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Resumo 
 

Descontinuidade genética bacteriana refere-se a transições bruscas na identidade 

genômica entre espécies e é um conceito fundamental na elucidação da diversidade 

e evolução microbiana. O presente trabalho explora como a diversidade genética pode 

ser observada como grupos discretos dentro e entre espécies. A investigação começa 

ao nível de espécie, utilizando Pseudomonas alloputida como modelo – uma espécie 

com relevância biotecnológica e clínica. A análise da estrutura populacional desta 

espécie revela a existência de pelo menos sete complexos clonais, destacando a 

diversidade genética e oferecendo novas perspectivas sobre o seu potencial 

biotecnológico. Como próximo passo deste estudo, o gênero diverso de 

Pseudomonas é investigado, elucidando problemas de classificação taxonômica a 

partir da análise de redes de dados genômicos. Este trabalho também revelou o quão 

estruturadas e estáveis são as redes sob limiares próximos ao utilizado para delimitar 

espécies. Finalmente, o conceito de descontinuidade genética bacteriana é 

examinado numa escala mais ampla, abrangendo diversas espécies bacterianas. A 

partir de um conjunto de mais de 210.000 genomas, quebras nas distribuições de 

identidade genômica são reveladas, indicando a existência de fronteiras genéticas 

dentro das populações. O impacto de métricas obtidas a partir do pangenoma para 

inferir descontinuidade genética também fornece informações sobre a relevância 

ecológica deste fenômeno. Em conclusão, esta tese explora a descontinuidade 

genética bacteriana a partir de uma perspectiva holística, fornecendo bases para 

entendermos quais são as implicações ecológicas e taxonômicas de tais quebras. Ela 

também destaca a necessidade de reavaliarmos as classificações tradicionais de 

espécies em um era onde os dados genômicos são abundantes. 

 
Palavras-chave: Conceito de espécies bacterianas, diversidade microbiana, 

taxonomia, pangenoma, redes. 
 
 
  



  
 

Abstract 
 

Bacterial genetic discontinuity is characterized by sharp transitions in genomic identity 

among species. It stands as a cornerstone concept in elucidating microbial diversity 

and evolution. The present work explores how genetic diversity can be observed as 

discrete groups within and between species. The investigation commences at a 

species level, using Pseudomonas alloputida as a model – a species with 

biotechnological and clinical significance. The population structure analysis unveils at 

least seven clonal complexes, highlighting the genetic diversity within this species and 

offering insights into its biotechnological potential. Expanding the scope, this study 

delves into the diverse Pseudomonas genus, challenging traditional species 

classifications using network analyses of genomic data. Taxonomic inconsistencies 

and the existence of distinct Pseudomonas groups question the current taxonomic 

framework. This work also revealed how structured and stable are the networks under 

thresholds close to those used to delimit species. Finally, the concept of bacterial 

genetic discontinuity is examined at a broader scale, encompassing diverse bacterial 

species. By harnessing a dataset comprising over 210,000 genomes, clear 

breakpoints in genomic identity distributions are revealed, shedding light on the 

existence of genetic boundaries within populations. The impact of pangenome features 

on estimating genetic discontinuity provides insights  into the ecological relevance of 

this phenomenon. In conclusion, this thesis explores the intricate landscape of 

bacterial genetic discontinuity, offering a holistic perspective on its ecological and 

taxonomic implications. It also highlights the need for reevaluating traditional species 

classifications in the Genomics Era. 

 

Keywords: Bacterial species concept, microbial diversity, taxonomy, pangenome, 

networks. 
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1 Research Background 
 

1.1 Bacterial Diversity and Evolution 
 

From the earliest bacterial genome-scale comparisons, it became clear 

that the genomes of numerous species do not adhere strictly to vertical descent1. 

In bacteria, substantial variations in gene content can exist among genomes from 

the same species, with only a portion of genes present across all genomes2.  

Bacterial evolution is driven by various mechanisms, with horizontal gene 

transfer (HGT) being a key contributor. HGT allows bacteria to acquire genes 

from unrelated organisms that enables rapid adaptation, including responses to 

challenges like antibiotics. This dynamic process, facilitated by mechanisms like 

transformation, conjugation, and transduction, can blur species boundaries and 

shape bacterial diversity and adaptability3. 

The pangenome concept has emerged as a powerful tool for deciphering 

bacterial diversity and evolution4. A pangenome refers to the set of non-

redundant genes in a given species2. It comprises the core genome (genes 

shared by almost all individuals), the accessory genome (variable genes present 

in a group of genomes), and singletons (unique genes found in only one or a few 

individuals).  

Pangenome metrics, such as openness, provide a quantitative measure of 

the HGT dynamics within bacterial populations. Pangenome openness refers to 

how the pangenome size changes as more genomes are sequenced within a 

species or group. In bacterial ecology, this metric is particularly insightful as it 

reflects the adaptability of bacterial communities to diverse environments. For 

instance, niche specialists such as symbionts that are more likely to exist in stable 

environments with very low diversity have more closed pangenomes4. 

The integration of genomics to understand bacterial diversity and evolution 

has far-reaching implications in unraveling the complexities of prokaryotes. 

Within this genomic landscape, bacteria are now recognized as highly dynamic 

entities3. However, this fluidity poses a challenge to the conventional concept of 

species, as genetic boundaries blur, and the species definition becomes less 

clear.  
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1.2 The Bacterial Species Concept 
 

The notion of a species is a fundamental concept in biology. However, its 

application to bacteria has been a longstanding and often an inconclusive debate, 

further complicated by the prevalence of HGT as an essential source of 

evolutionary innovation for bacteria5. Defining bacterial species extends beyond 

a human need for categorization; it holds implications for medicine, industry, and 

diversity studies6. 

Advancements in bioinformatics and genomics have shed light on 

questions about whether bacteria and other microbes are characterized by 

discrete clusters (species) or a genetic continuum due to frequent horizontal gene 

transfer7. Some studies based on a limited number of closely related genomes 

suggest a genetic continuum8. Conversely, others argue that horizontal gene 

transfer may not be frequent enough to blur species boundaries, and closely-

related organisms exchange DNA more frequently, maintaining distinct clusters9. 

The idea of reverse ecology employs horizontal gene transfer (HGT) 

patterns to define bacterial species10. By assessing the frequency of genetic 

exchange between bacterial strains, researchers can identify groups more likely 

to belong to the same species. This approach offers a dynamic and ecologically 

informed perspective on microbial taxonomy, reflecting the complex genetic 

exchange in natural environments. 

Recent integration of Next-Generation Sequencing (NGS) and 

bioinformatics tools has enhanced the resolution of genome comparisons. 

Massive pairwise genomic comparisons have revealed clear breaks in bacterial 

genetic distribution7, 11, 12, with whole-genome average nucleotide identity (ANI) 

emerging as a robust method to define species. Typically, organisms within the 

same species exhibit ≥95% ANI among themselves, offering a valuable tool for 

species delineation13. 

 

1.3 Network Analysis Using Genomic Data 
 

Biological networks have been an essential analytical tool to better understand 

microbial diversity and ecology14, 15. A network is a mathematical representation 

of interconnected nodes and edges, where nodes represent entities (e.g., genes, 
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individuals, or species) and edges denote relationships between them. In the 

context of microbial genomics, network structures can be harnessed to infer 

communities as genomic species16.  

Consider a network where nodes represent genomes and edges the 

genomic identity between them. One of the key advantages of network analysis 

lies in its flexibility: different thresholds for defining species can lead to distinct 

network structures that can be measured. For example, our recent study 

employing ten thousand genomes of Pseudomonas highlighted how the network 

structure tends to be stable around 95% identity and how other network metrics 

can be employed to enhance our knowledge on bacterial diversity16.  

 

1.4 Bacterial Genetic Discontinuity 
 

This thesis centers on bacterial genetic discontinuity, challenging the 

traditional view of species as genetic mosaics. Genetic discontinuity represents 

abrupt transitions in genomic identity among bacterial populations. While 

genomic sequencing has empowered researchers to track and characterize 

genetic discontinuity patterns systematically7, 12, 17, three questions remain: (i) 

does bacterial diversity exist as a continuum or as discrete species groups? (ii) 

how can we measure genetic discontinuity; (iii) what are the ecological 

implications of this phenomenon?  

By shedding light on the existence of clear breakpoints in genomic identity 

distributions, this research aims to quantify and uncover the ecological relevance 

of genetic discontinuity. The concept of genetic discontinuity offers a paradigm 

shift in understanding microbial diversity, challenging traditional species 

boundaries and providing insights into the dynamic relationships that shape the 

microbial world.  
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2 Research Aim 
 

This research aims to investigate bacterial genetic discontinuity and its ecological 

implications across different taxonomic levels, from species-specific patterns to 

the broader context of bacterial diversity.  

 

2.1 Specific aims  
 

1- Investigate the genetic discontinuity patterns within Pseudomonas putida 

species complex; 

2- Characterize the population structure and genetic diversity of Pseudomonas 

alloputida; 

3- Examine how pathogenic and bioremediation traits relate with intra-species 

genetic groups (clonal complexes); 

4- Assess the genetic boundaries across various Pseudomonas species through 

identity network analyses; 

5- Quantify genetic discontinuity patterns in a large dataset comprising diverse 

bacterial species; 

6- Examine the ecological implications of genetic discontinuity across different 

bacterial lifestyles; 

7- Identify key features that may influence genetic discontinuity predictions. 
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3 Resulting Articles 
 

This thesis is structured around three articles, each with a unique focus on 

bacterial genetic discontinuity. The first article delves into patterns of genetic 

discontinuity at the species level, utilizing Pseudomonas alloputida as a model 

organism. The second article broadens the scope to explore the diversity of the 

Pseudomonas genus, addressing taxonomic inconsistencies and proposing a 

more accurate representation of its genetic diversity. In the final article, we 

transcend taxonomic boundaries to investigate whether the observed patterns of 

genetic discontinuity are consistent across diverse bacterial species. We also 

quantify and inspect about the ecological role of genetic discontinuity in bacterial 

species. 
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3.1 Phylogenetic analysis and population structure of Pseudomonas 
alloputida 
 

Pseudomonas is a bacterial genus housing over 250 characterized and 

validated species. It is organized into three primary phylogenetic lineages based 

on genetic markers like 16S rRNA and essential housekeeping genes: 

Pseudomonas aeruginosa, Pseudomonas pertucinogena, and Pseudomonas 

fluorescens. The P. fluorescens lineage, encompasses six distinctive 

phylogenetic groups, one of which is represented by P. putida. 

The P. putida group encompasses various species, with P. putida sensu 

stricto serving as the group's representative name. These species thrive in 

diverse ecological niches, often inhabiting soil and water environments. They are 

recognized for their versatile functionalities, including promoting plant growth, 

bioremediating environmental pollutants, and defending against plant pathogens. 

The first article in this thesis addresses the genetic makeup and population 

structure of Pseudomonas alloputida. By using an identity network, we observed 

a very structured network with P. alloputida clearly detectable as a community. 

This study unveils the existence of at least seven clonal complexes within P. 

alloputida, with clinical isolates predominantly found in CC4. Moreover, the article 

examines the presence of resistance genes in plasmids and assesses virulence 

profiles, shedding light on the pathogenic potential of P. alloputida strains. 

Additionally, we also explored the role of horizontal gene transfer in shaping the 

ability of this species in bioremediating aromatic compounds is explored, offering 

insights into its biotechnological potential. 
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Phylogenetic analysis and population structure of Pseudomonas alloputida 

Hemanoel Passarelli-Araujo a,b,*, Sarah H. Jacobs b, Glória R. Franco a, Thiago M. Venancio b,* 

a Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil 
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A R T I C L E  I N F O   

Keywords: 
Pseudomonas putida group 
Pseudomonads 
cgMLST 

A B S T R A C T   

The Pseudomonas putida group comprises strains with biotechnological and clinical relevance. P. alloputida was 
proposed as a new species and highlighted the misclassification of P. putida. Nevertheless, the population 
structure of P. alloputida remained unexplored. We retrieved 11,025 Pseudomonas genomes and used P. alloputida 
Kh7T to delineate the species. The P. alloputida population structure comprises at least 7 clonal complexes (CCs). 
Clinical isolates are mainly found in CC4 and acquired resistance genes are present at low frequency in plasmids. 
Virulence profiles support the potential of CC7 members to outcompete other plant or human pathogens through 
a type VI secretion system. Finally, we found that horizontal gene transfer had an important role in shaping the 
ability of P. alloputida to bioremediate aromatic compounds such as toluene. Our results provide the grounds to 
understand P. alloputida genetic diversity and its potential for biotechnological applications.   

1. Introduction 

Pseudomonas is a diverse and complex bacterial genus that contains 
more than 250 species characterized and validated [1]. The genus is 
further divided into three phylogenetic lineages (Pseudomonas aerugi
nosa, Pseudomonas pertucinogena, and Pseudomonas fluorescens) based on 
16S rRNA and other housekeeping genes [2]. The P. fluorescens lineage 
contains six phylogenetic groups; one of them is represented by P. putida. 

The P. putida group includes other species, such as P. monteilii, 
P. fulva, P. plecoglossicida, and P. putida sensu stricto. Species from this 
group are ubiquitous in soil and water, and several strains have been 
isolated from polluted soils and plant roots [3,4]. P. putida species are 
well known to perform many functions such as plant growth promotion, 
bioremediation, and protection against plant pathogens [5]. 

Recently, Keshavarz-Tohid et al. (2019) showed that P. putida 
KT2440 and other known P. putida strains (e.g. BIRD-1, F1, and DOT- 
T1E) are distant from the type strain P. putida NBRC 14164T and 
hence should be classified as members of a novel species, Pseudomonas 
alloputida, whose type strain is Kh7 (=CFBP 8484T =LMG 29756T) [6]. 
Here, we report the population structure of P. alloputida, which was used 
to estimate the diversity and prevalence of resistance and virulence 
genes. Further, we used the inferred population structure to better un
derstand the distribution of bioremediation and plant growth promotion 
genes and to assess the biotechnological potential of this species. 

2. Results and discussion 

2.1. Phylogeny and classification of Pseudomonas alloputida 

We obtained 11,025 Pseudomonas genomes available in RefSeq in 
June 2020, out of which 10,457 had completeness greater than 90% 
according to BUSCO [7]. We computed the pairwise distances between 
each isolate using mashtree [8] to compute the distance tree of the 
genus, which is highly diverse (Fig. 1). We mapped each genome 
deposited in the NCBI RefSeq as P. putida in the tree and found that the 
highest density of genomes falls within a monophyletic group of 439 
isolates with average nucleotide identity (ANI) values between 84% and 
100% (Fig. S1a); this clade corresponds to the P. putida group (Fig. 1) 
and comprises other species such as P. plecoglossicida, P. monteilli, and 
P. fulva. 

ANI analysis provides a raw estimate of bacterial species [9]. A 
minimum threshold of 95% ANI has been used to attain species mem
bership, a value that has been empirically defined based on correlations 
with DNA-DNA hybridization and 16S rRNA thresholds [9,10]. We used 
P. alloputida Kh7T as an anchor-strain to evaluate the ANI values from 
other isolates in the P. putida group. The sorted distribution of ANI 
values from Kh7T showed an abrupt break around 95%, supporting its 
effectiveness as a threshold to delineate P. alloputida (Fig. S1b). The 
isolate previously classified as P. monteilli IOFA19 (GCA_000633915.1) 
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Fig. 1. Distance tree of 10,457 Pseudomonas genomes. Genomes classified as P. putida according to NCBI are marked as red circle. P. putida group was highlighted to 
assess the distribution of misclassified genomes. P. alloputida branches are colored in red. 
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had the lowest ANI value within the predicted species (95.48%), fol
lowed by a drop to 91.13% (Fig. S1b). 

We conducted a network analysis to assess the species composition 
according to ANI > 95% with members from the P. putida group. We 
observed a discrete number of cohesive clusters that would correspond 
to the expected number of species within the P. putida group (Fig. 2). We 
retrieved other species such as P. asiatica, P. soli, and P. monteilli, as well 
as some potentially novel species (Table S1). In this analysis, a species 
was defined as a cluster containing a type strain and at least three ge
nomes, or a cluster without a type strain, but with at least ten connected 
genomes. We retrieved the main species from the P. putida group and 
found clusters that may correspond to new species (Fig. 2). Further, the 
species number is likely underestimated, as new genomes would in
crease the number of connections in the network. 

The poor classification of P. putida isolates is a subject of concern. We 
observed a clear separation of the clusters with type strains for P. putida 
(NBRC 14164T) and P. alloputida (Kh7T) (Fig. 2). P. putida and 
P. alloputida comprise groups with 16 and 68 genomes, respectively 
(Fig. 2, Table S1). The greater number of P. alloputida genomes might 
have an historical explanation. Although the phylogenetic separation of 
NBRC 14164T from other main P. putida strains has been noticed before 
[11], KT2440, a P. alloputida isolate [6], has also been used to categorize 
P. putida genomes over the years [4,11,12]. 

The use of NBRC 14164T to delimit P. putida sensu stricto highlights 
that many well-known P. putida genomes belong to other species. Iso
lates that are well known for their ability to promote plant growth 
(W618) [13], to oxidize manganese (GB-1) [14], and to damage human 
tissues (HB3267) [15], are neither P. putida nor P. alloputida strains, as 
they belong to different groups in the network. For example, HB3267 
was classified as P. putida because of its close phylogenetic relationship 
with the nicotine degrader S16 [16]. HB3267, as well as DLL-E4, SF1, 
and S11, were proposed as members of a new species, Pseudomonas 
shirazica [6]. However, we found that these strains, along with S16, 
grouped with Pseudomonas asiatica type strain, confirming P. shirazica as 
an heterotypic synonym of P. asiatica [17]. Henceforth, we focused our 
analyses in the novel P. alloputida species because of its greater number 
of genomes and of the presence of key strains associated with biore
mediation, plant growth promotion, and biocontrol. 

2.2. Pangenome analysis 

An effective way to investigate the evolution of a given population is 
through pangenome analysis. A pangenome is defined as the total set of 
genes in a given species [18], which is subdivided into core genes, when 
present in all isolates; accessory genes, when present in at least two (but 
not in all) isolates or; exclusive genes. By using 68 isolates, the 

Fig. 2. Network analysis of isolates from the P. putida group. Nodes represent isolates and edges connect isolates with at least 95% of average nucleotide identity. 
Clusters with type strains or at least ten genomes were highlighted, as they represent either known or potentially novel species. 
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P. alloputida pangenome comprises 25,782 gene families, of which 3803 
(14.75%) are present in at least 95% of the isolates. By analyzing the 
slope of the curve (α = 0.417), we inferred that P. alloputida has an open 
pangenome [18] (Fig. S2). Our estimated α value is much lower than the 
maximum threshold used to define an open pangenome (α < 1), which is 
in line with a previous study [19]. Further, this low α value implies high 
rates of new gene families will be found if more isolates are included in 
the analysis. 

The high number of gene families in the P. alloputida pangenome is 
explained by unique and low-frequency genes. Only 6373 genes families 
(24.71%) are found between 5% to 95% of the isolates, while 15,606 
(60.53%) are found in less than 5% of the isolates, including 10,917 
unique genes. The high number of low-frequency genes could be 
partially attributed to fragmented genomes. However, the reference 
genome DOT-T1E has 267 unique genes, far more than the average of 
160.5 unique genes found across the dataset. Although the number of 
low-frequency genes may be overestimated, the high prevalence of 
unique genes among closely-related genomes indicates a high turnover 
of unstable genes that might be adaptive under transient selective 
pressures in their environments. 

We also estimated the genomic fluidity (φ) of P. alloputida. The φ 
estimator is a robust metric that represents the ratio of unique gene 

families to the sum of gene families, averaged over randomly chosen 
genomes pairs [20]. The smaller the φ, the greater the genes shared by a 
pair of randomly selected genomes. Analyzing φ instead of the core 
genome proportion provides a more realistic measure of cohesiveness 
within a species, particularly because low-frequency genes directly 
affect the pangenome size. P. alloputida has φ = 0.20 ± 0.04, indicating 
that random pairs of P. alloputida genomes have an average 20% and 
80% of unique and shared genes, respectively. 

2.3. Population structure 

Determining relationships between isolates can provide novel in
sights into the metabolic diversity of a given species. The Multilocus 
Sequence Typing (MLST) analysis is a technique to characterize ge
nomes based on single-nucleotide polymorphisms (SNPs) within a few 
housekeeping genes. MLST schemes are available for several species 
[21]. In an MLST analysis, each combination of SNPs defines a Sequence 
Type (ST) that can be linked to form Clonal Complexes (CC) [21]. A 
variation of classical MLST is the core genome MLST (cgMLST), which 
provides greater resolution by using SNPs from the entire core genome 
[22]. Here, we used 225,009 SNPs obtained from the P. alloputida core 
genome to reconstruct the phylogenetic tree and the cgMLST profile. 

Fig. 3. Population structure of P. alloputida. a. phylogenetic reconstruction using SNPs extracted from core genome to assign the cgMLST scheme. Colors represent 
distinct Clonal Complexes and NOCC stands for No Clonal Complex assigned with high confidence. b. Principal Coordinate Analysis based on the presence/absence 
profile of accessory genes present in 5% to 95% of the isolates. c. Branch lengths for each Clonal Complex. d. ΔK distribution to estimate the best value for K, which 
supports the presence of 7 P. alloputida CCs. 
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The cgMLST tree unveiled 7 CCs (Fig. 3a), out of which CC1 is the 
most distant from the rest of the population, a trend that is also sup
ported by the ANI analysis (Fig. S3). Six out of the 9 clinical isolates were 
found in CC4 and three in CC7. We also checked whether the same 
clustering pattern could be obtained by analyzing the presence/absence 
patterns of accessory genes. We estimated the Jaccard distance for genes 
present between 5% - 95% of the isolates to perform a Principal Coor
dinate Analysis (PCoA), which allowed us to resolve all the main groups, 
particularly CC1, CC4, and CC7 (Fig. 3b). 

We also performed a Discriminant Analysis of Principal Components 
(DAPC) [23] to recover the genes that contribute most to separate the 
population based on their presence/absence profiles (Fig. S4). The top 
50 discriminating genes separate CC5 and CC1 from the rest of the 
population, but fail to resolve the relationships between other CCs 
(Fig. S5). Next, we used branch lengths from cgMLST tree as an indirect 
estimator of diversity within the CCs (Fig. 3c). CC7 is the most clonal 
group, comprising 9 isolates, including KT2440 and three clinical iso
lates (GTC_16482, GTC_16473, and NBRC_111121). 

The MLST scheme for P. putida species comprises eight housekeeping 
genes (argS, gyrB, ileS, nuoC, ppsA, recA, rpoB, and rpoD) [24]. We 
assigned isolates to STs and grouped those into CCs (Table S2). This 
analysis revealed some incongruences with previous reports [24]. For 
example, by using allele combinations with perfect-match to predict STs, 
KT2440 was detected as ST69 and not as ST58 [24], indicating that a 
revision in the public database is warranted. The predicted number of 
CCs was also supported by the admixture model from STRUCTURE [25]. 
This model assumes that each isolate has ancestry from one or more K 
genetically different sources, which we referred to as CCs. The number 
of CCs corresponds to the estimated number of clusters represented by 
parameter K. Instead of using the highest raw marginal likelihood, we 
followed the protocol for estimating the best K value suggested by 
Evanno et al. [26]. The ad hoc statistics ΔK indicates that, according to 
our dataset, the population structure of P. alloputida is composed of at 
least 7 CCs (Fig. 3d). 

Once data from eight loci may be insufficient to accurately describe 
the population structure of P. alloputida, the populations identified by 
STRUCTURE were only considered if they matched cgMLST results. 
When correlating the cgMLST tree topology with ancestry proportion 
predicted for each isolate, we observed a clear delimitation of genetic 
blocks for each CC (Fig. 4). However, there are a few inconsistencies. For 
example, isolate B4 has a greater ancestry proportion with CC2, 
although cgMLST indicates its greater proximity to CC3. In addition, 
KCJK7916, FF4, and B6-2 were not assigned to a CC because, although 
they have a higher proportion of ancestry with CC3, they are para
phyletic to CC3 and CC4. Since CCs are assumed to be monophyletic, 
these strains were designated as No Clonal Complex (NOCC). We expect 
that a greater number of P. alloputida genomes from isolates from 
various sources will improve the resolution of the P. alloputida popula
tion structure, including the CC assignment to isolates described here as 
NOCC. 

The cgMLST phylogenetic tree and the distance tree support CC1 as 
the basally branching group of P. alloputida (Fig. 4). CC1 comprises 
isolates from deep-sea sediments from Indian Ocean, costal water from 
the Pacific Ocean, lotus field, and arthropods (Table 1). The main dif
ference of CC1 is the lack of 229 gene families in the accessory genome, 
which are present in at least one isolate from all other CCs (Table S3). 
Among these absent gene families, there is a genomic island with nearly 
46 kbp encompassing 38 genes. Some of those genes are involved in 
sugar transport, as previously identified in KT2440 (CC7) [4], as well as 
genes encoding hypothetical proteins (coordinates 3,126,465-3,172,496 
in KT2440). 

2.4. Resistance profiles 

We evaluated the composition of antibiotic resistance genes using 
the CARD database [27]. All 15 different genes in the core resistome 

encode MDR efflux pumps (Table 2, Table S4), including MexAB-OprM, 
MexEF-OprN, and MexJK, from the resistance-nodulation-cell division 
(RND) efflux pumps family. These efflux pumps are associated with 
intrinsic and acquired multidrug resistance in P. aeruginosa [28,29]. 
However, these RND efflux pumps may play an alternative role in 
P. alloputida by pumping out toxic substances such as toluene [30]. We 
also identified cpxR, which encodes a protein that promotes MexAB- 
OprM expression in the absence of the MexR repressor in P. aeruginosa 
[31], which is absent in P. alloputida. The presence of MexAB-OprM in 
the core genome, under CpxR regulation, supports its involvement with 
intrinsic physiology in addition to drug resistance, because this complex 
can be involved in both quorum-sensing and mediation of P. aeruginosa- 
host interaction [32,33]. 

Regarding the acquired resistome, we found 45 different genes that 
confer resistance by pumping out or inactivating antibiotics, as well as 
by interacting with antibiotic targets (Table S4). These genes are 
distributed at low-frequency (Fig. 5a), indicating that most of them are 
strain-specific or acquired through horizontal gene transfer. In general, 
there is no clear correlation between acquired resistome and population 
structure (Fig. S6), although CC7 has more acquired resistance genes 
than other CCs (Fig. 5c, Fig. S6). 

Our results highlight clinical strains harboring a range of resistance 
genes. In total, 9 out of 68 (13.2%) P. alloputida genomes analyzed here 
belong to clinical strains. Along with efflux pumps, the acquired resis
tome includes genes encoding antibiotic-inactivating enzymes that 
confer resistance to beta-lactams (e.g. blaCARB-3, blaIMP-1, blaOXA-2, blaPDC- 

7, blaTEM-1, and blaVIM-2); to aminoglycosides (e.g. aac(6′)-IIa, aadA, aph 
(3′′)-Ia, and aph(6′)-Id; chloramphenicol (cat) and; to fosfomycin (fosA) 
(Table S2). These genes were distributed in few strains, mostly clinically 
relevant (Fig. S6, Table S4); the top four strains with more acquired 
resistance genes were GTC_16473 (19 genes), GTC_16482 (16 genes), 
DZ-F23 (14 genes), and 15420352 (11 genes). Importantly, all of these 
strains (except DZ-F23) are clinical. 

We evaluated the presence of acquired genes in plasmids predicted 
with the PLSDB database (version 2020_06_29) [34]. P. alloputida 
GTC_16473 contained the genes aac(6′)-IIa, aadA23, and blaCARB-3 
located in a scaffold with high identity with the pJR2 plasmid from 
Pasteurella multocida (NC_004772.1). We also identified blaOXA-2, 
aadA22, aac(6′)-Ia, aac(6′)-IIc, aph(3′′)-Ib, aph(6′)-Id, blaIMP-1, and sul1 
genes in plasmid-like sequences in P. alloputida GTC_16473 that have not 
reached the coverage thresholds to be reliably classified as plasmids, 
supporting an underestimation of plasmids in P. alloputida isolates. 
P. alloputida XWY-1 (CC6) also contains a plasmid, pXWY-1 
(NZ_CP026333.1), which harbors the resistance genes sul1, aadA2, and 
qacH. This strain was isolated from rice fields in China. Finding non- 
clinical strains harboring plasmids with such relevant resistance genes 
warrants further investigation. 

2.5. Virulence profiles 

We used the VFDB database [35] to assess the P. alloputida virulence 
profiles. The core virulome of P. alloputida contains genes associated 
with twitching motility, siderophore production (pyoverdine), and 
alginate biosynthesis (Table S5). Importantly, P. alloputida lacks key 
virulence genes usually found in P. aeruginosa, such as those encoding 
exotoxin A, alkaline protease, elastase, rhamnolipid biosynthesis 
pathway components, phospholipase C, and plant cell wall-degrading 
enzymes. 

The acquired virulome comprised genes for type II and VI secretions 
systems, adherence, and iron uptake (Table S5). While most isolates had 
a low frequency of resistance genes, the virulence factors displayed a 
bimodal distribution (Fig. 5b), a pattern that has been previously 
observed for Klebsiella aerogenes [36]. Genes from the acinetobactin gene 
cluster and HSI-I type VI secretion system were differentially distributed 
across CCs (Fig. 6a), although it remains unclear whether these patterns 
emerged mainly from gene gain or loss. In A. baumannii, iron uptake is 
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Fig. 4. Phylogenetic tree and coancestry barplots correlating the phylogenetic tree using SNPs extracted from core genome and coancestry probabilities assigned 
with STRUCTURE. Red dots in branches represent bootstrap values lower than 70%. Each colour represents one of the seven predicted Clonal Complexes (CC). 
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mainly performed by the siderophore acinetobactin [37], which is 
synthesized by the proteins encoded by the bauABCDE operon. We found 
this operon in P. alloputida strains within CC5, CC6, and CC7 (Fig. 6a). 
Further, this operon was surrounded by genes coding for proteins from 
chemotaxis sensory transducer (PP_2599) and aminotransferases 

(PP_2588) families (Fig. 6b). Siderophore-mediated iron acquisition has 
been investigated in P. alloputida KT2440 [38] (CC7), but the role played 
by bauABCDE in this species is yet to be elucidated. 

Present in all strains from other CCs, the type VI secretion system 
(T6SS) HSI-I is absent in CC5 and CC6 (except XWY-1) isolates (Fig. 6a). 

Table 1 
Pseudomonas alloputida isolates used in this study with average nucleotide identity (ANI) from Kh7T.  

Strain Classified as ANI CC Location Source Accession 

15420352 P. putida 0.97 CC4 China Urine GCA_013305625.1 
B2017 P. putida 0.97 CC3 Spain Root GCA_007279645.1 
B4 P. putida 0.97 CC3 China Soil GCA_003671955.1 
B6-2 P. putida 0.97 NOCC – Soil GCA_000226035.3 
BIRD-1 P. putida 0.99 CC5 Spain Rhizosphere GCA_000183645.1 
CA-3 P. putida 0.97 CC4 Ireland Waste material GCA_002810225.1 
CY06 P. monteilii 0.96 CC1 China Shrimp GCA_002835905.1 
DOT-T1E P. putida 0.97 CC3 Spain Wastewater GCA_000281215.1 
DPA1 P. putida 0.97 CC4 Greece Soil GCA_002891885.1 
DZ-F23 P. putida 0.95 CC1 China Fly GCA_002094775.1 
F1 P. putida 0.97 CC2 USA Soil GCA_000016865.1 
FDAARGOS_409 P. putida 0.97 CC4 USA Blood GCA_002554535.1 
FF4 Pseudomonas sp. 0.97 NOCC Chile Wastewater GCA_007049805.1 
FW305-E2 P. putida 0.97 CC2 USA Groundwater GCA_900095365.1 
FW305-E2_1 Pseudomonas sp. 0.97 CC2 USA Groundwater GCA_002901725.1 
GTC_16473 Pseudomonas sp. 0.97 CC7 Japan Homo sapiens GCA_001753855.1 
GTC_16482 Pseudomonas sp. 0.97 CC7 Japan Homo sapiens GCA_001319995.1 
H P. putida 0.97 CC7 Germany Soil GCA_001077495.1 
Idaho P. putida 0.98 CC6 China – GCA_000226475.2 
INSali382 P. putida 0.98 CC6 Portugal Vegetable GCA_001653615.1 
IOFA1 P. putida 0.96 CC1 Indian Ocean Sediment GCA_001293025.1 
IOFA19 P. monteilii 0.95 CC1 Indian Ocean Sediment GCA_000633915.1 
JB P. putida 0.99 CC5 Czech Republic Soil GCA_001767335.1 
JLR11 P. putida 0.97 CC7 Spain Wastewater GCA_001183585.1 
JR16 P. putida 0.99 CC5 India Soil GCA_004519745.1 
JY-Q Pseudomonas sp. 0.97 CC4 China Tabaco extract GCA_001655295.1 
KB3 P. putida 0.96 CC1 Poland Soil GCA_004614175.1 
KBS0802 Pseudomonas sp. 0.97 CC7 USA Soil GCA_005937845.2 
KCJK7911 P. putida 0.97 CC3 USA Water GCA_003053335.1 
KCJK7916 P. putida 0.97 NOCC USA Water GCA_003053385.1 
KH-18-2 P. putida 0.96 CC1 Pacific Ocean Water GCA_002906815.1 
KH-20-11 P. putida 0.95 CC1 Pacific Ocean Water GCA_002906795.1 
Kh14 Pseudomonas sp. 1.00 CC5 Iran Rhizosphere GCA_900291005.1 
Kh7 Pseudomonas sp. 1.00 CC5 Iran Rhizosphere GCA_900291035.1 
KT-90 P. putida 0.96 CC1 Pacific Ocean Coastal water GCA_002906755.1 
KT2440 P. putida 0.97 CC7 Japan Rhizosphere GCA_900167985.1 
LD6 P. putida 1.00 CC5 China Rhizosphere GCA_003586135.1 
LF54 P. putida 0.96 CC1 Japan Lotus field GCA_000390005.2 
LS46 P. putida 0.97 CC4 Canada Water GCA_000294445.2 
N1R P. putida 0.99 CC5 USA Soil GCA_900156185.1 
NBRC_111118 Pseudomonas sp. 0.97 CC4 Japan Homo sapiens GCA_001320085.1 
NBRC_111121 Pseudomonas sp. 0.97 CC7 Japan Sputum GCA_001320165.1 
NBRC_111125 Pseudomonas sp. 0.97 CC4 Japan Urine GCA_001320295.1 
NBRC_111136 Pseudomonas sp. 0.97 CC4 Japan Urine GCA_001320745.1 
NBRC_111139 Pseudomonas sp. 0.97 CC4 Japan Eye discharge GCA_001753955.1 
NCTC13185 P. putida 0.97 CC7 – – GCA_901482375.1 
NCTC13186 P. putida 0.97 CC7 – – GCA_900636645.1 
ND6 P. putida 0.97 CC2 China Wastewater GCA_000264665.2 
ODNR4SY P. putida 0.97 CC2 USA Water GCA_009905395.1 
OR45a P. putida 0.99 CC5 Poland Activated sludge GCA_004614155.1 
P11 P. hunanensis 0.97 CC4 China High‑arsenic soil GCA_002910975.1 
PaW85-2019 P. putida 0.97 CC7 Estonia – GCA_011750655.1 
PaW85-d13TA P. putida 0.97 CC7 Estonia – GCA_011750675.1 
PCL1760 P. putida 1.00 CC5 Spain Rhizosphere GCA_001282125.1 
PD1 P. putida 0.97 CC3 USA Root GCA_000799625.1 
RW4053 Pseudomonas sp. 0.99 CC5 Germany River sediments GCA_003184135.1 
S12 P. putida 1.00 CC5 Netherlands Soil GCA_000495455.2 
SJTE-1 P. putida 0.97 CC2 China Soil GCA_000271965.2 
SMT-1 Pseudomonas sp. 0.97 CC7 China Soil GCA_003204195.1 
SWI36 Pseudomonas sp. 0.97 CC6 USA Soil GCA_002948105.1 
SWI36_1 Pseudomonas sp. 0.98 CC6 USA Soil GCA_004153505.1 
SWI36_2 Pseudomonas sp. 0.98 CC6 USA Soil GCA_004153435.1 
TRO1 P. putida 0.97 CC4 Denmark Activated sludge GCA_000367825.1 
UV4 P. putida 0.97 CC4 UK Laboratory strain GCA_002165695.1 
UV4_95 P. putida 0.97 CC4 UK Laboratory strain GCA_002165665.1 
XWY-1 Pseudomonas sp. 0.97 CC6 China Rice fields GCA_002953115.1 
YKD221 P. putida 0.97 CC2 Japan Soil GCA_000787655.1 
ZKA3 P. plecoglossicida 0.98 CC6 Greece Water GCA_003633555.1  
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In KT2440 (CC7), HSI-I is a potent weapon against other bacteria (e.g. 
phytopathogens), increasing the competitiveness of P. alloputida [39]. 
The absence of T6SS virulence genes has been reported for BIRD-1 (CC5) 
[39], and our work generalizes this observation to all CC5 members. In 
KT2440, T6SS is crucial to kill phytopathogens such as Xanthomonas 
campestris [40]. These results indicate that BIRD-1 and other members 
from CC5 are likely less efficient than KT2440 as biocontrol agents. 
Moreover, all clinical P. alloputida strains harbor T6SS, indicating their 
potential ability to outcompete other bacteria during infections. 

2.6. Plant growth promotion and bioremediation properties 

The ability of P. putida species to promote plant growth and bio
remediate toxic compounds have been explored [12,41–43]. We 
searched for genes involved in plant growth promotion and bioreme
diation through a literature search of genes that have already been 
described for Pseudomonas species (Table S6). We found genes in the 
core genome, such as the pyrroloquinoline quinone-encoding operon 
pqqBCDEFG, associated with mineral phosphate solubilization in Serra
tia marcescens [44] and Pseudomonas fluorescens [45] (Table S7). Mineral 
P solubilization has already been reported experimentally for BIRD-1 

Fig. 5. Population structure and distribution of virulence and resistance genes. a, b. distribution of acquired resistance and virulence genes. c. Maximum likelihood 
tree from SNPs present in the core genome inferred with 68 genomes used in this study. Branches from clinical isolates are marked with an orange circle. The inner 
ring represents the clonal complexes (NOCC: “No Clonal Complex”). The second and third rings indicate the number (n) of acquired resistance and virulence genes, 
respectively. 
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[41] and KT2440 [45], indicating that all P. alloputida isolates are 
genetically equipped to solubilize inorganic phosphate. 

Another key feature that can enhance plant growth is the coloniza
tion of seeds by P. putida [46]. In KT2440, genes associated with surface 
adhesion (e.g. lapA, lapBCD), flagellum biosynthesis (e.g. flhB, fliF, fliD, 
fliC), and virulence regulation (e.g. rpoN and gacS) have been experi
mentally shown to be important for attachment to corn seeds [46]. All 
these genes, except lapA and fliC, belongs to the P. alloputida core 
genome (Table S7). Although often described as virulence genes, fla
gellum genes also play roles in the association of P. putida with plants. 

Other plant growth-promoting genes were also found in the 
P. alloputida accessory genome (Table S7) – except for CC1. However, we 
observed that P. alloputida lacks the main genes involved in indole-3- 
acetic acid synthesis (e.g. ipdC, iaaM, and iaaH), indicating an incom
plete or nonfunctional pathway. Moreover, P. alloputida also lacks AcdS, 
an enzyme that counteract ethylene stress response, a result that has 
been experimentally confirmed in KT2440 [47]. 

Besides the ability to promote plant growth, P. putida can tolerate or 
degrade an array of compounds including heavy metals and hydrocar
bons. We identified genes in the core genome that allow P. alloputida to 
resist various heavy metals such as copper (cop genes) and cobalt/zinc/ 
cadmium (czcABC) (Table S8). The copper/silver resistance operon, 
cusABC, was present in the accessory genome. Although we found a wide 
range of genes associated with bioremediation, there is no clear corre
lation between the population structure and presence/absence profiles 
of such genes. 

P. putida is known for its capacity to metabolize aromatic hydro
carbons such as toluene, benzene, and p-cymene [4,12]. One of the 
toluene-degrading pathways includes the todABCDE operon and the 
todST regulator. The p-cymene compound can be degraded by means of 
the cymAaAbBCDER or the cmtAaAbAcAdBCDEFGHI operon [48]. We 
found a genomic island of approximately 48 kbp harboring all these 
genes in F1, DOT-T1E, UV4, UV4/95, YKD221, and NBRC_111125 ge
nomes (Fig. S9). All these isolates, except NBRC_111125, were experi
mentally confirmed to degrade toluene. Further, P. alloputida F1 is well- 
known to grow on toluene [4]; YKD221 was isolated from contaminated 
industrial soil and degrades cis-dichloroethene [49]; DOT-T1E is an 
isolate known to grow on different carbon sources [50] and; UV4 and 
UV4/95 conduct important industrial biotransformation of arenes, al
kenes, and phenols [51]. Interestingly, genes in this genomic island 
presented a very similar genetic context (Fig. S7), with an upstream arm- 
type integrase associated with bacteriophages. We were unable to pre
cisely define the att sites, indicating a deterioration of the original 
structure of the putative bacteriophage. Further, the lack of correspon
dence between population structure and the presence of an integrase 
upstream the genomic island indicates that this region was likely ac
quired via independent horizontal gene transfers in distinct P. alloputida 
CCs. 

We also identified RND efflux pumps involved with solvent tolerance 
in both core (TtgABC) and accessory genomes (TtgDEF and TtgGHI). 
TtgABC, TtgDEF, and TtgGHI are required for DOT-T1E to efficiently 
tolerate toluene [30]. We observed that TtgABC is the same protein- 
complex predicted as MexAB-OprM, associated with antibiotic resis
tance in the core genome. This complex extrudes both antibiotics and 

solvents such as toluene in P. alloputida DOT-T1E [30], corroborating the 
additional and important function to extrude antibiotics and organic 
solvents in all P. alloputida isolates. TtgDEF is located in the same 
genomic island of tod genes. This complex can expel toluene, but not 
antibiotics [52], reinforcing the variety of molecules that can be 
extruded by RND efflux pumps and the need to explore the structural 
basis of this specificity, not only in P. alloputida isolates, but also in other 
bacteria. 

3. Concluding remarks 

Through a remarkable metabolic versatility, P. putida species can 
thrive in a wide variety of niches. In this work, we explored the genetic 
diversity of P. alloputida and characterized its population structure for 
the first time. Through a large-scale genomic analysis, we identified a 
major problem with P. putida species classification, including several 
reference strains that likely belong to new species, as also suggested 
elsewhere [6]. P. alloputida has an open pangenome dominated by low- 
frequency genes. The population structure of this species has at least 7 
clonal complexes that were verified by cgMLST and STRUCTURE 
ancestry simulations. 

We analyzed genes of clinical and biotechnological interest. The low- 
frequency acquired resistance genes are predominant in plasmids from a 
few clinical strains. P. alloputida lacks key genes for indole-3-acetic acid 
production. We also observed that the genes for the degradation of some 
aromatic compounds, including toluene, were likely horizontally ac
quired. Our results provide an opportunity for the development of 
biotechnological applications as well as insights into the genomic di
versity of the novel species P. alloputida. 

4. Methods 

4.1. Datasets and genomic features 

We recovered 11,025 genomes from the Pseudomonas genus in June 
2020. To assess the quality of the genomes, we used BUSCO v4.0.6 [7] 
with a minimum threshold of 90% completeness. The Kh7T 

(GCA_900291035.1) was used as a reference with mash v.2.2.2 [53] to 
find genomes with distances up to 0.05. We used mashtree [8] to 
generate the distance tree. The ANI analysis was performed with pyani 
0.2.10 [54]. Network analysis was conducted in R with the igraph 
package (https://igraph.org). We removed S12 (GCA_000287915.1) and 
KT2440 (GCA_000007565.2) because they were duplicated genomes. 
Type strains and accession numbers used to define clusters in the 
network analysis are available in the Table S1. Gene prediction in all 
isolates was conducted with prokka v1.12 [55] to avoid bias in the 
identification of protein families. Plasmids were analyzed with PLSD 
v2020_06_29 [34]. 

4.2. Pangenome characterization 

We inferred the P. alloputida pangenome using Roary 3.13.0 [56], 
with a minimum threshold of 85% identity to cluster proteins. Core 
genes were defined as those present in more than 95% of the isolates. 
Jaccard distances were computed by using accessory genes with prev
alence between 5% and 95%. Gene content variations between 
P. alloputida ecotypes were inferred with a discriminant analysis of 
principal components (DAPC) using the ade4 and adegenet packages 
[23], retaining the 30 principal components and 3 discriminant func
tions. Pangenome openness and fluidity were conducted with micropan 
[57] with 500 and 1000 permutations, respectively. 

4.3. Population structure analysis 

We used in-house scripts to extract the genes present in all isolates, 
which were aligned with MAFFT v7.467 [58]. SNPs were retrieved with 

Table 2 
Frequency of resistance mechanisms categories in both core and accessory 
resistome.  

Pangenome division Resistance mechanism Frequency 

Core Antibiotic efflux 15 genes* (100%) 
Accessory Antibiotic efflux 126 genes (67.74%) 

Antibiotic inactivation 47 genes (25.27%) 
Antibiotic target alteration 3 genes (1.61%) 
Antibiotic target protection 1 gene (0.54%) 
Antibiotic target replacement 9 genes (4.84%)  

* Number of different genes. 
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Fig. 6. Acquired virulome composition. a. Matrix with presence (dark squares) and absence (light squares) profiles of virulence genes. Rows represent strains colored 
based on Clonal Complex that they belong. Columns are virulence genes identified. b. P. alloputida KT2440 bauABCDE genetic context annotated according Pseu
domonas Genome Database (www.pseudomonas.com) and Song and Kim (2020). 
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snp-sites v2.3.3 [59] and SNP alignment was used as input to RAxML v8 
[60] to reconstruct the phylogenetic tree using the general time- 
reversible model and gamma correction. Since we used only variable 
sites as input, we used ASC_GTRGAMMA to correct ascertainment bias 
with the Paul Lewis correction. One thousand bootstrap replicates were 
generated to assess the significance of internal nodes. We inferred the 
cgMLST scheme using the core genome SNP phylogenetic tree. The 
phylogenetic tree was visualized with iTOL v4 [61]. 

We downloaded the P. putida MLST scheme (on June, 2020) con
taining 116 different STs (https://pubmlst.org/databases/). This 
scheme was designed for the whole P. putida group, not only P. putida 
sensu stricto [24]. We used BLASTN [62] to determine the best- 
matching MLST allele to access STs. The allelic profile associated with 
each ST in our dataset was used to conduct population assignment with 
STRUCTURE v2.3.4 [25] with admixture model. The length of Markov 
chain Monte Carlo (MCMC) was 50,000, discarding 20,000 iterations as 
burn-in. The simulations to calculate the parameter K ranged from 2 to 
20, with 20 replicates for each K to estimate confidence intervals. 
Instead of using raw posterior probability to get the best K, we followed 
the protocol suggested by Evanno, Regnaut and Goudet [26]. Briefly, we 
calculated the first and second derivatives, resulting in a ΔK of 7. 
Therefore, we used K = 7 to analyze predicted ancestry probabilities. 

4.4. Detection of genes associated with antimicrobial resistance, virulence, 
plant growth promotion, and bioremediation 

We used the Comprehensive Antimicrobial Resistance Database 
(CARD) database v3.0.9 [27] to predict antibiotic resistance genes. The 
virulence factor database (VFDB) [35] was used to determine virulence 
genes. This database was downloaded on July 30, 2020 and comprises 
28,639 proteins associated with virulence in several pathogens. We used 
virulence genes previously described for the Pseudomonas genus. We 
clustered proteins based on 70% identity to build a non-redundant 
database using uclust v1.2.22q [63]. We built the database with plant 
growth promotion and bioremediation through literature searches 
(Table S6). All predicted proteins were globally aligned against these 
databases using usearch v11.0.667 [63] with 50% minimum coverage 
for query and subject and 60% minimum identity. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2021.09.008. 
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Figure S1. Average Nucleotide Identity distribution across Pseudomonas putida 
group. a. Identity density and b. ranked identity distribution in P. putida group 
from P. putida Kh7T. Red dotted line represents the threshold used to define 
species based on average nucleotide identity. 

 

 
 

Figure S2. Cumulative curve of the P. alloputida pangenome. Gene families are 
in function of the number of isolates added sequentially. The slope (a) of the 
curve is 0.417, indicating an open pangenome. 

 



 
Figure S3. Average nucleotide identity analysis of the 68 isolates used in this 
study. Pairwise comparison indicating major groups in P. alloputida. 
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Figure S4. Discriminant Analysis of Principal Components of accessory genes 
present in 5% to 95% of the isolates. a. Clustering pattern of Clonal Complexes 
using the first two principal components of DAPC b. Loading plot. Red lines 
represent those gene families above the threshold of 0.0013 (red dotted line) and 
contributed more for the observed clustering patterns. 



 
Figure S5. Heatmap from presence/absence profiles for top 50 genes detected 
to contribute for Clonal Complex clustering. Colors represent Clonal Complexes. 

 
 

AbsencePresence
CC1 CC2 CC3 CC4 CC5 CC6 CC7 NOCC



 

Figure S6. Accessory resistance genes identified in P. alloputida. Filled circles 
represent presence of a given gene and colors indicate the antibiotic resistance 
mechanism for each gene. Clinical strains are written in red. 
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Figure S7. Genetic context of the genomic island containing tod genes in P. 
alloputida isolates. The gene coding for arm-type integrase A is upstream the 
genomic island, indicating a horizontal gene transfer for each represented isolate. 
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3.2 Network analysis of ten thousand genomes shed light on Pseudomonas 
diversity and classification 

 
In our prior work on P. alloputida's population structure17, we employed an 

identity network approach, which illuminated a very structured network with well-

defined communities within the Pseudomonas putida group. By using a 95% 

identity threshold to define species, the network was structured to the point that 

the number of detected communities was the same as the number of network 

components.  

The second article of this thesis addresses how identity networks change 

their structure across different thresholds, using Pseudomonas genus as a 

model16. We employed an extensive dataset of 10,035 Pseudomonas genomes, 

including type strains, to construct a genomic identity network. We observed a 

network stabilization around 95% identity. This study also uncovers taxonomic 

inconsistencies and reveals that a substantial proportion of Pseudomonas 

genomes deposited in GenBank are misclassified. A phylogenetic analysis using 

single-copy genes revealed the presence of at least 14 distinct Pseudomonas 

groups, suggesting that Pseudomonas is an admixture of different genera and its 

taxonomy should be revisited.  
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Network analysis of ten thousand genomes shed light on Pseudomonas 
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A B S T R A C T   

The growth of sequenced bacterial genomes has revolutionized the assessment of microbial diversity. Pseudo
monas is a widely diverse genus, containing more than 254 species. Although type strains have been employed to 
estimate Pseudomonas diversity, they represent a small fraction of the genomic diversity at a genus level. We used 
10,035 available Pseudomonas genomes, including 210 type strains, to build a genomic distance network to 
estimate the number of species through community identification. We identified taxonomic inconsistencies with 
several type strains and found that 25.65 % of the Pseudomonas genomes deposited on Genbank are misclassified. 
The phylogenetic tree using single-copy genes from representative genomes in each species cluster in the distance 
network revealed at least 14 Pseudomonas groups, including the P. alcaligenes group proposed here. We show that 
Pseudomonas is likely an admixture of different genera and should be further divided. This study provides an 
overview of Pseudomonas diversity from a network and phylogenomic perspective that may help reduce the 
propagation of mislabeled Pseudomonas genomes.   

1. Introduction 

Biological networks have been an essential analytical tool to better 
understand microbial diversity and ecology (Coutinho et al., 2015; 
Layeghifard et al., 2019). A network is a set of connected objects, in 
which objects can be represented as nodes and connections as edges. 
Networks provide a simple and powerful abstraction to evaluate the 
importance of individual or clustered nodes in maintaining a given 
system. Coupled with whole-genome sequencing, it can refine our 
knowledge about genetic relationships of diverse bacteria such as 
Pseudomonas. 

Pseudomonas is a genus within the Gammaproteobacteria class, whose 
members colonize aquatic and terrestrial habitats. These bacteria are 
involved in plant and human diseases, as well as in biotechnological 
applications such as plant growth-promotion and bioremediation (Silby 
et al., 2011). The genus Pseudomonas was described at the end of the 
nineteenth century based on morphology, and its remarkable nutritional 
versatility was recognized thereafter (Palleroni, 2010). The metabolic 
diversity of pseudomonads, combined with biochemical tests to describe 
species, culminated in a chaotic taxonomic situation (Palleroni, 2010). 

In 1984, the genus was revised and subdivided into five groups based 

on DNA-DNA and rRNA-DNA hybridization (Palleroni et al., 1894), with 
group I retaining the name Pseudomonas. Over the past 30 years, other 
molecular markers such as housekeeping genes have been used to 
mitigate the issues of Pseudomonas taxonomy (Ait Tayeb et al., 2005; 
Mulet et al., 2012; Gomila et al., 2015). Based on the 16S rRNA gene 
sequences, the genus is divided into three main lineages represented by 
Pseudomonas pertucinogena, Pseudomonas aeruginosa, and Pseudomonas 
fluorescens (Peix et al., 2018). These lineages comprise groups of 
different species – both lineages and groups receive the name of the 
representative species. Currently, there are 254 Pseudomonas species 
with validated names according to the List of Prokaryotic Names with 
Standing in the Nomenclature (LPSN) (Parte et al., 2020). However, 
although the genus division into lineages and groups has facilitated the 
classification of new species, the remnants of the Pseudomonas misclas
sification still linger in public databases (Gomila et al., 2017; Tran et al., 
2017). 

The explosion in the availability of complete genomes for both 
cultured and uncultured microorganisms has improved the classification 
of several bacteria, including Pseudomonas (Gomila et al., 2015; Parks 
et al., 2018). One of the gold standards for species circumscription is the 
digital whole-genome comparison by Average Nucleotide Identity (ANI) 
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(Bobay, 2020). Since using only genomes from type strains might bias 
the analysis and provide an unrealistic picture of microbial diversity, we 
aimed to estimate the Pseudomonas diversity using all available genomes 
through a network approach. Here, we provide new perspectives on 
Pseudomonas diversity by exploring the structure of the genomic dis
tance network and the phylogenetic tree from representative genomes. 
This work also provides novel insights into the misclassification and 
phylogenetic borders of Pseudomonas. 

2. Methods 

2.1. Dataset collection and annotation 

We recovered 11,025 genomes of Pseudomonas from Genbank in 
June 2020. Genome quality was evaluated with BUSCO v4.0.6 (Seppey 
et al., 2019) using the Pseudomonadales dataset. We defined complete
ness as 100 % minus the percentage of missing genes, and contamination 
as the fraction of duplicated genes. Quality was defined as completeness 
– 5 x contamination (Parks et al., 2018). Genomes with more than 400 
contigs were removed, and contigs shorter than 500bp were discarded 
from the remaining genomes. We used mash v2.2.2 (Ondov et al., 2016) 
to calculate the pairwise distances between those 10,035 genomes with 
quality higher than 80 % using sketches of 1000 and 5000. Regarding 
the type strains, we used all species with available genomes and vali
dated taxonomic names according to the LPSN (Parte et al., 2020) in 
March 2021. The pairwise distances between type strains were per
formed using pyani v0.2.10 (Pritchard et al., 2016). We reannotated the 
genomes with prokka v1.14 (Seemann, 2014) to allow a systematic 
large-scale genome comparison. 

2.2. Network analysis 

By using the pairwise Mash distances, we generated the corre
sponding network and obtained thestructural properties such as density, 
transitivity, and number of components with the igraph package (Csardi 
and Nepusz, 2006). We used the label propagation algorithm to detect 
communities (Raghavan et al., 2007). The representative genome for 
each community was defined based on three conditions: i) if the com
munity has only one type strain, the type strain was considered the 
representative genome; ii) if the community has more than one type 
strain, the first described type strain was chosen; iii) else, we randomly 
chose a genome in a community (seed = 1996) and assigned the com
munity name with the notation Pseudomonas sppX, where X is the 
community number. 

2.3. Phylogeny and POCP index 

We used OrthoFinder v2.5.2 (Emms and Kelly, 2019) to obtain the 
orthogroups from community representative genomes. All single-copy 
genes were aligned with MAFFT v7.467 (Katoh and Standley, 2013) 
and concatenated to reconstruct the Pseudomonas phylogeny with 
IQ-TREE v2.1.2 (Minh et al., 2020). The best-fit model detected through 
ModelFinder (Kalyaanamoorthy et al., 2017) was LG + F+ I + G4. One 
thousand bootstrap replicates were generated to assess the significance 
of internal nodes. Phylogenetic trees were visualized and annotated 
using ggtree (Yu, 2020). We tracked MRCA nodes for Pseudomonas 
groups definition using treeio (Yu, 2020). 

The Percentage of Conserved Proteins (POCP) between two genomes 
was calculated using the formula C1+C2

T1+T2
, where C is the number of 

conserved proteins and T is the total number of proteins (Qin et al., 
2014). The number of conserved proteins was obtained from the 
orthologs matrix Aij generated by OrthoFinder, where each entry (i, j) is 
the total number of genes in species i that have orthologues in species j. 
The graphs were generated and visualized using igraph (Csardi and 
Nepusz, 2006) and ggnetwork v0.5.8 (Briatte, 2020), respectively. The 

GTDB classification was obtained in April 2021 (http://gtdb.ecogen 
omic.org/). 

3. Results 

3.1. Dataset collection 

We obtained 11,025 genomes from GenBank in June 2020. After 
evaluating the quality of each genome (see methods for more details) 
and removing fragmented genomes, 10,035 genomes passed in the 80 % 
quality threshold (Fig. S1). The size of the retrieved genomes ranged 
from 3.0–9.4 Mb. We used 238 type strains with available genomes and 
names validly published according to the List of Prokaryotic Names with 
Standing in Nomenclature in March 2021. The genome size and GC con
tent of type strains ranged from 3,022,325 bp and 48.26 % (P. caeni) to 
7,375,852 bp and 62.79 % (P. saponiphila) (Table S1). According to the 
NCBI classification, the top four abundant species in our dataset are 
P. aeruginosa (n = 5,088), P. viridiflava (n = 1,509), Pseudomonas sp. 
(n = 1,083), and P. syringae (n = 435) (Table S2). 

3.2. Genome-based analysis reveals the presence of synonymous 
Pseudomonas species 

The misclassification of some Pseudomonas type strains has been 
reported by several studies (Gomila et al., 2015; Hesse et al., 2018; 
Lalucat et al., 2020; Passarelli-Araujo et al., 2021). Type strains play an 
essential role in taxonomy by anchoring species names as unambiguous 
points of reference (Hugenholtz et al., 2021). In this context, the term 
“synonym” refers to the situation where the same taxon receives 
different scientific names. We used 238 type strain genomes to evaluate 
the presence of synonymous species in Pseudomonas. The ANI was 
computed for all type strains to construct an identity network that was 
further used to check the linkage between genomes based on a 95 % ANI 
threshold (Fig. 1). Since 95 % has been accepted as species delimitation 
threshold (Bobay, 2020), connections between type strains indicate 
synonymous names or subspecies. 

We identified 30 connected genomes in the ANI network (Fig. 1). 
Four of these connected genomes are expected because they represent 
P. chlororaphis and its subspecies. Of the 26 remaining connected spe
cies, 15 have been previously reported, such as that in the group con
taining P. amygdali, P. ficuserectae, and P. savastanoi (Hesse et al., 2018; 
Lalucat et al., 2020). Here, we observed 11 connections, including the 
one between P. panacis and P. marginalis with 97.34 % identity, sug
gesting that P. panacis is a later synonym of P. marginalis. 

3.3. The Pseudomonas genomic distance network is highly structured 

In networks, identifying communities plays an important role in 
understanding network structure. We used all 10,035 Pseudomonas ge
nomes to construct a distance network to estimate the number of Pseu
domonas species from the number of communities detected in this 
network. Since alignment-based methods to estimate genome similarity 
(e.g. ANI) are computationally expensive due to the algorithm quadratic 
time complexity (Backurs and Indyk, 2015), it becomes impractical for 
thousand genomes. Therefore, we estimated the Mash distance that 
strongly correlates with ANI and can be rapidly computed for large 
datasets (Ondov et al., 2016). 

Mash distances are computed by reducing large sequences to small 
and representative sketches (Ondov et al., 2016). We estimated the 
pairwise Mash distance for all genomes using sketch sizes of 1000 and 
5000, which converged to similar distance values (Fig. S2a). However, 
we observed that the greater the distance between two Pseudomonas 
genomes, the more divergent the distance estimation (Fig. S2b), 
although the distribution is similar (Fig. S2c). The final distance be
tween two genomes was given as the average distance value from both 
sketch sizes. We used the reciprocal Mash distance (1 - Mash) to estimate 
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the ANI for all 10,035 genomes. 
We generated a weighted Pseudomonas network considering nodes as 

genomes and edges as the identity between two genomes. Although the 
95 % ANI value has been widely accepted to delineate species, we 
evaluated how different thresholds affect network structure by assessing 
density, transitivity, and the number of connected components (Fig. 2). 
The network density, i.e., the ratio of the number of edges and the 
number of possible edges, decreased throughout the interval but stabi
lized between 90 % and 97 % ANI, keeping the network structure almost 
unchanged (Fig. 2a). To estimate how structured the network was with 
different ANI thresholds, we also computed the average network tran
sitivity (also called average clustering coefficient) (Fig. 2b). The average 
transitivity is the normalized sum over all local transitivities (the 
probability of a given node having adjacent nodes interconnected). The 
high transitivity values revealed that the Pseudomonas network is highly 
structured (i.e., formed by tightly connected clusters) (Fig. 2b). This 
structured profile was observed before for the P. putida group network 
(Passarelli-Araujo et al., 2021), indicating that communities in Pseudo
monas distance networks rarely overlap. 

To decrease the influence of overrepresented species (e.g., 
P. aeruginosa) on the topological network statistics, we also computed 
the variation in the number of components (Fig. 2c). A connected 
component in a network is a subset of nodes connected via a path. At 70 
% identity, we had a single giant connected component. Expectedly, the 
number of connected components increased with the identity threshold 
because of the emergence of smaller components or even orphan nodes. 
Interestingly, connected components with more than ten nodes arose 
only above 81 % identity threshold and stabilized close to 95 %, high
lighting that the 95 % ANI threshold is accurate for species demarcation. 

We used the Pseudomonas network discarding connections lower 
than 95 % identity to estimate the number of species from the number of 
communities in the network. We detected 573 communities by using the 
label propagation algorithm (Raghavan et al., 2007). This number is 
similar to the number of connected components at 95 % identity 
threshold (n = 570), further supporting that the Pseudomonas distance 
network is highly structured, containing non-overlapping communities. 
By considering each community as a different Pseudomonas species, we 
evaluated the distribution of type strains in these communities. 

Seventeen communities had more than one type strain in the same 
cluster, indicating the existence of later heterotypic synonyms, as shown 
in Fig. 1. For each community, we assigned only one representative 
genome (see methods for more detail). For example, in the community 
containing P. amygdali, P. ficuserectae, and P. savastanoi, we maintained 
P. amygdali as the representative strain and the others were considered 
later heterotypic synonyms, as previously proposed (Gomila et al., 
2017). We observed that only 210 communities (36.64 %) had repre
sentative genomes from validly described species, reinforcing the un
derestimation of the number of Pseudomonas species if only the type 
strains are considered. 

Regarding the community’s sizes, P. aeruginosa corresponds to the 
largest community, comprising 5116 genomes (Fig. 3, Table S3). Most 
communities had few genomes. Although large communities tend to 
have type strains, 61 type strains (29.04 %) are single nodes (Fig. 3, 
Table S3), further demonstrating that estimating the diversity of Pseu
domonas only by type strains severely underestimates diversity. For 
example, the community containing Pseudomonas spp7 has 122 genomes 
and is potentially a new genomospecies. 

Fig. 1. Type strain validation based on Average Nucleotide Identity. Each node in the network represents a type strain genome and nodes are connected if they 
share at least 95 % identity. The left panel is a magnified representation of the connected nodes, with edges colored according to percent identity between the nodes. 

Fig. 2. Pseudomonas distance network structure evolution. a) Proportion of present connections (network density) and b) average transitivity change over 
different identity (1 – Mash) cut-off values. c) Number of network components detected with different identity thresholds. Light orange dots represent the total 
number of components, whereas the dark dots represent only components with more than ten nodes. 
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3.4. Comparison with NCBI classification highlights Pseudomonas 
misclassification 

After delimiting the species by the community detection approach, 
we compared them with the classification available in NCBI Taxonomy 
(Schoch et al., 2020). Briefly, we computed how many genomes were 
deposited with a given species name and how many genomes were 
identified for that species by our network approach. Of the 10,035 ge
nomes used in this work, 25.65 % were misclassified in NCBI Taxonomy 
(Table S5). This proportion includes species considered as later syno
nyms that should be reclassified (e.g. P. savastanoi), non-classified ge
nomes (Pseudomonas sp.), and those genomes that are unconnected to 
the expected species cluster. The most poorly classified species were 
P. brassicacearum (95.65 %), P. fluorescens (95.23 %), P. stutzeri (94.58 
%), and P. putida (88.70 %). This high rate of misclassification is linked 
to the type strain determined for each species. For example, the critical 
misclassification problem of P. putida has been recently reported by us 
(Passarelli-Araujo et al., 2021). The P. putida NBRC 14164T type strain 

forms an isolated community in the network with only 15 genomes. On 
the other hand, the community of P. alloputida Kh7T harbors 69 ge
nomes, constituting the largest community in the P. putida group. Thus, 
most of the genomes deposited as P. putida are actually from 
P. alloputida. Regarding the misclassification of P. stutzeri, 122 genomes 
fall into the community represented by Pseudomonas spp7, a potentially 
new genomospecies mentioned above. 

We also assessed the impact of our approach defining the species- 
level taxonomy of the 1,083 non-classified Pseudomonas genomes 
available in Genbank (Pseudomonas sp.). Interestingly, 511 Pseudomonas 
sp. genomes (47.18 %) were distributed among 97 communities con
taining type strains (Table S6). The species that received the most ge
nomes were P. glycinae (n = 35), P. lactis (n = 34), and P. mandelii 
(n = 31). 

3.5. The Pseudomonas phylogeny reveals at least fourteen groups 

To reduce the influence of overrepresented species, we used the 573 
representative genomes from each community to retrieve orthologous 
genes and reconstruct the Pseudomonas phylogeny. The Cellvibrio japo
nicus Ueda 107T was used as an outgroup. We identified 31,094 
orthogroups, of which 168 were present in all species, including 30 
single-copy genes. We used the single-copy genes to reconstruct the 
Pseudomonas phylogeny and identify the main Pseudomonas groups 
(Fig. 4). 

The main Pseudomonas groups have been previously characterized 
using housekeeping genes such as 16S rDNA, gyrB, rpoB, and rpoD from 
type strains (Gomila et al., 2015; Hesse et al., 2018). To delineate each 
group, we retrieved those representative genomes (species) within 
previously-described groups (Table S7). We then tracked the Most 
Recent Common Ancestor (MRCA) for those species in the Pseudomonas 
phylogenetic tree to include uncharacterized representative genomes as 
well. For example, the P. lutea group comprises three known species: 
P. abietaniphila, P. graminis, and P. lutea (Gomila et al., 2015). By 
tracking the corresponding MRCA node, we ensured the monophyly and 
included P. bohemica and 12 uncharacterized species in this group 

Fig. 3. Pseudomonas community sizes. Dark and light purple dots represent 
communities with and without type strains, respectively. The names and 
number of genomes are displayed in those communities with more than 100 
genomes. The y-axis is in log scale. 

Fig. 4. Phylogenetic tree mapping Pseudomonas groups. Maximum-likelihood phylogenetic tree using core single-copy genes in representative genomes from 
573 communities detected in the Pseudomonas network. Colors indicate Pseudomonas groups. The number of genomes in each group is in parenthesis. The asterisk 
highlights the P. alcaligenes group described here. The outgroup is Cellvibrio japonicus Ueda 107T. 
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(Table S3). This approach allowed a more accurate characterization of 
both recently described type strains and other uncharacterized species 
(Fig. 4, Table S3). We identified the 13 main Pseudomonas groups and 
one new group with 10 genomes and three type strains: P. alcaligenes, 
P. fluvialis, and P. pohangensis (Fig. 4, Table S8). Since P. alcaligenes is the 
firstly-described type strain in this group (Monias, 1928), we named this 
group as P. alcaligenes group. 

3.6. Lineage and genus boundaries 

The genus Pseudomonas has three recognized lineages: 
P. pertucinogena, P. aeruginosa, and P. fluorescens. The P. pertucinogena 
lineage is composed of a single phylogenetic group. The P. aeruginosa 
lineage comprises 6 phylogenetic groups (P. oryzihabitans, P. stutzeri, 
P. oleovorans, P. resinovorans, P. aeruginosa, and P. linyingensis). The 
P. fluorescens lineage also comprises 6 phylogenetic groups 
(P. fluorescens, P. lutea, P. syringae, P. putida, P. anguilliseptica, and 
P. straminea); P. fluorescens group is further divided into 8 or 9 phylo
genetic subgroups (Hesse et al., 2018). In this work, 70.38 % of the 
communities (species) belong to the P. fluorescens lineage, 16.72 % to 
P. aeruginosa, and 4.52 % to P. pertucinogena; 8.36 % were unclassified 
communities. We observed that, unlike the P. pertucinogena and 
P. fluorescens lineages, the P. aeruginosa lineage is polyphyletic (Fig. 5a). 

We used the Genome Taxonomy Database (GTDB) approach (Parks 
et al., 2018) to evaluate whether Pseudomonas should be divided into 
different genera. GTDB proposes a framework to classify genomes in 
higher taxonomic ranks (e.g. genus). By using the GTDB classification, 
Pseudomonas should be divided into 17 genera named generically with 
“Pseudomonas” followed by a letter (e.g. “Pseudomonas_A”), with 
P. aeruginosa group retaining the name Pseudomonas. We found a high 
correspondence between Pseudomonas groups and the proposed genera, 
with few inconsistencies (Fig. 5a, Table S8). According to the GTDB 
classification, the P. fluorescens lineage, together with the P. oleovorans 
group and the here described P. alcaligenes group, would form a single 
genus called Pseudomonas_E (Fig. 5a), which corresponds to 77.52 % of 
the species (communities) estimated in our study. 

We also used the Percentage of Conserved Proteins (POCP) index to 
evaluate the relationships between lineages (Fig. 5b) and complement 
the GTDB approach. Briefly, the POCP index measures the proportion of 
shared proteins between two genomes (Qin et al., 2014). The original 
proposal is that genomes belong to the same genus if they share at least 
half of their proteins (Qin et al., 2014). By using 50 % as a threshold, we 
observed that only the outgroup C. japonicus and other four genomes do 
not belong to the main POCP network component with all lineages. 
However, we observed two main clusters by using a 60 % threshold to 
link communities (Fig. 5b). 

Apart from P. anguilliseptica and P. straminea groups, the P. fluorescens 
lineage forms an isolated component in the network (Fig. 5b). The 
P. pertucinogena and P. aeruginosa lineages are in the same component, 
but linked by a few connections, including a bridge via a P. caeni 
genome. The outgroup C. japonicus is an orphan in the network, as well 
as P. kirkiae. The species P. boreopolis, P. cissicula, and P. geniculata were 
also isolated. These three species have already been recognized as 
belonging to the genus Xanthomonas (Anzai et al., 2000). Nevertheless, 
they remain classified as Pseudomonas in Genbank and are still labeled as 
validly published with a correct name in LPSN. 

4. Discussion 

The Pseudomonas genus underwent several taxonomic reclassifica
tions over the years. Here, we used 10,035 Pseudomonas genomes to 
estimate the genus diversity through network analysis and community 
detection. We observed that several type strains are later synonyms and 
should be officially revised, as also noted elsewhere (Gomila et al., 2015; 
Hesse et al., 2018). 

Regarding the Pseudomonas network, we observed that the number of 
detected communities is very close to the number of network compo
nents at a 95 % identity threshold. Combined with the stabilization of 
density and high transitivity around this threshold, we conclude that the 
Pseudomonas network is highly structured. This structured network 
profile has also been noted previously reported for the P. putida group 
(Passarelli-Araujo et al., 2021). 

Fig. 5. Pseudomonas phylogenetic tree with proposed genus boundaries and Percentage of Conserved Proteins (POCP) network. a) Phylogenetic tree an
notated with Pseudomonas lineages. The outer letters indicate the annotation adopted by the Genome Taxonomy Database (GTDB). The genus proposed to keep the 
name Pseudomonas is marked with a red asterisk. Other genera proposed by GTDB adopt the nomenclature “Pseudomonas” followed by a letter (e.g. Pseudomonas_E); 
for clarity, only the letters and those proposed genera with more than five communities are displayed. b) Network based on POCP index using a 60 % threshold. 
Colors represent lineages. Blue nodes embedded in the component with genomes of the Pseudomonas aeruginosa lineage belong to the groups P. anguilliseptica and 
P. straminea; these two groups are marked in the phylogenetic tree with black asterisks. 
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Considering each community as a different genomospecies, we 
identified 573 communities, way more than the 233 Pseudomonas spe
cies with validly published names. Moreover, we found 61 orphan type 
strains in the network, indicating that the diversity estimated using only 
type strains is highly underestimated. In addition, this work shows that 
25.65 % of the Pseudomonas genomes are misclassified. This is a matter 
of concern, as misclassified genomes in public repositories can introduce 
noise to pangenome studies, reduce strain typing accuracy, and propa
gate labeling errors to several studies, including those characterizing 
new species. 

Here, we also showed potential new genomospecies. For example, 
the community assigned as Pseudomonas spp7 contains 122 genomes, 
and it is a sister group of P. stutzeri. The high misclassification proportion 
of P. stutzeri (Table S5) can be explained by the presence of this new 
closely-related species. Such inconsistencies could be mitigated through 
a standardized taxonomic framework, as previously proposed (Hugen
holtz et al., 2021). However, there is still resistance to define species 
based solely on genome sequences, even with the massive number of 
available genomes (Hugenholtz et al., 2021). Therefore, isolating and 
characterizing members from Pseudomonas spp7 community will allow 
the consolidation of this new species. 

Although previous works provided insights about what would be 
considered Pseudomonas (Ozen and Ussery, 2012; Gomila et al., 2015; 
Hesse et al., 2018), how to delimit the Pseudomonas genus remains an 
open question. We tried to address this problem by using GTDB classi
fication and POCP index network, two approaches proposed to delimit 
genera. The GTDB results indicate that the P. fluorescens lineage and the 
P. oleovorans and P. alcaligenes groups would constitute a genus with the 
generic name Pseudomonas_E (Fig. 4). However, the POCP index network 
at 60 % shows that P. straminea and P. anguilliseptica groups are closer to 
P. aeruginosa than to P. fluorescens lineage (Fig. 4b). Aiming for a 
parsimonious separation, we propose that the P. fluorescens lineage, 
excluding the P. straminea and P. anguilliseptica groups, should be 
considered a new genus. Furthermore, by the GTDB results, the Pseu
domonas groups from the P. aeruginosa lineage should also be revised to 
assess whether they are new genera, as the P. aeruginosa lineage itself is 
polyphyletic. Prioritizing the GTDB approach here should provide the 
best alternative because it normalizes taxonomic ranks and ensures 
group monophyly (Parks et al., 2018). 

5. Conclusion 

In this study, we estimated the Pseudomonas diversity using a 
network approach. We show that type strains represent less than half of 
the estimated number of species, and that many of them are orphans in 
the network. We discovered new genomospecies and groups, such as 
Pseudomonas spp7 and P. alcaligenes, respectively. Although genus 
delineation is somewhat complex, we propose the Pseudomonas genus 
division by combining GTDB classification and POCP index. To fully 
understand the Pseudomonas diversity, it will be important to focus on 
each group and characterize species from communities without type 
strains. This study provides a state-of-the-art classification to delimit 
bacterial species, which we expect to serve as a guide for future studies 
with Pseudomonas spp, reducing the problems caused by misclassified 
genomes. 

Author contributions 

Conceptualization: Hemanoel Passarelli-Araujo and Thiago M. Ven
ancio; Formal analysis: Hemanoel Passarelli-Araujo; Data Visualization: 
Hemanoel Passarelli-Araujo; Resources: Thiago M. Venancio and Glória 
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Figure S1. BUSCO estimation for completeness and contamination for all Pseudomonas genomes. a) Distribution 
for all 11,025 Pseudomonas genomes. b) Genomes used in this study after discarding genomes based on 80% 
quality threshold and fragmentation higher than 400 scaffolds (see methods). 

 
 
 
 
 
 
 

 
Figure S2. Mash distance statistics. a) Comparison of estimated Mash distance using sketches sizes of 1000 and 
5000. b) Mash distances restricted to the interval [0.0, 0.3] in both axes. c) Mash distance distribution for each 
sketch size. 



  
Figure S3. Genome size distribution for Pseudomonas communities. Maximum-likelihood phylogenetic tree 
using core single-copy genes in representative genomes from 573 communities detected in the 
Pseudomonas distance network. Colors indicate the genome size distribution. 
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3.3 Unveiling bacterial genetic discontinuity across different species 
provide insights into genetic and ecological diversity 

 
From the two previous works, we observed that well-structured identity 

networks across Pseudomonas species. This third article delves into the 

quantification of bacterial genetic discontinuity and its ecological significance 

beyond Pseudomonas to evaluate whether this phenomenon is observed in other 

species.  

Bacterial genetic discontinuity refers to abrupt genomic identity shifts 

among species. In this article, a dataset comprising 210,129 bacterial genomes 

is harnessed to systematically quantify genetic discontinuity patterns across 

diverse bacterial species. The research reveals clear breakpoints in genomic 

identity distributions and establishes a significant correlation between 

pangenome saturation and genetic discontinuity. Closed pangenomes are 

associated with more pronounced genetic breaks, exemplified by Mycobacterium 

tuberculosis.  

Moreover, machine learning techniques identify key features that impact 

genetic discontinuity prediction. This study significantly advances our 

understanding of bacterial genetic patterns and their ecological implications, 

offering insights into species boundaries among prokaryotes. 
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Abstract 19 
 20 
Bacterial genetic discontinuity, representing abrupt breaks in genomic identity among 21 
species, is crucial for grasping microbial diversity and evolution. Advances in genomic 22 
sequencing have enhanced our ability to track and characterize genetic discontinuity in 23 
bacterial populations. However, exploring systematically whether bacterial diversity 24 
exists as a continuum or into discrete species groups remains a challenge in microbial 25 
ecology. Here, we aimed to quantify the genetic discontinuity (𝛿) and investigate their 26 
ecological relevance. We harnessed a dataset comprising 210,129 genomes to 27 
systematically explore genetic discontinuity patterns across several distantly related 28 
species. Our findings revealed clear breakpoints in genomic identity distributions. By 29 
delving into pangenome characteristics, we uncovered a significant association between 30 
pangenome saturation and genetic discontinuity. Closed pangenomes were associated 31 
with more pronounced breaks, exemplified by Mycobacterium tuberculosis. 32 
Additionally, through a machine learning approach, we detected key features that 33 
impact genetic discontinuity prediction. Our study enhances the understanding of 34 
bacterial genetic patterns and their ecological implications, offering insights into species 35 
boundaries for prokaryotes.  36 
 37 
Key-words: pangenome; machine learning; speciation; genetic rate of change; bacterial 38 
ecology 39 
  40 



INTRODUCTION 41 
 42 
Bacteria exhibit remarkable genetic makeup and ecological versatility, thriving in diverse 43 
niches worldwide. Plummeting sequencing costs have led to a wealth of genomic data, 44 
enabling extensive exploration of genetic diversity and evolutionary relationships across 45 
bacterial species. However, an essential inquiry in microbial ecology pertains to whether 46 
bacterial diversity exists as a continuum or as distinct species groups1, 2, 3. 47 

The definition of bacterial species faces challenges because bacteria can 48 
exchange genetic material through horizontal gene transfer (HGT)4, potentially blurring 49 
the species boundaries. This complexity has led to divergent views on bacterial species 50 
existence: while it was once thought that excessive recombination would preclude their 51 
species formation5, a contemporary perspective suggests that the gene flow patterns 52 
can even delineate species6. Besides, recent studies have revealed a clear genetic 53 
discontinuity across bacterial genomes, supporting the existence of discrete genetic 54 
clusters (species)7, 8, 9, 10. 55 

Genetic discontinuity refers to the occurrence of a significant difference in 56 
genetic makeup between populations or groups of organisms11, thereby signifying 57 
potential boundaries between distinct species. This discontinuity can occur over time 58 
through natural selection, genetic drift, or geographic isolation. Besides, genetic 59 
discontinuity can be an important factor in determining whether populations should be 60 
classified as separate species8, 10. 61 

Defining bacterial species is beyond a human desire to catalog bacterial diversity; 62 
it is vital for understanding how evolutionary forces shape genetic lineages12, 13. 63 
Furthermore, proper classification impacts practical applications in industry, agriculture, 64 
and medicine. For instance, Gardnerella vaginalis illustrates the clinical relevance of 65 
naming individuals properly. Formerly grouped under G. vaginalis, the division into 66 
multiple species has revealed diverse health associations14, including species linked to 67 
bacterial vaginosis to those found in healthy vaginal microbiomes15. Therefore, the 68 
previous classification of all Gardnerella as G. vaginalis limited the ability of clinicians to 69 
assess when and whether the presence of Gardnerella indicated a health risk. 70 

One way to assess species boundaries is by estimating the genetic relatedness 71 
between genomes. A robust method to classify bacterial species is based on the Average 72 
Nucleotide Identity (ANI) estimate, with organisms belonging to the same species if the 73 
possess around 95% ANI or more among themselves4, 5. Since estimating ANI for 74 
thousands of genomes is computationally expensive, alternative methods were 75 
developed to accommodate the growing genomic dataset10, 16. 76 

Despite observed breaks in genetic identity distributions for various species, 77 
quantifying the magnitude of these breaks and their ecological implications remains a 78 
challenge. Here, we address the intricate nature of bacterial diversity through a genomic 79 
distance network approach and pangenome analysis. We aimed to quantify the extent 80 
of genetic discontinuity within and between bacterial populations to determine whether 81 



intrinsic genetic boundaries can provide a more ecologically relevant basis for species 82 
redefinition. Here, we seek not to pigeonhole bacterial species, but to examine the 83 
presence of genetic boundaries, quantify their extent, and explore their ecological 84 
implications for species classification. 85 
 86 
Results 87 
 88 
Dataset information 89 
 90 
We obtained 258,603 genomes from RefSeq that were filtered following the GTDB 91 
protocol17. After removing low quality and fragmented genomes, we retained of 92 
210,129 genomes to explore bacterial genetic discontinuity (Table S1). According to the 93 
NCBI classification, the top four abundant species in our dataset are Escherichia coli (n 94 
= 22,853), Staphylococcus aureus (n = 12,747), Klebsiella pneumoniae (n = 10,387), and 95 
Salmonella enterica (n = 9,755) (Table S1).  96 

Over 44 billions of comparisons were performed to construct an identity matrix 97 
𝑀. The next step was defining communities in this network. Representative genomes 98 
for each community were then selected by removing edges below 95% identity in 𝑀, 99 
resulting in 7,122 communities identified using label propagation – a proxy for species 100 
number (see methods for more details). Notably, 84.84% of communities contained 101 
fewer than 10 genomes, consistent with prior observations in the genus Pseudomonas18. 102 
For instance, a previous study found that 29% of officially recognized Pseudomonas type 103 
strains appeared as isolated nodes in a similar network analysis, highlighting the 104 
substantial underestimation of diversity when relying solely on type strains18. By 105 
focusing on communities with over 50 genomes (3.85%), we obtained a set of 261 106 
representative genomes, enabling meaningful comparative genomic analyses 107 
subsequentially. 108 

We reannotated a total of 45,550 genomes, representing nine phyla according 109 
to GTDB classification (Figure 1). Out of 942,094 genes detected, 95.1% were 110 
successfully assigned across 39,552 orthogroups. Moreover, species-specific 111 
orthogroups represented approximately 0.9% of the genes. Single-copy genes were 112 
used to reconstruct the phylogenetic tree. Except for Proteobacteria, the tree indicated 113 
monophyly in all other phyla based on GTDB classification, contrasting with the 114 
polyphyly observed based on NCBI classification, as noted before17. The GC content in 115 
these genomes ranged from 25.9% in Mesomycoplasma hyorhinis to 73.4% in 116 
Streptomyces albidoflavus (Table S2). Notably, Clostridioides difficile exhibited the 117 
greatest number of CRISPR arrays (median = 8) in a community of 500 genomes, with at 118 
least one array each. The dataset included genomes with diverse sizes, from the smallest 119 



commensal Metamycoplasma hominis (0.7 Mb) to the larger free-living bacterium 120 
Burkholderia cepacia (8.5 Mb).  121 

 122 

 123 
Figure 1. Phylogenetic tree of representative species. The phylogenetic tree reconstructed from single-124 
copy genes of 261 representative species used in this work to explore bacterial genetic discontinuity. 125 

 126 
Clear genetic discontinuity revealed across bacterial species 127 
 128 
To explore genetic discontinuity across different species, we employed an egocentric-129 
based strategy, where a representative genome serves as a “bait” node within the 130 
network and the identity of all other genomes from it is calculated. This method allowed 131 
us to assess the ranked identity distribution from each representative genome (Figure 132 
2a), revealing clear breakpoints within the distribution. For instance, considering the 133 
representative species of Acinetobacter baumannii, the 4968th genome maintains a 134 
97.27% identity. However, the identity of the 4969th genome drops drastically to 135 
93.34%, exemplifying the observed genetic discontinuity or genetic break.  136 

We systematically quantified the genetic discontinuity by estimating how rapidly 137 
the genomic identity decayed as we moved through the sorted identity array. We took 138 
the first derivative of the distribution, offering a measure of variability in genomic 139 
similarity that we named as Genetic Rate of Change (GRC) (Figure 2b). The maximum 140 
value of GCR resulted in the genetic discontinuity metric 𝛿, which characterizes the 141 
steepest change in genomic identity (see methods). For instance, the genetic break 142 
observed from 97.27% to 93.34% in A. baumannii, corresponds to 𝛿 = 0.9727	 −143 
	0.9334 = 0.0393 for this species (Table 1, Figure 2b). 144 
 Eight species were selected to showcase bacterial discontinuity, encompassing 145 
both pathogenic and non-pathogenic strains across various phyla and lifestyles (Figure 146 



2b). Notably, Chlamydia trachomatis and M. tuberculosis exhibited pronounced 𝛿, 147 
indicating substantial shifts in genetic similarity. Conversely, Helicobacter pylori 148 
represented few instances where a species lacks a clear genetic discontinuity, 149 
suggesting a blurred genetic boundary possibly influenced by its evolutionary history 150 
and lifestyle. 151 
 152 

 153 
Figure 2. Genetic discontinuity properties of ten selected species. a) distribution of ranked genomic 154 
identities, revealing breakpoints around 95%. Vertical dashed lines for Chlamydia trachomatis and 155 
Mycobacterium tuberculosis indicate breaks beyond 90% from their closest genomes. The x-axis is 156 
represented in log-scale. b) Genetic Rate of Change is depicted across different identity values, with the 157 
break-associated point emphasized by a red circle. This point represents the key measure of genetic 158 
discontinuity (𝛿) examined in this work (see methods for comprehensive information). Genomes are 159 
colored based on GTDB classification. 160 
 161 
Higher genetic discontinuity associates with allopatric lifestyle 162 
 163 
To explore the ecological implications of bacterial discontinuity, we analyzed the 164 
pangenome of the 261 species mentioned above, which provides valuable insights into 165 
their lifestyles and evolution19, 20. The pangenome encompasses the core genome 166 



(genes present in all isolates), the accessory genome (genes in more than one but not 167 
all isolates), and isolate-specific genes. Pangenome openness, measured by the 168 
saturation coefficient (𝛼), indicates the extent to which new gene families are detected 169 
in the pangenome as more genomes are included. Higher 𝛼 values suggest gene pool 170 
saturation (the addition of new genomes contributes fewer new detected genes), while 171 
lower 𝛼 values imply a more flexible genomic repertoire. 172 
 173 

 174 
Figure 3. Pangenome properties of representative species. a) genomic fluidity in function of pangenome 175 
saturation with a linear regression line given by 𝜙 =	−0.51148 × 𝛼	 + 	0.52509. The size of the dots 176 
corresponds to different levels of genetic discontinuity, grouped into four categories. Additionally, the 177 
color of the dots indicates the coding density of each representative genome. b) pangenome openness of 178 
ten selected species, with 𝛼 highlighted for reference. 179 

 180 
We used the pangenome openness to indirectly assess the species lifestyle19 181 

(Table 1). A low saturation coefficient (open pangenome) suggests a flexible genomic 182 
repertoire, characteristic of sympatric populations that frequently exchange genes to 183 
adapt to various environments. Conversely, a high saturation coefficient (closed 184 
pangenomes) is associated with allopatric populations adapted to specific niches with 185 
limited gene exchange due to physical isolation or genetic incompatibility19, 20.  186 

In our investigation, we identified a noteworthy correlation between 187 
pangenome openness and genomic fluidity (𝜙) (Figure 3a) –  a measure of genomic 188 
dissimilarity at the gene level 21. Specifically, we found a negative correlation, indicating 189 
that species with closed pangenomes exhibit lower genomic fluidity, as previously 190 
noted22. Furthermore, we observed a pronounced increase in genetic discontinuity as 191 
the pangenome saturation coefficient rises. 192 

C. trachomatis and Bacillus cereus exhibit distinct pangenome characteristics 193 
that reflect their contrasting lifestyles. C. trachomatis exhibited a closed pangenome (𝛼 194 
= 0.97), indicating a limited capacity for gene acquisition through HGT. This suggests a 195 
relatively stable genome and a more specialized lifestyle, features associated with an 196 
obligate intracellular pathogenic behavior23. This pattern is frequent among species with 197 
high genomic discontinuity, closed pangenomes, allopatric lifestyles, and highly 198 



conserved pangenomes (Table 1). In contrast, B. cereus displays an open pangenome (𝛼 199 
= 0.64), indicating a high propensity for gene acquisition and genomic diversity. This 200 
suggests a more versatile lifestyle, potentially enabling B. cereus to occupy various 201 
ecological niches and adapt to changing environments. The variations in pangenome 202 
openness observed in these two species provide valuable insights into their lifestyles 203 
and on how their pangenomes evolve in the context of genetic discontinuity. 204 
 205 

Species Lifestyle 𝜹 𝜶 
Core 
Prop. 

Coxiella burnetii Obligate intracellular 0.291 0.930 0.672 
Treponema pallidum Obligate pathogen 0.256 0.959 0.855 
Mycoplasmoides pneumoniae Obligate intracellular 0.228 0.967 0.755 
Metamycoplasma hominis Obligate intracellular 0.175 0.832 0.471 
Chlamydia trachomatis Obligate intracellular 0.154 0.976 0.895 
Mycobacterium tuberculosis Obligate pathogen 0.102 0.932 0.639 
Staphylococcus aureus Opportunistic pathogen 0.053 0.844 0.306 
Acinetobacter baumannii Opportunistic pathogen 0.039 0.073 0.152 
Agrobacterium tumefaciens Plant pathogen 0.034 0.764 0.312 
Pseudomonas syringae Plant pathogen 0.030 0.708 0.189 
Rhizobium leguminosarum Symbiont 0.024 0.704 0.230 
Klebsiella pneumoniae Opportunistic pathogen 0.016 0.730 0.161 
Bacillus cereus Free-living 0.012 0.640 0.085 
Escherichia coli Free-living 0.011 0.696 0.149 
Helicobacter pylori Free-living 0.010 0.725 0.189 

 206 
Table 1: Genomic and ecological characteristics of 15 representative species. Genetic 207 

discontinuity (𝛿) represents the steepest change (break) in genomic identity distribution from a 208 
representative genome. The saturation coefficient (𝛼) indicates pangenome openness: the higher the 𝛼 209 
value, the more closed the pangenome is. Core proportion refers to the ratio between the number of core 210 
genes and pangenome size of each species. 211 
 212 
Uncovering most influential features to predict bacterial genetic discontinuity  213 
 214 
We aimed evaluate the importance of different features in predicting bacterial genetic 215 
discontinuity. To address the asymmetrical nature of 𝛿 distribution (Figure 4a) and the 216 
impact of the number of genomes to estimate the pangenome openness, we employed 217 
a quantile regression that allowed us to assess the influence of pangenome saturation 218 
on genetic discontinuity while controlling for the number of genomes used to compute 219 
𝛼. We found a significant impact across all quantiles examined (Figure 4b). Notably, as 220 
the quantile increased, the impact of pangenome saturation in	 𝛿 became more 221 
pronounced. For instance, in the top quantile (𝜏 = 0.95; [0.1040 − 0.291]), an increase 222 
of one unit in alpha corresponded to a 0.44-unit rise in 𝛿. These results shed light on the 223 
pivotal role of pangenome saturation in shaping genetic discontinuity patterns. 224 



Beyond pangenome features, we also used a rich set of features ranging from 225 
taxonomical classification to orthology assessment to model bacterial discontinuity 226 
through a machine learning approach (see methods). Among the six tested methods, 227 
Linear Regression and Random Forest demonstrated superior performance in terms of 228 
root mean squared error, mean absolute error and quantile loss over different quantiles 229 
(Figure S1). Random Forest was chosen due to its ability to handle data distribution and 230 
collinearity without imposing strict assumptions. After hyperparameter tuning via k-fold 231 
cross-validation and grid search, we delved into feature importance using SHAP values 232 
to predict 𝛿. 233 

 234 

 235 
Figure 4. Genetic discontinuity modeling. a) Probability distribution of genetic discontinuity (𝛿) estimated 236 
from representative genomes. b) quantile regression analysis of 𝛿 as a function of pangenome saturation 237 
(𝛼), highlighting a positive impact of 𝛼 on 𝛿 across different quantiles (0.15, 0.25, 0.50, 0.75, 0.95). c) 238 
SHAP values derived from Random Forest Regression model, indicating the importance of ten features in 239 
predicting 𝛿. Each representative genome is displayed, along with the positive or negative impact of each 240 
feature. d) linear regression between 𝛿 and the percentage of orthogroups containing species, the feature 241 
with the highest impact on predicting 𝛿. The equation of the regression line and the associated p-value 242 
are also shown. 243 

 244 
The most significant variable affecting the prediction of genetic discontinuity was 245 

the "Percentage of Orthogroups Containing Species" (Figure 4c). This metric gauges the 246 
proportion of orthogroups containing at least one gene from a given species. For 247 
example, if at least one gene from species A is present in 90 orthogroups from a total of 248 
100, the percentage of orthogroups containing species A would be 90%. Moreover, this 249 



feature negatively impacts 𝛿 (Figure 4d; p-value <0.001). This metric helps associate the 250 
presence and representation of a species within orthogroups with genetic discontinuity, 251 
as it indicates how frequently genes from that species are involved in shared functional 252 
contexts across different organisms. 253 
 254 
Discussion 255 
 256 
In this study, we systematically quantified genetic discontinuity (𝛿), which reflects 257 
significant shifts or abrupt changes in genetic similarity compared to a representative 258 
genome. Our work offers insights into the ecological roles of bacterial discontinuity and 259 
its implications for species classification. We carefully considered whether rigid 260 
taxonomic boundaries capture the fluidity and evolutionary dynamics that shape 261 
species' histories, especially considering organisms where genetic exchange, 262 
adaptation, and hybridization prevail24, 25. 263 

Philosophically, species classification raises the issue of Aristotelian essentialism 264 
– the idea that there are inherent qualities that define a species26, 27. The act of assigning 265 
species to specific categories becomes an exercise in grappling with the fundamental 266 
question of what defines a species. Is it solely genetic similarity, shared phenotypic 267 
traits, ecological niche, or something deeper that eludes our current understanding? In 268 
this work, we deployed genomics and ecology approaches to assess species boundaries. 269 
We used the essentialism idea as a prior to select representative genomes and explore 270 
whether the resulting genetic variation exhibited continuity or discreteness. To be 271 
agnostic about the choice of representative genomes, we employed a network approach 272 
where we could also retrieve understudied genomes to represent a given community, 273 
avoiding the limitation to explore species based only on well-studied type strains18. 274 

Bacterial genetic discontinuity has already been observed in studies comprising 275 
thousands of genomes by using different approaches7, 8, 18. The remaining inquiry was 276 
how to measure genetic discontinuity and unveil its ecological significance, while 277 
accounting for potential external factors such as sampling biases. To address this, we 278 
devised a novel metric (𝛿) by examining the maximum value in the first derivative 279 
distribution of genome identity derived from a representative genome. We observed 280 
delta values spanning from 0.005 (Acinetobacter pittii) to 0.290 (Coxiella burnetii) – 281 
species with remarkably distinct lifestyles. For the extreme case C. burnetii, the idea of 282 
𝛿 = 0.29 means that the most similar genome in a different community within a 283 
network of over 200 thousand genomes shares only 29% genetic identity with the 284 
representative genome of the C. burnetii community, which comprises 65 genomes. This 285 
identity value is way beyond of what we expect to distinguish species and approaches 286 
to those used to define higher taxonomical ranks such as genera and families28, 29. C. 287 
burnetti is an obligate intracellular pathogen responsible for causing the Q fever disease 288 
in humans30. Its allopatric lifestyle may explain its high genetic discontinuity. 289 



After identifying breaks that varied according species lifestyles (Table 1), the next 290 
challenge was to assign an ecological meaning to them. The pangenome analysis is 291 
essential to gain insights into lifestyle and evolution a species19, 20. A key result we found 292 
here was that the greater the bacterial discontinuity, the more closed the pangenome 293 
was, always controlling for the number of genomes used to estimate the saturation 294 
coefficient. Besides C. burnetti, M. tuberculosis and C. trachomatis also illustrate 295 
situations where the magnitude of the break is related to lifestyles, especially regarding 296 
the HGT dynamics. 297 

Conversely, species with ubiquitous or environmental lifestyles such as E. coli 298 
and B cereus, presented smaller breaks, but still well-defined boundaries. Those bacteria 299 
are known for their ability to thrive in various environments, including soil, water, and 300 
plant surfaces. Their diverse ecological niches might lead to more continuous genetic 301 
variation, exhibiting less pronounced breaks. In contrast, Helicobacter pylori posed an 302 
intriguing challenge with regards to genetic discontinuity. Our analysis revealed either 303 
an ambiguous or non-existent genetic break in this species, rendering it difficult to draw 304 
a line to delineate its boundaries. The absence of a discernible genetic break in H. pylori 305 
emphasizes the need for a more nuanced understanding of species boundaries and 306 
genetic cohesion, and suggests the presence of unique evolutionary dynamics that 307 
warrants further investigation. 308 

Beyond the use of pangenome features to predict bacterial discontinuity, 309 
orthogroups assessment may be vital to understand genetic discontinuity. By using both 310 
the SHAP values and ExtraTreess Regressor to retrieve feature importance, the 311 
“percentage of orthogroups containing species”, assigned by orthofinder, was the most 312 
important variable. This variable reveals insights into genetic interconnectedness and 313 
shared functions among bacterial species within an ecological niche. A higher 314 
percentage indicates shared traits due to the frequent co-occurrence, suggesting 315 
ecological overlap. Conversely, a lower percentage implies species specialization, 316 
indicating distinct ecological roles. For example, species with closed pangenomes such 317 
as C. trachomatis had genes present in only 2% of the total number of orthogroups. 318 

In conclusion, our study highlights the significance of bacterial genetic 319 
discontinuity in understanding microbial diversity and evolution. We have shown that 320 
closed pangenomes and pronounced genetic breaks correspond to specific bacterial 321 
lifestyles, offering insights into microbial adaptation. Furthermore, our findings 322 
emphasize the role of orthogroups in characterizing genetic discontinuity and ecological 323 
dynamics within bacterial communities. This study contributes to a more nuanced 324 
understanding of bacterial diversity, emphasizing dynamic genetic relationships and the 325 
need to reevaluate traditional species classifications in microbial ecology. 326 
 327 
Methods 328 
 329 
Data collection and network analysis 330 



 331 
We download a dataset comprising 210,129 genomes available on RefSeq as of 332 
September 2022. To ensure data quality, we retained genomes with fewer than 500 333 
scaffolds and utilized the GTDB quality control17 to exclude genomes displaying low 334 
quality or contamination. Filtered genomes were used to perform tens of billions of 335 
comparisons with mash v2.2.2 16 to construct a weighted network (𝑀) with igraph v1.5.1 336 
31. 𝑀 comprises genomic relationships among the set of genomes (𝑔), with edges (𝑒) 337 
corresponding to the genomic identity between pairs of genomes, quantified as the 338 
inverse of Mash distance (1 - Mash). 339 

The weighted network was used to select representative genomes to infer the 340 
genetic identity patters. To select representative genomes, we subsetted the network 341 
𝑀 to create 𝑀′: 342 
 343 

𝑀! = {𝑔, 𝑒!	|	𝑒! ∈ 𝑒	𝑎𝑛𝑑	𝑒′ ≥ 0.95} 344 
 345 

Therefore, 𝑀! represents a species network containing the same set of genomes, 346 
but retaining edges above 95% identity, a threshold used to define species4. We 347 
employed the label propagation algorithm32 to detect communities in 𝑀! that represent 348 
species. Only communities containing more than 50 genomes were used. This criterion 349 
was adopted to mitigate downstream modeling errors and enhance confidence in the 350 
biological significance of species representation. 351 

Representative genomes of each species were chosen based on the following 352 
criteria: (i) prior designation as representative in both GTDB and RefSeq databases, (ii) 353 
representative at least in GTDB, or (iii) fewest scaffolds if the previous criteria were not 354 
met. Ties were resolved by random selection. This yielded a subset of 261 representative 355 
genomes (𝑡) used for subsequent analysis. 356 
 357 
Genome annotation, pangenome, and phylogenetic analysis 358 
 359 
Genomes assigned to communities containing representative genomes were annotated 360 
using Bakta v1.5.133. To ensure consistency in annotation, all genomes were 361 
reannotated within the same framework, mitigating potential discrepancies. In cases 362 
where communities exceeded 500 genomes, we implemented a downsampling 363 
strategy. Genomes showing 99.5% or higher identity were removed. For communities 364 
still surpassing this threshold, the remaining genomes were randomly selected.  365 

We employed Panaroo v1.2.1034 in the moderate mode to obtain the 366 
pangenome. The R packages Pagoo35 and Micropan36 were used to estimate the 367 
pangenome openness and genomic fluidity, respectively. We used Orthofinder v2.5.437 368 
to obtain the orthogroups from representative genome communities. All single-copy 369 
genes were with Mafft v7.50538 and concatenated to reconstruct the phylogenetic tree  370 
with IQ-Tree v2.1.439, incorporating ModelFinder40 to identify the best fitting model. 371 



One thousand bootstrap replicates were generated to assess the significance of internal 372 
nodes. The phylogenetic tree was visualized with ggtree41. 373 
 374 
Genetic discontinuity estimation (𝜹) 375 
 376 
To estimate and quantify the genetic discontinuity across species, we employed an 377 
egocentric-based approach using representative genomes as "baits" within the network 378 
𝑀. For each genome (𝑖) in the representative subset (𝑡), 𝑖 served as an egocentric node 379 
to calculate its genomic distance (𝑑"(𝑔)) from all other genomes 𝑔 in 𝑀. These distances 380 
𝑑"(𝑔) were sorted in descending order to retrieve genomes most similar to the 381 
representative genome 𝑖. The sorted array (𝐷") yielded a ranked list of genomic 382 
similarities. For each index 𝑗 in 𝐷", the corresponding genomic identity (𝐼"(𝑗)) was 383 
determined, quantifying the similarity between the representative genome 𝑖 and the 384 
genome at index 𝑗 in the array. 385 

To assess the Genetic Rate of Change, we calculated the first derivative of the 386 
genomic identity (𝐼"(𝑗)) with respect to 𝑗. The first derivative Δ"  was calculated as the 387 
change in genomic identity between two consecutive indices  𝑗 and 𝑗 + 1 in 𝐷", divided 388 
by index difference: 389 
 390 

Δ" =
𝐼"(𝑗) − 𝐼"(𝑗 + 1)

𝑗 + 1 − 𝑗 = 	 𝐼"(𝑗) − 𝐼"(𝑗 + 1) 391 

 392 
This rate of change Δ"  offered insights into how rapidly the genomic identity 393 

changed as we moved through the sorted array (𝐷"), offering a measure of variability in 394 
genomic similarity.  395 

Finally, let 𝛿 represent the genetic discontinuity, reflecting the idea of a break or 396 
sharp change in the genetic identity between a species and its closest relative. For each 397 
species, 𝛿 was defined as the maximum Genetic Rate of Change above 94%. This 398 
threshold was adopted to exclude breaks representing higher taxonomical 399 
classifications, focusing solely on the species level. For instance, consider hypothetical 400 
genera G1 and G2: 𝛿 captures the steepest change in genomic identity from species in 401 
G1, not those from G1 to G2 (see Figure 1). Thus, 𝛿 can be calculated as: 402 
 403 

𝛿 = max{𝛥"| 𝐼" ∈ [0.94, 1.00]} 404 
 405 

Additionally, we also incorporated GTDB species classification as a second prior 406 
to enhance accuracy in modeling 𝛿 for downstream analyses. 407 
 408 
Machine Learning modeling 409 

The outcome prediction task was formulated as a regression problem. We tested four 410 
different ML models to predict the genetic discontinuity (𝛿) for each species: Linear 411 



Regression, Lasso Regression, Support Vector Regressor, Random Forest Regressor, and 412 
Gradient Booster Regressor. This analysis was employed using the Scikit-learn v1.0.242 413 
and XGBoost v1.5.243 python44 libraries. 414 

We considered 261 species and 31 features categorized into four main groups: 415 
taxonomical, orthology-related, annotation-based, and pangenome metrics. 416 
Taxonomical features encompassed GTDB classification for each species (phylum, class, 417 
order, family, and genus). Ortholog-related features refers to six metrics obtained after 418 
detecting orthogroups for reference genomes (e.g., proportion of species-specific 419 
orthogroups). Categorical features with more than two categories were represented by 420 
a set of dummy variables, with one variable for each category. 421 

Annotation-based features were retrieved from all 45,550 reannotated 422 
genomes. Continuous variables, including %GC content and coding density, were 423 
represented by their median value to account for their asymmetrical probability 424 
distribution. For discrete variables such as the number of CRISPR arrays, we calculated 425 
their relative frequency, indicating the likelihood of a species carrying such elements. 426 
This yielded 13 annotation-based features. Seven pangenome metrics, encompassing 427 
pangenome openness, genomic fluidity, and core genome proportion (core genes to 428 
pangenome size ratio), were included in the feature dataset. 429 

Given the relatively low number of observations, the entire dataset was 430 
employed for training the model. We utilized the Extra Tree Regression feature selection 431 
method to reduce dimensionality, improve the estimator’s accuracy, and boost the 432 
model performance. This algorithm employs randomized feature selection and 433 
ensemble averaging to make predictions, helping identify influential features, reduce 434 
overfitting, and enhance the model's performance45. Also, we adopted k-fold cross-435 
validation to mitigate dataset size limitations and to evaluate model performance 436 
metrics (Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Quantile 437 
Loss). 438 

To tune hyperparameters in the final ML model, we conducted a grid search with 439 
k-fold cross-validation utilizing 5 folds. We used the RMSE as the model score metric. 440 
We retrieved the importance of variables on explaining the model, by adopting the SHAP 441 
(Shapley Additive exPlanations) technique. the essence of SHAP is to measure the 442 
feature contribution of each individual to the outcome and whether the feature has a 443 
positive or negative impact on predictions46.  444 
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 625 
Figure S1. Model evaluation through k-fold cross validation using different metrics. a) Root Mean 626 
Squared Error (RMSE). b) Mean Absolute Error (MAE). c-f) Quantile Loss across four quantiles (𝜏 =627 
[0.25, 0.50, 0.75, 0.95]). 628 
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4 Integrative Discussion 
 

In this work, we quantified bacterial genetic discontinuity and explored how 

it can be perceived across different taxonomic levels. At the species level, we 

used the P. alloputida as a model and characterized its population structure for 

the first time. By using core genome Multilocus sequence typing (cgMLST) 

techniques and STRUCTURE ancestry simulations, we detected at least seven 

clonal complexes in the population. These clonal complexes represent 

genetically distinct groups of strains with specific ecological adaptations and 

evolutionary histories. 

When analyzing genes of clinical and biotechnology interest, we observed 

that low-frequency resistance genes were usually found in plasmids and genes 

responsible for degrading aromatic compounds were likely transmitted 

horizontally. When we expanded the taxonomic level to explore the P. putida 

group, we observed that the ANI network was highly structured with easily 

discernible communities that would represent new species. 

When we considered the distance of the more than 400 genomes in 

relation to the type strain for P. alloputida (Kh7T), a clear break in distribution was 

detected, which motivated the exploration of this phenomenon in other species. 

Independently, Knight et. Al (2021)18 also observed this genetic discontinuity 

around 95% identity using a different methodology, suggesting a broader 

applicability of this genetic discontinuity phenomenon. 

As Pseudomonas is a genus that comprises bacteria ranging from those 

with clinical (P. aeruginosa), agricultural (P. syringae) and biotechnological (P. 

putida) interest, our next step was to explore how bacterial discontinuity could be 

perceived at the genus level. Therefore, from more than ten thousand genomes 

and different thresholds to define species, we found that networks maintained 

strong structures and facilitated community detection, emphasizing the 

persistence of genetic discontinuity. 

Community sizes varied, with P. aeruginosa being the largest with 5116 

genomes. However, 61 type strains (29.04%) existed as single nodes, 

underscoring the inadequacy of traditional reliance on type strains for capturing 
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genomic diversity within bacterial genera. Notably, the Pseudomonas spp7 

community, housing 122 genomes, may represent a new genomospecies. 

Another key result of this article with relevance to the understanding of 

bacterial genetic discontinuity was that 25.65% of explored genomes were 

misclassified, highlighting the complex nature of the Pseudomonas genus, which 

comprises an admixture of other genera that needs to be further explored. 

In our last article exploring bacterial genetic discontinuity, we used over 

220,000 genomes to quantify and attribute the ecological significance for the 

genetic breaks. Also, we delve into the multifaceted dimensions of bacterial 

genetic discontinuity, elucidating its ecological, taxonomic, and evolutionary 

implications. 

The ecological relevance of genetic discontinuity emerged in its 

association with microbial lifestyles, as seen in pangenome estimates and 

ecological studies. Closed pangenomes, indicative of stable niches, correlated 

with pronounced genetic breaks. This trend extended to species like M. 

tuberculosis and Coxiella burnetii, where genetic discontinuity reflected their 

distinct lifestyles. Defining bacterial species in light of genetic discontinuity poses 

a challenge, necessitating new approaches. 

Moreover, the ecological implications of genetic discontinuity transcended 

species classification. The percentage of orthogroups containing species 

revealed interconnectedness and shared traits among bacterial species within 

niches, offering insights into ecological dynamics. Further exploration of this 

metric within the context of bacterial genetic discontinuity is essential. 

Collectively, these articles illustrate how genetic discontinuity can be observed 

across various taxonomic levels, enhancing our understanding of bacterial 

diversity and evolution. 
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5 Research Perspectives and Conclusion 
 

As we advance our understanding of bacterial genetic discontinuity, 

several avenues for future research and challenges emerge. Further exploration 

of the role of horizontal gene transfer in shaping genetic discontinuity patterns 

across diverse bacterial taxa is warranted. Integrating ecological, genomic, and 

metagenomic approaches will offer a comprehensive understanding of genetic 

distribution in microbial communities. Taxonomic frameworks must also adapt to 

genomic diversity and lateral gene transfer. 

In conclusion, our investigation into bacterial genetic discontinuity provides 

new insights to understand microbial ecology and evolution. By systematically 

quantifying genetic discontinuity patterns and exploring their ecological, 

taxonomic, and practical implications, we highlight the fascinating and unique 

nature of bacterial genetic diversity. 
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