
model validation was carried out using damages in the same training positions, just with
a different collection. Figure 14b shows the results provided by the network. According



CHAPTER 2. A BRIEF STATE-OF-THE-ART REVIEW 59

(a) (b)
Source: Adapted from Su et al. (2019b).

Figure 14 – 2D CNN damage detection method: (a) signals pre-processing and training
methodology; and (b) damage localization used at training (blue) and CNN predictions
(red).

to the authors, out of 192 tests, only the 200 g damage at position 35 was not correctly
classified, totaling 191 correct answers, or a success rate of 99.5%. However, it should be
noted that the authors performed the training and testing of the network using practically
the same data, since, all else being constant, the only difference between the training and
validation acquisitions is the noise, which was filtered using Wavelet transform. Therefore,
the high success rate can be interpreted as success with data similar to training.

After the work of Su et al. (2019b), there have been multiple articles addressing
Lamb waves and CNNs in multiple SHM areas, such as fatigue crack detection ((LIU;
ZHANG, 2019b), (XU et al., 2019)) , corrosion in metallic plates (ECKELS et al., 2022),
bridge decks inspection (SHI et al., 2023), weak bonds inspection (RAMALHO et al.,
2023), pipelines inspections (SHANG et al., 2023), impact detection (YANG et al., 2023),
among others. These works used CNNs either as feature extractors or as image classifiers,
applying a transformation to the time series to generate an input image for a 2D CNN.

For composite structures, damage detection has been done using 2D CNNs. Azuara,
Ruiz and Barrera (2021) and Wu et al. (2021) both propose 2D CNNs trained with time-
frequency images generated with a continuous wavelet transform (CWT) applied to Lamb
wave signals. The former uses this approach to predict simulated damage size, and the
latter perdicts delamination area in plates obtained from the dataset at the Prognostics



CHAPTER 2. A BRIEF STATE-OF-THE-ART REVIEW 60

Center of Excellence at NASA Ames Research Center. Gonzalez-Jimenez et al. (2023) also
proposes a 2D CNN-based algorithm that localizes damage by processing Lamb waves.
The authors used a Grayscale encoding method to transform the time series into grayscale
images. Figure 15 presents the strategy used by the three studies. The main disadvantage
of these approaches is the need of a pre-processing step, that requires computational effort
and can lose information contained in the time series.

To minimize pre-processing steps, recent works used 1D CNNs, as these networks can
process 1D arrays. The work of Ince et al. (2016) is arguably the first application of a
1D CNN for SHM purposes. The authors proposed a fast and accurate motor condition
monitoring and early fault-detection system using 1D CNN and acceleration data. The
proposed approach is directly applicable to the raw data (signal), and, thus, eliminates
the need for a separate feature extraction algorithm resulting in more efficient systems in
terms of both speed and hardware. Following this work, several other authors applied 1D
CNNs as a damage detection algorithm for vibration data (AVCI et al., 2017), structural
joints (SHARMA; SEN, 2020), delamination (CRISTIANI et al., 2022), and fatigue cracks
detection (XU et al., 2023), etc. Kiranyaz et al. (2021) presents an extensive discussion
about 1D CNN and exemplifies this network structure with applications in various fields.

In the field of Lamb waves and metallic structures, Zhang, Li and Ye (2021) proposes
a time-varying DI (TVDI) feature that preserves the temporal information to improve
localization accuracy. This DI is calculated in a piecewise manner along the Lamb wave
signal and the resulting vector is used as input to a 1D CNN, that localizes the damage.
Shao et al. (2022) proposed a damage classification technique of aircraft aluminum plate-
type structures using a 1D CNN. Pandey, Rai and Mitra (2022) employed the Local
Interpretable Model-Agnostic Explanations with a 1D CNN to interpret the classifications
of the model in terms of damage feature contributions.

Concerning composite materials inspection, only two works used 1D CNNs to process
Lamb wave signals. Rai and Mitra (2022) proposed a 1D CNNs working as a feature
extractor in a transfer learning strategy to detect and locate damage in composite
structures. The strategy consists of two phases: on the first phase, they used a 1D CNN
as an autoenconder (LI; PEI; LI, 2023), which was trained in a unsupervised scheme
to learn key features of the Lamb wave signals. Thereafter, in the second phase, a
classifier block is constructed stacking a 1D CNN layer, a fully connected layer and a
binary classification layer (damage and undamaged classes). The autoencoder of the first
phase is then imported and used as input to the classifier block. The system is then
fine tuned with a training dataset and used to classify unseen damage. The authors
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Source: Adapted from: (a) Azuara, Ruiz and Barrera (2021), (b) Wu et al. (2021), and (c) Gonzalez-Jimenez et al. (2023).

Figure 15 – Schematic representations of approaches using 2D CNNs: (a) methodology
proposed by Azuara, Ruiz and Barrera (2021); (b) methodology proposed by Wu et al.
(2021); and (c) methodology proposed by Gonzalez-Jimenez et al. (2023).



CHAPTER 2. A BRIEF STATE-OF-THE-ART REVIEW 62

Source: Rai and Mitra (2022).

Figure 16 – Flow diagram for the adopted transfer learning scheme involving a 1D CNN
proposed by Rai and Mitra (2022).

achieved a classification accuracy of 97.91% during the training phase and 82.64% during
the generalization test. Figure 16 depicts the transfer learning strategy.

Zhao et al. (2023) proposed a modified one-dimensional convolutional gated recurrent
unit (MC1-DCGRU) for surface dent deformation and inter-laminated damage caused by
low-velocity impact. The authors combined the feature extraction capabilities from 1D
CNNs and the temporal information capturing ability of gated recurrent units (GRU).
Their results indicate that this kind of model effectively captures damage features and
temporal information from Lamb waves, enabling accurate damage localization with
single-point excitation.

However, neither of these two authors explored the application of a 1D CNN directly
on Lamb wave data for classification and quantification tasks. Rai and Mitra (2022)
employed a 1D CNN as an autoencoder for feature extraction, and used the extraction as
input for a separated classifier, while Zhao et al. (2023) utilized a wavelet denoising
algorithm for signal pre-processing, and a modified 1D CNN+GRU for classification.
Chapter 3 explores this research opportunity, using a 1D CNN directly on Lamb wave
data with minimal pre-processing, and evaluates the performance of the algorithm in
localizing damage compared with a classical MLP network fed with DIs calculated from
the signal.
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2.4 MODEL UPDATING

As presented in Section 2.3.3, neural networks require a substantial amount of data
during the training process to effectively generalize over unseen data. In SHM applications,
generating this volume of data exclusively through experimental means is not feasible.
Therefore, numerical simulations can be employed to generate training data, and Section
2.2.3 discussed numerical techniques available for simulating Lamb wave propagation.

Nevertheless, for numerical models to accurately reproduce real structures, they need
to be calibrated with experimental data. Ereiz, Duvnjak and Jimenez-Alonso (2022)
provide an extensive discussion on finite element model updating methods. These methods
can be categorized into two main areas: deterministic approaches and stochastic (or
probabilistic) approaches. This Section introduces pertinent topics in the field of model
updating, such as sensitivity analysis for reducing model complexity (2.4.1), surrogate
modeling techniques (2.4.2), deterministic model updating methods (2.4.3), and stochastic
model updating methods (2.4.4).

2.4.1 Sensitivity analysis

Sensitivity analysis evaluates the impact of variations in model parameters on the
model’s output (EREIZ; DUVNJAK; JIMENEZ-ALONSO, 2022). This process involves
identifying metrics that represent the output and quantifying the influence of each
parameter on these metrics. The complexity of sensitivity analysis escalates for nonlinear
systems, where both individual parameters and their interactions contribute to the
outcomes, particularly in multi-dimensional systems where numerous interactions must
be assessed.

Consider the model response defined by:

Y =M(θ), (10)

where θ = (θ1, θ2, . . . , θk) represents the vector of k input variables, and Y is the output
scalar. In sensitivity analysis, the model inputs are considered as a random vector. To
simplify, these inputs are assumed to be uniformly distributed, denoted by π(θi) ∼ U(0, 1).

Sensitivity analysis via Sobol indices involves decomposing the output Y into terms
with increasing dimensionality, allowing for an orthogonal decomposition of the output:

Y =M0 +
k

∑
i=1
Mi(θi) +

k

∑
i<j

Mij(θi, θj) + . . . +M1...k(θ1, . . . , θk), (11)
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whereM0 is the expected value of the output E(Y ). The terms in Eq. (11) are orthogonal,
and each term can be calculated using conditional expectations. The terms Mi(θi) and
Mij(θi, θj) are the conditional means for the parameters i and ij (i ≠ j) respectively
(RAQUETI et al., 2022):

Mi(θi) = ∫
1

0
. . .∫

1

0
M(θ) dθ∼i −M0, (12)

Mij(θi, θj) = ∫
1

0
. . .∫

1

0
M(θ) dθ∼ij −M0−

Mi(θi) −Mj(θj),
(13)

where ∼ i indicates that parameter θi is held constant. The variance of the conditional
expectation is used as a sensitivity measure. The first-order Sobol indices, indicating the
effect of each input parameter on the output variance, are given by:

Si =
V ar[Mi(θi)]
V ar[M(θ)] . (14)

These indices represent the main effect of each input parameter. The second-order indices,
indicating the interaction effects, are:

Sij =
V ar[Mij(θi, θj)]

V ar[M(θ)] . (15)

In this study, the first and second-order Sobol indices are computed to determine the
parameters influence on the outputs of a FE model. This analysis is performed using
Monte Carlo simulations and the UQLab framework (MARELLI; SUDRET, 2014).

2.4.2 Surrogate modeling

To compute Sobol’ indices (Section 2.4.1) or perform Bayesian inference using MCMC
(Section 2.4.4), it is necessary to perform multiple simulations. Although this task can
be performed using the original FE model, the associated computational cost can be high
and become computationally expensive. A possible alternative to address this problem
is the use of surrogate models. The most popular surrogate modeling techniques include
polynomial regression (LIU et al., 2020; LIM; MANUEL, 2021), radial basis function
(ZHOU et al., 2016), Kriging predictor (WAN; REN, 2016), neural networks (PADIL;
BAKHARY; HAO, 2017) and other methods.

In this work, two kinds of surrogate models are used: (i) polynomial chaos expansion,
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and (ii) neural networks. The former is used within the UQLab framework to compute
Sobol indices in sensitivity analysis, and the latter is proposed as a novel approach to
reduce the computational cost associated with simulating Lamb wave models in the
Bayesian inference process.

Polynomial chaos expansion

The Polynomial Chaos Expansion (PCE) of a model response is a sum of orthogonal
polynomials weighted by coeficients to be determined. They can be expressed as:

Y =M(θ) =
∞

∑
α=0

yαΨα(θ), (16)

in which Ψα(θ) represents multivariate orthonormal polynomials, and yα are coefficients
to be determined in order to perform the expansion. For computational implementation
purposes, a finite version of the PCE is used

Y ≈MP C(θ) =
P

∑
α=0

yαΨα(θ), (17)

where P is the number of terms in the PCE. The number of terms depends on the
number of input random variables m and the maximum degree allowed for the polynomial
expansion, p. According to Marelli and Sudret (2018) P is defined as:

P + 1 = (m + p)!
m!p! , (18)

The choice of orthogonal polynomial family should align with the distribution of the
model inputs. A detailed discussion on the families of polynomials and the methods for
calculating their coefficients is available in Marelli and Sudret (2018). In this study, the
UQLab framework (MARELLI; SUDRET, 2014) is utilized to construct a PCE based
on input distributions. UQLab automatically selects the most suitable polynomial family
according to the input data distribution.

ANN for surrogate modeling

As explained in Section 2.3.1, a neural network with one hidden layer sufficiently
large can be proven to be an universal approximator. Therefore, these networks can be
used as surrogate models given a proper training. Previous works have demonstrated the
capacity of neural networks as surrogate models in applications such as general modeling
(GORISSEN et al., 2010), fluid flow (YETKIN; ABUHANIEH; YIGIT, 2024; GUO; LI;



CHAPTER 2. A BRIEF STATE-OF-THE-ART REVIEW 66

IORIO, 2016), and solid mechanics (HAGHIGHAT et al., 2021). Fakih et al. (FAKIH et
al., 2022) demonstrated the feasibility of neural networks as a surrogate model to simulate
Lamb waves in aluminum structures.

In this work, a novel strategy for training and validating an ANN to act as a surrogate
model for Lamb waves in a composite structure is presented. This surrogate model is
used to speed up the Bayesian inference process. The complete framework is presented
in Section 4.4.3.

2.4.3 Deterministic approaches for model updating

Deterministic updating is usually encoded as a minimization problem and aims at
finding point estimates, or optimal values, for physical parameters. These problems can
be solved with techniques ranging from traditional optimization algorithms, like the least-
squares method, to more advanced ones like genetic algorithms (STANDOLI et al., 2021)
or particle swarm optimization(MARWALA, 2010).

Least squares

This work employs a modified version of the least-squares method for deterministic
updating of model input parameters. The method’s formulation, presented by Bud et
al. (BUD et al., 2022), is reproduced here for the reader’s convenience. It consists of a
multi-loss optimization technique that aims to minimize multiple loss function derived
from the model outputs. To accomplish this, the influence of each input on the loss
functions is linearized, and the numerical calculation of partial derivatives with respect
to each parameter is conducted.

Assuming a calibration process that seeks a set of parameters θ to minimize the
discrepancy between a set of model outputs and experimental observations, the problem
can be formulated as a constrained minimization problem. An error metric is defined as:

ε(θ) = Ytarget −M(θ) (19)

where Ytarget represents the target values (e.g. experimental measurements) and M(θ)
denotes the outputs of the model M given the parameters θ. Note that multiple error
metrics can be used.

Both qualitative and quantitative constraints can be applied to θ to ensure the model’s
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limits remain within physically plausible bounds. Quantitative constraints take the form
of (ai ≤ θi ≤ bi), where ai and bi are the lower and upper bounds for the i-th variable,
respectively. Qualitative constraints may include symmetry restrictions and relationships
between not entirely independent parameters (e.g., the elastic moduli in plain weave
composites typically have similar values and can have established relationships between
them). This set of restrictions, combined with a model that may be underdetermined
with respect to the number of equations relative to the number of variables, makes it
impossible to obtain θ in a single-step optimization. Therefore, an iterative approach
is required, in which in each step, a set of initial values θ0 is evaluated and the error
between the model’s output M(θ0) and the target value Ytarget is assessed.

The Taylor expansion of the error function in the vicinity of its initial value ε(θ0),
truncated after the linear term, and rearranged for minimization, is given by

ε(θ) ≈ ε(θ0) +∑
i

∂ε

∂θi

∣
θ0

∆θi (20)

where ∆θi represents small variations of the i-th parameter around the expansion point
θ0. The goal is to find the parameter increments ∆θi that minimize the expanded error.

To minimize the error function, it is necessary to determine the variations ∆θi in the
calibration parameters that lead to a zero error function. The gradient components of the
error function (ε) are derived by introducing incremental changes to each calibration
parameter (θi), calculating the resulting incremental errors, and holding the other
parameters θj,∀j ≠ i, constant.

∂ε

∂θi

RRRRRRRRRRRθ0

= ε(θ1, θ2, . . . , θi + 1, . . .) − ϵ(θ1, θ2, . . . , θi, . . .) (21)

By inserting Eq. 19 into Eq. 21, we obtain

∂ϵ

∂θi

RRRRRRRRRRRθ0

= −M(θ1, θ2, . . . , θi + 1, . . .) −M(θ1, θ2, . . . , θi, . . .) (22)

which implies that the gradient of the error function can be calculated by the
simple difference in the values of the results from the model models with parameters
(θ1, θ2, . . . , θi + 1, . . .) and (θ1, θ2, . . . , θi, . . .).
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Incorporating Eq. 19 into Eq. 20 results in a set of equations:

∑
i

∂ϵ

∂θi

RRRRRRRRRRRθ0

∆θi =M(θ0) − Ytarget (23)

Eq. 23 usually defines an underdetermined system of equations. If different model
outputs must have different significances, one can account for the varying significance by
modifying the equations introducing a set of arbitrary weighting factors wi, resulting in

⎡⎢⎢⎢⎢⎣
W

∂ϵ

∂θi

RRRRRRRRRRRθ0

⎤⎥⎥⎥⎥⎦
∆θi =W [M(θ0) − Ytarget] . (24)

In this context, W represents a diagonal matrix that contains the weighting param-
eters wi. Consequently, each equation i in the system is scaled by a constant wi, which
corresponds to its significance within Eq. 23. Given that the system is under-constrained,
there are multiple possible solutions. A higher weighting parameter will influence the
system to prioritize the corresponding equation’s observation more heavily.

This method is used in Chapter 4 to find optimal properties for the Lamb wave FE
model, inside the proposed stochastic update framework.

2.4.4 Stochastic approaches for model updating

Unfortunately, any model is an idealization of reality and, therefore, incapable of
representing its completeness. FE models often have significant uncertainty in their
responses because of the lack of knowledge about material and geometric properties, as
well as boundary and loading conditions. Stochastic approaches take these uncertainties
into account during calibration steps, and include them in the updating procedure.

Among stochastic approaches, one of the most used is the Bayesian updating frame-
work (SIMOEN; ROECK; LOMBAERT, 2015). This approach uses Bayesian inference to
infer information about a posterior probability distribution of model parameters based on
a prior probability distribution, experimental data, and a likelihood function. To generate
samples of the unknown posterior, several methods have been proposed, such as Markov
Chain Monte Carlo (MCMC), Transitional Markov Chain Monte Carlo (TMCMC),
Sequential Monte Carlo sampler (LYE; CICIRELLO; PATELLI, 2021), Hamiltonian
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Monte Carlo (BAISTHAKUR; CHAKRABORTY, 2020). Several works used Bayesian
inference as a tool, including works with bolted joints (TELOLI et al., 2021; MIGUEL;
TELOLI; da Silva, 2022), vibration of beams with varying boundary conditions (RITTO;
SAMPAIO; AGUIAR, 2016), and geometric non-linearities (WANG et al., 2018).

Bayesian inference

Consider the scenario where model predictions, denoted as DM(θ), are perturbed by
an additive Gaussian noise with zero mean and variance denoted by σ2

ε . This can be
mathematically represented as:

DM(θ) =M(θ) + ϵ, (25)

where θ is the vector of adjustable parameters, and ϵ encapsulates the errors stemming
from measurement inaccuracies and uncertainties in model parameters.

The Bayesian approach seeks to identify the parameters θ based on a set of empirical
observations. By establishing fitting joint distribution π(θ), the model transitions into
a stochastic form, capable of probabilistically forecasting the potential outcomes of
the system’s output DM. A principal benefit of Bayesian inference in the context of
model updating is its capacity to integrate prior knowledge with empirical data, thereby
providing a stochastic representation of the inferred quantities (LYE; CICIRELLO;
PATELLI, 2021).

Two foundational assumptions underpin this approach: (i) Given that the model
parameters are treated as random variables, a prior distribution π(θ) is assigned to
the input variables θ, reflecting pre-existing knowledge; (ii) Bayes’ theorem is utilized
to evolve the prior distribution into a posterior distribution, assimilating insights from
random data observations denoted by DM.

The posterior probability density function (PDF), π(θ∣D), is articulated as:

π(θ∣D) = π(D ∣θ)π(θ)
π(D) , (26)

where:

• D represents the vector of measurements or observations;

• π(θ) is the prior distribution;

• π(D ∣θ) is the likelihood function for the parameters;
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• π(D) is the evidence or marginal likelihood; and

• π(θ∣D) is the posterior distribution.

- Prior distribution

The prior distribution, π(θ), encodes the pre-measurement knowledge about the
parameters, which may be derived from expert judgment, smaller-scale experiments, or
historical data. In line with Lye, Cicirello and Patelli (2021), when the parameters’
bounds are known, a uniform distribution is typically adopted as the non-informative
prior, following the Maximum Entropy principle.

- Likelihood function

The likelihood function, π(D ∣θ), quantifies the congruence between the measurements,
D , and the model’s outputs, M(θ). Assuming that the discrepancies between observations
and model outputs are normally distributed with zero mean and specified variance, the
likelihood function is naturally modeled as a normal distribution (TELOLI et al., 2021).

- Marginal likelihood

The evidence function or marginal likelihood, π(D), serves as a normalization factor,
ensuring the posterior distribution’s integration to one. As this term is constant and
independent of the model parameters in Bayesian inference, the posterior is proportionally
related to the product of the likelihood and the prior:

π(θ∣D)∝ π(D ∣θ)π(θ). (27)

- Posterior distribution

The posterior distribution, π(θ∣D), embodies the refined distributions of the model
parameters post-measurement, mirroring the enhanced understanding of the parameters
informed by the data D .

Direct sampling from the posterior is challenging with conventional Monte Carlo
methods due to the implicit nature of the posterior distribution, which is only discernible
upon evaluating the prior and likelihood functions. Consequently, generating samples



CHAPTER 2. A BRIEF STATE-OF-THE-ART REVIEW 71

from the posterior is not straightforward; instead, samples can only be drawn from the
prior and likelihood. In high-dimensional spaces, evaluating all possible combinations
of prior and likelihood through standard Monte Carlo simulations is impractical. To
circumvent this, MCMC methods are employed to construct a Markov chain within the
model parameters space θ whose steady-state distribution is the posterior distribution of
interest π(θ∣D) (LYE; CICIRELLO; PATELLI, 2021).

Markov-Chain Monte Carlo

The MCMC/Metropolis-Hastings algorithm is utilized to sample the posterior density
function. A key strength of the MH algorithm is its ability to sample from any probability
distribution, provided that the function proportional to its actual normalized density,
i.e., the posterior distribution in the form of Eq. 27 is known and computable (LYE;
CICIRELLO; PATELLI, 2021).

A Markov chain initiates from θ1, and from there, it transitions between successive
samples in the chain (i.e., from θi to θi+1). These candidates are sampled from a proposal
distribution q(θ∗∣θ). The acceptance of each candidate occurs with probability α = T (θi →
θi+1). This probability is determined by the information gain from the current sample
to the proposed sample, based on the Metropolis-Hastings acceptance criteria (CHIB;
GREENBERG, 1995):

α =min(1,
π(θ∗∣D)
π(θ∣D)

q(θ∣θ∗)
q(θ∗∣θ)) (28)

Considering q(θ∗∣θ) a symmetrical function (e.g. normal distribution) that is centered
on θi, q(θ∗∣θ) =q(θ∣θ∗). Therefore:

α =min(1,
π(θ∗∣D)
π(θ∣D) ) (29)

Assuming that the model predictions DM(θ) are corrupted by an additive uncorre-
lated Gaussian noise ϵ (refer to Eq. 25) of zero mean and variance σ2

ε , the analytical
expression for the likelihood function is given by:

π(D∣θ)∝ exp(−1
2
(D −DM(θ))T (D −DM(θ))

σ2
ε

) . (30)

And substituing the likelihood in Eq. 27, we have the Metropolis-Hastings acceptance
criteria based on the current sample, the new sample and the experimental realizations.
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Algorithm 3 presents the implementation of the MCMC/Metropolis-Hastings sam-
pling algorithm. The random variables θ are constrained to the interval [θmin, θmax],
with the current state normalized as θ′ = (1 − x)θmin + xθmax; here, x is a random
variable uniformly distributed in [0, 1] representing candidates generated for the posterior
distribution. These candidates are sampled from a normal distribution q(θ∗∣θ) with a
standard deviation of σp. Subsequently, the posterior distribution at the proposed sample
are computed and the acceptance ratio is evaluated. Finally, the candidate is accepted
or rejecetd based on the Metropolis-Hastings acceptance criteria. Figure 17 illustrates
the random walk process graphically and showcase examples of acceptance and refusal of
samples.

Algorithm 3: MCMC/Metropolis-Hastings Algorithm
1 Initialize θ to θ0;
2 for i← 1 to N do
3 Propose θ∗ drawn from q(θ∗∣θ);
4 Calculate acceptance ratio α =min (1, π(θ∗∣D)

π(θ∣D)
);

5 Draw u uniformly from (0, 1);
6 if u < α then
7 Accept the proposal: set θ ← θ∗;
8 else
9 Reject the proposal: keep θ unchanged;

10 end
11 Save the current state θ to the sample;
12 end

Source: Prepared by the author.

The hyperparameter σp is critical in controlling the random walk step size to prevent
the chain from becoming static while allowing for adequate exploration of the parameter
space. As suggested by Lye, Cicirello and Patelli (2021), adjusting σp to achieve an
acceptance rate of candidates between 15% and 50% ensures that the efficiency of the
algorithm remains at least 80%.

In this work, MCMC simulations are used in Chapters 4 and 5 to sample posterior
distributions for material properties in a FE model for Lamb wave simulations.
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Source: Prepared by the author.

Figure 17 – MCMC randon walk with visualization of the acceptance criteria.

2.4.5 Model updating applied to Lamb wave models

Several works in the literature use Lamb wave simulations (YANG et al., 2006;
MITRA; GOPALAKRISHNAN, 2016; DENG et al., 2020). The majority of these
works employ deterministic models with experimentally measured properties (SU; YE,
2005a; SU; YE, 2005b; PERFETTO et al., 2022) or values updated using a deterministic
updating approach (GRESIL et al., 2013).

Few works in literature have used Bayesian inference to update Lamb wave models,
especially for composite structures. Vanli and Jung (2014) updated unknown parameters
of a 1D FE model and estimates a bias-correcting function to achieve a good match
between the model predictions and sensor observations. Gallina et al. (2017) proposed
a methodology for mechanical properties identification based on Bayesian inference and
semi-empirical dispersion curves obtained with a LISA model. Yan et al. (2020) used
multiple frequency excitation to obtain experimental dispersion curves and developed a
scheme based on WFE method. Then, combining a Kriging predictor with Transitional
Markov Chain Monte Carlo rounds, they sampled posterior PDF for laminate properties.
All these studies share a common feature in the usage of specific Lamb wave simulation
techniques such as LISA, the WFE method or a special 1D FE model. These methods
need to be manually implemented as they are not readily available on commercial
analysis software. Also, neither of these works investigated the effect of temperature
on the mechanical properties or the Bayesian inference process. Chapter 4 presents the
implementation of a framework based on Bayesian inference for updating a FE model to
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account for experimental uncertainties and temprerature variations.

2.5 STATE-OF-THE-ART OVERVIEW

This chapter provides an overview of the current state of research in SHM, focusing
on four key areas: SHM practices, Lamb wave mechanics, neural network applications,
and model updating methodologies. The recent surge in deep learning research applied to
SHM showcases the scientific community’s growing interest in leveraging these algorithms
for damage detection tasks.

A notable research gap identified is the limited exploration of using unprocessed time
series data for damage localization in composite structures via Lamb waves and 1D CNNs.
While most studies have concentrated on data that has undergone some form of processing
or transformation, the potential of usage of raw data with these algorithms remains an
open field for research. Moreover, there is a lack of investigation into how the quantity
of training data and the spatial discretization affect the precision of 1D CNNs in damage
detection and localization. Addressing this research void could lead to the development
of more effective and reliable SHM techniques that capitalize on the direct analysis of
Lamb wave data using 1D CNNs. This topic is addressed in Chapter 3

Additionally, the integration of experimental uncertainty into the process of updating
FE models is an area that has not been extensively covered in the literature. There is a
promising avenue for creating dependable FE models that not only reflect experimental
outcomes but also incorporate the inherent uncertainties of experimental data into the
model parameters, resulting in a stochastic FE model. The dual advantages of such a
model are significant: it can capture the range of experimental data within its confidence
intervals, and its stochastic nature enables the generation of diverse simulations, each
yielding distinct data realizations. These realizations can then be used to enrich the
training datasets for machine learning algorithms, potentially enhancing their ability to
generalize and predict unseen scenarios in SHM applications. The application of Bayesian
inference in Lamb wave model updating and the usage of numerically generated data for
training 1D CNNs is presented in Chapters 4 and 5.
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3 DAMAGE LOCALIZATION USING
LAMB WAVES AND 1D
CONVOLUTIONAL NEURAL
NETWORKS

The application of deep learning algorithms for analyzing Lamb wave signals repre-
sents a novel trend in signal processing, as elaborated in Section 2.3.3. Among these
methods, CNNs have emerged as prominent tools for Lamb wave analysis (SU et al.,
2019b; ECKELS et al., 2022; ZHANG et al., 2022; RAMALHO et al., 2023; GONZALEZ-
JIMENEZ et al., 2023), and in recent years, 1D CNNs (RAI; MITRA, 2021; SHAO et al.,
2022) have gained traction. These network architectures process one-dimensional arrays,
such as time series, and hold promise for advanced signal processing applications.

However, current works in the literature that use 1D CNNs to analyze Lamb wave
signals employ these algorithms with some type of pre-processing, e.g., wavelet transform
(ZHANG; LI; YE, 2021), encoder-decoder schemes (RAI; MITRA, 2022), or combined
with other neural network architectures, such as gated recurrent units (GRU) (ZHAO et
al., 2023). Consequently, this chapter explores a novel approach to localize damage in
composite structures using Lamb waves and 1D CNNs based on processing directly Lamb
wave time series. These time series undergo minimal pre-processing, only to remove high-
frequency noise and to window relevant wave packets. The damage localization strategy
is proposed in a global-local approach, with one 1D CNN being responsible for localizing
the damage region and another for pinpointing the damage position.

The Chapter starts by introducing the Lamb wave detection (LaWaDe) system
developed by the Acoustics and Vibrations Group at UFMG (Gravi UFMG). Section 3.1
describes the LaWaDe system and proposes an automation strategy to enhance its data
collection efficiency. This automation is important for acquiring data under multiple
damage conditions, essential for the effective training of machine learning algorithms.
Manual collection of extensive signal data with the current system configuration is
impractical.
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Following this, Section 3.2 details the application of the system to gather data from
multiple damage conditions in a composite material plate, as well as data pre-processing
and storage routines. This Section also includes considerations about data quantity and
availability.

Section 3.3 then delves into the use of 1D CNNs applied directly to Lamb wave time
series for damage localization in the experimental setup, comparing the outcomes with
those obtained from a traditional MLP network that uses Damage Indices (DIs) as input
parameters. The performance of these networks is examined under three data availability
scenarios in the training phase, simulating data constraints in real-world applications.

Thereafter, Section 3.4 provides comprehensive guidelines and recommendations for
the development of 1D CNNs for Lamb wave signal analysis based on the author’s
experience during this research. Finally, Section 3.5 presents the concluding remarks.

The work presented in this chapter is based on the article "Damage localization on
composite structures using Lamb waves and 1D convolutional neural networks", currently
under review for publication in the Smart Materials and Structures journal.

3.1 LaWaDe SYSTEM

As presented in Chapter 2, Lamb waves are a type of ultrasonic wave that propagates
in thin-walled structures and can travel long distances. These waves interact with the
medium in which they propagate, making them useful for damage inspection. Lamb
waves can be generated in structures using PZT sensors and, in practical applications, a
structure should be equipped with a sensor array, operating in a pitch-catch configuration
to extend the coverage area (WANG et al., 2020). The measured Lamb wave signals can
be compared to a reference signal for damage assessment using various techniques, as
presented in Section 2.2.4.

Lamb wave signal measurement can utilize multiple data acquisition strategies,
including oscilloscopes (SILVA et al., 2020), data acquisition boards (WANG et al., 2020),
or commercial systems such as the ScanGenie platform from Accelent Technologies. While
well-suited for industrial applications, commercial systems are typically closed and rely
on manufacturer-specific routines for post-processing and damage evaluation. However,
for research purposes, a more adaptable and modifiable system is often preferred.

The GRAVi-UFMG, within the Department of Mechanical Engineering and in collab-
oration with the Department of Structural Engineering (DEES), developed a Lamb wave-
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based damage identification system named LaWaDe UFMG. This system was developed
in a research project with a Brazilian aeronautical company and has contributed to
conference publications(DONADON; FERREIRA; DUARTE, 2015; DONADON et al.,
2015), and a PhD. thesis (SANTANA, 2019). It is continually being improved, and there
is a need to modify it to reduce the time necessary for measuring Lamb wave signals in
multiple experimental campaigns.

The LaWaDe system is built around a PXIe 1062Q acquisition platform from National
Instruments. This platform integrates two NI PXI-5412 cards (14-Bit 100 MS/s) that
are responsible for signal generation and two NI PXI-5105 acquisition cards (12-Bit 60
MS/s), each boasting eight channels, that are tasked with capturing the system’s signals.
Linked to the output of one of the NI PXI-5412 boards is a Krohn-Hite (KH) model
7500-11 amplifier. Its primary function is to amplify the input signal before directing
it to the excitation PZT. Temperature readings are conducted using a TMP-36 sensor,
which operates within a range of -40 to +125°C. Within this configuration, the system
has one excitation source and up to 16 measurement channels. As one of the channels
is connected to the TMP-36 sensor to capture temperature during the tests, 15 Lamb
wave signals can be acquired simultaneously. Figure 18 presents the system with its main
components.

TBX-62

NI PXIe 1062Q

KH 7500-11

USER INTERFACE

OSCILLOSCOPE 
PROBES

TMP-36

PZT’s

Source: Prepared by the author.

Figure 18 – LaWaDe main hardware components.

Before initiating this doctoral research, the system operated on a manual strategy.
This approach necessitated user intervention for each signal emission, specifically for
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Figure 19 – Previous LaWaDe system wiring. Different wire colors are used to connect
the oscilloscope probes to the structure, primarily to facilitate visualization. Note that
the connection of the input signal had to be manually modified by the user.

altering the excitation channel. Figure 19 illustrates the system’s wiring, featuring a
9 PZT array with temperature measurement capabilities. PZTs numbered 1 to 8 are
connected to channels 0 through 7 on the first PXI-5105 board. Channel 9 connected
to CH0 on the second PXI-5105 board, with temperature data recorded by CH7 on
this board. Each PZT sensor interfaces with the PXIe 1062Q via oscilloscope probes
offering variable attenuation options (1x and 10x). The excitation signal originated from
the PXI-5412 card is amplified by the KH 7500-11 amplifier, and manually routed to
a selected oscilloscope probe. To prevent saturation in the measurement channel, the
attenuation for this probe is set to 10x. As shown in Figure 19, the excitation, for
example, is connected to channel 8. This setup requires two manual adjustments whenever
the excitation PZT changed: switching the excitation signal to a different channel and
modifying the attenuation settings—reducing the previous excitation channel to 1x and
increasing the new channel to 10x.

This configuration is both time-intensive and susceptible to operator error. A typical
error involves the operator changing the excitation point to the intended oscilloscope
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probe, but forgetting to adjust the attenuation of either the original or the current
excitation channel. Such an oversight results in either saturation of the excitation channel
or excessive attenuation of one of the measurement channels, invalidating the collected
data and requiring the initiation of a new experimental round. Furthermore, the system
requires a manual routine for file saving, which includes manual naming and organization
of measurements.

The automation of the measurement process is crucial for collecting sufficient data
on different damage conditions to effectively train a machine learning, as manually
collecting numerous signals with the current LaWaDe setup is impractical. Transitioning
to automated operation of the system requires a key hardware feature: the capability
for autonomous switching of excitation PZTs. The automation of the LaWaDe system
was implemented through the integration of the TBX-62 relay board, interfaced with a
NI PXI-2568 board. The TBX-62 is an interface featuring 31 relays, controllable via
LabView. This board provides flexible connectivity between the PZTs, the amplifier, and
the PXI system. Instead of manually switching between excitation and measurement by
interchanging probe tips among the cables, the introduction of the relay board allows for
all switching to be automated. It controls the activation and deactivation of the relays,
thereby determining the operational role of each PZT, either as an exciter or a sensor.
Figure 20 depicts the system interface with the presence of the TBX-62 and Appendix A
presents an extensive discussion about the hardware implementation and wiring diagram.

The automation of the system has reduced the time required for a complete scan of
the 9x9 array with all PZTs operating as sensors and actuators using 10 averages from 40
minutes to just 8 minutes. Now, the main time limitation of the system lies in the writing
speed of the PXIe hard drive. Additionally, once the test begins, there is no need for user
intervention until all channels have been automatically excited and the signals have been
recorded. The signal recording process has also been automated in a data-saving routine
internal to LabView.

While the introduction of the relay board facilitates automatic channel switching
and reduces test time, it has inadvertently increased crosstalk among the measurement
channels. This issue primarily stems from the relay board’s internal wiring being closely
spaced. The excitation signal’s amplitude ranges from 40 to 100 V post amplification,
depending on the frequency under analysis. In contrast, the signals recorded from the
piezoelectric sensors are in the 30 mV range. The internal cable proximity within the TBX-
62 results in significant electromagnetic interference in the system when the excitation
signal is active, as evident from Fig. 21. This figure showcases the input and output
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Figure 20 – Automated relay connection implemented with TBX-62. Different wire
colors are used to connect the oscilloscope probes to the structure, primarily to facilitate
visualization.
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signals in a test using a 5-cycle excitation packet at 300 kHz (see Fig. 21a). While the
excitation signal remains active, the measurement channel, as seen in Fig. 21b, captures a
similar signal that causes it to become saturated. Once the excitation signal concludes, the
crosstalk ceases, allowing the measurement to proceed without interruption. To minize
the saturation region, the input signal amplitude was limited to 50V, which slightly
deteriorated the signal to noise ratio of the system. However, the crosstalk could be
removed in a post-processing step, as demonstrated in Fig. 21c, and this removal does
not affect the rest of the signal.
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Figure 21 – Demonstration of crosstalk influence in measured signals after the adition of
TBX-62 relay board: (a) input signal; (b) measured signal; and (c) measured signal with
crosstalk removed in post-processing.

3.2 CASE STUDY

To evaluate the performance of 1D CNNs in tasks of damage localization, the
automated version of the LaWaDe system is utilized to construct a comprehensive dataset
featuring multiple damage positions within a composite structure. This Section outlines
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the structure under investigation, the methodology for damage data collection, the signal
processing techniques applied to prepare Lamb wave data for input into the 1D CNNs,
and the DIs employed as input for the MLP networks.

3.2.1 Structure

The study utilizes a carbon-epoxy laminate. This structure comprises a laminate of
unidirectional carbon fabric and epoxy resin, featuring 16 layers with a stacking sequence
of [0/45/− 45/90]2S. Each layer has a thickness of 0.19mm, and the plate dimensions are
(1000 x 1000 x 3.04) mm. This laminate is selected due to the simplicity it offers for an
initial analysis on a flat structure, as well as the availability of information and specimens
in the laboratory.

Source: Prepared by the author.

Figure 22 – Carbon plate used on experimental campaign.

The laminate under investigation is equipped with a grid of 16 PZT sensors, spaced
200 mm apart both from each other and from the edges of the plate, both horizontally and
vertically. In the analyses, only 9 sensors arranged in a 3x3 grid are utilized due to the
15 input channel limitations of the PXIe system. Moreover, this configuration represents
a module that can be replicated for larger structures, thus generalizing the developed
method.

Within this structure, damage is simulated using a 1.25-inch aluminum mass adhered
to the plate. As indicated by Ihn and Chang (2008), concentrated masses can be used to



CHAPTER 3. DAMAGE LOCALIZATION USING LAMB WAVES AND 1D CNNS 83

simulate the localized alterations brought about by delamination in composite material
structures. The mass is adhered to the plate using a polyisobutene-based adhesive named
Pritt multitack.

Given the dimensions of the plate, it is infeasible to use the thermal camera present
in the mechanical enginnering department to ensure consistent temperature maintenance
throughout the experiment. Instead, a temperature compensation strategy is implemented
utilizing the OBS method. Temperature readings are systematically obtained for all
experiments and a signature is captured at intervals of every ten tests. This interval
means that a signal can deviate from a signature for up to five tests, equating to roughly 50
minutes. If the measured temperature deviates more than 1 ○C from the current baseline,
a new baseline with the nearest temperature is selected during post-processing. To further
enhance the consistency of the testing environment, the room’s ambient temperature is
regulated by an air conditioner preset at 25°C during all experiments.

3.2.2 Experimental data acquisiton and processing

Data aquisition strategy

The upper-right region of the plate is the focus of this study, as illustrated in Fig.
22. The PZTs located in this region are sequentially numbered from 1 to 9, as depicted
in Fig. 23a. Damage detection is conceptualized in a global-local strategy designed for
scalability. PZT 5 is designated as the origin of a Cartesian coordinate system, with the X-
axis extending horizontally to the right and the Y-axis vertically upwards. The structure
is segmented into four quadrants, labeled Q1 to Q4, in alignment with the conventional
trigonometrical circle layout. The core idea is that the method can be generalized to
larger meshes comprising multiple 3x3 PZT grids. Initially, a neural network is trained to
assess whether damage is present within the quadrant regions in a multi-class classification
problem. Subsequently, a second neural network determines the precise coordinates of
the damage in a regression problem. Section 3.3.1 details the application of a 1D CNN
for quadrant identification, and Section 3.3.2 describes the development of a 1D CNN for
coordinate determination.

Damage is simulated within these quadrants, specifically at the 49 positions (consti-
tuting a 7x7 grid) illustrated in 23b. While only the points for Q1 are depicted, 49 damage
positions are evaluated for each quadrant, resulting in a total of 196 damage locations.
For each point on the grid, a total of 10 measurements are collected. The evaluation of
the 7x7 damage grid can also be extended to different data availability scenarios. Figure
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Figure 23 – Plate region under analysis and target labels for two stage localization: (a)
Quadrant metric; (b) Coodinates for damage inside quadrant. Only coordinates for
quadrant Q1 are shown, despite the same patern is present in Q2, Q3 and Q4.

24 depicts three distinct scenarios for training a neural network. In these scenarios, the
49 data points allocated to each quadrant are divided into 25 training points and 24 non-
training points. The non-training points are further categorized into validation and test
datasets. The efficacy of the neural networks on the non-training dataset is assessed using
different quantities of training data. For instance, training sample sizes of 100, 64, and
36 can be utilized, corresponding to 25, 16, and 9 damage training positions per quadrant,
respectively. Figures 24a, 24b and 24c depicts these scenarios.

Each channel can be used for excitation or measurement. For the networks evaluation,
the selection of excitation and measurement PZTs also follows the global-local approach.
During global inspections, a reduced signal method is employed. This method involves
using solely the excitation signal from PZT 5, complemented by measurements from PZTs
1, 2, 3, 4, 6, 7, 8, and 9, as depicted in Fig. 24d. In contrast, the local analysis approach
employs excitations from PZTs 2, 5, and 8 to maximize the coverage area (refer to Fig.
24e) while minimizing signal overlap and the input vector size.

The excitation signal is composed by a first part containing only zeros to observe the
presence of vibration from the past signal, a second part containing five cycles of a 300
KHz sine wave multiplied by the hanning Windows with 50 V amplitude and a third
part containing only zeros to assure that the structure vibration had been vanished. The
observation window is defined as 0.4 ms with a sampling frequency of 60 MHz.
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Figure 24 – Different training scenarios used for ANN evaluation and excitaion signal
paths for PZT array (a) 25 training samples per quadrant; (b) 16 training samples per
quadrant; and (c) 9 training samples per quadrant. In each diagram, (∎) represents
training positions and (●) non-training positions. (d) Excitation path using only PZT 5
during global analysis to determine the damage quadrant, and (e) excitation path using
PZTs 2, 5 and 8 during local analysis to determine the damage coordinates
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Figure 25 – Data acquisition and pre-processing strategies.

Data pre-processing

Figure 25 presents the steps for data acquisiton and pre-processing. During the
experimental campaign, 10 measurements are collected for each damage position. These
measurements are conducted using the pitch-catch configuration, in which one PZT acts
as the emitter, and the remaining eight act as receivers at a time. Consequently, a
signal grid of 9x9x10 is assembled, comprising 9 distinct excitation points, each with 9
measurements (including the excitation signal), and 10 averages. Additionally, after every
ten tests, a set of 10 baseline signals are gathered. This pattern is repeated to accumulate
data for all 196 damage positions, thereby constructing a comprehensive "raw signals"
dataset (refer to the red section of Fig. 25).

The pre-processing phase comprises crosstalk removal, signal trimming and filtering,
as shown in the green section of Fig. 25. The crosstalk region is removed from the
measurement channels using the excitation channel signal as a reference (refer to Figs.
26a and 26b). Following this, the signal is trimmed into a 384 points window, aiming to
preserve only the initial wave packets and ensuring focus on the most relevant content of
the Lamb waves. A band-pass Butterworth filter with lower and upper cut-off frequencies
set at 150 kHz and 450 kHz, respectively, is used to reduce measurement noise. These
frequencies were selected to preserve the majority of the excitation signal’s frequency
content in Fig. 26c, and to ensure that no significant frequencies are lost, which is
corroborated by the power spectral analysis of the receiver signals in Fig. 26d. Finally,
all signals are normalized between -1 and 1 based on the peak amplitude of the baseline



CHAPTER 3. DAMAGE LOCALIZATION USING LAMB WAVES AND 1D CNNS 87

signals. The processed signals are then compiled into a ‘‘cleaned dataset’’ and stored in
4D tensors with dimensions (9, 9, M, 10), in which M = 384 points in the time series. In
total, there are 196 tensors for the damaged signals and 50 tensors for the baselines.
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Figure 26 – Visualization of time and frequency contents of the input and output signal:
(a) input signal on CH 5 in the time domain; (b) output signal on CH 1 in the time
domain; (c) input singnal PSD; and (d) output signal PSD.

Neural networks input preparation

In the outlined experimental setup, a 3 × 3 PZT grid is used, comprising 9 potential
excitation sources and an equal number of measurement points. For each excitation
point, the excitation signal and the response in 8 sensors can be registered. Therefore,
this configuration generates 81 potential Lamb wave signals for the machine learning
algorithm to analyze. In a classical MLP, the amount of neurons and trainable parameters
scale exponentially in this scenario. For example, using a single excitation point and
eight measurement points, each capturing a signal with 1000 points, one training sample
comprises 16,000 points, i.e., 8000 points for the baseline and 8000 points for the signal
under evaluation. If these points are used as input for a first hidden layer comprising,
for instance, 100 neurons, it results in a total of 1.6 million parameters. And that is only
considering the first layer. Therefore, for the MLP network, a different strategy using
DIs is used (refer to Section 3.2.3).
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The primary benefit of a 1D CNN lies in its ability to process time series in a cost
effective way. A 1D CNN can be constructed with three blocks of convolution, ReLU
activation, and pooling to analyze the same data as the MLP, but having less than 1% of
the parameters (refer to Table 1 for details).

Table 1 – Example of 1D CNN layers and dimensions.

Layer Type Hyperparameters Size Parameters

Input Tensor input - 8000x2 W = [3x2x4]
B = [1x4]

Conv 1 1D Convolution W = 3, S = 1 and F = 4 8000x4 -
ReLU 1 ReLU - 8000x4 -

Avgpool 1 Average pooling H = 16, andS = 16 500x4 -

Conv 2 1D Convolution W = 3, S = 1 and F = 8 500x8 W = [3x4x8]
B = [1x8]

ReLU 2 ReLU - 500x8 -
Maxpool 1 Max pooling H = 8 and S = 8 63x8 -

Conv 3 1D Convolution W = 3, S = 1 and F = 16 63x16 W = [3x8x16]
B = [1x16]

ReLU 3 ReLU - 63x16 -
Maxpool 2 Max pooling H = 4 and S = 4 16x16 -
Flatten 1 Flatten - 256x1 -

FC 1 Fully-connected N = 50 50x1 W = [50x16]
B = [50x1]

ReLU 4 ReLU - 50x1 -

FC 2 Fully-connected N = 1 1x1 W = [1x50]
B = 1

Softmax 1 Softmax - 1x1 -
TOTAL 13500 parameters

Source: Prepared by the author.

Figure 27 presents the data handling strategy for using the Lamb wave signals as input
for the neural networks. The damaged conditions and baselines are combined through
the OBS method. As each damaged condition and baseline is a tensor with 10 averages,
i.e., the last dimension of the ‘‘Cleaned dataset 4D tensor’’ in Fig. 25, and these averages
can be paired in a permutation strategy to create a total of 100 signal permutations.
Therefore, the 196 damage positions result in 19,600 samples to be processed as inputs
for the neural networks, in the form of a 4D tensor with dimensions (9, 9, M, 2). Note
that after the permutation, the last dimension represents the pair damaged signal and
baseline.

To build the input for the neural networks, k input/output signals are selected from
each tensor. In the global analysis, 8 signals pairs obtained with the excitation in PZT 5
are considered, as the excitation signal is not used as input for the neural networks. This
corresponds to all signals (5, 1, M, ∶) to (5, 9, M, ∶) in the excitaion-measurement tensor
of Fig. 27, except the signal (5, 5, M, ∶). For the local analysis, signals (2, 1, M, ∶), ...
(2, 9, ∶, M), (5, 1, M, ∶), ... (5, 9, M, ∶), and (8, 1, M, ∶), ... (8, 9, M, ∶) are selected, excluding
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Figure 27 – Data preparation for using as input in the neural networks. The input-output
pairs (5, 1) to (5, 9) are used to ilustrate the data selection in the global analysis.

(2, 2, M, ∶), (5, 5, M, ∶), and (8, 8, M, ∶). This represents 24 pairs of Lamb wave signals.

For the MLP network, three DIs are calculated for each pair damaged signal and
baseline, as outlined in Section 3.2.3. Therefore, the MLP network processes 24 input
parameters in a global analysis context and 72 parameters in a local analysis. The 1D CNN
processes 2D tensors with dimensions (kM, 2), with k representing the number of selected
measurement PZTs and 2 representing baseline and damaged signals. These tensors are
obtained by stacking the individual damaged and baseline signals into a 1D array, as
depicted in Fig. 27. In the case of the global analysis, k = 8, and in the local analysis,
k = 24, which results in tensors with (3072, 2) and (9216, 2), respectivelly. Finally, in both
scenarios, the input parameters are correspondingly aligned with either the quadrant
number (global analysis) or the normalized pair of coordinates (local analysis), with
normalization ranging between 0 and 1.

3.2.3 Damage indices

A neural network used as an algorithm to interpret Lamb waves can accept two types
of inputs: the direct Lamb wave time series or some metric or representation defined
based on the signal, such as an image representing the wave pattern for a given instant
or a representative metric of the signals, commonly referred to as Damage Index (DI).
Employing DIs can reduce the dimensionality of the input data while also decreasing
the required computational resources. However, as DIs converts the Lamb wave signals
into one or more metrics, they lose spatial/temporal information contained in the signal.
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Therefore, the handcrafted selection of the DIs is a challenge because they must be
sensitive to the presence of damage. Dworakowski et al. (2015) evaluated the performance
of MLP networks in damage localization and quantification using DIs as inputs, and three
DIs proposed and validated by these authors are used in this work as input parameters
for MLPs.

The first DI quantifies the vector difference between the Lamb wave signals :

DINORM =
∫

t2

t1
[y(t) − x(t)]2dt

∫
t2

t1
x(t)2dt

, (31)

in which y(t) and x(t) are the measured signals with and without damage, respectively,
and t1 and t2 are the integration intervals.

The second DI is calculated based on the cross-correlation of the signals. According
to Dworakowski et al. (2015), the advantage of this indicator is that if the signal with
damage and the baseline differs only in amplitude, the cross-correlation becomes the
autocorrelation and has a maximum value of 1 at τ = 0. This means that this DI is
sensitive only to changes in shape and phase of the signal, not to changes in amplitude:

DIXCOR = 1 − rxy(τ = 0), (32)

in which rxy(τ) is the cross-correlation operation.

The third DI used is based on the difference between the power spectral density of
the damaged signal and the baseline, calculated as:

DIPSD =
∫

f2

f1
[Y (f) −X(f)]2df

∫
f2

f1
X(f)2df

, (33)

where X(f) is the power spectral density of the baseline signal and Y (f) is the power
spectral density of the damaged signal.

3.3 RESULTS

This Section showcases damage quadrant classification and coordinate regression
using the proposed strategy with 1D CNNs, comparing the results with those achieved
using MLP networks fed by DIs, as mentioned in Section 3.2.2. The detection strategy
employs a global-local approach:
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• The detection of the damage quadrant is approached as a global analysis. The
basic 3x3 structure can be indefinitely replicated in a larger structure, allowing for
locating the damaged area. For this analysis, only the excitation at PZT 5 is utilized
(refer to Fig. 24d).

• The detection of the damage coordinates is conducted as a local analysis. Once
the quadrant is determined by a macro routine, the exact position can be locally
assessed. This analysis uses excitations at PZTs 2, 5, and 8 (see Fig. 24e).

The following subsections detail the process involved in determining the network
architecture for global and local damage localization. This is followed by an analysis
of the results achieved in the context of damage localization. It is worth noting
that the network architectures are designated using the naming convention outlined in
Section 2.3.2, comprising I (Input), FC (Fully-Connected), C (Convolution), R (ReLU),
P (Pooling), D (Dropout) and O (Output), in that order. Additionally, although
not explicitly specified in the architecture diagrams, batch normalization layers are
incorporated between convolution and ReLU layers. Their inclusion aims to enhance
convergence during the training phase. Additionally, all neural networks are implemented
using the deep learning toolbox of MATLAB. All training rounds are carried out in a
computer MacBook Pro featuring a M2 Pro processor and 16 GB of shared memory.

3.3.1 Damage region localization

Network architecture selection

Damage region localization is a classification problem and the selection of network
architectures is based on evaluating multiple configurations, and comparing them using
the accuracy on validation data. In these simulations, the training data comprised 25
samples per quadrant to assess network performance under conditions of maximal data
availability. This is supplemented by 12 random validation points in each quadrant, as
shown in Figure 24.

For the MLP networks, configurations with two hidden layers and a dropout layer
preceding the output layer, i.e., (I − (FC −R) − (FC −R) −D −O), are examined. The
neuron count in these networks ranged from 10 to 1000, and dropout probability from
10% to 50%. The MLPs are trained using DIs derived from the excitation signals at
PZT 5 and readings from the other PZTs. The networks are trained using Adam as the
optimization algorithm, a learning rate of 0.001, and an early stopping criteria based on
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the stagnation of the validation accuracy. Figure 28 presents the results for 5 networks
sampled within the range for the proposed parameters. Note in Fig. 28a that there is a
limit on validation accuracy in 98%. Multiple networks could be trained to reach 100%
training accuracy, but at the risk of losing generalization capabilities.
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Figure 28 – MLP performance during training phase for locating damage quadrant: (a)
overfitting ratio as function of accuracy; and (b) accuracy in function of number of
neurons.

One can see that there is a clear decrease in performance with increasing network size.
Bigger networks can map more complex relationships in the training data, maximizing
training accuracy, but at the cost of overfitting, i.e., loss of generalization capabilities.
Therefore, the selection of the best candidate is based on the mean accuracy on validation
data, and a network with 150 neurons and 10% dropout probability was selected.

Regarding 1D CNNs, the explored architectures vary from simpler two convolution-
layer designs to more complex multi-layer configurations. These networks directly
process Lamb wave signals from PZTs 1 to 9, with PZT 5 serving as the actuator.
Architectures with three, four, and five convolution-ReLU-pooling blocks are simulated.
However, most tested architectures are capable of dealing with the classification prob-
lem. This problem is relatively simple when compared to coordinate regression, as it
consists of an outlier detection on the signals crossing a given quadrant. Therefore,
among the multiple available architectures, the same one chosen for the regression
problem is used to perform quadrant detection, consisting of the following structure:
I −(C−R−P )−D−(C−R−P )−(C−R−P )−FC−O, as depicted in Fig 29. Section 3.3.2
provides a detailed discussion on the motivations behind this architecture choice and Fig.
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29a illustrates the proposed architecture.

It is important to note that the only difference between the networks used for
classification and regression is in the final layer, specifically the number of neurons and
the activation function, as detailed in Section 2.3.2. The classification network includes a
softmax function followed by four neurons, each representing the probability of damage
presence in a specific quadrant, while the regression network calculates the half-mean-
squared-error for each neuron, representing X an Y coordinates. Note that both networks
use the same ‘‘feature extraction section’’.

Quadrant localization results

The networks under consideration are assessed in training scenarios depicted in Figure
24. Ten networks are trained with each architecture and each amount of training samples
per quadrant, i.e. 25, 16, and 9 samples. The networks are trained using the Adam
optimization algorithm, a fixed learning rate of 0.001 and a stopping criteria based on the
validation loss, i.e., the training process is stopped if validation loss do not decreases in
three consecutive epochs.

The accuracy distribution for the each network architecture across the training,
validation, and test datasets, as a function of the data volume used in the training phase,
is illustrated in Figure 30. When trained with 25 samples per quadrant, the 1D CNN
achieved a median accuracy of 100% on both validation and test datasets. In contrast,
the MLP recorded median accuracies of 92.6% and 95.6% on the validation and test
datasets, respectively. Notably, the MLP network exhibited a consistent accuracy of
100% on training data in all training scenarios, as shown in Figure 30a. This indicates a
potential overfitting issue within the MLP network.

Both architectures exhibit a decline in performance correlating with the reduction of
available data. This trend is evident in the downward trajectory observed in Figs. 30b
and 30c. Specifically, when the training is conducted with 16 samples, the median test
accuracy for the 1D CNN and MLP drops to 98.4% and 90.2%, respectively. A further
decrease is noted when the training involves even fewer samples, with the median test
accuracy reducing to 87.0% for the 1D CNN and 82.6% for the MLP. Additionally, it
is important to note the difference in accuracy dispersion on test data between the two
architectures; the 1D CNN demonstrates less variability compared to the MLP.

Figure 31 presents confusion charts for both MLP and CNN median networks,
trained with various data volumes. With 25 samples per quadrant, the MLP network



CHAPTER 3. DAMAGE LOCALIZATION USING LAMB WAVES AND 1D CNNS 94

1D Conv #1
[W = 5; F = 4]

Batch
normalization

+ ReLU #1
+ Average pooling
(H = 16, S = 16)
+ 50% dropout
+ 1D Conv #2
[W = 5; F = 8]

Batch
normalization

+ ReLU #2
+ Max pooling
(H = 8, S = 8)
+1D Conv #3

[W = 5; F = 16]

Batch normalization
+ ReLU #3

+ Max pooling
(H = 4, S = 4)

Flatten
+ 50% dropout

FC
Units: 70

Q3

Classification
layer

Q4

Q2
Q1

Length: 3072
Feature maps: 4

Input signal
Length: 3072
Channels: 2

Length: 192
Feature maps: 8

Length: 24
Feature maps: 16

Length: 6
Feature maps: 16

Extracted features
Length: 96

D
am

ag
ed

 si
gn

al
U

nd
am

ag
ed

 si
gn

al

0
50
0

10
00

15
00

20
00

-101

0
50
0

10
00

15
00

20
00

-101

FEATURE EXTRACTING SECTION

(a)
Length: 9216

Feature maps: 4
Input signal

Length: 9216
Channels: 2

Length: 576
Feature maps: 8

Length: 72
Feature maps: 16

Length: 18
Feature maps: 16

Extracted features
Length: 288

FC
Units: 70

Regression
layer

X coord.
Y coord.

D
am

ag
ed

 si
gn

al
U

nd
am

ag
ed

 si
gn

al

0
50
0

10
00

15
00

20
00

-101

0
50
0

10
00

15
00

20
00

-101

1D Conv #1
[W = 5; F = 4]

Batch
normalization

+ ReLU #1
+ Average pooling
(H = 16, S = 16)
+ 50% dropout
+ 1D Conv #2
[W = 5; F = 8]

Batch
normalization

+ ReLU #2
+ Max pooling
(H = 8, S = 8)
+1D Conv #3

[W = 5; F = 16]

Batch normalization
+ ReLU #3

+ Max pooling
(H = 4, S = 4)

Flatten
+ 50% dropout

FEATURE EXTRACTING SECTION

(b)
Source: Prepared by the author.

Figure 29 – 1D CNNs architectures selected for: (a) quadrant determination, and (b)
damage localization. Note that is possible to use the same feature extracting architecture;
modifying only the input and output layers
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Figure 30 – Accuracy distribution with respect to the amount of data used in training
stage: (a) training accuracy; (b) validation accuracy; and (c) test accuracy

performs satisfactorily, attaining accuracies ranging from 98.2% to 87.3% across individual
quadrants. In contrast, the 1D CNN demonstrates superior performance, achieving 100%
accuracy in test data for three of the four quadrants.

A reduction in training samples negatively impacts both networks, leading to an
increased frequency of incorrectly predicted classes. For example, when the MLP network
is trained with only 9 samples (as shown in Fig. 31c), its accuracy in predicting the first
quadrant drops significantly to 61.8%, despite the median accuracy being around 82.6%
as indicated in Fig. 30c. Conversely, the 1D CNN demonstrates greater resilience to data
reduction, as can be seen in Fig. 31f. In a similar training scenario, the performance in
the worst-predicted quadrant for the 1D CNN declines to 79.2%. This suggests that the
poorest performance of the 1D CNN aligns closely with the median performance of the
MLP.
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Figure 31 – Confusion chart for test data on the median network of both architectures
and different amount of samples per quadrant during training phase: (a) MLP using 25
training samples; (b) MLP using 16 training samples; (c) MLP using 9 training samples;
(d) CNN using 25 training samples; (e) CNN using 16 training samples; and (f) CNN
using 9 training samples.
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3.3.2 Damage coordinates determination

Architecture determination

Localizing damage within a specific quadrant and accurately identifying the precise
X and Y coordinates pose significant challenges, particularly in the context of designing
effective network architectures for data analysis. This challenge is more pronounced in the
case of 1D CNNs, given the wide array of architectural options available, which adds to
the complexity of the task. For the architecture definition step, training data is defined as
25 samples, aiming to evaluate network performance under conditions of maximum data
availability, complemented by 12 random validation points per quadrant (see Figure 24).

For MLP networks, simulations focus on structures with up to three hidden layers,
with a uniform number of neurons across these layers to reduce the possible permutations
and simplify the analysis. Networks with 10 to 500 neurons in hidden layers are examined.
For 1D CNNs, the range of architectures spans from simple designs with two layers to
more complex ones with several layers. This extensive evaluation is crucial to determine
how different levels of network complexity influence the effectiveness of the system in
accurately localizing damage. However, in this scenario, we also face the "Curse of
Dimensionality", i.e., an increase in the size of the network consequentially increased the
number of hyperparameters that must be considered and simulated in an exponential way.
The definitions and hyperparameters of the CNNs includes: number of layers, organization
of layers (e.g., convolution+ReLU+pooling, convolution+convolution,+ReLU+pooling,
etc.), kernel size, number of kernels, stride, number of neurons for each FC layer, dropout
probability for each dropout layer, etc. The variation in these parameters yields a
multitude of configurations.

Initially, multiple configurations are evaluated, and Tab. 2 exemplifies the archi-
tecture of three MLPs and three 1D CNNs tested in this phase. The MLPs, labeled
as #1, #2, and #3, feature one, two, and three hidden layers, respectively. CNN #1
and #2 are composed of three and four standard building blocks of convolution-ReLU-
pooling, respectively. Meanwhile, CNN #3 incorporates a sequence of convolutions and
activation functions before its initial pooling layer, drawing inspiration from renowned
image recognition networks such as AlexNet, GoogleNet, and ResNet-50.

Table 3 lists the potential values for various hyperparameters, including kernel size in
the convolution layers (W ), number of filters in the convolution layers (F ) and number
of neurons in the last fully-connected layer (FC). The proposed architectures undergo
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Table 2 – Example of three evaluated architectures. In this table, I, FC, C, R, P and O
means input, fully-connected, convolution, ReLU, pooling and output, respectivelly.

Network Architecutre
MLP #1 I-(FC-R)-D-O
MLP #2 I-(FC-R)-(FC-R)-D-O
MLP #3 I-(FC-R)-(FC-R)-(FC-R)-D-O
CNN #1 I-(C-R-P)-D-(C-R-P)-(C-R-P)-D-FC-R-O
CNN #2 I-(C-R-P)-D-(C-R-P)-(C-R-P)-(C-R-P)-D-FC-R-O
CNN #3 I-C-C-R-C-R-(C-R-P)-(C-R-P)-D-FC-R-O
Source: Prepared by the author.

multiple simulations, up to five iterations depending on the convergence of results, to
analyze the influence of initial hyperparameters and architecture on the outcomes. Figure
32 displays the loss on validation data as a function of the training loss, and the validation
RMSE as a function of the training RMSE for some samples of the architectures in
Tab. 2. Note that both graphs present the same general trend, as regression networks
employ RMSE as their optimization loss. Each point represents a network with a set of
hyperparameters, and they are grouped by architecture.

In these graphs, a lower training loss indicates a model’s improved ability to fit the
training data. Ideally, this should be paired with a reduction in validation loss, signifying
the model’s generalization capability. Networks with low training loss and high validation
loss indicate overfitting, as shown in the upper-left part of the diagonal in Fig. 32a.
Networks with high training loss suggest an inability to properly adjust to the data and
are thus located in the right part of the graph.
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Table 3 – Example of three evaluated architectures. In this table, W represents the kernel
size of the convolution operation, F the number of channels per convolution layer, and
FC the number of neurons in the last fully-connected layer.

Network Parameters #1 Parameters #2 Parameters #3 Parameters #4
MLP #1 10 to 500 neurons Dropout - 0 to 50% - -
MLP #2 10 to 500 neurons Dropout - 0 to 50% - -
MLP #3 10 to 500 neurons Dropout - 0 to 50% - -
CNN #1 W = [3, 5, 7, 9] F = [4, 6, 8] FC = [10 to 100] Dropout - 0 to 50%
CNN #2 W = [3, 5, 7, 9] F = [4, 6, 8] FC = [10 to 100] Dropout - 0 to 50%
CNN #3 W = [3, 5, 7, 9] F = [4, 6, 8] FC = [10 to 100] Dropout - 0 to 50%

Source: Prepared by the author.
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Figure 32 – Training and validation performance comparison between different MLP (▲)
and 1D CNN architectures (○) on validation data for: (a) loss; and (b) RMSE

When comparing the loss of both network sets, CNNs exhibit superior performance,
achieving lower training errors while also reducing validation errors. Most results for
CNNs #1 and #2 are in the lower-left part of the diagrams, demonstrating low error and
a generalization capacity.

It is observed that some samples of MLP architectures #2 and #3 nearly match
the best CNN networks in terms of normalized training loss. However, unlike the CNN
networks, this reduced training loss does not translate to a lower validation loss in the
MLP networks, suggesting overfitting. This occurs even with dropout probabilities of up
to 50% in the final layer, implemented to enhance generalization. The MLP networks
plateau at a validation loss of approximately 0.008 and a validation RMSE lower than
50 mm. This pattern indicates a lack of sufficient information on training data for the
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network to learn generalized patterns applicable to unseen data. Attempts to reduce
validation loss with larger network architectures did not yield better results, implying a
limitation likely due to information loss during the calculation of DIs. Consequently, for
subsequent analyses, architecture MLP #2 is preferred over #3, as it offers comparable
performance but is smaller and more efficient to train.

Generalization errors are also evident in the evaluation of CNN #3. Although several
networks learn features from the training data effectively, resulting in low training errors,
they exhibit high validation errors. This contrast in performance, particularly when
compared to other CNN architectures that generalize well with the same training data,
suggests that the larger networks, like CNN #3, are prone to overfitting due to their
enhanced capability for representation. Additionally, one can see a concentration of
samples of CNN #3 in the upper-right region of the Fig. 32b. These networks presented
high error both for training and validation datasets. This indicates that the network
became trapped in a local minima along the training process. This phenomenon is common
for deep neural networks and is called degradation. In this phenomenon, with the network
depth increasing, performance gets saturated and then degrades rapidly (HE et al., 2015a).
There are ways to counter degradation, e.g., the implementation of residual layers, but
for the proposed application in this work, this is not needed, as simpler networks, such
as CNN #1 and #2, are capable of dealing with the problem in question.

Several other architectures were simulated, and they fall in two main categories: (i)
big networks (larger than CNN #2) and small networks (smaller that CNN #1). Bigger
networks tend to be able to learn from training data, but often present overfitting,
degradation or gradient vanishing problems. The gradient vanishing problem arises
from the multiplication of small derivatives in deep networks during backpropagation,
leading to extremely small gradients and hindering learning. Conversely, smaller networks
struggle to effectively extract features and subsample the signal, resulting either in poor
performance or networks with big flattened layers, dificulting training. To compensate,
these networks often require a larger stride in the pooling layers. However, this
approach risks discarding substantial information during the pooling process. Therefore,
architecture CNN #2 is selected between the multiple tested because as it has fewer layers
than CNN #3, meaning a simpler model with fewer hyperparameters and faster training
phase.

With the definition of the architectures, the following phase is the hyperparameter
optimization. For this phase, some constraints are imposed to limit the possible
combinations. They are:
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• Uniform kernel size across all convolution layers, mirroring practices in leading
image analysis networks like VGG-19 and ResNet.

• A fixed stride equals to one in all convolution layers.

• Pooling layers designed to reduce the signal by powers of 2, such as 2, 4, 8, 16.

• A multiplicative increase in the number of filters in consecutive layers following a
pooling layer. For instance, FiltersL2 = 2×FiltersL1, FiltersL3 = 2×FiltersL2, and so
on.

More details and examples about these considerations are given in Section 3.4.

The problem of finding optimal hyperparameters becomes a search through four
dimensions: kernel size, number of kernels in the first layer, number of neurons in
the fully-connected layer and dropout probability. With these considerations, multiple
networks with each hyperparameter configuration are evaluated. Table 4 presents the
best 5 performing 1D CNNs obtained with architecture #1. Note that their normalized
validation error is very similar, between 0.052 and 0.056. The normalization is performed
using the 400 millimiters length of the scanning area (two quadrants) to speed up the
training process. A metric named ‘‘overfitting ratio’’ is introduced, defined as the ratio
between the validation loss and the training loss. A network with overfitting ratio greater
than one indicates a degree of overfitting on training data. All networks present a
good overfitting ratio, and the decision at this point is based on the author’s preference.
Candidate is #1 selected by its lowest validation error, a overfitting ratio lower than 1
and three of the best five networks have kernel size equals five.

Table 4 – Five networks with the lowest validation RMSE

Network Kernel
size

Number of
kernels

1st layer
FC size Dropout

probability [%]

Normalized
validation

RMSE

Overfitting
ratio

Candidate #1 5 4 70 20 0.052 0.95
Candidate #2 7 4 50 20 0.053 0.88
Candidate #3 5 4 50 30 0.054 0.90
Candidate #4 5 6 70 40 0.055 1.06
Candidate #5 9 6 50 20 0.056 1.05
Source: Prepared by the author.

The same process is repeated for the MLP with architecture #2 and a network with
250 neurons and a dropout probability is selected.
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Figure 33 – Error distribution with respect to the amount of data used in training stage:
(a) training error; (b) validation error; and (c) test error

Coordinates determination results

Figure 29b presents the selected architecture for the 1D CNN for damage coordinates
localization. This architecture, along with the selected MLP, is evaluated across different
training scenarios as shown in Fig. 24. These scenarios include training with 25, 16,
and 9 samples per quadrant, and ten networks being trained for each scenario of data
availability.

Figure 33 displays the evolution of training, validation, and test errors for both the
CNN and MLP architectures with respect to the amount of data used. Note that all
networks achieved a lower training error than validation and test errors. However, the
1D CNN consistently outperforms the MLP in all training scenarios, and it has a lower
validation and test errors than the MLP counterpart. Notably, the 1D CNN trained with
all 25 samples per quadrant has a median validation error of 60% lower than the MLP
network trained with the same amount of data. Additionally, the CNN trained with
only 9 samples demonstrates superior performance compared to the MLP trained with 25
samples, presenting a median error of 45.5 mm compared to 51.7 mm. This advantage
can be attributed to the CNN’s capacity to process the entire Lamb wave signal during
training, thereby extracting more relevant information than what is provided by the three
DIs used in the MLP.

A reduction in training data leads to a decline in performance for all networks.
Specifically, the MLPs exhibit an increase in mean error, though with minimal dispersion.
Conversely, the 1D CNNs not only show an increase in error but also a greater dispersion
of these errors. This trend is attributable to convergence issues common in deep learning
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algorithms when trained with limited data. Nevertheless, in this specific application, this
challenge can be mitigated by monitoring the overfitting ratio of the networks during
the training phase. The boxplots reveal varying patterns of validation errors among
networks, with some displaying low and others high validation errors, yet most maintain
low training errors. Implementing a strategy to automatically discard networks exhibiting
high overfitting ratios during training would effectively address this issue. However, such
a strategy is less applicable to MLPs due to the more concentrated nature of their errors
around the median.

Figure 34 showcases the distribution of prediction errors for the networks as a fraction
of the simulated damage diameter (1.25 inches). This metric is relevant because an error
up to one damage diameter means that the predicted damage location would overlap
with the actual damage on the structure, indicating a reliable prediction. In Fig. 34a,
the majority of the 1D CNN’s errors fall below one diameter for both validation and
test datasets, with no prediction exceeding two diameters. In contrast, the MLP network
exhibits a broader dispersion in its predictions, with the peak of its distribution is between
one and two diameters, but the spread of errors extends up to six diameters, equating to
an error of nearly 180 mm.
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Figure 34 – Error distribution for validation and training datasets as a fraction of the
diameter of the simulated damage used in the experiments: (a) 1D CNN; and (b) MLP
network.

Figure 35 depicts the RMSE along the plate for the median network of both the 1D
CNN and MLP architectures. In this representation, each point symbolizes a non-training
damage position, with the colors signifying the magnitude of the prediction’s error. These
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Source: Prepared by the author.

Figure 35 – Spatial RMSE distribution for non-training data on the median network
of both architectures and different amount of samples during training phase: (a) CNN
using 25 training samples; (b) CNN using 16 training samples; (c) CNN using 9 training
samples; (d) MLP using 25 training samples; (e) MLP using 16 training samples; and (f)
MLP using 9 training samples.

figures highlight the impact of the data volume used during the training stage and provide
insights into the nature of the errors. In Figs. 35a, 35b, and 35c, the 1D CNN network
exhibits increased errors at the plate’s borders and in regions crossed by a single signal
path. Referring back to Fig. 24e, regions like the one near X > 150 mm and Y = 100
mm, which are only intersected by the direct line between PZTs 1 and 2, demonstrate
significant errors. This pattern suggests that the 1D CNNs errors are predominantly due
to insufficient information about the damage. Nevertheless, the 1D CNN trained with 9
samples per quadrant still demonstrates satisfactory performance when compared to the
MLP network (refer to Figs. 35c and 35d).

In contrast, MLPs consistently exhibit poor performance across all scenarios. The
MLP trained with 25 damaged positions per quadrant, for instance, underperforms
compared to the 1D CNN trained with only 9 samples per quadrant, as evidenced by
the high-error regions in the center of the plate in Fig. 35d. As the availability of
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training data decreases, the MLP’s performance deteriorates significantly, with errors
exceeding 100 millimeters in numerous areas as shown in Figs. 35e and 35f. This trend
indicates the network’s inability to effectively learn from the available data, likely due to
the insufficiency of information in the DIs for accurate position mapping.

3.4 GENERAL GUIDELINES FOR NETWORKS ARCHITEC-
TURES

One of the main challenges in the field of deep neural networks is determining the
optimal network architecture and hyperparameters. Unlike traditional programming
paradigms, there is no universally accepted methodology for identifying an ideal network
configuration given an application. The selection of these parameters typically relies on
the expertise of the programmer combined with a trial and error approach .

This Section introduces a series of guidelines and best practices for training neural
networks, with a particular emphasis on 1D CNNs. These recommendations are based in
the author’s practical experience with these algorithms, supplemented by insights from
current literature, and should be adapted for each application case. The motivation
is to help the reader to minimize practical problems encountered while training neural
networks with gradient descent methods. To facilitate comprehension, the guidelines are
categorized into two main areas: network structure definition and training methodologies.

3.4.1 Network structure

- Start with a simple architecture

Initiate with a network of modest complexity, for instance, incorporating 3 to 4
convolutional blocks each followed by ReLU activation and a pooling layer, culminating
in a single fully-connected layer. While it is tempting to use more intricate network
architecture, such as multiple convolutional layers or advanced designs like residual
networks, such complexities necessitate extensive data for effective training. This
requirement often poses challenges in SHM contexts. Additionally, complex networks
are more prone to issues like gradient vanishing and degradation. Consequently, in many
instances, a network with simpler architecture can lead to superior results.

Regarding the convolutional layers, image processing networks predominantly utilize
kernels sized 3 × 3 or 5 × 5. For Lamb wave processing, it is a good idea to evaluate the
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kernel size based on time signal discretization. Small kernels in a signal measured with a
high sampling frequency may turn the focus of the network to a point by point analysis and
require multiple convolutions+pooling operations to extract relevant features. Conversely,
big kernels may encompass more than one wave period and could miss important local
features on Lamb waves signals in damage scenarios, such as attenuation and phase shifts.

- Avoid convolution with even size kernels

Avoid using even kernel sizes for convolutional layers, e.g., 2, 4, etc.. Using even-sized
kernels in convolutional layers can lead to a symmetry problem because they lack a central
point, which is crucial for balanced feature extraction. In an even-sized kernel, like 2 or 4,
the absence of this central point results in asymmetric processing of the input data. This
asymmetry can skew the convolution operation to the right or to the left., as the kernel
does not uniformly cover the area around a point. It causes alignment challenges and
potentially biased feature detection, particularly in tasks where precise spatial/temporal
relationships are important. Conversely, odd-sized kernels, such as 3 or 5, have a central
point that ensures a symmetrical and consistent field of view, leading to more effective
and balanced feature extraction in CNNs.

- Avoid odd pooling kernels

Employ pooling layers with thoughtfully selected kernel sizes and strides to minimize
information loss. It is advisable to use pooling layers where the kernel size is a multiple of
two, paired with an equivalent stride. For example, a max pooling layer with both kernel
and stride set to 2 effectively reduces the data volume by 50%, resampling the resultant
array by a factor of two. Similarly, a configuration with a kernel size and stride of 4 will
discard 75% of the values.

Furthermore, utilize convolutional layers with ‘‘same’’ padding and pooling layers
without padding. This configuration allows for dimension control through the pooling
layer, with convolutional layers focusing on feature extraction and pooling layers on
subsampling.

Additionally, adhering to two basic design principles makes it is easier to create a
consistent layer size: (i) layers yielding feature maps (e.g. convolution layers) should
maintain a consistent channel count; (ii) a reduction in feature map size should be
followed by an increase in channel number, ensuring spatial/temporal complexity remains
consistent across layers.
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- Adjust the input time series to be divided by two multiple times

Building on the previous guideline, ensure the input time series length is divisible by
powers of two (e.g., signals with 1024, 2048, 4096 points), achieved through truncating
or resampling the Lamb wave signal. This setup enables the integration of multiple
max pooling layers with varying kernel sizes such as 2, 4, 8, or 16. Coupled with the
recommendation to avoid odd-sized pooling kernels, this strategy effectively reduces the
number of parameters in the temporal dimension. Meanwhile, the convolutional layers
incrementally adds complexity to the feature maps without increasing the parameter
count in the final layer.

Consider the following two strategies, which apply different convolution and pooling
approaches to the same input signal:

• Strategy #1 maintains a constant channel count for convolution and kernel size
for pooling layers.

Algorithm 4: Strategy #1 - Constant number of channels in convolution +
constant pooling size

Input: Convolutional Layer with F = 16 channels, Pooling layer kerrnel size H = 2 and stride
S = 2

1 8 signals with 1024 points → 8192 points;
2 Convolution with F = 16→ 8192 × 16 points;
3 Pooling with H = 2 and S = 2→ 4096 × 16 points;
4 Convolution F = 16→ 4096 × 16 points;
5 Pooling with H = 2 and S = 2→ 2048 × 16 points;
6 Convolution F = 16→ 2048 × 16 points;
7 Pooling with H = 2 and S = 2→ 1024 × 16 points;
8 Flatten layer → 1024 × 16 = 16384 points;
9 Fully-connected layer with N = 50 neurons → 50 × 16384 = 819200 parameters;

• Strategy #2 begins with fewer channels and a larger pooling kernel, progressively
increasing the convolutional channels and decreasing the pooling kernel size. This
approach allows the initial layers to focus on finer signal details, which can then
be aggregated or discarded through pooling (e.g., average pooling). As network
depth increases, these features grow in number and complexity through successive
convolutional layers, culminating in a few high-level features in the terminal layers.
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Algorithm 5: Strategy #2 - increasing number of channels in convolution +
decreasing pooling size

Input: Convolutional Layer with increasing number of channels F , and decreading pooling
layer kerrnel size H and stride S

1 8 signals with 1024 points → 8192 points;
2 Convolution with F = 4→ 8192 × 4 points;
3 Pooling with H = 16 and S = 16→ 512 × 4 points;
4 Convolution F = 8→ 512 × 8 points;
5 Pooling with H = 8 and S = 8→ 64 × 8 points;
6 Convolution F = 16→ 64 × 16 points;
7 Pooling with H = 4 and S = 4→ 16 × 16 points;
8 Flatten layer → 16 × 16 = 256 points;
9 Fully-connected layer with N = 50 neurons → 50 × 256 = 12800 parameters;

Note that the parameter count presented primarily emphasizes the parameters of the
final fully connected layer. This is because the number of parameters in the convolutional
layers is small compared to the last layer. For example, a 1D convolutional layer with a
kernel size of 3 and 16 channels has 48 weights (since each of the 16 channels has a 3x1
kernel, amounting to 3 weights per channel) and 16 biases, totaling 64 parameters. This
difference in parameter distribution highlights the significant role of the fully connected
layer in the overall parameter count of the network.

Although Strategies #1 and #2 are applied to the same signal and follow a similar ar-
chitectural framework, they diverge significantly in terms of training dynamics. Strategy
#1 culminates in a network that is approximately 64 times larger than that developed
using Strategy #2. This substantial increase in network size increases the training time
and elevates the risk of overfitting during the training phase. Furthermore, based on the
author’s experience, Strategy #1 tends to result in a network with inferior generalization
capabilities compared to that derived from Strategy #2.

3.4.2 General training guidelines

Training neural networks using gradient descent algorithms involves multiple chal-
lenges, including optimal network initialization, learning rate adjustment, and regulariza-
tion techniques. This section offers a set of training recommendations that reader should
adjust to fit the specific requirements of their problem.

1. Network initialization: Commence with a basic neural network structure, adjusting
key parameters such as learning rate and decay to understand computational load
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and initial model responsiveness.

2. Learning rate optimization: Systematically modify the learning rate to analyze its
impact on the model’s loss function and convergence efficiency.

3. Overfitting assessment: Attempt to overfit the model to the training data, which
serves as a benchmark for the network’s capacity and initial effectiveness.

4. Learning rate decay: While trying to overfit training data, implement learning
rate decay cautiously, ensuring it enhances model convergence without causing
premature learning stagnation.

5. FC layer augmentation: In scenarios where loss minimization is insufficient, incre-
mentally add neurons to the fully-connected layer to enhance model complexity and
learning potential.

6. Layer expansion: If FC layer augmentation proves inadequate, integrate an ad-
ditional block convolutional-ReLU-pooling, while closely monitoring loss trends
for optimization. A well-configured network should demonstrate the ability to
memorize training data.

7. Regularization techniques: Following the achievement of satisfactory training effi-
ciency, shift focus to regularization strategies to improve model generalization.

8. Dropout layer integration: Incorporate a dropout layer subsequent to feature
flattening to address overfitting and enhance model robustness. If the network
keeps overtiffing, adds a dropout after the convolution to limit the model access to
low level features.

9. Mini-Batch utilization: Employ small mini-batch sizes, facilitating implicit regular-
ization and exposure to diverse data classes during training iterations.

10. Overfitting analysis: Employ histogram-based comparative analysis of model’s
results with respect to training and validation data distributions to quantitatively
assess model overfitting.

11. Data Adequacy Evaluation: Persisting challenges may indicate limitations in input
data quality or quantity. In cases of suspected input inadequacy, evaluate data
quality and PZT arrays configurations to identify potential uncovered regions. In
this phase, a map of validation error with respect to position (simmilar to Fig. 35)
may be useful.
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3.5 CONCLUDING REMARKS

The initial Section of this Chapter introduced the LaWaDe system, a platform
developed by GRAVi-UFMG for acquiring Lamb wave signals. Hardware and software
modifications implemented in this system enable automatic signal capturing, which
significantly facilitates the collection of extensive datasets of Lamb wave signals. These
datasets are essential for training machine learning algorithms.

Subsequently, a dataset comprising Lamb wave signals from damages in a carbon
plate was detailed. This dataset, consisting of 196 simulated damage positions across
four quadrants defined by 9 PZT sensors, allows for testing both global and local damage
localization strategies, potentially applicable to larger structures. The preprocessing steps,
including crosstalk removal, noise filtering, and signal windowing, were also discussed.

The chapter proceeded to use this dataset to assess a 1D CNN network for damage
localization. Multiple network architectures were tested, and the best-performing, least
complex model was chosen. The performance of the 1D CNN using Lamb wave signals
was compared to a classical MLP network that utilizes DIs as input parameters. In all
assessed tasks, the 1D CNN consistently outperformed the MLP network, demonstrating
its effectiveness as a feature extractor, classifier, and regressor for Lamb wave signals.
Additionally, both algorithms were evaluated across different data availability scenarios.
While a decline in performance was observed for both algorithms with decreasing training
data, the 1D CNNs notably maintained consistent performance levels. This characteristic
was evident even in scenarios with significantly limited training data, for instance, when
the sample size was reduced from 25 to only 9 samples per quadrant of the plate. On the
down side, 1D CNNs are harder and more expensive to train when compared to classical
MLP networks, i.e., they use more computational resources and the hyperparameter
tunning step is harder. Finally, the chapter ends with guidelines and best practices
for training neural networks based in the author’s experience with these algorithms.

As demonstrated in this chapter, the effectiveness of neural networks heavily relies
on the quantity and quality of the training data. Solely depending on experimental data
collection for SHM applications is neither economically nor practically feasible. Thus, the
availability of a reliable strategy for data generation is crucial for training these algorithms
and a promising research field. The next chapter introduces an innovative approach for
generating reliable training data for machine learning using FE models and Bayesian
inference. This proposed framework incorporates experimental setup uncertainties into
the FE model, enhancing its reliablility and applicability.
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4 BAYESIAN UPDATING FOR A
LAMB WAVE MODEL UNDER
VARYING TEMPERATURE

The development of a 1D CNN-based SHM system, as described in Chapter 3,
certainly showcased promising results, especially with its capability to accurately locate
the damage position. However, there are always challenges and constraints to any
experimental or computational work, and in this case, the time spent in data collection
stands out as a primary concern.

Experimental data collection is a inherently complicated task. In the specific
experimental application showcased in Chapter 3, the data collection involves damage
positioning, capturing data, and saving it for each unique damage position on the 7x7
damage grid. When considering that a single position on this grid requires roughly
8 minutes for completion, the magnitude of the task becomes evident. It translates
to approximately 8 hours of continuous work to cover the entire grid of one quadrant.
Spread over a typical workday, the complete colection of damage on all four quadrants
can extends to almost a working week just to account for a single damage size. Indeed, the
inherent constraints of collecting data across multiple combinations of positions, damage
sizes, types, temperature conditions, and excitation frequencies can be a significant
limitation in creating a robust and versatile system, as the sheer amount of time and
resources needed becomes practically unsustainable.

Hence, the need for an alternative, more efficient approach to data generation becomes
important. One promising way, as evidenced by literature (refer to Section 2.2.3), is
the use of numerically generated Lamb wave data to train machine learning algorithms.
Such an approach not only reduces the dependency on labor-intensive experimental data
collection but also offers flexibility in exploring a wide range of scenarios in a controlled
computational environment. However, a critical aspect that seems underexplored in the
literature is the uncertainty analysis associated with incorporating Lamb wave data into
FE models. Model uncertainty quantification in computational simulations is crucial for
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model validity, robustness and confidence on predictions.

Therefore this chapter presents a framework for stochastic updating to verify and
validate a FE model of a composite plate, considering the influence of temperature on
Lamb wave propagation. It begins with a deterministic updating procedure to find
optimal mechanical properties, followed by a stochastic updating procedure to obtain
probability density functions for the meaningful parameters. The stochastic updating
procedure is divided into two steps: a sensitivity analysis using Sobol Indices and a
Bayesian inference process using Markov-chain Monte Carlo (MCMC) simulations and
the Metropolis-Hastings sampling algorithm. To reduce the computational time required
for the Monte Carlo process, this work proposes a surrogate model based on artificial
neural networks. The proposed network can be trained using parallelized Monte Carlo
simulations, in contrast to the sequential nature of the Markov-Chain process. The usage
of the surrogate model reduced the time required for updating rounds by almost 500 times
in the studied case without compromising the accuracy of the resulting probability density
functions for model parameters.

The chapter is organized as follows: Section 4.1 provides a context for model updating
techniques, presenting relevant literature that integrates Bayesian inference with Lamb
waves simulation. Section 4.2 details the novel framework proposed, which aims to
update finite element (FE) models by incorporating experimental uncertainty and the
effects of temperature on simulations. Section 4.3 introduces the CONCEPT (CarbON-
epoxy CompositE PlaTe) experimental dataset and describes the FE model developed to
simulate it. Following this, Section 4.4 demonstrates the application of the updating
framework to the FE model across various temperatures. This Section also outlines
the development and training of a surrogate neural network model, designed to replace
the FE model. Finally, Section 4.5 offers concluding remarks on the findings and their
implications.

The work presented in this chapter is based on the article "Bayesian calibration
for Lamb wave propagation on a composite plate using a machine learning surrogate
model", published in the Mechanical Systems and Signal Processing journal, volume 208,
in February 15, 2024.
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4.1 CONTEXTUALIZATION

As discussed in Section 2.2.1, Lamb waves are ultrasonic-guided elastic waves widely
used for SHM and assessing plate-like structures in various applications. Due to their
ability to travel long distances, Lamb waves find applications in local inspections (fatigue
(WANG et al., 2018), corrosion (NAGY; SIMONETTI; INSTANES, 2014), bonded
joints (TONG et al., 2022)) and large-scale structures such as aerospace components
(BOLLER; TOMLINSON; STASZEWSKI, 2004). This work focuses on Lamb wave
propagation in composite structures (ZENG et al., 2022), facing challenges from material
heterogeneity and the influence of temperature and humidity on physical properties
(KONSTANTINIDIS; DRINKWATER; WILCOX, 2006; SCALEA; SALAMONE, 2008).

Guided wave propagation simulation in composite structures is an active research
area with various methods available, including semi-empirical and numerical techniques
(WANG; YUAN, 2007a; MITRA; GOPALAKRISHNAN, 2016). Among numerical meth-
ods, the FE method stands out for its accurate representation of wavefront propagation
in complex structures (LUCA et al., 2020). However, high-frequency simulations or
modeling small features require very fine mesh density, leading to computationally
expensive models. To achieve a desirable degree of fidelity and to consider environmental
variations, numerical models must be updated with experimental data. Ereiz, Duvnjak
and Jimenez-Alonso (2022) present an extensive discussion about finite element model
updating methods, that can be divided into deterministic and stochastic (or probabilistic)
approaches.

Deterministic updating is usually encoded as a minimization problem and aims at
finding point estimates, or optimal values, for physical parameters. These problems
can be solved with techniques ranging from traditional optimization algorithms, like the
least-squares method, to more advanced ones like genetic algorithms (STANDOLI et al.,
2021) or particle swarm optimization(MARWALA, 2010). Unfortunately, any model is
an idealization of reality and, therefore, incapable of representing all features. FE models
often have significant uncertainty in their responses because of the lack of knowledge
about material and geometric properties as well as boundary and loading conditions,
among other factors. Stochastic approaches take these uncertainties into account during
calibration steps, and include them in the updating procedure.

Among stochastic approaches, one of the most used is the Bayesian updating frame-
work (refer to Section 2.4.4). This approach uses Bayesian inference to infer information
about a posterior probability distribution of model parameters based on a prior probability
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distribution, experimental data, and a likelihood function. To generate samples of the
unknown posterior, several methods have been proposed, such as MCMC, Transitional
Markov Chain Monte Carlo (TMCMC), and Sequential Monte Carlo sampler (LYE;
CICIRELLO; PATELLI, 2021). Several works used Bayesian inference as a tool, including
works with bolted joints (TELOLI et al., 2021; MIGUEL; TELOLI; da Silva, 2022),
vibration of beams with varying boundary conditions (RITTO; SAMPAIO; AGUIAR,
2016), and geometric non-linearities (WANG et al., 2018). Due to the computational cost
of the Bayesian inference process, multiple works used surrogate modeling techniques
(WAN et al., 2014; WAN; REN, 2016; LIU et al., 2020; LIM; MANUEL, 2021; ZHOU et
al., 2016; FAKIH et al., 2022; PADIL; BAKHARY; HAO, 2017).

In the context of a probabilistic perspective applied to composite structures subjected
to Lamb wave excitation, Galina et al. (GALLINA et al., 2017) proposed a methodology
for mechanical properties identification based on Bayesian inference and semi-empirical
dispersion curves obtained with a LISA model. Yan et al. (YAN et al., 2020) used
multiple frequency excitation to obtain experimental dispersion curves and developed
a scheme based on WFE assisted metamodel. Then, combining a Kriging predictor
with TMCMC rounds, they sampled posterior Probability Density Functions (PDF) for
laminate properties.

Both studies share a common feature in the usage of specific Lamb wave simulation
techniques such as LISA and WFE assisted method. These methods need to be manually
implemented as they are not readily available on commercial analysis software. Also,
neither of these works investigated the effect of temperature on the mechanical properties
or the Bayesian inference process.

4.2 PROPOSED FRAMEWORK

As a contribution to the literature, this work proposes a framework for applying
Bayesian inference to obtain a stochastic FE model for Lamb wave propagation under
varying temperature. Additionally, the work also proposes the use of a machine learning
surrogate model based on ANN to considerably reduce the time required for the MCMC
rounds. The work also evaluates the impact of the surrogate model on the posterior
distribution sampled by the MCMC, along with database size and simulation time for
training the surrogate model.

The proposed framework for stochastic calibration of a FE model for Lamb wave
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propagation on a composite plate is performed for multiple temperatures, aiming to
construct a model capable of emulating the whole experimental dataset. The framework
lays its foundation on the following assumptions and considerations:

1. The database made available by da Silva et al. (SILVA et al., 2020) is used as
an experimental setup, and it is considered that no material property is known a
priori.

2. All effects imposed by temperature on measured signals are incorporated at the
material level.

3. A set of material properties is obtained among various possibilities using a determin-
istic updating procedure with a modified version of the least-squares method (BUD
et al., 2022). The deterministic version of model parameters provides the necessary
information for the stochastic updating procedure.

4. A sensitivity analysis using Sobol indices to identify the key parameters that
significantly impact the model results and should therefore be included in the
Bayesian inference process.

5. A Bayesian inference process using MCMC simulations and the Metropolis-Hastings
sampling algorithm is used to sample posterior probability functions from uniform
prior distributions.

6. The classical FE model-based approach is replaced by a machine learning surrogate
model approach based on neural networks to reduce simulation time.

The complete strategy is presented in Fig. 36, and the underlying theoretical
foundations are discussed in the subsequent subsections.



CHAPTER 4. BAYESIAN UPDATING FOR A LAMB WAVE MODEL UNDER VARYING TEMPERATURE 116

Modified least-
squares method

1) Deterministic updating

2) Stochastic updating

Optimal
value?

No

Yes

Surrogate model approach

Posteriori distribution

Optimal values
𝑬𝟏, 𝝂𝟏𝟐, 𝑮𝟏𝟐, 𝑮𝟐𝟑, 𝝆

Main parameters
𝑬𝟏, 𝑮𝟏𝟐

Classical  approach

Experimental data

Dataset with pairs:
properties – Lamb 

wave signals

FE model

Monte Carlo simulations

FE model

ANN surrogate 
model training

Sensitivity 
analysis using 
Sobol indices

Markov-Chain 
Monte Carlo using the 

FE model

FE model

Markov-Chain 
Monte Carlo using the 

surrogate model

Surrogate model

Base values
𝑬𝟏, 𝝂𝟏𝟐, 𝑮𝟏𝟐, 𝑮𝟐𝟑, 𝝆

Updated values
𝑬𝟏, 𝝂𝟏𝟐, 𝑮𝟏𝟐, 𝑮𝟐𝟑, 𝝆

Range of parameters

Source: MCMC illustration adapted from Jin, Ju and Jung (2019).

Figure 36 – Proposed framework with deterministic and stochastic updating.

4.2.1 Deterministic updating procedure

This work uses the modified version of the least-squares method presented in Section
2.4.3 to perform an initial deterministic updating of input parameters. Three residuals
based on the DIs proposed by Dworakowski et al. (2015) (refer to section 3.2.3) are
established to measure the discrepancy between experimental and model signals. Note
that although the equations presented are continuous, they are implemented using discrete
numerical computations.

The first residual evaluates the squared norm of the difference between the experi-
mental and numerical signals. This residual can quantify differences in amplitude and
phase between the signals, and it is calculated according to the equation:

RNORM =
∫

t2

t1
[y(t) − x(t)]2dt

∫
t2

t1
x(t)2dt

, (34)

where x(t) is the experimental signal and y(t) is the numerical signal.

The second residue is based on the cross-correlation between the signals, and it is
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calculated as:

RXCOR = 1 − rxy, (35)

where rxy is the cross-correlation between the input signals and the signal at zero delay.
This measure is only sensitive to changes in the shape and frequency of the signal. The
third residual is the difference between the power spectra of the signals. This index
is particularly useful for detecting delays and frequency shifts in the signals, and it is
calculated as follows:

RPSD =
∫

f2

f1
[Y (f) −X(f)]2df

∫
f2

f1
X(f)2df

, (36)

where X(f) is the power spectral density of the experimental signal and Y (f) is the the
power spectral density of the numerical signal.

The final residual is defined as the weighted sum of the individual residuals:

RTOTAL = k1 RNORM + k2 RXCOR + k3 RPSD. (37)

where k1, k2, and k3 are adjustable weights assigned to each residual. These weights allow
for controlling the relative importance of each metric in the outcome of the least-squares
method.

4.2.2 Stochastic updating procedure

Sensitivity analysis

Sensitivity analysis aims to uncover the effects of model parameters, which are referred
to as random input variables, on the quantities of interest that constitute the model
response. To assess the influence of these parameters, first and second-order Sobol indices
(as discussed in Section 2.4.1) are utilized. These indices allow evaluation of the global
impact of the parameters, and their values are obtained through Monte Carlo simulations.
Specifically, the UQLab framework is employed for this purpose (MARELLI; SUDRET,
2014).
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Bayesian inference

Physical systems exibit inherent variations, e.g., geometry, environmental conditions,
material properties, etc. Thus, even the most complete data set cannot eliminate this
uncertainty, so-called irreducible. To include this type of variability in the parameters
of the computational model, this work adopts the Bayesian paradigm as a statistical
inference tool for the model calibration problem (refer to Section 2.4.4). Two assumptions
are introduced: (i) As the model parameters are random variables, a prior distribution
π(θ) for the set of input variables θ is proposed based on the deterministic model updating
procedure; (ii) Bayes’ theorem is employed to update the prior to a posterior distribution,
gathering information from random data observations (D). The posterior density function
(PDF) is sampled using the MCMC/Metropolis-Hastings algorithm.

The random variables θ are limited to the interval [θmin, θmax], whose current state
is symmetrically normalized as θ′ = (1 − x)θmin + xθmax ; x is a random variable ∈ [0, 1]
that represents generated candidates for the posterior distribution. These candidates are
sampled from a normal distribution with standard deviation σp. This hyperparameter
controls the random walk step to avoid the chain becoming static and, at the same time,
to allow the parameter space to be properly explored (LYE; CICIRELLO; PATELLI,
2021). Only 80% of the Monte Carlo simulations are considered in the final stationary
Markov chain (burn-in of 20%).

4.3 CASE STUDY

4.3.1 CONCEPT: CarbON-epoxy CompositE PlaTe

The experimental setup shown in Fig. 37 consists of a 500 x 500 x 2 mm3 carbon fiber
reinforced polymer (CFRP) plate with 10 layers of plain weave fibers. The plain weave
fibers are oriented along the plate borders’ directions. Four PbZrTi (Lead Zirconate
Titanate - PZT) SMART Layers from Accelent Technologies, each with a diameter of
6.35 mm, are bonded to the plate using epoxy resin. PZT 1 is the actuator, while PZT
2, PZT 3, and PZT 4 are sensors. Due to the dispersive nature of Lamb waves, the
experiments are performed with a uniform excitation frequency across all tests, targeting
a specific segment of the Lamb wave frequency-thickness spectrum. When considering
the multimodal characteristic of Lamb waves, Wang and Yuan (2007b) suggest that for
a plate of this nature, excitation of higher-order modes (A1, S1, A2, etc.) is expected
to occur above 500 kHz. Therefore, the excitation signal is a 5-cycle sinusoidal wave
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Figure 37 – Experimental Setup.

modulated by a Hanning window, with an amplitude of 35V and a central frequency
of 250 kHz, aiming to excitate only S0 and A0 modes. The output is recorded with a
sampling frequency of 5 MHz over a 100 µs window using a NI USB 63533 from National
Instruments and an oscilloscope DSO7034B from Keysight. A comprehensive exploration
of this experimental setup is presented by França (FRANCA, 2014).

Data acquisition is performed at controlled varying temperatures ranging from 0○C
to 60○C in increments of 10○C with a thermal chamber from Thermotron. For each
temperature, 100 tests are repeated for statistical characterization. Silva et al. (2020)
presents the complete description of the experimental procedure. Figure 38 shows one
experimental measurement for each temperature from 0○C to 60○C. The experiments are
also performed in progressive damage scenarios, with mass added to the region shown in
red in Fig. 37. However, the present study only considered the plate in its undamaged
condition. The dataset is publicly available in the GitHub1 repository CONCEPT:
CarbON-epoxy CompositE PlaTe.

1https://github.com/shm-unesp/DATASET_PLATEUN01

https://github.com/shm-unesp/DATASET_PLATEUN01
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Figure 38 – Experimental results for temperatures from 0○C to 60○C. (a) Complete signal
PZT 2; (b) complete signal PZT 3; (c) zoom at first signal package PZT 2; and (d) zoom
at first signal package PZT 3.

4.3.2 FE model

A FE model is implemented using ABAQUS/ Explicit. The plate is modeled using
continuum shell elements (SCR8). These elements are designed to discretize a three-
dimensional body rather than just representing a surface like traditional shell elements.
Continuum shells have only displacement degrees of freedom, use linear interpolation, and
include effects of transverse shear deformation and thickness change. Additionally, they
are based on first-order composite theory and can be stacked to improve the accuracy of
the through-thickness response.

The composite material is implemented in the FE model using ply-based properties.
The layup is modeled as an orthotropic laminate property with three integration points
per lamina. The discussion on the base properties and material considerations can be
found in Section 4.4.1.

The spatial and temporal resolution of the model greatly affects the stability of the
simulation. According to Moser (MOSER; JACOBS; QU, 1999), a spatial resolution of
at least 20 nodes per wavelength is necessary to ensure stability. This can be written
as le = λmin/20, where λmin is the minimum wavelength expected at the model and le is
the characteristic length of the mesh. Additionally, to prevent numerical instability, the
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time step must be based on the maximum expected frequency in the simulation, with
a recommended value of ∆t = 1/(20fmax), where ∆t is the time step and fmax is the
maximum frequency expected at the model. For an input frequency of 250 kHz, both
these considerations result in a mesh with an element size of approximately 2 mm and a
maximum time increment of 0.2 µs. However, further stability investigations of the model
have shown that a time increment of 0.1 µs is needed to account for mesh irregularity
around the PZT regions, ensure convergence, and keep the simulation time reasonable.
The simulation window is set to 0.1 ms as this is the time necessary to capture the first
two wave packets from Fig. 38.

Figure 39 presents the FE model. To facilitate the generation of a structured mesh
for the entire plate, the plate is divided into several smaller rectangular regions, as shown
in Fig. 39a. The area where the PZT actuators and sensors are attached to the plate is
specifically modeled with a circular mesh. As proposed by Gresil et al. (GRESIL et al.,
2013), the excitation signal is applied as eight self-balancing forces around this region, as
depicted in Fig. 39b. To obtain the output signal, the integrated strain results within
the sensor region are used and transformed to voltage as suggested by Sirohi and Chopra
(SIROHI; CHOPRA, 2000). The region between PZTs 1 and 2 is modeled with a circular
mesh to account for damage addition in future model versions. However, in the present
chapter, this region has the same element, materials, and conditions as the rest of the
plate. Chapter 5 works with the damage model.

PZT1

PZT2PZT3 PZT4

(a) (b)
Source: Prepared by the author.

Figure 39 – Finite element model. (a) Model partition for mesh generation; and (b) PZT-1
showing excitation signal

The FE model is implemented using a series of Python routines that run within the
Abaqus software, allowing for parametric simulation of the system. A code layer is also
implemented using MATLAB and Windows command prompt, enabling direct control
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over Abaqus through the command line. This architecture made possible a complete
automation of the pre-and post-processing steps of the simulation inside MATLAB’s
workspace. It also facilitated the usage of multiple machines to parallelize the Monte
Carlo simulations. Figure 40 presents a description of how the routines are implemented.
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Model constructor
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M
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capabilities

Source: Prepared by the author.

Figure 40 – Python and MATLAB algorithm structures used to build, solve and post-
process the FE model.

4.4 STOCHASTIC MODEL UPDATING FRAMEWORK: AP-
PLICATION

4.4.1 Deterministic updating

The goal of the deterministic updating process is to bring the response signal of the FE
model (y(t)) for sensors 2 and 3 as close as possible to the experimental results (yEXP(t)),
by adjusting the mechanical properties of the materials. The FE model is symmetric
concerning the horizontal and vertical axes, resulting in identical signals from PZTs 3
and 4. For this reason, only the PZT-3 signal is considered along with PZT-2 in the
adjustment of mechanical properties. As the composite plate used in this work is obtained
from a research project in partnership with a Brazilian aerospace company, which could
not disclose the specific material or fabrication process used due to intellectual property
agreements, the only information provided is that the plate is made of a prepreg aerospace-
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grade carbon fiber with 10 layers in a plain weave configuration (FRANCA, 2014). Thus,
the initial range of values for the mechanical properties had to be determined by literature
review, as detailed below.

The mechanical behavior of the materials is modeled using the classical laminate
theory, where each layer is considered an orthotropic material. As such, Young’s modulus
in two perpendicular directions in the plane (E1 and E2), Poisson’s ratio (ν12), shear
moduli in and out of a plane (G12 and G23, respectively), and density (ρ) had to be
determined. It is necessary to establish an initial search range for these parameters.
This range is determined based on information from the literature for plain weave
carbon/epoxy systems, with the main sources being the Composite Materials Handbook
(CMH) (COMPOSITE. . . , 2017) and the work of Paiva et al. (PAIVA; MAYER;
REZENDE, 2006). Table 5 presents the limits, initial and optimal values used for the
following mechanical parameters: E1, E2, ν12, G12 and ρ.

Table 5 – Parameter limits and initial values utilized for the deterministic updating
procedure, including resultant optimal values.

Parameter Min Max Initial Value Optimal Value
E1 [GPa] 60.0 80.0 70.0 61.2
E2 [GPa] 60.0 80.0 70.0 61.2
ν12 0.05 0.15 0.10 0.075
ρ [Kg/m3

] 1550 2250 1800 1620
G12 [GPa] 5.00 15.0 7.50 10.25
G23 [GPa] 4.00 6.00 5.00 5.00

Source: Prepared by the author.

As a simplification, it is assumed that the values of E1 and E2 for plain weave fibers
are equal. The values presented in Tab. 5 are used as reference and adjusted using the
iterative process based on least-squares method described in Bud et al. (BUD et al., 2022).
In each iteration, the model is initially simulated with the value of the properties from the
former iteration. The residue between the experimental and model signals is calculated
using Eq. (37). Next, each property is individually perturbed to determine the partial
derivatives of the model response relative to inputs. The perturbation value is initially set
to 5% of the current value and reduced over the optimization process to minimize system
instability as the optimal values are approached. This process is repeated until the value
of the residue converges. Only the first wave package in each channel is considered for
the fitting. In the case of PZT 2, the second package shown in Fig. 38 represent edge
reflections.

The oscillatory nature of the wave signal results in the residuals having multiple
local extrema throughout the simulation range. For instance, if the simulated wave
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is one wavelength in advance or retard concerning the experimental data, the residual
gives a local minimum. To mitigate this, the weights k1, k2, and k3 in Eq. (37) are
adjusted. Empirical testing has shown that weighting these parameters as 0.2, 0.4, and
0.3 can reduce the likelihood of becoming trapped in local minima, resulting in a better
output signal. Also, intermediate solutions that give physically unrealistic properties
are disregarded. Table 5 presents the initial and estimated values for the physical
parameters of the material, whereas Fig. 41 compares the model results before and after
the adjustment process. It is possible to observe that the adjustment process improved
both the phase and the amplitude of the signals from PZTs 2 and 3.
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Figure 41 – Comparison between experimental ( ) and numerical results with initial ( )
and optimal ( ) parameters. (a) Signal from PZT 2; and (b) signal from PZT 3.

Note that all parameters are well accommodated within the proposed ranges. For
out-of-plane, the shear modulus G23 maintained its initial value even after optimization.
Its variation within the established range does not influence the model performance -
therefore, this parameter is kept fixed at 5 GPa in subsequent steps.

4.4.2 Stochastic updating

Sobol analysis

Following the deterministic adjustment, a sensitivity analysis is performed using Sobol
indices to quantify each parameter’s influence on the model’s behavior. The parameters
E1, ν12, G12, and ρ are perturbed around the optimal deterministic values presented in
Tab. 5. This perturbation is performed with 300 Monte Carlo simulations, in which
model input parameters are sampled from a uniform distribution centered at the optimal
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values and bounded by ±20% limits. Two scores are defined to quantify the effect of
the input parameters on the response of the model: the time of flight (TOF) and the
maximum value of the envelope (AMP) of the first wave packet, as shown in Fig. 42a.
Using the input parameters and these metrics, a PCE based metamodel of order 4 for the
TOF and order 6 for the AMP metrics is implemented using the UQLab framework. Fig.
42b presents the validation of the PCE models using 20% of the samples that are not
used for defining the model. Note that the PCE approximations for the metrics alingn
with the exact regression for the model application range.
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Figure 42 – Sobol indices analysis using PCE metamodel: (a) TOF and AMP metrics;
(b) PCE metamodel validation; (c) first-order Sobol indices; and (d) second-order Sobol
indices

The first and second orders of Sobol indices are shown in Figs. 42c and 42d,
respectively. Note that the parameters with the greatest impact on the results are E1

and G12, mainly affecting approximately 70% and 55% of the variance related to TOF
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and amplitude, respectively. The sensitivity analysis indicates that ν and ρ have smaller
influences when compared to E1 and G12. The combinations of parameters also have a
negligible effect, with νG12 representing approximately 5% of the total variance related
to the amplitude. Therefore, ν and ρ can be considered determined quantities, and their
values are assigned based on the optimization results from Tab. 5, i.e., ν = 0.075 and
ρ = 1620 kg/m3. The remaining parameters are considered undetermined, and updating
their posterior probability distributions and gathering information from experimental data
containing environmental variation is necessary. In summary, small intrinsic variations
associated with uncertainties in the experimental data, which cause a slight change in
the response pattern for the same test conditions, can influence the values identified for
these parameters. Therefore, it demonstrates that in the presence of uncertainties in the
experimental data, deterministic estimation of these parameters cannot be generalized -
they must be treated as random variables.

4.4.3 ANN surrogate model

To accelerate time-consuming MCMC simulations, a surrogate model can replace
the FE-based model during the Bayesian inference process. Some surrogate modeling
techniques available in the literature include Gaussian processes (WAN et al., 2014;
WAN; REN, 2016), polynomial chaos expansion (LIU et al., 2020; LIM; MANUEL, 2021),
radial basis functions (ZHOU et al., 2016), neural networks (FAKIH et al., 2022; PADIL;
BAKHARY; HAO, 2017), among others. This study employs a multilayer perceptron
ANN as the surrogate model, serving as an interpolation model within the parameter
search space for the Bayesian inference process. The input layer consists of two neurons,
representing the two random variables E1 and G12, which are used as inputs to the
surrogate model. The output layer comprises 140 neurons, representing the time series
output. The number of hidden layers, as depicted in Fig. 43, is set to two, with N2 and
N3 neurons in the first and second hidden layers, respectively.

To train the surrogate model, the FE model is extensively simulated with properties
sampled from bounded uniform distributions E1 ∼ U(54, 66) [MPa] and G12 ∼ U(8.5, 11.5)
[MPa] to generate 1024 samples. These bounds encompass the deterministic optimal
values and offer sufficient margin to accommodate variations in the physical properties
with temperature. During training rounds, data are divided with a proportion of 80/10/10,
i.e., 820 samples for training, 102 for validation, and 102 for testing. The input parameters
are normalized between 0 and 1, and the output signal is normalized between -1 and 1 to
improve convergence. The model signal is truncated after the first wave packet to reduce
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Figure 43 – Surogate model architecture

training time and the amount of data needed for network convergence. This packet has
a group speed of 5920 m/s, within the range expected for the first symmetric mode of
a carbon/epoxy composite and for the tested frequency/thickness ratio (WANG; YUAN,
2007b), and the second packet consists of its border reflection. Figure 44a-c shows the
distribution of the sampling space population.
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Figure 44 – Training (∎), validation (∎) and test (∎) data distribution: (a) 2D dispersion;
(b) E1 Histogram; and (c) G12 Histogram

The surrogate model is trained using the Stochastic Gradient Descent with Momentum
(SGDM) algorithm, and the network loss on validation data is employed as the stopping
criterion for training. The discrepancy between the output of the surrogate model and the
full-order FE model is the error metric guiding the learning process. At regular intervals,
the training algorithm assesses the validation data, and if the loss on the validation data
ceases to decrease or begins to increase, the training process is halted.
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The performance of the proposed surrogate model is influenced by its hyperparameters,
such as the number of neurons in the hidden layers, activation functions, initial learning
rate, and the amount of available training data. N2 and N3 are defined through an
exploratory search within 50 to 300 neurons per layer. Figure 45 presents the root mean
square error (RMSE) concerning the number of neurons in the second and third layers.
The RMSE is not significantly influenced by N2, remaining stable with 50 or more neurons.
In contrast, the number of neurons N3 has a greater influence on the RMSE, with the
error stabilizing with 200 or more neurons. Therefore, an architecture with 50 neurons
for N2 and 200 neurons for N3 is defined.
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Figure 45 – Training (∎) and test (∎) RSME is a function of the number of neurons on:
(a) the second layer; and (b) the third layer

The training process is repeated with varying sample sizes to evaluate the network’s
convergence regarding the training data. Figure 46 demonstrates that the RMSE
decreases on both the training and test data as the number of training samples increases
and eventually converges. Additionally, note that approximately 500 samples are the
minimum required for the surrogate model to converge, i.e., less than the 820 samples
used.

Figure 47 presents the results from the surrogate model compared to the FE model in
three values of E1 and G12 randomly selected from the test data. In these three samples,
the surrogate model’s response replicated the FE model’s response without noticeable
differences. Additional tests showed that this behavior is repeated throughout the entire
training range.

In summary, the main advantages of the surrogate model are (i) its computation speed
and (ii) the possibility of parallelizing the data-gathering step across multiple computers.
For instance, each simulation using the FE model takes two to three minutes on a typical
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Figure 46 – Training (∎) and test (∎) RSME with varying amounts of training samples
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Figure 47 – Results for surrogate model performance on test data compared to FE model.
(a) Subspace of surrogate model training and test data with two randomly selected test
samples highlighted for model evaluation; (b) and (c) represents PZT 2 signals for samples
1 and 2, respectively; (d) and (e) represents PZT 3 signals for samples 1 and 2, respectively.
On signal graphs (b) to (e), full lines ( ) represent FE model predictions and circles (○)
represent ANN model results for the same sampled properties

PC with an Intel core i7 CPU (3,0 MHz and 4 cores) and 16 GB of RAM, whereas
the surrogate model takes less than a second to evaluate. The 1024 simulations used
at the training step took around 30 hours to perform (without a parallelization scheme).
After training, the surrogate model can be used for interpolation purposes within the
domain defined for E1 and G12. In the current application, the same surrogate model can
be used for all MCMC rounds at the temperature interval from 0○C to 60○C, reducing
exponentially the amount of simulations and time required for the Bayesian inference
process.
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4.4.4 Bayesian inference

E1 and G12 updating for 20○C

The framework for the stochastic update process proposed in Section 2.4.4 is first
applied to the experimental data collected at 20○C. The update process employs FE
and surrogate models under this specific temperature condition. The outcomes of the
two approaches are then compared, considering both the random walk performance and
the updated posterior probability density function (PDF). This comparison employs the
surrogate model to evaluate the uncertainty introduced in the Bayesian inference process.

The prior probability distributions for the variables Θ = {E1, G12}T are defined as
E1 ∼ U(54, 66) [MPa] and G12 ∼ U(8.5, 11.5) [MPa] to encompass the optimal values
from the deterministic fitting (refer to Section 4.4.1) and provide a search range for the
random walk algorithm. The initial value for each parameter is defined as the center of
the search range Θi = {60, 10}T . In the Markov Chain estimation, the likelihood function’s
variance is iteratively defined through the fitting algorithm’s rounds, aiming to ensure a
stable acceptance rate between 15 and 50% (LYE; CICIRELLO; PATELLI, 2021). As
illustrated in Fig. 48, the behavior of the FE and surrogate models is similar throughout
the evolution of the Markov chain.
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Figure 48 – Comparison between the random-walk performance of the MCMC algorithm
while searching for E1 and G12 using the numerical and surrogate models at 20○C. (a)
Random walk values for E1; (b) Random walk values for G12; and (c) Acceptance rate
for each strategy.

The random walk starts at the center of the search space for each parameter, and
the Metropolis-Hastings sampling algorithm generates a new set of samples iteratively by
proposing slight changes to the current set. Following the Metropolis-Hastings acceptance
criteria, the proposed samples are accepted or rejected based on their likelihood compared
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to the current values. After several iterations, and upon proper adjustment of the MCMC
parameters such as variance and step size for each round, the algorithm converges to an
optimal region. This convergence is clearly illustrated in Figs. 48a and 48b. Within
this stability region, the algorithm persists in sampling from the posterior distribution.
In instances where the algorithm deviates significantly from the optimal region for the
parameters, the proposed values become less likely to belong to the posterior distribution.
As a result, the Metropolis-Hastings sampling algorithm tends to return to the region
where it is more likely to acquire valuable information. The initial portion of the samples,
which may exhibit transient behavior, can be discarded through a process known as "burn-
in." This study sets the burn-in at 20% based on the acceptance rate curve presented in
Fig. 48c. Figure 49 compares the posterior PDFs sampled for E1 and G12 using the
Metropolis-Hastings algorithm.
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Figure 49 – Comparison between distributions obtained using the numerical and surrogate
models at 20○C: (a) a posteriori distribution for E1; (b) a posteriori distribution for G12;
and (c) two dimensional a priori and a posteriori distributions.

The FE and surrogate models are evaluated using the values within the 99% confi-
dence interval as depicted in the histograms in Figs. 49a and 49b. This procedure yields
the confidence interval for the output of the models. Figure 50 illustrates the confidence
intervals for the signals obtained from the surrogate model. Observations reveal that the
confidence interval for the signal measured at PZT-2 is narrower than that of PZT-3. This
phenomenon can be attributed to the greater dispersion observed in the data obtained
from PZT-3, as shown in Fig. 38 along with a lower signal-to-noise ratio.

Table 6 summarizes the results. Note that the surrogate model does not introduce
significant differences in the Bayesian inference process when compared to the results
obtained from the FE model. In addition to the results being similar, the proposed
framework using the surrogate model is computationally efficient and significantly reduces
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Figure 50 – Experimental ( ), ANN model mean ( ) and model confidence interval ( ∎ )
signal Comparison for 20○C: (a) PZT 2; and (b) PZT 3.

the time required for analyzing the Markov chains. Excluding the initial parameter tuning
phase, a complete Markov-chain Monte Carlo round with 1000 samples requires at least
32 hours when using the FE model. The initial tuning phase can take up to a working
day, relying on multiple short simulations to analyze the behavior of the Markov chain
and to adjust the hyperparameters. In contrast, the same algorithm implemented with
the surrogate model takes about 240 seconds, which is almost 500 times faster than the
FE model; additionally, the hyperparameter tuning phase can be completed in just a few
minutes. Moreover, the surrogate model enables simulations of longer chains, leading to
an increase in the number of points collected from the posterior probability distribution
and enabling multiple tests to assess the convergence of the method. The surrogate
model introduces a primary computational cost related to the data required for training.
However, this expense can be efficiently addressed by distributing the training simulations
across multiple machines, thus reducing the overall time required. In contrast, traditional
MCMC simulations must be performed sequentially due to the sequential dependency of
each chain step.

Multiple temperature

The same strategy used for 20○C is applied to fit the FE model to the experimental
data collected at temperatures from 0 to 60○C. However, these adjustments are only made
using the surrogate model. The Markov chain parameters are selected at each temperature
to maintain an acceptance rate after convergence of the algorithm between 30% and 50%
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Table 6 – Mechanical properties obtained for 20○C.

Parameter Results Model
FEM ANN

Mean 61.25 61.24
Standard deviation 0.29 0.23

E1 [GPa] CV 0.47 0.37
1% Percentile 60.26 60.10
99% Percentile 61.97 61.62
Mean 10.29 10.32
Variance 0.14 0.09

G12 [GPa] CV 1.41 0.9
1% Percentile 9.92 10.11
99% Percentile 10.52 10.47
Time 115000 s 240 s

Source: Prepared by the author.

at the end of approximately 4000 simulations. This is possible with the surrogate model
since each 1000 MCMC takes around 3 to 4 minutes. Table 7 presents the results for E1

and G12, and Fig. 51 shows the sampled posterior distributions.

Table 7 – Mechanical properties obtained for 0○C to 60○C temperature range.

Parameter Metric 0○C 10○C 20○C 30○C 40○C 50○C 60○C
Mean 61.46 61.44 61.30 61.06 61.00 60.80 60.67
Std 0.191 0.207 0.190 0.215 0.195 0.214 0.225

E1 CV 0.310 0.337 0.310 0.352 0.320 0.351 0.371
1% Percentile 60.94 60.91 60.82 60.55 60.57 60.20 60.08
99% Percentile 61.98 61.05 61.83 61.67 61.51 61.34 60.32
Mean 10.56 10.38 10.26 10.06 10.11 10.01 9.82
Std 0.116 0.124 0.108 0.114 0.103 0.131 0.121

G12 CV 1.09 1.19 1.05 1.14 1.02 1.30 1.23
1% Percentile 10.14 10.06 10.01 9.74 9.84 9.70 9.50
99% Percentile 10.87 10.69 10.55 10.38 10.32 10.40 10.11

Source: Prepared by the author.

It is possible to notice a trend of reduction of material stiffness with increasing
temperature, which is consistent with the behavior of a carbon/epoxy laminate. The
trend of the mean results is mostly linear, as can be observed in Figs. 51c and 51d. The
material’s elastic modulus starts at 61.46 GPa at 0○C and decreases with temperature to
reach the value of 60.67 GPa at 60○C, a variation of 1.3%. The shear modulus presents
the same trend, from 10.56 GPa to 9.82 GPa, a variation of 7.0% . The more significant
reduction on the shear module can be explained by the viscoelastic nature of the epoxy
resin. This larger variation for the values of G12 compared to E1 results in a greater
dispersion of the signals for PZT3, which, situated 45 degrees from the excitation point,
is more affected by the material’s shear modulus.

The only exception to the observed trend in Figs. 51c and 51d is the value of G12

at a temperature of 30○C, which appears as an outlier, displaying a lower value than



CHAPTER 4. BAYESIAN UPDATING FOR A LAMB WAVE MODEL UNDER VARYING TEMPERATURE 134

0
060

1060.5 20

E1 [GPa] Temperature [oC]

3061

1

P
D

F

4061.5 50
62 60

2

(a)

0
09

10
20

G12 [GPa] Temperature [oC]

10 30

2

P
D

F

40
50

11 60

4

(b)

0 10 20 30 40 50 60

Temperature [oC]

56

58

60

62

64

E
1

[G
P
a]

Data

99% C.I.

(c)

0 10 20 30 40 50 60

Temperature [oC]

8.5

9.0

9.5

10.0

10.5

11.0

11.5

G
1
2

[G
P
a
]

Data
99% C.I.

(d)

0.03 0.035 0.04 0.045 0.05 0.055

Time [ms]

-150

-100

-50

0

50

100

150

V
o
lt
a
ge

[m
V

]

C.I. 0oC
C.I. 60oC

Experimental 0oC
Experimental 60oC

(e)

0.055 0.06 0.065 0.07 0.075

Time [ms]

-20

-10

0

10

20

V
ol

ta
ge

[m
V

]

C.I. 0oC

C.I. 60oC

Experimental 0oC

Experimental 60oC

(f)
Source: Prepared by the author.

Figure 51 – Confidence intervals for probability density functions for E1 and G12 with
temperature: (a) 3D distribution for E1; (b) 3D distribution for G12; (c) confidence
intervals for E1; (d) confidence intervals for G12; (e) experimental results ( ) and
confidence intervals for signal of PZT 2; and (f) experimental results ( ) and confidence
intervals for signal of PZT 3. C.I. represents the confidence intervals.
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Figure 52 – Close-up of the experimental signal wave peaks from PZT-2 in the temperature
range of 0○C to 60○C.

that obtained at 40○C. To investigate this anomaly, the measured signals for PZT-2 were
analyzed concerning temperature variations. Figure 52 shows a zoom near the peak of
the first wave package from Fig. 38(c). The wave signals exhibited a consistent trend
of delay with temperature increase, except for the measurement at 30○C, which deviated
from the expected trend. Subsequent investigation into the experimental setup indicated
a potential issue with the temperature controller in the thermal chamber on the day of the
experiment. The ambient temperature fluctuated above 30○C, and the ON-OFF control
logic of the controller faced challenges in maintaining an exact internal atmosphere of
30○C. Despite this experimental anomaly, the proposed fitting methodology demonstrated
robustness. It effectively captured the temperature trend in the experimental data and
accurately reflected it in the numerical model.

4.5 CONCLUDING REMARKS

This Chapter presents a framework that incorporates temperature effects in Lamb
wave simulations within composite structures, in the context of SHM applications. Using
Bayesian inference, a stochastic FE model was developed to accurately simulate Lamb
wave behavior for different temperatures.

The framework consists of a three-step process: (i) initial adjustment, followed by (ii)
a Sobol sensitivity analysis, and (iii) a stochastic adjustment through Bayesian inference
and MCMC simulations. This framework has demonstrated its effectiveness in calibrating
the FE model by considering uncertainties in the relevant mechanical parameters of the
composite plate’s fiber/resin system. The model results align closely with experimental
observations within the considered confidence interval.
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Incorporating temperature effects is a critical consideration while developing reliable
SHM systems based on Lamb waves due to their sensitivity to environmental conditions.
The proposed framework effectively incorporates these effects into the FE model, allowing
it to simulate Lamb wave signals from 0 to 60 ○C and to reproduce the experimental
dispersion.

An additional contribution of this work is the integration of a machine learning-
based surrogate model within the Bayesian inference process. Leveraging the capabilities
of neural networks, the surrogate model significantly reduces the time required for
MCMC rounds, thereby accelerating the posterior distribution sampling process. In
the demonstration case, the time required for the MCMC rounds was reduced from
approximately 30 hours using the classical FE model-based approach, to less than 5
minutes with the surrogate model approach. This time reduction is achieved without
compromising the FE model’s accuracy, ensuring the reliability of the results.

The integration of Bayesian inference and a machine learning surrogate model for
model updating brings us one step closer to practical SHM implementations for composite
materials. The proposed framework provides a foundation for reliable and accurate
simulations and paves the way for constructing a robust SHM system suitable for practical,
real-world implementation. Leveraging the stochastic model, Chapter 5 presents the
application of this Bayesian updating framework to produce a hybrid dataset to train a
1D CNN to quantify damage in the CONCEPT dataset.
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5 BAYESIAN DATA-DRIVEN
FRAMEWORK FOR SHM UNDER
LIMITED DATA

The reliability of a machine learning algorithm is limited by the amount and quality of
the data utilized in its training stage. As presented in Chapter 3, the performance of such
algorithms is heavly affected by the amount of data used in training phase. However,
it is not feasible to intentionally damage most structures and measure their behavior
under all potential damage scenarios and environmental conditions. Even in laboratory
settings, creating specimens with multiple predetermined and characterized damage types
and locations is a challenge. To overcome this, hybrid training strategies integrate
supplementary data derived from physics-based restrictions and/or mathematical models
into the training process of machine learning algorithms (XU et al., 2023; ZHANG; SUN,
2020). Within this work, Chapter 4 proposes a Bayesian stochastic updating framework
for FE models that simulate Lamb waves. These stochastic models are capable of
reproducing the experimental results within a confidence interval, reducing the number
of tests needed to characterize a structure.

This Chapter introduces a novel data-driven approach for monitoring composite struc-
tures using Lamb waves through a 1D CNN trained with data derived from a Bayesian-
updated stochastic FE model. This approach utilizes data generated from an FE model,
specifically calibrated for Lamb wave propagation using Bayesian inference, to train a
1D CNN for damage assessment in composite structures under varying temperatures.
The Bayesian process refines the FE model using limited experimental data, employing
a Markov-Chain Monte Carlo (MCMC) technique and the Metropolis-Hastings sampling
algorithm. During this updating process, surrogate models based on MLP neural networks
are used to reduce the computational demands of the MCMC simulations. The use of
a stochastic FE model to generate training data presents several advantages: it lowers
the experimental data requirements for developing the classifier, streamlines the training
process, and potentially increases accuracy in data-limited situations by providing a more



CHAPTER 5. BAYESIAN DATA-DRIVEN FRAMEWORK FOR SHM UNDER LIMITED DATA 138

comprehensive dataset for classifier training.

The proposed training strategy combines the extensive generalization capabilities of
CNNs with the statistical rigor of Bayesian inference in model updating, yielding a robust
data source for training SHM machine learning algorithms. Incorporating data from the
stochastically updated FE model into the training phase allows the 1D CNN to utilize
the FE model’s inherent uncertainty and extend its applicability to untested experimental
data. This strategy enhances the classifier’s ability to identify essential features from the
FE model, thereby improving its predictive accuracy, especially when trained with a
constrained experimental dataset.

The effectiveness of the suggested framework is evaluated across three distinct training
contexts: exclusive experimental data, purely numerically generated data, and a combined
set of experimental and numerical data. This part of the research proposes two significant
contributions. First, it outlines the forging of a Bayesian data-driven machine-learning
technique, drawing from a stochastic FE model, to quantify damage magnitude in
composite structures under fluctuating temperatures. Second, it delves into the interplay
between experimental and numerical data on the performance of a 1D CNN architecture
regarding both confidence intervals and prediction quality.

The structure of this chapter is as follows. Section 5.1 provides an overview of the
proposed framework, including the relevant theoretical background. Section 5.2 details
the experimental setup, the FE model, the surrogate modeling strategy, and the datasets
utilized during the 1D CNN training rounds. Subsequently, in Section 5.3, Bayesian
inference is applied to update the FE model, the hyperparameters of the 1D CNN are
tuned, and the proposed Bayesian data-driven machine learning strategy is evaluated in
terms of accuracy and the impacts of temperature variations. Finally, Section 5.4 engages
in discussions about the results, while Section 5.5 presents the final remarks and suggests
potential directions for future research

The work presented in this chapter is based on the article "Bayesian data-driven frame-
work for structural health monitoring of composite structures under limited experimental
data", published in the Structural Health Monitoring journal.
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5.1 PROPOSED FRAMEWORK

This Section describes the main parts of the proposed Bayesian data-driven framework
to quantify damage size on a composite structure. The proposed framework consists of two
parts i) stochastic FE model development and ii) 1D CNN training and evaluation. Fig. 53
presents the proposed framework used for this work. The first step comprises a stochastic
updating of a FE model using Bayesian inference through MCMC simulations with the
Metropolis-Hastings sampling algorithm. A sensitivity analysis using Sobol indices and
a surrogate modeling strategy defines the relevant parameters and speeds up the MCMC
rounds, respectively. Following the updating process, a 1D CNN is trained with datasets
from three different strategies: (i) only experimental data, (ii) only numerical data, and
(iii) a hybrid combination of both.

The proposed framework is grounded on the following assumptions and considerations:

1. The experimental dataset made available by da Silva et al. (SILVA et al., 2020)
is used as an experimental setup, and it is considered that no material property is
known a priori.

2. The experimental database is divided into training and test datasets. The test
dataset is used only at the end to evaluate the performance of the machine learning
algorithms.

3. The training dataset is used to update the material properties of a FE model.

4. The FE model accounts for the experimental results variability through variations
in material properties; therefore, there is not a unique value for a given property.
Instead, there is a Probability Density Function (PDF) for each significant param-
eter.

5. A Bayesian inference process using MCMC simulations and the Metropolis-Hasting
sampling algorithm is effective in sampling posterior PDFs from uniform prior
distributions.

6. The FE model can be used to simulate other conditions inside and outside the range
of damages in which it is calibrated.

7. A surrogate model, based on neural networks, can replace the FE model to reduce
the time required for the MCMC rounds.
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8. A 1D CNN can gather features of the raw data series. It can be trained using
experimental data, numerical data, or a hybrid combination of both, comprising
three different types of datasets.

9. The proposed strategy is evaluated by comparing the performance of machine
learning algorithms trained in the three types of datasets.

10. The network performance is evaluated using a test dataset not used during the
Bayesian inference process or the training stage.

Composite structures

Stochastic FE model development

Bayesian inference
Lamb wave signals
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Source: Prepared by the author.

Figure 53 – Proposed Bayesian-driven framework for stochastic FE model updating, data
generation, and machine learning algorithm training and evaluation.

5.1.1 Stochastic FE model development

This work uses the Bayesian inference process proposed in Chapter 4 to obtain a
stochastic FE model for Lamb wave propagation under varying temperatures. Figure
54 presents the proposed strategy, divided into two main steps: an initial deterministic
updating step and a stochastic updating procedure. The deterministic updating is based
on a variation of the least-squares method. In contrast, the stochastic updating procedure
is composed of a sensitivity analysis using Sobol indices followed by an MCMC simulation
using the Metropolis-Hastings sampling algorithm to sample the posterior probability
function of the main parameters of the model, i.e., those that influence the model output
the most. The framework is applied for multiple temperatures, enabling the construction
of a model capable of emulating a complete experimental dataset across a range of
temperatures. Section 4.2 discusses in details the framework and the theory background.
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Figure 54 – Stochastic FE model updating process.

5.2 EXPERIMENTAL SETUP

The experimental data available in the CONCEPT dataset (refer to Section 4.3.1) is
used in this work. The dataset consists of a carbon fiber reinforced polymer (CFRP) plate
with dimensions of 500 x 500 x 2 mm and made of 10 layers of plain weave fibers oriented
along the plate borders directions. To detect the behavior of the plate, four PZT SMART
Layers sensors with a diameter of 6.35 mm are bonded to the plate with the help of
epoxy resin. The data acquisition is conducted under controlled temperatures, which are
incrementally increased in steps of 10○C from 0○C to 60○C. Section 4.3.1 presents further
details about the data acquisiton process and Fig. 55a depicts the experimental setup.
The dataset is publicly available in the GitHub1 repository CONCEPT: CarbON-epoxy
CompositE PlaTe (SILVA et al., 2020).

In addition to the undamaged conditions detailed in Secion 4.3.1, damaged conditions
are simulated by adding mass to the plate, with increasing diameter, ranging from 20
to 80 mm in increments of 10 mm. This mass addition simulates local variation on the
damping of the plate (LEE et al., 2011) and allows reversibly simulating damage. Overall,
the dataset comprises 28 damaged conditions. Figures 55b to 55e show one experimental
measurement for each temperature from 0○C to 60○C and diameter from 20 to 80 mm.
It is important to emphasize that the impact of damage is significantly influenced by

1https://github.com/shm-unesp/DATASET_PLATEUN01

https://github.com/shm-unesp/DATASET_PLATEUN01
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Source: Plate image adapted from Silva et al. (2020).

Figure 55 – Experimental setup: (a) data acquisition strategy; and results for progressive
damaged conditions from 20 mm to 80 mm at (b) 0○C; (c) 10○C; (d) 30○C; and (e) 60○C.
In the charts (b) to (d), the colors indicate progressive damage from baseline (blue) to 80
mm damage (red).

temperature, primarily due to the characteristics of the material employed for simulating
the damage.

In the current study, the database being analyzed, encompassing a temperature range
of 0○C to 60○C and damage diameters of 20 to 80 mm, consists of a relatively small
sample size, with only 28 data points across these dimensions (see Tab. 8). This limited
sample size poses a challenge in splitting the data into conventional training, validation,
and testing sets, typically distributed in ratios such as 50/25/25, 70/15/15, or 80/10/10.
Adopting such divisions would result in validation and test subsets with merely 3 or
4 samples each, insufficient for effectively evaluating machine learning algorithms both
during training and testing phases.

To address this issue, this work explores the potential benefits of supplementing the
sparse experimental data with additional data generated through a stochastic FE model.
This approach aims to enrich the sample space, thereby overcoming the limitations posed
by the small experimental dataset. The proposed Bayesian framework plays an important
role in this context, as it facilitates the generation of synthetic data that includes the
experimental uncertainty inside the model’s confidence interval. By using this framework,
the study aims to evaluate the advantages of using a combination of real and synthetic
data, particularly in scenarios where experimental data is limited.
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Therefore, to comprehensively evaluate the performance of the proposed Bayesian
framework, the experimental data is arranged into a scenario in which data could be
feasibly collected at various temperatures with minimal cost in a practical scenario, as
depicted in Tab. 8. This division simulates a common laboratory situation in which the
structure could be damaged in limited conditions and tested at several temperatures. This
database allows for the evaluation of temperature interpolation capacity in two ranges
with different sizes - from 10 to 30○C and from 30 to 60○C, as well as the analysis of
damage interpolation capacity between 30 and 70 mm, and the study of the extrapolation
capacity with damages of 20 and 80 mm.

Table 8 – Data division between training ( ), validation ( ), and test ( ).

Damage diameter Temperature [○C]
[mm] 0 10 30 60

20
30
40
50
60
70
80

Source: Prepared by the author.

5.2.1 FE model

An ABAQUS/Explicit FE model similar to the described in Section 4.3.2 is used to
simulate the plate, with the addition of damage. The plate is modeled using continuum
shell elements (SCR8). These elements are designed to discretize a three-dimensional body
rather than just representing a surface like traditional shell elements. Continuum shells
solely possess displacement degrees of freedom, adopt linear interpolation, and account for
the impact of transverse shear deformation and thickness alteration. Furthermore, they
are founded on first-order composite theory and can be stacked to enhance the precision
of the through-thickness response.

The analysis’s spatial and temporal resolution influences the numerical simulation’s
stability. Moser (MOSER; JACOBS; QU, 1999) suggests that a spatial resolution of
no less than 20 nodes per wavelength is essential to guarantee stability, which can be
expressed as le = λmin/20, where λmin is the minimum wavelength anticipated in the
model and le is the characteristic length of the mesh. Furthermore, to avert numerical
instability, the time step must be determined based on the highest anticipated frequency
in the simulation, with a suggested value of ∆t = 1/(20fmax), where ∆t represents the
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time step and fmax denotes the maximum frequency expected in the model. When the
input frequency is 250 kHz, adhering to both considerations leads to a mesh comprising
element sizes of approximately 2 mm and a maximum time increment of 0.2 µs. However,
further stability analyses of the model reveal that a time increment of 0.05 µs is required
to address mesh irregularity surrounding the PZT regions, guarantee convergence with the
presence of damping induced by the damage mass, and maintain a reasonable simulation
time.

Figure 39 presents the geometry of the FE model. To facilitate the generation of a
structured mesh for the entire plate, the plate is divided into several smaller rectangular
regions. The area where the PZT actuators and sensors are attached to the plate is
modeled explicitly with a circular mesh. As proposed by Gresil et al. (GRESIL et al.,
2013), the excitation signal is applied as eight self-balancing forces around this region, as
depicted in Fig. 39b. To obtain the output signal, the integrated strain results within
the sensor region are used and transformed to voltage as suggested by Sirohi, and Chopra
(SIROHI; CHOPRA, 2000). The region between PZTs 1 and 2 is modeled with a circular
mesh to account for damage addition. Damage is modeled as a constant thickness circular
disk with solid elements and a tie interaction with the plate.

The composite material is implemented in the FE model using ply-based properties.
The mechanical behavior of the materials is modeled using the classical laminate theory,
where each layer is considered an orthotropic material with 3 integration points per lamina.
As such, Young’s modulus in two perpendicular directions in the plane (E1 and E2),
Poisson’s ratio (ν12), shear moduli in and out of the plane (G12 and G23, respectively),
and density (ρ) had to be determined. As a simplification, it is assumed that the values
of E1 and E2 for plain weave fibers are close, so they are considered equal. The emulated
damage mass (see Fig. 56) is modeled as an elastic material with Rayleigh damping,
characterized by two coefficients, α and β (Eq. 38). It can be observed that in Rayleigh’s
damping, α predominates at low frequencies, while β dampens high frequencies

ξ = αR

2ω
+ βRω

2 . (38)

Figure 56 presents a close-up view of the mesh around the damage.

The model accounts for temperature effects at the material level. Initially, the elastic
modulus in perpendicular directions (E1 and E2), Poisson’s ratio (ν12), and shear moduli
in and out of the plane (G12 and G23) are heuristically selected as factors affected by
temperature for the composite material. The Young modulus, Poisson coefficient, and
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Source: Prepared by the author.

Figure 56 – Detail of the implementation of the simulated damage in the FE model.

Rayleigh damping coefficients (α and β) are considered temperature dependent for the
damage mass simulation material. The specific mass of both materials is considered
constant with temperature but treated as an uncertain quantity for both materials.

The series of Python routines presented in Fig. 40 are updated to include the damage
parameters, and the FE model is controled through the MATLAB command line interface.

5.2.2 Neural network surrogate model

To accelerate the time-consuming MCMC simulations, the authors propose employing
a surrogate model, similar to the one developed in Section 4.4.3, to replace the FE-based
model during the random-walking process. In this strategy, the FE model is extensively
simulated with properties from a bounded uniform distribution to generate the necessary
training data. The boundaries are defined by the results of the deterministic updating
procedure, which is increased by a margin of 5-20%, depending on the uncertainty
about the parameter, to allow a random-walk margin for the MCMC algorithm. The
model response is truncated after the first wave packet to reduce training time and data
requirements for network convergence. The neural network is implemented using the
MATLAB deep learning toolbox and is trained using the Adam algorithm. The training
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process employs a dataset division with 80/10/10 proportions for the training, validation,
and testing sets, respectively, with the loss on the validation data serving as stop criterion
for the training process. The input variables are normalized between 0 and 1 to enhance
convergence, while the output signal is normalized between -1 and 1.

The input layer has M neurons representing the random variables updated within
the Bayesian inference process, and the output layer contains 140 neurons representing
the time series output. The number of hidden layers is defined as two, with the number
of neurons N2 and N3 at the first and second hidden layers selected through exploratory
search. Figure 57 depicts the surrogate model structure.

M neurons N2 neurons 140 neurons
O

ut
pu

t s
ig

na
l

N3 neurons

Pa
ra

m
et

er
s

.

.

.

.

.

.

.

.

.

Source: Prepared by the author.

Figure 57 – Architecture of the MLP used as surrogate-model.

5.3 RESULTS

The results are divided into two subsections (i) the stochastic FE model updating
results and (ii) the training and evaluation of the machine learning model. The former is
further divided into undamaged and damaged model updating, while the latter is divided
into 1D CNN structure definition, damage quantification, and temperature effects.

5.3.1 Stochastic FE model updating

The updating procedure detailed in Section 5.1.1 is applied to the FE model in
the undamaged and damaged conditions. At the undamaged condition, only the plate
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material parameters are updated (E1, E2, ν12, G12, and G23) using experimental data
ranging from 0 to 60○C. This Section briefly recalls the results from Section 4.4.2.
Conversely, for the damage condition, the emulated damage mass material is updated (E,
ν, α, and β) using the available information for 0, 10, 30, and 60○C. Also, the updating
procedure of the damage condition only used the experimental signals for diameters of 30,
50, and 70 mm. The other damage diameters are used to evaluate the performance of the
proposed damage quantification strategy at the testing phase.

Undamaged model updating

For the undamaged condition, it is necessary to establish an initial search range
for the design parameters space. Due to intellectual property agreements, the available
information about the plate is limited to its composition, which consists of aerospace-grade
carbon fiber with 10 layers in a plain weave configuration (FRANCA, 2014). This range
is determined based on information from the literature for plain weave carbon/epoxy
systems, with the main source being the work of Paiva et al. (PAIVA; MAYER;
REZENDE, 2006).

The material properties are initially updated using the iterative process based on the
modified least-squares method described in Section 5.1.1. Table 9 presents the property
limits and the initial and optimal values.

Table 9 – Deterministic updating procedure results

Parameter Min Max Initial Optimal
E1 [GPa] 60.0 80.0 70.0 61.2
E2 [GPa] 60.0 80.0 70.0 61.2
ν12 0.05 0.15 0.10 0.075
ρ [Kg/m3

] 1550 2250 1800 1620
G12 [GPa] 5.00 15.0 7.50 10.25
G23 [GPa] 4.00 6.00 5.00 5.00

Source: Prepared by the author.

A sensitivity analysis using Sobol indices is conducted to identify the key factors
influencing the model’s response. All properties are randomly perturbed around their
optimal value, and the model’s sensitivity is evaluated accordingly using the metrics
depicted in Fig. 42a. The results for the first-order Sobol indices are presented in Fig. 58.
Only E1 and G12 significantly impacted the model’s response in the undamaged model. E1

corresponds to approximately 65% of the variance on TOF, complemented by 20% from
G12, while 55% of the variance on the amplitude of the signal is due to G12 complemented
by 20% from E1 influence. The remaining parameters represent less than 20% of the
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variance, and the second-order Sobol indices show that the influence of combinations of
parameters is negligible. Therefore, ν12 and ρ are assigned fixed values of 0.075 and 1620
kg/m3, respectively.
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Figure 58 – Sobol indices for the undamaged model: (a) first; and (b) second order. In
the figure legends, TOF and AMP mean time of flight and amplitude, respectively.

The remaining parameters are undetermined, and it is necessary to update their
posterior probability distributions and gather information from experimental data con-
taining environmental variation. In summary, even small inherent variations associated
with uncertainties in the experimental data can lead to slight changes in the response
pattern under the same test conditions, thereby influencing the identified values of these
parameters. Hence, it is evident that deterministic estimation of these parameters cannot
be universally applied in the presence of experimental data uncertainties; instead, they
must be treated as random variables.

The proposed methodology for Bayesian inference presented in Section 5.1.1 is applied
to the experimental data. The variables Θ = {E1, G12}T had central values defined as
the optimal obtained from the deterministic updating, and the random walk algorithm
searched for possible candidates around these values.

Due to the significant time requirements of MCMC simulations, it is proposed to
utilize a surrogate model based on neural networks to replace the FE model in the
context of random walking. The FE model is extensively simulated, employing randomly
sampled properties from a bounded uniform distribution. Specifically, the parameters E1

and G12 are sampled from the uniform distributions U(54, 66) [MPa] and U(8.5, 11.5)
[MPa], respectively. These bounds encompass the deterministic values while allowing
for adequate flexibility to accommodate variations in the physical properties due to
temperature changes. The resulting data from these simulations are utilized for training



CHAPTER 5. BAYESIAN DATA-DRIVEN FRAMEWORK FOR SHM UNDER LIMITED DATA 149

a surrogate model as described in Section 4.4.3. To determine the number of neurons N2

and N3, the surrogate model is simulated with varying numbers of neurons ranging from
50 to 300, and the results are evaluated using the root mean error between the FE-model
results and ANN results. An error convergence analysis demonstrated that a network
with 50 neurons in the second layer and 200 neurons in the third layer trained with 500
samples could represent the FE-model results with less than 1% error.

Each MCMC round utilizing the FE model necessitates approximately 30 hours of
computer time and must be executed on a single machine due to the sequential nature of
Markov Chains. In contrast, generating 500 random samples for surrogate model training
takes less than 20 hours and can be parallelized across multiple machines. Subsequently,
employing the ANN surrogate model for an MCMC round takes around 5 minutes, and
this same surrogate model can be utilized for multiple temperatures, provided that the
properties’ search space lies within the training limits.

For the Markov Chain estimation, the variance of the likelihood function is defined
iteratively through rounds of the fitting algorithm, trying to ensure a stable acceptance
rate between 40 and 50%. The chain is simulated over 4000 samples, and the first 20%
samples are discarded (burn-in). Figures 60a to 60h present the statistical properties of
the obtained properties and Figs. 61a to 61d depict the experimental signals compared
to the model results and confidence intervals. The confidence intervals are obtained by
evaluating the FE model within the 99% percentile for the input parameters.

Damaged model updating

Evaluating Eq. 38, one can notice that α is responsible for the damping component
at low frequencies. Among the available parameters for adjusting the damaged model,
initial tests showed that this damping component is insignificant to the model’s response.
As Lamb waves occur in ultrasonic ranges, specifically 250 kHz for the present study, only
β is relevant. Therefore, the damaged model has four adjustable parameters besides the
ones already considered in the undamaged model: E, ν, β, and ρ for the damage mass.
The initial value of the mass density was determined experimentally as 1750 kg/m3 and
kept constant with temperature. An initial estimate is based on an exploratory search for
the other parameters. Table 10 shows the proposed range of values for the parameters
of interest. Note that, due to the uncertainty involved in the system, E and β have a
wide search range. The Poisson’s ratio is limited to 0.45 to avoid potential issues with
incompressibility in the FE model.
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Table 10 – Search region for the damaged model parameters.

Parameter Minimum value Maximum value
E [MPa] 100 700

ν 0.35 0.45
1e-7 β 0.5 10

ρ [kg/m3] 1650 1850
Source: Prepared by the author.

The updating procedure requires simulating the model with the three training diam-
eters from Tab. 8 (30, 50, and 70 mm) at each parameter alteration. Moreover, adding
damping to the system reduces the minimum step required for numerical stability to 0.05
ns. Consequently, the wide range of potential values, combined with multiple damage
diameters, significantly increases the computational burden of employing the FE model in
an exploratory search strategy. Therefore, an initial sensitivity analysis employing Sobol
indices is used. A Latin hypercube sampling strategy with 200 samples is constructed,
encompassing the four parameters from Tab. 10 and considering the fixed central damage
diameter value of 50 mm. The 30 and 70 damage diameters are not included to keep the
model’s variance only related to the material properties.

Figure 59 presents the obtained first and second-order Sobol indices. Note that E

represents almost 70% of the variance related to the signal’s amplitude, complemented
by 25% from β. Conversely, the variance of the TOF metric cannot be entirely addressed
by individual parameters, as the second-order Sobol indices show that the combination Eβ

is responsible for half of this metric variance. The remaining parameters have negligible
impact on the model’s response; therefore, they are subsequently assigned fixed values,
namely 0.4 for the Poisson’s ratio and 1750 kg/m3 for the mass density. E and β

are considered undetermined, and updating their posterior probability distributions is
necessary following the Bayesian inference procedure described in Section 5.1.1.

To perform the MCMC random walks, a surrogate model is constructed using 1000
samples obtained from the FE model, which was simulated using the uncertain properties
sampled from a Latin hypercube bounded by E ∼ (100, 700) [MPa] and β ∼ 1e−7(0.5, 10),
along with damage diameters of 30, 50, and 70 mm. The ANN surrogate model underwent
the Bayesian inference process using MCMC with the Metropolis-Hastings algorithm. For
the Markov Chain estimation, the variance of the likelihood function is defined iteratively
through rounds of the fitting algorithm, trying to ensure a stable acceptance rate between
40 and 50%. The chain is simulated over 4000 samples, and the first 20% samples are
discarded (burn-in).

Figs. 60a to 60p present the sampled PDFs for E1, G12, E and β. The PDF is obtained
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Figure 59 – Sobol indices for the damaged model: (a) first; and (b) second order. In the
figure legends, TOF and AMP means time of flight and amplitude, respectively.)

from a kernel density estimate (KDE) applied to the MCMC sampled data. Note that
all material properties tend to reduce their magnitude with temperature. Comparing the
CFRP and the emulated damage mass, the latter has a greater variation, with Young
modulus and β damping coefficient average values varying from 575 MPa and 3.9×10−7

to 475 MPa and 1.5×10−7, respectively.

Samples obtained using the MCMC process are considered a set that approximates the
target distribution. These obtained samples are then used as a surrogate PDF representing
the target distribution and sample. Simulating the model within its 99% confidence
interval for the sampled properties gives the model confidence intervals for the signals, as
depicted in Figs. 61a to 61d.

The application of the framework resulted in a Bayesian updated FE model that
can be simulated over all ranges of temperatures and provide results with variability
within a confidence interval that encompasses the experimental results. The model is
a foundation for emulating the experimental setup with and without damage. During
the data generation phase, given a temperature, the properties can be sampled from
the obtained PDFs. Then, the FE model can be evaluated with the intended damage
diameter.
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Figure 60 – Results for stochastic updating procedure using 30, 50, and 70 mm damage
diameters at 0, 10, 30, and 60○C, respectively, in the horizontal direction. (a) to (d)
E1 distribution; (e) to (h) G12 distribution; (i) to (l) E distribution; and (m) to (p) β
bistribution. In the histograms, the colors represent: Sampled data (), Kernel Density
Estimate (KDE) ( ) and Cumulative Density Function (CDF) ( ).
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Figure 61 – Model response for PZT at (a) 0 ○C; (b) 10○C; (c) 30○C; and (d) 60○C. In
the graphs, the colors represent experimental undamaged signal ( ), experimental 50 mm
damaged signal ( ), model prediction for 50 mm with mean properties ( ) and confidence
interval ( ).
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5.3.2 1D CNN evaluation.

In the following subsections, the impact of data generated by the stochastic FE model
on the proposed 1D CNN classifier is evaluated using three distinct strategies: (i) using
only experimental data, termed EXP; (ii) using only numerical data, referred to as NUM;
and (iii) employing a combination of both types of data, known as hybrid training or HYB.
The strategy for preparing each dataset is detailed in Section 5.3.3, the model’s structure
is outlined in Section 5.3.4, and the data division strategies are assessed in terms of the
model’s accuracy and the temperature effect in Sections 5.3.5 and 5.3.6, respectively.

5.3.3 Datasets preparation

The experimental and numerical results must be pre-processed to generate the EXP,
NUM, and HYB datasets. The first pre-processing step consists of selecting the first
wave package of each k PZT in a damaged condition and concatenating them into a
vector R1×kM . M is defined as 140 points encompassing the FE model’s validation region,
and k is equal to 3. Therefore, the input signal has a length of kM = 360. Then, a
reference undamaged signal with dimension R1×kM is paired with the damaged signal,
creating a sample x(l) ∈ R2×kM . Finally, each sample is paired with the scalar damage
diameter, also known as severity, represented by y(l) ∈ R1×1 and normalized between 0
and 1, considering the range of 0 to 80 mm. The 1D CNN is trained to receive the x(l)

array and determine damage diameter y(l) related to it.

The training is performed with the EXP, NUM, and HYB datasets. The EXP dataset
is composed only of experimental data. There are 100 experimental signals for each
temperature and damage condition of Tab. 8, and the damaged conditions are divided
into training, validation, and test subsets according to it. The undamaged signals for
each temperature are divided using the same proportion of the damaged conditions, i.e.,
2/1/4 and 1/2/4 for 0 and 10○C, respectively. Finally, each damaged signal is permuted
with all undamaged signals, expanding the available combination of signals for training,
validation, and testing. Table 11 summarizes the data division.

This data partitioning strategy is chosen for two primary reasons: (i) Segregating
undamaged from damaged signals before distributing them into training, validation, and
test datasets ensures entirely distinct subsets. This means no overlap between these
subsets, ensuring the neural network is not exposed to test samples during training. (ii)
Given experimental uncertainties, two recorded signals under identical conditions are
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Table 11 – Experimental and FE model data division and number of samples. The
abreviations mean: Temperature - T; Undamaged samples - U; Damaged samples - D;
Possible combinations - C; Training - Tr.; Validation - Val.; S - Set; and Test - Te.

T 0○C 10○C 30○C 60○C

E
xp

er
im

en
ta

l U 100 100 100 100
D 700 700 700 700
S Tr. Val. Te. Tr. Val. Te. Tr. Val. Te. Tr. Val. Te.
U 30 15 55 15 30 55 30 15 55 15 30 55
D 200 100 400 100 200 400 200 100 400 100 200 400
C 6000 1500 22000 1500 6000 22000 6000 1500 22000 1500 6000 22000

F
E

m
od

el U 50 50 50 50
D 500 500 500 500

C 25000 25000 25000 25000

Source: Prepared by the author.

never the same. Consequently, an undamaged baseline can be contrasted with all damaged
signals for a specific temperature. By shuffling the baseline within the same temperature
bracket, we can diversify available samples for training. For the creation of the NUM
and HYB datasets, the numerical signals are procured from the stochastic FE model
simulations at temperatures of 0, 10, 30, and 60○C. Diameters are randomly chosen within
the range of 20 to 80 mm. Undamaged signals are sourced by sampling PDFs for 50 times
per temperature for the undamaged model. 500 diameters are randomly chosen within the
20 to 80 mm range for damaged signals at a specific temperature. PDFs of the properties
are then sampled for each diameter, followed by FE model simulation. The permutation
approach employed for the EXP dataset is replicated. The NUM dataset comprises all
data derived from the numerical signals. In contrast, the HYB dataset amalgamates
the EXP and NUM datasets. For diameters present in both the experimental and FE
model datasets meant for training, only experimental data is incorporated into the HYB
dataset. These datasets subsequently inform the training phase of a 1D CNN algorithm
to assess damage size. Performance is gauged using validation and test subsets sourced
from the EXP dataset. The distinguishing factor between these datasets is the origin of
training data; the HYB dataset integrates both experimental readings and numerical data
extracted from the Bayesian stochastic FE model.

5.3.4 1D CNN structure definition

The proposed 1D CNN consists of three sequence blocks of convolution-pooling-ReLU
layers, followed by one fully connected layer, as presented in Tab. 14. The three blocks of
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1D Convolutions + ReLU layers aim to extract features from the time series. The network
has increasing filters along its depth, and the last layers comprise a sequence of flattened,
fully connected, and regression layers. In this structure, the convolution part acts as a
low-level feature extractor, while the fully connected part performs the regression based
on such features. The last layer is a regression layer with a single neuron that predicts
the diameter of the damage between 20 and 80 mm. The error is quantified using the
mean squared error, the prediction, and the real value. The same structure is used in all
training scenarios to evaluate the data impact on the classifier’s performance.

The internal structure of the network is evaluated through random search. For the
first layer, two variables of interest are considered: kernel size and the number of filters
per convolution. As the first layer is responsible for extracting basic features from the raw
signal, the second and third kernel sizes are kept constant to reduce the hyperparameters
search space. However, the number of filters is increased with the depth of the network;
thus, the second and third layers have 2x and 3x times the number of filters of the first
layer, respectively.

At the training stage, five hundred neural networks are simulated with hyperparam-
eters sampled within the range α ∼ U(0.1, 0.00001), kernel size K ∼ U(3, 25), and the
number of filters N ∼ U(16, 32). It is worth noting that only odd numbers for the
kernel size are evaluated to maintain symmetry around the convolution window. The
adaptive moment estimation (Adam) training algorithm is used. The other training
hyperparameters kept constant are presented in Tab. 12. Besides a maximum of 500
training epochs, early stop criteria are implemented to reduce overfitting. The validation
data from the EXP dataset is used to evaluate the loss and RMSE (see Tab. 8) along the
training, and it is interrupted if validation loss stops decreasing or starts to increase in
two subsequent epochs. The neural network structures are implemented in the MATLAB
deep learning toolbox. All training rounds are carried out on a PC featuring AMD Ryzen
9 5950X CPU @ 3.40 GHz, 16 GB RAM, and an Nvidia GeForce 2060 GPU card using
the GPU.

The results and hyperparameters for the three best-performing networks are presented
in Tab. 13 and are ordered based on the validation data error for the network trained
with experimental data. The best networks exhibit similar errors in the training of the
numerical network, rendering this criterion irrelevant to the selection process.

Figure 62 compares the networks of Tab. 13 during the experimental and hybrid data
training stage. Networks 1 and 3 have learning rates in the same order of magnitude and
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Table 12 – Fixed training parameters.

Training parameters
Optimizer Adam

β1 0.9
β2 0.999
ϵ 1E-8

L2 regularization factor 0.0001
Weight initializer He

Total epochs 500
Mini-batch size 128

Source: Prepared by the author.

Table 13 – Parameters and results on validation data for the 3 best networks at
hyperparameters tuning phase.

Hyperparameters Error at validation data
Network Learning rate Kernel size Number of filters EXP NUM HYB

1 0.06720 19 31 0.0283 0.0817 0.0884
2 0.00360 3 24 0.0317 0.0819 0.0733
3 0.05640 19 20 0.0412 0.0780 0.0493

Source: Prepared by the author.

the same kernel size, but network 1 has more filters. A larger number of filters results
in a network with more parameters to train. Network 1 exhibits a higher tendency
for instability in the validation data after a certain point, indicating overfitting to
the training data. Network 2 encounters a similar stability issue and undergoes early
stopping. Conversely, when examining the curve for case number 3, a more stable behavior
throughout the training process is observed, allowing for additional training rounds.

Consequently, the network architecture is selected based on a trade-off between the
error in experimental and hybrid training, the tendency to overfitting, and the training
time required for the subsequent stages. Figure 63 depicts the networks architecture and
Tab. 14 presents the parameters for the selected network.
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Figure 62 – Validation RMSE for the three best networks with: (a) EXP dataset; and (b)
HYB dataset.
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Figure 63 – 1D CNN architecture used for damage quantification.
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Table 14 – Network structure used for regression.

Layer Type Kernel Stride
1 Input - -
2 1D convolution 19x20 1
3 Batch normalization - -
4 ReLU -
5 Max pooling - 2
6 1D convolution 10x40 1
7 Batch normalization - -
8 ReLU -
9 Max pooling - 2
10 1D convolution 10x60 1
11 Batch normalization - -
12 ReLU 5 -
13 Max pooling 2
14 Dropout 50% -
15 Flatten -
16 Fully connected -

Source: Prepared by the author.

5.3.5 Damage quantification

The selected network is assessed using the EXP, NUM, and HYB datasets described
in Section 5.3.3. The learning rate is initially set as 0.001 to minimize instability and
subsequently fine-tuned throughout the process. An early stopping criterion based on
the validation data error from the EXP dataset is employed. Training is stopped if the
mean squared error decreases for two consecutive epochs. Figure 64 shows the training
performance for each scenario.
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Figure 64 – Comparison between training ( ) and validation RMSE (○) for the EXP,
NUM, and HYB training strategies.
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The algorithm trained with the EXP dataset reaches a training error approximately
20% lower than the validation error, indicating overfitting to the training data. The
algorithms trained with the NUM and HYB datasets exhibit comparable validation-to-
training error ratios, although the HYB-trained algorithm demonstrates lower absolute
error values. Furthermore, the algorithm trained with the HYB dataset achieves a
lower validation error faster than the other two, which combined with the fact that
the validation error is similar in the EXP and HYB strategies, demonstrates the greater
robustness of the algorithm trained with the inclusion of data from the Bayesian stochastic
FE model.

Table 15 summarizes the average results, with the model trained using the EXP
dataset as the reference for error comparison. When evaluated on the test data, the
model trained with the HYB dataset exhibits an average RMSE that is 87.5% of the
model trained with the EXP dataset, resulting in a 12.5% reduction in error. The HYB
model shows a 167% higher error on the training data than the EXP model. However,
this difference can be attributed to the overfitting of the EXP model on the training
data. Overfitting may lead to the model fitting too closely to the training data, resulting
in poorer performance when faced with new, unseen data. Overfitting metrics reveal
that the EXP model has validation/training and test/training ratios of 5.74 and 9.54,
respectively, while the HYB model exhibits ratios of 2.16 and 3.11 for the same metrics.
These findings suggest that the algorithm trained with the HYB dataset possesses superior
generalization capabilities.

Conversely, training with the NUM dataset has a considerably higher error, as shown
in Tab. 15. As this algorithm is trained with only numerical data and validated with
experimental data for the early stopping criteria throughout the training, the training
process stops when it starts to overfit the numerical data. Although the stochastic FE
model replicates most of the signal within the confidence interval, as seen in Figs. 61a
to 61d, then the neural network starts to learn the particularities of the numerical signal
and overfits after a certain training time. Additional tests on the NUM dataset have
revealed that the proposed 1D CNN cannot effectively generalize when solely trained
with numerical data in this experimental setup. One hypothesis is that, in this scenario,
as the 1D CNNs are trained with the NUM dataset but validated with the EXP dataset
throughout training, the training process may be terminated prematurely by the training
algorithm. This leads to an underfitted model for both the numerical and experimental
data, as shown by the high training RMSE. Consequently, this model is not evaluated in
the subsequent analysis.
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Table 15 – Summary of the quantification results.

Training strategy EXP NUM HYB
Training RMSE (TR) [mm] 1.01 7.09 2.69

As EXP percentual 100% 705% 267%
Validation RMSE (VL) [mm] 5.77 9.46 5.83

As EXP percentual 100% 163% 101%
Test RMSE (TE) [mm] 9.59 12.3 8.38

As EXP percentual 100 128% 87.5%
Overfiting metrics

VL/TR Ratio 5.74 1.33 2.16
TE/TR Ratio 9.54 1.73 3.11
TE/VL Ratio 1.66 1.30 1.44

Source: Prepared by the author.

Figure 65 compares the training strategies in terms of the classification of the
experimental data. The confidence interval shown is derived from the 99% percentile
of predictions on the training data. The neural network trained solely on experimental
data exhibits a narrow confidence interval closely aligned with the optimal prediction
region. However, this confidence interval does not accurately reflect reality due to its
limited training data. All predictions for values in the test data lie outside the confidence
interval, indicating the low reliability of this classifier.

In contrast, the neural network trained with the HYB dataset demonstrates a more
reliable confidence interval, as shown in Fig. 65a. Note that the confidence interval is
narrow around the training diameters of 30, 50, and 70 mm and widens as it deviates from
these regions. The network’s training data includes experimental realizations at these
diameters, leading to narrower confidence intervals. In contrast, the stochastic model
generates the potential signals for other diameters in the analysis range. The neural
network predictions trained with hybrid data mostly fall within the confidence interval,
except for some predictions at 20 and 80 mm. These damages occur at the extreme ends
of the FE model’s validity range and in the extrapolation region of the experimental
data used during training. Figure 65b shows that the neural network trained with the
HYB dataset exhibits smaller errors within the interpolation range of the model. The
error increases in regions near the validity limit of the stochastic model, but the network
trained with HYB dataset still shows less dispersion in its predictions.
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Figure 65 – 1D CNN predictions for experimental test data: (a) Real and predicted
damages along with confidence intervals (CI); and (b) RMSE concerning real diameter.

5.3.6 Temperature influence

Figure 66 displays the 1D CNN-based classifier predictions for training with the
EXP and HYB datasets, divided by temperature. Upon evaluating the predictions, it is
noticeable that the classifier trained using the HYB dataset outperforms the one trained
with the EXP dataset at all temperatures within the interpolation range (between 30 and
70 mm). Nevertheless, the classifier trained with the HYB dataset exhibits lower error
than the classifier trained with the EXP dataset and can provide a similar confidence
interval for multiple temperatures. Note that the model trained with the EXP dataset
only has access to a single experimental condition for temperatures of 10○C and 60○C.
Therefore, it lacks a confidence interval at these temperatures.



CHAPTER 5. BAYESIAN DATA-DRIVEN FRAMEWORK FOR SHM UNDER LIMITED DATA 163

0 20 40 60 80 100

Real damage [mm]

0

20

40

60

80

100

P
re

d
ic
te

d
d
a
m

a
ge

[m
m

]

EXP

HYB

CI EXP

CI HYB

(a)

0 20 40 60 80 100

Real damage [mm]

0

20

40

60

80

100

P
re

d
ic
te

d
d
a
m

a
ge

[m
m

]

EXP

HYB

CI HYB

(b)

0 20 40 60 80 100

Real damage [mm]

0

20

40

60

80

100

P
re

d
ic
te

d
d
am

ag
e

[m
m

]

EXP

HYB

CI EXP

CI HYB

(c)

0 20 40 60 80 100

Real damage [mm]

0

20

40

60

80

100

P
re

d
ic
te

d
d
am

ag
e

[m
m

]

EXP

HYB

CI HYB

(d)
Source: Prepared by the author.

Figure 66 – 1D CNN performance in different temperatures: (a) 0○ C; (b) 10○ C; (c) 30○
C; and (d) 60○ C. CI represents the confidence intervals.
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5.4 DISCUSSIONS

As depicted in Figs 65 and 66, the 1D CNN trained with the proposed Bayesian
data-driven strategy exhibits lower error and can provide reliable confidence intervals.
Observing the narrower confidence interval at damage diameters where the experimental
signal is used at the training step is possible. At the same time, it widens at diameters
trained only with numerical data.

As the algorithm trained with the EXP and HYB datasets has to learn from both
sources, it is harder to overfit the training data when compared to the model trained with
the EXP dataset. The latter presents a smaller error value on training data without a
corresponding reduction in validation and test data. Despite resulting in a final validation
error close to that observed in hybrid training, the ratio validation/training error is much
higher for experimental training, indicating overfitting.

The region spanning from 30 to 70 mm corresponds to the interpolation segment of
the training data, whereas 20 and 80 mm denotes extrapolation. Notably, the average
error rises within the extrapolation regions. This can be attributed to both the inherent
challenges associated with extrapolation and the proximity to the validity boundaries of
the numerical model, which underwent validation between 20 and 80 mm.

Conversely, the network trained with the NUM dataset cannot achieve the same
error level as the other two. It performs poorly in all scenarios due to the stopping
criterion based on experimental data. Thus, it cannot train for sufficient time to adjust
to the training data before the results diverge. For this network, the relaxation of
the stopping criterion, allowing for more extended training, was evaluated. However,
while the network improved performance on numerical data, it considerably worsened
on experimental validation and testing data. Therefore, this training approach proved
unfeasible with the given database, model, and training strategy.

In Fig. 66, the model exhibits superior performance at lower temperatures than higher
ones, which can be attributed to two factors. Firstly, the effect of the simulated damage
on Lamb wave propagation is highly temperature-dependent due to the viscoelastic nature
of the material used to simulate the damage, and its influence diminishes at higher
temperatures. This reduction is mainly due to reduced damping, as shown in Figs. 61a
to 61d. Secondly, the temperature range between the first three experimental datasets
spans 30 degrees, while the difference between the 30 and 60-degree datasets is also 30
degrees. This requires the classifier to work across a wider range at higher temperatures
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in addition to the reduced damage effect.

In situations with limited experimental data, 1D CNNs trained solely on experimental
data cannot provide a confidence interval, as was the case at 10○C and 60○C. Conversely,
the 1D CNN trained with the HYB dataset incorporates multiple potential signals
generated by the stochastic model within its confidence interval, enabling the machine
learning algorithm to establish its confidence intervals based on numerical data. The
confidence intervals allow for greater confidence in the neural network’s results, mitigate
the black box nature typically associated with this class of algorithms, and allow one to
explore the algorithm predictions across the proposed training scenarios.

5.5 CONCLUSIONS

The proposed Bayesian data-driven framework identifies and integrates relevant FE
model input parameters from experimental data while accounting for their inherent
uncertainties. As a result, the stochastic FE model completes and expands the existing
dataset by providing simulated samples where data might be sparse. Combined with the
generalization capabilities of 1D CNNs, this approach results in a model that presents
accelerated convergence, minimized validation and test errors, and superior resilience to
temperature variations.

The samples produced by the stochastic FE model can be merged during the training
of machine learning algorithms, thereby enhancing these algorithms accuracy in damage
quantification. As evidenced in the tests, the 1D CNN trained using this model-enhanced
data achieved a 12.5% reduction in test data error compared to an algorithm trained
using only experimental data.

Moreover, this expanded dataset paves the way for establishing a confidence interval
for model predictions. This addition significantly boosts the reliability of results from the
neural network, a crucial feature given the network’s typical "black-box" nature.

In scenarios characterized by diverse damage types and locations, the challenges faced
by algorithms trained only on experimental data intensify. The proposed framework is
flexible, and can be applied to such situations, given that there is a FE model capable
of simulating such damages. The approach reduces the difficulty and amount of required
experiments in a multidimensional landscape, offering an alternative solution in situations
where exhaustive factor combination testing is prohibitive.
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6 FINAL REMARKS

There is still a long journey until Lamb waves become a widespread technique for
industrial applications. However, small steps toward better algorithms and reliable
data bring us closer to this objective. The work contained in this thesis explores new
contributions to the application of 1D CNNs as data processing algorithms for Lamb
wave signals, serving roles in detection, localization, and quantification. Additionally,
a stochastic updating strategy based on Bayesian inference for updating FE models is
presented. The data generated by these stochastic FE models can be utilized to train
machine learning algorithms, complementing experimental data.

Thus, Section 6.1 presents a summary of the conclusions presented throughout this
study. Additionally, Section 6.2 proposes paths for future inquiry, and Section 6.3 presents
the research papers published during the development of this Thesis.

6.1 SUMMARY

• Results presented in Chapter 3 indicate that 1D CNNs are considerably better than
their MLP counterparts in detecting and localizing damage. In a dataset with 196
damage positions collected with an automated version of the LaWaDe system from
GRAVi UFMG, these networks consistently outperformed the MLP, showcasing its
effectiveness as a feature extractor, classifier, and regressor for Lamb wave signals.
The main conclusion can be summarized on two fronts:

– These networks exhibit superior performance by utilizing the entire time series,
avoiding subsampling, transformations, or loss of information. Consequently,
they can directly map high-dimensional data from the complete Lamb wave
signal to the desired outputs.

– The 1D CNNs outperform MLP networks in both global and local damage
localization strategies. For global localization, 1D CNNs achieve nearly 100%
accuracy on test data when trained with 25 and 16 damage samples per 200 ×
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200 mm quadrant. They maintain a median accuracy above 85% even with a
64% reduction in data, using only 9 samples per quadrant. In local analysis, 1D
CNNs excel further, demonstrating lower mean error in predicted coordinates
even with less training data compared to MLPs trained with maximal data.

– A significant drawback of 1D CNNs is their complexity and computational cost
in configuration and training. In contrast to MLPs, which have only three
architectural hyperparameters—number of layers, number of neurons, and
dropout probability—1D CNNs present a multitude of possible architectures
with numerous hyperparameters for each layer. This complexity significantly
complicates the fine-tuning process of these networks, making it both challeng-
ing and time-intensive.

• The influence of environmental conditions, notably temperature, on Lamb wave
propagation is a well-documented issue in the literature. Furthermore, it is
essential to consider experimental uncertainty in the development of a reliable
SHM classification algorithm. Although the integration of these effects into FE
models through Bayesian inference to enhance their ability to generate realistic
data is a promising approach, the literature review shows a lack of research in this
area. The primary challenges involve the complexity of Lamb waves, measurement
uncertainty, and the computational demands of simulating Lamb wave models
within a Bayesian framework. Chapter 4 presents results demonstrating the
feasibility of using Bayesian inference in Lamb wave FE models to incorporate
experimental uncertainty, thereby enhancing model reliability and its utility in
generating data for training machine learning models. Additionally, a surrogate
modeling strategy employing an artificial neural network was developed to mitigate
computational costs. The results indicate that a neural network-based surrogate
model can effectively replace an FE model for Lamb wave simulations, even within
a Bayesian inference framework, with minimal impact on result quality. This
surrogate modeling approach has potential applications in various other domains,
such as vibration and buckling problems.

• Results in Chapter 5 indicate the Bayesian data-driven framework excels in in-
corporating key FE model parameters from experimental data, considering their
uncertainties. This enhances the stochastic FE model, allowing it to supplement
sparse datasets with simulated samples. When combined with 1D CNNs, this
methodology leads to faster convergence, lower validation and test errors, and
better resistance to temperature changes. Using this framework’s output in machine
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learning algorithm training improves damage quantification accuracy. The tests
show that algorithms trained with this enhanced data reduce test data errors
by 12.5% compared to those trained solely on experimental data. Furthermore,
this enriched dataset enables the establishment of confidence intervals for model
predictions, increasing the neural network’s reliability. This is especially useful given
the network’s ‘‘black-box’’ nature. The proposed framework is also versatile and can
be adapted to complex situations with varied damage types and locations, reducing
the need for extensive experiments in multidimensional settings and offering a
practical solution where comprehensive factor testing is impractical.

6.2 PERSPECTIVES OF FUTURE WORK

Some of the proposals for future work have already been introduced throughout the
concluding remarks of each Chapter (please, see Sections 3.5, 4.5, and 5.5). Some other
specific suggestions for future research that have emerged in the progress of this work are
outlined next:

6.2.1 Model-based transfer learning using 1D CNNs

The work done in this research can be expanded with a transfer learning methodology,
utilizing Lamb wave signals from the stochastic model to real structures. This could be
achieved through domain adaptation or by pre-training a model with the stochastic model
and then fine-tuning it using experimental data. In the context of 1D CNNs, this concept
can be operationalized by modifying the first and last layers of the network.

Furthermore, this methodology could also be assessed using experimental data from
the GRAVi dataset. It is important to note that the 4x4 grid array illustrated in Fig. 22
can be segmented into four distinct 3x3 arrays, analogous to the configuration used in
Chapter 3. Various strategies could be explored, including the symmetry of the sensor
mesh, mirroring the structure, and utilizing a network trained on the four upper-right
quadrants to detect damage in other quadrants, particularly the lower-left quadrant, due
to the plate’s symmetry.

The concept of a global-local strategy could be expanded. Initially, this involves deter-
mining the location of the quadrant among the nine quadrants of the plate. Subsequently,
a specialized 1D CNN, which only receives inputs from the four sensors demarcating a
quadrant, could be employed to locate damage within all quadrants using this singular



CHAPTER 6. FINAL REMARKS 169

network.

6.2.2 Expand the stochastic model updating strategy for damage localiza-
tion

In Chapter 4, a stochastic FE model of the CONCEPT was developed, focusing solely
on varying the damage size. A promising direction for future research involves extending
this model to support the GRAVi setup, integrating multiple damage sizes and positions.
This enhancement aims to assess the capabilities of the stochastic updating framework
and the processing efficacy of 1D CNNs with more complex datasets.

Due to computational limitations in the current methodology, it was not feasible
to apply the proposed approach to larger structures, such as the GRAVi UFMG plate,
using multiple sensors and actuators. The GRAVi plate, being twice the size of the
CONCEPT dataset plate, necessitates a mesh four times larger. This scaling significantly
increases the computational demands for Lamb wave simulations, necessitating either a
high-performance workstation or a coordinated effort of multiple computers operating in
parallel. In this context, the deployment of a surrogate model to reduce computational
time becomes critically important.

An additional area of research that presents significant challenges involves models
with damage in multiple positions, especially concerning Lamb waves. The high-speed
propagation of these waves, on the order of kilometers per second, means that even
millimetric discrepancies in damage positioning—between the actual damage, its recorded
experimental location, and its representation in the numerical model—can lead to sub-
stantial phase differences in the wave packet. Addressing this precision issue is imperative
for the successful application and validation of the model in real-world scenarios.

6.2.3 Experimental and numerical analysis of real damage using a stochas-
tic model

The Bayesian data-driven framework for SHM presented in Chapter 5 demonstrated
that, in some cases, the 1D CNNs have difficulty in generalizing based solely on numerical
data, and require a certain amount of experimental data during the training phase to
perform well in unseen experimental scenarios. This limitation is particularly significant
in experimental scenarios featuring multiple damage types and/or when experimental
data is expensive to collect. Therefore, an opportunity for research lies in the inclusion
of real damage and in the elaboration of numerical models with different levels of fidelity.



CHAPTER 6. FINAL REMARKS 170

This approach would aid in evaluating the generalization limitations of the 1D CNNs in
real damage scenarios and provide guidelines indicating which types of damage should be
collected experimentally and which cases can be simulated.

To optimize research efforts, the focus should initially be on damage types in compos-
ite structures that are relatively simple to replicate both experimentally and numerically,
like holes. Additionally, prioritizing damages with substantial existing experimental data,
such as delaminations, is recommended due to their critical importance.

6.3 CONTRIBUTIONS TO THE LITERATURE

This Thesis contributes to the literature by demonstrating the effectiveness of 1D
CNNs in detecting structural damage using raw Lamb wave signals with minimal
preprocessing. This finding highlights the potential of 1D CNNs in Lamb wave signal
processing and opens new avenues for research of their application in SHM. Additionaly, a
key contribution is the development of a framework for updating Lamb wave FE models to
include temperature variations and measurement uncertainty, a first work in this field in
the literature. The proposed approach enhances the accuracy of computational modeling
in structural analysis. The Thesis also introduces a neural network-based surrogate model
to simulate Lamb wave signals that increases the speed of Bayesian inference rounds.
This model is currently being tested in carbon structures’ buckling analysis and bridge
vibration models, showing favorable results. Finally, the work outlines a method for
training a 1D CNN with data from both experimental setups and a stochastic FE model.
This approach effectively integrates theoretical and practical data, improving accuracy
in structural damage detection. Some of the results of this Thesis were published in the
following journal articles:

• Leonardo de Paula S. Ferreira, Rafael de O. Teloli, Samuel da Silva, Eloi
Figueiredo, Ionut D. Moldovan, Nuno Maia, Carlos Alberto Cimini Jr., Bayesian
calibration for Lamb wave propagation on a composite plate using a machine
learning surrogate model, Mechanical Systems and Signal Processing, 2024.

• Leonardo de Paula S. Ferreira, Rafael de O. Teloli, Samuel da Silva, Eloi
Figueiredo, Nuno Maia, Carlos Alberto Cimini Jr., Bayesian data-driven framework
for structural health monitoring of composite structures under limited experimental
data, Structural Health Monitoring, 2024.

There is also a manuscript under review related to this work:
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• Leonardo de Paula S. Ferreira, Lázaro Valentim Donadon, Carlos Alberto
Cimini Jr., Damage localization on composite structures usingLamb waves and 1D
CNNs, Smart Materials and Structures, 2024.

The following Conferences were attended in the period:

• Leonardo Ferreira, Rafael de O. Teloli, Samuel da Silva, Eloi Figureiredo, Ionut
D. Moldovan,Nuno Maia, Carlos Alberto Cimini Jr., Recalage stochastique d’un
modèle de propagation des ondes ultrasonores àl’aide d’un modèle de substitution
à apprentissage automatique. Journeé Nationale sur les Composites (JNC 23),
Besançon, France, 2023.

• Leonardo Ferreira, Rafael Teloli, Samuel Da Silva, Eloi Figueiredo, Dragos
Moldovan, Nuno Maia, Carlos Cimini Jr., Stochastic Digital Twin of a Composite
Plate for Predicting Lamb Wave Propagation. Survailance, Vibrations, Shocks and
Noise (SURVISHNO 23), Toulouse, France, 2023.

• Leonardo de Paula S. Ferreira, Marcos Omori Yano, Samuel da Silva, Carlos
Alberto Cimini Júnior, Damage quantification on composite structures using neural
networks and hybrid data. International Council of the Aeronautical Sciences
(ICAS), Stockholm, Sweden, 2022.

• Marcus Omori Yano, Leonardo de Paula S. Ferreira, Samuel da Silva, Car-
los Cimini, Eloi Figueiredo, Gaussian process regression using hybrid data for
damage quantification, 6th Brazilian Conference on Composite Materials (BCCM),
Tiradentes, Brasil, 2022

• Leonardo de Paula S. Ferreira, Lazaro Valentim Donadon, Paulo Henriques
Iscold Andrade de Oliveira, Ground vibration test using acoustic excitation: Ap-
plication on a composite wing, International Council of the Aeronautical Sciences
(ICAS), Belo Horizonte, Brazil, 2018.
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APPENDIX A -- TBX-62 WIRING

The automation of the LaWaDe system was accomplished with the installation of the
TBX-62 relay board connected to the NI PXI-2568 board. The TBX-62 is an interface
with 31 relays that can be controlled via LabView. Instead of switching between excitation
and measurement manually by interchanging probe tips among the cables, with the relay
board’s introduction, all switching can be automated. Figure A.1 displays the physical
system’s connection diagram. The relay board facilitates the connection between the
PXIe measurement channels, the PZTs, and the power amplifier.

The switching system directs the input signal to the excitation PZT and connects
the measurement PZTs to the PXIe. For instance, for a measurement where the first
piezoelectric sensor acts as the exciter, the amplifier is connected to it, and the other
sensors are linked to the PXIe. Observing the connection diagram in Figure 36, Relay
Channel 3 (CH3) is activated, while channels 6, 9, 12, 15, 18, 21, 24, 25, 26, 27, 28,
29, and 30 are deactivated. Consequently, only the first PZT is linked to the amplifier.
Subsequently, Relay Channel 1 (CH1) is deactivated to shield the PXIe from the high
voltage excitation signal, and channels 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, and 20 are
activated to link PZTs 2 to 14 to the measurement system. The PXIe’s configuration has
16 measurement channels, yet only 14 are connected to piezoelectric sensors. Channel
15 has a 1:10 attenuation added and consistently receives the excitation signal in all
tests, while channel 16 gets the temperature sensor signal. This configuration has enabled
system automation, with switching managed through the NI Switch application integrated
into LabView. Automation has dramatically expedited the process, slashing the average
test time with five averages from 40 mitutes to approximately 5 minutes and significantly
reducing the possibility of operator errors.
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Figure A.1 – Relay connection implemented on TBX-62. Yellow lines indicate signal wires
from plate to TBX-62 and blue lines indicate singnal wires from TBX-62 to PXI-e. Red
lines indicate amplified input signal. Small rectangles indicates direct connection of the
COM port to the indicated CH and PORT.
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