ANA LÚCIA SURERUS PITANGUY MARQUES

Science and Geography lexicons in English for learners in "Ensino Fundamental 1": a corpus-based investigation

> Universidade Federal de Minas Gerais – UFMG Belo Horizonte 2024

UNIVERSIDADE FEDERAL DE MINAS GERAIS – UFMG FACULDADE DE LETRAS – FALE PROGRAMA DE PÓS-GRADUAÇÃO EM ESTUDOS LINGUÍSTICOS

ANA LÚCIA SURERUS PITANGUY MARQUES

Science and Geography lexicons in English for learners in "Ensino Fundamental 1": A corpus-based investigation

Tese apresentada ao Programa de Pós-Graduação em Estudos Linguísticos da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do título de doutor em Linguística Aplicada.

Área de concentração: Linguística de Corpus Aplicada.

Linha de Pesquisa: Ensino / Aprendizagem de Línguas Estrangeiras – 3A

Orientadora: Profa. Dra. Deise Prina Dutra.

M357s	Marques, Ana Lúcia Surerus Pitanguy. Science and Geography lexicons in English for learners in "Ensino Fundamental 1" [manuscrito] : a corpus-based investigation / Ana Lúcia Surerus Pitanguy Marques. – 2024. 1 recurso online (219 f.: il., grafs., tabs., color, p&b.) : pdf.
	Orientadora: Deise Prina Dutra.
	Área de concentração: Linguística de Corpus Aplicada.
	Linha de pesquisa: Ensino/Aprendizagem de Línguas Estrangeiras - 3A
	Tese (doutorado) – Universidade Federal de Minas Gerais,
	Faculdade de Letras.
	Bibliografia: f. 127-139.
	Apêndices: f. 140-219.
	 Linguística de corpus – Teses. 2. Língua inglesa – Estudo e ensino – Falantes estrangeiros – Teses. 3. Língua portuguesa (Ensino fundamental) – Estudo e ensino – Teses. I. Dutra, Deise Prina. II. Universidade Federal de Minas Gerais. Faculdade de Letras. III. Título.
	CDD: 420.7

Ficha catalográfica elaborada pela bibliotecária Priscila Oliveira da Mata – CRB/6-2706 Biblioteca Professor Rubens Costa Romanelli - FALE/UFMG 2/22/24, 4:17 PM

SEI/UFMG - 2911726 - Folha de Aprovação

UNIVERSIDADE FEDERAL DE MINAS GERAIS FACULDADE DE LETRAS PROGRAMA DE PÓS-GRADUAÇÃO EM ESTUDOS LINGUÍSTICOS

FOLHA DE APROVAÇÃO

Science and Geography lexicons in English for learners in "Ensino Fundamental 1": a corpus-based investigation

ANA LÚCIA SURERUS PITANGUY MARQUES

Tese submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em ESTUDOS LINGUÍSTICOS, como requisito para obtenção do grau de Doutor em ESTUDOS LINGUÍSTICOS, área de concentração LINGUÍSTICA APLICADA, linha de pesquisa Ensino/Aprendizagem de Línguas Estrangeiras.

Aprovada em 15 de fevereiro de 2024, pela banca constituída pelos membros:

Prof(a). Deise Prina Dutra - Orientadora UFMG

Prof(a). Paula Tavares Pinto UNESP

Prof(a). Bárbara Malveira Orfanó UFMG

Prof(a). Shirlene Bemfica de Oliveira IFMG Prof(a). Lucia de Almeida Ferrari UFMG

Belo Horizonte, 15 de fevereiro de 2024.

Documento assinado eletronicamente por **Deise Prina Dutra**, **Professora do Magistério Superior**, em 16/02/2024, às 14:27, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Barbara Malveira Orfano**, **Professora do Magistério Superior**, em 16/02/2024, às 14:36, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Lucia de Almeida Ferrari**, **Professora do Magistério Superior**, em 16/02/2024, às 15:00, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Shirlene Bemfica de Oliveira**, **Usuário Externo**, em 19/02/2024, às 15:09, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

Documento assinado eletronicamente por **Paula Tavares Pinto**, **Usuária Externa**, em 19/02/2024, às 21:26, conforme horário oficial de Brasília, com fundamento no art. 5º do <u>Decreto nº 10.543, de 13 de novembro de 2020</u>.

A autenticidade deste documento pode ser conferida no site <u>https://sei.ufmg.br/sei/controlador_externo.php?acao=documento_conferir&id_or</u> gao_acesso_externo=0, informando o código_verificador 2911726 e o código CRC 73A87D1B.

Referência: Processo nº 23072.278058/2023-13

SEI nº 2911726

For Daniel, Thomas, Rafael, Andrew, and Catarina, my grandchildren, a glimpse into my journey in a new world: the uncharted territory of Applied Corpus Linguistics.

Accomplishments in life depend mostly on what we believe in and fight for!

Acknowledgements

I wish to express my heartfelt thanks to my inspiring supervisor, Dr. Deise Prina Dutra, for having taken a leap of faith when she invited me to join her group of postgraduate students in 2019. Her warm welcome opened a new perspective in my life, offering a unique opportunity to my return to university studies. Soon after, the admission process was set in motion, and fortunately, it unfolded much more positively than I had expected. At that time, I was totally unaware that an imminent danger was approaching fast: the dawning of a pandemic that would change our lives and lifestyles forever. Nevertheless, the commitment to the studies kept me busy, helping me go through that somber period unharmed.

I am especially thankful to Clara, the teacher, who agreed unconditionally to embrace my investigation and implement it in her six groups of Elementary students. I am very grateful for her diligence in making it happen according to the guidelines, certainly a decisive factor in the positive outcomes of the study.

My gratitude to Dr. Ricardo de Souza for his thorough description of my work, approving it without restrictions, which allowed me to advance towards my doctoral degree.

I would like to express my gratitude to Dr. Paula Tavares Pinto, Dr. Bárbara Orfanó, Dr. Lucia Ferrari and Dr. Shirlene Bemfica for their time, effort, and expertise. Your reviews and insightful feedback have significantly contributed to refining of my thesis. I am particularly grateful for your constructive criticism, which has not only improved my work but also my skills as a researcher.

A very special thank you to Dr. Bárbara Orfanó, Dr. Carla Coscarelli, and Dr. Luciane Ferreira for your inspiring lessons, which helped me thread on *roads not taken* before. They led me into the world of data-driven learning, ICT literacy, and the world of Portuguese as a welcoming language. I have greatly enjoyed and benefited from your lessons.

I would also like to thank my husband for his unwavering support through this process. Homebound for three years, I was able to spend my time meaningfully carrying out an investigation on the web and in the books I had acquired. The research work enabled me to attend courses and meetings online, present papers at conferences in faraway places, and meet scholars from whom I learned so much.

My unconditional love to my children Erika and Henrique for their spreading enthusiasm regarding my study along these past four years.

Abstract

Corpora-based studies have influenced language education, especially for adults, since the 1980s with dictionaries and grammar books (Sinclair, 1987, 1990; Biber et al., 1999). However, there is still a paucity of research on how corpus-based materials can support primary school learners of English as an additional language. With the growth of bilingual programs (Portuguese-English) in our context (Oliveira; Höfling, 2021), there has been an increasing demand for materials based on real language use in the past years. In an attempt to address the demand, this investigation is about using specially compiled pedagogic corpora that can accelerate learners' exposure to English in subjects like Science and Geography. The outcomes of the study can reveal benefits of integrating corpus-informed pedagogy in the early levels of Ensino Fundamental I (Elementary school) in Brazil. Despite the fact that there are a few studies based on corpus for this educational level (Hirata, 2020; Crosthwaite; Stell, 2020), mainly using the data-driven learning (DDL) approach (Johns, 1991), none had the same learners' academic level, nor a similar linguistic focus or aim. To the best of our knowledge, there has not been any research on the benefits of the use of pedagogic corpora which address the linguistic needs of 4th-6th primary school students. To compile the corpora, first, topics in the domains of Science and Geography were chosen from the Brazilian National Common Curriculum (BNCC) guidelines for teachers. Second, texts on the chosen topics were selected from textbooks and websites. Third, texts were level checked (A1-A2), according to the Common European Framework of Reference for Languages (CEFR). A balanced number of texts composed the corpora, considering school year and source (textbook or web), yielding two corpora: (a) Science with 437 texts and (b) Geography with 458 texts. Two topics were selected for the study, one from each corpus: Neighborhood from Geography and Animals from Science. Fifth, a lexico-grammatical analysis of the two subsets of corpora was done by the concordancer (#LancsBox), revealing the most frequent content words and lexical bundles which compose our year 4-6 grade *Neighborhood* and *Animals* Word List. And finally, the teacher and the researcher identified the vocabulary which would be most appropriate and meaningful for young learners 9-12 years old, and activities were specially designed. The DDL approach was used to implement all the activities with concordance lines and key words in context (KWICs) in the classrooms. The resulting outcomes of learners' production have yielded positive insights into the feasibility of working with authentic language in the initial levels of the elementary school. Indeed, the subject-focused level-appropriate lexicon compiled can complement learners' exposure to English and support teachers' work. The concordance lines added variety and change to the class routine motivating learners to walk the extra mile to play with them and understand the meaning of the key words. It is fair to say that this repeated *condensed exposure* (Gabrielatos, 2005) can contribute to an early L2 vocabulary expansion and learning and heighten awareness of language patterns (Granger, 1998).

Keywords: concordancer; English textbooks; Geography and Science; pedagogic corpora; KWIC; concordance lines.

Resumo

Os estudos baseados em *corpora* têm influenciado a aprendizagem de línguas, em especial, por adultos, desde a década de 1980, com a publicação de dicionários e livros de gramática (Sinclair, 1987, 1990; Biber et al. 1999). Entretanto, ainda existe escassez de pesquisas sobre como os materiais criados a partir de *corpora* podem ser benéficos aos alunos de inglês como língua adicional no ensino Fundamental I. Mesmo assim, com o aumento dos programas bilíngues (Português-inglês) no nosso contexto (Oliveira; Höfling, 2021), tem ocorrido o crescimento na demanda de materiais baseados em língua autêntica nos últimos anos. Em uma tentativa de responder a essa demanda, esta investigação trata do uso de corpora pedagógica, especialmente compilada, que poderá acelerar a exposição ao inglês de jovens aprendizes em disciplinas como Ciências e Geografia. Os resultados do estudo indicam benefícios de se integrar um modelo de pedagogia fundamentado em corpus aos anos iniciais do ensino Fundamental I no Brasil. Apesar de haver alguns estudos com o uso de corpora no nível secundário (Hirata, 2020; Crosthwaite; Stell, 2020), a maioria usando a abordagem ensino baseado em dados de corpora (data-driven learning) (Johns, 1991), nenhum foi feito com o mesmo nível escolar dos participantes, com o mesmo objetivo ou foco linguístico. Ao que parece, até esta data, nenhuma pesquisa foi feita para que fossem identificados os benefícios do uso de *corpora* pedagógicas que atendam às necessidades linguísticas de alunos da 4^{a} , 5^{a} e 6^{a} . séries da escola primária. Para compilar os *corpora* pedagógicos, primeiro foram escolhidos tópicos de Ciências e Geografia, obtidos nas orientações da Base Nacional Comum Curricular (BNCC). Depois, textos e vídeos nos temas selecionados foram extraídos de livros-texto e de websites. Como terceira etapa, o material passou pela avaliação dos níveis linguísticos A1-A2 do Common European Framework of Reference for Languages (CEFR), indicado para os níveis iniciais do Ensino Fundamental I. Na etapa seguinte, os dois *corpora* foram compilados com um número balanceado de textos, agrupados por série escolar e fonte do material (web ou livros), gerando (a) Ciência com 437 textos e (b) Geografia com 458 textos. Para esta investigação foram escolhidos dois tópicos: Vizinhança (Neighborhood), de Geografia, e Animais (Animals), de Ciências. A quinta etapa foi feita pelo concordanceador #LancsBox, que realizou a análise léxico-gramatical nos dois subgrupos dos *corpora* e identificou os vocábulos e os grupos de palavras mais frequentes em cada *subcorpus*. E, por último, esta pesquisadora e a professora participante identificaram o vocabulário que seria mais apropriado e significativo para os alunos de 9 a 12 anos, para que fossem criadas as atividades especiais. A abordagem em sala de aula foi o DDL usado na implementação das atividades com as linhas de concordância e palavras-chave (KWIC). Os resultados da produção linguística dos alunos revelaram aspectos positivos para a continuação do trabalho com língua autêntica em níveis iniciais do Ensino Fundamental I. Um léxico compilado com conteúdo adequado aos temas e séries dos alunos pode, sim, complementar a exposição desses alunos ao inglês e ao trabalho dos professores. As linhas de concordância adicionaram variedade e mudança na rotina das aulas durante o estudo, motivando os alunos a se esforçarem para compreender o significado das palavras-chave ao manuseá-las. Parece ser razoável afirmar que esta exposição condensada (Gabrielatos, 2005) pode contribuir para uma expansão e aprendizagem precoce do vocabulário alvo e para o aumento da percepção das estruturas da língua adicional (Granger, 1998).

Palavras-chave: concordanceador; livros-texto em inglês; Geografia e Ciências; *corpora* pedagógicos; KWIC; linhas de concordância.

LIST OF FIGURES

Figure 1 –	Diagram of the investigation stages	46
Figure 2 –	#LancsBox 6.0 interface with tools in the header	51
Figure 3 –	COREL-SCI	52
Figure 4 –	COREL-GEO	52
Figure 5 –	Subset Neighborhood (COREL-GEO)	53
Figure 6 –	Subset Animals (COREL-SCI)	53
Figure 7 –	Most frequent words in T1 and T2	54
Figure 8 –	Screenshot of <i>Neighborhood</i> package contents – Topic 1 (T1)	55
Figure 9 –	Screenshot of Animals package contents – Topic 2 (T2)	56
Figure 10 –	Pre and posttest – <i>Neighborhood</i> – Task 1 – <i>Language activation</i>	58
Figure 11 –	Pre-test – Neighborhood – Task 2 – Brainstorming	59
Figure 12 –	Posttest – Neighborhood – Task 2 – Language awareness	59
Figure 13 –	Pre- and posttest – <i>Neighborhood</i> – Task 3 – <i>Contextualization</i>	60
Figure 14 –	Text related to Neighborhood services	60
Figure 15 –	Pre- and posttest – <i>Neighborhood</i> – Task 4 – <i>Identification</i>	61
Figure 16 –	Pre- and posttest – <i>Neighborhood</i> – Task 5 – <i>Production</i>	61
Figure 17 –	Pre-test – Animals – Task 1 – Language activation	62
Figure 18 –	Pre-test – Animals – Task 2 – Brainstorming	63
Figure 19 –	Pre-test – Animals – Task 3 – Language recall	63
Figure 20 –	Pre-test – Animals – Task 5 – Language awareness and recognition	64
Figure 21 –	Homework – Animals – Language consolidation	65
Figure 22 –	KWIC neighborhood	83
Figure 23 –	Distribution of <i>neighborhood</i> inside the corpus and location in files	84
Figure 24 –	KWIC: community	85
Figure 25 –	Distribution of <i>community</i> inside the corpus and location in files	86
Figure 26 –	KWIC: supermarket	86
Figure 27 –	Distribution of <i>supermarket</i> inside the corpus and location of files	87
Figure 28 –	KWIC: market	88
Figure 29 –	Distribution of <i>market</i> inside the corpus and location in the files	88
Figure 30 –	KWIC: suburb	89
Figure 31 –	Distribution of <i>suburb</i> inside the corpus and location in files	89

Figure 32 –	KWIC: suburbs	90
Figure 33 –	Distribution of <i>suburbs</i> inside the corpus and location in files	91
Figure 34 –	Short extract of <i>neighborhood</i> context	91
Figure 35 –	Samples of the assorted concordance lines selected	91
Figure 36 –	Pop-up showing the position of collocate <i>map</i>	93
Figure 37 –	Pop-up showing the position of collocate <i>your</i>	93
Figure 38 –	Samples of 3-grams used in tests and class activities	94
Figure 39 –	Noun: animals	98
Figure 40 –	Distribution of <i>animals</i> inside the corpus and location in the files	99
Figure 41 –	Noun: animal	100
Figure 42 –	Distribution of <i>animal</i> inside the corpus and in the files	101
Figure 43 –	Samples of the assorted concordance lines selected – Animals	101
Figure 44 –	Examples of node "animals" in the concordance lines	102
Figure 45	Pop-up showing the position of collocate are	104
Figure 46 –	Pop-up showing the position of collocate <i>that</i>	104
Figure 47 –	Some samples of concordance lines selected – <i>Neighborhood</i>	115

LIST OF TABLES

Table 1 –	The six tiers of the revised Bloom's Taxonomy	33
Table 2 –	Description of participants and distribution of groups by grade	44
Table 3 –	BNCC – macro areas of knowledge	47
Table 4 –	Themes / topics for the material	48
Table 5 –	CEFR levels expected for young learners in school	49
Table 6 –	Information on COREL-SCI and COREL-GEO	50
Table 7 –	Topics (T1) and (T2) data	50
Table 8 –	Underlying rationale for tasks	57
Table 9 –	Lesson stages – Topic 1 – Neighborhood	68
Table 10 –	Lesson stages – Topic 2 – Animals	70
Table 11 –	Post-class evaluation – Teacher's questionnaire	73
Table 12 –	COREL-GEO + subset <i>Neighborhood</i> topmost frequent words	75
Table 13 –	COREL-SCI + subset Animals – topmost frequent words	76

Table 14 –	Most frequent words in subset Neighborhood	78
Table 15 –	Most frequent nouns in the Neighborhood subset	78
Table 16 –	Most frequent verbs in the Neighborhood subset	79
Table 17 –	Most frequent adjectives in the Neighborhood subset	79
Table 18 –	Most frequent adverbs in the Neighborhood subset	80
Table 19 –	Most frequent 3- and 4-gram	81
Table 20 –	Noun: <i>neighborhood</i> – distribution in texts and relative frequency	83
Table 21 –	Noun: <i>community</i> – distribution in texts and relative frequency	85
Table 22 –	Noun: <i>supermarket</i> – distribution in texts and relative frequency	87
Table 23 –	Noun: <i>market</i> – distribution in texts and relative frequency per 10k	88
Table 24 –	Noun: <i>suburb</i> – distribution in texts and relative frequency per 10k	89
Table 25 –	Noun: <i>suburbs</i> – distribution in texts and relative frequency per 10k	90
Table 26 –	Collocates around the node <i>neighborhood</i>	93
Table 27 –	Most frequent words in subset Animals	94
Table 28 –	Most frequent nouns in the Animals subset	95
Table 29 –	Most frequent verbs in the Animals subset	96
Table 30 –	Most frequent adjectives in the Animals subset	96
Table 31 –	Most frequent adverbs in the Animals subset	97
Table 32 –	Most frequent 3- and 4-gram clusters in the Animals subset	97
Table 33 –	Noun: <i>animals</i> – distribution in texts and relative frequency	99
Table 34 –	Noun: <i>animal</i> – distribution in texts and relative frequency	100
Table 35 –	The first 21 collocates and frequency around the node	103
Table 36 –	3-gram clusters	105
Table 37 –	4-gram clusters	105
Table 38 –	Distribution of participants per group and per Topics 1 and 2	107
Table 39 –	% of students who used the target lang from concordance lines	108
Table 40 –	Data analyses and <i>t</i> -test results	108
Table 41 –	Levels of significance between Pre and Posts tests T1	110
Table 42 –	Levels of significance between Pre and Posts tests T2	111
Table 43 –	Differences between Pre and Post test results – Prod Task -T 1	111
Table 44 –	Differences between Pre and Post test results – Prod Task -T 2	112
Table 45 –	Participants in both Topics 1 and 2	113

Table 46 –	Sample sentences from learners' posttests	117
Table 47 –	Samples of concordance lines used in class and homework	118
Table 48 –	Sample sentences from learners' posttests	119

LIST OF CHARTS

92
103
109
109
112

TABLE OF CONTENTS

Chapter 1 – Introduction	18
1.1 Context	18
1.2 Justification and description of the problem	21
1.3 Aims of the study	24
1.4 Research questions	25
CHAPTER 2 THEORETICAL FRAMEWORK	26
2.1 Learning another language	26
2.2 Word lists	28
2.3 Words in a corrus	31
2.4 Catering for learners' cognitive and linguistic skills	33
2.5 Data-Driven learning (DDI) and Second Language Acquisition (SLA)	35
2.6 DDL and redagogic corpora	36
2.7 Digital literacy for teachers and learners	20
2.7 Digital interacy for teachers and realists	30 40
2.8 The concordance: #Lancsbox 0.0	40
CHAPTER 3 – METHODOLOGY	42
2.1 Introduction	12
3.2 The context, the teacher and the participants	42
3.2 The context, the teacher and the participants	42
2.4 Committee of modescopic commercy CODEL CEO and CODEL SCI	43
3.4 Compliation of pedagogic corpora: COREL-GEO and COREL-SCI	40
3.4.1 The concordancer #LancsBox $6.0 -$ tools and their functions	51
3.5 Implementation procedures and learners data collection instruments	54
3.5.1 Designing the tests	57
3.5.1.1 Pre- and posttests – Topic 1 (T1)	58
3.5.1.2 Pre- and posttests – Topic 2 (12)	62
3.5.2 Lesson planning	66
3.5.2.1 Brief rationale underlying the lessons' activities	66
3.5.2.2 Lesson plan – <i>Neighborhood</i> (T1)	68
3.5.2.3 Lesson Plan – <i>Animals</i> (T2)	70
3.5.3 Teacher's testimonials – remarks on the class work	71
3.5.3.1 Questionnaire for the teacher	72
CHAPTER 4 – RESULTS, ASSUMPTIONS AND DISCUSSION OF OUTCOMES	74
4.1 Introduction	74
PART A – RESULTS OF THE CONCORDANCER TOOLS ANALYSIS OF THE LANGUAGE IN	
THE CORPORA	75
4.2 Concordancer language analysis – tools, functions and results	75
4.2.1 Selection of vocabulary for the activities and tasks	76
4.2.2 #LancsBox tools findings in <i>Neighborhood</i> subset of COREL-GEO	77
4.2.2.1 Words tool – word classes	77
4.2.2.2 <i>N-grams</i> tool - word clusters	80
4.2.3 Choice of vocabulary in <i>Neighborhood</i> (T1)	82
4.2.3.1 <i>KWIC</i> and <i>Words</i> tools	83
4.2.3.2 <i>Text</i> tool	91
	/ I

4.2.3.3 Gr	aphColl tool
4.2.3.4 N-2	grams tool
4.2.4 #Lance	Box tools findings in Animals subset of COREL-SCI
4.2.4.1 Wo	<i>rds</i> tool – word classes
4.2.4.2 N-3	grams tool – word clusters
4.2.5 Choice 4.2.5.1 KV	VIC and Words tools
4.2.5.2 Te	xt tool
4.2.5.3 Gr	aphColl tool
4.2.5.4 N-8	g <i>rams</i> tool
Part B – Re	ESULTS OF LANGUAGE PRODUCTION AFTER THE WORK WITH
4.3 Quantitati	ve analysis and results
4.3.1 Analys	sis tools and results
4.3.2 Analys	ses of posttests results
4.4 Qualitative	e analysis and results
4.4.2 Evider	the from Topic 1
4.4.3 Clara's	concluding statements
4.5 Final remai	rks
CHAPTER $\mathfrak{I} = 0$	CONCLUSION
REFERENCES	
APPENDIX A	Parecer sobre o Projeto de Tese
APPENDIX B	Aprovação do Projeto pelo Colegiado
APPENDIX C	Parecer Consubstanciado do Centro Pedagógico UFMG
APPENDIX D	Pre- and posttest – <i>Neighborhood</i> (T1)
APPENDIX E	Pre- and posttest – Animals (T2)
APPENDIX F	Homework – <i>Neighborhood</i> (T1)
APPENDIX G	Homework – Animals (T2)
APPENDIX H	Video transcription of <i>Our Neighborhood</i> (Topic 1)
APPENDIX I	Bingo cards – Animals (Topic 2)
APPENDIX J	More detailed lesson plan (Topic 1)
APPENDIX K	Learners in action in the classroom: photographs
APPENDIX L	Most frequent words – COREL-GEO and 3 and 4-grams
Appendix M	Most frequent words - COREL-SCI and 3 and 4-grams1 Most frequent words2 Most frequent 3-grams3 Most frequent 4-grams
APPENDIX N	Most frequent word classes and n-grams - Neighborhood (T1)
APPENDIX O	Most frequent word classes and n-grams – Animals (T2)

	1 Nouns	198
	2 Verbs	200
	3 Adjectives	202
	4 Adverbs	204
	5 3-grams	205
	6 4-grams	207
APPENDIX P	Learners' samples of language production – Topic 1	209
APPENDIX Q	Learners' samples of language production – Topic 2	213

Chapter 1 – Introduction

1.1 Context

The world has been undergoing fast and irreversible changes in the last decades and formal education has been called in to adjust its priorities to the demands of the new generation (*O Estado de São Paulo*, June 2, 2019). Different media have been emphasizing the fact that we are now dealing with a generation of students who learn in a much different way than 10 years ago. Articles, documentaries, and those investigating our educational system in general are urging educators to understand learners' new dynamics and organize learning so that it benefits everyone. The most recent generation of young learners, currently in elementary school, is certainly one that challenges the learning / teaching boundaries of the past even further while demanding teachers' mentoring in new ways in the classroom. Formal education has to respond fast if it aims to prepare the country's youngsters to fit in successfully in the new marketplace format after the school years.

To this date, teachers' roles have been multi-faceted, trying to provide learners not only with the subject-matter contents of their lessons but also guiding them towards meeting learning goals. However, most of those roles are now being disputed as technology and portable devices, available to a large portion of the population, offer learners instantly the information required for their day-to-day lives. It is the turning point of the source of knowledge: the tools available today can supply the present generation of learners with the right answers at the tip of their fingers. In Clemesha and Liberali's (2020, p. 1) words, "we believe that education should provide expansive new modes of effective participation in society to offer students the chance to increasingly develop forms of insertion in the world and means to transform their mobility." Contemporary education should enable learners to identify the schools' goals to engage more effectively with them, to be motivated to be in the school and be ready to learn.

It is of utmost relevance to begin describing this study by mentioning that back in 1996, the Ministry of Education (*Ministério da Educação e Cultura* – MEC) had already taken steps towards setting further parameters for education by launching what is called *Base Nacional Comum Curricular* (BNCC).¹ The first BNCC was a 600-page document which tried to unify the school system by defining its academic contents, aligning the regulations for proper

¹ Most recent version of BNCC was validated on December 14, 2018. Available at: <u>http://basenacionalcomum.mec.gov.br/implementacao/.</u>

implementation of related policies in schools throughout the country. Among other issues, it contemplates all significant areas of knowledge required for the *Fundamental* levels of all schools. Under these new circumstances, the schools had to accommodate the innovations and teachers have been witnessing curricula adjustments. These have been made fast in both private and public schools to meet the latest requirements, with one eye on the learners and another in the future. What policy makers need to realize is that the generation which is going to be responsible for the future of the country is being prepared now.

The key role for educators is to prepare students for life, but at a time of great change and uncertainty, are teachers prepared to teach what is necessary? It is common knowledge, and current statistics show, that English as an additional language (EAL) and digital literacy, knowledge of basic technological tools, are the new assets every young adult needs to have when leaving school to join the workforce. To illustrate the point, words in English like *lockdown, home office, co-working, shared workplace, co-living, co-housing, coaching* and even the more recent *home-schooling*, are just a few of those which are now part of everyone's new lifestyle. Many schools are trying hard to respond to the new reality and taking as fast an action as they are able to in order to address their stakeholders' demands: better-informed parents want their children to be well-prepared now for their future professional lives. They rely on formal education because most of them believe the younger their children are exposed to English, the better their English competence will be in the future.

It resonates with Read's words when addressing an IATEFL² conference (2000, p.33) on 'Young Learners & Teenagers', who declared twenty-three years ago that

the last 30 years [had] seen a continuous driving down of the age of introducing English as a school subject. [...] the main driver behind this pervasive global trend has been the potential political and economic benefits perceived by governments and a public keen to give their children an educational edge for the future.

She was referring to the noticeable phenomenon taking place elsewhere in the world, mainly in Asia, at that time. The same phenomenon has been observed to a greater or lesser extent in Brazil in more than a decade, with private regular schools gradually preparing themselves to become bilinguals mainly in the capital cities. One such example is the 'Multicultural Breakfasts and Translanguaging Kids' Project (Clemesha, Liberali, 2020), currently taking place at a school in São José dos Campos, São Paulo, which aims at having a broader

² International Association of Teachers of English as a Foreign Language.

participation of their learners in society. It follows an inquiry-based curriculum, which is organized through transdisciplinary projects in the primary years in an attempt to create a multilingual curriculum (Liberali, 2019).

Nonetheless, Oliveira and Höfling (2021, p. 6) claim that

Brazil currently does not have an approved education law or policies regarding (Portuguese-English) bilingual programs. [Only] in June 2020, the *Conselho Nacional de Educação* (CNE) [National Council of Education] and the *Conselho de Educação Básica* (CEB) [Council for Basic Education] launched a white paper presenting a proposal for curricular guidelines for bilingual education (Brasil, 2020).

This means there is still a long way to go before analyses and thorough examination of educational aspects by those involved can afford a final version of the document to be released, making it possible for bilingualism to be considered an official option in primary schools.

The second asset our learners need to have is literacy in information and communication technology (ICT) as stated in the Brazilian National Syllabus Core (Brasil, 2018, p. 9),

5. Understand, use and create digital information and communication technology,³ in a meaningful, reflexive and ethical way, in the various social practices (including the school ones) to communicate, access and share information, create knowledge, solve problems and take agency of one's own personal and collective life.⁴

According to BNCC, learners also need to have general ICT skills to look for information on the web. They need to be acquainted with the web search engines appropriately to navigate and learn how to find what they need safely and effectively. Ribeiro (2020) mentions other factors of great relevance to be discussed by public policies and implemented such as the availability of hardware in public and private schools (Mendes; Finardi, 2020), the dearth of in-service training on the use of technology with a focus on educational development of learners and also misinformation and prejudice against the use of computers in schools.

A better prepared and skilled young adult would certainly stand a better chance to succeed and be prepared to seek further opportunities in the future. In times of great cultural awareness and the need for social equity and inclusion in regular schools, English and digital

³ ICT competence.

⁴ Authors' translation for: 5. Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva (Brasil, 2018, p. 9).

literacy can be the key elements to help reduce the educational differences our youngsters experience while attending the primary school years. Learning resources and activities, among other aims, should "open up learning to new, real-world contexts, which involve learners themselves in hands-on activities, scientific investigation or complex problem solving, or in other ways, increase learners' active involvement in complex subject matters" (Redecker, 2017, p. 22). Instead of the present situation in many schools, young learners should be exposed to motivating content and learn to identify their preferences to choose their future pathways.

1.2 Justification and description of the problem

To empower young learners with digital skills, one avenue is the inclusion of instruction on the use of technology and its tools more regularly in the elementary schools curricula. Another is teachers supplementing the curricula with an additional area of interest during specific periods of the school calendar. As for the acceleration of young learners' English competence, more exposure to the language during the initial years of primary school can be beneficial and effective in the learning process. Read (2003, p. 6) says that what counts is not an *optimal age*, but *optimal teaching-learning conditions* emphasizing that

> primary schools generally provide an ideal context for a whole learning experience appropriately structured to meet children's needs. Through 'learning by doing', language competence can be built up gradually and naturally and provide the basis for more abstract, formal learning in secondary school.

She claims schools should implement "coherent primary and secondary policies to provide for progression and continuity throughout the school years, [...] curricula should build on what children know by the end of primary school rather than require them to start again" (Read, 2003, p. 6).

In the talk "Using Corpora in the Language Classroom – The New School"⁵ (2012), while addressing an audience of teachers and teacher trainers in New York, USA, Reppen tried to demystify the use of corpora in classrooms by showing it could empower teachers instead. Corpora, "a principled collection of texts available for qualitative and quantitative analysis" (Biber *et al.*, 1998) are stored in computers which allow for a very large amount of texts to be analyzed by software and inform researchers. The large-scale "corpora databases" can aid teachers and English Language Teaching (ELT) materials writers more effectively to address

⁵ See: <u>https://www.youtube.com/watch?v=Qf46lOnMCfs&t=967s.</u>

the difficulties learners have to master a language's vocabulary. According to Reppen (2010, p. 10), the "different genres of authentic language [produced by corpora databases] have enabled professionals to design activities and materials that reflect authentic language use" as corpus-informed lexicography can bring natural language into the classroom in a way that it can involve learners through hands-on tasks.

It made me reflect and start speculating about a way to accelerate the use of English in other subjects other than General English, in an attempt to integrate corpus-informed pedagogy in our *Fundamental 1*⁶ schools. If teachers of additional languages (ALs) could resort to topicalized corpora, i. e., corpora in different subjects in English (L2) to devise activities for cross-curricular projects, they would be able to increase young learners' exposure to L2 vocabulary in their early school years. As Webb and Chang (2012, p. 276) have put it, such exposure could trigger deliberate learning, for example, by working with "vocabulary through the completion of exercises and tasks where the primary aim of the activity is to learn target words, also known as intentional or explicit learning."

To support the view on a comprehensive early start in L2 acquisition, Pinter (2012) postulates that children from 8 years old go through an increase in their $L1^7$ competence and become more aware of how language works, which are favorable characteristics for the introduction of an additional language in their regular studies. However, available literature suggests that although that is positive, youngsters would only benefit from an early exposure to language given that some conditions are met. According to Marinova-Todd *et al.* (2000, p. 28),

only if teachers are themselves [...] well-trained in the needs of younger learners; if the learning opportunities are built upon with consistent, well-planned, ongoing instruction in the higher grades; and if the learners are given some opportunities for authentic communicative experiences in the target language.

To embrace and address the above regarding the introduction of English in primary schools, this investigation's outcomes, the subsets of corpora, will need to be made available to teachers. They will have to decide whether the intended audience of young learners will use the specific vocabulary to produce language in writing and speaking (active / productive) or will use it just for recognition and comprehension (passive / receptive) (Melka, 1997; Nation; Waring, 1997). Generally speaking, the term *young learner* is used to refer to children from

⁶ Fundamental I (Brazil) and Elementary (US) years are equivalent and will be used interchangeably.

⁷ In our case, Portuguese is the L1.

their first year of formal schooling, usually somewhere between 5-7 years old, to when they are 11-12 years old (Read, 2011)⁸. In sum, the investigation's findings should inform and meet L2 teachers' demands so they are able to use the corpora-informed material in the classroom.

For the pedagogical purposes of this study, I am going to use the terms vocabulary and lexis interchangeably to refer to individual words, collocations, idioms and fixed and semifixed expressions because vocabulary learning frequently involves learning "chunks"⁹ (Lewis, 1993), or n-grams that are longer than individual words. The n-grams are groups of words which, in Sinclair's observations (2004, p. 29) on the *Idiom Principle* and the *phraseology tendency*, "do not appear in isolation but go together and make meanings by their combinations, such as collocations and other features of idiomaticity" (Sinclair, 2004, p. 9).

A corpus-based investigation should address those specificities by providing descriptions of actual language use, and the examples should be chosen to suit the interests of learners and be most relevant to their needs. McCarten (2007, p.26) emphasizes the need to "[start] with the most frequent, useful, and learnable vocabulary, returning later to more difficult vocabulary" and less frequent uses of previously learned items. McCarthy (2004) complements by saying that learning words with their most frequent collocations is a good learning habit that can start right from the lowest levels and recommends that teachers should mediate "data" to find the clearest and best examples to use from the corpus. Reppen (2010, p. 27) complements those remarks by saying "the investigation [...] of co-occurrences of lexical patterns (n-grams) in topicalized lexicon can play a pivotal role in the acquisition of L2," provided such corpora is large enough to allow for all senses of a word to be represented, and allow learners to possibly guess its meaning when encountering it for the first time.

Therefore, in an attempt to contemplate the above issues, the study to be described in the next chapters investigates naturally-occurring existing lexicography in authentic L2 elementary school textbooks as well as texts, articles and website videos. They were compiled as a subject-focused level-appropriate lexicon to complement the L2 input learners are exposed to in *Ensino Fundamental 1* – grade 4 (9 years old), grade 5 (10-11 years old) and grade 6 (12 years old). Ultimately, the resulting core-aligned specialized¹⁰ corpora (Aston, 1997) can advise teachers who will be able to resort to the information to design familiar activity types with authentic language (McCarthy, 2004). The examples of activities and procedures in the

⁸ Available at: <u>https://carolread.wordpress.com/</u>. Section: "Y is for Young Learners." Accessed on: November 10, 2022.

⁹ One possible definition of 'chunk' is "an all-purpose word that embraces any formulaic sequence,

lexical/phrasal expression or multi-word item," mentioned by Lewis (1993) in his book The Lexical Approach.

¹⁰ The adjectives topicalized and specialized corpus / corpora will be used interchangeably in this study.

classroom included in Chapter 3 should further motivate teachers to add variety and raise learners' interest in learning another language.

1.3 Aims of the study

The aim of this study is to test / show the feasibility of adopting vocabulary corpusbased activities in EAL class. In an attempt to show their effectiveness, pedagogic corpora was compiled to generate vocabulary for the tasks which will have a more focused approach on the target language when lessons are delivered.

This study has searched, selected, compiled, examined, classified, categorized, and built level-appropriate corpora-based lexicography in English. It has been designed to provide samples of tasks in specific topics selected from two *Areas of Knowledge*: Earth and Space Science and Life Science¹¹ proposed by the 2018 BNCC.¹² The compiled pedagogic corpora (Willis, 1998) with Science and Geography texts have allowed the researcher to identify the most frequent keywords and phrases and analyze linguistics features in context for the 4th to 6th school grades. It was done to meet the overriding aim of this corpus-based study which is to start exposing young learners to English at a much younger age than it takes place today. In order to achieve that, my main aims were:

- identify the top most frequent individual content words and lexical bundles (Biber *et al.*, 1998) worked with in 4th to 6th grades in both corpus for elementary school on Geography (COREL-GEO) and corpus for elementary school on Science (COREL-SCI);
- 2) propose samples of activities designed with corpus-informed language that could serve as a model for primary school teachers who want to boost their students' English learning in a contextualized format; and
- 3) point out the extent to which the activities proposed might have led to vocabulary learning in the different grades.

In sum, this study has identified and compiled different kinds of content words such as nouns, verbs, adverbs, adjectives and chunks, lexical bundles, in specialized subsets of corpora, that are relevant in English to learners in 4^{th} to 6^{th} grades. The resulting high-frequency L2 lexicon should make it possible for teachers to gain insight into the authentic language learners will be exposed to. The possible availability of the findings – dedicated corpora in an online

¹¹ In Portuguese in the original guidelines: **Ciências da Natureza,** 1) Vida e Evolução e 3) Terra e Universo. **Ciências Humanas**, 1) O sujeito e o nosso lugar no Mundo e 5) Natureza, Ambiente e Qualidade de Vida.

¹²The original source is in Portuguese and main areas have been translated to English to contextualize the choices made by the researcher. Available at: <u>https://novaescola.org.br/conteudo/12720/bncc-baixe-em-pdf-o-e-book-de-competencias-gerais</u>.

platform – will be able to empower L2 teachers to generate the vocabulary and design tasks and / or implement cross-curricular projects in the future.

1.4 Research questions

To achieve the above mentioned aims, some questions were formulated to guide the research into the search for answers:

- i) Which are the top most frequent topic-related L2 content words and 3- and 4-grams in COREL-GEO for 4th to 6th grades?
- ii) Which are the top most frequent topic-related L2 content words and 3- and 4grams in COREL-SCI for 4th to 6th grades?

iii) Can activities implemented with the data-driven learning (DDL) approach expand learners' topicalized vocabulary and possibly boost their progress in English?

iv) Are the results significantly different from one grade to the others when the same tasks are worked with in the classrooms?

Chapter 2 Theoretical Framework

2.1 Learning another language

How much vocabulary should L2 students learn per year? In past decades, L2 beginners would only be exposed to a basic vocabulary of two to three hundred words in most general English classrooms. Based on a previous study by Webb and Nation (2017, p. 232) suggest

that in a principled vocabulary learning programme in [an English as a Foreign Language] (EFL)¹³ context, learning 400 word families per year may be a realistic goal for all learners, [to enable them to have] a relatively comprehensive knowledge of these words through repeated encounters in spoken and written discourse, as well as frequent opportunities to use them.

According to one estimate, about 30% of research on vocabulary in the last 100 years has been carried out since 2001 (Nation, 2013). The findings yielded by this whole body of more recent research, in Victoria University of Wellington, Temple University Japan, Koran Women's Junior College, the University of Western Ontario (Nation, 2017) and Taiwan (Nation, 1983, 1990; Schmitt; Schmitt; Clapham, 2001), to name just a few, show that beginner learners are estimated to learn about 500 words on average in the primary years of school in an EFL context¹⁴, a figure that allegedly does not suffice as it still prevents learners from establishing patterns of word uses (McCarthy, 2004). Although investigations differ in how they measure and assess L2 vocabulary growth, one of the starting points can be an analysis of the results of the mother tongue (L1) acquisition by learners: they may know at least 3-4,000 *word families* before they can read, at around five or six years of age.

By *word families* it is understood that they consist of a headword, its inflections and its derivations and because they include several *lemmas*, count headwords and inflections as the same item and derivations as separate items, the results of range, frequency and dispersion analyses are underestimated (Nation, 2006). The author claims that many studies show evidence that "the high-frequency and wide-range words are generally learned before lower-frequency and narrower-range words" (Nation, 2006, p. 63). According to him, it is assumed that both native- and non-native-speaking learners acquire vocabulary largely in the order of its range

¹³ EFL is currently widely referred to as English as an Additional Language (EAL). In this study I will quote it as it is mentioned in the literature, even though I am referring to English as an additional language throughout the investigation.

¹⁴ "The term 'English as a Foreign Language' (EFL) applies to learners who are living in a country where English is not the first or significant language; examples include Japan, Brazil, and France" (Nation, 2017. p. 155).

and frequency (West, 1953; Nation, 1990, 2001, 2013a). Nation and Waring (1997, p. 11) claim that "the learner needs to know the 3,000 or so *high-frequency* words of the language. These are an immediate high priority and there is little sense in focusing on other vocabulary until these are well learned." Webb and Nation (2017, p. 29) state further that

[w]e typically learn high-frequency words in our first language incidentally, as we encounter them repeatedly in speech and writing. However, when we learn another language, we may need to deliberately learn most of these words. High frequency words have the greatest value for language learning, so they deserve attention in the classroom. [...]

These 3,000 are the words encountered more regularly in all forms of speech or writing. To illustrate this argument, Webb and Nation (2017, p. 5) refer to "the books we read as children [which] are typically designed to promote vocabulary learning [and] that their pictures are provided to illustrate the meaning of key content words." Those nouns, adjectives, verbs, and adverbs are relevant because they convey meaning. Nation concludes that the challenge for beginning learners and readers is reaching to the threshold where they can learn from context. Additionally, he emphasizes that achieving the ability to read authentic L2 texts requires a larger vocabulary size.

One of the studies, carried out by Orosz (2009) in a Hungarian EFL context, found that primary school children were able to learn as many as 1,000 *lemmas* in a year, and knew about 3,500 out of the 5,000 most frequent *lemmas* after four years of primary school study. Another study by Hirsh and Nation (1992) looked at novels for teenagers or young readers – the same audience aimed at in this investigation – to establish the ratio of unknown to known words to allow successful guessing of unknown words. The results showed "that under favorable conditions, a vocabulary size of 2,000 to 3,000 words [would provide] a very good basis for language use" (Hirsh; Nation, 1992, p. 9).

While the knowledge of 3,000-word *families* is typically reckoned a bare minimum by Cobb (2007), Meara's studies (1995) suggest that a basic vocabulary of 2,000 words would account for about 80 percent of what people saw or heard. It can then be argued that L2 learners who reach that plateau would have a realistic level of language competence, being more capable of understanding the important meanings carried by words and able to see patterns in the way those words behaved. This seems to be in tandem with other studies which claim that a 2,000 vocabulary would enable L2 learners to start working with authentic language and authentic materials in another language. However, vocabulary growth for EFL learners is unlikely to reach the annual growth target of 1,000 word families "that can reasonably be expected of most

young L1 learners, but learning 500 word families per year [could] be an attainable target as long as the EFL learners receive the monitoring and support they need in order to achieve this goal" (Webb; Nation, 2017, p. 66).

Research in the depth and breadth of English acquisition in the recent past has shown the advantages of a contextualized exposition to language in the classroom. One approach to vocabulary learning that has been widely recommended by researchers is the selection and use of different materials on the same topic with words grouped semantically into lexical sets to increase the potential for the recurrence of exposure of target vocabulary (Nation, 2020). Investigations show that the relationships between the words that are learned together have an impact on learning. This leads to the assumption that teaching collocations can be very beneficial. It can be a very effective approach but not in the initial years of Elementary school, the context of my investigation. In Chapter 3 – Methodology – the groups of words selected by the software, also called 3- and 4-grams, will be mentioned and dealt with, even though they are not necessarily considered collocates. If a target vocabulary set consists of words that often appear together in sequence, this might have a positive effect on learning (Tinkham, 1997). Teachers would agree that the more learners read, the more high-frequency vocabulary they could encounter and possibly learn, and the easier the reading and understanding would become.

In sum, key words grouped semantically and groups of words which appear more frequently together, generated in context by software, can then be the basis of the pedagogic corpus for this investigation. The resulting number of words will complement the number of words in general English that is being taught simultaneously to the young learners. Number which is estimated by different scholars to be learnt yearly.

2.2 Word lists

Despite acknowledging the convincing sound arguments in favor of a contextualized exposition to L2, as well as the fact that much of L1 vocabulary growth is the result of repeated encounters with words in context (Webb; Nation, 2017), Meara (2001, p. 2) claims that *word lists* still have an important role to play in the acquisition of a new language. He argues that this role is particularly important at the beginning stages of learning an additional language. He clarifies his point by stating that

the reason for this is quite simple. When you first start to learn a new language, the biggest problem you face is that you can't recognize any of the words.

Nothing that you see or hear in the new language makes any sense at this stage, because all the words are unfamiliar.

Meara (2001, p. reinforces his argument in favor of word lists by claiming that

young children learn their first language by acquiring single words in the first instance. They eventually get round to putting these words together into phrases¹⁵ and sentences, but this development takes a long time. Children don't start using two-word utterances until they have a basic vocabulary of about 100 words.

The first core vocabulary list, West's General Service List (GSL),¹⁶ was compiled as early as 1953 and has since proved its usefulness for both teaching and testing purposes. "The rationale that underpinned the GSL was that a lexical repertoire consisting of the most basic 2,000 words of English would be a good basis for learning English as a foreign language" (O'Keeffe *et al.*, 2007, p. 46). A plethora of *word lists* have been compiled since the 1900s, under an array of different criteria for their organization to cater for the teaching methods' demands of the time. They have mainly tried to include the most relevant and useful general English lexis for vocabulary learning, high-frequency samples that are supported by research findings. The idea behind developing the lists was that they should represent the higher frequency end of a learner's vocabulary. Therefore, the development of specialized vocabulary lists (Coxhead, 2000; Ward, 1999) would suit the goals of this study and be used to meet the learning goals of learners of English as an additional language¹⁷ as well.

Due to the dynamic shifts in L2 teaching methodologies to contemplate better practices in the teaching-learning environment in recent decades, and with the increase in the computing capacity to aid the researchers, more complete *word lists* have also emerged. With the advent of specialized digital tools to replace much of the manual annotation work of the past, nowadays corpora contain billions of words. *Word lists* provide a shortcut to the improvement of performance in all skill areas, as learning a large proportion of the words that we are likely to encounter increases the potential for comprehension (Webb; Nation, 2017). They maintain that decontextualized vocabulary learning exercises are useful and often

¹⁵ Chunk and lexical bundles (n-grams) come in handy at that point in the learners L2 development along the *Ensino Fundamental I* grades. However, the study did not focus on collocates as such, it just used groups of 3 and 4 words that were generated together by the software in some of the activities.

¹⁶ The list was compiled by Michael West and substantially revised in 1995 by John Bauman and Brent Culligan. ¹⁷Available at: <u>https://iaoed.org/downloads/prac06e.pdf</u>.

very effective at enabling learners to link form to meaning. Exercises such as those involving the use of flashcards and the keyword technique tend to result in fast and efficient gains in knowledge of the form – meaning connection of words, so they might provide a useful starting point for the development of lexical knowledge that could then be expanded through encounters with the words during listening and reading activities. They provide a quick way of developing a lexical foundation that can be used to make learning with meaning-focused input easier (Webb; Nation, 2017, p. 238).

The authors also state that "learning the higher-frequency sets of words within the lists may provide the greatest benefit to learners" (Webb; Nation, 2017, p. 196). As Laufer and Nation (2012, p. 171) put forward, "at the beginning stages of language learning, [...] a wordlist could be a lexical syllabus [...] as the words on the list could serve as a target for word-focused practice." Lists are undoubtedly a great source of authentic language as long as they are used well by teachers in preparation of pedagogical tasks. Provided teachers use such corpora-informed syllabus appropriately, it could give learners a solid foundation (Meunier; Reppen, 2015). Additionally, Reppen (2010) indicates that frequency lists and work with KWICs in corpus-based inquiries can be very useful for vocabulary instruction at the entry point of language learning.

One of those lists, highly recommended for beginner learners of English, is the most recent one The Essential Word List¹⁸ (Dang; Webb, 2016 a) which includes sets of words (624 content words grouped into 12 sub-lists of 50 words, one sub-list of 24 words followed by a list of 176 function words) that are ordered according to their frequency. Two other well-known lists and to-date widely used in elementary schools in English-speaking countries are the *sight word* lists, one of them compiled by Dolch (1936) with 220 words and the other by Fry (1980) with 1,000 high-frequency words. Those words are used so often in print that together they make up an estimated 75% of all words used in books. Some of them cannot be decoded using conventional strategies¹⁹ so memorizing them until they are known by sight is beneficial.

Sight words are known by sight, whose identification is triggered in memory very rapidly (Ehri, 1992). The process at the heart of sight word learning is a *connection-forming* process, i.e., connection between the sound and form of words since they do not follow the traditional word formation process.²⁰ In almost every school in the US, K-3²¹ teachers assign their students these words to study and learn because they are the most frequently-occurring

¹⁸See: <u>https://elt.oup.com/teachers/hvil/?cc=br&selLanguage=pt</u>.

¹⁹ There are many, depending on the country where English is taught. There are different techniques, such as combining sounds and groups of letters, using the phonics method, for example.

²⁰ It refers again to the association of sounds to letters and / or groups of letters.

²¹ K-3 focuses on students in kindergarten through 3rd grade.

words in children's texts. "Sight-word knowledge provides a scaffold of understanding and confidence for new readers who need to read with understanding. In language pedagogy, any word that is read sufficiently often becomes a sight word, one that is read from memory (Farrell *et al.*, 2013, p. 1). When sight words are known well enough, readers can recognize their pronunciations and meanings automatically without any attention or effort at sounding out letters (Laberge; Samuels, 1974).

The last argument above made us realize that the approach to teaching `sight word` words could very well suit the teaching of key words from the word lists of the pedagogic corpora. Those words would not have anything in common regarding their pronunciation and form. As the words would be chosen for their frequency, the understanding and memorization process would occur after repeated exposition and use in context. All the reasoning mentioned corroborated our choice to compile pedagogic corpora, with words grouped semantically in two school subjects, generated in lists of frequency in concordance lines. Those corpus-informed lists are the core of this study.

2.3 Words in a corpus

Conversely, and despite their usefulness, those lists include only single words which can be argued that the learning and retention of decontextualized words might not be as effective as if they are introduced to learners in their contexts. This aspect was initially investigated by many researchers, among those Lewis (1993) and later by Tinkham (1997) when analyzing the learners' exposure to words that often appear together in sequence. A phraseological approach to exposing learners to "multi-word units, many of which are as frequent as or more frequent than single items which everyone would agree must be taught (O'Keeffe *et al.*, 2007, p. 46)" can be more relevant in the learning process.

Attempting to address the aims of the study and contemplate content word variables, such as degree of frequency, regularity of its combinations with function words, this is a corpusbased investigation where corpus is understood as "any body of text that is any collection of recorded instances of spoken or written language" (McEnery; Wilson, 2001, p. 197). This methodology enables the researchers to build specialized corpora, as well as classify the content words and groups of recurrent word combinations, also called lexical bundles (Biber *et al.*, 1999) or n-grams (Banerjee; Pedersen, 2003), according to its frequency and appropriacy. According to Biber *et al.* (1999), frequency is a fundamental characteristic that defines the word clusters. While by no means the only criterion, the basic idea is that "frequency of form and meaning is the most reliable predictor of what can be most usefully taught at different points in the learning process" (Cobb, 2007, p. 479), including the early stages.

The orthodox view on corpus size is that the larger, the better (Sinclair, 1991). However, a corpus may be more specialized and quite small, for example, containing only 50,000 words of text, or very large, containing many millions of words (McCarthy, 2004, p. 1). Thus, it can be affirmed that the specialized corpora which are purpose-built, level-appropriate to be presented in this study will be considered to represent a smaller slice of language. Once available, hopefully in a user-friendly dedicated platform, teachers of English and of other subjects will be able to resort to them to collect information and plan interdisciplinary activities in English to motivate learners to be more involved in some areas of the *Cross-curricular Contemporary Themes*²² (*Temas Contemporâneos Transversais* in BNCC).

One purpose for the use of corpora in language teaching is that it brings authenticity into the classroom. Another one is that it enables materials designers and teachers to examine what language learners are exposed to and develop more effective and better-informed pedagogical materials and tasks. Not only do corpora make it possible to expose learners to authentic language, but they can actually present them with a large number of authentic instances of a particular linguistic item. It seems that language noticing (Schmidt, 1990), frequency of occurrence (Ellis, 2012) and recurrence of exposure (in concordance lines) have pivotal roles in the L2 learning literature. Manipulating concordance lines can help learners see qualitative patterns of use beyond frequency. When particular structures that were given prior exposure are used again, syntactic priming occurs, making way for the learners to reuse them productively according to their needs. Language intake can then be identified and the learning process continues. This condensed exposure (Gabrielatos, 2005, p. 10) can, among others, contribute to vocabulary expansion and retention, and heightened awareness of language patterns (Granger, 1998). The combination of explicit instruction (Ellis, 2002) with target language (TL) recurrence of exposure (Gabrielatos, 2005) can promote noticing (Schmidt, 1990) of words and multi-word sequences (Cortes, 2004).

After determining the many variables which directed the investigation paths, it is relevant to state that the word lists extracted from the corpora were the basis for the activities we created for the treatment lessons. This is going to be fully explained in the methodology Chapter 3.

²²See: <u>http://basenacionalcomum.mec.gov.br/images/implementacao/guia_pratico_temas_contemporaneos.pdf</u>.

2.4 Catering for learners' cognitive and linguistic skills

In 1956, Bloom *et al.* published a framework for categorizing educational goals: *Taxonomy of Educational Objectives (apud* Armstrong, 2010). This framework, widely known as Bloom's Taxonomy, has been applied by generations of K-12 teachers and college instructors in their teaching. It consists of six major categories: Knowledge, Comprehension, Application, Analysis, Synthesis, Evaluation and their subcategories. In their seminal work, the categories after Knowledge are presented as *skills and abilities*, with the understanding that knowledge is the necessary precondition for putting these skills and abilities into practice.

Language is the use of sounds, grammar, and vocabulary according to a system of rules that is used to communicate knowledge and information, whereas the word *cognition* refers to the process or act of obtaining knowledge through not only perceiving but through recognizing and judging. Cognition also includes such thinking processes as reasoning, decision-making, categorizing, selecting, problem-solving, recalling (remembering) among many others.

Source: Vanderbilt University Center for Teaching.

After the analysis of the six tiers, or categories, of Bloom's taxonomy above, the approach chosen to be used in the lesson delivery in this investigation was the Data-driven learning (DDL). It activates many of those processes while requiring the knowledge of additional skills from teachers and learners to deal with the software and corpora (Johns, 1991). Processes like identifying, noticing, recognizing, categorizing, relating, contextualizing,

creating were considered in the theoretical rationale for the design of tests tasks and classroom activities to be described in Chapter 3.

Redecker (2017) suggested that DDL has been used to open up learning to new, realworld contexts, involving learners themselves in hands-on activities, scientific investigation or complex problem solving. The ideal user of DDL is motivated to investigate abstract meanings from patterns of language use in the corpus, and ultimately, store these patterns so that they can form part of their repertoire of language, which can be expanded over time (O'Keeffe, 2021a). Thus, the lessons were delivered in a combination of approaches such as the paper-based, hands-off (Boulton, 2012, p.1) soft version of DDL and the Content and Language Integrated Learning (CLIL) approach. DDL encourages the use of authentic materials, promotes learnercenteredness through real exploratory tasks and activities to raise young learners' awareness of target language aspects and patterns by noticing them consciously (Schmidt, 1990). While CLIL refers to situations where subjects, or parts of subjects, are taught through a foreign language with dual-focused aims, namely the learning of content, and the simultaneous learning of a foreign language (Coyle *et al*, 2010; Solves, 2018). Principles underlying this approach "refer to the fact that CLIL is believed to help achieve individual as well as educational, social, and intercultural goals for language learning" (Richards; Rodgers, 2014, p. 119).

Due to the non-availability of software for the young learners in the six classrooms (Chapter 3), it was agreed that they would receive the material, mostly printouts of concordance lines, from the teacher who accessed the computer and printed everything, hence the label *paper-based* and *hands-off*. This soft version differs from the hard version when all participants have general ICT competence and are autonomous in their searches, using the computer tools to identify and analyze patterns in the language – inductive discovery.

To cater for the linguistic skills, the teacher provided a supportive environment to the young learners in the classrooms to foster social interactions and exchanges of children's contributions when they worked in pairs or groups. This kind of supportive structure, or scaffolding, a term coined by Vygotsky (1962) who believed that language developed primarily from social interaction. His observations of children and adults engaged in different types of interactions led him to postulate that scaffolding could help learners make the most of the knowledge they already had and even move to a higher language level known as zone of proximal development (ZPD) as a positive result. His views had great influence in the understanding of how second language learning developed (Lightbown; Spada, 2013) in past decades. Scaffolded learning plays an important part in CLIL. Gibbons (2002, p. 10) defines it

as "the temporary assistance by which a teacher helps a learner know to do something, so that the learner will be able to complete a similar task alone".

These assumptions tie in very well with the DDL approach and its focus on learning language in concordance lines generated by a software. It was used in the delivery of lessons during the treatment with the tasks carried out by the young learners in all classes.

2.5 Data-driven learning (DDL) and Second Language Acquisition (SLA)

After describing the benefits of introducing the language with a DDL approach, it was used with the activities in the classroom tasks and tests. For lower-level learners, DDL can play a role in scaffolding development of noun phrase patterning and usage as learners are encouraged to discover patterns of language, and in doing so, more complex cognitive processes such as making inferences are fostered. O'Keeffe and Mark (2022, p. 1) argue that "DDL can bring an acceleration of language frequency experiences to the learner, through a type of *input flooding* (after Sharwood Smith, 1993)". It is a process of inductive learning which "implies a level of active participation [of learners] in the learning process [and] learner and teacher interaction with the corpus itself" (Chambers, 2010, p. 345). In addition, Gabrielatos (2005) and Leel (2011) specify some underlying concepts the DDL approach can harness together: constructivist theories of language learning, the communicative approach to language teaching, developments within the area of learner autonomy (Chambers; Kelly, 2002) and *grammatical consciousness-raising* of the language (Rutherford, 1987).

According to O'Keeffe (2021), "many have called for connections to be made between DDL and SLA (Flowerdew, 2015; Johansson, 2009) especially via a *usage-based* (UB) *model of acquisition* which is seen to align well with the DDL approach (Ellis, 2012; Römer, 2019; Pérez-Paredes, 2020; O'Keeffe, 2021). Many scholars look at SLA through the lens of the UB models that view language as being acquired through the exposure to and the use of language (O'Keeffe, 2021a; Meunier, 2020; Pérez-Paredes, 2020). The core tenet of the UB perspective on language acquisition is that our knowledge of language comes from experiencing and using it as part of a communicatively-rich human social environment (Ellis; Larsen-Freeman, 2006). The UB posits that the mind acquires *constructions*, routinised patterns of form and meaning and holds that the more often they encounter a particular construction, or combination of constructions, the more entrenched it becomes (Langacker, 1987). UB evidence suggests that the process of learning an additional language involves intentional pattern finding which develops along a cline from basic formula (word combinations) to slot and frame sequences to fully abstracted constructions (Ellis, 2003; Pérez-Paredes, 2020; Mark; O'Keeffe, 2022). This
exposure and use promote constructivist usage-based learning (Crosthwaite, 2022), placing noticeable emphasis on the child's ability to create networks of linguistic associations (Lightbown; Spada, 2013). Likewise, DDL has a focus on guiding learners towards regularities so as "to make them aware of generalizations in patterns of form and meaning" (O'Keeffe, 2021).

The great majority of corpus linguists in Brazil have developed studies that focus on higher education and, in some cases, related to English for specific purposes (ESP). But not one contemplated the same aims or age group of the participants our investigation had. Corpusbased studies have been developed at PUC-SP (e.g. Berber Sardinha, 2017, 2021) and UNESP in São Paulo and in the countryside (e.g. Pinto *et al.*, 2021; Pinto; Garcia, 2022), and many Federal Universities also in Minas Gerais (e.g. Almeida *et al.*, 2023; Dutra *et al.*, 2022; Costa, 2020) and Rio Grande do Sul (e.g. Bocorny *et al.*, 2021; Bocorny; Welp, 2021), for example, have renowned graduate linguistics programs that do corpus-based research.

Books with tailor-made designed activities based on corpora mainly to students at the higher education level have been launched more recently. A few exceptions in the Brazilian context with corpus-based design materials have aimed at high school students (Pinto *et al.*, 2023) and junior high school (Tartoni, 2012). She focused on the use of DDL in a 9th grade classroom, where learners worked with 'to' and 'for' as keywords in concordance lines, and Oliva (2018) who had her students work hands-on with editing tools and DDL in the academia are some examples of most current investigations. Pinto *et al.* (2023) organized a series of DDL-focused lessons on items of the language system: grammar, discourse, pronunciation, and vocabulary, for elementary to advanced learners, to be delivered hands-on and hands-off.

Despite the above publications, DDL with younger learners (9 – 12 years old) is still an under-researched area of Applied Corpus Linguistics worldwide. In a recent publication, Boulton (2020, e-book loc., 346) stated that although "[he has] been researching data-driven learning for many years now, [he knows] virtually nothing about DDL with younger learners. None in a primary school context". Most implementations of the DDL approach have been at the intermediate or advanced level (Boulton, 2008), a few with secondary learners (Pérez-Paredes, 2020; Crosthwaite; Stell, 2020; Wicher, 2020) while the number of DDL studies on primary-age data "can probably be counted on one hand" (Crosthwaite; Stell, 2020, p. 150).

2.6 DDL and pedagogic corpora

The above-mentioned fact that the use of DDL is under-researched among primary school young learners may be due to the fact that not only "teachers themselves may lack the

necessary digital literacy to use existing corpus tools, [but also they] may not always see the added value of integrating DDL in the prescribed curriculum" (Meunier, 2020, e-book loc., 880). Teachers' roles change fundamentally when working with DDL,

as [they are] no longer the sole source of knowledge about the target language, but rather a facilitator of the learning process, helping the learners to interpret the data, and giving them advice on how best to search the corpus and analyze their search results (Chambers, 2019, p. 354),

"while the investigative work is carried out by learners and has been compared to the work of Sherlock Holmes" (Johns, 1997, p. 101). The more autonomous work will be responsible for the different degrees of accomplishment and empowerment learners will be able to experience. The teachers are still invaluable as curators of the information readily available, but their roles have been shifting to being more supportive to learners as the new generation gradually takes agency of their own learning path. It is a long-held belief among educators, that contemporary education should enable learners to be more engaged and committed to their own learning process and responsible for the results (Chambers, 2010). Thus, this is the window of opportunity teachers have to motivate learners to make effective use of the digital tools available to improve learning and lighten their weight as linguistic authorities they traditionally have had (Aston, 2007).

As mentioned before, barriers to the use of DDL include "very little time for extra professional development of activities in-service pre-tertiary teachers appear to have" (Bingimlas, 2009); also the lack of software for specific use with young learners (YLs) and a lack of corpus literacy reported for pre-/in-service teacher trainees of YLs. In order to implement DDL in a young learner beginner-level classroom, to my knowledge not attempted yet to this date, a challenge will need to be addressed first and foremost, namely the building of corpora of target language at an appropriate level for the students (Pérez-Paredes, 2020). Traditional corpora of authentic native speaker language are simply far too difficult (Anthony, 2013). To embrace it, two main resources are needed: the corpus aforementioned and a concordancing software to exploit it (Gilquin; Granger, 2020).

From a DDL perspective, Aston (1997, p. 13) states "[the] work with small specialized corpora can be not only a valuable activity in its own right, as a means of discovering the characteristics of a particular area of language use, but also an instrument to help and train learners to use larger ones appropriately." Aston (1997, p. 5) lists some advantages of working

with specialized pedagogic²³ corpora: "they are easier to manage, more fully analyzable, easier to become familiar with, easier to interpret, to construct, to reconstruct, are more clearly patterned and their limits are clearer". Notwithstanding, the proponents of the use of DDL argue that it should not be the sole component in the language teaching work in the classroom, but rather an enhancement with corpora-informed work. It will add variety to a lesson and raise learners' motivation towards learning.

2.7 Digital literacy for teachers and learners

This investigation aimed at addressing the demands of contemporary society for a more inclusive classroom, claiming that both teachers and learners should be better equipped in the digital environments. However, even though the software to be described in the next section was used only by the researchers due to the lack of available hardware, we believe it is relevant to discuss here the reasons why it was chosen and the advantages teachers would have if it were available.

As an immediate result of the fast pace of change in the educational scenario, the sudden advance of technology has brought into the scene the need to know English to navigate and visit websites, as it is the most commonly used language on the internet. As of 2018 and onwards, the guidelines in the *Base Nacional Comum Curricular* (BNCC)²⁴ state that teachers need to be skilled and equipped to help young learners acquire and develop, among other competencies, the digital competency in the *Fundamental* I grades.

The wakeup call started more than 10 years ago when Godwin-Jones (2015), and a few others before him like Reppen (2010), claimed that language instruction had begun to move ever more into online spaces, requiring more knowledge and skills from teachers to facilitate their students' learning. There were claims that more focus was needed to be given to the development of teachers' use of technology – ICT competence – that could support their own pedagogical work and core teaching performance (McKenney; Visscher, 2019). Recently, Crosthwaite (2022) corroborated those statements by positing that still today many teachers of young learners lack both the technical and pedagogical knowledge to integrate Computer Assisted Language Learning (CALL)²⁵ applications into teaching practice.

²³ Pedagogic corpora refers to a body of texts to be used in the classroom to support teaching (texts from the learners' coursebooks) with any additional texts that the teacher may bring into the classroom. It was coined by Willis (1998).

²⁴ Brazilian National Syllabus Core.

²⁵ The term Computer Assisted Language Learning (CALL) was coined by Hardisty and Windeatt (1989).

Therefore, it is of paramount importance to consider, first, the extent to which the teachers have access to the hardware and, second, if they have the ICT skills to be able to navigate the online medium. They also need to learn to curate the appropriate information before they can implement innovations in the classroom. In tandem with those demands, it should be acknowledged the existing paucity of hardware in many public schools (Mendes; Finardi, 2020) and even in most private schools, which may be one of the most demotivating obstacles to the digitization process in Brazil. Those requisites do reflect the current situation, a result of decades of little investment in hardware and maintenance. A common criticism is still that the changes require considerable investment in terms of training for teachers and learners to understand the rationale underlying the effective use of the digital tools. Additional drawbacks are the constant justification for the postponement of implementation of practical actions related to the beneficial use of technologies and the misinformation and prejudice against the use of computers in schools (Ribeiro, 2020).

The scenario described above reflects just some of the difficulties teachers have to face and overcome to transform their classrooms into 21st century educational environments. First, perhaps beginning with Google searches (Boulton, 2012), they need to learn to select the appropriate texts or group of texts which address their audience of learners. Second, teachers need to learn to use the digital tools to search for language patterns, and only then they would be ready to help learners interpret the findings and make effective use of them in the classroom.

In a nutshell, to start reducing the digital gap, pre-tertiary teachers should be exposed to the online medium during in-service and be instructed on how to navigate the web and on how to use the digital tools available to the benefit of their teaching. Teachers should be encouraged to step beyond their own comfort zone to help their learners develop their ICT competencies as well. On the other extreme of the continuum, learners also need to be digitally literate to look for information on the web. According to BNCC, they need to be exposed to the digital medium, learn to navigate safely, and identify suitable and trustworthy sites which suit their learning goals. They also need to learn to analyze critically the information they receive or send. Learners in the initial grades also need to learn how to use tools like Word and Images when copying contents with respect to copyright. They need to be acquainted with the use of web search engines appropriately to understand how to find what they need and be able to understand and interpret output of its particular discursive functions in context (Hafner; Candlin, 2007).

To empower learners with digital skills, the elements of motivation and challenge speak louder among young adolescents. And that is the moment, the window of opportunity, when teachers need to be ready to stimulate learners to work with the concordance lines, to notice language patterns that are repeated and made salient and start doing their investigative analysis (Johns, 1991).

2.8 The concordancer #LancsBox 6.0

To access corpora data, it is paramount that teachers have the ICT skills to work with any of the many software available on the web, the concordancers. They are corpus analysis tools that search texts based on a word or phrase provided by the user and yield concordance lines which show the word or phrase in contexts, ranking them according to their frequency in that corpus. Despite its relevance in a corpus-informed investigation, we could not rely on enough hardware in the school to cater for all the YLs involved. As a result, the description of the software I am about to make is to justify my choice among so many options on the web and also raise readers' awareness of the advantages both learners and teachers can have in the future.

The digital tools need to be accessible, so that teachers can use them and instruct students in their use to improve language learning through self-regulated discovery work (Winne, 2017). Even if the learners have limited access to the digital world, teachers should start introducing elements such as problem-solving situations, queries that may trigger their interest and curiosity. Hendry and Sheepy (2022, p. 439) put forward that "learners can use corpus analysis tools to support vocabulary acquisition (1) as a reference to identify important words to study, (2) as a reference to check for patterns in typical usage in authentic texts," and language improvement and development of autonomous work. The literature suggests that if the digital tools are (1) hard to use or (2) perceived to be hard to use, then widespread adoption of the tools is not likely (Hendry; Sheepy, 2022). These authors mention the importance of the multidimensional construct of usability to identify and select the most appropriate concordancer to use in the classroom. According to the International Organization for Standardization (IOS), usability or ease of use, "is the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specific context of use" (2018).

Nowadays, more and more software are freely available to download from the web. Hendry and Sheepy (2022) in a recent study comparing concordancing software, present a very thorough analysis which point out that #LancsBox²⁶ was found to be the easiest for some to use. The 6.0 version has a straightforward interface and accompanying tutorials and can be very

²⁶ #LancsBox: Lancaster University corpus toolbox. Available at: <u>http://corpora.lancs.ac.uk/lancsbox/index.php</u>. Accessed on: March 10th, 2022.

suitable as a first step to those teachers trying to get acquainted with the current technological tools. Those factors have prompted us to choose it for this investigation considering the aims of its creators. At the time, Brezina and Gablazova (2018) declared that they were interested in improving learner vocabulary instruction through corpus analysis, mainly keyword and collocation analysis.

By using a concordancer with a readily-understood interface, meeting the criterion of being user-friendly, we have addressed the *user-friendliness* aspect mentioned by Frankenberg-Garcia (2012), an initial hindrance to the development of one's digital literacy. In this study, the tools *KWIC*, *Words*, *N-grams*, *GraphColl* and *Text* were used as instruments to identify, classify, analyze, and yield the most frequent target language which was used in the classrooms. The functions of each tool, the processes and the selection of vocabulary of interest are going to be described in Chapter 3.

The corpus toolbox #LancsBox has already many corpora embedded in its system such as American English, British English, BNC, Brown, LOB, English Literature, etc. Additionally, one can upload one's specialized corpus and use it like the pedagogic corpora used in this investigation: corpus for elementary levels on Geography (COREL-GEO) and corpus for elementary levels on Science (COREL-SCI) to be described in Subsection 3.4.

Chapter 2 reviewed the available literature underlying current investigations in many studies of corpus-informed applied linguistics. The variables to be considered during the design of the work to be implemented were described and the most suitable options for each of them justified. In Chapter 3, Methodology, the practical aspects of the process will be demonstrated, possible future uses of the tools, their implications in the classroom and outcomes are discussed.

Chapter 3 – Methodology

3.1 Introduction

In this chapter we describe the methodology of the investigation. We will specify the participants, the teacher, and the context. We will also describe the process of selection and compilation of texts to build the corpora COREL-GEO and COREL-SCI and demonstrate the use of the software tools to retrieve and analyze the data, the target language to be used in the treatment. The activities used in the class and tests will also be explained. The description is complemented by subsections on the lesson plans with the guidelines, the protocol to deliver the lessons, data collection and the teacher's comments on the delivery of lessons and tasks.

3.2 The context, the teacher, and the participants

The public school chosen for our investigation was a reference Elementary and Middle school connected with a Federal University. It is renowned for its excellence in children and adolescent formal education and its links with the university which afford support to relevant research in many other areas as well. It was a suitable venue for the investigation although in March 2022 it was under tight constraints imposed by the City Hall due to the 2-year pandemic, still in effect at the start of implementation of the study.

As a result of the gradual return to face-to-face classes, only the regular students, teachers and the officially employed staff had been granted permission to the premises of the school. The school did not allow access of strangers to the main building or classrooms. Postponing the work did not seem the best option then. Therefore, a possible solution to overcome this major hindrance was to invite a regular teacher to do the field work. She would advise the researcher on the selection of the vocabulary, on the designing of the tasks and tests and she would implement them in her classrooms while keeping contact with myself throughout. On the positive side, I could right away see an important benefit for having just one interobserver being responsible for the class work in all groups: the activities would take place in the well-known natural environment with learners focused on what they were already used to doing, i.e., listening to their own teacher's voice, instructions, and commands without any external distractions in class. In addition to that, the implementation would be very similar in all groups and the format of lessons would not be too different from what the teacher was used to doing; deliver interactive communicative lessons. The innovation was the introduction of the

target linguistic features collected from oral and written texts produced naturally and the tasks were based on data-driven learning principles. The teacher's main aim was to draw students' attention to the target key language in context (KWICs) and still work interactively practicing the language skills, mostly reading, writing, and speaking focusing on vocabulary and grammar.

The teacher, Clara,²⁷ although young, is a seasoned teacher who has been teaching children, adolescents, late adolescents and even adults in preparatory courses for specific English exams for the past 20 years. Clara has a degree in English, an MA in Applied Linguistics and is qualified in Teaching English as a Foreign Language (TEFL). In addition, she had already dealt with Corpus Linguistics in her Master's dissertation. These factors contributed to the reduction of possible external variables interference as she was the sole responsible for the classes management: application of tests, delivery of instructions when working in the classrooms and assigning homework to the students. Currently she is the teacher and coordinator of all $4^{th} - 6^{th}$ grades of *Ensino Fundamental*: two groups in 4^{th} grade (4A-4B), two groups in 5^{th} grade (5A-5B), and two groups in 6^{th} grade (6A-6B).

All groups had two back-to-back English classes of 60' per week, which made it easier for Clara to implement a series of intertwined class work activities with the target language in concordance lines (KWICs) between pre and posttests. The investigation involved 147 children 9 to 12 years old and, according to Clara, the students had been exposed to English in weekly lessons since the 1st grade (Table 2), but had a long 2-year period of interruption (2020-2021) during the pandemic. The differences among the groups were not only the ages of the students but also the years of exposure to English prior to the study (explained in the dialogue below). When the lockdown started, online classes were not totally feasible for some time and we can assume that some of the previous English input might have been forgotten. Due to this gap, one preliminary assumption was that older students would have better results in the assessed activities due to the previous pre-pandemic exposure to English, which eventually was proved to be incorrect (Chapter 4).

²⁷ Clara is a pseudonym she uses for privacy.

Fudamental	MODE	2 back-to-back	Number of	AGE	Years of
1		classes per week	students		English classes
Group 4A	Face-to-face	1h 20 min	29	9-10	3
Group 4B	Face-to-face	1h 20 min	25	9-10	3
Group 5A	Face-to-face	1h 20 min	21	10-11	4
Group 5B	Face-to-face	1h 20 min	25	10-11	4
Group 6A	Face-to-face	1h 20 min	23	11-12	5
Group 6B	Face-to-face	1h 20 min	24	11-12	5
			147		

Table 2 – Description of participants and distribution of groups by grade

Source: the teacher at CP.

The first step to conduct the study was to have the necessary approval of the investigation by the Ethics Committee (Appendices A and B) and then the necessary permission to implement it in the premises (Appendix C). Once granted, the teacher and myself started the interactions about the project online due to the remaining concerns over the pandemic (2020-2022). As the sole interobserver, she was coached constantly during the investigation by the researcher who established a protocol with guidelines (subsections 3.5.1, 3.5.2, 3.5.3) for the delivery of all lessons to ensure it would follow quasi-identical procedures to ensure maximum reliability and external validity to the data to be collected. The online chats in Portuguese aimed at giving the researcher the overall profile of all the students. Some of the questions asked are presented here:

Researcher: 1) Desde que série os alunos do CP têm aulas de Inglês? Ou seja, os da 6a. série têm inglês desde 2017, os da 5a. série desde 2018 e da 4a. desde 2019?

Clara: 2017 foi o primeiro ano do inglês na 1^a. série escolar. Assim sendo, nossos estudantes da 6^a. série foram os primeiros da escola a terem inglês desde a 1^a. série. Todos os estudantes da sua pesquisa (4^a., 5^a. e 6^a.) estudam inglês desde a 1^a. série (mas tiveram 2 anos de aula online) na pandemia.

Researcher: 2) Quantas aulas por semana? Todos os níveis têm o mesmo número?

Clara: Duas aulas geminadas por semana, ou seja, um encontro semanal. No 1° ciclo (1^a., 2^a. e 3^a. séries, é a única disciplina que tem apenas um encontro semanal. Arte, educação física, orientação de estudos e outras disciplinas, têm maior carga horária.

Researcher 3) Qual a duração das aulas por semana?

Clara: Duração total de 1 hora e 20 minutos de aula. Da 1^ª. à 9^ª. série é a mesma carga horária. Na escola, inglês, espanhol e arte têm a menor carga horária.

When the lockdown started, online classes were not totally feasible for some time and we can assume that some of the previous English input might have been forgotten. Due to this gap, one preliminary assumption was that older students would have better results in the assessed activities due to the previous pre-pandemic exposure to English, which eventually was proved to be incorrect (Chapter 4). Nevertheless, Clara was well aware that variations could occur during the study, mainly due to the differences in ages and profiles of the groups. Lightbown and Spada (2013, p. 37) claim that "cognitive maturity, metalinguistic awareness, world knowledge and attitudinal differences among learners from different age groups" can influence levels of language acquisition.

There were no structured questions at first, just open talks with Clara (the teacher) who asked for further clarification mainly related to classroom material, class management and data collection. Clara needed the assurance that she would be able to follow the guidelines in the Lesson Plans and would be able to deliver the instructions in English, as student-friendly as possible. That was also the moment we discussed the topics and the appropriateness of vocabulary for the groups, the type of tasks, the length of the tests and the inclusion in her regular lessons. As mentioned in the documents which granted the permission for the study, our main concern was not to interfere in the students' routine nor trigger any discomfort.

In the upcoming Sections, we will describe the research stages (3.3), the procedures to compile the pedagogic corpora and the concordancer tools used in the analysis of the subsets of corpora (3.4) as well as the implementation procedures and data collection (3.5). We will also explain the process of designing and implementing tasks and tests and include the teacher's impressions on the two 10-day periods of pre-tests, classwork and posttests.

3.3 Research stages

To carry out the investigation, a series of intertwined actions were taken before and after the data collection. They are specified below (Figure 1) and will be exemplified in more detail in Chapter 3 and findings and results in Chapter 4.

Source: the researcher.

3.4 Compilation of pedagogic corpora: COREL-GEO and COREL-SCI

A corpus-based research process usually involves three main stages: corpus compilation, annotation, and analyses. The first stage is the most important when building the subsets of corpora. In order to investigate if vocabulary learning could be enhanced by corpus-based activities, first, we compiled the topic-informed corpora and uploaded them to the concordancer (subsection 3.4.1).

The first step was to build the corpora aiming at making them tailored to the recommended contents of 4th to 6th Geography and Science classes. This is in tandem with Pérez-Paredes's (2020) recommendation of a compilation of corpus data in English suitable for young learners. He defines pedagogic corpora (PC) as those which "follow design principles that differ from those present in corpora designed for research purposes: PC are topic-driven, they pursue pedagogic rather than linguistic representativeness, and they challenge traditional corpus-search behavior" (e-book loc., 2076-2077). While corpus size is usually an issue, it should be considered hand-in-hand with the appropriateness of its design. "In terms of suitability, however, it is often the design of a corpus as opposed to its size which is the determining factor" (O'Keeffe *et al.*, 2007, p. 4). Therefore, I decided to compile *pedagogic corpora corpora* as proposed by Willis (1998) as a body of texts to be used in the classroom to support

teaching with the addition of texts that the teacher could probably bring into the classroom (Gilquin; Granger, 2010).

To ensure the compilation would be feasible in the timeframe of the study, four major areas²⁸ were singled out for their cross-cultural foci and also for their overlapping of national with international primary school syllabi in English. Based on this initial criteria, two macro areas (Table 3)²⁹ in the domains of *Earth and Space* and *Life Science*, listed in the curriculum maps³⁰ of *Fundamental* 1 schools in Brazil were singled out.

Source: the researcher.

In the first selection, I chose the areas *Life and Evolution* (2) and *Earth and the Universe* (3). From the second selection, I opted for the areas *Man and its place in the world* (1) and *Nature, Environment and Quality of Life* (5). Subsequently, these areas were compared with international curricula through the analysis of a few American and Canadian elementary school curricula (available free online)³¹ and two collections of workbooks³² in English that indicate the corresponding school grades.

Crossing the information made it possible to identify an array of suitable themes or topics (Table 4) to build the corpora. We selected topics which were more universal, i.e., topics which would be found in most Elementary school grades regardless of their location. This is especially relevant as the vocabulary in the material had to be not only linguistically authentic but also graded according to the school $4^{th} - 6^{th}$ grades and meaningful to Brazilian learners. Thirty topics emerged as more recurrent in the sources and corresponding material was extracted from a small percentage of textbooks. The topics also informed the search and

²⁸ From the BNCC.

²⁹ The original source is in Portuguese and main areas have been translated to English to contextualize the choices made by the researcher.

³⁰ See: <u>https://novaescola.org.br/conteudo/12720/bncc-baixe-em-pdf-o-e-book-de-competencias-gerais.</u>

³¹ Canadian: <u>https://www.ontario.ca/page/ministry-education</u> . American: <u>https://ee.eanesisd.net/</u>

³² 180 Days of Science and Geography, Shell Education, K to 5th grade, 2014; and DK WORKBOOKS, Penguin Random House, Pre-K to 4th grade, 2016.

selection of material on the web to complement the desired diversity of trustworthy sources. In an attempt to motivate learners to engage in the classroom activities, the language contents would suit and benefit the different types of learners with different interests and different ages.

30 Topics					
Animals	Climate				
Habitats	Natural disasters				
Life Cycles	Seasons				
Food Chains	Soil				
Endangered Species	Erosion				
Biomes	Climate change				
Ecosystems	Resources				
Plants	Renewable				
Lifecycles	Non-renewable				
Pollination	Fossil fuels				
Germination	Pollution				
Photosynthesis	Recycling - Conservation				
Rainforests	Humans				
Bodies of Water	Communities				
Landforms	The Solar System - The Earth				

Table 4 – Themes / topics for the material

Source: the researcher.

Regarding the web sources, it is worth mentioning that in 2020-2021, when we started the process of building the corpora described above, due to the worldwide pandemic and closing of schools, some web platforms³³ offered free access to their sources. This happened so parents and teachers could resort to their materials during the period when the vast majority of students were homebound. Most of the web written texts and video transcriptions on the topics were then checked against their linguistic complexity in the profiler vocabkitchen.³⁴ The texts had to be in authentic English³⁵ and in the appropriate linguistic level, namely A1 and some A2, entry points in the Common European Framework of Reference for Languages (CEFR), levels to be considered when working with beginner young learners (Table 5) in schools. The use of CEFR has been emerging as a standardizing measure for some time now, for example, in the design and compilation of new corpora (Tono; Díez-Bedmar, 2014, p. 165; Forsberg Lundell, 2021).

³³ One of them was: <u>https://www.education.com/worksheets/</u>.

³⁴ See: <u>https://www.vocabkitchen.com/profile</u>.

³⁵ According to: <u>https://www.pearson.com/languages</u>, authentic material is any material written in English that was not created for intentional use in the English language classroom. [...] The best content to select depends on the learners, their level of English and the course content the teacher wishes to focus on. It's also a good idea to find out the learners' interests.

Source: English Language Assessment.36

Texts from different authentic sources were collected: printed workbooks A,³⁷ printed workbooks B,³⁸ web texts / video transcriptions and articles from assorted sources. For the corpora compilation, the workbook texts selected had to be scanned and saved in pdf.³⁹ The texts and the files with .docx⁴⁰ extensions had to undergo a transformation into files with a .txt⁴¹ extension to become the final corpora. The process of transformation consisted in:

1) all files and texts were uploaded to Google Drive, opened and saved as Google docs in different folders;

2) the resulting *Google Docs* were then downloaded as .txt files and saved again in the new macro folders: COREL-GEO and COREL-SCI, separated in subfolders according to the $4^{th} - 6^{th}$ grades contents; and

3) the folders' contents, the 2 subsets of the corpora selected for the treatment in the classroom, were then uploaded to the concordancer #LancsBox 6.0 to be read, decoded and part-of-speech (POS) tagged.

The pedagogic corpora was built with a balanced number of 437 texts in Science (COREL-SCI) and 458 texts in Geography (COREL-GEO), 895 texts with 178, 669 words in total. Table 6 illustrates the sources and their participation in the overall number of texts:

³⁶ See: <u>https://www.cambridgeenglish.org/exams-and-tests/cefr/</u>.

³⁷ 180 Days of Science and Geography, Shell Education, K to 5th grade, 2014.

³⁸ DK WORKBOOKS, Penguin Random House, Pre-K to 4th grade, 2016.

³⁹ Portable Document Format by *Adobe Acrobat*.

⁴⁰ Microsoft extension document.

⁴¹ Text Document file, a text document that contains plain text in the form of lines.

	Total	Total	Total	Total	Mean
Science	number	number of	number	number	number
COREL-SCI	of texts	tokens	of types	of lemmas	of words
Written textbook	334	54,821	4,032	3,429	164,13
Written web	78	22,224	3,467	3,129	284,92
Spoken web	25	13,824	2,018	1,839	552,96
TOTAL	437	90,869	9,517	8,397	207,93
	Total	Total	Total	Total	Mean
Geography	number	number of	number	number	number
COREL-GEO	of texts	tokens	of types	of lemmas	of words
Written textbook	346	44,576	3,724	3,429	128,46
Written web	87	23,057	3,272	2,985	265,02
Spoken web	25	20,167	2,857	2,605	806,68
TOTAL	458	87,800	9,853	9,019	191,28
Overall	895	178,669	19,370	17,416	199,40
					-

Table 6 - Information on COREL-SCO and COREL-GEO

Source: #LancsBox 6.0.

Among all the 30 themes (Table 4), *Neighborhood* (Topic: Communities) and *Animals* were the ones singled out by Clara, the teacher,⁴² as the most appropriate themes for activities to be implemented in all her 6 classes – 4^{th} , 5^{th} and 6^{th} grades. The two topics would integrate seamlessly into their curricula. They were analyzed separately and stored in individual folders which will be easily accessible and made available in the future. The two subsets consist of 43 written and oral texts on *Neighborhood* and 63 written and oral texts on *Animals* in a combination of 106 texts in total (Table 7).

	· · · ·					
		Total	Total	Total	Total	Mean
T	OPICS	number	number of	number	number of	number
		of texts	tokens	of types	lemmas	of words
Neighbor	rhood (T1)	43	5,834	1,122	1,043	135,67
Animals	(T2)	63	9,656	1,734	1,534	153,26

Table 7 – Topics (T1) and (T2) data

Source: the researcher.

Due to the diversity of themes, it is important to emphasize the need to incorporate the work with each one into a lesson after checking possible outcomes such as the students' interests and needs. Longer groups of new vocabulary in concordance lines may be demotivating for some or otherwise challenging positively depending on the activities in class.

⁴² Clara's profile is described in Section 3.2.

3.4.1 The concordancer #LancsBox 6.0 - tools and their functions

Once the software is chosen, one needs to get acquainted with the short tutorials. Regarding the software #LancsBox, one needs to download it only once and leave it dormant on the desktop. When analyses of a corpus content are to be carried out, and if the corpus had been uploaded before, the software will perform the tasks demanded instantly. In this study, the researchers were the only ones accessing the software due to the constraints found at the *Fundamental* school. However, the word lists extracted from the corpora we made available to the teacher who participated in the whole process.

Figure 2 illustrates the software interface. It shows an array of user-friendly tools like *Words, KWIC, Ngrams, GraphColl and Text* in the header, the black bar at the top. These enabled the researcher to identify the most frequent lexis with *Words*, 3- and 4-word patterns with *N-grams*, number of occurrences of KWICs in the texts with *GraphColl*, and also the target language distribution in the files of the corpus. The tools also enabled the researcher and the teacher to select what was most appropriate for the tasks and tests (Chapter 4) carried out in the lessons.

Source: #LancsBox 6.0.

In addition, *GraphColl* was used to show visually where the most frequent words could be found in the corpus, their frequency and distribution. Due to its visual appeal, the tool can also be more effectively used with learners in the classroom with computers available. Many possibilities for future hands-on use of the tools by learners will be mentioned in Chapter 4. Below, the concordancer shows the two pedagogic corpora COREL-SCI and COREL-GEO uploaded already tagged (POS)⁴³ and with the main information highlighted in Figures 3 and 4:

rigule 5 – COREL-SCI	
COREL_GEO+SCI unloaded	LifeSci_1stG_AnimalTraits-Dogs_W11Day2.txt Format: Text, 72 tokens, 40 types, 38 lemmas
COREL_SCI Language: English, 437 files, 90869 tokens, 6063 types, 5566 lemmas	LifeSci_1stG_BabyAnimals_W9Day1.txt Format: Text, 76 tokens, 59 types, 54 lemmas
Corpus 5 - Neighborhood Language: English, 43 files, 5834 tokens, 1122 types, 1043 lemmas	LifeSci_1stG_BabyAnimalsV_W9Day5.txt Format: Text, 29 tokens, 26 types, 26 lemmas
Corpus 1	Format: Text, 130 tokens, 71 types, 69 lemmas
unloaded	LifeSci_1stG_Bugs-Metamorphosis_W6Day2.txt
Corpus 2	Format: Text, 65 tokens, 47 types, 43 lemmas
Delete	LifeSci 1stG FromSeedstoSproute W5Dav3 txt

Figure 3 – COREL-SCI

Source: #LancsBox 6.0.

Figure 4 – COREL-GEO

BNC2014-baby	Geo - 3rdG - Cave - Britannica.docx.txt Format Text, 66 tokens, 53 types, 50 lemmas
COREL_GEO Language: English, 458 files, 87725 tokens, 6195 types, 5694 lemmas	Geo - 1stG - AnimalCoverings.txt Format Text, 63 tokens, 42 types, 42 lemmas
COREL_GEO+SCI -unloaded-	Geo - 2ndG - Lakes - Britannica.docx.txt Format Text.66 tokens, 44 types, 43 lemmas
COREL_SCI Language: English, 437 files, 90869 tokens, 6063 types, 5566 lemmas	Format Text, 70 tokens, 48 types, 48 lemmas Geo - 2ndG - TypesofAnimals.txt
	Format: Text, 43 tokens, 28 types, 29 lemmas
Delete	<

Source: #LancsBox 6.0.

However, as the investigation aimed at addressing only two specific themes, one subset of each corpora was chosen, *Neighborhood* from COREL_GEO and *Animals* from COREL-SCI were also uploaded and tagged. The corpora highlighted in Figures 3 and 4 above also display the subsets contents: the first with 43 files with 5,834 tokens and the second, with 63 files with 9,656 tokens. In the Figures 5 and 6 below, various corpora can be seen on the left side of the interfaces, but only the ones used in the investigation and highlighted in gray, have their files loaded on the right.

⁴³ Part of speech (POS).

I iguie 5 Subset Weighborhood (COREE-	U		
COREL_GEO+SCI unloaded	^	Geo- 2ndG_CommunityJobs.txt Format: Text, 64 tokens, 47 types, 51 lemmas	^
OREL_SCI Language: English, 437 files, 90869 tokens, 6063 types, 5566 lemmas		Geo_1stG_ CommunityHelpers.docx.txt Format: Text, 110 tokens, 71 types, 71 lemmas	
Corpus 5 - Neighborhood Language: English, 43 files, 5834 tokens, 1122 types, 1043 lemmas		Geo_1stGMarketplacell_W24Day4 (1).txt Format: Text, 47 tokens, 31 types, 34 lemmas	
Corpus 1 -unloaded-		Geo_1stG_AShortRoute_W33Day3.txt Format: Text, 107 tokens, 62 types, 58 lemmas	
Corpus 2	•	Geo_1stG_Community_W4Day3.txt Format: Text, 335 tokens, 135 types, 131 lemmas	
Delete		Geo_1stG_Houses_W23Day3.txt Format: Text, 93 tokens, 57 types, 57 lemmas	~

Figure 5 – Subset *Neighborhood* (COREL-GEO)

Source: #LancsBox 6.0.

Figure 6 - Subset Animals (COREL-So	CI)		
		LifeSci_1stG_Animals-Parenting_W8Day2.txt Format Text, 91 tokens, 56 types, 53 lemmas	^
Geo-Written textbooks		LifeSci_1stG_BabyAnimals_W9Day1.txt Format: Text, 76 tokens, 59 types, 54 lemmas	
Neighborhood		LifeSci_1stG_BabyAnimalsV_W9Day5.txt Format: Text, 29 tokens, 26 types, 26 lemmas	
Sci - Written textbooks		LifeSci_1stG_Turtles-BodyParts_W2Day3.txt Format: Text, 52 tokens, 38 types, 37 lemmas	
unloaded	18	Life Sci_3rdG_Animals-Alligator_W4day4.txt Format Text, 123 tokens, 76 types, 71 lemmas	
Sci-written web	~	LifeSci_3rdG_Animals-LivinginGroups_W1Day1.txt	~
Delete		<	>

Source: #LancsBox 6.0.

Once uploading both corpora, the first step was to check the topmost frequent words in each one and compare lists (Appendices L and M for longer lists). Biber *et al.* (1998) argued that the researcher should observe the data before deciding what and how they would work with it. According to his beliefs, most of the time the data lend itself to different types of analysis which should be noticed by the researcher so that the findings are meaningful and useful to learners. Observing the information retrieved in Figure 7, both tables reveal that the top words are functional words which are similar in both corpora. In our view, the outcomes point to the need to disregard them and focus on content words to identify the appropriate target language, content words in context.

#LancsBox 6	i.0						- 🗆 ×
KWIC	GraphColl	Whelk	Words	٨	Igrams	Text	Wizard
Corpora Words	s: Corpus 5 - Neighborho 🗙						
		Search		LEI.		586 22/46	0.85 per 10k
▼ Corpus	Corpus 5 - Neighborhood	▼ Frequency	▼ Dispersion	▼ Type		000.22740	o.oo per rok-
	Type V Free	quency: 01 - Freq	Dispersion: 01	CV			
he	342.000000		0.462163	~			
3	211.000000		0.757808				
0	205.000000		0.678979				
and	143.000000		0.716123		Corpus	5 - Neighborho	od
of	122.000000		0.650416			- I I I I I I I I I I I I I I I I I I I	
n	119.000000		0.593836				
S	117.000000		0.934618				
ou	97.000000		1.269715				
people	97.000000		1.150749				
are	84.000000		0.879530				
/our	52.000000		1.846311				
t	47.000000		1.487733				
here	44.000000		1.478631				
map	44.000000		1.614895				
hey	41.000000		1.228004				
what	37.000000		1.499560				
be	37.000000		1.976415				
or	37.000000		1.860725				
this	37.000000		1.961287				
community	36.000000		2.146374				
city	36.000000		2.171111	10			
	200000	1000000	4.000005	×.			
	Mark Marka and Marka Marka		15.0% w				
▼ Corpus	Corpus 4 - Animals	Frequency	Dispersion	▼ Туре			
	Type V Free	quency: 01 - Freq	Dispersion: 01_	CV			
the	445.000000		0.696336	^			
are	322.000000		0.917598			N.	
and	240.000000		0.732283		Corpus 4	- Animals	
a	238.000000		0.838505				
or	231.000000		0.876134		N.		
10	168.000000		0.780823				
iney	166.000000		1.168842				
n	163.000000		0.981534				
inat	150.000000		0.997775				
nave	141.000000		0.994414				
animals	133.000000		1.433653				
IS	131.000000		1.150265				
neir	110.000000		1.280485				
or	193.000000		1.6108/4				
IOI	1/1.000000		1.00/920				
live	165.000000		1.840/22				
-11	57.000000		1.470234				
all	55.000000		2.002/01				
can	55.000000		1.0/31/8				
la e e el e	E4 000000		0.000000				
insects	54.00000		2.323662				0

Figure 7 – Most frequent words in T1 and T2

Source: #LancsBox.

Content words separated by classes will be listed to help the teacher and the researcher to select the most useful vocabulary for the learners. The findings will help the reader to understand why the use of technology provides state-of-the-art tools to enhance learning a language and how it can become an important and effective accessory to visualize patterns and clusters in context. Not to mention its role in aiding learner autonomy towards becoming the agent of his own language development.

Chapter 4, Part A, will describe the utilization of the concordancer, outline the functions of its various tools, and present the obtained results.

3.5 Implementation procedures and learners' data collection instruments

As I was responsible for all the planning of lessons, the designing of classwork, homework, and the pre- and posttests, the teacher and I kept close contact throughout the whole

period. We engaged in a series of *Google Meet* chats and exchanged messages on *WhatsApp*. This process was undertaken not only to choose the most suitable topics for the learners but also to identify the target vocabulary (KWICs) along with its concordance lines and n-grams. All of these activities were aligned with the students' curricula.

Figure 8 – Screenshot of *Neighborhood* package contents – Topic 1 (T1)

W	#1_Pre and Post-Test_Neighborhood.docx 🚢
W	#2_Materials.docx
POF	#3_Bingo cards_My townpdf
W	#4_Homework_Neighborhood_Feb2022.docx
W	Lesson1_InstructionsandMaterials+comments.docx
Ρ	Neighborhood_Feb2022.pptx
W	Post-class Questionnaire.docx 🕰
W	Transcript - Our neighborhood for kids.docx 🚢

Video_Our Neighbourhood For Kids, Places of Neighbourhood, 15 Neighbourhood, Neighbourhood Sevr... Source: *Google Drive* storage.

The continuous interactions aimed at assuring the target language had a direct connection with the interests and needs of the students so as to be meaningful, motivating and beneficial to them. Practicality and usefulness of contents for the students were aspects considered by both of us. The written guidelines as well as all the vocabulary in videos, texts or pptx were uploaded and saved in a shared Google folder (Figures 8-9).

The teacher received everything in a package for each individual topic containing all she needed in February 2022, a month in advance of the beginning of the school term in March. It would give her time to analyze all the activities and start planning the integration into the syllabus of each grade to start implementing it all in April. The design and methodological rationale underlying tests and activities delivered in the 4th, 5th and 6th grades were the same for Topic 1: *Neighborhood* and Topic 2: *Animals*. The processes will be further described in Sections 3.5.1 and 3.5.2.

Source: Google Drive storage.

The implementation took place with the teacher using the DDL approach in a lesson delivered in a CLIL format in all the classrooms. They were delivered following the same sequence suggested in short lesson plans for each topic (Tables 9-10), and the pre- and posttests administration followed the same protocol, taking place within a 10-day interval. To ensure further impartiality on the results, all data collected in all classes were coded, corrected and assessed by myself following the same criteria. The tasks in the tests were quasi-identical to guarantee internal and external validity⁴⁴ of the results (Campbell; Stanley, 1966).

To design the pre- and posttests tasks as well as the classroom tasks, a list of target content words was prepared under the teacher's recommendation. These were analyzed and selected by the teacher to best suit the learners' needs and interests. Once again, we were reminded that traditional corpora of authentic native speaker language are simply far too difficult for beginner learners to grasp meaning of the words (Anthony, 2013). The work with the new vocabulary was only possible because the corpora had been built within the A1-A2 framework of language and also because they referred to topics that had all the materials and

⁴⁴ Validity refers to whether a test measures what it aims to measure. See: <u>https://www.cambridgeenglish.org/blog/what-is-validity/</u>.

tasks interconnected. I believe this is the most relevant aspect for having pedagogic corpora in an EAL class to improve learning effectively.

3.5.1 Designing the tests

The pre-tests (Appendices D-E) were designed to determine what vocabulary students already knew or could identify from previous contacts with the language. The results were compared later with the results of quasi-identical tests used as posttests. The tasks were sequenced according to the following learning strategies: language activation, brainstorming, contextualization, identification, and language production. The pre-tests and posttests carried 27 points each while class and homework together carried 16 points, which shows a distribution of 70 points. However, the production activity in each of the tests carried only 3 points in each one. The points were later normalized to 100 so that the statistics could reflect the treatment *de facto*.

Activating⁴⁵ prior knowledge (Table 8) of a language means both eliciting from students what they already know and building initial knowledge that they need in order to understand the meaning of the language. The activation (Task 1) will certainly foster appropriate brainstorming (Task 2), an activity used to generate ideas in small groups (Richards, 1990). In addition, contextualization (Task 3), "the fact or process of considering something in its context [...] which can help in understanding it",⁴⁶ is tested, followed by identification (Task 4) which can be understood as recognition of language instances. Task 5 – Production, is the last task and it tests students' recall of the language they had been exposed to and had worked with in the class and home activities.

TASK 1	TASK 2	TASK 3	TASK 4	TASK 5	Grades			
Activation	Brainstorming	Contextualization	Identification	Production	total			
6	3	6	9	3	27			

Pre-test tasks: paper-based - 5 activities without the teacher's help

Table 8 – Underlying rationale for Tasks

Post-test tasks: paper-based - the same type of activities without the teacher's help							
TASK 1	TASK 2	TASK 3	TASK 4	TASK 5	Grades		
Activation	Awareness	Contextualization	Identification	Production	total		
6	3	6	9	3	27		

Source: the researcher.

⁴⁵The activation strategy was first coined by Harmer (2003) in his book "How to teach English" when proposing the ESA (Engage - Study - Activate) methodology.

⁴⁶See: <u>https://dictionary.cambridge.org/us/dictionary/english/contextualization.</u>

The constructs underlying the design of each activity are labeled in Table 8 above and are identical in TASKS 1, 3, 4 and 5. In Task 1 (Figure 10), in both tests, students were exposed to the names of the buildings and had to match labels and buildings before attempting to do TASK 2. TASK 2^{47} *brainstorming* in the pre-test (Figure 11) is the same that assesses *language awareness* in TASK 2 - posttest (Figure 12), because it was done after the class and homework. Below are examples of some of the tasks designed for both tests which illustrate the underlying constructs defined and the homework with the focus on the structure *there be – there is there are –* can be checked in Appendix F.

3.5.1.1 Pre- and posttests – Topic 1 (T1)

Below are samples of some of the tasks the young learners had to do in the pre- and posttests: Figures 10, 11 and 12.

House School Gas Baker∖ Hospita Park Drugstore Garden Center Supermarke Office Fire Pet shop Library High School Mall Police Station Post Office 1- Look at the words and label the buildings: Γ ORKSHEET

Figure 10 - Pre- posttest - Neighborhood - Task 1 - Language activation

Source: the researcher.

⁴⁷ The labels followed a logical sequence of learning and teaching language communicatively but both tasks tested producing language.

Figure 11 - Pre-test - Neighborhood - Task 2 - Brainstorming

2- Choose 3 buildings and write sentences about them:		
a		
b		
C		
Source: the researcher.		

Figure 12 – Posttest – Neighborhood – Task 2 – Language Awareness

2- Read the concordance lines below. Then, choose **3 buildings (exercise 1) and write sentences about them:**

٠	There are many different types of map. This is because we use different maps for
	different reasons.
٠	find the best road to your friend's house
٠	find your way around a nature park
٠	City block with homes and stores
٠	Do you have friends in your neighborhood?
٠	Tall apartment buildings where many people live
٠	They may have museums, libraries, and parks.
٠	People live, work, learn, and have fun close to one another in cities
٠	They may be able to walk to school, the post office, the library, and stores.
٠	They may also use public transportation to get to different parts of the city.
٠	Tall apartment buildings where many people live
٠	There is a library nearby
٠	When you have a picnic at the park, you clean up after yourself
٠	A park map, for example, help you plan
a	
b-	

Source: The researcher.

c-____

Figure 12 illustrates Task 2 in the posttest with some examples of the concordance lines they had worked with in class. Clara explained that some students claimed they did not know how to spell some words they wanted to write and so she decided she would add some of the concordance lines in the test but without calling their attention to them. The analysis of the results in Chapter 4 will demonstrate it did not make a noticeable difference in the learners' written outcomes.

inguie ie iie una postest	110181100111004		aon e	eennennunitaine
3- Match the two column	ns:			
(1) Hospital		() fire	eman
(2) School		() po	lice officer
(3) Police station		() do	ctors and nurses
(4) Post office		() pri	ncipal
(5) Bakery		() po	stman
(6) Fire station		() bal	ker

Figure 13 - Pre- and posttest - Neighborhood - Task 3 - Contextualization

Source: the researcher.

One important variable is the influence of classwork and homework in the posttest results. One of the tasks that shows it is Task 3 - contextualization. The vocabulary in the pretest - Task 3 (Figure 13) was dealt with in the classroom when students watched a short video and worked with its transcription afterwards (Appendix H). Clara exposed them to the target language (KWICs) in context and worked with the text (Figure 14) to contextualize the neighborhood services.⁴⁸

Figure 14 – Text related to Neighborhood services

107 Community Helpers People help out in the community. Bus drivers take people where they need to go.
108 Teachers teach students. Crossing guards help children cross the street. Fire fighters keep people safe when there is a fire.
109 Police officers protect people. Doctors help keep people healthy. Mail carriers bring mail. Farmers grow food for people to eat.
110 Vets help people keep their pets healthy. You can help, too. You can pick up trash. You can help a neighbor.
111 Who delivers mail to your house?
112 Who helps students get to school?

113 Who can help people in an emergency?

Source: #LancsBox - Tool: Text.

١

⁴⁸ On Neighborhood: NS LEARNING TOOLS, Our neighborhood for Kids, Places of Neighborhood, 15 Neighborhood Services. Available at: <u>https://www.youtube.com/watch?v=OQxRVOG10ZA</u>.

Figure 15 – Pre- and and posttest – *Neighborhood* – Task 4 – *Identification* 4- Look at the picture about this town. Which buildings do you know? Write the names you can remember:

000

Source: unknown on the web.

Task 4 above aimed at helping learners recognize information they were already acquainted with in the pre-test and could recall in the posttest. Moreover, Figure 16 below shows Task 5 - Production. In the pre-test, it aimed at raising the teachers's awareness of how much of the topic the learners already knew. However, Task 5 in the posttest raised expectations they could use many of the new words in personalized sentences to complete the activity.

Figure 16 – Pre- and posttest – Neighborhood – Task 5 – Production

5- Co	mplete the sentences to describe your neighborhood:	
	I live near theand	
	There are	
	There is	

61

Source: see Appendix F.

After the classwork with the target vocabulary and the various activities with the concordance lines, the learners received the homework (Appendix F) handout not only to revise the names of buildings but also to consolidate the difference between *there is* and there *are*. It was also preparation for the posttest after an interval of 10 days.

3.5.1.2 Pre- and posttests – Topic 2 (T2)

The design and rationale underlying the pre- and posttests in Topic 2 – Animals followed the same principles used in Topic 1 (Appendices D, E). Constructs such as *identification, recognition, awareness, brainstorming, recall* and *contextualization* were contemplated and helped learners in the written work, the data which were collected and assessed.

Figure 17 - Pre-test - Animals - Task 1 - Language activation

Source: the researcher.

Figure 18 – Pre-test – Animals - Task 2 – Brainstorming

2- Choose 3 pictures and write sentences with the words you selected:			
Example:	The shark lives in the ocean.	The ${\bf shark}$ is white and black.	Sharks eat fish.
a			
b			
c			

Source: the researcher.

The sentences produced by the students in Task 2, during *brainstorming*, were a demonstration of what they already knew about the topic. The same task in the posttest was aimed at showing how much of the input offered during the lesson and consolidated during homework would affect their *production*.

Figure 19 - Pre-test - Animals - Task 3 - Language recall

3- Complete <u>each group of sentences</u> with the same word from the list or with the ones you remember:

a) The _____ is a big cat.

The _____ lives in the wild in Africa and India.

The _____ hunts during the day.

The _____ have a beautiful mane around their head.

b) The _____ live in the water, in rivers and in a bowl in the houses.

Some _____ are gray, others are yellow, blue or red.

The ______ which live in the Amazon have a dangerous bite.

c) The _____ live on farms and on the plains.

Some children like to ride the domestic _____.

The _____ can be brown, black, gray and also beige.

Source: the researcher.

Figure 20 – Pre-test – Animals – Task 5 – Language awareness and recognition

5- Let's classify the animals. Read the names and put them in the right columns below:

> Tiger, dog, lion, fish, cat, cow, elephant, horse, snake, shark, frog, panda bear, giraffe, parrot, rabbit

Domestic	Pets	Wild
		Ψ.

Source: the researcher.

Tasks 2, 3 and 4 were aimed at guiding students towards producing their own sentences in Task 5 in the posttest. As for homework, the teacher asked for more demanding tasks in Topic 2 as she noticed the learners already knew most animals (Figure 21). It was decided that I would plan tasks which would require an expansion of vocabulary on the topic, but focused on the powerpoint work in the class and bingo game (Appendix I) with the animals and their characteristics. It is important to mention that they had worked with the concordance lines with that information as well. During the game they had to produce sentences orally about the animals they had on their cards to get the points. Examples: 1) The parrot is colorful; 2) The parrot has wings and flies; 3) Chicken cannot fly; 4) The tiger is the largest animal in the forest; 5) The lion has strong legs to run; 6) The monkey can jump; 7) Crickets are jumping insects; 8) Fish live and swim in the water; and 9) Sharks are dangerous.

Figure 21 – Homework – *Animals – Language Consolidation* Label the animals and write sentences about **3 you like most: (0.5 each)**

Source: the researcher.

1. Which animals do you know? (at least 3 - 0.5 each)

2. Which ones can you find in the zoo or at home ? (maximum 8 - 0.5 each)

-	
In the Zoo	At home pets – domestic

3. Name and describe 5 of them. Say how they move (swim, fly, run or walk)

(0.5 each)

Source: the researcher.

3.5.2 Lesson planning

The 2-year pandemic brought a new understanding of the demands in the classroom environment, showing in practice that not only learners but also teachers need to be digitally savvy to stay abreast of the cutting-edge innovations and continue to be a player in the education field of work. It certainly begins with the introduction of innovations in the teaching approaches in the classroom as they can be the starting point to change the traditional standpoints learners and teachers have had in their relationship. In this study, the contribution for this change was the implementation of class material: authentic age-appropriate language from corpus-informed corpora in concordance lines intended to be interesting enough to keep learners engaged and working communicatively.

3.5.2.1 Brief rationale underlying the lessons' activities

Beginner language learners improve and develop their learning through many cognitive processes ignited by different techniques and materials used in language classrooms. One of them is copying chunks of language from models of texts they are exposed to in the lessons. Once the meaning is understood, the learner copies parts of the sentence, makes the changes they consider suitable, including the target language making the new sentence true to himself. In the past, *drilling* through substitution and completion work⁴⁹ were key features of the audio-lingual method (Skinner, 1957; Fries; Lado, 1979; Brooks, 1964). In the past, the technique contemplated only oral language but more recently it has been extended to written work as well. In this case, the emphasis should still be first on oral comprehension of meaning (Richards;

⁴⁹ A substitution drill is a classroom technique used to practise new language. It involves the teacher first modeling a word or a sentence and the learners repeating it. The teacher then substitutes one or more keywords, or changes the prompt, and the learners say the new structure. Available at: <u>http://englishteachingtechniques.blogspot.com/2012/09/</u>. Accessed on: August 20, 2022.

Rodgers, 1986) and only afterwards students would work with language inductively, trying to compare their production with the models given.

Nowadays, those techniques have had a comeback but under the contemporary notion of language being taught in context. This has been coined as *drilling in disguise* when the repetition *drill*⁵⁰ is carried out more communicatively, more meaningfully, and not mechanically as in the audio-lingual teaching method. The assorted variety of existing types of drilling is more creative and used in a learner-centered environment. It refers to the fact that "many communicative drills can be modified in the classroom to require meaningful communication" (Rubio *et al*, 2003, p. 18).

Having that in mind, for this investigation, DDL-type activities designed for the class work in the three groups of learners: 4th to 6th grades were delivered in a Content and Language Integrated Learning (CLIL) format since the language content was the focus and English the medium of instruction. CLIL refers to situations where subjects are taught through an additional language with dual-focused aims, namely the learning of content and the simultaneous learning of a foreign language (Marsh, 1994). In the pre- and posttests (Subsections 3.5.1.1 and 3.5.1.2) as well as the class work, the activities ensured cognitive processes⁵¹ (Table 8, p. 60) were triggered by different techniques employed by the teacher to introduce and consolidate the target language. The activities which required substitution of words had the underlying rationale of affording identification and repetition of target language in different moments of the work.

The lessons were back-to-back and lasted 1 hour and 20 minutes each week. The DDL approach was not supposed to take the entire lesson, yet be a complement to the class routine, and used when learners worked with the discovery of new language with the concordance lines. The lessons followed a similar sequence with all the groups: language presentation (work with meaning at first through picture picture presentation or video watching), repetition of target language using the pictures, flash cards, or playing bingo, and a written activity. The innovation was the use of age-appropriate concordance lines⁵² with the target language (KWICs) yielded by a pedagogic corpus which were copied and cut out as strips of paper to be manipulated by students, giving them the opportunity to work in pairs or groups to discover the lexis and language patterns inductively.

In the ideal environment originally suggested by Johns (1991), learners would analyze language yielded by software using the computer. This hands-on discovery work could not be

⁵⁰ Systematic repetition of facts or sentences to aid memorization (audio-lingual method).

⁵¹ Different taxonomies of task types were used in task design (Bloom, 1956; Anderson; Krathwohl, 2001).

⁵² Yielded by the software.

carried out during the investigation and so, the paper-based, hands-off soft approach was chosen by the researcher (Boulton, 2012). English was used most of the time and some translations occurred to clarify meaning. Clara gave learners all the required support during the lessons while following the suggestions in the Lesson plans (Tables 9-10).

3.5.2.2 Lesson plan – Neighborhood (T1)

Activities	Materials	Procedure suggested	
Pre-test	Paper-based	Individual work without any help. Data collection	
	First day		
Classwork 1	PowerPoint	Awareness of key lexis attached to images they represent;	
	slides	work with 'word clouds'; personalization of buildings in	
		one's own neighborhood; can be used at the end of class	
		as well, in this case beginning with the video $(4'15) +$	
		transcription.	
Classwork 2	Paper-based	Concordance lines work and n-grams – strips of paper	
	Strips of paper	with the KWICS in context – in pairs. Models of authentic	
		language use and usage.	
		Work with 'substitution' of keywords to make it	
		meaningful to each student.	
Supplementary	Video ⁵⁴ +	To emphasize the KWICS orally and draw students'	
tasks	transcript or	attention to them once more and prepare for the written	
	Bingo cards	homework. Flashcards can also be used.	
Homework	Paper-based	Consolidation of KWICS; revision of structure: 'There is'	
	Tasks	and 'There are'. Students to access link and answer	
		questions about the image:	
		https://www.liveworksheets.com/gf787983nj.	
Post-Test	Paper-based	The same as the pre-test; individual and without any help.	
	10 days later	Data collection.	

Table 9 – Lesson stages ³³ -	- Topic	1 – Neigh	borhood
---	---------	-----------	---------

Source: the researcher.

I devised all the activities for each of the topics with a DDL approach to encourage the teacher to add variety to her lessons, diversify her approach and also to encourage her to use corpora with her learners in a very learner-centered format. The centerpoint of DDL is the manipulation of the concordance lines for inductive work with the discovery of patterns of the word sequences and n-grams, to observe the target words in context (KWICs), identify and notice the surrounding words. The classwork material provided to the teacher was varied and Clara was free to use the slides of the pptx and short videos to introduce the topic, images to consolidate the words and associate them and bingo cards (game) for the recall and production at the end. The assorted material was produced or selected specifically for the groups which is

⁵³ The lesson plans and materials such as pptx or bingo and flashcards were designed and produced by the researcher.

⁵⁴ The video transcript used in the classroom is in Appendix G.

an idea corroborated by Frankenberg-Garcia (2012, p. 486), who argues in favor of "help[ing] language teachers to take their first steps in using corpora autonomously [to] encourage them to want to find out more about using corpora in the classroom".

The images in the *PowerPoint* slides used in Classwork 1 mentioned in the Lesson Plan above (Table 9) as well as the short videos were accompanied by word repetition aimed at linking the oral form to the images they represented, helping the process of memorization. Reppen (2010) corroborates the idea of working with sound and form at the initial stages of L2 learning and suggests a holistic approach using pictures and other visual aids to be matched to words. The flashcards were used mainly for recognition of form and pronunciation work. "Exercises such as those involving the use of flashcards and the keyword technique tend to result in fast and efficient gains in knowledge of the form – meaning connection of words (Meara, 2001, p. 238). As an example, the teacher would call students' attention to the context in which the word *neighborhood* occurred, i.e., to the words which came before and after *neighborhood* in the concordance lines and would replace the KWIC with another one of their preference. The aim was to draw students' attention to the word sequence, to raise their awareness to notice the language in use to enable them to recall it when writing their sentences.⁵⁵

In another activity, students played with strips of paper (concordance lines) and created their own sentences or questions. Examples below:

- concordance line: There are many different types of maps. This is because we use different maps for different reasons.
 Learner: There are different types of medicines. This is because we use different medicines for different reasons; and
- 2) concordance line: *Do you have friends in your neighborhood?* Learner: *Do you have friends in your school?*

⁵⁵ A more detailed plan of action in the classroom with T1 is in Appendix J.

3.5.2.3 Lesson plan – Animals (T2)

Activities	Materials	Procedure suggested
Pre-test	Paper-based	Individual work without any help. Remind them they will
	First day	learn those words they still do not know in the following
	Docx* #1	class. Names of animals, body parts and ways of moving
		should be dealt with in the DDL class. Data collection.
Classwork 1	PowerPoint	Awareness of key lexis – animals' names - attached to
	slides	images they represent; the first 13 slides are very
		important; slides 13 and 14 are body parts; work with
		video + transcription.
		Key words: nouns and verbs but some adjectives may
		apply when they describe the animals. There are too many
		animals, but you can choose according to what you believe
	D 1 1	they already don't know.
Classwork 2 +	Paper-based	Concordance lines work and n-grams - strips of paper
Classwork 3	Strips of paper	with the KWICS in context – in pairs. Models of authentic
		language use. As you know the learners well, they can
	D. *#3	work with two or more strips of paper, depending on how
	DOCX* #2	their understanding goes. Work in pairs or small groups to
		analyze the semences and the K wills heighbors.
		work with substitution of keywords and the suffounding
Supplementary	Video or	To emphasize the KWICS orally and draw students'
toeke	Ringo cards	attention to them once more and prepare for the written
lasks	Dingo carus	homework Elashcards can also be used. This is the time
		for a fun game with a competition among different small
		groups of learners to make it easy for them to remember
		the animals' names. They can either guess names, or body
		parts always producing their own sentences 'How do
		animals move. Learning Videos for Kids', mp4 – AuSum
		Sisters ⁵⁶
Homework	Paper-based	Consolidation of KWICS; vocabulary expansion and
	Tasks	additional variety according to their grades.
	Docx # 3*	
Post-Test	Paper-based	The same as the pre-test; individual and without any help.
	10 days later	Data collection.

Table 10 – Lesson stages – Topic 2 – Animals

Source: the researcher.

The DDL approach in class and the techniques used were very similar to what happened with Topic 1. Same instructions for the activities, similar language presentation and similar media to give support to the sequence of activities. The data was collected and assessed by the researcher and then results submitted to tests to have quantitative information for comparison. The findings are described, and some assumptions made in Chapter 4.

⁵⁶ The video above has been discontinued from *YouTube*. However, I had downloaded it when preparing lessons and saved a copy of it.

3.5.3 Teacher's testimonials – remarks on the classroom work

During one of the first talks online, Clara mentioned that students asked many questions when handed in the pre-test in one of the groups, including requests for clarification of vocabulary. Clara said she even had to explain the instructions and say what was expected from them without giving them the answers. She also told them they could leave questions undone, unanswered, but some learners did not like it. She had to calm them down so they could complete the work. The comment below was made by the teacher after the initial phase of the implementation of the investigation and describes her students' reactions and her feelings towards the work with authentic material from the corpora:

I collected all the sentences the students produced after the work with concordance lines. As this was the first group, I handed out different strips to different learners and many students did not understand parts of them. As a result, for the work in the following classes, I tried to choose 'concordance lines' which were more related to their previous knowledge and their current language context. I felt they were more motivated and produced more sentences.

After the initial concern with the work with concordance lines, and her changes in how she approached the students to do it more effectively, the lessons took place in a more relaxing way with students competing among themselves to produce sentences. She also mentioned it was quite interesting to see them work with the lines and select chunks from them to use in their writing. When she realized many of the students could infer the meaning of the KWICs and recall some of the target vocabulary to describe their own neighborhood in the written sentences, she finally felt it was worth it. In her words,

> the written tasks were done in class since I wanted to observe their difficulties, being able to help them when needed. I do believe everything learned in isolation is much more difficult for learners. Contextualized words and chunks make learning more meaningful and applicable for learners. Not all of them internalized the new n-grams well enough to use them, but the sentences were mostly meaningful mainly due to revising previous samples.

She mentioned she had never worked with specialized corpus-informed material before and felt that at times the input with concordance lines offered more challenges to the younger learners. Although unaware of what the investigation results would be at the time, the teacher was in fact instinctively trying to answer Anthony (2009, p. 1) who inquired, "there is no
question that the use of corpora in the classroom has value, but how useful is concordancing with beginner level EFL⁵⁷ students?"

After working with a KWIC in the classroom, for instance, *neighborhood* (Topic 1), Clara worked with some 3- grams to talk about her own neighborhood. Many of the samples illustrate the use of *find your way, need a map, different kinds of, in my neighborhood, a map can and live in a.* In another activity, Clara would use another approach to the KWICs to introduce the work and motivate students to build sentences with the 3-grams. She would elicit their reply to the question:

T: I live in a quiet neighborhood. I can see the mountains and a big valley around. And you?T: Now, tell me about your neighborhood. Where do you live?

The teacher replicated the procedures used with Topic 1. She used a few texts with Topic 2 in the classroom to clarify the meaning of the KWICs or expand learners' vocabulary from other concordance lines. Clara used different approaches to call learners' attention to segments of the sentences that could be useful when they produced their own sentences to describe the animals in their homework and posttests. Some examples are *jump very well*, *jumping insects, animals that have strong legs to run, have feathers, … that cannot fly* and *cannot fly at all*. Learners worked with them while looking at images in the pptx , handling concordance lines like the ones below and playing bingo.

One last remark is that she noticed that the older the learners were, the less tidy their sheets of exercises or tests were. Those learners gave her the impression of lack of focus and perhaps, lack of interest. However, those who participated with attention produced sentences which were more creative and most of the time with new combinations of the vocabulary they had been working with (Chapter 4 – Qualitative Analysis).

3.5.3.1 Questionnaire for the teacher

After implementing the tests and the sequence of classroom tasks on both topics: Neighborhood and Animals in her groups, Clara was invited to answer a short structured written questionnaire (Table 11) below.

⁵⁷ English as a Foreign Language (EFL). It is used in the teaching - learning environment.

Table 11 – Post class-evaluation – Teacher's questionnaire

4th - 5th - 6th grades

The application in the classroom is underpinned by a tripod of constructs: Content and Language Integrated Learning (CLIL), information from a specialized pedagogic corpus and the approach Data-Driven learning (DDL):

		YES	NO
1	Did the specialized corpora-informed material make any		
	difference in regards to learners' interest and engagement in		
	the tasks when compared to your regular approach?		
2	When vocabulary is grouped in lexical sets is it easier for		
	learners to relate to it and grasp meaning more easily?		
3	Was your experience using the KWICs - key words in the		
	concordance lines - with the learners positive?		
4	Were the learners motivated to do the follow-up task? Was it		
	in class or for homework?		
5	Did they do it on their own or needed someone's help?		
	-		

Source: the researcher.

The answers complemented the teacher's remarks on using the concordance lines and would guide the researcher to adjust the tasks to make learning more effective in future work with concordance lines. Since on different occasions Clara had had many opportunities to express herself mainly in relation to class management, the questions were prepared so that we could conclude her work with the groups. In tandem with the first delivery of lessons and administration of tests, Clara wrote short notes for herself about class management which later were shared. In addition to the classwork, she also photographed the students while working with the concordance lines to share with the researcher (Appendix K).

The qualitative and quantitative analyses of outcomes will be thoroughly described next in Chapter 4, which should yield evidence whether resorting to corpus-informed pedagogic corpora could heighten learners' expansion of English vocabulary in their early years of primary school.

Chapter 4 – Results and discussion of outcomes

4.1 Introduction

In this chapter we will present the results of the investigation distributed in two main areas: Part A – the relevance of compiling pedagogic corpora for younger learners and the language analysis of concordancer tools, and Part B - the results of learners' production in the posttests after working with the concordance lines in the classrooms. The two corpora COREL-GEO and COREL-SCI yielded topic-informed and grade-appropriate vocabulary which, once selected and dealt with by learners, can shed light on the effectiveness of implementing a new approach to language learning in the English classroom.

First, Part A, subsection 4.1, where we will show the concordancer tools functions and analysis results and the selection of the linguistic features to prepare activities. Discussing these results, we will be able to answer research questions (i) and (ii) which were presented in Chapter 1 and are reproduced here:

i) Which are the most frequent topic-related L2 content words and 3 and 4 n-grams (lexical bundles / chunks) in COREL-GEO for $4^{th} - 6^{th}$ grades? (Appendix L); and

ii) What are the most frequent topic-related L2 word combinations 3 and 4 n-grams (lexical bundles / chunks) in COREL-SCI for $4^{th} - 6^{th}$ grades? (Appendix M);

Second, Part B, subsections 4.2 and 4.3, where quantitative and qualitative analysis of the results of learners' language production will be presented in an attempt to answer research questions (iii) and (iv):

(iii) Can activities implemented with a Data-driven learning (DDL) approach expand learners' topicalized vocabulary to boost their progress in English?; and

(iv) Are the results significantly different from one grade to the others when the same tasks are worked with in the classrooms?

Due to the length of the *content words lists* in the pedagogic corpora, the complement to answers to questions (i) and (ii) above can be found in Appendices L and M. The justification for not including the lists in the body of the thesis is that the activities in the classroom and the production of the learners were reliant on only two subsets of those corpora: *Neighborhood* (T1) and *Animals* (T2). Information on those subsets can be found in Table 7 (Subsection 3.4) and Figure 7 (Subsection 3.4.1). The COREL-SCI and COREL-GEO corpora can be found in its entirety in Appendices L and M.

Part A

4.2 Concordancer language analysis - tools, functions, and results

This section explains how the concordancer tools carried out the different analyses of COREL-GEO and COREL-SCI contents described in subsection 3.4.1. After building the corpora, the second stage, annotation, and the third, analysis for later retrieval, were performed by #LancsBox 6.0, the web-based concordancer chosen for this investigation. Table 12 shows the most frequent words in COREL-GEO and compare with the topmost frequent words in subset *Neighborhood* (T1) while Table 13 compares the most frequent words in COREL-SCI with the top ones in the subset *Animals* (T2).

Table 12 - COREL-GEO + subset Neighborhood topmost frequent words

#LancsBox 6	.0					_	
KWIC	GraphColl	Whelk	Words	Ngra	ams	Text	Wizard
Corpora Word	s: COREL_SCI, Corpus 5 - Neighbor	hood 🗙 Words	COREL_GE X				
		Search		Ð		726.70/586.22	per 10k-
▼ Corpus	COREL_GEO V Freq	uency	▼ Dispersion	▼ Туре			
	Type ▼ Freq	uency: 01 - Freq	Dispersion	: 01_CV		`	
the	6375.000000		0.447758	~	/		
of	2569.000000		0.650346		COREL GE	0	
and	2453.000000		0.677885		—		
is	2046.000000		0.747554			/	
а	2034.000000		0.871552				
to	1859.000000		0.800018				
in	1710.000000		0.752914	0	- 👧		
are	1427.000000		0.957705	C	orpus 5-Ne	Ighborhood	
it	887.00000		1.131860		-		
that	800.00000		1.051627				
you	669.00000		1.799714				
on	592.000000		1.396621				
they	589.00000		1.549366				
can	549.00000		1.629760				
water	514.000000		2.026305				
for	505.000000		1.509535				
	404 000000		1.071010				
▼ Corpus	Corpus 5 - Neighborhood	▼ Frequenc	y V Dispersion	▼ Туре			
	Type ▼ Freq	uency: 01 - Freq	Dispersion	01_CV			
the	342.000000		0.462163	<u>^</u>			
а	211.000000		0.757808				
to	205.000000		0.678979				
and	143.000000		0.716123				
of	122.000000		0.650416				
in	119.000000		0.593836				
is	117.000000		0.934618				
you	97.000000		1.269715				
people	97.000000		1.150749				
are	84.000000		0.879530				
your	52.000000		1.846311				
i+	47 00000		1.487733				
п.	47.000000						
there	44.000000		1.478631				
there map	44.00000 44.00000		1.478631 1.614895				
there map they	44.000000 44.000000 41.000000		1.478631 1.614895 1.228004				

Source: #LancsBox.

#LancsBox 6.0)						- E
KWIC	GraphColl	Whelk	Words	١	Igrams	Text	Wiza
Corpora Words	Corpus 5 - Neighborhood >	Words: Corpus 4 -)	Animals 🗙 Words: C	OREL_S 🗙			
		Search	1	Ŀ		677 57/460) 85 per
▼ Corpus	COREL_SCI V Fr	equency 🔻	Dispersion	▼ Туре		071.077100	nee per
Ту	pe 🛛 🗸 Fre	equency: 01 - Freq	Dispersion: 0	1_CV		5	
ie.	6157.00000	0	0.548700	~	10 million		
nd	2465.00000	10	0.658276	1000			
f	2411.00000	10	0.757319	2	CODEL		
1	2326.00000	10	0.859471	24	COREL_S		
1	1954.00000	10	0.868201	21			
	1680.00000	10	0.780321	24			
re	1618.00000	0	1.086940	21		<u> </u>	
	1617.00000	0	0.939618	81 - L			
at	996.00000		1.152942	21			
iey	880.00000		1.431558	21	Corpus 4	Animals	
	840.00000	Ē.	1.274232	21	oorpus	a annu S	
ater	761.000000	F	2.064976	21 - C			
nimals	713.000000	E.	1.891993	24			
an	680.00000		1.553853	24			
ave	628.00000	F	1.692628	24			
Ju	567.000000	E.	1.940654				
	5.11.00000	V V V	4.050200				
V Corpus	Corpus 4 - Animals	▼ Frequency	▼ Dispersion	▼ Type			
TV	pe V Fre	ouency: 01 - Freq	Dispersion: 01	L CV			
	445 000000		0 696336				
16							
re	322 000000	12	0.917598	^^			
re nd	322:00000	l.	0.917598				
e 10	322.000000 240.000000 238.000000	1: 1: 1:	0.917598 0.732283 0.838505				
ne nd	322.000000 240.000000 238.000000 231.000000))))	0.917598 0.732283 0.838505 0.876134				
e 1d	322.000000 240.000000 238.000000 231.000000 168.000000		0.917598 0.732283 0.838505 0.876134 0.780823				
re nd f ev	322.00000 240.00000 238.00000 231.00000 168.00000 166.00000		0.917598 0.732283 0.838505 0.876134 0.780823 1.168842				
e	322.00000 240.000000 238.000000 231.000000 168.000000 166.000000	 	0.917598 0.732283 0.838505 0.876134 0.780823 1.168842 0.981534				
e re nd f vey	322.00000 240.00000 238.00000 168.00000 168.00000 163.00000 150.00000	 	0.917598 0.732283 0.838505 0.876134 0.780823 1.168842 0.981534 0.997775				
e	322.00000 240.00000 238.00000 168.00000 166.00000 163.00000 150.00000 150.00000	 	0.917598 0.732283 0.838505 0.876134 0.780823 1.168842 0.981534 0.997775 0.994414				
rend	322.00000 240.00000 238.00000 168.00000 166.00000 163.00000 150.00000 141.00000 133.00000).).).).).).).).	0.917598 0.732283 0.838505 0.876134 0.760823 1.168842 0.981534 0.997775 0.994414 1.433653				
ne nd f) iey) iat ave nimals	322.00000 240.00000 238.00000 168.00000 168.00000 168.00000 160.00000 150.00000 141.00000 133.00000 131.00000).).).).).).).).).	0.917598 0.732283 0.838505 0.876134 0.780823 1.168842 0.981534 0.997775 0.994414 1.433653 1.150265				
ne	322.00000 240.00000 238.00000 168.00000 168.00000 163.00000 150.00000 133.00000 131.00000 131.00000	1 	0.917598 0.732283 0.838505 0.838505 0.876134 0.780823 1.168842 0.981534 0.991775 0.994144 1.433653 1.150265 1.150265				
re nd	322.00000 240.00000 238.00000 188.00000 166.00000 160.00000 141.000000 133.00000 131.00000 131.00000 131.00000 130.00000	 	0.917598 0.732283 0.838505 0.876134 0.7802823 1.168842 0.981534 0.997775 0.994414 1.433653 1.150265 1.280485 1.816874				
e	322.00000 240.00000 238.00000 168.00000 168.00000 163.00000 150.00000 141.00000 133.00000 131.00000 131.00000 130.00000 131.00000 131.00000 131.00000 131.00000	 	0.917598 0.732283 0.838505 0.838505 0.8376134 0.780823 1.168842 0.991534 0.997775 0.994114 1.433653 1.150265 1.280485 1.816874 1.816874				

Table 13 – COREL-SCI + subset Animals – topmost frequent words

Source: #LancsBox.

In a single glance it is possible to check the findings and find similarities in the results. Both subsets of both corpora reveal more function words at the top of the lists and very few content words. Therefore, to make the investigation more focused and meaningful to learners, it was necessary to have the concordancer generate and analyze the word classes: nouns, verbs, adjectives, and adverbs separately in subsets *Neighborhood* and *Animals*. More comprehensive lists of those subsets are in Appendices N - O.

4.2.1 Selection of vocabulary for the activities and tasks

In this section we will mention the concordancer findings to address questions (i) and (ii) to be found in Appendices L and M, narrowing down the information with the results of the most frequent word classes and n-grams in the subsets *Neighborhood* and *Animals* in Appendices N and O. We will also demonstrate how the content words were separated in word classes and n-grams, and then exemplify how some of the KWICs in concordance lines were selected by the teacher.

Once the subsets *Neighborhood* and *Animals* were compiled, the concordancer generated their most frequent content words. Surprisingly, some of the words among the 50 ranked as most frequent were not the ones both the teacher and I had expected to work with. The result was the same with the n-grams but the combinations we selected, unlike the individual words, were situated at a higher rank in the list generated by #LancsBox. As a consequence of that, other vocabulary scattered on the list was chosen to complement the material for the activities. An example of the lower ranked words were the names of buildings in a neighborhood. Although *hospital, school* and market were ranked in a higher position, *library, bakery, police station, fire station* were not. We assumed the reason for that is the fact the material in the subsets of corpora was aimed at native-speaker learners, and the vocabulary such as the *nouns* mentioned would not need to be in the youngsters' textbooks with such frequency.

Nonetheless, this fact did not pose any constraints to the task and test design as the *KWIC* tool could generate concordance lines with any word chosen, despite its degree of frequency. Our criterion was to select the KWICs which we thought would be meaningful based on the learners' curriculum maps. The KWICs which had more samples, and consequently would foster recurrence of exposure, were selected, and included in the tasks. As mentioned before, the constructs' *usefulness* and *essentialness* were used to answer our question about the choice of words that were not so frequent.

4.2.2 #LancsBox tools findings in Neighborhood subset of COREL-GEO

In this section and the next, we will describe the functions of the concordancer tools, how they analyzed corpora contents, and we will mention the results they yielded to suggest future possibilities for a hands-on use in a school lab.

4.2.2.1 Words tool – word classes

First, the *Words* tool was used to generate the list of the most frequent words in the *Neighborhood* subset. The list is just a sample with the top words (Table 14). As it shows content and function words together, we needed to select only content words like nouns, adjectives, verbs, and adverbs (Appendix N). For the purposes of this investigation, the function words had to be disregarded as the content words were the main target language of this study. Although function words were not individually focused on as target language, some of them ended up being part of the study as many of them composed n-grams that the students were exposed to.

Corpora Words: Corpus 5 - Ne	eighborhood 🗙		
	Search	Ð	586.22 per 10k-
▼ Corpus Corpus 5	- Neighborhood V Frequency	▼ Dispersion ▼ Type	
Туре	▼ Frequency: 01 - Freq	Dispersion: 01_CV	
the	342.000000	0.462163	
а	211.000000	0.757808	
to	205.000000	0.678979	
and	143.000000	0.716123	Correge 5 Noighborhood
of	122.000000	0.650416	Corpus 5 - Neighborhood
in	119.000000	0.593836	
is	117.000000	0.934618	
уоц	97.000000	1.269715	
people	97.000000	1.150749	
are	84.000000	0.879530	
your	52.000000	1.846311	
it	47.000000	1.487733	
there	44.000000	1.478631	
map	44.000000	1.614895	
they	41.000000	1.228004	

Table 14 - Most frequent words in subset Neighborhood

Source: #LancsBox - Tool: Words.

Second, the *Words* tool generated lists of content words filtered out in word classes (Tables 15 to18).

▼ Corpus	Corpus 5 - Neighborhood	▼ Frequency	Dispersion	▼ Lemma
	Lemma 🛛 🗸 Fr	equency: 01 - Freq	Dispersion: 0)1_CV
people n	96.00000		1.155172	
city_n	61.000000		1.674136	
place_n	54.000000		1.458141	
map n	47.000000		1.665468	
community_n	47.000000		1.978356	
school_n	35.000000		1.736022	
there_other	31.000000		1.669198	
home_n	26.00000		1.950122	
world_n	21.000000		4.300135	
building_n	21.000000		2.209308	
area_n	20.000000		2.627697	
find_v	19.00000		1.853134	
library_n	19.00000		2.029869	
question_n	18.000000		1.481799	
street_n	17.000000		2.754022	
neighborhood_n	16.000000		3.437658	
photo_n	16.000000		1.639778	
park_n	16.000000		2.198210	
land_n	16.000000		3.516176	
market_n	16.000000		3.553789	
direction_n	15.000000		3.749130	
house_n	15.000000		1.851981	
population_n	14.000000		4.103200	
town_n	14.000000		3.358024	
police_n	13.000000		2.833325	
country_n	13.000000		3.556306	
farmer_n	12.000000		2.931712	
thing_n	12.000000		2.302623	
station_n	12.000000		3.967828	
food_n	12.000000		4.095858	
theater_n	12.000000		2.851192	
language_n	11.000000		6.480741	
service_n	11.000000		4.327246	

Table 15 – Most frequent nouns in the Neighborhood subset

Source: #LancsBox - Tool: Words.

▼ Corpus	Corpus 5 - Neighborhood	Frequency	Dispersion	V L
_ L	_emma 🛛 🔍 Fre	quency: 01 - Freq	Dispersion: ()1_CV
be_v	257.000000		0.495618	
have_v	57.00000		0.948632	
can_v	37.00000		1.520050	
live_v	35.00000		1.715195	
do_v	34.00000		1.633956	
help_v	32.00000		2.523549	
may_v	26.00000		2.329814	
use_v	23.00000		2.011185	
go_v	23.00000		2.279979	
might_v	19.00000		3.268172	
find_v	19.00000		1.853134	
move_v	19.00000		3.837661	
get_v	18.00000		2.063721	
read v	18.00000		1.349792	
make v	18.00000		2.036438	
need v	17.00000		2.290284	
answer_v	16.00000		1.597273	
give_v	15.00000		2.315234	
come_v	15.00000		3.438425	
want_v	14.000000		1.926907	
take_v	12.00000		2.034406	
grow_v	11.000000		4.002389	
tell_v	11.000000		3.717114	
would_v	10.00000		2.722362	
keep_v	10.00000		2.858185	
look_v	9.00000		2.253772	
work_v	9.00000		2.903935	
study_v	9.000000		2.370655	
will_v	9.00000		3.502668	
sell_v	9.00000		4.269962	
visit_v	8.000000		3.368827	
could_v	8.000000		3.412251	

Table 16 – Most frequent verbs in the Neighborhood subset

Source: #LancsBox – Tool: Words.

	Tab	le	17	—	Μ	ost	free	quent	ad	jecti	ves	in	the	Λ	leig	gh	boi	rh	00	d	su	bse	et
--	-----	----	----	---	---	-----	------	-------	----	-------	-----	----	-----	---	------	----	-----	----	----	---	----	-----	----

▼ Corpus	Corpus 5	- Neighborhood	Frequency	Dispersion	▼ L
	Lemma	V Fre	quency: 01 - Freq	Dispersion:	01_CV
many_adj		35.000000		1.320839	
rural_adj		17.000000		2.682700	
different_adj		16.000000		1.853968	
other_adj		15.000000		2.514234	
more_adj		12.000000		3.357533	
few_adj		11.000000		2.267644	
large_adj		10.00000		4.034386	
such_adj		9.000000		2.581147	
urban_adj		9.000000		3.669938	
good_adj		9.000000		3.879512	
small_adj		9.000000		2.988021	
big_adj		8.000000		2.556353	
suburban_adj		6.000000		3.960460	
public_adj		6.000000		3.034805	
most_adj		6.000000		3.023783	
natural_adj		6.000000		4.540614	
new_adj		6.000000		2.829009	
open_adj		5.000000		3.880316	
busy_adj		5.000000		2.906156	
safe_adj		5.000000		4.645469	
local_adj		5.000000		3.772602	
close_adj		5.000000		3.795491	
official_adj		5.000000		6.480741	
special_adj		4.000000		3.993565	
near_adj		4.000000		3.850986	
pet_adj		4.000000		6.480741	
high_adj		4.000000		4.200514	
easy_adj		3.000000		3.686901	
short_adj		3.000000		4.697126	
2nd_adj		3.000000		4.116360	
great_adj		3.000000		4.849667	
fast_adj		3.000000		4.784233	

Source: #LancsBox – Tool: Words.

▼ Corpus Corpus 5 - N	leighborhood V Frequency	▼ Dispersion ▼ L
Lemma	▼ Frequency: 01 - Freq	Dispersion: 01_CV
then_adv	25.000000	1.131180
how_adv	22.000000	1.500205
where adv	22.000000	2.004301
also_adv	17.000000	1.568237
not_adv	16.000000	1.679970
out_adv	15.000000	2.572923
when_adv	14.000000	1.825782
why_adv	13.000000	1.989796
up_adv	13.000000	2.206166
there_adv	13.000000	2.587732
here_adv	12.000000	3.163741
very_adv	8.000000	2.611174
more_adv	6.000000	3.300219
so_adv	6.000000	3.161966
together_adv	6.000000	3.005613
below_adv	5.000000	2.856532
too_adv	5.000000	4.216524
sometimes_adv	5.000000	2.936133
still_adv	4.000000	3.199796
close_adv	4.000000	3.767509
usually_adv	4.000000	3.589071
south_adv	4.000000	3.687625
just_adv	4.000000	3.169457
far_adv	3.000000	3.657377
all_adv	3.000000	3.833314
often_adv	3.000000	4.190150
north_adv	3.000000	3.725278
most_adv	3.000000	4.309134
apart_adv	3.000000	3.708253
home_adv	3.000000	4.072224
else_adv	3.000000	3.742013
down_adv	3.000000	3.741092

Table 18 – Most frequent adverbs in the *Neighborhood* subset

Source: #LancsBox - Tool: Words.

The process is very user-friendly: one should left-click on *Type* on the right at the top blue header above, change *Type* to *Lemma* by clicking on the arrow, and then on Apply. After that, right-click on the black bar, next to the word Type on the left above, and a pop-up window will open. Add: *_v, or *_n, or *_adj or *_adv, one at a time, to have the most frequent words of the different word classes. Click on Apply.

4.2.2.2 N-grams tool – word clusters

Another tool, *Ngrams*, was used to generate the word clusters. An n-gram is a contiguous sequence of *n* items that comes from a text or a corpus. Some of them, though frequent, may not be pedagogically relevant, so teachers should choose at their discretion those more meaningful to their class. The young learners are beginning to be exposed to English with a greater focus on the target language and the number of words in the clusters and their combinations may make a difference in their comprehension. In Table 19, the more frequent n-grams *answer the questions*, then *answer the* and *study the photo*, for example, are used for instructions which are quite often used in class and may not need to be highlighted for this study. Other 3-grams, such as, *is a lot* and *this map of a* are phrase fragments that would not be relevant to be taught. However, the prepositional phrases *in a community* and *on the map* as

well as the verb phrase *is a lot of* would be useful for young learners on many other occasions and with other topics as well. It has been put forward by many scholars that if prepositions and their collocates are taught in context from the very beginning of their exposure to young learners, they will be acquired in more appropriate combination with other lexis (Brown, 1973; Bolinger, 1976; Alexander, 1979; Carter, 1987; Wray, 2012). This is made possible with the work with concordance lines and the surrounding neighbors of the nodes. They are learned as fixed formulaic expressions and can denote higher degrees of fluency of the learner.

▼ Corpus Corpus 5 - N	eighborhood Frequency	▼ Dispersion ▼ 1
Туре	▼ Frequency: 01 ·	- FreqDispers
answer the questions	18.00000	1.496661
then answer the	15.000000	1.710069
study the photo	13.00000	1.753243
this is a	13.000000	6.480741
read the text	13.00000	1.676720
the photo then	11.000000	1.874867
photo then answer	10.00000	1.943026
and study the	8.000000	2.265642
text and study	8.000000	2.265642
the text and	8.000000	2.265642
on the map	7.000000	2.825933
map of a	7.000000	2.334853
there is a	6.00000	2.841878
a lot of	6.00000	3.687286
the natural world	6.00000	4.541336
the united states	6.00000	6.004359
live in a	6.00000	3.020852
a map of	5.000000	3.180265
a farmers market	5.000000	3.993006
look at this	5.000000	2.843496
you want to	5.000000	3.340437
in the city	5.000000	4.372773
at a farmers	4.000000	4.169114
their home countries	4.000000	5.459973
of the natural	4.000000	4.541336
is a lot	4.000000	3.756763
in a community	4.000000	4.528115
you live in	4.000000	3.754058
a good citizen	4.000000	6.480741
the land in	4.000000	5.640306
lot of open	4.000000	4.129518
to get to	4.000000	3.687060

Table 19 - Most frequent 3- and 4-grams in the Neighborhood subset

Source: #LancsBox - Tool: Ngrams.

▼ Corpus Corpus 5 - Nei	ghborhood V Frequency	▼ Dispersion ▼ 1
Туре	▼ Frequency: 01 - F	req Dispers
then answer the questions	15.000000	1.719387
study the photo then	11.000000	1.877468
photo then answer the	10.00000	1.945319
the photo then answer	10.00000	1.945319
text and study the	8.00000	2.269430
read the text and	8.00000	2.269430
the text and study	8.00000	2.269430
and study the photo	7.000000	2.463162
to the united states	4.000000	6.480741
a lot of open	4.000000	4.130487
of the natural world	4.000000	4.541720
is a lot of	4.000000	3.756430
there is a lot	4.000000	3.756430
look at this map	4.000000	3.173215
at a farmers market	4.000000	4.182922
be used to make	3.000000	6.480741
at this map of	3.000000	3.681788
north west east south	3.000000	3.733610
this map of a	3.000000	3.681788
public transportation to get	3.000000	3.718704
read the text study	3.000000	3.658853
lot of open space	3.000000	5.304817
the text study the	3.000000	3.658853
text study the photo	3.000000	3.658853
in their home countries	3.000000	6.480741
a rural community has	3.000000	4.856845
how do you know	3.000000	4.167569
transportation to get to	3.000000	3.718704
answer the questions urban	3.000000	4.040550
you are going to	2.000000	6.480741
where many people live	2.000000	5.048539
what kind of community	2.000000	6.480741

Source: #LancsBox - Tool: Ngrams.

4.2.3 Choice of vocabulary in Neighborhood (T1)

Two software tools were used to determine not only the frequency and dispersion of words in the *Neighborhood* subset but also to establish the number of KWIC occurrences in concordance lines distributed in the 43 texts. These numbers were used as an indicator of the degree of usefulness of the KWICs to be handled by learners. Among the lexis selected for this investigation, some words like *neighborhood*, *community*, *supermarket* vs *market*, *suburb* vs *suburbs* in their concordance lines are illustrated below. One useful example is the comparison between *market* and *supermarket* selected to clarify cultural uses of the two words and to justify their inclusion in the tasks.

4.2.3.1 KWIC and Words tools

With the tool *KWIC* it is also possible to see inside the corpus and identify the files and/or texts where the target word (KWIC) is present shown on the left of Figure 22. The first

one, *neighborhood*, has 14 occurrences in 6 texts, which indicates its high potential for inclusion in the tasks and tests. One suggestion for the future work is that learners receive many concordance lines, as in Figure 22, to compare and contrast them to notice the patterns in the sentences and also the neighbors of the node in red.

Searc	n neighborhoo	d Occurrenc	es 14 (24.00)	Texts 6/43
Index	File	Left	Node	
1	Geo_2ndG_Ir	to keep you, your family, and your	neighborhood	safe. They are a very important part
2	Geography_1	A	Neighborhood	Map A neighborhood map often uses pictures
3	Geography_1	A Neighborhood Map A	neighborhood	map often uses pictures of buildings as
4	Geography_1	Map Your	Neighborhood	There are all kinds of neighborhoods. Some
5	Geography_1	very few buildings. A map of your	neighborhood	can help you understand the things you
6	Geography_1	there. It can help you describe your	neighborhood	to a friend. Imagine the square in
7	Geography_1	the home you live in. Draw your	neighborhood	around where you live. Include squares for
8	Geography_3	else. Look at this map of a	neighborhood.	HIGH school Garden center Gas station Elementary
9	Geography_3	Map Your	Neighborhood	Maps are tools that help you understand
10	Geography_3	away. Create a map of your own	neighborhood	in the grid below. Give your map
11	Video_Geo_N	this video we will learn about our	neighborhood	neighborhood means places near us the area
12	Video_Geo_N	video we will learn about our neighborhood	neighborhood	means places near us the area around
13	Video_Geo_N	area around our house is called our	neighborhood	the houses built close to each other
14	Video_Geo_N	each other make up our neighbors our	neighborhood	has many services now we will go
Source	e: #LancsBoy	к – Tool: <i>KWIC</i> .		

Figure 22 – KW	IC neighborhood

Table 20 displays the distribution of the target word in texts, which is another area to be explored with learners. From this information they can select those files with more occurrences to investigate and discover the language patterns.

Table 20 – Noun: *neighborhood* – distribution in texts and relative frequency per 10k Corpus 5 - Neighborhood: neighborhood_n

File	Tokens	Frequency	🔻 Relative fi
Geography_1stG_MapYourNeig	122	6	491.80328
Geography_1stG_ANeighborho	137	2	145.9854
Geography_3rdG_MapYourNeig	150	2	133.33334
Video_Geo_Multilevels_OurNei	318	4	125.786156
Geography_3rdG_GivingDirectio	102	1	98.03922
Geo_2ndG_Intheneighborhood.txt	512	1	19.53125
	- ·	i _	

Source: #LancsBox – Tool: Words.

In the future, having general information and communication technolgy (ICT) skills and with the hands-on use of the software, the teacher can call learners' attention to how the target language is distributed in the subset of corpus, resorting also to the distribution chart (Figure 23) below. The chart is visually attractive and will impact on the traditional approach to tables and figures. Learners can explore those files which show bigger and darker dots at the top on the right where there is more concentration of the KWIC being investigated.

Figure 23 – Distribution of *neighborhood* inside the corpus and location in the files

Source: #LancsBox - Tool: Words.

A second example is the word *community* in 5th place (Table 15) in the list of most frequent words. Its 36 hits (Figure 24) and their concordance lines in 11 texts can offer a considerable recurrence of exposure of the word to learners. In this case, the teacher selected the lines which could provide learners with immediate comprehension:

- for the 4th graders: What is a community? What kind of community do you live in? Types of community service, A rural community has a lot of open space, for example; and

- for more advanced 5th and 6th graders: *People help out in the community*, *What is community Service?*, *A community is made up of places to go*, *A suburban community is a smaller town near a larger city*.

Sear	ch community	Occurrences 36 (61.7	Occurrences 36 (61.71)		
Inde	x File	Left	Node		
1	Geo- 2ndG C	DIFFERENT JOBS Many different people in your	community	work to provide goods and services to	
2	Geo- 2ndG_C	others. When people work, they help the	community	and earn an income. For example, a	
3	Geo 1stG C	word bank below to fill in the	community	helper sentences. Then draw a line connecting	
4	Geo_1stG_Co	A	Community	What is a community? It is a	
5	Geo_1stG_Cc	A Community What is a	community?	It is a place where people live.	
6	Geo_1stG_Cr	there. There are special places in a	community.	There might be a zoo. There might	
7	Geo_1stG_Cc	zoo. There might be an airport. A	community	is made up of places to go,	
8	Geo_1stG_Cr	Name two places people go in a	community.	Is a museum part of a community?	
9	Geo_1stG_Cr	community. Is a museum part of a	community?	How do you know? A rural community	
10	Geo_1stG_Cr	community? How do you know? A rural	community	has a lot of open space. It	
11	Geo_1stG_Co	market is a special place in a	community.	Study the photo. Answer the questions. Write	
12	Geo_1stG_N∈	Where could someone buy dessert in this	community?	How many gas stations are in this	
13	Geo_1stG_Nr	How many gas stations are in this	community?		
14	Geo_2ndG_C	over very large areas. What type of	community	does the cow live in? How do	
15	Geo_2ndG_C	How do you know? What type of	community	is behind the cow? What might happen	
16	Geo_2ndG_C	close to many people, what kind of	community	do you live in? If there is	
17	Geo_2ndG_C	lot of open space, what kind of	community	do you live in? Which two types	
18	Geo_2ndG_C	study the photo. Then, answer the questions.	Community	Helpers People help out in the community.	
19	Geo_2ndG_C	Community Helpers People help out in the	community.	Bus drivers take people where they need	
20	Geo_2ndG_C	else could you help out in your	community?		
21	Geo_2ndG_Ir	business Tax Collection Library Housing What is	Community	service? Community service is volunteering to help	
22	Geo_2ndG_Ir	Collection Library Housing What is Community service?	Community	service is volunteering to help those in	
23	Geo_2ndG_Ir	is volunteering to help those in your	community.	It might be something that is done	
24	Geo_2ndG_Ir	done once or on a regular basis,	Community	service is often referred to as `giving	
25	Geo_2ndG_Ir	done by an individual or an organization.	Community	service is giving your time without being	
26	Geo_2ndG_Ir	fortunate or to help clean up your	community.	Types of community service: Soup kitchen Homeless	
27	Geo_2ndG_Ir	help clean up your community. Types of	community	service: Soup kitchen Homeless shelter Mentoring Tutoring	
28	Geo_2ndG_Ir	a line from a situation to the	community	service or person: You need to research	
29	Geo_2ndG_Ir	are a very important part of your	community.	Find out the following information about your	
30	Geo_2ndG_T [,]	city urban buildings rural country An urban	community	is filled with people, buildings, and different	
31	Geo_2ndG_T [.]	and different types of transportation. A suburban	community	is a smaller town near a larger	
32	Geo_2ndG_T [,]	town near a larger city. A rural	community	has open space and few homes in	
33	Geography_2	Communities A	community	is a group of people or animals	
34	Geography_2	suburban, or rural. I live in a	community		
35	Geography_2	Rural Communities A rural	community	has fewer people than a suburb. There	
36	Geography_2	Look at the map of a rural	community	below. Then complete the activities. NORTH West	

Figure 24 – KWIC: *community*

Source: #LancsBox – Tool: KWIC.

Table 2	1 –	- Noi	ın:	comm	unity –	- distrib	ution	in	texts	and	relati	ive	frequence	cy p	ber	10k

File	Tokens	Frequency	▼ Relative frequency per 10k
Geo_2ndG_TypesofCommunitie	42	3	714.28577
Geography_2ndG_Communities	116	7	603.44824
Geo_1stG_Neighborhood_W4D	41	2	487.80487
Geo- 2ndG_CommunityJobs.txt	64	2	312.5
Geo_2ndG_Communities_W7D	70	2	285.7143
Geo_1stG_Community_W4Day3	335	9	268.65674
Geography_2ndG_RuralCommu	155	4	258.0645
Geo_2ndG_CommunitiesUrban	171	4	233.91814
Geo_2ndG_CommunityHelpers	133	3	225.5639
Geo_2ndG_Intheneighborhood.txt	512	9	175.78125
Geo_1stG_ CommunityHelpers	110	1	90.90909
Geo_3rd_LifeontheCoasts_W13	166	1	60.240963

Corpus 5 - Neighborhood: community_n

Source: #LancsBox – Tool: Words.

The internal distribution of the corpora shown in Table 21, and displayed in Figure 25 below, can be very effective for consolidation work and future retention of the target word.

Figure 25 – Distribution of *community* inside the corpus and location in the files

The next lexis, *market*, is in the 20th place in Table 15 but was considered to be very relevant to the students' real life. In Brazil, people living in big cities, which is the case of the study's participants, seem to use the word *supermarket* more than *market*, leading the teacher to want to contrast the use of these words. Below it is possible to identify only 6 occurrences of *supermarket* in 5 texts (Figure 26) while there are 16 occurrences of *market* also in 5 texts (Figure 27).

0		$r = 2 \cdot 2 \cdot r_{I}$		
Search supermarke		et Occurrences 6 (10.28	Texts 5/43	
Inde	x File	Left	Node	
1	Geography_1	for buildings like a school or a	supermarket.	Your home What kind of building is
2	Geography_2	store gas station restaurant doctor's office pharmacy	supermarket	playground
3	Geography_3	school Elementary school Gas station Garden center	Supermarket	Movie theater Drugstore Hospital Index Elementary school
4	Geography_3	Elementary school Movie theater Hospital Garden center	Supermarket	Gas station Drugstore High school
5	Geography_3	school Garden center Gas station Elementary school	Supermarket	Movie theater Drugstore Hospital Using this map,
6	Video_Geo_N	go through these services this is the	supermarket	it has many shops we go to

Figure 26 – KWIC: *supermarket*

Source: #LancsBox – Tool: KWIC.

Source: #LancsBox – Tool: Words.

Table 22 - Noun: supermarket - distribution in texts and relative frequency per 10k

Corpus 5 - Neighborhood: supermarket_n

File	Tokens	Frequency	▼ Relative frequency per 10k
Geography_3rdG_AroundTheTo	108	2	185.18518
Geography_3rdG_GivingDirectio	102	1	98.03922
Geography_2ndG_Suburbs_42.txt	110	1	90.90909
Geography_1stG_MapYourNeig	122	1	81.96721
Video_Geo_Multilevels_OurNei	318	1	31.446539

Source: #LancsBox – Tool: Words.

Source: #LancsBox - Tool: Words.

The dark dots in Figure 27 correspond to the information in Table 22 which makes it visually clear to learners where the most recurrent target language can be found. In the case of *supermarket*, there are 3 files which could be investigated. Conversely, *market* has 16 occurrences in the same number of texts (Table 23), clearly illustrated in Figure 28. An activity which may trigger learners' curiosity is to investigate the texts with the darker dots in Figures 27 and 29 and compare the usage – collocations and colligations – of findings. They could play the role of language detectives (Johns, 1991), a key pillar in the DDL approach.

Search	market	Occurrences 16 (27.43	3)	Texts 5/43
Index	File	Left	Node	
1	Geo_1stG_	shows the goods sold at a farmers'	market	one morning. Study the graph. Then, answer
2	Geo_1stG_	the graph. Then, answer the questions. Farmers'	Market	Morning Sales Sales honey nuts vegetables fruits
3	Geo_1stG_(wheat be used to make? A farmers'	market	is a special place in a community.
4	Geo_1stG_(Write about what happens at a farmers'	market.	List things people can buy at a
5	Geo_1stG_(things people can buy at a farmers'	market.	Food from Around the World You can
6	Geo_1stG_≬	photo. Then, answer the questions. Pike Place	Market	Pike Place is in Seattle, Washington. Goods
7	Geo_1stG_≬	booths to show their art. Pike Place	Market	is an open-air market. But it has
8	Geo_1stG_≬	art. Pike Place Market is an open-air	market.	But it has a roof. So people
9	Geo_1stG_≬	people come to shop-rain or shine. FARMERS	MARKET	Where do the goods at a farmers'
10	Geo_1stG_≬	Where do the goods at a farmers'	market	come from? Why do artists come to
11	Geo_1stG_≬	Why do artists come to the farmers'	market?	
12	Geography_	the A to meet the Arch St.	Market	St. Chestnut St. Harbor Area Walnut St.
13	Geography_	triangle at the park. The Reading Terminal	market	is in It lies between Arch and
14	Geography_	is in It lies between Arch and	Market	streets to the north and south, and
15	Geography_	a shopping bag where the Reading Terminal	market	is located.
16	Video Geo	has many shops we go to the	market	to buy things this is a hospital

Figure 28 – KWIC: market

Source: #LancsBox - Tool: KWIC.

Table 23 – Noun: <i>market</i> – distribution in texts and relative frequency per 10
--

Corpus 5 - Neighborhood: market_n

File	Tokens	Frequency	▼ Relative frequency per 10k
Geo_1stG_Marketplace_W24Da	98	6	612.24493
Geo_1stGMarketplacell_W24	47	2	425.5319
Geography_3rdG_AroundtheCity	220	4	181.81818
Geo_4th_UrbanandRuralAreas	161	1	62.1118
Geo_1stG_Community_W4Day	335	2	59.701492
Video_Geo_Multilevels_OurNei	318	1	31.446539

Source: #LancsBox - Tool: Words.

Figure 29 - Distribution of market inside the corpus and location in the files

Source: #LancsBox - Tool: Words.

A further comparison of KWICs was also carried out, this time with the words *suburb* (Figure 30) and *suburbs* (Figure 32). It is also possible to recognize that *suburb*, 39th place in

the frequency list of subset *Neighborhood*, has just 3 occurrences in 2 texts, while *suburbs*, less frequent among learners in my country, has 7 occurrences in the 2 texts as well. *Suburb* is a cognate to *subúrbio* (singular noun) in Portuguese, but *suburbs* would not be used unless one would be referring to a plural noun as this is the correct grammatical usage for plural nouns.

Searc	h suburb	Occurrences	3 (5.14)	Texts 2/43	
Index	File	Left	Node		
3 2	Geography_2 Geography_2	buildings to complete the map of a smaller and not so busy. In a	suburb suburb,	given below. You may take ideas of homes are still close together. People live	
1	Geography_2	rural community has fewer people than a	suburb.	There is a lot of open land.	

Figure 30 - KWIC: suburb

Source: #LancsBox - Tool: KWIC.

Corpus 5 - Neighborhood: suburb_n

Table 24 – Noun: *suburb* – distribution in texts and relative frequency per 10k

			A
File	Tokens	Frequency	▼ Relative frequency per 10k
Geography_2ndG_Suburbs_42.txt	110	5	454.54547
Geo_1stG_Houses_W23Day3.txt	93	3	322.58063
Geography_2ndG_RuralComm	155	1	64.51613

Source: #LancsBox - Tool: Words.

Figure 31 – Distribution of suburb inside the corpus and location in the files

Source: #LancsBox - Tool: Words.

Figure 32 – KWIC: suburbs

Search suburbs		Occurrences 7 (1	Texts 2/43	
Ind	ex File	Left	Node	
1	Geo_1stG_	Then, answer the questions. Rows of Homes	Suburbs	are often found outside cities. They are
2	Geo_1stG_	and backyards. People can work in the	suburbs.	But many people still work in the
3	Geo_1stG_	is not too long. How are the	suburbs	different from a city? How can people
4	Geo_1stG_	city? How can people live in the	suburbs	and work in the city?
5	Geography_		Suburbs	Suburbs are near cities, but are smaller
6	Geography_	Suburbs	Suburbs	are near cities, but are smaller and
7	Geography_	with a yard, or in an apartment.	Suburbs	also have schools, libraries, businesses, and parks.

Source: #LancsBox – Tool: KWIC.

Table 25 - Noun: suburbs - distribution in texts and relative frequency per 10k

I	Corpus 5 - Neighborhood: suburbs_n						
	File	Tokens	Frequency	Relative frequency per 10k			
	Geo_1stG_Houses_W23Day3.txt	93	1	107.52688			

Source: #LancsBox- Tool: Words.

Source: #LancsBox - Tool: Words.

The same procedures with the tools KWIC and *Words* above were used with the other word classes such as adjectives, verbs, and adverbs (Appendix L) for the identification of more words to be worked with using the DDL approach.

4.2.3.2 *Text* tool

To complement and clarify learners' doubts during the lessons, a fourth tool was used: *Text.* When difficulties arose, and before learners produced personalized sentences with the KWICs, the teacher resorted to the original context to clarify comprehension. One such example is one of the original contexts for *neighborhood* selected below. The tool can pop-up any original context in the corpus of the word selected.

Figure 34 – Short extract of *neighborhood* context

Map Your Neighborhood
There are all kinds of neighborhoods. Some neighborhoods have many different kinds of buildings.
Others may have very few buildings. A map of your neighborhood can help you understand the things you find there.
It can help you describe your neighborhood to a friend.
Imagine the square in the middle of the box below is the home you live in. Draw your neighborhood around where you live.
Include squares for buildings like a school or a supermarket.
Your home
What kind of building is your home Color the middle square the same color as your real home.
On your map, which two buildings are closest to your home? Color those two squares the same color as the real buildings.
Your home What kind of building is your home Color the middle square the same color as your real home. On your map, which two buildings are closest to your home? Color those two squares the same color as the real buildings.

Source: #LancsBox - Tool: Text.

Following McCarthy's (2004) and O'Keeffe (2021) recommendation that teachers should mediate data to find the clearest and best examples to use from the corpus, examples of concordance lines were copied and cut out in strips of paper to be dealt with by students in the classroom (Figure 35). The lines were copied and enlarged to make it easier for the youngsters to observe the KWICs and the surrounding contexts. The words and clusters in bold were emphasized by the teacher during classwork.

Figure 35 – Samples of the assorted concordance lines selected

There are many different types of map . This is because we use different maps for different reasons.
If you were going on a hike in a nature park , you would need a map of the park .
If you wanted to know the way around your neighborhood , you would need a map of your neighborhood.
find the best road to your friend's house
find your way around a nature park
Cities are busy places! They have many buildings , including businesses and schools.
City block with homes and stores
Many of the people you know probably live in your neighborhood .
There is a library nearby

Source: #LancsBox.

4.2.3.3 GraphColl tool

The last tool used, *GraphColl*, is the one whose results are the most attractive to learners. Because its language analysis chart presents a colorful visual impact, it draws learners' attention to the KWIC collocates. It lends itself to assorted activities to be designed by teachers. The tool lines and dots can enhance learners' observation and noticing of the selected KWICs nodes of the concordance lines. The collocates can be seen in different colors magnifying the focus. The resulting graph is especially beneficial when working with colligations in the classroom and can be even more effective with advanced learners.

The findings around the node *neighborhood* (Chart 1) show three dimensions:

1) the strength of the collocation, indicated by the statistical measure MI score. The closer the collocate is to the node, the more strongly associated it is;

2) the frequency, indicated by the intensity of the color of the collocate dot. The darker the color, the more frequent it is; and

3) the position of the collocate around the node, either left or right, shows the actual position in the sentence.

Source: #LancsBox – Tool: GraphColl.

Table 26 – Collocates and its positions and frequency around the node neighborhood

5.0

5.0

5.0

neighborhood							
Freq: 14 - Collocates: 7							
Index	Status	Position	Collocate	▼ Stat	Freq (coll.)	Freq (corpus)	
1	0	L	а	9.0	9	211	
2	0	L	map	9.0	9	44	
3	0	L	your	8.0	8	52	
4	0	L	our	6.0	6	9	

of

the

you

Source: #LancsBox - Tool: GraphColl.

R

0

0

c

6

If one wants to see any of the above collocates in their actual context in a concordance line, they can right click on the collocate in the graph (Chart 1) and a pop-up will show the node in red and the collocate in blue (Figures 36-37):

5

5

5

122

342

97

Figure 36 – Pop-up showing the position of collocate *map*

Searc	h neighborhod	od Occurrences $\frac{7/14}{(12.00)}$ T	exts 4/43 🔻	Corpus	Corpus 5 - Neighborhood	▼ Con
Index	File	Left	Node			Right
2	Geography_1:	A	Neighborhood	Map A n	eighborhood <mark>map</mark> often uses pictu	ires
3	Geography_1:	A Neighborhood Map A	neighborhood	map offe	en uses pictures of buildings as	
4	Geography_1:	Map Your	Neighborhood	There a	re all kinds of neighborhoods. Son	ne
5	Geography_1:	very few buildings. A map of your	neighborhood	can help) you understand the things you	
8	Geography_3r	else. Look at this <mark>map</mark> of a	neighborhood.	. HIGH so	hool Garden center Gas station E	lementary
9	Geography_3r	Map Your	Neighborhood	Mapsar	e tools that help you understand	
10	Geography_3r	away. Create a map of your own	neighborhood	in the gr	id below. Give your map	
Source	e: #LancsBox	– Tool: GraphColl.				

Search	n neighborhood	Occurrences 7/14 (12.00) Texts 3/43 ▼ Corp	us Corpus 5 - Ne	eighborhood V Contex	t 7 ▼ Display 1
Inde	ex File	Left	Node		Right
1	Geo_2ndG_Ir	to keep you, your family, ar	nd your neighborhoo	d safe. They are a very impo	ortant part
4	Geography_1	Ma	p Your Neighborhoo	d There are all kinds of neig	ghborhoods. Some
5	Geography_1	very few buildings. A map	of your neighborhoo	d can help you understand f	the things you
6	Geography_1	there. It can help you describ	be your neighborhoo	d to a friend. Imagine the so	quare in
7	Geography_1	the home you live in. Dra	w your neighborhoo	d around where you live. Inc	lude squares for
9	Geography_3	Ma	p Your Neighborhoo	d Maps are tools that help y	ou understand
10	Geography_3	away. Create a map of <mark>yo</mark>	ur own neighborhoo	d in the grid below. Give you	ur map

Source: #LancsBox – Tool: GraphColl.

4.2.3.4 N-grams tool

Lastly, the *Ngrams* tool was used for the identification of the most frequent 3 and 4grams. The teacher selected the ones which were among the most frequent and would be a

Х

natural choice by learners when doing the activities. Figure 37 shows examples of clusters which were used by learners in their production in the posttests: *on a map, find your way* and *find your way around, different kinds of, need a map, live in a, in your neighborhood, find the best road to, there are many different types.* Others included can be seen in Appendix N.

and you want south east and your way around a map can you are going imagine you are answer the questions you are at from one place where something is pond draw a can help you transportation to get on a map if you keep use the compass find your way different kinds of live in a at the picture need a map in your neighborhood

Figure 38 – Samples of 3-grams used in tests and class activities

Source: #LancsBox – Tool: Ngrams.

4.2.4 #LancsBox tools findings in Animals subset of COREL-SCI

As mentioned in the previous subsection 4.2.2, the *Words* tool was used to generate the list of the most frequent words in the *Animals* subset. The list is just a sample with the top words (Table 27).

▼ Corpus Corpu	us 4 - Animals V Frequency	Dispersion	🔻 Туре
Туре	Frequency: 01 - Freq	Dispersion: 01	L_CV
the	445.000000	0.696336	,
are	322.000000	0.917598	
and	240.000000	0.732283	
а	238.000000	0.838505	
of	231.000000	0.876134	
to	168.000000	0.780823	
they	166.000000	1.168842	
in	163.000000	0.981534	
that	150.00000	0.997775	
have	141.000000	0.994414	
animals	133.000000	1.433653	
is	131.00000	1.150265	
their	110.000000	1.280485	
or	93.000000	1.816874	
for	71.000000	1.567926	
live	65.000000	1.840722	
on	57.000000	1.476234	
all	55.000000	2.062761	
can	55.000000	1.673178	
insects	54.000000	2.323662	
some	50.000000	2.082452	
it	50.00000	1.514425	
called	46.000000	2.073590	
animal	45.000000	1.822897	
species	42.000000	2.794986	
with	41.000000	2.078129	
water	41.000000	2.569122	
fish	40.00000	3.312953	
mammals	40.000000	3.304764	
what	40.000000	2.112426	
do	40.00000	1.899661	
like	40.000000	1.809024	

Table 27 - Most frequent words in subset Animals

Source: #LancsBox - Tool: Words.

Then, to generate just the content words in their individual classes, the tool was used again, adjusted to the demands. The findings are illustrated in Tables 28 - 32.

4.2.4.1 Words tool – word classes

Tables 28 - 31 show the content words and the 3- or 4-gram language clusters in the *Animals* subset. The findings also indicate the function words as the most frequent to the detriment of the content words. Once more the software tool had to be adjusted to yield nouns, verbs, adjectives, and adverbs as explained in subsection 4.1.2. The full list of results can be seen in Appendix O.

▼ Corpus	Corpus 4 - Animals	s Frequency	Dispersion	▼ Lemma
Le	emma	▼ Frequency: 01 - Freq	Dispersion:	01_CV
animal n	165.0	00000	1.131762	
insect_n	61.00	00000	2.611211	
mammal_n	48.00	00000	3.500620	
bird_n	44.00	00000	3.173543	
fish_n	43.00	00000	3.338003	
water_n	41.00	00000	2.527510	
type_n	39.00	00000	2.900862	
body_n	38.00	00000	2.121597	
group_n	38.00	00000	2.817308	
snake_n	34.00	00000	4.529454	
wing_n	34.00	00000	2.494012	
leg_n	33.00	00000	2.589348	
backbone_n	33.00	00000	2.710849	
specie_n	32.00	00000	3.055625	
part_n	30.00	00000	2.181851	
cat_n	30.00	00000	2.716561	
vertebrate_n	28.00	00000	4.297410	
mollusk_n	28.00	00000	5.753066	
egg_n	26.00	00000	2.808295	
spider_n	25.00	00000	3.338940	
baby_n	25.00	00000	3.557181	
reptile_n	24.00	00000	4.608601	
kind_n	23.00	00000	2.996490	
lion_n	21.00	00000	3.673580	
people_n	21.00	00000	3.341577	
turtle_n	21.00	00000	3.544087	
question_n	19.00	00000	2.456059	
frog_n	19.00	00000	5.038150	
night_n	18.00	00000	6.619612	
gill_n	17.00	00000	6.001531	
world_n	17.00	00000	2.740542	
day_n	17.00	00000	4.531817	

Table 28 – Most frequent nouns in the Animals subset

Source: #LancsBox - Tool: Words

▼ Corpus	Corpus 4 - Animals	▼ Frequency	▼ Dispersion	▼ Lemma
Le	emma 🛛 🔻 🔻	Frequency: 01 - Freq	Dispersion:	01_CV
be_v	494.000	0000	0.619691	
have_v	172.000	0000	0.927506	
live_v	77.0000	000	1.664547	
can_v	61.0000	000	1.578228	
do_v	55.0000	000	1.509275	
call_v	48.0000	000	2.046402	
use_v	35.0000	000	2.171928	
fly_v	32.0000	000	3.024409	
know_v	27.0000	000	1.983511	
look_v	25.0000	000	2.479805	
help_v	23.0000	000	3.111343	
make_v	22.0000	000	2.159102	
find_v	22.0000	000	2.552927	
eat_v	20.0000	000	3.167151	
protect_v	15.0000	000	3.571161	
lay_v	15.0000	000	3.708034	
breathe_v	15.0000	000	5.001170	
relate_v	15.0000	000	3.064964	
keep v	14.0000	000	3.012413	
get_v	13.0000	000	3.748312	
move_v	13.0000	000	3.602592	
belong_v	12.0000	000	3.566554	
see_v	12.0000	000	3.437997	
read_v	11.0000	000	2.735985	
grow_v	10.0000	000	3.353622	
take_v	10.0000	000	4.399693	
feed_v	9.00000	00	3.013807	
come_v	9.00000	00	4.205209	
include_v	8.00000	00	3.167440	
stay_v	8.00000	00	4.776290	
kill_v	8.00000	00	5.667242	
cover_v	8.00000	00	4.648049	

Table 29 – Most frequent verbs in Animals subset

Source: #LancsBox - Tool: Words.

Corpus	Corpus 4 - Anii	mals	Frequency	Dispersion	▼ Lemma
L	emma	V Fr	equency: 01 - Freq	Dispersio	on: 01_CV
many_adj	3	34.000000		2.054967	
other_adj	3	32.000000		2.245188	
large_adj	3	31.000000		2.080931	
more_adj	2	26.000000		2.680737	
small_adj	2	2.000000		2.530242	
different_adj	2	21.000000		2.600437	
long_adj	2	20.000000		2.703013	
most_adj	1	6.000000		3.581773	
young_adj	1	6.000000		3.217270	
wild_adj	1	3.000000		4.102244	
strong_adj	1	1.000000		3.138454	
big_adj	1	1.000000		3.047289	
common_adj	1	0.000000		4.392183	
same_adj	9	000000		3.660676	
sharp_adj	9	000000		4.007142	
several_adj	8	3.000000		3.683311	
only_adj	8	3.000000		3.615619	
hard_adj	8	3.000000		3.872091	
nocturnal_adj	7	.000000		7.874008	
able_adj	7	000000		3.728278	
cold-blooded_ad	7	000000		4.288046	
special_adj	e	6.000000		3.604068	
soft_adj	e	000000		7.874008	
african_adj	e	000000		6.564958	
awake_adj	e	6.000000		7.874008	
dry_adj	e	6.000000		4.369096	
domestic_adj	e	6.000000		5.200150	
pet_adj	6	6.000000		6.288279	
warm-blooded_a	dj 6	6.000000		5.565043	
poisonous_adj	5	5.000000		5.661440	
such_adj	5	5.000000		5.080875	
active adj	5	5.000000		5.512218	

Table 30 - Most frequent adjectives in Animals subset

Source: #LancsBox - Tool: Words.

▼ Corpus	Corpus 4 - Animals	Frequency	▼ Dispersion	▼ Lemma
L	emma	V Frequency: 01 - Freq	Dispersion:	01_CV
also_adv	28.00	0000	2.320397	
how_adv	22.00	0000	2.743156	
not_adv	20.00	0000	3.075734	
when_adv	20.00	0000	3.501384	
about_adv	18.00	0000	2.899316	
often_adv	16.00	0000	2.598150	
usually_adv	13.00	0000	3.084852	
sometimes_adv	13.00	0000	2.647392	
very_adv	12.00	0000	2.762805	
long_adv	11.00	0000	3.598514	
most_adv	11.00	0000	3.962120	
even_adv	11.00	0000	3.100704	
out_adv	11.00	0000	3.379487	
all_adv	9.000	000	3.981804	
together_adv	9.000	000	3.689670	
up_adv	9.000	000	3.395959	
where_adv	8.000	000	2.964043	
almost_adv	7.000	000	3.476795	
however_adv	7.000	000	4.211110	
why_adv	6.000	000	4.080658	
instead_adv	6.000	000	4.281289	
only_adv	6.000	000	4.489758	
closely_adv	6.000	000	3.765027	
so_adv	5.000	000	4.444912	
too_adv	5.000	000	6.215272	
everywhere_adv	5.000	000	4.260263	
as_adv	5.000	000	4.651039	
away_adv	4.000	000	5.022846	
just_adv	4.000	000	4.517656	
then_adv	4.000	000	5.301937	
there_adv	4.000	000	5.221658	
down adv	4.000	000	4 582279	

Table 31 – Most frequent adverbs in Animals subset

Source: #LancsBox - Tool: Words.

4.2.4.2 N-grams tool

The approach to the contents of Table 32 is the same as to the contents of Table 19 with the teachers selecting the n-grams at their discretion. She considered the *usefulness* and *practicality* of the language patterns not only for the implementation of tasks in the lessons, but also their impact on learners' future fluency when using the language.

▼ Corpus	Corpus 4 - Animals V F	requency ▼ Dispersion	▼ Type ▼ Corpus	Corpus 4 - Animals	▼ Frequency ▼ [Dispersion	▼ Туре
	Туре	Frequency: 01 - Freq	Dispersion: 01	Туре	🔻 Frequency: 01 - Freq		Dispersion: 01
species or types	18.00000	3.562577	species or types	of 15.	000000	3.695094	
answer the questi	ons 16.00000) 2.242937	directions read th	ne text 10.	000000	2.956084	
or types of	15.00000	3.679384	there are more th	ian 10.	000000	3.899956	
there are about	14.00000	3.609469	the animals that	are 9.0	00000	2.878753	
animals that are	11.00000	2.708282	species or kinds	of 8.0	00000	3.687922	
read the text	11.00000	2.752182	and answer the o	uestions 7.0	00000	3.457189	
there are more	10.00000	3.896570	the text and answ	/er 6.0	00000	3.579115	
are more than	10.00000	3.896570	read the text and	6.0	00000	3.579115	
the animals that	10.00000	2.821383	text and answer t	he 6.0	00000	3.579115	
directions read the	e 10.00000	2.946004	text answer the q	uestions 5.0	00000	3.544917	
that live in	9.000000	4.347907	read the text ans	wer 5.0	00000	3.544917	
species or kinds	9.000000	3.456406	is an animal that	5.0	00000	3.962015	
during the day	8.000000	6.639977	the text answer th	1e 5.0	00000	3.544917	
or kinds of	8.000000	3.684578	everywhere in the	world 5.0	00000	4.266654	
are animals that	8.000000	3.163193	circle the animal:	s that 5.0	00000	3.506314	
live in the	8.000000	3.373748	the words in the	4.0	00000	4.680695	
live on land	8.000000	5.488024	vertebrates verte	brates have backbones 4.0	00000	7.874008	
belong to the	7.000000	5.105445	lungs live on land	4.0	00000	7.874008	
known for their	7.000000	3.618910	in the box to	4.0	00000	4.680695	
are insects that	7.000000	6.340722	that live in the	4.0	00000	4.903465	
animals that have	7.000000	3.514612	use the words in	4.0	00000	4.680695	
in the world	7.000000	3.358339	this means that t	hey 4.0	00000	5.580129	
and answer the	7.000000	3.453719	today there are a	bout 4.0	00000	5.716101	
means that they	6.000000	3.974373	are animals that	have 4.0	00000	4.450800	
an animal that	6.000000	3.489321	are known for the	ir 4.0	00000	4.169869	
are the largest	6.000000	5.055516	they are related to	D 4.0	00000	4.316469	
have a backbone	6.000000	4.159412	words in the box	4.0	00000	4.680695	
the text and	6.000000	3.574719	of their lives in	4.0	00000	4.748158	
text and answer	6.000000	3.574719	earth long before	humans 3.0	00000	6.004001	
group of animals	6.000000	5.055647	earth for more th	an 3.0	00000	6.201262	
what is a	6.000000	5.243389	100,000 species	or types 3.0	00000	5.754360	
part of the	6 000000	4 690000	are constantly dis	covoring now 2.0	00000	6.004001	

Table 32 - Most frequent 3- and 4-gram clusters in the Animals subset

Source: #LancsBox - Tool: Ngram.

4.2.5 Choice of vocabulary in Animals (T2)

The processes of language analysis with the subset *Animals* were the same as those used with the subset *Neighborhood*. In addition to the word classes, the teacher also identified the frequency of word occurrences. One of the words selected was *animals* to be used compared with *animal*, the former in 11th place and the second in the 24th place in the general frequency list of the corpus *Animals* (Table 33).

4.2.5.1 KWIC and Words tools

The concordance lines with *animals* (Figure 39) were abounding which made the task of selecting different ones for the individual learners much easier. The concordance lines also mentioned different types of animals, parts of their bodies, the baby animals as well as the different ways they move, areas focused in the classwork and homework.

Sea	arch animals	Occurrences 133 (137.74)	Texts 41	1/63	▼ Corpus	Corpus 4 - Animals	▼ Contex
Ind.	File	Left		Node			Right
4	LifeSci_1stG_B:	Look at the pictures. Mate	h the baby	animals	to the parents. D)raw lines to connect	
5	LifeSci_1stG_T(Read the text. Answer the questi	ons. Some	animals	have shells. Sh	ells help protect them. You	
6	LifeSci_3rdG_A	for One and One f	or All Many	animals	live in groups. T	here are many reasons	
7	LifeSci_3rdG_A	help each other care for you	ung. Some	animals	will watch for pr	edators while others eat.	
8	LifeSci_3rdG_A	for predators while others eat. Some	e grown-up	animals	live with their yo	ung to keep them	
9	LifeSci_3rdG_A	keep them safe and teach th	em. Some	animals	hunt together. T	his helps the whole group	
10	LifeSci_3rdG_A	enough food. Living in a g	roup helps	animals.	1. Why do some	animals live in	
11	LifeSci_3rdG_A	group helps animals. 1. Wh	y do some	animals	live in groups? t	o help each other,	
12	LifeSci_3rdG_A	young and to hunt tog	ether 2. All	animals	in a group help	each other Some	
13	LifeSci_3rdG_A	in a group help each o	ther Some	animals	stand in a circle	. Stronger animals stand	
14	LifeSci_3rdG_A	Some animals stand in a circle	e. Stronger	animals	stand on the ou	tside of the circle,	
15	LifeSci_3rdG_A	the outside of the circle, a	nd weaker	animals	stand inside the	circle. 1. What animals	
16	LifeSci_3rdG_Ar	animals stand inside the circ	le. 1. What	animals	stand on the ou	tside of the circle?	
17	LifeSci_3rdG_Ar	on the outside of the c	ircle? baby	animals	2. Why might the	e weaker animals stand	
18	LifeSci_3rdG_Ar	baby animals 2. Why might	he weaker	animals	stand inside the	circle? for protection gaggle	
19	LifeSci_3rdG_Ar	lions herd of deer 1.	Groups of	animals	sometimes hav	e the same name. 2. What	
20	LifeSci_3rdG_Ar	more than the other. An	other job of	animals	is to help each (other stay clean.	
21	LifeSci_3rdG_Ar	males. 1. What is on	e job male	animals	often have? prof	ecting the group 2. What	
22	LifeSci_4thG_Ar	the text, and answer the questions	Nocturnal	Animals	Some animals :	sleep during the day and	
23	LifeSci_4thG_And	l answer the questions. Nocturnal Anin	nals Some	animals	sleep during the	e day and are awake	
24	LifeSci_4thG_Ar	day and are awake at ni	ght. These	animals	are called noctu	rnal. Animals that sleep at	
25	LifeSci_4thG_Ar	at night. These animals are called	nocturnal.	Animals	that sleep at nig	ht and are awake	
26	LifeSci_4thG_Ar	during the day are called diu	irnal. Many	animals	are nocturnal. T	hey eat and are active	
27	LifeSci_4thG_Ar	nocturnal animal hunt, eat, are active	Nocturnal	animals	have eyes that a	re extra sensitive to	
28	LifeSci_4thG_Ar	for food and fly Cats are	e nocturnal	animals	because they pr	efer to be active at	
29	LifeSci_4thG_Ar	Vertebrates and Invertebra	ates Some	animals	have backbones	s. They are called vertebrates. E	Birds,
30	LifeSci_4thG_Ar	protected by skeletal framework cal	led a skull.	Animals	without backbor	ies are invertebrates. Spiders,	insects, and
31	LifeSci_4thG_Ar	They lay eggs and they ha	ave scales.	Animals	with backbones	tend to be faster and	
32	LifeSci_4thG_Ar	tend to be faster and str	onger than	animals	without backbor	ies. One of the functions of	

Figure	39	– Noun:	animal	S
I Iguit	21	1 touin.	current	υ

Source: #LancsBox – Tool: KWIC.

Filo	Tokono	Eroquopey	▼ Polotivo fro
	Tokens	Frequency	V Relative fre
Science_K_Animais_25.txt	40	1	1750.0
Science_K_TameandWildAnima	48	7	1458.3333
Science_K_HerbivoresandCarni	49	5	1020.4082
Science_K_Omnivores_16.txt	56	5	892.8572
Science_PreK_YoungAnimals	25	2	800.0
Science_PreK_Fish_04.txt	27	2	740.7407
Science_PreK-Reptiles_05.txt	28	2	714.28577
Science_PreK_Amphibians_06.txt	32	2	625.0
Science_3rdG_VertebratesvsInv	205	10	487.80487
Science_3rdG_Invertebrates_16	42	2	476.1905
LifeSci_K_AdultAnimalsandBabi	146	6	410.9589
LifeSci_1stG_BabyAnimals_W9	76	3	394.73682
LifeSci_3rdG_Animals-LivinginG	443	16	361.17383
Science_PreK_Mammals_02.txt	28	1	357.14288
Sci - 3rdG - Insects - Britannica	57	2	350.8772
LifeSci_1stG_BabyAnimalsV_W	29	1	344.82758
Science_PreK_Birds_03.txt	31	1	322.58063
Science 3rdG_TypesofAnimals	133	4	300.7519
LifeSci K AdultAnimals W10D	107	3	280.3738
С	1		

Table 33 – Noun: *animals* – distribution in texts and relative frequency per 10k Corpus 4 - Animals: animals

Source: #LancsBox - Tool: Words.

In future implementations in the classroom, a further benefit for learners is that the teacher is able to identify the file(s) where she can find a larger number of the *KWIC of interest* using the Table 33 above. As an example, she can work with the word *animals* using the files where the number of tokens is higher, either LifeSci_3rG_Animals-LivingG with 443 tokens, or Science_3rdG_VertebratesvsIn with 205 tokens. Those files would offer recurrence of exposure and repetition - *input flooding* - of the KWIC affording higher noticing of the node and its neighbors.

Source: #LancsBox - Tool: Words.

The image above shows an overpopulated corpus where the names of the files do not appear immediately; one has to right click on the dot of interest and the name will be visible. This is another way to identify the most interesting files which can be used by learners themselves in a future class. The bigger and darker the dots, the higher the number of the target language in those files.

Figure	41	- Noun:	animal
IIGUIV		1 touin.	<i>current</i>

Search	animal	Occurrences 45 (46.60) Tex	ts 29/63	▼ Corpus Corpus 4 - Animals
Index	File	Left	Node	
1	LifeSci_1stG_	the chart. Answer the questions. Type o	f Animal	How Long They Stay with Their Mothers
2	LifeSci_3rdG_	attack the lion. What's Your Job? Each	animal	in a group has a job. These
3	LifeSci_4thG_	and wolves are nocturnal. 1. A nocturna	l animal	sleeps during the day 2. During the
4	LifeSci_4thG_	the day 2. During the night, nocturna	l animal	hunt, eat, are active Nocturnal animals have
5	LifeSci_4thG_	help protect them, invertebrate vertebrate 1. Which	animal	is an invertebrate? ladybug 2. All vertebrates
6	LifeSci_4thG_	an animal's backbone flexible. They allow ar	animal	to move freely. If the backbone were
7	LifeSci_4thG_	the backbone were one solid bone, the	animal	would be stiff. It couldn't walk or
8	LifeSci_K_Adu		Animal	Bodies All animals have body parts they
9	LifeSci_K_Adu	fly? wing 2. What part of ar	animal	helps it hear? ears eye tail mouth
10	LifeSci_K_Adu	you to school 2. What does ar	animal	parent do for its babies? feed them
11	LifeSci_K_Adu	a cub 2. How is the bab	(animal	different from its parent? It has less
12	LifeSci_K_Adu	has less hair. 3. Draw a bab	/ animal	and its parent. Baby Animals Babies don't
13	LifeSci_K_Adu	different color. But babies are the same	e animal.	 Baby animals don't look exactly like
14	LifeSci_K_Adu	Sometimes baby animals are a different colo	r animal	than their parents Baby animals have different
15	Sci - 3rdG - Er	species is any type of plant o	r animal	that is in danger of disappearing forever.
16	Sci - 3rdG - Er	a species, or type, of plant o	r animal	dies out completely, it becomes extinct.
17	Sci - 3rdG - Fe	cheetah The cheetah is the fastest land	animal	on Earth. This spotted member of the
18	Sci - 3rdG - Ma	ass are used to identify the same	e animal.	However, the term donkey is used for
19	Sci - 3rdG - Rt	many countries they are the most commor	n animal.	porcupine Porcupines are rodents with sharp spines
20	Sci - 4thG - Fis	the sharks. Fish are a kind o	f animal	that lives in water. Fish have lived
21	Sci - 4thG - Ma	MAMMALS A mammal is ar	animal	that breathes air, has a backbone, and
22	Sci - 4thG - Ma	most highly developed. A mammal is ar	animal	that breathes air, has a backbone, and
23	Sci - 4thG - Mc	shell. A mollusk is a kind o	f animal	with a soft body. Most mollusks have
24	Sci - 4thG - Re	Reptiles A reptile is an air-breathing	animal	that has scales instead of hair or
25	Sci - 4thG - Re	coiling around it so tightly that the	animal	cannot breathe, chameleon chameleon The lizards called
26	Sci - 4thG- Oth	hare. They all belong to the same	animal	family, skunk skunk Skunks are black and
27	Sci - 5thG - Ins	Like other parasites, fleas depend on the	animal	they live on for food. Fleas bite
28	Science_1stG	enemies. The colors or patterns that ar	animal	has can help it hide from dangerous
29	Science_2nd(phenomenon unique to the shark. No othe	r animal	In the world has teeth quite like
30	Science_2nd(endangered species is a plant or ar	animal	that is in danger of becoming extinct,
31	Science_3rdG		Animal	Groups Animals are divided into groups that

Source: #LancsBox - Tool: KWIC.

1 able $34 -$ Noun: <i>animal</i> – distribution in texts and relative frequency per 10k
--

Corpus 4 - Animals: animal

File	Tokens	Frequency	🛛 🔻 Relative frequ
Science_PreK_YoungAnimals	25	2	800.0
Sci - 3rdG - Endangered specie	33	2	606.0606
Science_PreK_Birds_03.txt	31	1	322.58063
LifeSci_K_AdultAnimals_W10D	107	3	280.3738
Science_3rdG_Vertebrates_15.txt	36	1	277.77777
Science_K_Pets_27.txt	72	2	277.77777
LifeSci_K_AdultAnimalsandBabi	146	4	273.9726
Science_K_Animals_25.txt	40	1	250.0
Science_2ndG_EndangeredSpe	41	1	243.90244
Science_3rdG_Invertebrates_16	42	1	238.09525
Science_3rdG_Predators_18.txt	46	1	217.39131
Science_3rdG_AnimalGroups_2	155	3	193.54839
Science_K_Omnivores_16.txt	56	1	178.57144
Sci - 4thG - Mammals - Britannic	141	2	141.84396
LifeSci_1stG_Animals-Parentin	91	1	109.890114
Science_3rdG_VertebratesvsInv	205	2	97.560974
Science_2ndG_Animals-Sharks	104	1	96.15385
Sci - 4thG - Fish - Britannica.doc	109	1	91.74312
LifeSci 4thG Animals-Vertebrat	340	3	88.2353

Source: #LancsBox - Tool: Words.

Figure 42 – Distribution of *animal* inside the corpus and location in the files

Source: #LancsBox - Tool: Words.

Once more the concordance lines yielded by the concordancer were copied and enlarged to make it easier for the youngsters to observe the KWICs and the surrounding context (Figure 43). Clara used different approaches to call learners' attention to segments of the sentences that could be useful when they produced their own sentences to describe the animals in their homework and posttests. Some examples are *jump very well, jumping insects, animals that have strong legs to run, have feathers, … that cannot fly and cannot fly at all.* Learners worked with them while looking at images in the pptx, handling concordance lines like the ones below and playing *bingo* (Appendix I).

Figure 43 – Samples of the assorted concordance lines selected - Animals

Frogs are small animals that can jump very well.

Many people have birds as pets.

Crickets are jumping insects.

Mosquitos are insects that are found almost everywhere in the world.

The tiger is the largest of the cats.

Birds are animals that have feathers. They lay eggs.

Zebras are animals that have strong legs to run.

Penguins are birds that cannot fly.

Some birds cannot fly at all.

Source: #LancsBox – Tool: *KWIC*.

4.2.5.2 Text tool

Figure 39 (subsection 4.2.5.1 above) shows the 31 concordance lines with the KWIC *animals* in red. The names of those files on the left of the image, next to the concordance lines, indicate where the KWIC is situated. Once aware of that, the teacher can open the whole text by clicking on the node *animals* in the concordance line chosen and a pop-up would open with it.⁵⁸ In just one text the learners would be exposed to an *input flooding* (Sharwood Smith, 1993) of 12 tokens of the target word which could afford more noticing and effective retention of the target language (Figure 44).

Figure 44 – Examples of node "animals" in the concordance lines

Many animals live in groups. There are many reasons for this. They live in groups for safety. They live
in groups to help each other care for young. Some animals will watch for predators while others eat.
Some grown-up animals live with their young to keep them safe and teach them. Some animals hunt
together. This helps the whole group get enough food. Living in a group helps animals.
1. Why do some animals live in groups? to help each other, care for safety for young and to hunt together
2. All animals in a group help each other
Some animals stand in a circle. Stronger animals stand on the outside of the circle, and weaker animals
stand inside the circle.
1. What animals stand on the outside of the circle? baby animals
2. Why might the weaker animals stand inside the circle? for protection

Source: #LancsBox - Tool: Text.

4.2.5.3 GraphColl tool

As mentioned in the previous section in relation to the KWIC *neighborhood* and its analysis by the *GraphColl* tool, activities with visually attractive collocates of *animals* can afford effective noticing by learners. One example is sentence building in groups, which can motivate and challenge them while bringing many benefits (Chart 2).

 $^{^{58}}$ The text was copied from the software to fit this page and pasted.

Chart 2 - Animals and its 60 collocates

Source: #LancsBox - Tool: GraphColl.

Table 35 – The first 21 collocates and its positions and frequen	ncy around	the node
animals		

Freq: 133 - Collocates: 60						
Index	Status	Position	Collocate	▼ Stat	Freq (coll.)	Freq (corpus)
1	0	M	are	86.0	86	322
2	0	L	the	56.0	56	445
3	0	R	that	39.0	39	150
4	•	-	animals	38.0	38	133
5	0	L	and	34.0	34	240
6	0	L	of	33.0	33	231
7	0	R	have	30.0	30	141
8	0	L	some	29.0	29	50
9	0	R	а	26.0	26	238
10	0	R	in	21.0	21	163
11	0	R	to	21.0	21	168
12	0	L	circle	18.0	18	16
13	0	R	they	17.0	17	166
14	0	L	other	16.0	16	32
15	0	L	all	14.0	14	55
16	0	R	called	11.0	11	46
17	0	L	group	11.0	11	26
18	0	R	live	11.0	11	65
19	0	R	on	11.0	11	57
20	0	R	their	10.0	10	110
21	0	L	these	10.0	10	22

Source: #LancsBox – Tool: GraphColl.

Using the circle in Chart 2, one suggestion is that the teacher chooses *are* or *that*, for example, and right-click on the dot next to the word. The concordance lines pop-up and learners can see the verb *are* or the adverb *that* in blue and their collocation in relation to the noun *animals* (Figures 45-46). Most of the collocates are on the right of the node but there are many on the left as well. As an example of an activity, the class can be divided into groups which will work with one of the quadrants of the image (Chart 2) and discover the most recurrent patterns.

Searc	h animals O	Occurrences 74/133 (76 64) Texts 30/63 ▼ Cc	rous C	orous 4 - Animals ▼ Context 7 ▼ Display Text
Index	File	Left	Node	Right
3	LifeSci_1stG_	E How do baby animals compare to adu	It animals?	similar 2. How are kittens different from
6	LifeSci_3rdG_	A for One and One for All Mar	y animals	live in groups. There are many reasons
24	LifeSci_4thG_/	A day and are awake at night. Thes	e animals	are called nocturnal. Animals that sleep at
25	LifeSci_4thG_/	A at night. These animals are called nocturna	I. Animals	that sleep at night and are awake
26	LifeSci_4thG_/	A during the day are called diurnal. Mar	y animals	are nocturnal. They eat and are active
27	LifeSci_4thG_/	A nocturnal animal hunt, eat, are active Nocturna	al animals	have eyes that are extra sensitive to
28	LifeSci_4thG_/	A for food and fly Cats are nocturn	al animals	because they prefer to be active at
29	LifeSci_4thG_/	A Vertebrates and Invertebrates Som	e animals	have backbones. They are called vertebrates. Birds,
30	LifeSci_4thG_/	A protected by skeletal framework called a sku	I. Animals	without backbones are invertebrates. Spiders, insects, and
36	LifeSci_K_Adu	I Answer the questions, 1, What kind (of animals	are these? a lion and a cub
39	LifeSci_K_Adu	Il exactly like their parents 3. Sometimes bab	y animals	are a different color animal than their
42	Sci - 3rdG - Ins	The insects are the largest group (of animals.	In fact, about 75 percent of all
43	Sci - 3rdG - Ins	n fact, about 75 percent of a	ll animals	are insects. Insects developed on Earth long
44	Sci - 3rdG - Ma	er meat, milk, and wool. They are hard	y animals	that can live on coarse, thin grass.
45	Sci - 3rdG - Ma	r among the most valuable of all domest	c animals.	Domestic animals are ones that have been
46	Sci - 3rdG - Ma	r most valuable of all domestic animals. Domest	c animals	are ones that have been tarned for
47	Sci - 4thG - Arr	nj fairly common frog frog Frogs are sma	ll animals	that can jump very well. Frogs are
49	Sci - 4thG - Am	nj lizards, they toad toad Toads are sma	ll animals	often confused with frogs. Toads, however, have
50	Sci - 4thG - Am	Amphibians and reptiles are two groups	of animals	that share certain features. They are vertebrates,

Figure 45 – Pop-up showing the position of collocate *are* ₩ KWIC: animals > are

Source: #LancsBox - Tool: GraphColl.

Figure 46 – Pop-up showing the position of collocate *that*

Search	animals (Occurrences 39/133 (40.39)	Texts 24/63	•	Corpus	Corpus 4 - Animals	Contex	t 7
Index	File	Left		Node			Right	
24	LifeSci_4thG_A	day and are awak	e at night. These	animals	are called	nocturnal. Animals that slee	ep at	
25	LifeSci_4thG_A	at night. These animals are	called nocturnal.	Animals	that sleep	at night and are awake		
27	LifeSci_4thG_#	nocturnal animal hunt, eat, are	active Nocturnal	animals	have eyes	that are extra sensitive to		
44	Sci - 3rdG - Mai	meat, milk, and woo	I. They are hardy	animals	that can liv	e on coarse, thin grass.		
45	Sci - 3rdG - Mai	among the most valuabl	e of all domestic	animals.	Domestic	animals are ones that have	been	
46	Sci - 3rdG - Mai	most valuable of all domestic an	imals. Domestic	animals	are ones t	hat have been tamed for		
47	Sci - 4thG - Am	fairly common frog frog	Frogs are small	animals	that can ju	mp very well. Frogs are		
48	Sci - 4thG - Am	through their skin t	<mark>hat</mark> can kill other	animals,	including	humans. The frogs live in th	э	
50	Sci - 4thG - Am	Amphibians and reptiles a	re two groups of	animals	that share	certain features. They are v	ertebrates,	
51	Sci - 4thG - Ara	scorpion Sco	rpions are small	animals	with a curv	/ed tail that can deliver		
52	Sci - 4thG - Ara	and mite Ticks a	nd mites are tiny	animals	that are fo	und all over the world.		
53	Sci - 4thG - Arth		Arthropods are	animals	that have a	a hard outside covering calle	ed	
56	Sci - 4thG - Arth	and bees are all insects. (Orustaceans are	animals	that usual	ly have a hard covering, or		
58	Sci - 4thG - Birc	them unique since b	irds are the only	animals	that do ha	ve feathers. From pigeons ir	1	
59	Sci - 4thG - Birc	In fact, birds a	re the only living	animals	that have f	'eathers. Birds have fascinat	ed people	
60	Sci - 4thG - Fisl		FISH Fish are	animals	that live in	the fresh and salt		
69	Sci - 4thG- Othe	The biggest bears are th	e world's largest	animals	that live or	n land and eat meat.		
76	Science 3rdG_	MAMMALS Mammals include hum:	ans and all other	animals	that are wa	arm-blooded vertebrates (ve	rtebrates have ba	ackbones)
82	Science_2ndG	Arachnic	ls Arachnids are	animals	that have t	wo main body parts, and		
84	Science_3rdG_		Animal Groups	Animals	are divide	d into groups <mark>that</mark> share key		
86	Science_3rdG_	animals on Earth are inverteb	orates. Circle the	animals	that are in	vertebrates. Eel Clam Whale	e Dolphin	
87	Science_3rdG_	predator is an anim	al <mark>that</mark> kills other	animals	for food. D	raw a line between each		
88	Science_3rdG_	are all vertebrates	. Circle all of the	animals	that are ve	rtebrates. Bird Frog Lobster	Jelly	
93	Science_3rdG_	not those animals have a backb	one. Vertebrates	Animals	that have a	a unique backbone fit into		
97	Science_3rdG_	the category of invertebrate	s. These are the	animals	that do no	t have a backbone. Animals		
104	Science_K_Ani	walk and run. Some anim	als swim. Some	animals	fly. Animal	s that fly have wings. Circle		
105	Science_K_Ani	run. Some animals swim. S	ome animals fly.	Animals	that fly hav	e wings. Circle each anima	I	
109	Science_K_He	are called carnivores	. Circle all of the	animals	that are he	erbivores. Point to the anima	Is	
110	Science_K_He	animals that are herbiv	pres. Point to the	animals	that are ca	imivores and say their name)S	
122	Science_K_Tai	house. These animals are	tame. Circle the	animals	that are wi	ld. Point to the animals		
123	Science_K_Tai	animals that are	wild. Point to the	animals	that are ta	me and can be kept		
124	Science_PreK-	Reptiles F	Reptiles are land	animals	that have (dry skin covered in scales.		
125	Science_PreK-	scales. They also lay	eggs. Circle the	animals	that are re	ptiles. alligator snake squirr	el turtle	
126	Science_PreK_	Amphibians	Amphibians are	animals	that live in	water when they are		
127	Science_PreK_	older, they live or	n land. Circle the	animals	that are ar	nphibians. raccoon frog per	ıguin salamande	r
128	Science_PreK_		Birds Birds are	animals	that have f	eathers. They also lay eggs		
129	Science_PreK_		Fish Fish are	animals	that live ur	ider water. They have fins		

Source: #LancsBox - Tool: GraphColl.

4.2.5.4 N-grams tool

The last tool used was *Ngrams* which yielded the most frequent 3- and 4-gram clusters of language (Tables 36-37). Once more, there are clusters with directions to learners and also phrase fragments which were used at the discretion of the teacher (Appendix O).

Table 36 – 3-gram clusters

▼ Corpus Corpus 4 - Anir	nals V Frequency	Dispersion	▼ Туре
Туре	▼ Frequency: 01 -	Freq	Dispersion: 01_CV
species or types	18.000000	3.562577	
answer the questions	16.000000	2.242937	
or types of	15.000000	3.679384	
there are about	14.000000	3.609469	
animals that are	11.000000	2.708282	
read the text	11.000000	2.752182	
there are more	10.000000	3.896570	
are more than	10.000000	3.896570	
the animals that	10.000000	2.821383	
directions read the	10.000000	2.946004	
that live in	9.000000	4.347907	
species or kinds	9.000000	3.456406	
during the day	8.000000	6.639977	
or kinds of	8.000000	3.684578	
are animals that	8.000000	3.163193	
live in the	8.000000	3.373748	
live on land	8.000000	5.488024	
belong to the	7.000000	5.105445	
known for their	7.000000	3.618910	
are insects that	7.000000	6.340722	
animals that have	7.000000	3.514612	

Source: #LancsBox – Tool: Ngrams.

Table 37 – 4- gram clusters

▼ Corpus Corpus 4 - Animal	s ▼ Frequency ▼ D	ispersion	▼ Туре
Туре	▼ Frequency: 01 - Freq		Dispersion: 01_CV
species or types of	15.000000	3.695094	
directions read the text	10.000000	2.956084	
there are more than	10.000000	3.899956	
the animals that are	9.000000	2.878753	
species or kinds of	8.000000	3.687922	
and answer the questions	7.000000	3.457189	
the text and answer	6.000000	3.579115	
read the text and	6.000000	3.579115	
text and answer the	6.000000	3.579115	
text answer the questions	5.000000	3.544917	
read the text answer	5.000000	3.544917	
is an animal that	5.000000	3.962015	
the text answer the	5.000000	3.544917	
everywhere in the world	5.000000	4.266654	
circle the animals that	5.000000	3.506314	
the words in the	4.000000	4.680695	
vertebrates vertebrates have backbones	4.000000	7.874008	
lungs live on land	4.000000	7.874008	
in the box to	4.000000	4.680695	
that live in the	4.000000	4.903465	
use the words in	4.000000	4.680695	
this means that they	4.000000	5.580129	
today there are about	4.000000	5.716101	
are animals that have	4.000000	4.450800	

Source: #LancsBox – Tool: Ngrams.

Subsection 4.2 part (a) addressed the investigation's results showing the relevance of compiling pedagogic corpora for younger learners and the language analysis of a concordancer. The basic functions of each of the concordancer tools were described to show the relevance technology can have to enhance learning a language in the classroom. All the findings can add variety and challenge to the youngsters' classes while they engage in the new material and manipulate authentic language meaningfully and playfully. It also brings the pedagogic corpora to the forefront among materials for young learners. The next subsections 4.3 and 4.4 will address Part B of the study's outcomes to illustrate the quantitative and qualitative results, respectively, of the implementation of the treatment in all groups of learners.

Part B

4.3 Quantitative results

In this second part of the investigation's results, the quantitative analysis of the findings of pre-tests and posttests will be presented and analyzed. Two types of measurement tests were used to compare the findings to shed further light on question (iii) and address question (iv):

(iii) Can activities implemented with a Data-driven learning (DDL) approach expand learners' topicalized vocabulary to boost their progress in English?; and

(iv) Are the results significantly different from one grade to the others when the same tasks are worked with in the classrooms?

For statistical purposes, it was decided that students who had missed one or more classes where the investigation was carried out would have their names excluded from the final count. Thus, the final number of participants in pre and posttests in both Topic 1 and Topic 2 was 106, 72% of the total 147 students, in all the six classes (Table 38).

Table 38 – Distribution of participants per group and per Topics 1 and 2 Participation in the pre and posttets

Source: the researcher.

4.3.1 Analysis tools and results

The first one, the *t*-test, ⁵⁹ a parametric test, was used to determine whether the treatment, work with the target language (KWICs) in concordance lines, had had a positive effect on the students' language production and establish if and how much the groups differed from one another. Since the data had unequal variances, i.e., did not entirely fit the assumptions made for the *t*-test, a second test, the Wilcoxon Rank Sum, a non-parametric test, was used to complement the analysis of the findings.

The final data was initially processed by the SPSS software⁶⁰ and a complementary analysis was carried out by the Wilcoxon test. The findings of the statistical analyses offer insights into the work carried out in the classrooms while addressing research question (iv): Are the results significantly different from one year to the others when the same tasks are worked with in the classrooms?

The percentage of learners (Table 39) in Group 4A who used lexis from the concordance lines in the posttest increased 50% from pre-test, rising from 21% to 42%. However, learners' use of target language in groups 4B and 5A had a reduction, from 29% to 25% in 4A and from 50% to 30% in 5A. Group 5A had a similar number of students on both occasions but it did not affect the results as the use of target language in the posttest dropped noticeably showing the treatment in the classroom did not impact students' production. As for 6A, the number of learners who did the tests fell considerably from 23 to 16, showing an absence of a third of the students, probably causing the 50% drop in the production of target language. Yet, 6B had the same number of students in class and the same low percentage -35% – in pre and posttests. The 6A and 6B groups have students with higher levels of knowledge of English which may explain their possible use of alternative language for the production task.

	-	-				
	4 A	4 B	5A	5B	6A	6B
Number of students participating in classwork	24	24	20	19	23	17
Percentage of students who used target language from concordance lines	21%	29%	50%	31%	13%	35%
Number of students who took the Posttest	24	24	21	23	16	17
Number of students who used the target language from the concordance lines in the Posttest	42%	25%	30%	35%	5%	35%

Table 39 - % of students who used the target language from concordance lines

Source: the researcher

4.3.2 Analyses of posttests results

⁵⁹See: <u>https://libguides.library.kent.edu/SPSS/PairedSamplestTest.</u>

⁶⁰ IBM **SPSS**® Statistics is the world's leading statistical software used to solve business and research problems.
The classwork as well as the homework were preceded by a pre-test and followed by a posttest 10 days later in all grades. Learners worked with one Topic 1 from COREL-GEO: *Neighborhood*, and one from COREL_SCI: *Animals*, both selected by the teacher due to their correlation with the curriculum maps for English in the school.

The data collected from pre and posttests was analyzed by a Paired Samples t test⁶¹ (Table 40) which is used to test if the means of two paired measurements, such as pre and posttest scores, are significantly different. It is a parametric test where the dependent variable is measured at two different times. The results of the pre and posttests (total of 27 points) were standardized on a scale of 0 to 100. The t tests pointed out that the work with the concordance lines in Topic 1 - Neighborhood - in the classroom was indeed effective. There is a considerable difference in the findings. Conversely, the same could not be observed in Topic 2 - Animals - where there was little or no difference in the results.

	=			
GROUP	Pre-test	Posttest	Mean difference	p value
4T1	65,61	84,75	19,15	p<0,05
4T2	66,77	68,13	1,46	p>0,05
5T1	69,97	87,29	17,32	p<0,05
5T2	75,23	80,32	5,09	p<0,05
6T1	75,13	91,22	16,08	p<0,05
6T2	81,01	84,79	2,78	p>0,05
Key: T1 – Topic 1T2 – Topic 2 $4 - 4^{th}$ grade5- 5^{th}grade $6 - 6^{th}$ grade				

Table 40 – Data analyses and *t*-test results

Source: SPSS Statistics

In view of the results, boxplots were created so the data could illustrate the results of the tests further. Charts 3-4 below show the results and their distribution among the students in different grades:

⁶¹See: <u>https://libguides.library.kent.edu/SPSS/PairedSamplestTest</u>.

Chart 3 – 4thG A-B results – Topic 1 (T1)

Source: SPSS for Windows.

The boxplot Chart 3 illustrates the treatment effect in groups 4A and 4B in Topic 1. The blue box shows the results of pre-tests and the orange box shows the post-tests. The blue box is wider and situated at a lower position in the chart while the orange box is closer to 100 and shows less spread of participants' scores concentrated at the top. This indicates efficacy in the Topic 1 treatment and a significant result.

Source: SPSS for Windows.

However, in Topic 2 (Chart 4), the blue and orange boxes are symmetrical although we can identify a wider upper quartile in the orange box indicating a wider spread in the values of the data and the lower quartile more condensed data. The gray box in both charts shows the difference between pre and posttests are similar. In 4T1 (4th Grade – Topic 1) there are two orange dots called outliers who could not reach the average result of the group. In 4T1 there is

a wider spread between results of the tests whereas this difference is insignificant in 4T2 (4th Grade – Topic 2).

Overall, reading the charts' findings carefully, the conclusion is that Topic 1 results are very positive unlike the results of Topic 2. The positive scores between pre- and posttests in Topic 1 had a 20% increase as a result of the significant reduction in the spread, i.e., the students had higher grades and the results were more evenly distributed across the groups. Conversely, the same scores cannot be seen in Topic 2 as the variation between the pre and post-tests ranged from 1 to 5%. Another pattern identified in Topic 1 was that pre-tests results were similar while in Topic 2 the results had a random pattern.

One explanation for groups 5G and 6G final results (Tables 41-42) is that, on average, they already had higher scores in Topic 2 pre-test than in Topic 1 pre-test. Since the top average is 85%, and they had already achieved that, it would be more difficult for the students to go beyond that result. The assumption pointed out for a confirmation of the results and further measurement was carried out. This test would check only the results of target language production (KWICs, 3- and 4-grams) Task 5 in all groups in all tests. In Topic 1 (Table 41), the 2 groups 5A and 5B did not have a significant result which had already been pointed out by the *t* test.

Wilcoxon Test			
Topic 1 – Pre Test – 4A	Topic 1 – Post Test – 4A	p<0,001	Sig
Topic 1 – Pre Test – 4B	Topic 1 – Post Test – 4B	p<0,001	Sig
Topic 1 – Pre Test – 5A	Topic 1 – Post Test – 5A	p=631	Not Sig
Topic 1 – Pre Test – 5B	Topic 1 – Post Test – 5B	p=161	Not Sig
Topic 1 – Pre Test – 6A	Topic 1 – Post Test – 6A	p<0,001	Sig
Topic 1 – Pre Test – 6B	Topic 1 – Post Test – 6B	p=0,008	Sig

Table 41 – Level of significance between results of Pre and Posttests – T1

Source: Wilcoxon Test.²

The results yielded insights into a possible interference of an external variable: students had more knowledge of Topic 2 (Animals) contents before the pre-test or students could relate to the contents more easily. In the analysis of Topic 2 (Table 42), however, only group 4B had a significant result:

Wilcoxon Test			
Topic 2 – Post Test – 4A	p=0,837	Not Sig	
Topic 2 – Post Test – 4B	p=0,12	Sig	
Topic 2 – Post Test – 5A	p=0,547	Not Sig	
Topic 2 – Post Test – 5B	p=0,234	Not Sig	
Topic 2 – Post Test – 6A	p=0,705	Not Sig	
Topic 2 – Post Test – 6B	p=1	Not Sig	
	Wilcoxon Test Topic 2 – Post Test – 4A Topic 2 – Post Test – 4B Topic 2 – Post Test – 5A Topic 2 – Post Test – 5B Topic 2 – Post Test – 6A Topic 2 – Post Test – 6B	Wilcoxon TestTopic 2 – Post Test – 4Ap=0,837Topic 2 – Post Test – 4Bp=0,12Topic 2 – Post Test – 5Ap=0,547Topic 2 – Post Test – 5Bp=0,234Topic 2 – Post Test – 6Ap=0,705Topic 2 – Post Test – 6Bp=1	

Table 42 – Level of significance between results of Pre- and Posttests – T2

Source: Wilcoxon Test.

In Topic 1 (Table 43) the students had a significant increase in their scores from pretest to posttest, except the 5A and 5B groups which had 6% and 10% respectively. In Topic 2 (Table 44) results show little increase in their language development, except for 4B which had a significant rise of 48% (Chart 5). Additionally, also already identified, group 6A had a decrease in the production of target language while 6B had no changes.

	Topic 1 Pre Test – 4A	Topic 1 Post Test – 4A	Difference	Improvement in %
Mean	0.18	2.76	2.59	86%
	Topic 1 Pre Test – 4B	Topic 1 Post Test – 4B	Difference	Improvement in %
Mean	0	2.47	2.47	82%
	Topic 1 Pre Test - 5A	Topic 1 Post Test - 5A	Difference	Improvement in %
Mean	2.06	2.22	0.17	6%
	Topic 1 Pre Test - 5B	Topic 1 Post Test - 5B	Difference	Improvement in %
Mean	2.5	2.8	0.30	10%
	Topic 1 Pre Test – 6A	Topic 1 Post Test – 6A	Difference	Improvement in %
Mean	0.41	2.55	2.14	71%
	Topic 1 Pre Test – 6B	Topic 1 Post Test - 6B	Difference	Improvement in %
Mean	1.36	2.93	1.57	52%

Table 43 – Differences between pre and posttests results – Production Task – Topic 1

Source: Wilcoxon Test.

When the results of the production task of the pre and posttests are compared in isolation (Tables 43-44), it is possible to observe significant results with increased scores in Table 43: group 4A, which rose from 0,18 to 2,76, and group 4B, from near 0 to 3. However, in Table 45, the mean of the pre and posttest in group 6B is the same 2,39, possibly because the average score of the pre-test is 2 (out of 3) which makes it more difficult to go beyond that in the pre-

test. This is the case of Topic 2, where the pre-test mean is 2,2 (out of 3) for all groups, which makes it difficult to obtain a significant rise in the posttest. The exception here is group 4B, where the mean rose from 1,27 to 2,73.

	Topic 2 Pre Test – 4A	Topic 2 Post Test – 4A	Difference	Improvement in %
Mean	2.42	2.45	0.03	1%
	Topic 2 Pre Test – 4B	Topic 2 Post Test – 4B	Difference	Improvement in %
Mean	1.27	2.73	1.45	48%
	Topic 2 Pre Test - 5A	Topic 2 Post Test – 5A	Difference	Improvement in %
Mean	2.38	2.62	0.23	8%
	Topic 2 Pre Test – 5B	Topic 2 Post Test - 5B	Difference	Improvement in %
Mean	1.92	2.42	0.50	17%
	Topic 2 Pre Test – 6A	Topic 2 Post Test – 6A	Difference	Improvement in %
Mean	2.67	2.60	-0.07	-2%
	Topic 2 Pre Test – 6B	Topic 2 Post Test – 6B	Difference	Improvement in %
Mean	2.39	2.39	0.00	0%
	_			

Table 44 – Differences between Pre and Posttests results – Production Task – Topic 2

Source: Wilcoxon Test.

Chart 5 below shows the difference in scores between pre- and posttests after the treatment among learners of group 4B:

The findings suggest that when students already have very high grades in the pre-test, they either maintain the score or show an insignificant improvement in the posttest. Further analysis of results points to the following:

1) The number of students present during the investigation was different in most groups, except groups 6B, which had the same number, and 4A that had a small increase. Those

Source: the researcher.

numbers may have altered the results statistically. Table 45 shows, in the percentages, that, on average, fewer learners participated in Topic 2 classes:

GROUPS	TOTAL	PARTICIPANTS	% OF	PARTICIPANTS	% OF
	LEARNERS	TOPIC 1	TOTAL	TOPIC 2	TOTAL
4A	29	16	55.17	18	62
4B	25	18	72	11	44
5A	21	17	80.95	12	57.1
5B	25	20	80	12	48
6A	23	21	91.3	14	60.86
6B	24	14	58.33	14	58.33
TOTAL	144	106	73.61	81	56.25

Table 45 – Participants in both Topics 1 and 2

Source: the researcher.

- In Topic 1, the average score of the participants had a significant rise between the pre and posttests in the following groups: 4A: 86%; 4B: 82%; 6A: 71% and 6B: 52%. In Topic 2, just 4B had an increase of 48%.
- 3) In Topic 1, the average score of the participants had a non-significant increase between the tests in the following groups: 5A: 6% and 5B: 10%. In Topic 2, groups 5A: 8% and 5B: 17%.
- 4) The average score of the participants remained stable between the 2 tests in Topic 2 in the groups 4A: 1%; 6A: -2% and 6B: 0%.
- 5) The quantitative analysis points out that the language tasks have to be different for the different grades and the level of difficulty needs to be considered, information corroborated by O'Keeffe (2022). It is very important to consider the amount of time spent by each group working with English, i. e., years of exposure to the language, and also contents already dealt with in previous grades.
- 6) There should be more investigation towards the role of the topic contents. The findings indicate that the work with *Animals*, Topic 2, was not as effective as the work with *Neighborhood*, Topic 1, with all groups. Nonetheless, schools abroad have similar topics in all grades in *Fundamental I*, only changing the level of grammatical complexity.

The overall quantitative analysis indicates that working with KWICs and concordance lines in English in the 4th – 6th grade classrooms is not only possible but feasible. It does increase the average scores in English language tests and also expand their vocabulary knowledge. It is still premature to answer positively to question (iii) Can activities implemented with a Data-driven learning (DDL) approach expand learners' topicalized vocabulary and possibly boost their progress in English? But as with any other approach to teaching, the answer is never that the result is 100% effective, as there are many variables which play a relevant role in the analysis and need to be taken into account.

Further work with vocabulary is recommended and assessment of retention through written performance should be tested. As for question (iv) Are the results significantly different from one year to the others when the same tasks are worked with in the classrooms?, the results show the younger groups had more benefits with the language treatment than the older groups. They clearly indicate that different grades had differences in the outcomes but, although to different degrees, the treatment had been effective in the six groups.

4.4 Qualitative analysis and results

This thesis section exemplifies the qualitative analysis of the students' written sentences which were produced in response to the activities proposed. The evidence of *noticing*, understanding of meaning and further awareness of language is clearly demonstrated by the samples in all six groups of students. The DDL underlying constructs such as inductive work, conscious awareness-raising of grammatical features of a sentence (3- and 4-grams) and recurrence of exposure are certainly present in those samples.

4.4.1 Evidence from Topic 1

In order to work with Topic 1 *Neighborhood*, the teacher received a list of possible target words in their concordance lines and selected the ones she deemed more appropriate to her students. Below are some examples of concordance lines the teacher enlarged and later cut into single sentences to be distributed to the students. Not all of them were full sentences as they were copied and pasted exactly as the concordancer generated them.

First, the learners took the pre-test (Appendix D) to check how much of the topic they already knew. The results demonstrated that although they knew most of the target words, they had difficulties writing sentences with those words in Task 5 (*production task*). Most learners either left the spaces blank or did not write a full sentence, and as a result, those were considered for statistical purposes. It served as learners' first encounter with the new vocabulary and for the teacher to gauge their interest in the topic. However, after the classwork and homework almost all the students produced full sentences in the posttest (Appendix D). The main aim of

the investigation was to expand vocabulary, not grammar, and use it in suitable sentences like the ones in the concordance lines which related to their lives.

For the classwork, Clara instructed the learners to pay attention to the KWICs and also connected them to the video used as an introductory activity. She asked them to pay attention to the target words and transfer the information to their own reality. Those lines (Figure 47) are simple sentences or parts of sentences which were used in other activities along 2 back-to-back lessons (Lesson plan in Appendix J).

Figure 47 – Some samples of concordance lines – Neighborhood

There are many different types of map. This is because we use different maps for different reasons.

If you were going on a hike in a nature park, you would need a map of the park.

If you wanted to know the way around your neighborhood, you would need a map of your neighborhood.

find the best road to your friend's house

find your way around a nature park

Cities are busy places! They have many buildings, including businesses and schools.

City block with homes and stores

Do you have friends in your neighborhood? Draw a picture of something you like that is near your home.

Tall apartment buildings where many people live

The part of a city or town that is close to your home is called your neighborhood.

The stores you use and your school are likely to be in your neighborhood.

They may have museums, libraries, and parks.

People live, work, learn, and have fun close to one another in cities

They may be able to walk to school, the post office, the library, and stores.

They may also use public transportation to get to different parts of the city.

City block with homes and stores

Do you have friends in your neighborhood? Draw a picture of something you like that is near your home.

Tall apartment buildings where many people live

The part of a city or town that is close to your home is called your neighborhood.

The stores you use and your school are likely to be in your neighborhood.
Many of the people you know probably live in your neighborhood.
There is a library nearby
Source: <i>Neighborhood</i> corpus. Lines yielded by #LancsBox 6.0.

The great surprise was the number of students' samples which included *nearby* in their sentences as this adverb is not used at this stage of a beginner's level. The adverb was not emphasized by the teacher but was reproduced appropriately in all groups of learners. As she used the same concordance lines with all learners, the sentences they produced became solid evidence of the teacher's work with the same material in all classes. Examples of *substitution* work with the original concordance line (A):

(A) There i	s a <i>library</i> nearby.	(KWIC: <i>library</i>)
(B) There i	s a <i>park</i> nearby.	(4 th grade)
(C) There i	s a restaurant nearby.	(5 th grade)
(D) There i	s a <i>pet shop</i> nearby.	(6 th grade)

The sample sentence (A) above contains the KWIC in italics. The students substituted according to their own neighborhood (B, C, D), making it personalized, meaningful, and hopefully memorable. The learner had to understand the meaning of the sentence to substitute *school* for *park, restaurant, Mall* and so on. Video and images were used to convey meaning and enhance comprehension. The underlying aim of the concordance lines was to focus on the target language, but a secondary aim was the revision of the construction 'there + be'. It was an open exercise where students created their own sentences based on the examples of the lines.

The analysis of the learners' sentences strongly indicate they all received similar treatment, i. e., the same *noticing* work of the target language exposure to the subsets of corpora. The DDL underlying constructs such as inductive work, conscious awareness-raising of grammatical features of a sentence (3- and 4-grams) and recurrence of exposure (concordance lines) are certainly present in those samples.

Groups	Samples of students' production	Original concordance lines
4A	There is a park nearby	There is a library nearby
4B	There is a Mall nearby	
5A	There is a bakery nearby	
5B	There is a park nearby	
6A	There is a supermarket nearby	
6B	There is a restaurant nearby	
4A	Find the best road to your park	Find the best road to the
4B	Find the best road to your pet shop	police station
5A		
5B	Find the best road to your school	
6A		
6B	Find the best road to your family's building	
4A	Find your way around the park	Find your way around a
4B	Find your way around your neighborhood	nature park
5A	Find your way around the library	
5B	Find your way around a school	
6A	Find your way around a nature park	
6B	Find your way around a hospital	

Table 46 – Sample sentences from learners' posttests

Source: the researcher.

It also indicates learners understood the overall meaning of the KWICs⁶² (*neighborhood, supermarket, hospital, school, police station, post office (mail office), bank, fire station, library, park, pharmacy (drugstore), bus stop, theater (cinema)* and the various n-grams like *find your way around*, before writing their sentences. In fact, the sentences are very similar due to the framed context learners had to work with (Table 46).

Our concern was not to deliver lessons with totally unknown contents as learners had spent a long period without proper lessons in the school. Samples of individual learners in all 6 classes are displayed in Appendix P. It is possible to observe that although the learners in the 6th grades were more creative and some even ventured away from the concordance lines using new vocabulary, some posttests were done carelessly, without attention.

4.4.2 Evidence from Topic 2

Topic 2 was introduced to all groups of learners a couple of weeks after Topic 1 was completed. This time learners were invited to work with *Animals*, to learn or revise their names, make descriptions with characteristics, body parts, and ways they moved. The approach was identical to Topic 1, with learners doing a pre-test first and in a second lesson receiving concordance lines (Table 47) to manipulate them during the activities. They also had supporting

⁶² The transcript of a video which was used to introduce the topic is in Appendix H.

very colorful bingo cards which aimed not only at repetition of exposure to animal names but also to other related vocabulary.

Insects developed on Earth before humans did.
Butterflies, ants, and bees are all insects. Insects have 6 legs.
Butterflies have 4 wings.
Spiders are eight-legged creatures. They live in most parts of the world.
Ants and bees are social insects.
Crickets are jumping insects.
Mosquitos are insects that are found almost everywhere in the world.
Reptiles are land animals that have dry skin covered in scales.
Elephants are the largest living animals
Lizards, alligators, crocodiles, turtles and snakes are all reptiles. They lay eggs.
Alligators and crocodiles are powerful animals with powerful tails.
Fish are a kind of animal that lives in the water.
Fish have scales, lay eggs and have finns to help them swim.
Birds are animals that have feathers. They lay eggs.
Birds are vertebrates that fly flapping their wings.
Some birds cannot fly at all. Penguins are this kind of birds.
Many people have birds as pets.
Lions live in parts of Africa and India.
Zebras have strong legs to run.

Table 47 – Samples of concordance lines used in class and homework

Source: Animals corpus. Lines yielded by #LancsBox 6.0.

Those lines were enlarged and helped learners work with the language. They resorted to some of them to describe the animals and also adapted to other animals as well. Some of the groups of words were used by students: *strong legs to run, live in the water* and *jumping [...]*. Table 48 shows some samples of learners' production in the final posttest. More samples of learners' written production are in Appendix Q.

Groups	Samples of students' production	Original concordance lines
4A	Rabbits are jumping animals.	Crickets are jumping insects.
4B	Frogs and rabbits are jump.	
54	Kangaroos are big animals that can jump very	
50	well.	
50	Frogs are jumping animals	
0A	Frogs are animals that jump very well.	
6B	Rabbits are small animals that can jump very	
	well.	
4A	The duck love water.	Fish are a kind of animal
4B	Shark are a kind of animals that live in the	that lives in the water.
5A	water.	
5B	Lions are wild animals that ive in the jungle.	
64	Frog live in the water.	
G	Starfish are a kind of animal that lives in water.	
OB	The fish swims.	
4A	Elephants cannot jump.	Some birds cannot fly at all.
4B	Penguins are birds that cannot sing	
5A	Chickens are birds that cannot fly.	
5B	Parrots are birds that cannot swim.	
6A	Some birds calliot fly.	
6B	The set can alimb and can walk and mun	
44	Gazela are animals that have strong logs to run	Zebras have strong logs to
4A 4D	Lions are animals that have strong legs to run.	Pun
48	Giraffes have strong legs to run	Tun.
5A	Horses are animals that have strong logs to run	
5B	Zebras have strong legs to run.	
6A	Tiger has strong legs to run.	
6B		
4A	Hippos live in parts of Africa.	Lions live in parts of Africa
4B	Lions are wils animals that live in the jungle.	and India.
54	Rabbits live in the house.	
50	Blue parrots live in parts of Brazil.	
JD CA	Giraffes live in parts of Africa.	
0A	Giraffes live in parts of Africa.	
6B		

Table 48 – Sample sentences from learners' posttest

Source: the researcher.

The groups of words in red show chunks which were more frequently used by learners. Those clusters would have probably not been used by learners if the words had not been exposed in context as they were in class. As Corino (2014, p. 68) has posited, "corpus work and DDL can thus help teachers to find patterns of specialized phraseology, which are barely mentioned in the general bilingual and monolingual dictionaries used by their students."

4.4.3 Clara's concluding statements

The teacher could witness the engagement of young learners with the material, the tasks, and was positively surprised with the results. According to her, "they produced simple sentences in class without support, and this time with the KWICs." She felt rewarded with the changes and I assume she will probably keep using inductive techniques in her classrooms. She

observed that the learners carried out the tasks as engaged as usual, except for the manipulation of concordance lines which triggered their curiosity at first. They experienced some difficulty until she explained they were examples of different uses of the target language (KWICs). The awareness work using concordance lines to help learners notice (Schmidt, 1990) the KWICs showed good results and indicated new possibilities she would have for class work from then on. The innovation in materials triggered not only their curiosity but also their interest in finding out what kind of information was in the concordance lines.

In Clara's exchanges with myself, she implied that this investigation showed that younger learners should not be underestimated. Students who had been exposed to English in regular classes longer had more consistent positive results in the use of n-grams. This statement was confirmed by the quantitative results in sections 4.3. Examples such as *in front of* and next to the, studied with prepositions of place before, but not mentioned now, came up in the 4th grade learners' sentences about neighborhood:

- The pet shop *takes care of* the animals. (9 years old).
- The park *is next to the* library. (9 years old).
- The post office *is in front of* the store (9 years old).

The teacher noticed the learning effects mostly after classwork. The sentences above were produced in exercises where they either had to choose and describe one type of building (Topic 1), or select one among many others in a picture. Linguistic items such as *the bakery sells fresh bread* and *the pet shop takes care of the animals* among many others had been used by her on different occasions: when introducing the vocabulary, watching a video, or describing a picture, for example, and were reproduced in the learners' sentences (form and meaning recall). This *information recall* reminded the teacher that those contextualized chunks had been effectively retained and were easily retrieved when the situation required. Despite the apparent 10-day language benefits for learners, the vocabulary chosen for the activities work, which required awareness of meaning and personalized language production, proved to be meaningful to the young learners.

With regards to the concordance lines and n-grams, Clara recommended that teachers should use "concordance lines as full sentences, [and depending on the groups,] they should start the class working with the texts from the pedagogic corpora." She suggested that a longer stretch of text, or even two or three lines to contextualize the KWIC would be more beneficial. She ended her comments by stating she enjoyed using authentic language with her young learner groups, "I can say that before the lessons I had underestimated their potential and level

of understanding. It was reassuring to see them understand the language coming up with examples of their own on other occasions."

4.5 Final remarks

The quantitative analysis described in the previous subsection 4.3 corroborates Clara's comments and remarks. It shows some patterns in the results which were different in the 6 groups and also reveals differences when working with Topics 1 and 2. Due to the circumstances of implementing the tasks just after the reopening of the school to face-to-face classes, unexpected variables may have played a part in those findings. Two examples can illustrate that: different interests due to age differences and not challenging enough tasks to older learners. Once identified, they can raise teachers' and researchers' awareness of areas which need more careful design in future studies.

It is possible to say that research question (iii) Can activities implemented with a Datadriven learning (DDL) approach expand learners' topicalized vocabulary and possibly boost their progress in English? has been addressed by the Posttests. As the investigation demonstrated, different vocabulary other than the target vocabulary, was used mainly by older learners in the production stage. This factor in itself is already evidence of vocabulary expansion. However, more work with the target vocabulary in cross-curricular activities will afford more KWICs repetition, more exposure to language clusters and more retention to be assessed in the future. We can then consider the answer to research question (iii) positive, as students can expand their repertoire of lexis in different areas given many conditions suggested by the variables above are met. Perhaps the younger the learners, the more restricted their knowledge of English, and therefore, the more beneficial it will be if they are exposed to authentic and contextualized language from the initial grades in primary school. Not only individual KWICs but also the n-grams should certainly be included in their language work.

Question (iv) Are the results significantly different from one year to the others when the same tasks are worked with in the classrooms? was clearly answered as we described the findings in the posttests of all the groups. The sentences produced in the posttests show evidence from Topics 1 and 2 classwork and homework with the corpus-informed concordance lines. As a matter of fact, the outcomes were somehow expected as the age groups were as different as their interests and maturity.

Chapter 5 – Conclusion

The final comments on this investigation's results in its many facets can only be made after I voice my main concern over the lack of previous investigations with similar focus and characteristics to this one. Before this investigation on the use of corpora with young learners, we tried to find other similar studies in the literature to no avail.

First in Brazil, where corpus-based studies have been carried out extensively in many academia scattered around the country which were mentioned in Chapter 2. Then, the search was abroad when I chanced upon Boulton's declaration that although "[he had] been researching data-driven learning for many years now, [he knew] virtually nothing about DDL with younger learners. None in a primary school context" (2020, e-book loc., 346). Very few scholars had carried out studies with youngsters before (Sealey, 2011; Pérez-Paredes, 2020; Crosthwaite, Stell, 2020; Boulton, 2020), but they either had a different linguistic focus for the investigation or worked with older or more advanced groups of learners.

Therefore, I hope the points and issues to be raised here shed light into using corpusbased innovation in the young learners' English classroom. It can guide future projects to advance even further in the use of KWICs in concordance lines from pedagogic corpora to aid language exposure, noticing and effective retention of language patterns.

We also considered the many variables which could have compromised the research. Different interests among participants in the topics chosen, the use of similar activities for different-age learners, their being in different phases of adolescence and also their level of motivation after 2 years homebound due to the pandemic. One caveat was the use of the same activities in the three grades, which only confirmed the fact that the older students may not have been challenged enough to use the target language or the themes selected were below their expectations. Additionally, it was understood by the researcher and the teacher that results could only be compared statistically if they were obtained from identical tasks. Harley and Wang (1997) have argued that older learners are usually capable of faster initial progress in acquiring the grammatical and lexical components of an L2 due to their higher level of cognitive development and greater analytical abilities but later claimed that

in terms of language pedagogy, it can therefore be concluded that (i) there is no single 'magic' age for L2 learning, (ii) both older and younger learners are able to achieve advanced levels of proficiency in an L2, and (iii) the general and specific characteristics of the learning environment are also likely to be variables of equal or greater importance (Harley; Wang, 2009, p. 170).

The statistical results (subsection 4.3) showed the younger groups had more benefits with the language treatment than the older groups, which clearly indicates that the same treatment affected the outcomes in different degrees. As O'Keeffe (2022, p. 6) has put forward, "it means differentiating tasks and data by level. Pedagogical focus at A1 and A2 needs to be on fostering language experience so that learners enhance their knowledge of what words go together, i.e., the basic slots and frames". Teachers can take a greater role in designing tasks which provide learners with a more fine-grained curation of stretches of language to afford task differentiation. In future studies, as learners move to upper grades, they can be made aware of new meanings and be challenged to create new phrasal word associations in context. Suggestions for further classwork with the KWICs and clusters with the use of #LancsBox tools are mentioned along subsections 4.2.1 - 4.2.5.3.

Another avenue for future investigation is the variable *time of day* when the different groups have the classwork. All groups either had English classes at the end of the morning, the third class of the day, or just after lunch, the first class in the afternoon. Those 9-12 year-old students are beginning to be affected by many biological factors during the pre-adolescence period. "We should always bear in mind that different learner profiles and individual differences coexist in a group, so data-driven reflection might not be equally appropriate for all students (Cobb; Boulton, 2015, p. 487).

Once pointing out the areas for further development, it is possible to say that the overall data analysis results indicate that working with KWICs in concordance lines in 4th to 6th grades is possible, is intriguing for younger learners, motivating and can be very effective. As stated by the teacher in her diary, it added variety to the lessons and heightened the level of engagement in some groups. With more DDL work and learners being exposed to specialized authentic vocabulary more frequently from an early age, teachers will be able to notice vocabulary expansion through heightened awareness of language patterns.

We will argue in favor of bringing the concordance lines into the classroom with more pleasurable and motivating DDL work, on different days and with different topics. Or else, DDL approaches can be supplemented, "augmented – or even replaced entirely – with complementary methods of linguistic analysis⁶³ if DDL is ever going to gain a foothold in mainstream education practice" (Crosthwaite; Boulton, 2023, p. 9, in press). In their words,

⁶³See: <u>https://elenlefoll.pressbooks.com</u>.

DDL should evolve "to accommodate ways that learners are used to sourcing information, rather than DDL practitioners trying to force them to adopt KWIC concordancing with limited left / right context (Crosthwaite; Boulton, 2023, p. 9, in press)". In addition, texts which are age and topic-appropriate can turn themselves into a *pedagogic corpus* to be uploaded to the #LancsBox concordancer for hands-on use. The development of the competence in ICT skills will be the ultimate thrust upon learners.

The topics / themes which were dealt with in class showed promising positive shortterm retention which can point towards achievement of the main aims. Even though there were no control groups, data for statistical comparisons of outcomes were collected and analyzed, giving researchers a better understanding of the work with pedagogic corpora as it unfolded. Nevertheless, it would have been desirable to administer a second posttest to assess learners' language retention some weeks later, but as we were dealing with young learners, going through some periods of learning recall of previous years' contents after the 2-year of pandemic and lockdown, I decided not to impose further on the teacher.

Despite the positive outcomes, we would name an area where there is much room for further observation and improvement when working with corpora: the selection of target language in pedagogic corpora. To implement this study, both the teacher and researcher analyzed the most frequent vocabulary generated by the concordancer and selected the words and n-grams which we assumed would suit the learners best. However, to our surprise, some of them were not necessarily the ones which called learners' attention. Instead, learners asked for and used words which had not been identified as the most frequent by the software. L1 influence? As mentioned before, many Geography and Science target words worked with in this investigation had not been ranked at the top as the most frequent lexis in the list, something recommended by many studies (McCarten, 2007; Nation, 1997; Nation; Waring, 1997). This fact points out to the need that the class teacher should work collaboratively with the teachers of the subjects involved in future cross-curricular activities. They will be able to help analyze vocabulary from the corpora and curate the most relevant keywords which would be suitable to the needs and interests of the groups. Teachers would then be able to generate the related concordance lines and design the tasks.

There are still other pedagogical implications to be addressed in areas which are beyond our control at present. There is an urgent need that both teachers and learners think realistically about their literacy in ICT as it requires considerable investment in terms of time and practice in order to comprehend the rationale and learn how to use data efficiently (Crosthwaite, 2022; Meunier, 2011, 2022; Boulton, 2012). Meunier (2022) claims that DDL has still not taken advantage of the numerous advances in digital technology, which in Brazil can also be explained by the lack of computers available to learners in many public schools. The concordance printouts of the 90s have now been upgraded to online DDL systems and there is an urgent need that we close this wide gap as soon as possible. The preparatory courses for teachers still have not included the use of corpora officially. Little digital literacy combined with a reduced number of computers in the majority of public and private schools indicate that class work will probably continue to be hands-off and paper-based in Brazil for quite some time.

Although not meant to be representative of a language in its entirety, the results of this investigation can be particularly useful in teaching English with specific topicalized contents where published materials are difficult to come by (Cobb; Boulton, 2015; Reppen, 2010). Despite the wide array of available English textbooks in Brazil, their target is the general English learners, and do not include the specialized contents of the Elementary schools curricula⁶⁴. The new corpus-informed data can encourage teachers to resort to the pedagogic corpora in cross-curricular projects in English and eventually raise the amount of exposure English learners have in their 4th to 6th grades of *Ensino Fundamental I*. We need to start working with the professional demands of the future now, so the students are prepared to respond to them accordingly when time comes.

After carrying out the study we can reaffirm that there is clear evidence of the effectiveness of DDL in the English classroom (Cobb; Boulton, 2017). Our conclusion is that it is indeed worth trying to introduce models of authentic language – concordance lines and n-grams – in the classroom from the 4th grade or even sooner. Further work on 3- and 4-grams in the concordance lines will also expose learners to mainstream grammar, collocations, and colligations, which are also part of formulaic knowledge that needs to be fostered from their early stages of learning. To corroborate that, O'Keeffe relies on the UB models to argue that "second language learners typically move from a repertoire of fixed holophrasal⁶⁵ sequences at low levels to an expanded slot and frame system to fully abstracted (often figurative) patterns (2022, p. 2). Teachers should also resort to the use of computers for more autonomous hands-on discovery work where possible while allowing learners to take agency of their own learning.

⁶⁴ Corpora will soon be available at CORPUS FOR SCHOOLS – Teaching English Language with Corpus Linguistics website: <u>https://wp.lancs.ac.uk/corpusforschools/</u>. The aim of the project is to bring corpora and corpus methods into classrooms to teach students about the use of the English language.

⁶⁵ "In the study of language acquisition, holophrasis is the prelinguistic use of a single word to express a complex idea" (https:en.wikipedia.org/wiki/Holophrasis) and "this is often observed in language acquisition, where children in the prelinguistic stage use holophrases to communicate complex ideas" (https://thoughtco.com/holophrase-language-acquisition-1690929).

It is fair to say that if there is a continuation of classwork with corpus-informed data and a DDL approach, language will be consolidated.

We conclude endorsing Boulton's words about his own work, "the simple experiment [...] is deliberately modest in its design and aims in order to show that useful empirical results are not hard to obtain, and in the hope that others may therefore be encouraged to conduct their own empirical studies" (Boulton, 2008, p. 1). We did!

References

ALEXANDER, Richard John. Fixed expressions in English: a linguistic, psycholinguistic, sociolinguistic and didactic study. <u>Anglistik und Englischunterricht</u>, v. 6, n. 1978, p. 171-188, 1979.

ALMEIDA, Valdênia; ORFANÓ, Bárbara; DUTRA, Deise. Is there a better choice? Verb-noun combinations in academic writing. *In*: VIANA, Vander (org.). *Teaching English with corpora:* a resource book. Oxon: Routledge, 2023. p. 228-232.

ANTHONY, Laurence; CHUJO, Kiyomi; OGHIGIAN, Kathryn . *DDL for the EFL classroom* - Effective uses of a Japanese-English parallel corpus and the development of a learner-friendly, online parallel concordancer. Waseda University, 2009. DOI: <u>https://doi.org/10.1163/9789401206884_008</u>.

ANTHONY, Laurence; CHUJO, Kiyomi; OGHIGIAN, Kathryn; YOKOTA, Kenji. Teaching Remedial Grammar through Data-Driven learning using AntPConc. *Taiwan International ESP Journal*, v. 5, n. 2, p. 65-90, 2013.

ARMSTRONG, Patricia. *Bloom's Taxonomy*. Vanderbilt University Center for Teaching, 2010. Available at: <u>https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy</u>. Accessed on July 1st., 2023.

ASTON, Guy. Small and large corpora in language learning. *In*: LEWANDOWSKA-TOMASZCZYK, Barbara; MELIA, Patrick James (eds.). PALC'97. *Proceedings of the first annual conference*. Łodz: Łodz University Press, 1997. p. 51-62.

ASTON, Guy. Corpora in Language Pedagogy: matching theory and practice. In: COOK, Guy; SEILDHOFER, Barbara (Eds). Principle and practice in applied linguistics: studies in honour of H. G. Widdowson. Oxford: Oxford University Press, 1995. p. 385 – 418.

BANERJEE, Satanjeev; PEDERSEN, Ted. Extended Gloss Overlaps as a Measure of Semantic Relatedness. INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE – IJCAI, 18th, Acapulco, Mexico, 2003. *Proceedings*... Morgan Kaufmann Publishers Inc. San Francisco, CA, United States.

BIBER, Douglas; CONRAD, Susan; LEECH, Geofrey. Longman Grammar of Spoken and Written English. Essex: Pearson Education, 1999.

BIBER, Douglas; CONRAD, Susan; REPPEN, Randi. *Corpus Linguistics*. Investigating language structure and use. Cambridge: Cambridge University Press, 1998.

BINGIMLAS, Khalid. Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. *Eurasia journal of mathematics, science & technology education*, v5., n. 3, 2009. Available at: <u>https://doi.org/10.12973/ejmste/75275</u>. Accessed on Aug. 1st., 2022.

BLOOM, Benjamin; ENGLEHART, Max; FURST, Edward; HILL, Walter; KRATHWOHL, David. *The Taxonomy of educational objectives, Handbook I*: The Cognitive domain. New York: David McKay Co. Inc., 1956.

BOCORNY, Ana Elisa; REBECHI, Rozane; REPPEN, Randi; DELFINO, Maria Cláudia; LAMEIRA, Vivian. A produção de artigos da área das ciências da saúde com o auxílio de key lexical bundles: um estudo direcionado por corpus. *D.E.L.T.A.* [Documentação de Estudos em Linguística Teórica e Aplicada], v. 37, p. 1, 2021. Available at: https://doi.org/10.1590/1678-460X2021370101. Accessed on Aug. 2nd, 2021.

BOCORNY, Ana Elisa; WELP, Anamaria. O desenho de tarefas pedagógicas para o ensino de inglês para fins acadêmicos: conquistas e desafios da Linguística de Corpus [The design of pedagogical tasks for teaching English for academic purposes: achievements and challenges of Corpus Linguistics]. *Revista de Estudos da Linguagem*, v. 29, p. 1529, 2021. Available at: <u>http://dx.doi.org/10.17851/2237-2083.29.2.1529-1638</u>. Accessed on Aug. 1st., 2021.

BOLINGER, Dwight. Meaning and memory. Forum Linguisticum, v. 1, p. 1-14, 1976.

BOULTON, Alex. Research in data-driven learning. *In*: PÉREZ-PAREDES, Pascual; MARK, Geraldine (eds.). *Beyond Concordance Lines*: Corpora in language education. John Benjamins, 2021. p. 9-34.

BOULTON, Alex. Foreword. *Data-Driven Learning for the Next Generation*. New York: Routledge, 2020. [e-book – Kindle Edition].

BOULTON, Alex. What data for data-driven learning? Eurocall Rev., v. 20, 2012a. p. 23-27.

BOULTON, Alex. Hands-on / hands-off: Alternative approaches to data-driven learning. *In*: THOMAS, James; BOULTON, Alex (eds.). *Input, Process and Product*: Developments in Teaching and Language Corpora. Brno, Czech Republic: Masaryk University Press, 2012. p. 152-168.

BOULTON, Alex. Looking for empirical evidence of data-driven learning at lower-levels. *In*: LEWANDOSKA-TOMASZCZYK, Barbara (ed.). *Corpus Linguistics, Computer Tools, and Applications: State of the Art.* Frankfurt: Peter Lang, 2008. p. 581-598.

BRASIL. Parecer CNE/CEB n.01/2020. *Diretrizes curriculares nacionais para a educação bilíngue* [White paper CNE/CEB - National curriculum guidelines for bilingual education]. Brasília: Ministry of Education. Available at: <u>http://portal.mec.gov.br/docman/maio-2020-pdf/146571-texto-referencia-parecer-sobre-educac-a-o-bili-ngue/file</u>. Accessed on June 1st., 2020.

BRASIL. Base Nacional Comum Curricular (BNCC). Ministério da Educação e Cultura. Disponível em: <u>https://novaescola.org.br/conteudo/12720/bncc-baixe-em-pdf-o-e-book-de-competencias-gerais</u>. Acesso em: 1 abr. 2021.

BRASIL. Ministério da Educação; Secretaria de Educação Básica; Secretaria de Educação Continuada, Alfabetização, Diversidade e Inclusão; Secretaria de Educação Profissional e Tecnológica. Conselho Nacional de Educação; Câmara de Educação Básica. *Diretrizes*

Curriculares Nacionais da Educação Básica. Brasília: MEC; SEB; DICEI, 2013. Disponível em: http://portal.mec.gov.br/index.php?option=com_docman&view=download&alias=13448 -diretrizes-curiculares-nacionais-2013-pdf&Itemid=30192. Acesso em: 1 abr. 2021.

BRASIL. Ministério da Educação. Conselho Nacional da Educação. *Base Nacional Comum Curricular*, 2017. Brasília, Secretaria de Educação Básica. Disponível em: <u>http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf</u>. Acesso em: 1 abr. 2021.

BREZINA, Vaclav; TIMPERLEY, Mathew; MCENERY, Anthony. *#LancsBox* v.4.x. [software]. Lancaster University, 2018. Available at: <u>http://corpora.lancs.ac.uk/lancsbox/download.php</u>. Accessed on Dec. 1st., 2019. [#LANCSBOX]

BREZINA, Vaclav; PLATT, William. *#LancsBox*: corpus toolbox v.6.0. [software]. Lancaster University, 2021. Available at: <u>#LancsBox: Lancaster University corpus toolbox</u>. Accessed: Dec. 1st. 2021. [#LANCSBOX]

BROOKS, Nelson. *Language and language learning*: Theory and practice (2nd. ed.). New York: Harcourt Brace & World, 1964.

CAMPBELL, Donald; STANLEY, Julian. *Experimental and quasi-experimental designs for research*. Palo Alto, CA: Houghton Mifflin Company Boston, 1966.

BROWN, Roger. A first language: The early stages. Cambridge, MA: Harvard University Press, 1973.

CARTER, Ronald. Vocabulary. London: Routledge, 1987.

CHAMBERS, Angela. Towards the corpus revolution? Bridging the research – practice gap. *Language Teaching*, v. 52, n. 4, p. 460-475, 2019.

CHAMBERS, Angela. What is data-driven learning? *In*: O'KEEFFE, Anne; MCCARTHY, Michael (eds.). *The Routledge Handbook of Corpus Linguistics*. London: Routledge, 2010. p. 345-358.

CHAMBERS, Angela; KELLY, Victoria. Semi-specialized corpora of written French as a resource in language teaching and learning. *TEANGA*, v. 21, p. 20-21, 2002.

CLEMESHA, Susan; LIBERALI, Fernanda. De-encapsulated Bilingual Education in Brazil Multicultural Breakfasts and Translanguaging Kids. *ReVista: Harvard Review of Latin America*, v. XIX, n. 2, Fall/Winter 2019-2020. Available at: <u>https://revista.drclas.harvard.edu/de-encapsulated-bilingual-education-in-brazil/</u>. Accessed on July 1st., 2022.

COBB, Thomas. *Compleat Lexical Tutor* v. 8.3 – *VP-Kids v. 1.1.* Available at: <u>https://www.lextutor.ca/vp/kids/</u>. Accessed on April 1st., 2021.

COBB, Thomas; BOULTON, Alex. Corpus use in language learning: A meta-analysis. *Language Learning*, Wiley, v. 67, n. 2, p. 348 – 393, 2017.

COBB, Thomas; BOULTON, Alex. Classroom Application of Corpus Analysis. *In*: BIBER, Douglas; REPPEN, Randi (eds.). *The Cambridge Handbook of English Corpus Linguistics*. Cambridge: Cambridge University Press, 2015. p. 480-497.

COBB, Thomas. Computing the Vocabulary Demands of L2 Reading. *In*: CHUN, Dorothy; HEIFT, Trude (eds.). *Language Learning and Technology*, v.11, n. 3, 2007. p. 38-63. Available at: <u>http://llt.msu.edu/vol11num3/cobb/</u>. Accessed on April 1st., 2021.

COMMON EUROPEAN FRAMEWORK OF REFERENCE FOR LANGUAGES. Available at: <u>https://www.cambridgeenglish.org/images/177867-the-methodology-behind-the-cambridge-english-scale.pdf.</u> Accessed on April 1st., 2021.

CORINO, Elisa; ONESTI, Cristina. Data-Driven Learning: A Scaffolding Methodology for CLIL and LSP Teaching and Learning. *Frontiers in Education*. 2019. Available at: <u>https://doi.org/10.3389/feduc.2019.00007</u>. Accessed on Aug. 1st, 2022.

CORTES, Viviana. Lexical bundles in published and student disciplinary writing: Examples from History and Biology. *English for Specific Purposes*, v. 23, n. 4, p. 397-423, 2004.

COXHEAD, Averil. New academic word list. TESOL Quarter, v. 34, p. 213-238, 2000.

COYLE, Do; HOOD, Philip; MARSH, David. *Content and Language Integrated Learning*. Cambridge: CUP, 2010.

CROSTHWAITE, Peter; BOULTON, Alex. DDL is dead? Long live DDL! Expanding the boundaries of data-driven learning. *In*: TYNE, H.; BILGER, M.; BUSCAIL, L; LERAY, M.; CURRY, N.; PÉREZ-SABATER, C. (eds.). *Discovering language*: Learning and affordance. Peter Lang, 2023. [in press].

CROSTHWAITE, Peter; BAISA, Vit. Generative AI and the end of corpus-assisted data-driven learning? Not so fast! *Applied Corpus Linguistics*, v. 3, n. 3, p.1-4, 2023. Available at: https://doi.org/10.1016/j.acorp.2023.100066.

CROSTHWAITE, Peter. DDL for Younger Learners. In: JABLONKAI, Reka; CSOMAY, Eniko (eds.). The Routledge Handbook of Corpora and English Language Teaching and Learning. New York: Routledge, 2022. p. 377-389.

CROSTHWAITE, Peter; STELL, Annita. It helps me get ideas on how to use my words – Primary school students' initial reactions to corpus use in a private tutoring setting. *In*: CROSTHWAITE, Peter (ed.). *Data-Driven Learning for the Next Generation* - Corpora and DDL for Pre-tertiary Learners. New York: Routledge, 2020. [e-book – Kindle Edition, Locations: 3837-3838].

DANG, Ngoc Yen; WEBB, Stuart. Evaluating lists of high-frequency words. *International Journal of Applied Linguistics*, v. 167, n. 2, p. 132-158, 2016.

DANG, Thi Ngoc Yen; WEBB, Stuart. Making an essential word list for beginners. *In*: NATION, Paul (ed.). *Making and using word lists for language learning and testing*. Amsterdam: John Benjamins, 2016a. p. 153-167, 188-195.

DE CHIARA, Márcia; GAVRAS, Douglas. Desempregado sem formação não consegue nem trabalhos básicos: mutirão de emprego não preenche 60% das vagas ofertadas. *O Estado de São Paulo*, São Paulo, 2 jun. 2019. Capa e Suplemento B – Economia, p. 4.

DE OLIVEIRA, Luciana; HÖFLING, Camila. Bilingual Education in Brazil. *In*: RAZA, Kashif; COOMBE, Christine; REYNOLDS, Dudley (eds.). *Policy Development in TESOL and Multilingualism* – Past, Present and the Way Forward. Springer, 2021. p. 5-37. DOI:10.1007/978-981-16-3603-5.

DOLCH, Edward. A basic sight word vocabulary. *The Elementary School Journal*, v. 36, n. 6, p. 456-460, 1936.

DUTRA, Deise; QUEIROZ, Jessica; de MACEDO, Luciana; COSTA, Danilo; MATTOS, Elisa. Adjectives as nominal pre-modifiers in chemistry and applied linguistics research articles. *In*: RÖMER, Ute; CORTES, Viviana; FRIGINAL, Eric (org.). *Advances in Corpusbased Research on Academic Writing*. Amsterdam: John Benjamins Publishing Company, 2020. DOI: <u>https://doi.org/10.1075/scl.95.09dut</u>.

ELLIS, Nick. Frequency effects. *In*: ROBINSON, Peter. (ed.) *The Routledge Encyclopedia of Second Language Acquisition*. New York: Routledge, 2012. p. 260-265.

ELLIS, Nick; LARSEN-FREEMAN, Diane. Language emergence: implications for applied linguistics. Introduction to the special issue. *Applied Linguistics*, v. 27, n. 4, p. 558-589, 2006.

ELLIS, Nick. Frequency effects in Language Processing – A Review with implications for Theories of Implicit and Explicit language Acquisition. *Studies in Second Language Acquisition*, Cambridge, v. 24, n. 2, 2002. p. 143-188. DOI: https://doi.org/10.1017/S0272263102002024.

ELLIS, Nick. Memory for Language. *In*: ROBINSON, Peter (ed.). *Cognition and Second Language Instruction*. Cambridge: Cambridge University Press, 2001. p. 33-68.

ELLWOOD, Nancy (ed.). *Geography* – 3rd Grade. New York: DK – Penguin Random House, 2014.

EHRI, Linnea. Learning to Read Words: Theory, Findings, and Issues. *Scientific Studies of Reading*, v. 9, n. 2, p. 167-188, 2005.

EHRI, Linnea. Reconceptualizing the development of sight word reading and its relationship to recoding. In: GOUGH, Philip *et al* (eds.). *Reading Acquisition*. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc, 1992. p. 107–143.

FARRELL, Linda; OSENGA, Tina; HUNTER, Michael. Comparing the Dolch and Fry High Frequency Word Lists. *Readsters*, 2013. p. 1-14. Available at: <u>https://www.readsters.com/wp-content/uploads/2013/03/ComparingDolchAndFryLists.pdf</u>. Accessed on: April 20, 2021.

FLOWERDEW, Lynne. Data-driven learning and language learning theories: whither the twain shall meet. *In*: LENKO-SZYMANSKA, Agnieszka; BOULTON, Alex (eds.). *Multiple Affordances of Language Corpora for Data-Driven Learning*. Amsterdam, Netherland: John Benjamins, 2015. p. 15-36.

FORSBERG LUNDELL, Fanny. Formulaicity and corpora. *In*: TRACY-VENTURA, Nicole; PAQUOT, Magali (eds.). *The Routledge Handbook of Second Language Acquisition and Corpora*. Routledge: London, 2021. p. 370-381.

FRANKENBERG-GARCIA, Ana. Raising teachers' awareness of corpora. *Language Teaching*, v. 45, n. 4, p. 475-489, 2012.

FRIES, Charles; LADO, Robert. *Teaching Pronunciation*. Michigan: University of Michigan Press, John Wiley, 1958.

FRY, Edward. The new instant word list. The Reading Teacher, v. 34, n. 3, p. 284-289, 1980.

GABLASOVA, Dana. *Corpus Linguistics: Method, Analysis and Interpretation.* MOOC. Lancaster: Lancaster University, 2019.

GABRIELATOS, Costas. Corpora and Language Teaching: Just a fling or wedding bells? *TESL* – *EJ*, v. 8, n. 4, p. 1-37, 2005.

GARNER, Jeremy. *Vocabulary Kitchen*. 2019. Available at: <u>http://vocabkitchen.com/profiler/cefr</u>. Accessed on: April 2nd, 2021.

GIBBONS, Pauline. *Scaffolding Language, Scaffolding Learning*: Teaching Second Language Learners in the Mainstream Classroom. Sydney: Heinemann, 2002.

GILQUIN, Gaetanelle; GRANGER, Sylviane. How can data-driven learning be used in language teaching? *In*: O'KEEFFE, Anne; MCCARTHY, Michael (eds.). *The Routledge Handbook of Corpus Linguistics*. London: Routledge, 2010. p. 359-371.

GODWIN-JONES, Robert. The evolving roles of language teachers: trained coders, local researchers, global citizens. *Language Learning & Technology*, v. 19, n. 1, p. 10-22, 2015.

GRANGER, Sylviane. The computer learner corpus: a versatile new source of data for SLA research. *In*: GRANGER, S. (ed.). *Learner English on Computer*. London, New York: Addison Wesley Longman, 1998. p. 3-18.

HAFNER, Christoph; CANDLIN, Christopher. Corpus tools as an affordance to learning in professional legal education. *Journal of English for Academic Purposes*, v. 6, n. 4, p. 303-318, 2007.

HARLEY, Birgit; WANG, Wenxia. The critical period hypothesis: where are we now? *In*: DE GROOT, Annette M. B.; KROLL, Judith F. (eds.). *Tutorials in Bilingualism*: Psycholinguistic Perspectives. Mahwah, New Jersey: Lawrence Erlbaum Associates Publishers, 1997. p. 19-51.

HARLEY, Birgit; WANG, Wenxia. Age and the critical period hypothesis. *ELT Journal*, v. 63, n. 2, p. 170-172, 2009. DOI: 10.1093/elt/ccn072.

HARMER, Jeremy. *How to Teach English*. London: Longman, 2003. HENDRY, Clinton; SHEEPY, Emily. Evaluating corpus analysis tools for the classroom. *In*: JABLONKAI, Reka; CSOMAY, Eniko (eds.). *The Routledge Handbook of Corpora and English Language Teaching and Learning*. New York: Routledge, 2022. p. 437-459. HIRATA, Eri. The development of a multimodal corpus for young learners: a case study on the integration of DDL in teacher. *In*: CROSTHWAITE, Peter (ed.). *Data-Driven Learning for the Next Generation* - Corpora and DDL for Pre-tertiary Learners. New York: Routledge, 2020. [e-book – Kindle Edition, Locations: 2486 - 2895].

HIRSH, David; NATION, Paul. What Vocabulary Size is Needed to Read Unsimplified Texts for Pleasure? *In*: DAY, Richard; BRANTMEIER, Cindy (eds.). *Reading in a Foreign Language*, v. 8, n. 2, p. 689-696, 1992.

IBM CORP. SPSS Statistics for Windows. IBM CORP. Released in: 2012. [S.I.]: IBM SPSS INC., 2012. Available at: <u>https://www.ibm.com/products/spss-statistics</u>. Accessed on: August 1st., 2022.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO). Available at: <u>https://www.iso.org/home.html</u>. Accessed on: May 1st., 2023

JOHANSSON, Stig. Some thoughts on corpora and second-language acquisition. *In*: AIJMER, Karin. (ed.). *Corpora and Language Teaching*. Amsterdam: John Benjamins, 2009. p. 33-44.

JOHNS, Tim. Contexts: the background, development and trialing of a concordance-based CALL program. *In*: WICHMANN, Anne *et al.* (eds.). *Teaching and Language Corpora*. Harlow: Longman, 1997. p. 100-115.

JOHNS, Tim. Should you be persuaded: Two examples of data driven learning. *In*: JOHNS, Tim; KING, Philip (eds.). Classroom concordancing. *ELR Journal*, v. 4. Birmingham: University of Birmingham, 1991. p. 1-16.

JOHNS, Tim. Micro-concord: a language-learner's research tool. *System*, v. 14, n. 2, p. 151-162, 1986.

JUDD, Elliot; TAN, Libua; WALBERG, Herbert. *Teaching additional languages*. New York: International Academy of Education / UNESCO, 2001.

LABERGE, David; SAMUELS, Jay. Toward a theory of automatic information processing in reading. *Cognitive Psychology*, v. 6, p. 293-323, 1974.

LANGACKER, Ronald. *Foundations of Cognitive Grammar*: Theoretical Prerequisites. Stanford: Stanford University Press, 1987.

LANCASTER University corpus toolbox. Version 6.0. Available at: <u>#LancsBox: Lancaster</u> <u>University corpus toolbox</u>. Accessed on: August 1st., 2021. [#LANCSBOX]

LAUFER, Batia; NATION, Paul. Vocabulary. *In*: GASS, Susan; MACKEY, Alison (eds.). *The Routledge Handbook of Second Language Acquisition*. New York: Routledge, 2012. p. 163-176.

LEEL, Hsing-chin. In Defense of Concordancing: An Application of Data-Driven Learning in Taiwan. *Procedia - Social and Behavioral Sciences*, v. 12, p. 399-411, 2011.

LEWIS, Michael. *Implementing the Lexical Approach*. Hove, UK: LTP – Language Teaching Publications, 1993.

LIBERALI, Fernanda. A BNCC e a elaboração de currículos para a Educação Bilíngue. *In*: MEGALE, Antonieta. (ed.). *Educação Bilíngue no Brasil*. São Paulo: Fundação Santillana, 2019. p. 29-42.

LIGHTBOWN, Patsy; SPADA, Nina. *How Languages are Learned*. Oxford: Oxford University Press, 2013.

LONG, Michael. Focus on Form: A Design feature in Language Teaching. *In*: DE BOT, Kees *et al.* (eds.). *Foreign Language Research in Cross-Cultural Perspectives*. Amsterdam: John Benjamins, 1991. p. 39-52.

MAIA, Belinda. Do-it-yourself corpora... with a little help from your friends. *In*: LEWANDOWSKA-TOMASZCZYK, Barbara; MELIA, Patrick James (eds.). PALC '97 *Proceedings of the first annual conference*. Łodz: Łodz University Press, 1997. p. 403-410.

MARINOVA-TODD, Stefka; MARSHALL, D. Bradford; SNOW, Catherine. Three Misconceptions about Age and L2 Learning. *TESOL Quarterly*, v. 34, n. 1, p. 9-34, Spring 2000. Available at: <u>https://www.jstor.org/stable/3587863</u>. Accessed on: April 2nd. 2021.

MARSH, David. Bilingual Education & Content and Language Integrated Learning. *International Association for Cross-cultural Communication, Language Teaching in the Member States of the European Union (Lingua)*, Paris, University of Sorbonne, 1994.

MCCARTEN, Jeanne. *Teaching vocabulary*. Lessons from the Corpus, Lessons for the Classroom. Cambridge: Cambridge University Press, 2007.

MCCARTHY, Michael. *Touchstone*: from Corpus to Coursebook. Cambridge: Cambridge University Press, 2004.

MCENERY, Tony; WILSON, Andrew. *Corpus Linguistics*. 2nd ed. Edinburgh, UK: Edinburgh University Press, 2001.

MCKENNEY, Susan; VISSCHER, Adrie. Technology for Teacher Learning and Performance. *Technology, Pedagogy and Education,* v. 28, p. 129-132, 2019. DOI: https://doi.org/10.1080/1475939X.2019.1600859. Accessed on: August 2nd. 2021.

MEARA, Paul. *The importance of an Early Emphasis on L2 Vocabulary*. University of Wales, Swansea, 2001. Available at: <u>http://www.jalt-publications.org/old_tlt/files/95/feb/meara.html</u>. Accessed on: April 3rd , 2021.

MEARA, Paul. Single-subject studies of lexical acquisition. Second Language Research. Swansea, University of Wales, v. 11, n. 2, p. i-iii, 1995.

MELKA, Francine. Receptive vs. productive aspects of vocabulary. In: SCHMITT, Norbert; MCCARTHY, Michael (eds.). *Vocabulary*: Description, Acquisition and Pedagogy. Cambridge: Cambridge University Press, 1997. p. 84–102.

MENDES, Ana Rachel; FINARDI, Kyria. Integrating digital technologies in Brazilian English language Teacher Education through blended learning. *Educação em Revista*, v. 36, e. 233799, 2020. DOI: <u>http://dx.doi.org/10.1590/0102-4698233799</u>. Accessed on: Aug. 3rd, 2022. MEUNIER, Fanny. Revamping DDL: Affordances of Digital Technology. *In*: JABLONKAI, Reka; CSOMEY, Eniko (eds.). *The Routledge Handbook of Corpora and English Language Teaching and Learning*. New York, London: Routledge, 2022. p. 344-360.

MEUNIER, Fanny. A Case for Constructive Alignment in DDL: Rethinking Outcomes, Practices and Assessment in (Data-Driven) Language Learning. *In*: CROSTHWAITE, Peter (Ed.). *Data-Driven Learning for the Next Generation*. London: Routledge, 2020. p. 13-30. DOI: https://doi.org/10.4324/9780429425899-2.

MEUNIER, Fanny; REPPEN, Randi. Corpus versus non-corpus-informed pedagogical materials: Grammar as the focus. *In*: BIBER, Douglas; REPPEN, Randi (eds.). *The Cambridge Handbook of English Corpus Linguistics*. Cambridge: Cambridge University Press, 2015. p. 498-514.

MEUNIER, Fanny. Corpus linguistics and second / foreign language learning: exploring multiple paths. *Revista Brasileira de Linguística Aplicada*, Belo Horizonte, v. 11, n. 2, p. 459-477, 2011.

NATION, Paul. What matters in vocabulary learning? *LALS*, Victoria University of Wellington, New Zealand, 2020. [Webinar].

NATION, Paul. What should every ESL teacher know? Seoul: Compass Publishing, 2013.

NATION, Paul. *Learning vocabulary in another language*. 2nd. ed. Cambridge: Cambridge University Press, 2013a.

NATION, Paul. How large a vocabulary is needed for reading and listening? *Canadian Modern Language Review*, v. 63, n. 1, p. 59-82, 2006.

NATION, Paul. The goals of vocabulary learning. *In*: NATION, Paul (ed.). *Learning Vocabulary in Another Language*. Cambridge: Cambridge University Press, 2001. p. 6-22.

NATION, Paul. Teaching and Learning Vocabulary. New York: Heinle and Heinle, 1990.

NATION, Paul; WARING, Robert. Vocabulary size, text coverage and word lists. *In*: SCHMITT, Norbert; MCCARTHY, Michael (eds.). *Vocabulary: Description, Acquisition and Pedagogy*. Cambridge: Cambridge University Press, 1997. p. 6-19.

O'KEEFFE, Anne; MARK, Geraldine. Principled pattern curation to guide data-driven learning design. *Applied Corpus Linguistics*. 2022. DOI: https://doi.org/10.1016/j.acorp.2022.100028. Accessed on: Sept. 1st. 2022.

O'KEEFFE, Anne. Data-driven learning and the second language acquisition interface debate. *In*: PÉREZ-PAREDES, Pascual; MARK, Geraldine (eds.). *Beyond the Concordance*: Multiple Applications of Language Corpora for Language Education. Amsterdam: John Benjamins, 2021a. p. 35-55.

O'KEEFFE, Anne. Data-driven learning – a call for a broader research gaze. *Language Teaching*, v. 54, n. 2, p. 259-272, 2021b.

O'KEEFFE, Anne; MARK, Geraldine. The English grammar profile of learner competence: methodology and key findings. *International Journal of Corpus Linguist*, v. 22, n. 4, p. 457-489, 2017.

O'KEEFFE, Anne; MCCARTHY, Michael; CARTER, Ronald. *From corpus to classroom*: language use and language teaching. Cambridge, UK: Cambridge University Press, 2007.

OLIVA, Katherine. *Integrating corpora with language classroom*: online corpus as an editing tool. Orientadora: Dra. Deise Prina Dutra. 117 f. 2018. Dissertação (Mestrado em Linguística Aplicada) - Faculdade de Letras, Universidade Federal de Minas Gerais, Belo Horizonte, 2018.

OROSZ, Andrea. The growth of young learners' English vocabulary size. *In*: NIKOLOV, Marianne (ed.). *Early learning of modern foreign languages*. Bristol: Multilingual Matters, 2009. p. 181-194.

PÉREZ-PAREDES, Pascual. The pedagogic advantage of teenage corpora for secondary school learners. *In*: CROSTHWAITE, Peter (ed.). *Data-Driven Learning for the Next Generation*. New York: Routledge, 2020. [Kindle Edition. Loc. 2021-2482].

PINTER, Annamaria. Teaching Young Learners. *In*: BURNS, Anne; RICHARDS, Jack (eds.). *The Cambridge Guide to Pedagogy and Practice in Second Language Teaching*. Cambridge: Cambridge University Press, 2012. p. 103-111.

PINTO, Paula; CROSTHWAITE, Peter; de CARVALHO, Carolina; SPINELLI, Francieli; SERPA, Talita; GARCIA, William; OTTAIANO, Ariane (orgs.). *Using language data to Learn About Language*: A Teacher's Guide to Classroom Corpus Use. Brisbane: University of Queensland, 2023. DOI:10.14264/3bbe92d.

RAYSON, Paul. Computational tools and methods for corpus compilation and analysis. *In*: BIBER, Douglas; REPPEN, Randi (eds.). *The Cambridge Handbook of English Corpus Linguistics*. Cambridge: Cambridge University Press, 2015. p. 32-49.

READ, Carol. *ABC of Teaching Children – ideas, tips and resources for primary language teachers.* Available at: <u>https://carolread.wordpress.com/2011/07/25/y-is-for-young-learners/</u>. Accessed on: May 1st. 2021.

READ, Carol. Is younger better? English Teaching professional, v. 28, p. 5-7, July, 2003.

READ, Carol. ABC of changes in PELT over the last 30 years. *IATEFL Young Learners & Teenagers SIG Newsletter*: C&TS Digital Special Pearl Anniversary Edition. Available at: <u>https://www.carolread.com/wp-content/uploads/2015/01/ABC-of-changes-in-PELT-over-the-last-30-years.pdf</u>. Accessed on: November 1st 2023.

REDECKER, Christine. European Framework for the Digital Competence of Educators: DigCompEdu. *JRC Research Reports*, JRC107466, Joint Research Centre, Seville, European Commission, 2017.

REPPEN, Randi. Using Corpora in the Language Classroom, 2012. (1:17:32). Published by: The New School. Available at: <u>https://www.youtube.com/watch?v=Qf46lOnMCfs&t=967s</u>. Accessed on: August 4th 2020.

REPPEN, Randi. Using Corpora in the Language Classroom. Cambridge: Cambridge University Press, 2010.

REPPEN, Randi. Building a Corpus – What are the key considerations? *In*: O'KEEFFE, Anne; MCCARTHY, Michael (eds.). *Routledge Handbook of Corpus Linguistics*. London: Routledge, 2010a. p. 31-37.

RIBEIRO, Elisa. Que futuros redesenhamos? Uma releitura do manifesto da Pedagogia dos Multiletramentos e seus ecos no Brasil para o século XXI. *Diálogo das Letras*, Pau dos Ferros, v. 9, p. 1-19, 2020.

RICHARDS, Jack. Preface. In: REPPEN, Randi. Using Corpora in the Language Classroom. Cambridge: Cambridge University Press, 2010.

RICHARDS, Jack; RODGERS, Theodore. *Approaches and Methods in Language Teaching*. Cambridge: Cambridge University Press, 1986; 2014.

RÖMER, Ute. A corpus perspective on the development of verb constructions in second language learners. *International Journal Corpus of Linguistics*, v. 24, n. 3, 2019, p. 268-290.

RUBIO, Fernando; PASSEY, Amber; CAMPBELL, Selene. Grammar in disguise: the hidden agenda of communicative language teaching textbooks. *RAEL*: revista electrónica de linguística aplicada, n. 3, p. 158-176, 2004. ISSN 1885-9089. Available at: https://www.researchgate.net/publication/28102295_Grammar_in_disguise_the_hidden_agen da_of_communicative_language_teaching_textbooks. Accessed on: May 5th 2022.

RUTHERFORD, William. Second language grammar: Learning and teaching. London: Longman, 1987.

SARDINHA, Tony Berber; ZUPPARDI, Maria Carolina. A Multi-dimension view of collocations in academic writing. *In*: RÖMER, Ute; CORTES, Viviana; FRIGINAL, Eric (orgs.). *Advances in Corpus-based Research on Academic Writing*: Effects of discipline, register and writer expertise. John Benjamins Publishing Company, 2020. p. 333-354.

SCHIMDT, Richard. The role of consciousness in second language learning. *Applied Linguistics*, v. 11, n. 2, p. 129-158, 1990.

SCHMITT, Norbert; SCHMITT, Diane; CLAPHAM, Caroline. Developing and exploring the behavior of two new versions of the Vocabulary Levels Test. *Language Testing*, v. 18, n. 1, p. 55-88, 2001.

SHARWOOD SMITH, Mike. Input enhancement in instructed SLA. *Studies in Second Language Acquisition*, v. 15, n. 2, p. 165–179, 1993. SINCLAIR, John. *Trust the text* – Language, corpus and discourse. London: Routledge, 2004.

SINCLAIR, John. Corpus, Concordance, Collocation. Oxford: Oxford University Press, 1991.

SKINNER, Burrhus. Verbal behavior. New York: Appleton-Century-Crofts, 1957.

SEALEY, Alison. The use of corpus-based approaches in children's knowledge about language. *In*: ELLIS, Sue; MCCARTNEY, Elspeth (eds.). *Applied Linguistics and Primary School Teaching*. Cambridge University Press, 2011. p. 93-106.

SOLVES, Tony. Introduction to CLIL. *Laboratorio de Idiomas*, Universitas Miguel Hernandéz, 2018.

STEMACH, Jerry; WILLIAMS, William. *WordExpress*: The first 2,500 words of spoken English. Novato, CA: Academic Therapy Publications, 1988.

SWEET, Henry. *The practical study of languages*: A guide for teachers and learners. New York: Henry Holt and Company, 1899.

TARTONI, Marlei Rose. *A linguística de corpus no ensino de inglês*: um experimento com atividades com "to" e "for" como keywords. Orientadora: Profa. Dra. Deise Prina Dutra. 2012. 164 f. Dissertação (Mestrado em Linguística Aplicada) - Faculdade de Letras, Universidade Federal de Minas Gerais, Belo Horizonte, 2012.

TINKHAM, Thomas. The effects of semantic and thematic clustering on the learning of second language vocabulary. *Second Language Research*, v. 13, n. 2, p.138–163, 1997.

TONO, Yukio, DÍEZ-BEDMAR, Maria Belén. Focus on learner writing at the beginning and intermediate stages: the ICCI corpus. *International Journal of Corpus Linguistics*, v. 19, n. 2, p. 163–177, 2014.

THORNDIKE, Edward. *The Teacher's Word Book*. 1st ed. New York: Teacher's College, Columbia University, 1921. Available at: <u>https://archive.org/details/teacherswordbook00thoruoft/page/n7</u>. Accessed on: April 2nd 2021.

THORNDIKE, Edward. *The Teacher's Word Book*. 2nd ed. New York: Teacher's College, Columbia University, 1927. Available at: https://archive.org/details/cu31924014451409/page/n7. Accessed on: April 2nd 2021.

TRIBBLE, Christopher. Put a corpus in your classroom: Using a computer in vocabulary development. *In*: BOSWOOD, Tim (ed.). New ways of using computers in language teaching. *TESOL*, Alexandria, VA, p. 266-268, 1997.

TRIBBLE, Christopher. Improvising corpora for ELT: quick-and-dirty ways of developing corpora for language teaching. FIRST INTERNATIONAL CONFERENCE – PRACTICAL APPLICATIONS IN LANGUAGE CORPORA, 1st., 1997. *Proceedings* [...] University of Łodz, Poland. 1997a. Available at: <u>https://www.ctribble.co.uk/text/Tribble_C_Palc_97.pdf</u>. Accessed on: April 2nd 2021.

VYATKINA, Nina. Corpora as open educational resources for language teaching. *Foreign Language Annals*, v. 53, n. 2, p. 359-370, 2020. Available at: <u>https://doi.org/10.1111/flan.12464</u>. Accessed on: May 1st 2022.

VYGOTSKY, Lev. Thinking and Speaking. Cambridge, MA: MIT Press, 1962.

WARD, Jeremy. How large a vocabulary do EAP engineering students need? *Reading in a Foreign Language*, v. 12, n. 2, p. 309-324, 1999.

WEBB, Stuart; NATION, Paul. *How Vocabulary is Learned*. Oxford: Oxford University Press, 2017.

WEBB, Stuart. Depth of vocabulary knowledge. *In*: CHAPPELLE, Carol (ed.). *Encyclopedia* of Applied Linguistics. Oxford, UK: Wiley-Blackwell, 2013. p. 1656–1663.

WEBB, Stuart; CHANG, Anna. Second language vocabulary growth. *RELC Journal*, v. 43, n. 1, p. 113-126, 2012.

WEBB, Stuart; CHANG, Anna. Vocabulary learning through assisted and unassisted repeated reading. *Canadian Modern Language Review*, v. 68, n. 3, p. 1-24, 2012a.

WICHER, Oliver. Data-driven learning in the secondary classroom: a critical evaluation from the perspective of foreign language didactics. CROSTHWAITE, Peter (ed.). *In: Data-driven learning for the next generation*: Corpora and DDL for pre-tertiary learners. London: Routledge, 2020. p. 31-46.

WILLIS, Dave. The language syllabus: building language study into a task-based approach. *Classroom Matters*, v. 30, Spring 2011. Available at: <u>http://ihjournal.com/the-language-syllabus-building-languag-into-a-task-based-approach-by-dave-willis-2e-study</u>. Accessed on: April 1st 2021.

WILLIS, Dave. The Language Syllabus: Why Not Start With Lexis? *In: Classroom Matters*, v. 29, Autumn 2010. Available at: <u>http://ihjournal.com/the-language-syllabus-why-not-start-with-lexis-by-dave-willis</u>. Accessed on: April 2nd 2021.

WILLIS, Dave. The Lexical Syllabus. London: Collins ELT, 1990.

WILLIS, Jane. Concordances in the Classroom without a computer: Assembling and exploiting Concordances of Common Words. *In*: TOMLINSON, Brian (ed.). *Materials Development in Language Teaching*. Cambridge: Cambridge University Press, 1998. p. 44-66.

WINNE, Philip. Cognition and metacognition within self-regulated learning. *In*: SCHUNK, Dale; GREENE, Jeffrey (eds.). *Routledge Handbook of Self-Regulation of Learning and Performance*. London: Routledge, 2017. p. 36-48.

WRAY, Alison. What do we (think we) know about formulaic language? An evaluation of the current state of play. *Annual Review of Applied Linguistics*, v. 32, p. 231-254, 2012.

PARECER SOBRE PROJETO DE TESE

Documentos: Projeto de tese de Doutorado de autoria de Ana Lúcia Surerus Pitanguy Marques, intitulado "Science and Geography lexicons in English for learners in FUNDAMENTAL 1: A Corpus-Based Investigation", a ser orientado pela Profa. Dra. Deise Prina Dutra junto à Linha de Pesquisa em Ensino/Aprendizagem de Línguas Estrangeiras, na Área de Concentração em Linguística Aplicada.

Mérito: O projeto em tela tem por objetivo realizar uma investigação baseada em instrumentos e aportes metodológicos da Linguística de Corpus para o desenvolvimento de materiais e estratégias didáticas compatíveis com o ensino de língua inglesa para aprendizes em idade do ensino fundamental 1, em contexto da escola regular.

Trata-se, ainda, de uma proposta de estudo que se insere explicitamente no contexto dos debates pedagógicos do ensino integrado de língua e conteúdo (ou *CLIL*, acrônimo do inglês *Content and Language Integrated Learning*). O CLIL é uma perspectiva pedagógica emergente na arena do ensino/aprendizagem de línguas adicionais que contempla uma multiplicidade de abordagens, aplicadas a todos os níveis da educação formal, em torno das quais há grandes expectativas quanto a sua eficácia para que o ensino de línguas adicionais em ambientes escolares/acadêmicos seja capaz de conduzir os aprendizes a níveis robustos de proficiência em língua adicional. Essa perspectiva vem gerando profícua literatura científica, especialmente a partir de estudos de suas implementações em países europeus. Um mérito da presente proposta é tratar-se de um estudo sobre o CLIL em contexto brasileiro, o que pode ser compreendido como uma resposta rápida de nossa comunidade de pesquisa a uma tendência muito recente, mas já notória e muito influente, no ensino de línguas contemporâneo

Subjacente a esse objetivo geral encontra-se a meta especifica de implementação de dispositivos pedagógicos voltados ao desenvolvimento lexical contextualizado e organizado em redes de recorrência co-textual configuradoras de alta idiomaticidade e alta frequência. Assim, o projeto em tela assenta-se com coerência em um prisma lexicalista da organização da linguagem humana, não pautado pela pressuposição de um componente combinatório separado dos repositórios de memória lexical (memória semântica e, muito provavelmente, memória episódica). Trata-se de um ponto de vista que em anos recentes ganhou notória centralidade tantos nos estudos gramaticais quanto nos estudos do processamento da linguagem, sendo a opinião do presente parecerista que um outro aspecto altamente meritório da proposta de estudo é precisamente a translação desse prisma para uma proposta de intervenção educacional.

O projeto coteja os objetivos delineados com uma revisão bibliográfica, de ampla abrangência histórica, tanto dos corolários pedagógicos de abordagens de ensino do tipo *data driven learning* (baseadas em métodos da Linguística de Corpus) quanto de questões da aquisição do léxico em línguas adicionais e seus impactos sobre habilidade específicas dos aprendizes/usuários dessas línguas. O planejamento metodológico prevê um estudo em 5 etapas, que comtemplam desde a composição de um corpus para o estudo quanto o delineamento de atividades didáticas em *datadriven learning*. O cronograma é coerente e prevê a elaboração de uma tese dentro dos prazos usuais.

Parecer: Pelo o exposto acima, sou s.m.j. favorável à aprovação sem restrições do projeto de dissertação em tela.

Prof. Dr. Ricardo Augusto de Souza

Appendix B

Universidade Federal de Minas Gerais Faculdade de Letras Programa de Pós-Graduação em Estudos Linguísticos

DECLARAÇÃO

Declaro, para os devidos fins, que o projeto de pesquisa da *doutoranda Ana Lúcia* Surerus Pitanguy Marques, intitulado "LÉXICOS DE CIÊNCIA E GEOGRAFIA NO FUNDAMENTAL I: UMA INVESTIGAÇÃO BASEADA EM CORPORA", desenvolvido sob a orientação da professora Deise Prina Dutra foi aprovado em reunião do Colegiado de 13 de dezembro de 2021, e teve como parecerista o professor Ricardo Augusto de Souza.

Belo Horizonte, 16 de dezembro de 2021.

Este documento eletrônico dispensa carimbo e assinatura. Sua autenticidade pode ser comprovada através da ferramenta de verificação de autenticidade de documentos, disponível na página do Programa de Pós-Graduação em Letras - Estudos Linguísticos - FALE - UFMG, neste endereço: http://www.poslin.letras.ufmg.br/confdoc.php

Documento emitido às 17:15 de 16 de dezembro de 2021 Código de verificação de autenticidade: PGPOSLIN916122021171512NBVEQ

Centro Pedagógico UFMG

Escola de Educação Básica e Profissional Universidade Federal de Minas Gerais Setor NAPQ/CP/UFMG

Interessados/as: Ana Lúcia Surerus Pitanguy Marques Parecerista: Dr. Júlio César Virgínio da Costa – Sub-coordenador NAPq/CP/UFMG Projeto de Pesquisa: "Léxicos de Ciência e Geografía no FUNDAMENTAL 1: uma investigação baseada em corpora" Unidade: Centro Pedagógico

PARECER CONSUBSTANCIADO

HISTÓRICO

O projeto de pesquisa "Léxicos de Ciência e Geografia no FUNDAMENTAL 1: uma investigação baseada em *corpora*", " tem com proponente Ana Lúcia Surerus Pitanguy Marques, estudante do doutorado na Faculdade de Letras da UFMG. A proponente protocolou a solicitação de registro do projeto de pesquisa ao NAPq/CP/UFMG, em 3/3/2022, apresentando os seguintes documentos: formulário de solicitação da pesquisa, resumo da pesquisa, carta de apresentação da orientadora, TALE para pesquisa com menores de idade, TCLE e posteriormente, o projeto de pesquisa.

O estudo tem como objetivo geral: realizar uma investigação baseada em instrumentos e aportes metodológicos da Linguística de Corpus para o desenvolvimento de materiais e estratégias didáticas compatíveis com o ensino de língua inglesa para aprendizes em idade do ensino fundamental 1, em contexto da escola regular.

Os objetivos específicos elencados são: 1. Quais são as palavras de conteúdo relacionadas aos tópicos mais frequentes em Ciências Sociais, Ciências e Geografia nas séries 2^a . – 6^a . da Fundamental I? 2. Quais são as combinações mais frequentes de palavras e colocados (3 – 4 gramas) nessas matérias nas séries 2^a . – 6^a . da Fundamental I? 3. Há variação significativa das palavras de conteúdo ao longo das séries iniciais do Fundamental I? 4. Como as atividades baseadas em corpora e nos princípios da aprendizagem movida por dados (JOHNS, 1991) aplicadas em sala de aula contribuíram para a aquisição de vocabulário?

Trata-se de uma pesquisa na qual as atividades que serão criadas terão como premissa a sua execução dentro da abordagem DDL - *data-driven learning* - ou ensino por meio de dados de *corpora*. O que difere essa abordagem de uma abordagem comumente utilizada pela comunidade escolar é que ela trabalha com a língua, gramática ou vocabulário neste caso, através da exposição dos alunos aos dados obtidos de textos autênticos por um *software*. É uma abordagem indutiva onde espera-se que os alunos observem o comportamento das palavras ou frases em seus contextos

Centro Pedagógico U F Escola de Educação Básica e Profissional Universidade Federal de Minas Gerais Setor NAPQ/CP/UFMG

originais – linhas de concordância - e, após reiterado uso em atividades variadas e interativas, possam inseri-las em sua produção escrita.

O vocabulário a ser trabalhado será obtido de um *corpus* topicalizado e as atividades escolhidas poderão ser com 'nuvem de palavras', *flashcards* (fichas ou cartões), trabalho em pares ou grupos para maior negociação de significado e retenção da forma, imagens quando necessário e também excertos dos textos originais. Após a apresentação do vocabulário-chave e recorrência da sua exposição nas atividades, será pedido aos alunos que produzam sentenças descrevendo imagens que deverão conduzir os alunos à utilização do vocabulário estudado. Um pequeno teste para a avaliação da retenção será feito após uma semana de aulas.

MÉRITO

Trata-se de uma pesquisa que tem como campo investigativo a prática de ensino de Língua Inglesa na Educação Básica, especificamente, no ensino fundamental.

O projeto de pesquisa é relevante e pertinente para a produção acadêmica na área escolar e da área do ensino de línguas estrangeiras. Sugerimos clarear os objetivos específicos para uma melhor compreensão dos passos da pesquisa.

VOTO

O projeto destaca-se pela relevância do tema e a contribuição no campo do estudos das línguas estrangeiras e para a escola. Nesse sentido, sou, S.M.J. favorável à aprovação da proposta do projeto analisado.

Belo Horizonte, 28 de março de 2022.

Julio Cesar Virginio Prof. Dr. Júlio César Virginio da Costa Subcoorden dos ta 10472/88620 Dados: 2022.03.28 09:52:24

APROVADO AD REFERENDUM EM 28/03/2022.

Marcos Elias Sala Dados: 2022.03.28 15:58:19 -03:00

UNIVERSIDADE FEDERAL DE MINAS GERAIS I EBAP I CENTRO PEDAGÓGICO Av. Presidente Antônio Carlos 6627 I Pampulha 31270-901 I Belo Horizonte I Minas Gerais
Appendix D	Pre- and posttests – Neighborhood (T	1)
------------	---	----

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Educação Básica e Profissional Centro Pedagógico - Núcleo de Línguas Estrangeiras

Student ______ Age _____ Grade _____

Pre-test - *Neighborhood* - April 2022

Elementary School House	Gas Station Hospital Bakery
Movie Theater Bank Park	Shop Restaurant Drugstore
Supermarket Garden Center	Office Fire Station Pet shop
Library High School Mall	Police Station Post Office

1- Look at the words and label the buildings:

2- Choose 3 buildings and write sentences about them:

- 3- Match the two columns:
 - (1) Hospital
 - (2) School
 - (3) Police station
 - (4) Post office
 - (5) Bakery
 - (6) Fire station

- () fireman
- () police officer
- () doctors and nurses
- () principal
- () postman
- () baker

4- Look at the picture about this town. Which buildings do you know? Write the names you can remember:

5- Complete the sentences to describe your neighborhood:

I live near the _____ and _____ There are _____

There is _____

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Educação Básica e Profissional Centro Pedagógico - Núcleo de Línguas Estrangeiras

|--|

Post-test – *Neighborhood* – April 2022

Elementary School House	Gas Station Hospital Bakery
Movie Theater Bank Park	Shop Restaurant Drugstore
Supermarket Garden Center	Office Fire Station Pet shop
Library High School Mall	Police Station Post Office

1- Look at the words and label the buildings:

2- Read the concordance lines below.Then, choose 3 buildings (exercise 1) and write sentences <u>about them</u>:

- There are many different types of map. This is because we use different maps for different reasons.
- find the best road to your friend's house
- find your way around a nature park
- City block with homes and stores
- Do you have friends in your neighborhood?
- Tall apartment buildings where many people live
- They may have museums, libraries, and parks.
- People live, work, learn, and have fun close to one another in cities
- They may be able to walk to school, the post office, the library, and stores.
- They may also use public transportation to get to different parts of the city.
- Tall apartment buildings where many people live
- There is a library nearby
- When you have a picnic at the park, you clean up after yourself
- A park map, for example, help you plan

a	
b-	
0	
C	

3- Match the two columns:

- (1) Hospital
- (2) School
- (3) Police station
- (4) Post office
- (5) Bakery
- (6) Fire station

- () fireman
- () police officer
- () doctors and nurses
- () principal
- () postman
- () baker

4- Look at the picture about this town. Which buildings do you know? Write the names you can remember:

5- Complete the sentences to describe your neighborhood:

I live near the	and
There are	
There is	

Appendix E	Pre- and posttests – <i>Animals</i> (T2)
------------	---

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Educação Básica e Profissional Centro Pedagógico - Núcleo de Línguas Estrangeiras

StudentA	Age:	Grade:
----------	------	--------

Pre-test – Animals – May 2022

1. Look at the pictures and label them with the words:

2- Choose 3 pictures and write sentences with the words you selected:

Example: The shark lives in the ocean. The shark is white and black. Sharks eat fish.

a	 	
h-		
0		
C-		

3- Complete <u>each group of sentences</u> with the same word from the list or with the ones you remember:

a) The ______ is a big cat.

The ______ lives in the wild in Africa and India.

The _____ hunts during the day.

The ______ have a beautiful mane around their head.

b) The ______ live in the water, in rivers and in a bowl in the houses.

Some ______ are gray, others are yellow, blue or red.

The ______ which live in the Amazon have a dangerous bite.

c) The ______ live on farms and on the plains.

Some children like to ride the domestic _____.

The _____ can be brown, black, gray and also beige.

4- Make or complete the sentences about the

octopus

	(6 arms and 2 legs)
	(mollusk)
The octopus	in the water in the

5- Let's classify the animals. Read the names and put them in the right columns below:

• tiger, dog, lion, fish, cat, cow, elephant, horse, snake, shark, frog, panda bear, giraffe, parrot, rabbit

Domestic	Pets	Wild

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Educação Básica e Profissional Centro Pedagógico - Núcleo de Línguas Estrangeiras

 Student ______Age: _____
 Grade: ______

Posttest – Animals – May 2022

2. Look at the pictures and label them with the words:

2- Read the examples and choose **3 pictures and write sentences** with the words you selected:

- Mammals have fur or hair and feed on milk. Humans are mammals too.
- Butterflies, ants and bees are all insects. Insects have 6 legs.
- Crickets are jumping insects.
- Mosquitoes are insects that are found almost everywhere in the world.
- Alligators and crocodiles are powerful animals with powerful tails.
- Fish are a kind of animal that lives in the water.
- Birds are animals that have feathers.
- Many people have birds as pets.
- Lions live in parts of Africa and India.
- The tiger is the largest of the cats. They are very strong and good hunters.
- Some birds cannot fly at all.
- Penguins are birds that cannot fly.
- Frogs are small animals that can jump very well.
- Zebras are animals that have strong legs to run.

Example: The shark lives in the ocean. The shark is white and black. Sharks eat fish.

b-

a- _____

C-_____

3- Complete <u>each group of sentences</u> <u>with the same word</u> from the list or with the ones you remember:

a) The ______ is a big cat.

The ______ lives in the wild in Africa and India.

The _____ hunts during the day.

The ______ have a beautiful mane around their head.

b) The ______ live in the water, in rivers and in a bowl in the houses.

some are gray, others are yenow, blue of red.	Some	are gray,	others are	yellow,	blue	or red.
---	------	-----------	------------	---------	------	---------

The ______ which live in the Amazon have a dangerous bite.

c) The _____ live on farms and on the plains.

Some children like to ride the domestic _____.

The _____ can be brown, black, gray and also beige.

4-	Make	or	complete	the	sentences	about	the	octopus
8	K							
					(6	arms an	d 2 leg	5)
						(mollu	usk)	
The	octopus			i	in the water in	the		

5- Let's classify the animals. Read the names and put them in the right columns below:

• Tiger, dog, lion, fish, cat, cow, elephant, horse, snake, shark, frog, panda bear, giraffe, parrot, rabbit

Domestic	Pets	Wild

Appendix F

Homework – *Neighborhood* (T1)

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Educação Básica e Profissional

Centro Pedagógico - Núcleo de Línguas Estrangeiras

Name:_____

_ Age:____ Grade:_____

1. Look at the map. Then, answer the questions.

1. Is there a supermarket?
2. Are there three cars?
3. Is there a swimming pool?
4. Is there a dog?
5. Are there two parks?
6. Are there two shops?
7. Is there a school bus?
8. Is there a hotel?
9. Are there two supermarkets?
10. Is there a zoo?
Rememberl
Is there?
Ves, there is.
No, there isn't.
Are there?
Ves, there are.
No, there aren't

Appendix G

Homework – Animals (T2)

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Educação Básica e Profissional Centro Pedagógico - Núcleo de Línguas Estrangeiras

Name: _____ Age: ____ Grade: _____

1- Label the animals and write sentences about <u>3 you like most</u>:

1. Which animals do you know? (at least 3 - 0.5 each)

2. Which ones can you find in the zoo or at home? (maximum 8)

In the Zoo	At home
	pets – domestic

3. Name and describe 5 of them. Say how they move (swim, fly, run or walk) (0.5 each)

Appendix H – Video transcription of Our Neighborhood (Topic 1)

Hello friends, how are you in this video we will learn about our neighborhood neighborhood means places near us the area around our house is called our neighborhood the houses built close to each other make up our neighbors our neighborhood has many services now we will go through these services this is the supermarket it has many shops we go to the market to buy things this is a **hospital** it has many doctors and nurses we came here when we fall ill this is my school there are many teachers in a school to teach us the principal is the head of a school this is a police station the police help in keeping law and order in our area police catches criminals this is a petrol pump we fill fuels in our vehicles at petrol pump gas, petrol, diesel all these are available at pump this is a **post office** we get postcards letters and envelopes here a postman delivers letters this is a bank people keep money and valuable here people deposit and withdraw money from bank this is a bakery baker makes tasty biscuits and cookies for us cakes, pastries are specialties of a bakery this is a fruits and vegetables vendor we get fresh fruits and vegetables here vendor brings fruits and vegetables from farmers this is a fire station there are fire engines in the fire station

firemen helped to put out fires this is a library library contains different types of books we came here to read books this is a park children came here to play people came here for walks this is a pharmacy pharmacy chemist gives medicines as per prescription this is a bus stop we use bus to travel different routes buses are available at bus stand this is a theater we see movies and drama in theater live stage shows are also part of theaters.

(Available at: <u>https://www.youtube.com/watch?v=OQxRVOG10ZA&t=9s</u>. Accessed on: Feb 1st 2022.)

Instructions to the teacher:

Esses 'cards' serão ótimos para que trios de alunos recebam um 'card' de animais + nomes e possam receber cartões individuais de bingo e brincar entre eles para ver quem tem o 'card de bingo' com mais nomes relacionados ao 'card' de animais + nomes.

Pode haver drilling inicialmente dos nomes e em associação às imagens, para depois o jogo de bingo.

Para cada acerto o alunos precisa ler o nome corretamente e checar o animal no card. (Drilling + noticing)

⁶⁶ It is possible to resort to different sites using artificial information (AI) which supply images for any text submitted. Examples: Midjourney, Bing Image Creator, Craiyon, NightCafe, Dream by Wombo, Adobe Firefly.

Appendix J

Title: Getting to know your neighborhood / town

Level of students: Year 4, 5 and 6 – Elementary School

Aims: To work with vocabulary related to directions, places of interest in the neighborhood and reinforce the awareness of correct spelling of most frequent words in lessons: NOUNS, VERBS, PLACES AND DIRECTIONS.

Class time: 60'

Preparation time: A couple of hours to get the context-related pictures, to select the coursebook Units to build the corpus, to prepare and print the concordance lines for the Word Wall, to select and create the word clouds and the word cards, to add other proper nouns seen elsewhere and related to the topic.

Stages / steps	Procedures	Time	Patterns of Interaction	Materials
Warm – up	 -T shows pictures of different neighborhoods by different authors to spark interest and trigger learners' motivation to draw their own neighborhood later in the lesson. -These pictures are also the context for the vocabulary they will be working with. - T asks simple questions and / or describes those drawings using the focus vocabulary for places and directions. 	10'	Teacher- Learners (whole- class)	Pictures and drawings are shown

Resources/Materials: See in the Plan for each stage's material.

Vocab I (game)	 -T hands out 7 copies of Word clouds with some of the most frequent words (KWICs) from the 5 Units of the coursebook: verbs, directions and places. - Competition: learners need to find as many words as possible in 5 minutes, write them down and count. The trio with most words wins. - Feedback to class. - Learners say the words out loud and pronunciation is checked 	10'	Trios T - Ss S - T	Printouts of Word clouds
Vocab II	 Teacher lays the white construction paper on the floor. Each learner receives some concordance lines (printouts) selected by the T with one of the most frequent KWICS in context and any additional word related to the Brazilian reality but in English. Learners read the sentences, then say the KWIC aloud and nominate another student to pick up the corresponding KWIC in the black cards and place it on the Word Wall (the white board). Feedback - Teacher checks understanding and hangs the poster on the wall to be used as a reminder of vocab in the next stage. 	20'	Individual Open pairs	Construc tion paper Printouts Cards with KWICs

Free Practice: (Speaking practice giving locations)	 Learners receive the drawing of a town center. Half of the class gets A and the other half gets B to create the interest in working in pairs. They complete the maps choosing words from the Word Wall and work with a partner (A + B) asking and answering questions about their drawings. They should use directions when necessary checking the Compass rose. Sample questions on the board: What is this building? Where is your house? Is it south of the school? And the supermarket? Is it near or far from your house? Is it in the West? 	10'	Individual Pair work	Drawings A and B Word Wall
HWork Personali zation (Writing practice)	- Learners take their drawings home and write 5 sentences using the KWICS to describe places and directions.		Individual	

Appendix K Learners in action in the classroom: photographs

Appendix LMost frequent words: COREL-GEO and 3- and 4-grams

1- Most frequent words

Search				
▼ Corpus C	OREL_GEO	▼ Frequency	▼ Dispersion	ı ▼Ту
Туре	▼	Frequency: 01 - Fre	q Dispers	ion: 01_CV
the	6375.00	00000	0.447758	
of	2569.00	00000	0.650346	
and	2453.00	00000	0.677885	
is	2046.00	00000	0.747554	
а	2034.00	00000	0.871552	
to	1859.00	00000	0.800018	
in	1710.00	00000	0.752914	
are	1427.00	00000	0.957705	
it	887.000	0000	1.131860	
that	800.000	0000	1.051627	
you	669.000	0000	1.799714	
on	592.000	0000	1.396621	
they	589.000	0000	1.549366	
can	549.000	0000	1.629760	
water	514.000	0000	2.026305	
for	505.000	0000	1.509535	
people	491.000	0000	1.674919	
from	470.000	0000	1.451002	
this	467.000	0000	1.509161	
or	437.000	0000	1.771113	
there	431.000	0000	1.555347	
as	422.000	0000	1.692086	
ocean	416.000	0000	3.107675	
many	383.000	0000	1.572766	
have	372.000	0000	1.995058	
animals	364.000	0000	2.484057	
what	355.000	0000	1.738440	
earth	349.000	0000	2.362486	
be	342.000	0000	1.984132	
map	328.000	0000	2.051140	
an	315.000	0000	2.033049	
live	315.000	0000	1.784771	
at	301.000	0000	1.601835	
by	286.000	0000	1.966256	
some	281.000	0000	1.914100	
land	275.000	0000	2.124473	
these	268.000	0000	2.007051	
their	265.000	0000	2.241445	
with	262.000	0000	1.933580	
which	257.000	0000	2.582361	
all	252.000	0000	2.005086	
world	250.000	0000	3.308399	
then	248.000	0000	1.442506	
plants	246.000	0000	2.657944	

			Search		
▼ Corpus	COREL_GEO	▼ Frequency	▼ Di:	spersion	▼ Ту
Тур	e	V Frequency: 01 - Fre	eq	Dispersion: 01	_CV
called	244.	000000	2.111	608	
we	242.	000000	3.216	093	
but	238.	000000	2.010	886	
also	236.	000000	1.685	6830	
how	228.	000000	1.850	643	
has	225.	000000	2.156	396	
about	223.	000000	2.258	331	
like	214.	000000	2.590	166	
south	213.0	000000	2.610	037	
north	213.0	000000	2.598	919	
answer	213.0	000000	1.572	286	
river	209.	000000	3.304	423	
where	206.	000000	2.263	816	
when	205.	000000	2.218	364	
different	204.0	000000	2,186	691	
one	204.0	000000	2.092	2779	
study	203.	000000	1.947	'578	
do	203	000000	2.215	198	
other	203	000000	2.086	241	
not	196	000000	1 999	193	
verv	196	000000	2 662	2030	
un	182	000000	2 447	462	
more	182.	000000	2.111	151	
america	181	000000	3 4 3 7	988	
vour	181	000000	3 4 3 4	351	
most	178	000000	2 695	834	
each	175	000000	2.000	210	
USP	173	000000	2 213	553	
into	172	000000	2 554	736	
questions	167	000000	1 610	144	
its	165	000000	2 4 9 8	986	
them	164.	000000	2.705	288	
around	164.	000000	2.703	620	
nlaces	160.	000000	2.545	130	
found	160.	000000	2.000	643	
natural	160.	000000	3 3 1 6	243	
50	150.	000000	2 766	422	
read	150.	000000	1 737	/422	
heln	159.	000000	2.991	200	
troop	150.	000000	2.001	1203	
lorgo	154.	000000	2 900	140	
things	151.	000000	2.050	026	
nlaca	130.1	000000	2.000	104	
bolow	149.	000000	2.9/0	074	
than	140.	000000	1.781	074	
	141.0	000000	2.609	204	
nlongt	140.0	000000	2.1//	090	
pianet	139.0	00000	4.822	110	
City	135.0	000000	3.637	404	
mountains	133.0	00000	3.962	330	
oceans	132.	00000	4.556	901	
states	131.0	000000	3.347	345	

			Search		
▼ Corpus	COREL_GEO	▼ Frequency	v ▼ Di	spersion	▼ Ту
Туре	e	▼ Frequency: 01 - I	Freq	Dispersion: 0	1_CV
photo	131.	.000000	2.10	6618	
why	129.	.000000	2.620	0037	
text	128	.000000	1.867	7053	
over	128	.000000	3.010	6944	
make	126	.000000	2.670	0381	
because	125	000000	3.099	9753	
such	123	000000	2.80	2964	
desert	122	000000	4.85	7702	
our	121	000000	3.93	3077	
rivers	120	000000	3.67	3305	
tynes	120	000000	2 980	5169	
was	120.	000000	2.00	1738	
eun	110	000000	5.00	0500	
rain	110.	000000	1.06	5000	
nant	114.	000000	2.50	10/2	
part will	114.	000000	3.02	1043	
WIII find	114.	.000000	3.004	1401	
lind fa a d	112	.000000	2.79	1042	
1000	111.	.000000	4.83	04/7	
atrica	111.	.000000	4.544	1387	
IT .	109.	.000000	3.25	3099	
forest	109.	.000000	4.60	5801	
two	108.	.000000	2.903	3655	
areas	107.	.000000	3.539	9433	
were	106.	.000000	3.91	1244	
need	105.	.000000	3.152	2950	
only	105.	.000000	3.37	1087	
may	105.	.000000	3.577	7469	
forests	105.	.000000	4.560	0624	
out	104.	.000000	3.571	1507	
made	103.	.000000	3.099	9626	
community	103.	.000000	5.629	9545	
circle	103.	.000000	2.782	2508	
soil	103.	.000000	4.673	3530	
way	102	.000000	3.023	3230	
new	102	.000000	4.17	6368	
continent	100.	.000000	3.70	5299	
time	99.0	00000	3.32	1234	
area	98.0	00000	2.988	3245	
rock	98.0	00000	6.17	7010	
pacific	97.0	00000	4.15	1692	
life	97.0	00000	3.754	4771	
home	97.0	00000	3.339	9429	
largest	96.0	00000	3.144	4889	
mountain	96.0	00000	3.88	3821	
much	95.0	00000	3.11	3137	
iťs	95.0	00000	4 940	9404	
SPP	04.0	00000	2 75	1967	
living	0.4.0	00000	3.020	0410	
cold	02.0	00000	2.000	2200	
acia	00.0	00000	3.30	1210	
hot	92.0	00000	9.11	5570	
nivt	191.0	00000	3.6 3	0)00	

2 Most frequent 3-grams

			Search	
▼ Corpus	COREL_GEO	▼ Frequency	▼ Di	spersion ▼ Ty
Т	ype	V Frequer	ncy: 01 - Freq	Dispers
answer the questio	ns	162.000000		1.673367
then answer the		123.000000		1.973365
read the text		120.000000		1.886886
study the photo		106.000000		2.022513
the photo then		102.000000		2.051204
photo then answer		88.000000		2.175096
plants and animals	3	78.000000		3.481472
the text and		77.000000		2.297180
text and study		73.000000		2.371971
and study the		73.000000		2.371971
the united states		62.000000		4.245533
part of the		62.000000		4.748069
look at the		61.000000		2.806548
of the world		49.000000		4.317296
live in the		48.000000		4.165676
in the world		47.000000		4.136238
from the sun		44.000000		5.948265
on the map		44.000000		3.654467
a lot of		42.000000		4.723591
the natural world		42.000000		5.559559
there are many		41.000000		5.017760
one of the		40.000000		5.229525
of the earth		35.000000		5.804702
animals that live		34.000000		4.677408
that live in		34.000000		5.732781
the human world		33.000000		6.480326
the questions the		32.000000		3.795000
different types of		32.000000		5.507190
circle the answer		32.000000		5.243624
some of the		31.000000		6.242278
the atlantic ocean		31.000000		6.729542
the answer to		31.000000		5.237746
is the largest		30.000000		4.685818
answer to each		30.000000		5.254863
can be found		30.000000		6.057534
study the map		30.000000		4.643025
the pacific ocean		29.000000		8.933757
text study the		29.000000		4.192359
what is the		29.000000		5.699734
bodies of water		29.000000		5.568719
the text study		29.000000		4.192359
to each question		29.000000		5.310329
at the map		28.000000		4.230520

		Search
▼ Corpus COREL_GEO	▼ Frequency	▼ Dispersion ▼ Ty
Туре	▼ Frequency:	01 - Freq Dispers
is called a	28.000000	6.478677
found in the	28.00000	5.634385
the amazon rainforest	28.000000	10.105105
body of water	27.000000	5.174610
it is a	25.000000	4.759432
do vou think	24.000000	5.754694
different kinds of	24.000000	6.377364
a map of	24.000000	5.782442
there is a	24.000000	5.005948
made up of	24.000000	6.104736
the earth is	24.000000	8.257587
what is a	23.000000	4.870037
the name of	23.000000	6.150523
most of the	23,000000	5,721576
in the ocean	23,000000	6,899400
is part of	22 000000	8 756900
in the united	22,000000	5 826448
is a large	22.000000	5.620110
is one of	21,000000	6.077005
be found in	21.000000	7 671668
it is the	21.000000	6.075649
the man of	21.000000	4 799366
much of the	20.000000	6.6/1190
directions read the	20.000000	5.042150
is home to	20.000000	5.043135
animals and plants	20.000000	0.264520
look at this	20.000000	5.304325
in the photo	10,000000	5.457650
man of a	10,000000	5.309309
in colled the	10.000000	7.262712
are found in	10.000000	7.203712
the plants and	10.000000	6 222045
the compose rece	10.000000	0.233043
in porth omorioo	10.000000	0.439430
in the depart	10.000000	0.904202
man of the	10.000000	5 202242
the color system	10.000000	0.2205343
the greenbouce effect	19.000000	9.539076
the ourfood of	18.000000	7.015076
the surface of	18.000000	7.915276
guir or mexico	18.000000	8.30/503
the earth's surface	18.000000	8.001786
is made up	18.000000	7.170250
to live in	17.000000	7.271216
parts of the	17.000000	6.574826
next to the	17.000000	6.613917
of land that	17.000000	6.802716
of plants and	17.000000	6.775539
this map of	17.000000	5.368876
it is also	17.000000	6.516627
and answer the	17.000000	6.104699
of the natural	17.000000	6,777080

		Search	
▼ Corpus COREL_GEO	▼ Frequency	▼ Dispers	ion ▼ Ty
Туре	▼ Frequency	/: 01 - Freq	Dispers
for people to	17.000000		6.239623
there are also	17.000000		5.955269
ocean pacific ocean	16.000000		6.121099
in south america	16.000000		8.020603
to help you	16.000000		5.820930
the top of	16.000000		6.339038
of the earth's	16.000000		7.551724
surface of the	16.000000		8.881093
be able to	16.000000		8.031061
all of the	16.000000		7.966267
the sun and	16.000000		8.841786
around the world	16.000000		8.295201
in the amazon	16.000000		8,713498
do vou know	16.000000		7.116797
the map and	16.000000		6.145455
as well as	16 000000		8 414238
surrounded by land	16 000000		6 948143
areas of land	15 000000		6 467360
area of land	15 000000		6 673765
the sun the	15.000000		9.621988
nlaces on earth	15.000000		7 618848
places on cann	15.000000		13 /01017
the number of	15.000000		6.625448
the names of	15.000000		6 659930
of the ocean	15.000000		10 705050
is in the	15.000000		0 156700
nome of the	15.000000		7.004027
the map below	15.000000		5 966101
aut of the	14.000000		0.6000191
in the bey	14.000000		6.029915
this is a	14.000000		0.430030
ulls is d	14.000000		0.429039
It can be	14.000000		1.2/04/1
the trace of	14.000000		0.248780
the types of	14.000000		7.039111
can be used	14.000000		7.380121
now do you	14.000000		0.043544
the things that	14.000000		7.416556
top of the	14.00000		7.909344
an urban community	14.000000		12.019180
are part of	14.000000		8.414596
the ocean is	14.000000		9.177286
map circle the	14.000000		6.995172
of the land	14.000000		1.424789
you want to	14.000000		7.370741
the north pole	14.000000		7.389634
in the tundra	14.000000		10.553145
north and south	14.000000		8.673054
then color the	13.000000		7.623148
you can find	13.000000		8.053778
known as the	13.000000		7.650395
also known as	13.000000		7.306033

3 Most frequent 4-grams

		Search	
▼ Corpus COREL_GEO	▼ Frequency	▼ Disp	ersion v Ty
Туре	▼ Frequenc	y: 01 - Freq	Dispers
the animals that live	8.000000		9.771125
part of the world	8.000000		9.919834
look at the pictures	8.000000		7.756199
a map of a	8.000000		8.880807
it is the largest	7.000000		9.750459
follow the instructions below	7.000000		8.388738
north america south america	7.000000		12.678117
a biome is a	7.000000		12.888925
the united states and	7.000000		10.312312
map and answer the	7.000000		9.489176
the united states is	7.000000		8.784333
adult to help you	7.000000		9.414728
in the amazon rainforest	7.000000		12.906638
in the middle of	7.000000		8.771191
is a group of	7.000000		11.089686
it is home to	7.000000		9.244732
and non-living things interact	7.000000		21.377558
map then answer the	7.000000		9.630580
a community is a	7.000000		11.466587
heat from the sun	7.000000		14.216162
is the name of	7.000000		9.541251
next to the things	7.000000		9.660842
the map then answer	7.000000		9.630580
the sun and the	7.000000		11.261841
area of land that	7.000000		10.077517
of the earth is	7.000000		14.294742
large areas of land	7.000000		9.872072
to live in the	7.000000		9.672310
do you think the	7.000000		9.809975
an adult to help	7.000000		9.414728
found in north america	7.000000		15.202719
map of the world	7.000000		8,280169
what direction will you	7.000000		11,124628
for a long time	7.000000		9.127110
the compass rose to	7.000000		8.318384
why do you think	7.000000		9.347625
north and south america	7.000000		11.455841
south east and west	7.000000		9.154515
in the solar system	6.000000		19.763812
africa south america australia	6.000000		8.978618
ocean the pacific ocean	6.000000		13.592341
of land on earth	6.000000		9.287486
pacific ocean indian ocean	6.000000		8.954361

		Search	
▼ Corpus COREL_GEO	▼ Frequency	▼ Dispersi	ion ▼ Ty
Туре	▼ Frequency	: 01 - Freq	Dispers
a rural community has	6.000000		14.580125
the natural world and	6.000000		8.980047
what do you think	6.000000		11.367328
the hottest year on	6.000000		21.377558
different kinds of plants	6.000000		13.353704
is a place where	6.000000		12.920155
the map and answer	6.000000		10.572925
the map of the	6.000000		9.036906
hottest year on record	6.000000		21.377558
that can be found	6.000000		13.141793
can be used to	6.000000		11.025218
use the compass rose	6.000000		9.010327
direction will you go	6.000000		12.332731
why or why not	6.000000		12.474493
from the sun and	6.000000		12.619601
plants and animals in	6 000000		9 594744
north america europe asia	6 000000		9 849050
an animal that eats	6.000000		15 099669
from the sun the	6.000000		16 104876
from the human world	6.000000		11 493040
for neonle to live	6.000000		10 111738
a place where people	6,000000		12 020155
what is the name	6,000000		0.802253
then follow the instructions	6,000000		0.022133
the sun does not	6,000000		13 0/70/1
will pover rup out	6.000000		0 770040
out of the ground	6.000000		11 062597
north south east and	6.000000		0.07/760
you are at the	6.000000		11 170/26
a large body of	6.000000		10.242709
this map of the	6.000000		0.064004
atudy the man then	6.000000		9.204004
study the map then	6.000000		10.010020
can be found on	6.000000		11.949138
light from the our	6.000000		11.030349
light from the sun	6.000000		11.403224
you want to go	6.000000		11.388019
to go to the	6.000000		12.592210
the north and south	6.000000		11.803271
In the form of	6.000000		11.433027
third planet from the	6.000000		15.370238
of water surrounded by	6.000000		11.535349
is the third planet	6.000000		15.370238
is an area of	6.000000		10.128249
the pacific ocean is	6.000000		18.644050
the third planet from	6.000000		15.370238
the middle of the	6.000000		10.170986
at the pictures below	6.000000		8.750978
a globe is a	5.000000		10.501049
biome is a large	5.000000		10.977189
one place to another	5.000000		10.806128
of the most common	5.000000		10.993637

		Search
▼ Corpus COREL_GEO	▼ Frequency	▼ Dispersion ▼ Ty
Туре	▼ Frequency	r: 01 - Freq Dispers
how can you tell	5.000000	11.903515
the number of people	5.000000	10.800574
also known as the	5.000000	11.540360
from the word box	5.000000	10.388749
types of plants and	5.000000	11.023186
at the top of	5.000000	10.838062
the human world and	5.000000	13.921762
in danger of extinction	5.000000	21.377558
is shaped like a	5.000000	9.851092
there are more than	5.000000	12.350328
the climate of the	5.000000	11.418784
different kinds of animals	5.000000	12.594485
water is called a	5.000000	14.634259
a lot of water	5.000000	14.179932
fossil fuels like coal	5.000000	10.828269
sun and the moon	5.000000	13.092477
a river is a	5.000000	11.194286
the questions the great	5.000000	9.677537
the human world the	5.000000	9.990866
energy from the sun	5.000000	12.932429
is a body of	5.000000	12.499975
at a map of	5.000000	11.369975
be used to make	5.000000	14.990869
are two types of	5.000000	17.193542
places on earth are	5.000000	13.549869
body of water that	5.000000	11.369823
read about it the	5.000000	11.040262
animals that can be	5.000000	14.200724
wouldn't be able to	5.000000	10.369338
in the box below	5.000000	9.660507
place where people live	5.000000	12.425597
europe north america asia	5.000000	10.045009
very large areas of	5.000000	10.211040
interact with each other	5.000000	21.377558
ocean pacific ocean indian	5.000000	9.860174
would you like to	5.000000	11.148388
rose to help you	5.000000	9.679941
seven very large areas	5.000000	10.211040
pacific ocean atlantic ocean	5.000000	10.608833
compass rose to help	5.000000	9.679941
did you know that	5.000000	14.375156
things interact with each	5.000000	21.377558
from one place to	5.000000	10.806128
continents there are seven	5.000000	10.862150
areas of land on	5.000000	10.211040
want to go to	5.000000	12.411903
is a renewable resource	5.000000	11.643612
and the human world	5.000000	11.139154
there are seven very	5.000000	10.211040
the pacific ocean and	5.000000	15.086848
that are part of	5.000000	13.606437

Source: #LancsBox 6.0.

Appendix M Most frequent words: COREL-SCI and 3- and 4-grams

1 Most frequent words

▼ Corpus	COREL_SCI	▼ Frequency	Dispersion	🔻 Туре
Туре		▼ Frequency: 01 - Fre	q Dispersion: 0	1_CV
the	6157	7.000000	0.548700	
and	2465	5.000000	0.658276	
of	2411	1.000000	0.757319	
а	2326	6.000000	0.859471	
is	1954	4.000000	0.868201	
to	1680	0.00000	0.780321	
are	1618	3.000000	1.086940	
in	1617	7.000000	0.939618	
that	996.	000000	1.152942	
they	880.	000000	1.431558	
it	840.	000000	1.274232	
water	761.	000000	2.064976	
animals	713.	000000	1.891993	
can	680.	000000	1.553853	
have	628.	000000	1.692628	
you	567.	000000	1.940654	
from	544.	000000	1.650789	
plants	536.	000000	2.124250	
or	529.	000000	1.704293	
what	516.	000000	1.547638	
on	474.	000000	1.580419	
for	471.	000000	1.686723	
this	422.	000000	1.740056	
food	402.	000000	2.850878	
an	393.	000000	2.020543	
as	391.	000000	1.954979	
when	390.	000000	2.057010	
their	389.	000000	2.096211	
called	386.	000000	1.806971	
some	370.	000000	2.081900	
with	341.	000000	2.203422	
all	323.	000000	2.160366	
plant	316.	000000	2.689868	
energy	301.	000000	4.686044	
1	297.	000000	1.427943	
be	297.	000000	2.074458	
2	293.	000000	1.465036	
at	290.	000000	1.902082	
earth	287.	000000	2.688635	
by	277.	000000	2.160326	
like	276.	000000	2.527721	
live	274.	000000	2.514258	
many	273.	000000	1.963246	
which	273.	000000	2.113433	

▼ Corpus	COREL_SCI	▼ Frequency	▼ Dispersion	▼ Туре
Туре	;	Frequency: 01 - Frequency:	eq Dispersion: 0	1_CV
do	268.0	000000	2.058796	
there	263.0	000000	2.235166	
into	259.0	000000	2.085096	
other	255.0	000000	2.213006	
one	251.0	000000	2.295064	
animal	249.0	000000	2.505932	
different	241.0	000000	2.272562	
sun	238.0	000000	3.579334	
air	237.0	000000	3.399249	
these	236.0	000000	2.130977	
how	236.0	000000	2.283124	
make	218.0	000000	2.385208	
up	216.0	000000	2.372249	
about	209.0	000000	2.285959	
has	209.0	000000	2.470469	
its	207.0	000000	2.396858	
arow	204 (00000	2 739901	
also	204 (00000	2 376450	
things	203 (00000	3 496387	
not	198 (00000	2 238161	
more	195.0	00000	2 482271	
we	103.0	000000	4 252147	
nart	102 (000000	2 730751	
whore	102.0	000000	2.735751	
where	192.0	00000	2.715204	
	105.0	00000	2.300721	
but	102.0	00000	2 209040	
living	170 (00000	2.390949	
most	170.	00000	2 540070	
rock	175.0	00000	4 960209	
	17.5.	00000	2.574042	
vorv	174.	00000	2.074042	
thom	172.	00000	0.695514	
aut	171.	00000	2.000014	
look	1/0.0	00000	2.141213	
look	100.0	00000	2.309360	
SOIL	100.0	00000	4.204000	
answei	100.0	00000	0.600604	
directione	107.0	00000	2.082031	
arections	100.0	00000	0.615070	
ll avections	100.0	00000	2.010972	
questions	104.0	00000	1.0011/7	
Insects	103.0	00000	4.733298	
leaves	162.0	000000	3.609455	
need	158.0	000000	3.691797	
ille	157.0	00000	4.01/784	
read	154.0	00000	1.0059/5	
your	152.0	00000	4.189534	
through	152.0	00000	3.026419	
text	150.0	00000	1.822360	
get	150.0	00000	2.940933	
change	148.0	000000	3.575505	
3	146.0	00000	1.979662	
▼ Corpus COREL_	SCI V Frequency	▼ Dispersion ▼ Type		
-----------------	------------------------	---------------------		
Туре	Frequency: 01 - Freq	Dispersion: 01_CV		
will	146.000000	3.221541		
S0	144.000000	3.006773		
parts	143.000000	3.830541		
made	141.000000	4.079902		
seeds	138.000000	4.578555		
trees	137.000000	3.904951		
ocean	137.000000	5.562053		
light	134.000000	5.979726		
than	130.000000	3.181286		
move	130.000000	4.292610		
because	128.000000	2.726042		
people	126.000000	3.266889		
moon	126.000000	5.836398		
see	124.000000	3.345925		
time	120.000000	3.203165		
dav	119.000000	3.971125		
rocks	118.000000	5.977843		
changes	116.000000	3.652870		
ice	116.000000	5.275472		
does	114.000000	2.974748		
new	113.000000	3.183080		
then	113.000000	3.382198		
only	113 000000	3 517349		
long	112,000000	3 322141		
planet	112 000000	6.373034		
why	111 000000	2 816613		
small	111 000000	3 585505		
same	110 000000	3 358347		
around	109 000000	3 652137		
place	109 000000	4 180701		
cold	106.000000	4 003694		
body	106 000000	4 944081		
around	104 000000	3 468971		
wind	103 000000	6 816269		
would	102 000000	3 332235		
mammals	102.000000	7 002593		
form	101 000000	3 878225		
two	100.000000	3 433992		
flowers	100.000000	5 574919		
over	100.000000	4 090167		
cvcle	100.000000	4 613592		
land	98,000000	3 661572		
hahitat	96.000000	4 604125		
find	96,000000	3 507878		
matter	95,000000	8.075558		
100	95,000000	3 604307		
down	94 000000	3 637637		
durina	94 000000	4 104876		
warm	93 000000	4 023980		
fish	91,000000	5 636536		
types	91,000000	4 730888		
winter	90.00000	5.152565		

2 Most frequent 3-grams

▼ Corpus COREL_SCI	▼ Frequency	Dispersion	▼ Туре
Туре	▼ Frequency: 01	- Freq	Dispersio
answer the questions	160.000000	1.70076	6
directions read the	144.000000	1.76759	9
read the text	144.000000	1.767443	3
plants and animals	92.000000	4.08142	6
the text and	82.000000	2.44693	9
part of the	80.00000	3.92540	8
and answer the	77.000000	2.50005	9
text and answer	72.000000	2.56466	2
from the sun	64.000000	5.88024	5
the text answer	56.000000	2.91192	9
text answer the	56.000000	2.91192	9
look at the	56.000000	3.44748	4
live in the	52.000000	5.02067	5
1 what is	38.00000	4.00691	4
a lot of	38.000000	4.59479	7
what is the	36.000000	4.75957	8
of the plant	36.000000	6.90429	2
made up of	35.000000	5,12423	5
is called a	33.000000	5,165664	4
of a plant	31 000000	6 49152	1
2 what is	31,000000	4 40896	0
one of the	31,000000	6 91790	0
during the day	30,000000	7 04141	1
out of the	28 000000	6.30973	7
what is a	28 000000	5 07917	B
that live in	28 000000	6.98133	5 7
in the sky	26 000000	7 52183	2
narts of the	25,000000	5 51529	4
all living things	25,000000	7 10250	8
life cycle of	24,000000	6 70849	7
this is called	24.000000	6 37944	، ۵
animals that live	24,000000	Q 20224	8
is made un	24.000000	6 52061	6
in the ocean	24,000000	Q 0120/	2
in the water	24.000000	6 61650	1
a food chain	24.000000	Q 51/0/	4
their own food	24.000000	6 20040	- 0
in the pir	23.000000	5 70007	6
some of the	23.000000	0.79997	2
in the hey	22,000000	5.0000	5
nation of a	22.000000	7.406420	0
part of the	22.00000	7 24447	2
animole live in	22.000000	6 70254	5 D
animals live in	22.000000	0.73354	2
the animals that	22.000000	0.25264	0
the animals that	22.000000	0.03705	4
the tood chain	21.000000	8.89195	4
plant of animal	21.00000	10.5841	49

▼ Corpus COREL_SCI	▼ Frequency	▼ Dispersion ▼ Type
Туре	▼ Frequency	: 01 - Freq Dispersio
vou can see	20.000000	6.945183
the top of	20.000000	7.541885
make their own	20.000000	7.180363
are made of	20.000000	7 483363
different types of	20 000000	7 204489
in the world	20 000000	6 262951
around the sun	19 000000	8 875305
it is the	19 000000	6 983533
from the soil	19 000000	7.593536
the sun is	19 000000	6.931209
use the words	18 000000	5.629252
is called the	18.000000	7 305766
species or types	18.000000	9.694036
an animal that	18.000000	7 338388
cycle of a	17.000000	8 235382
of the world	17.000000	7 451717
take care of	17.000000	7.659004
of the moon	17.000000	0 11/732
there are many	17.000000	6 900071
what kind of	17.000000	6.519146
in the winter	17.000000	0.316140
the ground and	16.000000	6.020451
of plants and	16.000000	7 560705
or prants and	16.000000	7.500795
the water cycle	16.000000	9.081107
effergy from the	16.000000	9.410204
of the groop beyon offect	10.000000	6.482800
the greenhouse ellect	15.000000	6.264000
words in the	15.000000	0.301890
of types of	15.000000	9.992099
of the flower	15.000000	11.80/0/5
the sun and	15.000000	12.204727
this means that	15.000000	0.800140
carbon dioxide and	15.000000	0.944670
different kinds of	15.000000	7.821432
is made of	15.000000	9.144064
in the solar	15.000000	9.612297
of the water	15.000000	7.795622
animals and plants	15.000000	8.651/6/
draw a line	15.000000	6.1/4233
the words in	15.000000	6.361890
an example of	14.000000	8.389070
it can be	14.000000	7.265701
animals that are	14.000000	6.815965
all of the	14.000000	7.992676
different parts of	14.000000	7.887638
are more than	14.000000	8.336118
live on land	14.000000	11.527907
what you need	14.000000	5.902229
at the picture	14.000000	6.406353
such as a	14.000000	8.325355
is an animal	14.000000	9.377624
there are about	14.000000	9.813621

▼ Corpus	COREL_SCI	▼ Frequency	▼ Dispersi	ion 🔻 Type
Тур	e	▼ Frequency	y: 01 - Freq	Dispersio
of the same		14.000000		7.746772
this process is		13.000000		10.252179
a question you		13.000000		7.254327
this is the		13.000000		8.741328
what to do		13.000000		6.201046
do vou think		13.000000		7.154765
living things need		13.000000		10.321822
the box to		13.000000		6.828403
side of the		13.000000		12.859934
can be found		13.000000		8.259115
animals that have		13 000000		8 961791
it is a		13 000000		9 102887
have in common		13 000000		12 021586
point to the		13 000000		6 732991
are eaten by		13 000000		13 277178
there are more		13 000000		8 765149
live in a		13 000000		10 001189
in the ground		13 000000		7 844631
3 what is		13 000000		6 521829
a life cycle		13 000000		10.882535
to make food		13 000000		9.608521
all insects have		13 000000		15 232891
away from the		13.000000		10.229091
of the ground		12,000000		8 882058
nrocess is called		12.000000		10.448726
the end of		12.000000		9 55 25 40
is one of		12.000000		8 515574
the questions the		12.000000		6 920348
hack into the		12.000000		7 745146
the form of		12.000000		0.368101
in the form		12.000000		0.269101
do not have		12.000000		9.566/11
sav a question		12.000000		7 951056
are animals that		12.000000		8 162005
in the enring		12.000000		12 762012
of the plants		12.000000		0.460050
on the plants		12.000000		12 007202
animals that eat		12.000000		0.067792
lives in the		12.000000		7 710005
there are three		12.000000		7.024041
top of the		12.000000		0 007160
kinde of plante		12.000000		0.907100
the plonte and		12.000000		9.211172
the remains of		12.000000		0.403024
complete the center		12.000000		9.070270
they are called	ICES	12.000000		10.002150
there is a		12.000000		7.010756
what part of		12.000000		7.440575
to complete the		12.000000		6 000040
to complete the		12.000000		0.500013
which is a		12.000000		0.107469
the serve kind		12.000000		0.007026
ule same kind		11.000000		9.037930

3 Most frequent 4-grams

▼ Corpus COREL_SCI	▼ Frequency	Dispersion	▼ Туре
Туре	V Frequenc	y: 01 - Freq	Dispersio
we are going to	7.000000	10.2200	14
1 what is a	7.000000	8.25822	7
the particles of matter	7.000000	17.7689	12
and say its name	7.000000	8.98390	1
the flower can make	6.000000	20.8806	13
from place to place	6.000000	10.4268	54
how can you tell	6.000000	12.1557	56
the chart answer the	6.000000	9.020654	4
things all insects have	6.000000	20.8806	13
then i saw the	6.000000	20.8806	13
named after the roman	6.000000	20.8806	13
are some of the	6.000000	17.4837	75
is a type of	6.000000	9.47483	5
when the sun is	6.000000	11.2859	19
flower can make seeds	6.000000	20.8806	13
dead plants and animals	6.000000	9.403469	9
and nutrients from the	6.000000	11.54062	20
life cycle is the	6.000000	12.7446	53
did you know that	6.000000	11.18749	92
process is called photosynthesis	6.000000	11.5202	95
the sun and the	6.000000	12.38073	37
insects have six legs	6.000000	11.57764	40
the animals that live	6.000000	16.90830	61
a lot of rain	6.000000	9.04728	7
light from the sun	6.000000	11.01013	34
more than half of	6.000000	11.1460	26
kinds of plants and	6.000000	12.1378	36
what kind of animal	6.000000	11.60002	26
chart answer the questions	6.000000	9.020654	4
plants and animals are	6.000000	12.1050	53
at the picture answer	6.000000	9.123820	6
during the day and	6.000000	12.4162	17
everywhere in the world	6.000000	11.0608	61
this is called the	6.000000	10.89344	43
of the food chain	6.000000	12.38312	28
we're going to learn	6.000000	10.6497	28
are animals that have	6.000000	11.7711	32
water from the soil	6.000000	14.8803	35
plants make their own	6.000000	12.4369	10
end of the stems	6.000000	14.92364	44
water and nutrients from	5.000000	16.23552	23
the roots of a	5.000000	12.29573	32
test what you need	5.000000	9.78889	1
what might happen if	5.000000	11.47693	39
pacific ring of fire	5.000000	20.8806	13

▼ Corpus COREL_SC	▼ Frequency	Dispersion	▼ Туре
Туре	▼ Frequency	y: 01 - Freq	Dispersio
a food chain shows	5.000000	12.957	618
types of plants and	5.000000	13.514	670
after the roman god	5.000000	20.880	613
look at the animals	5.000000	9.7220	64
the order in which	5.000000	12.592	261
an example of a	5.000000	11.281	815
in the food chain	5.000000	10.515	361
parts of a plant	5.000000	11.322	978
a wide variety of	5.000000	14.809	277
the chart then answer	5.000000	9.3311	09
need water to grow	5.000000	9.9834	21
carbon dioxide and water	5.000000	12.481	646
the female part of	5.00000	16.538	882
rises in the east	5.000000	12.827	323
many kinds of plants	5.000000	15.546	666
top of a mountain	5.000000	13.785	208
plant or animal lives	5.000000	12,984	152
the text and study	5.000000	10.035	884
have adapted to the	5,000000	20.880	613
2 what kind of	5 00000	10 908	206
text and study the	5 000000	10.035	884
why or why not	5 000000	9 5869	48
different parts of the	5.000000	9 9151	23
from the sun to	5.000000	10 671	608
find out more about	5.000000	10.071	490
they are able to	5.000000	10.197	729
from flower to flower	5.000000	10.138	970
of water on earth	5.000000	10.809	683
the pacific ring of	5.000000	20.880	613
is the name of	5.000000	11 934	979
phases of the moon	5.000000	11.004	529
what hannens to the	5.000000	11.320	394
come out of the	5.000000	11.34/	758
the volume of a	5.000000	20.880	613
what part of the	5.000000	11 540	338
the ones that interest	5.000000	12 300	825
the balloon with the	5.000000	20.880	613
largest planet in the	5.000000	15.463	013
at the same time	5.000000	13.463	081
a life cycle is	5.000000	11 153	151
the temperature of the	5.000000	11.155	556
take care of the	5.000000	11.002	661
of plant or animal	5.000000	10.007	105
or prant or annihar	5.000000	19.297	195
nil and natural gas	5.000000	9.0000	140
of the same kind	5.00000	10.033	477
toke in earbon dievide	5.00000	11.100	411
take in carbon dioxide	5.000000	14.405	404
prants and animals need	5.000000	12.154	210
some of the things	5.000000	17.955	640
nere s now you can	5.000000	20.880	744
is a lorce triat	5.000000	16.320	144
nave a naro time	15.000000	14.111	085

Source: #LancsBox 6.0.

▼ Corpus COREL_S	CI V Frequency	Dispersion	▼ Туре
Туре	▼ Frequency	/: 01 - Freq	Dispersio
what happens after that	5.000000	20.8806	13
the north and south	5.000000	13.2872	30
north and south poles	5.000000	12.2100	72
chart then answer the	5.000000	9.33110	9
revolve around the sun	5.000000	15.6441	30
sun rises and sets	5.000000	13.5791	72
there is a lot	5.000000	9.88060	9
the parts of the	5.000000	10.2125	34
brightest object in the	5.000000	18.9492	18
ones that interest a	5.000000	12.3008	25
to the ground and	5.000000	11.2560	13
have you ever seen	5.000000	11.0165	63
food chain a food	5.000000	12.6827	45
plants that live in	5.000000	14.5481	75
the male part of	5.000000	16.5388	82
long periods of time	5.000000	13.4525	92
hold soil in place	5.000000	14.3504	26
water vapor in the	5.000000	12.3289	71
there are so many	5.000000	10.9342	00
cvcle of a butterfly	5.000000	14,6711	26
look at the chart	5.000000	12.3020	16
grow into new plants	5.000000	12.0322	63
to look at the	5 000000	13 5222	06
the surface of the	5 000000	12 8916	55
made of rock and	5 000000	14 2002	70
roots of a plant	5 000000	12 2957	32
what would happen if	5 000000	12 3187	60
the sun rises and	5 000000	13 5791	72
so the flower can	5 000000	20 8806	13
the water cycle is	4 000000	18 2310	74
pollen is moved from	4 000000	16.0489	12
insects are the largest	4 000000	15.5354	60
lungs live on land	4 000000	20 8806	13
the text and look	4 000000	10 6013	82
you look at the	4 000000	11 6581	39
it is on average	4 000000	13 5561	59
help the plant get	4 000000	13 3927	62
are all examples of	4 000000	11 8013	87
from the soil and	4 000000	12 1103	16
carbon dioxide in the	4 000000	14 5529	38
and look at the	4.000000	10 6013	82
in a temperate forest	4.000000	16.2402	65
animals and plants that	4.000000	13 8215	45
etare are very far	4.000000	16.4855	78
is released into the	4.00000	10.4000	05
also known as the	4.000000	11 5220	87
the nicture of the	4.00000	11.000	86
draw a line from	4.00000	10.4605	3/
the water in the	4.00000	12.1023	52
how long does it	4.00000	11./001	10
the water cycle the	4.00000	13.7293	10
the flow of water	4.00000	12.0298	47
ute now of water	4.00000	14.4083	47

Source: #LancsBox 6.0.

Appendix NMost frequent word classes and n-grams: Neighborhood (T1)

1 Nouns

#LancsBox 6.0

l	KWIC	GraphColl	Whelk	Words	N
Corpora	Words: Corpus	s 4 - Animals 🗙 Ngram	s: Corpus 4 - Animals 🗙	Words: Corpus 5 - Neigh	borhood 🕽
			Search		
▼ Co	rpus Cor	pus 5 - Neighborhood	▼ Frequency	▼ Dispersion	▼ Lem
	Lemma	1 V	Frequency: 01 - Freq	Dispersion: 01	_CV
people_n		96.00000		1.155172	
city_n		61.00000		1.674136	
place_n		54.00000		1.458141	
map_n		47.00000		1.665468	
communi	ty_n	47.00000		1.978356	
school_n		35.00000		1.736022	
home_n		26.00000		1.950122	
world_n		21.00000		4.300135	
building_	n	21.00000		2.209308	
area_n		20.00000		2.627697	
library_n		19.00000		2.029869	
question	n	18.00000		1.481799	
street_n		17.00000		2.754022	
neighborl	nood_n	16.00000		3.437658	
photo_n		16.00000		1.639778	
park_n		16.00000		2.198210	
land_n		16.00000		3.516176	
market_n		16.00000		3.553789	
direction	n	15.00000		3.749130	
text_n	_	15.00000		1.697263	
house_n		15.00000		1.851981	
populatio	n_n	14.00000		4.103200	
town_n		14.00000		3.358024	
police_n		13.00000		2.833325	
country_n	1	13.00000		3.556306	
farmer_n		12.00000		2.931712	
thing_n		12.00000		2.302623	
station_n		12.00000		3.967828	
food_n		12.00000		4.095858	
theater_n		12.00000		2.851192	
language	n	11.000000		6.480741	
service_n		11.000000		4.327246	
farm_n		11.000000		2.611510	
store_n		11.000000		3.042920	
fire_n		10.00000		3.301131	
office_n		10.00000		2.727099	
grid_n		10.00000		4.075438	
suburb_n	1	9.000000		4.255749	

headh a		
beacn_n	9.00000	4.841045
part_n	9.000000	4.191488
study_n	9.000000	2.3/1821
west_n	9.000000	2.195480
kind_n	9.000000	3.161309
type_n	8.000000	2.984901
family_n	8.000000	4.313630
letter_n	8.000000	3.273161
draw_n	8.000000	2.523050
hospital_n	8.000000	2.996759
gas_n	8.000000	4.308893
subway_n	8.000000	6.291199
wheat_n	8.000000	6.480741
reason_n	7.000000	3.797126
south_n	7.000000	2.390209
lot_n	7.000000	3.228685
north_n	7.000000	2.348606
job_n	7.000000	3.307458
united n	7.000000	4.856558
room n	7.000000	4.450528
book n	7.000000	3.700441
restroom_n	7.000000	3.668712
officer n	7.000000	3.673915
business n	7.000000	2.530599
dog n	7.000000	6.205536
states n	7.000000	4.856558
bus n	7.000000	4.020677
key_n	6.000000	5.283545
municipality n	6.000000	6.480741
line n	6.000000	3.562835
transportation n	6.000000	3.407807
center n	6.000000	3.447100
shop n	6.000000	3.199069
car n	6.000000	3.053806
space n	6.000000	3.629254
picture_n	6.000000	3.120709
road n	6.000000	3.098090
st. n	6.000000	6.480741
water n	6.000000	3.281608
time n	6.000000	2.975803
movie n	6.000000	4.007088
east n	6.000000	2.534741
other n	6,000000	3.941405
route n	6.000000	5.218327
name n	6,000000	3 002869
supermarket n	6,000000	3.135554
example n	6 000000	2 744286
good n	6.000000	2.848694
information n	6.000000	3.263184
word n	5.000000	3.248924
citizen n	5.000000	6.241838
post n	5,000000	3.524504
h		

2 Verbs

Lemma	Erequency: 01 - Freq	Dispersion: 01 CV
eat v	16.000000	3.404/84
draw v	6.000000	2.853700
build v	6.000000	2.844863
play y	6.000000	3,706170
fill v	5 000000	3 334110
put v	5 000000	3 087660
bring v	5 000000	2 973226
spread v	5 000000	4 230458
close v	4 000000	4 753017
call v	4 000000	3 968625
hannen v	4.000000	3 873753
complete v	4.000000	3 873459
follow v	4.000000	4 206770
walk v	4.000000	2 2/2592
store v	4.000000	3.852456
locate v	4.000000	4 706545
cot v	2,000000	2 750017
	3.000000	4.015561
	2 000000	5.594701
	2,000000	4 601716
	2 000000	4.051710
think v	2,000000	2 004705
mon v	2,000000	4 206050
niap_v	2.000000	4.320230
piace_v	2,000000	4.011900
add y	2,000000	4.190332
dolivos v	2.000000	2.007540
rido v	2,000000	2 710605
	2,000000	4.225220
understand v	2 000000	2 600007
describe v	2,000000	2 765012
	2,000000	2 712001
rice v	2,000000	6 490741
hito v	2.000000	4.540000
include v	2.000000	4.345555
	2,000000	4.764255
crowd y	2,000000	4.507705
harm v	2.000000	6 480741
	2,000000	5 788452
teach v	2.000000	1 010074
stop v	2.000000	4.510574
ack v	2,000000	4.600550
	2.000000	4.013030
heach y	2,000000	6 400741
chack v	2.000000	4 611001
nick v	2.000000	6 400744
foll v	2.000000	4 665500
shon v	2,00000	4,00000
bogin v	2,00000	4.770390
continuo v	2,00000	4.032030
immigrate v	2,00000	6 400741
roach y	2,00000	4 505664
reaci_v	2.000000	4.000004

Lemma	▼	Frequency: 01 - Freq	Dispersion: 01_CV
decide v	2.000000		6.480741
choose v	2.000000		4.854421
honey v	2.000000		4.812459
buy v	2.000000		4.529301
v amuq	2.000000		6.480741
plan v	2.000000		4.907404
catch v	2.000000		4.928098
connect v	2.000000		4.555975
enjoy v	2.000000		4.533300
write v	2.000000		6.480741
shop-rain_v	1.000000		6.480741
cut_v	1.000000		6.480741
earn_v	1.000000		6.480741
fish_v	1.000000		6.480741
hurt_v	1.000000		6.480741
sleep_v	1.000000		6.480741
expand v	1.000000		6.480741
shine_v	1.000000		6.480741
type_v	1.000000		6.480741
protect_v	1.000000		6.480741
refer v	1.000000		6.480741
start v	1.000000		6.480741
border_v	1.000000		6.480741
practice_v	1.000000		6.480741
park v	1.000000		6.480741
cross_v	1.000000		6.480741
affect v	1.000000		6.480741
imagine v	1.000000		6.480741
flood_v	1.000000		6.480741
cool_v	1.000000		6.480741
wash_v	1.000000		6.480741
arrive_v	1.000000		6.480741
lead_v	1.000000		6.480741
lie_v	1.000000		6.480741
pursue_v	1.000000		6.480741
withdraw_v	1.000000		6.480741
share_v	1.000000		6.480741
house_v	1.000000		6.480741
steal_v	1.000000		6.480741
represent_v	1.000000		6.480741
agree_v	1.000000		6.480741
stay_v	1.000000		6.480741
collect_v	1.000000		6.480741
bake_v	1.000000		6.480741
list_v	1.000000		6.480741
send_v	1.000000		6.480741
divide_v	1.000000		6.480741
cost_v	1.000000		6.480741
vote_v	1.000000		6.480741
people_v	1.000000		6.480741
slow_v	1.000000		6.480741
leave v	1.000000		6.480741

3 Adjectives

_ Lemma	Frequency: 01 - Freq	Dispersion: 01 CV
many adi	35.000000	1.320839
rural adi	17.000000	2.682700
different adi	16.000000	1.853968
other adi	15.000000	2.514234
more adi	12,000000	3.357533
few adi	11.000000	2.267644
large adi	10 000000	4 034386
such adi	9,00000	2.581147
urban adi	9.00000	3.669938
good adi	9.000000	3.879512
small adi	9.00000	2.988021
big adi	8.000000	2.556353
suburban adi	6 000000	3 960460
public adi	6,000000	3 034805
most adi	6 000000	3 023783
natural adi	6,000000	4 540614
new adi	6,000000	2 829009
open adi	5,000000	3 880316
busy adi	5.000000	2 906156
safe adi	5,000000	4 645469
local adj	5,000000	3 772602
dose adi	5,000000	3 705401
official adi	5.000000	6 480741
snecial adi	4,000000	3 003565
near adi	4,000000	3.850986
net adi	4,000000	6 480741
biob adi	4,000000	4 200514
easy adj	3,000000	3 686901
easy_auj	3,000000	4 607126
2nd adi	3,000000	4 116360
areat adi	3,000000	4.849667
faet adi	3,000000	1 78/233
long adi	3,000000	2 7/2202
healthy adj	3,000000	1 528564
neticular adi	3,000000	2 600/97
own adi	2,000000	5.050407
nevt adi	3,000000	2 915110
herd_adj	3,000000	4 002409
human adi	2,000000	6 400741
important adi	2,000000	4 150700
much adi	3,000000	4.135700
niuci_auj	2,000000	6 400741
diverse edi	2,000000	6 490741
diverse_adj	2.000000	4 604770
grassy_auj	2.000000	6.000005
evoileble edi	2.000000	6 490744
available_adj	2.000000	5.240522
tan adi	2.000000	0.349033
iop_adj	2.00000	4 500026
common_auj	2.00000	4.009920
conect_adj	2.00000	4.00744
steep_adj	2.00000	0.460741
lasty_adj	2.000000	4.529301

Lemma	▼	Frequency: 01 - Freq	Dispersion: 01_CV
regular_adj	2.000000		5.450119
first_adj	2.000000		4.645644
nearby_adj	2.000000		4.583544
empty_adj	2.000000		4.643188
similar_adj	2.000000		4.536706
real_adj	2.000000		6.480741
northeast_adj	2.000000		6.480741
english_adj	2.000000		6.480741
old_adj	2.000000		4.967765
elderly_adj	1.000000		6.480741
dynamic_adj	1.000000		6.480741
wonderful_adj	1.000000		6.480741
photo_adj	1.000000		6.480741
6th_adj	1.000000		6.480741
lovely_adj	1.000000		6.480741
federal_adj	1.000000		6.480741
include_adj	1.000000		6.480741
daily_adj	1.000000		6.480741
hilly_adj	1.000000		6.480741
name_adj	1.000000		6.480741
middle_adj	1.000000		6.480741
left_adj	1.000000		6.480741
helpful_adj	1.000000		6.480741
three-day_adj	1.000000		6.480741
warm_adj	1.000000		6.480741
polite_adj	1.000000		6.480741
popular_adj	1.000000		6.480741
enough_adj	1.000000		6.480741
a4_adj	1.000000		6.480741
valuable_adj	1.000000		6.480741
complete_adj	1.000000		6.480741
create_adj	1.000000		6.480741
audio_adj	1.000000		6.480741
librarian_adj	1.000000		6.480741
korean_adj	1.000000		6.480741
clear_adj	1.000000		6.480741
open-air_adj	1.000000		6.480741
low_adj	1.000000		6.480741
11th_adj	1.000000		6.480741
fresh_adj	1.000000		6.480741
several_adj	1.000000		6.480741
east_adj	1.000000		6.480741
afraid_adj	1.000000		6.480741
harmful_adj	1.000000		6.480741
1800s_adj	1.000000		6.480741
municipal_adj	1.000000		6.480741
fair_adj	1.000000		6.480741
dangerous_adj	1.000000		6.480741
animal_adj	1.000000		6.480741
sick_adj	1.000000		6.480741
midwest_adj	1.000000		6.480741
fortunate_adj	1.000000		6.480741

4 Adverbs

more_adv 6 000000 3 300219 so_adv 6 000000 3 161966 together_adv 6 000000 2 856532 below_adv 5 000000 2 856532 sometimes_adv 5 000000 2 958133 sill_adv 4 000000 3 199796 closs_adv 4 000000 3 589701 south_adv 4 000000 3 687625 just_adv 4 000000 3 687377 al_adv 3 000000 3 687377 al_adv 3 000000 3 725278 most_adv 3 000000 3 725278 most_adv 3 000000 3 742133 apart_adv 3 000000 3 742213 down_adv 3 000000 3 742133 apart_adv 3 000000 3 741092 as_adv 3 000000 3 742133 down_adv 3 000000 4 555664 ever_adv 2 000000 4 555664 ever_adv 2 000000 4 55126 now_adv 2 000000 4 55126	_ Lemma	Frequency: 01 - Freq	Dispersion: 01 CV
So_afw 6.00000 3.161966 together_adv 6.00000 3.005613 below_adv 5.000000 4.216524 sometimes_adv 5.000000 2.936133 Still_adv 4.000000 3.199766 close_adv 4.000000 3.767509 usually_adv 4.000000 3.687625 south_adv 4.000000 3.687625 usually_adv 4.000000 3.687625 south_adv 4.000000 3.687625 usually_adv 4.000000 3.687625 usually_adv 4.000000 3.687627 far_adv 3.000000 3.75278 most_adv 3.000000 3.708253 horme_adv 3.000000 3.742013 down_adv 3.000000 3.742013 down_adv 3.000000 3.742013 down_adv 3.000000 4.256767 around_adv 2.000000 4.551826 linsead_adv 2.000000 4.551826 own_adv 2.000000 4.5651	more adv	6.000000	3.300219
begither_adv 6.00000 3.005613 below_adv 5.000000 2.856532 sometimes_adv 5.000000 2.936133 sometimes_adv 4.000000 3.199796 close_adv 4.000000 3.589071 south_adv 4.000000 3.687625 just_adv 4.000000 3.687625 just_adv 4.000000 3.687777 all_adv 3.000000 3.833314 often_adv 3.000000 3.725278 most_adv 3.000000 3.742013 odown_adv 3.000000 3.742013 odown_adv 3.000000 3.742013 odown_adv 3.000000 4.58564 ever_adv 2.000000 4.58564 ever_adv 2.000000 4.551826 onle_adv 2.000000 4.551826 onle_adv 2.000000 4.551826 own_adv 2.000000 4.551826 own_adv 2.000000 4.551826 own_adv 2.000000 4.561826	so adv	6.000000	3.161966
below, adv 6,00000 2,86632 to_adv 5,00000 4,216524 sometimes_adv 5,00000 2,936133 still_adv 4,000000 3,199796 close_adv 4,000000 3,687625 usually_adv 4,000000 3,687625 usually_adv 4,000000 3,687625 usually_adv 4,000000 3,687625 ust_adv 3,00000 3,637377 al_adv 3,00000 3,83314 often_adv 3,00000 4,190150 norti_adv 3,00000 4,725278 most_adv 3,00000 3,74203 apart_adv 3,00000 3,742013 down_adv 3,00000 3,742013 down_adv 2,00000 4,55126 now_adv 2,00000 4,55126 now_adv 2,00000 4,552145 iong_adv 2,00000 4,552145 iong_adv 2,00000 4,552145 iong_adv 2,000000 4,562145	together adv	6.000000	3.005613
too_adv 5.00000 4.216524 somelimes_adv 5.00000 2.936133 somelimes_adv 4.00000 3.199766 close_adv 4.00000 3.59976 usually_adv 4.00000 3.698765 south_adv 4.00000 3.6987625 just_adv 4.00000 3.687625 just_adv 3.00000 3.657377 al_adv 3.00000 3.833314 often_adv 3.00000 4.399150 nort_adv 3.00000 3.725278 most_adv 3.00000 3.725278 most_adv 3.00000 4.072224 else_adv 3.00000 3.741092 as_adv 3.00000 4.266767 around_adv 2.00000 4.651826 now_adv 2.00000 4.551664 ever_adv 2.00000 4.551662 only_adv 2.00000 4.551662 onc_adv 1.000000 6.480741 once_adv 1.000000 6.480741	below_adv	5.000000	2.856532
sometimes_adv 500000 2936133 Still_adv 4000000 3.199796 Close_adv 4000000 3.589071 usually_adv 4.000000 3.689071 south_adv 4.000000 3.689071 usually_adv 4.000000 3.689071 just_adv 4.000000 3.687825 just_adv 3.000000 3.857377 all_adv 3.000000 3.857377 all_adv 3.000000 4.190150 north_adv 3.000000 3.725278 most_adv 3.000000 4.309134 apat_adv 3.000000 3.72224 else_adv 3.000000 3.742013 down_adv 3.000000 4.561826 around_adv 2.000000 4.561826 now_adv 2.000000 4.551826 onw_adv 2.000000 4.551062 only_adv 2.000000 4.52146 long_adv 2.000000 4.52146 ons_adv 2.000000 4.521911	too adv	5.000000	4.216524
Still_adv 4 000000 3 19796 close_adv 4 000000 3 589071 south_adv 4 000000 3 589071 south_adv 4 000000 3 587625 just_adv 4 000000 3 687625 just_adv 4 000000 3 687625 just_adv 3 000000 3 68777 all_adv 3 000000 3 83314 often_adv 3 000000 4 190150 north_adv 3 000000 4 309134 apart_adv 3 000000 3 725278 most_adv 3 000000 3 742013 down_adv 3 000000 3 742013 down_adv 3 000000 3 741092 as_adv 3 000000 4 551626 now_adv 2 000000 4 551826 now_adv 2 000000 4 551826 now_adv 2 000000 4 551826 now_adv 2 000000 4 551962 noly_adv 2 000000 4 529191 less_adv 1 000000 6 480741	sometimes adv	5.000000	2.936133
close_adv 4.000000 3.767509 usualy_adv 4.000000 3.680761 south_adv 4.000000 3.687625 just_adv 3.000000 3.657377 al_adv 3.000000 3.833314 often_adv 3.000000 3.833314 often_adv 3.000000 4.190150 north_adv 3.000000 4.309134 apat_adv 3.000000 3.725278 most_adv 3.000000 4.309134 apat_adv 3.000000 3.742013 down_adv 3.000000 3.742013 down_adv 3.000000 4.651826 s_adv 3.000000 4.651826 instead_adv 2.000000 4.651826 ever_adv 2.000000 4.551062 ong_adv 1.000000 6.480741 <tr< td=""><td>still adv</td><td>4.000000</td><td>3.199796</td></tr<>	still adv	4.000000	3.199796
usually_adv 4 000000 3 589071 south_adv 4 000000 3 687625 just_adv 4 000000 3 687625 just_adv 3 000000 3 657377 all_adv 3 000000 3 833314 often_adv 3 000000 4 190150 north_adv 3 000000 4 309134 apart_adv 3 000000 3 76253 home_adv 3 000000 3 742013 down_adv 3 000000 3 742013 down_adv 3 000000 3 741092 as_adv 3 000000 4 256767 around_adv 2 000000 4 561826 now_adv 2 000000 4 561826 over_adv 2 000000 4 565164 over_adv 2 000000 4 565162 only_adv 2 000000 4 565162 only_adv 2 000000 6 480741 less_adv 1 000000 6 480741 once_adv 1 000000 6 480741 once_adv 1 000000 6 480741	close_adv	4.000000	3.767509
south_adv 4.00000 3.687625 just_adv 4.00000 3.169457 far_adv 3.00000 3.637377 all_adv 3.00000 3.833314 often_adv 3.00000 3.725278 most_adv 3.00000 3.725278 most_adv 3.00000 3.725278 most_adv 3.00000 4.399134 apart_adv 3.00000 4.725278 most_adv 3.00000 4.07224 else_adv 3.00000 3.742013 down_adv 3.00000 4.256767 around_adv 2.00000 4.651826 now_adv 2.00000 4.58264 ever_adv 2.00000 4.582664 ever_adv 2.00000 4.582664 ever_adv 2.00000 4.582664 ever_adv 2.00000 4.582162 ever_adv 2.00000 4.681226 ever_adv 1.00000 6.480741 once_adv 1.000000 6.480741 once_a	usually adv	4.000000	3.589071
just_adv 4.000000 3.169457 far_adv 3.000000 3.657377 all_adv 3.000000 3.833314 often_adv 3.000000 4.190150 north_adv 3.000000 3.09134 apart_adv 3.000000 4.09134 apat_adv 3.000000 4.072224 else_adv 3.000000 3.742013 down_adv 3.000000 3.742013 down_adv 3.000000 4.256767 around_adv 2.000000 4.651826 now_adv 2.000000 4.651826 now_adv 2.000000 4.552145 long_adv 2.000000 4.651826 ever_adv 2.000000 4.651826 only_adv 2.000000 4.651826 long_adv 2.000000 4.651826 ever_adv 1.000000 6.480741 once_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 underground_adv 1.000000 6.480741	south_adv	4.000000	3.687625
far_adv 3.000000 3.667377 all_adv 3.000000 3.833314 all_adv 3.000000 4.190150 north_adv 3.000000 3.725278 most_adv 3.000000 4.309134 apart_adv 3.000000 4.309134 apart_adv 3.000000 4.072224 else_adv 3.000000 3.742013 down_adv 3.000000 3.741092 as_adv 3.000000 4.561826 now_adv 2.000000 4.561826 around_adv 2.000000 4.562145 long_adv 2.000000 4.562145 long_adv 2.000000 4.561826 ever_adv 2.000000 4.561826 only_adv 2.000000 4.561826 ever_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 il_adv 1.000000 6.480741 il_adv 1.000000 6.480741	just_adv	4.000000	3.169457
all_adv 3.00000 3.833314 often_adv 3.00000 4.190150 north_adv 3.00000 3.725278 most_adv 3.00000 4.309134 apart_adv 3.00000 4.72224 else_adv 3.00000 4.72224 else_adv 3.00000 3.742013 down_adv 3.00000 3.741992 as_adv 3.00000 4.256767 around_adv 2.00000 4.551826 now_adv 2.00000 4.551826 ever_adv 2.00000 4.551826 ever_adv 2.00000 4.551826 even_adv 2.00000 4.551826 even_adv 2.00000 4.55145 long_adv 2.00000 4.529191 less_adv 1.000000 6.480741 once_adv 1.000000 6.480741 udcoser_adv 1.000000 6.480741 uderground_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741	far_adv	3.000000	3.657377
often_adv 3.00000 4.190150 north_adv 3.00000 3.725278 most_adv 3.00000 4.309134 apat_adv 3.00000 4.072224 else_adv 3.00000 3.742013 down_adv 3.00000 3.741092 as_adv 3.00000 4.25767 around_adv 2.00000 4.551826 now_adv 2.00000 4.55264 ever_adv 2.00000 4.551826 instead_adv 2.00000 4.551826 ever_adv 2.00000 4.551062 onl_adv 2.00000 4.551062 even_adv 2.00000 4.648741 once_adv 1.00000 6.480741 once_adv 1.00000 6.480741 diodeground_adv 1.00000 6.480741 underground_adv 1.00000 6.480741 ill_adv 1.00000 6.480741 idoud_adv 1.00000 6.480741 idoud_adv 1.000000 6.480741	all_adv	3.000000	3.833314
north_adv 3.00000 3.725278 most_adv 3.00000 4.309134 apart_adv 3.00000 3.708253 home_adv 3.00000 4.072224 else_adv 3.00000 3.741013 down_adv 3.00000 3.741092 as_adv 3.00000 4.256767 around_adv 2.00000 4.551826 now_adv 2.00000 4.551826 now_adv 2.00000 4.551826 instead_adv 2.00000 4.551826 org_adv 2.00000 4.551826 org_adv 2.00000 4.551826 ong_adv 2.00000 4.551826 ong_adv 2.00000 4.551826 ong_adv 2.000000 4.551826 ong_adv 2.000000 4.551826 once_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 underground_adv 1.000000 6.480741	often_adv	3.000000	4.190150
most_adv 3.00000 4.309134 apart_adv 3.00000 3.702623 home_adv 3.00000 4.072224 else_adv 3.00000 3.742013 down_adv 3.00000 3.742013 as_adv 3.00000 4.256767 around_adv 2.00000 4.651826 now_adv 2.00000 4.551826 now_adv 2.00000 4.552145 long_adv 2.00000 4.551826 ever_adv 2.00000 4.551826 long_adv 2.00000 4.551826 ever_adv 2.00000 4.551826 only_adv 2.00000 4.551926 only_adv 2.00000 4.529191 less_adv 1.00000 6.480741 once_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 straight_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741	north adv	3.000000	3.725278
apart_adv 3.00000 3.708253 home_adv 3.00000 4.07224 else_adv 3.00000 3.742013 down_adv 3.00000 3.741092 as_adv 3.00000 4.256767 around_adv 2.00000 4.651826 now_adv 2.00000 4.585664 ever_adv 2.00000 4.552145 long_adv 2.00000 4.552145 long_adv 2.00000 4.551062 only_adv 2.00000 4.551062 only_adv 2.00000 6.480741 cless_adv 1.00000 6.480741 once_adv 1.000000 6.480741 once_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 ill_adv 1.000000 6.480741 ill_adv 1.000000 6.480741 ill_adv 1.000000 6.480741 ill_adv 1.000000 6.480741 always_adv 1.000000 6.480741	most_adv	3.000000	4.309134
home_adv 3.000000 4.072224 else_adv 3.000000 3.742013 down_adv 3.000000 3.741092 as_adv 3.000000 4.256767 around_adv 2.000000 4.651826 now_adv 2.000000 4.558564 ever_adv 2.000000 4.5651826 instead_adv 2.000000 4.5651826 ever_adv 2.000000 4.551062 only_adv 2.000000 4.551062 even_adv 2.000000 4.52145 long_adv 2.000000 4.52145 only_adv 2.000000 4.52145 long_adv 2.000000 4.52145 long_adv 2.000000 4.52145 losg 2.000000 6.480741 less_adv 1.000000 6.480741 alther_adv 1.000000 6.480741 alther_adv 1.000000 6.480741 alther_adv 1.000000 6.480741 alther_adv 1.000000 6.480741	apart adv	3.000000	3.708253
else_adv 3.000000 3.742013 down_adv 3.000000 3.741092 as_adv 3.000000 4.256767 around_adv 2.000000 4.651826 now_adv 2.000000 4.551826 now_adv 2.000000 4.551826 ever_adv 2.000000 4.55162 instead_adv 2.000000 4.551062 even_adv 2.000000 4.551062 only_adv 2.000000 4.551062 even_adv 2.000000 6.480741 once_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000	home adv	3.000000	4.072224
down_adv 3.000000 3.741092 as_adv 3.000000 4.256767 around_adv 2.000000 4.651826 now_adv 2.000000 5.117278 instead_adv 2.000000 4.585664 ever_adv 2.000000 4.562145 long_adv 2.000000 4.551826 even_adv 2.000000 4.551062 only_adv 2.000000 6.480741 less_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 however_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 lalud_adv 1.000000 6.480741 above_adv 1.000000 6.	else adv	3.000000	3.742013
as_adv 3.00000 4.256767 around_adv 2.00000 4.651826 now_adv 2.00000 4.55564 ever_adv 2.00000 4.555664 ever_adv 2.00000 4.552664 ever_adv 2.00000 4.551062 only_adv 2.00000 4.552165 less_adv 2.00000 4.552162 only_adv 2.00000 4.552191 less_adv 1.00000 6.480741 once_adv 1.00000 6.480741 closer_adv 1.00000 6.480741 straight_adv 1.00000 6.480741 underground_adv 1.00000 6.480741 however_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 ill_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.000000 6.480741	down adv	3.000000	3.741092
around_adv 2.000000 4.651826 now_adv 2.00000 5.117278 instead_adv 2.00000 4.585664 ever_adv 2.00000 4.562145 long_adv 2.00000 4.551826 even_adv 2.00000 4.551826 even_adv 2.00000 4.551826 even_adv 2.00000 4.529191 less_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 inderground_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741	as adv	3.000000	4.256767
now_adv 2.000000 5.117278 instead_adv 2.000000 4.585664 ever_adv 2.000000 4.651826 long_adv 2.000000 4.651826 even_adv 2.000000 4.551062 only_adv 2.000000 4.551962 only_adv 2.000000 4.529191 less_adv 1.000000 6.480741 once_adv 1.000000 6.480741 closer_adv 1.000000 6.480741 dolser_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 aloud_adv 1.000000 6.4	around adv	2.000000	4.651826
Instead_adv 2.000000 4.585664 ever_adv 2.000000 4.551826 even_adv 2.000000 4.651826 even_adv 2.000000 4.551062 only_adv 2.000000 4.529191 less_adv 1.000000 6.480741 once_adv 1.000000 6.480741 close_adv 1.000000 6.480741 gaty 1.000000 6.480741 underground_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 always_adv 1.000000 6.480741 alway 1.000000 6.480741 alway 1.000000 6.480741 alway_adv 1.000000 6.480741 above_adv 1.000000 6.480741 alway_adv 1.000000 6.480741 alway_adv 1.000000 6.480741 alway_adv 1.000000 6.480741 alway_adv 1.000000 6.480741	now adv	2.000000	5.117278
ever_adv 2.00000 4.562145 long_adv 2.00000 4.651826 even_adv 2.00000 4.551062 only_adv 2.00000 4.529191 less_adv 1.00000 6.480741 once_adv 1.00000 6.480741 closer_adv 1.00000 6.480741 closer_adv 1.00000 6.480741 tarther_adv 1.000000 6.480741 straight_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 however_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000 6.480741 alway_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 east_adv 1.000000 6.480741 go_adv 1.000000 6.480741	instead adv	2.000000	4.585664
Iong_adv Iong_adv even_adv 2.000000 4.651826 even_adv 2.000000 4.551062 only_adv 2.000000 4.529191 less_adv 1.000000 6.480741 once_adv 1.000000 6.480741 once_adv 1.000000 6.480741 tarther_adv 1.000000 6.480741 tarther_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 however_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000 6.480741 always_adv 1.000000 6.480741 away_adv 1.000000 6.480741 away_adv 1.000000 6.480741 away_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 ago_adv 1.000000 6.480741	ever adv	2.000000	4.562145
even_adv 2.00000 4.551062 only_adv 2.00000 4.529191 less_adv 1.00000 6.480741 once_adv 1.00000 6.480741 closer_adv 1.00000 6.480741 toser_adv 1.00000 6.480741 farther_adv 1.00000 6.480741 underground_adv 1.00000 6.480741 underground_adv 1.00000 6.480741 however_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 always_adv 1.00000 6.480741 alway_adv 1.00000 6.480741 east_adv 1.00000 6.480741 <td>long adv</td> <td>2.000000</td> <td>4.651826</td>	long adv	2.000000	4.651826
Initial Initial only_adv 2.00000 4.529191 less_adv 1.000000 6.480741 once_adv 1.000000 6.480741 close_adv 1.000000 6.480741 dose_adv 1.000000 6.480741 straigh_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 howeve_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloug_adv 1.000000 6.480741 alway_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 early_adv 1.000000 6.480741 equaly_adv 1.000000 6.480741 early_adv 1.000000 6.480741 equaly_adv 1.0000000 6.480741	even adv	2,000000	4.551062
Instant Instant less_adv 1.00000 6.480741 once_adv 1.00000 6.480741 closer_adv 1.00000 6.480741 farther_adv 1.00000 6.480741 straight_adv 1.00000 6.480741 underground_adv 1.00000 6.480741 however_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 above_adv 1.000000 6.480741 advag_adv 1.000000 6.480741 advag_adv 1.000000 6.480741 early_adv 1.000000 6.480741 early_adv 1.000000 6.480741 early_adv 1.000000 6.480741	only adv	2 000000	4 529191
once_adv 1.00000 6.480741 closer_adv 1.00000 6.480741 farther_adv 1.00000 6.480741 straight_adv 1.00000 6.480741 underground_adv 1.00000 6.480741 however_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000 6.480741 always_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 east_adv 1.000000 6.480741 early_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gen_adv 1.000000 6.480741 gen_adv 1.000000 6.480741 <td>less adv</td> <td>1.000000</td> <td>6.480741</td>	less adv	1.000000	6.480741
closer_adv 1.00000 6.480741 farther_adv 1.00000 6.480741 straight_adv 1.00000 6.480741 underground_adv 1.00000 6.480741 however_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 aloud_adv 1.00000 6.480741 always_adv 1.00000 6.480741 always_adv 1.00000 6.480741 away_adv 1.00000 6.480741 away_adv 1.00000 6.480741 east_adv 1.00000 6.480741 east_adv 1.00000 6.480741 east_adv 1.00000 6.480741 early_adv 1.00000 6.480741 go_adv 1.00000 6.480741 hard_adv 1.00000 6.480741 equally_adv 1.00000 6.480741 gentiy_adv 1.00000 6.480741 gentiy_adv 1.00000 6.480741 </td <td>once adv</td> <td>1.000000</td> <td>6.480741</td>	once adv	1.000000	6.480741
farther_adv 1.000000 6.480741 straight_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 however_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000 6.480741 always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 east_adv 1.000000 6.480741 east_adv 1.000000 6.480741 east_adv 1.000000 6.480741 go_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6	closer adv	1.000000	6.480741
straight_adv 1.000000 6.480741 underground_adv 1.000000 6.480741 however_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 ill_adv 1.000000 6.480741 always_adv 1.000000 6.480741 always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 go_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741	farther adv	1.000000	6.480741
underground_adv 1.000000 6.480741 however_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000 6.480741 always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 east_adv 1.000000 6.480741 early_adv 1.000000 6.480741 early_adv 1.000000 6.480741 early_adv 1.000000 6.480741 go_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 back_adv 1.000000 6.480741	straight adv	1.000000	6.480741
however_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 ill_adv 1.000000 6.480741 always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 adv 1.000000 6.480741 go_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 genty_adv 1.000000 6.480741 bard_adv 1.000000 6.480741 genty_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 <	underground adv	1.000000	6.480741
aloud_adv 1.000000 6.480741 aloud_adv 1.000000 6.480741 always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 go_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 back_adv 1.000000 6.480741	however adv	1 000000	6.480741
iil_adv 1.000000 6.480741 always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 go_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 back_adv 1.000000 6.480741	aloud adv	1 000000	6 480741
always_adv 1.000000 6.480741 above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 east_adv 1.000000 6.480741 early_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 back_adv 1.000000 6.480741	ill adv	1.000000	6.480741
above_adv 1.000000 6.480741 away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 early_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 back_adv 1.000000 6.480741	always adv	1,000000	6.480741
away_adv 1.000000 6.480741 east_adv 1.000000 6.480741 early_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 back_adv 1.000000 6.480741	above adv	1.000000	6.480741
east_adv 1.00000 6.480741 early_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 back_adv 1.000000 6.480741	away adv	1.000000	6.480741
early_adv 1.000000 6.480741 ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 back_adv 1.000000 6.480741	east adv	1,000000	6.480741
ago_adv 1.000000 6.480741 hard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 item_adv 1.000000 6.480741	early adv	1.000000	6.480741
ard_adv 1.000000 6.480741 equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 item_adv 1.000000 6.480741	ago adv	1 000000	6 480741
Internation Internation Internation equally_adv 1.000000 6.480741 gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 item_adv 1.000000 6.480741	hard adv	1 000000	6 480741
gently_adv 1.000000 6.480741 sure_adv 1.000000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 item_adv 1.000000 6.480741	equally adv	1 000000	6 480741
sure_adv 1.00000 6.480741 differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 item_adv 1.000000 6.480741	gently adv	1,000000	6 480741
differently_adv 1.000000 6.480741 back_adv 1.000000 6.480741 item_adv 1.000000 6.480741	sure adv	1 000000	6 480741
back_adv 1.000000 6.480741 item_adv 1.000000 6.480741	differently adv	1.000000	6.480741
item_adv 1.000000 6.480741	back adv	1 000000	6 480741
	item adv	1 000000	6 480741
ICIOSEIV 30V 11 000000 16 480741	closely adv	1,000000	6 480741
lot adv 1.000000 6.480741	lot adv	1.000000	6.480741

5 3-grams

▼ Corpus Corpus 5 - Nei	ighborhood V Frequency	▼ Dispersion ▼ Type
Туре	▼ Frequency: 01 - F	req Dispersion: (
answer the questions	18.000000	1.496661
then answer the	15.000000	1.710069
study the photo	13.00000	1.753243
this is a	13.000000	6.480741
read the text	13.000000	1.676720
the photo then	11.000000	1.874867
photo then answer	10.00000	1.943026
and study the	8.000000	2.265642
text and study	8.000000	2.265642
the text and	8.000000	2.265642
on the map	7.000000	2.825933
map of a	7.000000	2.334853
there is a	6.000000	2.841878
a lot of	6.000000	3.687286
the natural world	6.000000	4.541336
the united states	6.000000	6.004359
live in a	6.000000	3.020852
a map of	5.000000	3.180265
a farmers market	5.000000	3.993006
look at this	5.000000	2.843496
you want to	5.000000	3.340437
in the city	5.000000	4.372773
at a farmers	4.000000	4.169114
their home countries	4.000000	5.459973
of the natural	4.000000	4.541336
is a lot	4.000000	3.756763
in a community	4.000000	4.528115
you live in	4.000000	3.754058
a good citizen	4.000000	6.480741
the land in	4.000000	5.640306
lot of open	4.000000	4.129518
to get to	4.000000	3.687060
at this map	4.000000	3.171967
to the united	4.000000	6.480741
do vou know	4.000000	3.442547
fruits and vegetables	4.000000	4.532792
there are many	4.000000	3.882068
a rural community	4.000000	4.417481
west east south	4.00000	3.177665
part of the	4.000000	6.480741
vou have a	3.000000	4.239334
in your community	3.00000	4.465660
in a city	3.000000	3.743347
the human world	3.000000	6.480741
north west east	3.000000	3.732227
transportation to get	3.000000	3,717807
plants and animals	3.000000	4.850532
a big city	3.000000	4.122050
people move for	3.000000	6.480741
places in the	3.000000	4.536015
of open space	3.00000	5.302537
be used to	3.000000	6.480741

▼ Corpus	Corpus 5 - Nei	ghborhood	▼ Frequency	▼ Dispersion	🔻 Туре
	Туре		V Frequency: 01 - Free	q	Dispersion:
the map of		3.00000		3.804387	
want to be		3.000000		6.480741	
at the park		3.000000		3.990864	
go to the		3.000000		3.850195	
of the city		3.000000		6.480741	
public transportat	tion to	3.000000		3.717807	
used to make		3.000000		6.480741	
rural community h	nas	3.000000		4.836658	
the text study		3.000000		3.658687	
this map of		3.000000		3.681072	
work in the		3.000000		6.480741	
you can help		3.000000		6.480741	
the questions urb	an	3.000000		4.033184	
a map can		3 000000		3 728048	
what kind of		3 000000		4 598685	
something that is		3 000000		6.084891	
how do you		3 000000		4 161866	
community is a		3.000000		4.101000	
vou pood to		2.000000		4.040104	
draw a line		2.000000		4.373390	
a community is		2.000000		4.111003	
a community is		3.000000		4.010110	
in their nome		3.000000		0.480741	
come to the		3.000000		4.530629	
of a school		3.000000		4.066248	
IS IN IT		3.000000		6.480741	
text study the		3.000000		3.658687	
different types of		3.000000		4.878912	
community servic	e IS	3.000000		6.480741	
people come to		3.000000		4.530629	
in a place		3.000000		4.548888	
have to drive		3.000000		4.721071	
different from a		2.000000		4.539790	
being a good		2.000000		6.480741	
in the order		2.000000		6.480741	
of a place		2.000000		5.295137	
gym restroom cla	ssroom	2.000000		4.556910	
over the world		2.000000		4.657642	
live very close		2.000000		6.480741	
be near a		2.000000		6.480741	
to be close		2.000000		6.480741	
choose to live		2.000000		4.865156	
is part of		2.000000		6,480741	
where many peor	ble	2 000000		5 044036	
may need more		2 000000		6 480741	
places on the		2 000000		6 480741	
to find your		2.000000		4 556910	
the text then		2.000000		4.356600	
come here to		2.000000		6 / 207/1	
came nere to	ie theater	2.000000		4 500706	
is much to	ne diedlei	2.000000		4.029700	
is much to		2.000000		6.400744	
have kernes of		2.000000		0.480741	
nave nomes and		2.00000		6.480741	

6 4-grams

▼ Corpus Corpus 5 - Neigh	borhood	▼ Frequency	▼ Dispersion	▼ Туре
Туре		▼ Frequency: 01 - Freq	1	Dispersion: (
more fewer pet dogs	2.000000)	6.480741	
are part of the	2.000000)	6.480741	
a map of a	2.000000)	4.593171	
out the following information	2.000000)	6.480741	
path on the map	2.000000)	4.713106	
these places in the	2.000000)	6.480741	
places you would find	2.000000)	6.480741	
room library gym restroom	2.000000)	4.557604	
they are more spread	2.000000)	4.617756	
the number of people	2.000000)	6.480741	
can be used to	2.000000)	6.480741	
map of a school	2.000000)	4.557604	
work in the city	2.000000)	6.480741	
kinds of food in	2.000000)	6.480741	
might want to be	2.000000)	6.480741	
office science room library	2.000000)	4.557604	
beaches are great places	2.000000)	6.480741	
from place to place	2.000000)	4.825598	
they might want to	2.000000)	6.480741	
what direction will you	2.000000)	6.480741	
pictures of places you	2.000000)	6,480741	
the text then answer	2.000000)	4,758423	
do vou live in	2.000000)	6,480741	
supermarket movie theater drugstore	2.000000)	4.529746	
library gym restroom classroom	2.000000)	4,557604	
to be close to	2 000000)	6 480741	
a map of your	2.000000)	4,553924	
of places you would	2.000000)	6.480741	
is a group of	2 000000)	5 405054	
that is part of	2.000000)	6.480741	
is the number of	2 000000)	6 480741	
a community is a	2 000000)	5 070230	
many kinds of food	2 000000)	6 480741	
kind of community do	2 000000)	6 480741	
a good place to	2 000000)	6 480741	
all over the world	2 000000	,)	4 658598	
movie theater drugstore hospital	2.000000	,)	4.529746	
to find your way	2.000000	,)	4 557604	
give information about the	2.000000	,)	4.533624	
nonulation is the number	2.000000)	6 480741	
direction will you go	2.000000)	6 480741	
you would find in	2.000000)	6 480741	
of the human world	2.000000)	6 480741	
population population is the	2.000000)	6 480741	
being a good citizen	2.000000)	6 480741	
science room library gym	2.000000)	4 557604	
many neonle live close	2.000000)	5.0/8530	
for many reasons they	2.000000	,)	6 / 207/1	
there is much to	2.00000)	6 /007/4	
is part of the	2.00000)	6 400744	
but they are more	2.00000)	1,647756	
room office science room	2.00000)	4.017730	
room office science footh	2.000000	,	4.007004	

▼ Corpus Corpus 5 - Ne	eighborhood	▼ Frequency	Dispersion	🔻 Туре
Туре		V Frequency: 01 - Fre	eq 🛛	Dispersion:
information about your nearest	2.00000)	6.480741	
are great places to	2.00000)	6.480741	
the following information about	2.00000)	6.480741	
want to be close	2.00000)	6.480741	
food in the city	2.00000)	6.480741	
the word box below	2.00000)	4.557396	
they need to go	2.00000)	4.556910	
looking at a map	2.00000)	6.480741	
the united states from	2.00000)	6.480741	
at the map of	2.00000)	4.600775	
part of the natural	2.00000)	6.480741	
what type of community	2.00000)	6.480741	
to go from the	2.00000)	6.480741	
fewer pet dogs than	2.00000)	6.480741	
would find in a	2.00000)	6,480741	
places in the order	2.00000)	6.480741	
the same color as	2 00000)	6 480741	
the pictures of places	2.00000	<u>)</u>	6 480741	
community do you live	2.00000	<u>,</u>	6 480741	
directions read the text	2.00000	,)	4 566136	
the names of the	2.00000	,)	6.480741	
find out the following	2.00000)	6 480741	
from all over the	2.00000)	4 658508	
which item cold the	2.00000)	6 400741	
toxt than answer the	2.00000)	4 750/22	
reading terminal market is	2.00000)	6 400744	
	2.00000)	4 022666	
and you want to	2.00000)	4.922000	
and you want to	2.00000)	5.439060	
look at the man	2.00000)	3.07 1609	
nook at the map	2.00000)	4.000773	
head to the second seco	2.00000)	4.6/0/22	
iunch toom once science	2.00000)	4.007004	
are more spread out	2.00000)	4.01//00	
of community do you	2.00000)	0.480/41	
the reading terminal market	2.00000)	6.480741	
something that is part	2.00000)	6.480/41	
to walk and take	1.00000)	6.480741	
located korean war memorial	1.00000)	6.480/41	
the natural world the	1.00000)	6.480/41	
animals at the beaches	1.00000)	6.480741	
our house is called	1.00000)	6.480741	
together and has something	1.00000)	6.480741	
pool park mall gas	1.00000)	6.480741	
there are many teachers	1.00000)	6.480741	
and it is a	1.00000)	6.480741	
the middle square the	1.00000)	6.480741	
minutes but on the	1.00000)	6.480741	
right next to in	1.00000)	6.480741	
the questions write about	1.00000)	6.480741	
are crowded with people	1.000000)	6.480741	
directions use the word	1.00000)	6.480741	
like a train it	1.00000)	6.480741	

Source: #LancsBox 6.0.

Appendix O Most frequent word classes and n-grams: Animals (T2)

1 Nouns

▼ Corpus	Corpus 4 - Animals	▼ Frequency	▼ Dispersion	▼ Lemma
L	emma 🛛 🗸 🗸	Frequency: 01 - Freq	Dispersion:	01_CV
animal n	165.000	000	1.131762	
insect n	61.0000	00	2.611211	
mammal n	48.0000	00	3.500620	
bird n	44.0000	00	3.173543	
fish n	43.0000	00	3.338003	
water n	41.0000	00	2.527510	
type_n	39.0000	00	2.900862	
body_n	38.0000	00	2.121597	
group_n	38.0000	00	2.817308	
snake n	34.0000	00	4.529454	
wing n	34.0000	00	2.494012	
leg_n	33.0000	00	2.589348	
backbone_n	33.0000	00	2.710849	
specie_n	32.0000	00	3.055625	
part n	30.0000	00	2.181851	
cat_n	30.0000	00	2.716561	
vertebrate n	28.0000	00	4.297410	
mollusk n	28.0000	00	5.753066	
egg_n	26.0000	00	2.808295	
spider n	25.0000	00	3.338940	
baby_n	25.0000	00	3.557181	
reptile n	24.0000	00	4.608601	
kind n	23.0000	00	2.996490	
lion_n	21.0000	00	3.673580	
people_n	21.0000	00	3.341577	
turtle_n	21.0000	00	3.544087	
question_n	19.0000	00	2.456059	
frog_n	19.0000	00	5.038150	
night n	18.0000	00	6.619612	
gill_n	17.0000	00	6.001531	
world_n	17.0000	00	2.740542	
day_n	17.0000	00	4.531817	
name_n	17.0000	00	3.007919	
direction_n	16.0000	00	2.425315	
feather_n	16.0000	00	3.565113	
land_n	16.0000	00	3.558137	
bear_n	16.0000	00	3.334622	
dog_n	16.0000	00	3.038865	
word_n	15.0000	00	2.552668	
circle_n	15.0000	00	2.316115	
adult_n	15.0000	00	2.836525	
human_n	15.0000	00	2.971262	
alligator_n	14.0000	00	5.007004	
bee_n	14.0000	000	4.487166	

Corpus	Corpus 4 - Animals	Frequency	Dispersion	▼ Lemma
_ L	₋emma	▼ Frequency: 01 - Freq	Dispersion:	01_CV
invertebrate n	14.00	0000	6 206184	
lizard n	14.00	0000	4 276279	
rodent n	13.00	0000	6 768086	
bat n	13.00	0000	4 161800	
skin n	13.00	0000	3 517140	
shell n	13.00	0000	5 342769	
vear n	13.00	0000	4 559814	
pet n	13.00	0000	5.491196	
bone n	12.00	0000	4.064002	
tooth n	12.00	0000	6.382613	
food n	12.00	0000	3.505076	
plant n	12.00	0000	3.399351	
pia n	12 00	0000	3 967263	
grasshopper n	11.00	0000	3.535372	
eve n	11.00	0000	4.385227	
arachnid n	11.00	0000	6.130124	
text n	11.00	0000	2,735985	
male n	11 00	0000	7 874008	
squirrel n	11.00	0000	5.526754	
amphibian n	10.00	0000	4.303706	
hair n	10.00	0000	3.925714	
species n	10.00	0000	4.563279	
shark n	10.00	0000	4 691760	
butterfly n	10.00	0000	5.394300	
prev n	10.00	0000	5.298124	
predator n	10.00	0000	6.368418	
ant n	10.00	0000	4.067076	
air n	10.00	0000	4.629732	
tail n	10.00	0000	4.394651	
toad n	9.000	000	5.574608	
family_n	9.000	000	4.281762	
mouth n	9.000	000	5.676406	
way n	9.000	000	3.243398	
squid n	9.000	000	4.717148	
job_n	9.000	000	6.007568	
scientist_n	9.000	000	4.151377	
scale n	9.000	000	4.249740	
earth n	9.000	000	3.673948	
zoo_n	9.000	000	3.750756	
elephant_n	9.000	000	5.341375	
parent n	9.000	000	4.265205	
color n	9.000	000	4.368574	
answer_n	9.000	000	2.748506	
female_n	9.000	000	5.264348	
mite n	9.000	000	4.477229	
sea_n	9.000	000	6.881587	
oxygen_n	9.000	000	7.874008	
wasp_n	8.000	000	5.731936	
draw_n	8.000	000	3.298001	
birds_n	8.000	000	4.243344	
tiger n	8.000	000	4.490316	

2 Verbs

be_v 494.00000 0.619691 have_v 172.00000 0.927505 live_v 77.00000 1.664547 can_v 61.00000 1.578228 do_v 55.00000 2.046402 use_v 35.00000 2.171928 fly_v 48.00000 2.046402 use_v 22.00000 3.024409 know_v 27.00000 2.479805 help_v 23.00000 2.479805 help_v 23.00000 2.159102 find_v 22.00000 2.552927 eat_v 20.00000 3.167151 protect_v 15.00000 3.00170 relat_v 15.00000 3.04964 keep_v 14.00000 3.12413 get_v 13.00000 3.66554 see_v 10.00000 3.13807 read_v 10.00000 3.13307 read_v 10.00000 3.437997 read_v 10.00000 3.437997 read_v 10.00000	_ Lemma	Frequency: 01 - Freq	Dispersion: 01 CV
have_v 172.00000 0.927506 live_v 77.00000 1.664547 can_v 61.00000 1.578228 do_v 55.00000 2.046402 use_v 35.00000 2.046402 use_v 35.00000 2.0792 fly_v 32.00000 3.024409 know_v 27.00000 2.479805 help_v 23.00000 2.171928 fly_v 23.00000 3.111343 ook_v 25.00000 2.159102 find_v 22.00000 3.167151 proted_v 15.00000 3.071161 lay_v 15.00000 3.064964 keep_v 14.00000 3.012413 get_v 13.00000 3.66554 see_v 12.00000 3.633822 belong_v 10.00000 3.03397 read_v 11.00000 3.033802 get_v 9.00000 3.03382 get_v 9.00000 3.033802 get_v 10.00000	be v	494,000000	0.619691
Internation 1700000 can_v 61.00000 1.578228 can_v 61.00000 1.578228 cal_v 48.00000 2.046402 use_v 35.00000 2.171928 fty_v 32.00000 3.024409 know_v 27.00000 2.479805 help_v 23.00000 2.159102 fnd_v 22.000000 2.159102 fnd_v 22.000000 3.11343 make_v 22.000000 3.167151 prolect_v 15.00000 3.67161 prolect_v 15.00000 3.004964 keep_v 15.00000 3.01170 relate_v 15.00000 3.02592 belong_v 13.00000 3.602592 belong_v 13.00000 3.602592 belong_v 10.00000 3.0302 get_v 13.00000 3.602592 get_v 13.00000 3.602592 belong_v 10.00000 3.5622 get_v 10.00000 <td< td=""><td>have v</td><td>172 000000</td><td>0.927506</td></td<>	have v	172 000000	0.927506
Can_v 61.00000 1.578228 do_v 55.000000 1.509275 call_v 48.00000 2.046402 use_v 35.00000 3.024409 fly_v 32.00000 3.024409 know_v 27.00000 1.983511 look_v 25.00000 2.479805 help_v 23.00000 3.111343 make_v 22.00000 2.159102 find_v 22.00000 3.167151 protect_v 15.00000 3.771161 lay_v 15.00000 3.024404 breathe_v 15.00000 3.01716 lay_v 15.00000 3.01716 lay_v 15.00000 3.02494 keep_v 14.00000 3.02494 keep_v 14.00000 3.024312 move_v 13.00000 3.66554 see_v 12.00000 3.566554 gread_v 10.000000 3.353622 take_v 0.00000 3.03807 come_v 9.000000 <td>live v</td> <td>77 000000</td> <td>1 664547</td>	live v	77 000000	1 664547
da_v 55 00000 1 509275 call_v 48 00000 2 046402 use_v 35 00000 2 171928 fly_v 32 00000 3 024409 know_v 27 00000 1 983511 look_y 25 00000 2 479805 help_v 23 00000 2 159102 find_v 22 00000 2 159102 stat_v 22 000000 3 571161 lay_v 15 00000 3 571161 lay_v 15 00000 3 064964 keep_v 15 00000 3 012413 pet_v 13 00000 3 012413 move_v 13 00000 3 66554 see_v 12 00000 3 363822 take_v 10 00000 3 36362 take_v 9 00000 4 399693 feed_v 9 00000 4 3807 come_v 9 00000 4 3807 come_v 9 00000 4 38965 grow_v 10 00000 3 363622 take_v 9 00000 <	can v	61 000000	1.578228
call_v 48.00000 2.046402 use_v 35.00000 2.171928 fly_v 32.00000 3.024409 know_v 27.00000 1.983511 look_v 25.00000 2.479805 help_v 23.00000 2.159102 find_v 22.00000 2.159102 find_v 22.00000 3.167151 protect_v 15.00000 3.67161 lay_v 15.00000 3.064964 keep_v 15.00000 3.01710 relate_v 15.00000 3.012413 get_v 13.00000 3.602592 belong_v 13.00000 3.602592 belong_v 10.00000 3.437997 read_v 10.00000 3.353622 take_v 10.00000 3.013807 come_v 9.00000 3.167440 stay_v 8.00000 4.76290 kill_v 8.00000 4.648049 will_v 8.000000 4.648049 will_v 8.000	do v	55 000000	1 509275
use_v 35.00000 2.171928 fly_v 32.00000 3.024409 know_v 27.00000 1.983511 look_v 25.00000 2.478805 help_v 23.00000 3.111343 make_v 22.00000 2.159102 find_v 22.00000 3.67151 protect_v 15.00000 3.571161 lay_v 15.00000 3.064964 keep_v 15.00000 3.064964 keep_v 15.00000 3.064964 keep_v 14.00000 3.064964 keep_v 14.00000 3.064964 keep_v 13.00000 3.602592 belong_v 12.00000 3.66554 see_v 12.00000 3.566554 get_v 10.00000 3.013807 come_v 9.00000 3.013807 come_v 9.000000 4.205209 include_v 8.00000 4.205209 include_v 8.00000 4.778290 kill_v 8.0	call v	48 000000	2.046402
by_v 32.00000 3.024409 know_v 27.00000 1.983511 look_v 25.00000 2.479805 help_v 23.00000 3.111343 make_v 22.00000 2.159102 find_v 22.00000 2.552927 eat_v 20.00000 3.67161 protect_v 15.00000 3.064964 keep_v 15.00000 3.01170 relate_v 15.00000 3.044914 keep_v 14.00000 3.044964 keep_v 14.00000 3.012413 get_v 13.00000 3.602592 belong_v 13.00000 3.602592 belong_v 10.00000 3.35862 grow_v 10.00000 3.353622 take_v 10.00000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 4.205209 include_v 8.000000 4.20520 kill_v 8.000000 4.67440 stay_v 8.0	USE V	35 000000	2 171928
D D	flv v	32 000000	3 024409
look_v 25.00000 2.479805 help_v 23.000000 3.111343 make_v 22.000000 2.159102 ind_v 22.000000 2.552927 eat_v 20.000000 3.167151 protect_v 15.000000 3.571161 lay_v 15.000000 3.064964 keep_v 15.000000 3.01170 relate_v 15.000000 3.064964 keep_v 14.000000 3.012413 get_v 13.00000 3.748312 move_v 13.00000 3.566554 see_v 12.000000 3.353622 take_v 10.000000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 3.013807 come_v 8.000000 4.205209 include_v 8.000000 4.205209 include_v 8.000000 4.743155 develop_v 7.000000 4.236917 vold_v 7.000000 3.464949 will_v	know v	27 000000	1 983511
bring bring help_v 23.00000 ind_v 22.000000 ind_v 22.00000 ind_v 15.00000 indov 3.064964 ind_v 15.00000 indov 3.064964 keep_v 15.00000 indov 3.064964 keep_v 13.00000 3.012413 3 get_v 13.00000 3.66554 see_v 12.000000 3.437997 read_v 10.00000 3.437997 read_v 10.00000 3.435622 take_v 10.00000 ied_v 0.00000 3.013807 cocome_v 9.000	look v	25 000000	2 479805
Instage Instage ind_v 22.00000 2.159102 find_v 22.000000 2.552927 eat_v 20.00000 3.167151 protect_v 15.00000 3.571161 lay_v 15.00000 3.06344 breath=_v 15.00000 3.06464 keep_v 14.00000 3.012413 get_v 13.00000 3.66854 see_v 12.00000 3.66854 see_v 12.00000 3.568554 get_v 10.00000 3.012413 grow_v 12.00000 3.668554 see_v 12.00000 3.568554 get_v 10.00000 3.353622 take_v 10.00000 3.013807 come_v 9.000000 4.205209 include_v 8.000000 4.776290 kill_v 8.000000 4.748494 will_v 8.000000 4.64049 will_v 8.000000 4.648049 will_v 8.000000 4.648049	help v	23 000000	3 111343
Ind_v 22.00000 2.552927 eat_v 20.00000 3.167151 protect_v 15.00000 3.708034 breathe_v 15.00000 5.001170 relate_v 15.00000 3.064964 keep_v 14.00000 3.01413 get_v 13.00000 3.602592 belong_v 13.00000 3.66554 see_v 12.00000 3.336822 belong_v 10.00000 3.336622 belong_v 10.00000 3.336622 take_v 10.00000 3.01307 come_v 9.00000 3.01307 come_v 9.00000 3.167440 stay_v 8.00000 4.205209 kill_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 7.00000 3.987177 answer_v 7.00000 3.46948 swim_v 7.00000 4.295867 chasp_v 6.00000 4.387613 sieep_v 6.00	make v	22 000000	2 159102
Intervent Intervent eat_v 20.00000 3.167151 protect_v 15.00000 3.671161 lay_v 15.00000 3.064964 breathe_v 15.00000 3.012413 get_v 13.00000 3.012413 move_v 13.00000 3.012413 belong_v 13.00000 3.602592 belong_v 12.00000 3.666554 see_v 12.00000 3.53622 take_v 10.00000 3.75385 grow_v 10.00000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 4.29209 include_v 8.00000 4.776290 kill_v 8.00000 4.238017 would_v 7.00000 4.389112 mean_v 7.000000 4.389112 mean_v 7.000000 4.348048 swim_v 7.000000	find v	22 000000	2 552927
Date District Isterna 15.00000 3.571161 Iay_v 15.00000 5.001170 relate_v 15.00000 3.064964 keep_v 14.00000 3.012413 get_v 13.00000 3.012413 get_v 13.00000 3.602592 belong_v 12.00000 3.66254 see_v 12.00000 3.66254 get_v 10.00000 3.353822 take_v 10.00000 3.353822 grow_v 10.00000 3.013807 come_v 9.000000 3.013807 come_v 9.000000 3.167440 stay_v 8.00000 4.205209 include_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 8.00000 4.238017 would_v 7.000000 3.987177 answer_v 7.000000 3.987177 answer_v 7.000000 4.295867 change_v 6.000000 4.	eat v	20 000000	3 167151
Instruct Instruct Iay_v 15.00000 3.708034 breathe_v 15.00000 3.064964 keep_v 14.00000 3.012413 get_v 13.00000 3.748312 move_v 13.00000 3.602592 belong_v 12.00000 3.66554 see_v 12.00000 3.437997 read_v 11.000000 2.75985 grow_v 10.000000 3.53622 take_v 10.00000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 4.205209 include_v 8.00000 4.776290 kill_v 8.00000 4.776290 kill_v 8.00000 4.238017 would_v 7.00000 4.73155 develop_v 7.00000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 6.000000 4.367613 mean_v 6.000000 <t< td=""><td>protect v</td><td>15 000000</td><td>3 571161</td></t<>	protect v	15 000000	3 571161
Dyseathe_v Discourse Discourse breathe_v 15.00000 5.001170 relate_v 15.00000 3.064964 keep_v 14.00000 3.012413 get_v 13.000000 3.602592 belong_v 13.000000 3.666554 see_v 12.000000 3.437997 read_v 11.000000 2.735985 grow_v 10.000000 3.53622 take_v 10.000000 4.399693 feed_v 9.000000 4.05209 include_v 8.000000 4.76290 kill_v 8.000000 4.648049 will_v 8.000000 4.238017 would_v 7.000000 4.39812 mean_v 7.000000 4.288017 would_v 7.000000 4.288017 would_v 7.000000 4.39812 mean_v 7.000000 4.36912 mean_v 7.000000 4.36912 mean_v 7.000000 4.36912 mean_v	lav v	15 000000	3 708034
Instance Instance relate_v 15.00000 3.064964 keep_v 14.00000 3.012413 get_v 13.00000 3.748312 move_v 13.00000 3.602592 belong_v 12.000000 3.66554 see_v 12.000000 3.437997 read_v 11.000000 3.353622 grow_v 10.000000 4.399693 feed_v 9.000000 4.399693 feed_v 9.000000 4.205209 include_v 8.000000 4.205209 include_v 8.000000 4.205209 kill_v 8.000000 4.238017 vould_v 8.000000 4.238017 would_v 7.000000 4.369112 mean_v 7.000000 4.246948 swim_v 7.000000 4.265867 change_v 7.000000 4.2695867 change_v 6.000000 4.367613 sileep_v 6.000000 4.367613 may_v 6.000000<	breathe v	15 000000	5 001170
Note Note Note get_v 14.00000 3.012413 get_v 13.00000 3.602592 belong_v 12.00000 3.66554 see_v 12.00000 3.437997 read_v 11.000000 2.735985 grow_v 10.00000 3.353622 take_v 10.00000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 3.013807 come_v 8.00000 3.167440 stay_v 8.00000 4.76290 kill_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 8.00000 4.743155 develop_v 7.00000 4.743155 develop_v 7.00000 4.368112 mean_v 7.000000 4.44948 swim_v 7.000000 4.44948 swim_v 7.000000 4.44948 swim_v 7.000000 <	relate v	15 000000	3 064964
nove_v 13.00000 3.748312 move_v 13.00000 3.602592 belong_v 12.00000 3.66554 see_v 12.00000 3.437997 read_v 11.00000 2.735985 grow_v 10.00000 3.353622 take_v 10.00000 4.399693 feed_v 9.00000 3.013807 come_v 9.00000 3.167440 stay_v 8.00000 4.776290 kill_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 7.00000 4.648049 will_v 8.00000 4.648049 will_v 7.00000 4.648049 will_v 8.00000 4.648049 will_v 7.000000 4.369112 mean_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 <td>keen v</td> <td>14 000000</td> <td>3 012413</td>	keen v	14 000000	3 012413
got_v 13.00000 3.602592 belong_v 12.00000 3.602592 belong_v 12.00000 3.602592 see_v 12.00000 3.437997 read_v 11.000000 2.735985 grow_v 10.000000 3.53622 take_v 10.00000 4.399693 feed_v 9.000000 3.013807 come_v 9.000000 3.167440 stay_v 8.00000 3.167440 stay_v 8.00000 4.776290 kill_v 8.00000 4.648049 will_v 7.00000 4.48912 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.3469112 mean_v 7.000000 4.346948 swim_v 6.00000	det v	13 000000	3 748312
Interform Interform Interform belong_v 12.000000 3.566554 see_v 12.000000 3.437997 read_v 11.000000 2.735985 grow_v 10.000000 3.353622 take_v 10.00000 4.399693 feed_v 9.000000 3.013807 come_v 9.000000 3.013807 come_v 9.000000 4.205209 include_v 8.000000 4.776290 kill_v 8.000000 4.648049 will_v 8.000000 4.238017 would_v 7.000000 4.369112 mean_v 7.000000 3.46948 swim_v 7.000000 3.446948 swim_v 7.000000 3.446948 swim_v 7.000000 4.3267613 mean_v 7.000000 4.367613 group_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	move v	13 000000	3 602592
bitology 12.00000 3.437997 see_V 12.00000 3.437997 read_v 11.000000 2.735985 grow_V 10.000000 3.353622 take_v 10.00000 4.399693 feed_v 9.00000 4.205209 include_v 8.00000 3.167440 stay_v 8.00000 4.76290 kill_v 8.00000 4.648049 cover_v 8.00000 4.648049 will_v 8.00000 4.743155 develop_v 7.00000 4.369112 mean_v 7.00000 3.446948 swim_v 7.00000 4.295867 change_v 7.00000 4.369112 mean_v 7.00000 4.36613 swim_v 6.000000 7.874008 produce_v 6.000000 4.326315 taise_v 6.000000 4.346900 stand_v 6.000000 5.730655	belong v	12,000000	3 566554
body_r 11.00000 2.735985 read_v 11.000000 3.353622 take_v 10.00000 3.353622 take_v 10.00000 3.013807 come_v 9.00000 3.013807 come_v 9.00000 4.205209 include_v 8.00000 4.776290 kill_v 8.00000 4.648049 kill_v 8.00000 4.648049 will_v 8.00000 4.238017 would_v 7.00000 4.369112 mean_v 7.00000 3.987177 answer_v 7.00000 3.446948 swim_v 7.00000 4.295867 change_v 7.00000 4.367613 may_v 6.00000 4.367613 may_v 6.00000 4.367613 may_v 6.000000 4.346900 stand_v 6.000000 5.730655	SEE V	12.000000	3 437997
Initial Initial Initial grow_v 10.000000 3.353622 take_v 10.000000 4.399693 feed_v 9.00000 3.013807 come_v 9.00000 4.205209 include_v 8.00000 4.776290 kill_v 8.00000 5.667242 cover_v 8.00000 4.238017 would_v 7.00000 4.369112 mean_v 7.00000 3.987177 answer_v 7.00000 3.446948 swim_v 7.00000 4.295867 change_v 6.000000 4.36713 may_v 6.000000 4.36713 may_v 6.000000 4.36910 state_v 6.000000 5.441648 sleep_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.326315 taise_v 6.000000 5.730655	read v	11.000000	2 735985
group 10.00000 4.399693 feed_v 9.000000 3.013807 come_v 9.000000 4.205209 include_v 8.000000 3.167440 stay_v 8.00000 4.776290 kill_v 8.00000 4.648049 will_v 8.00000 4.648049 will_v 8.00000 4.73155 develop_v 7.00000 4.369112 mean_v 7.00000 3.987177 answer_v 7.00000 3.446948 swim_v 7.00000 4.295867 change_v 6.00000 4.367613 may_v 6.000000 4.326315 raise_v 6.00000 4.326315 way_v 6.000000 4.346900 stand_v 6.000000 5.730655		10.000000	3 353622
Intervention 10.00000 3.013807 feed_v 9.000000 3.013807 come_v 9.000000 4.205209 include_v 8.000000 3.167440 stay_v 8.000000 4.648049 kill_v 8.000000 4.648049 cover_v 8.000000 4.238017 would_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 5.441648 sleep_v 6.000000 4.367613 may_v 6.000000 4.366915 raise_v 6.000000 4.36900 stand_v 6.000000 5.730655	take v	10.000000	4 399693
come_v 9.000000 4.205209 include_v 8.000000 3.167440 stay_v 8.000000 4.776290 kill_v 8.000000 5.667242 cover_v 8.000000 4.648049 will_v 8.000000 4.238017 would_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	feed v	9,000000	3 013807
include_v 8.000000 3.167440 stay_v 8.000000 4.776290 kill_v 8.000000 5.667242 cover_v 8.000000 4.648049 will_v 8.000000 4.238017 would_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	come v	9,000000	4 205209
Initialize 0.00000 0.10140 stay_v 8.000000 4.776290 kill_v 8.000000 5.667242 cover_v 8.000000 4.648049 will_v 8.000000 4.238017 would_v 7.000000 4.743155 develop_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	include v	8,000000	3 167440
kill_v 8.000000 5.667242 cover_v 8.000000 4.648049 will_v 8.000000 4.238017 would_v 7.000000 4.743155 develop_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	stav v	8 000000	4 776290
Instage 0.00000 4.648049 cover_v 8.000000 4.238017 would_v 7.000000 4.743155 develop_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.366315 raise_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	kill v	8,000000	5 667242
will_v 8.000000 4.238017 would_v 7.000000 4.743155 develop_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.366315 raise_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	cover v	8 000000	4 648049
mm_v 5.00000 4.20011 would_v 7.000000 4.743155 develop_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	will v	8,000000	4 238017
Intervention Intervention develop_v 7.000000 4.369112 mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	would v	7 000000	4 743155
Instruction Instruction Instruction mean_v 7.000000 3.987177 answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	develop v	7 000000	4 369112
answer_v 7.000000 3.446948 swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.346900 stand_v 6.000000 5.730655	mean v	7 000000	3 987177
swim_v 7.000000 4.295867 change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.004577 build_v 6.000000 4.346900 stand_v 6.000000 5.730655	answer v	7 000000	3 446948
change_v 7.000000 5.441648 sleep_v 6.000000 7.874008 produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.004577 build_v 6.000000 4.346900 stand_v 6.000000 5.730655	swim v	7 000000	4 295867
sleep_v 6.000000 7.874008 produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.004577 build_v 6.000000 4.346900 stand_v 6.000000 5.730655	change v	7 000000	5 441648
bio0000 file produce_v 6.000000 4.367613 may_v 6.000000 4.326315 raise_v 6.000000 4.004577 build_v 6.000000 4.346900 stand_v 6.000000 5.730655	sleen v	6,000000	7 874008
may_v 6.000000 4.326315 raise_v 6.000000 4.004577 build_v 6.000000 4.346900 stand_v 6.000000 5.730655	produce v	6,000000	4 367613
raise_v 6.000000 4.004577 build_v 6.000000 4.346900 stand_v 6.000000 5.730655	may y	6,000000	4 326315
build_v 6.000000 4.346900 stand_v 6.000000 5.730655	raise v	6,000000	4 004577
stand_v 6.000000 5.730655	build v	6,000000	4 346900
0.00000 0.100000	stand v	6,000000	5 730655
spend v 6.000000 4.369345	spend v	6,000000	4 369345
hunt v 6.000000 4.33057	bunt v	6,000000	4 739057
like v 6.00000 3.570919	like v	6,000000	3 570919
rup v 5.00000 4.022780		5,000000	4 022780
feather v 5 000000 6 134270	feather v	5 000000	6 134270
want v 500000 4 144130	want v	5 000000	4.144130

think_v	5.000000	4.490918
become_v	5.000000	4.748502
flap_v	5.000000	6.352176
need_v	5.000000	3.868921
name_v	5.000000	4.429884
walk_v	5.000000	5.085278
depend_v	4.000000	6.773954
lie_v	4.000000	4.719149
share_v	4.000000	4.302980
hold v	4.000000	5.181166
attach v	4.000000	6.159911
discover v	4.000000	4.787591
plav v	4.000000	6.314132
sav v	4.000000	4.195455
teach v	3.000000	7.166393
prefer v	3.000000	5,556596
pull v	3 000000	6.313527
might v	3 00000	5 736927
dnaw v	3 000000	5.541855
blend v	3.000000	5 157776
hannen v	3.000000	6 385/28
absorb v	3.000000	7 974009
absolb_v	2 000000	5 267049
spread_v	2.000000	5.307040
leave_v	3.000000	5.792347
wing_v	3.000000	5.209804
dia v	3.00000	5.180752
die_v	3.00000	5.427370
curve_v	3.00000	5.183846
catch_v	3.00000	4.561272
go_v	3.00000	5.589054
jump_v	3.000000	5.139789
lose_v	3.000000	5.728974
enjoy_v	3.000000	5.671599
cub_v	3.000000	5.497588
hide_v	3.000000	6.949908
tame_v	2.000000	5.671721
cut_v	2.000000	5.696681
attack_v	2.00000	5.734237
groom_v	2.000000	7.874008
allow_v	2.000000	5.694980
put_v	2.000000	5.580579
threaten_v	2.000000	5.750408
visit_v	2.000000	6.154277
could_v	2.000000	6.065360
create_v	2.000000	7.874008
show_v	2.000000	5.945434
warm_v	2.000000	5.534137
light_v	2.000000	5.526612
hatch_v	2.000000	7.874008
ask_v	2.000000	6.065360
adapt_v	2.000000	5.739112

Adjectives

and a stand	4.000000	E 040470
extinct_adj	4.000000	5.310473
old_adj	4.000000	4.730935
yellow_adj	4.000000	4.810459
social_adj	3.000000	7.194395
bony_adj	3.000000	5.687467
light_adj	3.000000	6.426048
geometric_adj	3.000000	7.874008
adult_adj	3.000000	6.167223
less_adj	3.000000	5.306208
warm_adj	3.000000	5.522691
moist_adj	3.000000	5.334963
lay_adj	3.000000	7.874008
white_adj	3.000000	6.368446
great_adj	3.000000	5.834744
male_adj	3.000000	6.889421
scaly_adj	3.000000	6.765767
north_adj	3.000000	5.249496
scientific_adj	3.000000	5.575971
tiny_adj	3.000000	5.113099
front_adj	3.000000	5.536374
live_adj	3.000000	5.527186
unique adj	3.000000	4.632140
black adj	3.000000	5.641858
tame adi	3.000000	7.028691
important adj	3.000000	5.537600
least adi	3.000000	7.051920
rough adj	3.000000	6.880588
invertebrate adi	2.000000	7.874008
easy adj	2.000000	5.740785
coral adi	2.000000	7.874008
shv adi	2.000000	6.302135
shallow adj	2.000000	6.349721
short adi	2.000000	7.874008
eight-legged adi	2.000000	5.665217
safe adi	2.000000	6.019645
latin adi	2.000000	5.529784
https://kids.britannica.com/kids/br	2.000000	5.945368
intelligent adi	2.000000	7.874008
simple adi	2,000000	6.101978
half adi	2 000000	7 874008
hollow adi	2 000000	7 874008
tail adi	2 000000	7 874008
enough adi	2 000000	6 369364
thin adi	2 000000	5 598010
second adi	2 000000	5 965822
buge adi	2 000000	7 874008
lizardlike adi	2,000000	7.874008
cartilagingus adi	2 00000	7 874008
slandar adi	2 00000	6 467185
iniurad adi	2 00000	7.874008
slow-moving adi	2 00000	5 544691
female adi	2 00000	7 974009
iemale_auj	2.000000	1.014000

first_adj	2.000000	5.544581
shell adj	2.000000	7.874008
dangerous adj	2.000000	5.528601
fierce_adj	2.000000	6.071160
full adj	2.000000	5.522681
tall adj	2.000000	5.534825
immature adj	2.000000	7.874008
flexible adj	2.000000	7.874008
unusual adj	2.000000	5.600169
heavy adj	2.000000	5.945368
single adj	2.000000	5.769604
solid adj	2.000000	5.769604
main adj	2.000000	6.844472
thick adj	2.000000	7.874008
possible adi	2.000000	6.084300
colorful adi	2.000000	6.262540
red adj	2.000000	5.750408
weak adj	2.000000	7.874008
bright adj	2.000000	5.532169
flightless adi	2.000000	7.874008
fawn adi	2.000000	6.067242
much adi	2.000000	7.874008
spotted adi	2.000000	7.874008
stiff adi	2.000000	5.532663
high-speed adi	1.000000	7.874008
orange adi	1.000000	7.874008
reptile adi	1.000000	7.874008
inky adi	1.000000	7.874008
impossible adj	1.000000	7.874008
digestive adj	1.000000	7.874008
walkingstick adj	1.000000	7.874008
stout adj	1.000000	7.874008
america-the_adj	1.000000	7.874008
northern adj	1.000000	7.874008
terrifying adj	1.000000	7.874008
feathery adj	1.000000	7.874008
alarming adj	1.000000	7.874008
general adj	1.000000	7.874008
open_adj	1.000000	7.874008
harmless_adj	1.000000	7.874008
invisible_adj	1.000000	7.874008
mollusk's adj	1.000000	7.874008
pink adj	1.000000	7.874008
eel adj	1.000000	7.874008
sweet adj	1.000000	7.874008
2ndg_adj	1.000000	7.874008
fuzzy adj	1.000000	7.874008
certain_adj	1.000000	7.874008
busy_adj	1.000000	7.874008
wide_adj	1.000000	7.874008
blooded adj	1.000000	7.874008
famous_adj	1.000000	7.874008

4 Adverbs

Lemma	Frequency: 01 - Freq	Dispersion: 01_CV
always adv	2.000000	5.533568
rather adv	2.000000	6.467185
ves adv	2.000000	5.533423
ago adv	2.000000	6.861023
either adv	2.000000	5.750354
on adv	2.000000	6.475655
really adv	2,000000	5.648537
right adv	2.000000	5.580579
quite adv	2.000000	5.555416
fully adv	2.000000	6.867398
easily adv	2.000000	5.739112
still adv	1.000000	7.874008
far adv	1.000000	7.874008
below adv	1.000000	7.874008
faster adv	1.000000	7.874008
anywhere adv	1.000000	7.874008
normally adv	1 000000	7 874008
longer adv	1,000000	7.874008
short adv	1.000000	7.874008
probably adv	1 000000	7 874008
nearly adv	1 000000	7 874008
awake adv	1 000000	7 874008
freely adv	1 000000	7 874008
closer adv	1 000000	7 874008
enough adv	1 000000	7.874008
some adv	1 000000	7 874008
underwater adv	1 000000	7.874008
deen adv	1 000000	7 874008
in adv	1 000000	7 874008
alike adv	1 000000	7 874008
no adv	1 000000	7 874008
exactly adv	1 000000	7 874008
highly adv	1 000000	7 874008
unside adv	1 000000	7 874008
specially adv	1 000000	7 874008
completely adv	1 000000	7.874008
typically adv	1 000000	7 874008
again adv	1 000000	7.874008
tightly adv	1 000000	7.874008
brightly adv	1 000000	7.874008
worldwide adv	1 000000	7.874008
sure adv	1 000000	7.874008
nevertheless adv	1 000000	7.874008
off adv	1 000000	7.874008
home adv	1 000000	7.874008
else adv	1,000000	7 874008
truly adv	1,00000	7.874008
slowly adv	1,00000	7.874008
fairly adv	1,00000	7.874008
aclean adv	1,00000	7 974009
back adv	1,00000	7 974009
nartly adv	1,00000	7 974009
paruy_auv	1.000000	1.014000

5 3-grams

Туре	Frequency: 01 - Freq	Dispersion: 01
species or types	18.000000	3.562577
answer the questions	16.000000	2.242937
or types of	15.000000	3.679384
there are about	14.000000	3.609469
animals that are	11.000000	2.708282
read the text	11.000000	2.752182
there are more	10.00000	3.896570
are more than	10.00000	3.896570
the animals that	10.00000	2.821383
directions read the	10.000000	2.946004
that live in	9.000000	4.347907
species or kinds	9.000000	3.456406
during the day	8.000000	6.639977
or kinds of	8.000000	3.684578
are animals that	8.000000	3.163193
live in the	8.000000	3.373748
live on land	8.000000	5.488024
belong to the	7.000000	5.105445
known for their	7.000000	3.618910
are insects that	7.000000	6.340722
animals that have	7.000000	3.514612
in the world	7.000000	3.358339
and answer the	7.000000	3.453719
means that they	6.00000	3,974373
an animal that	6.00000	3.489321
are the largest	6,000000	5.055516
have a backbone	6,000000	4.159412
the text and	6.000000	3.574719
text and answer	6,00000	3 574719
group of animals	6.00000	5.055647
what is a	6 000000	5 243389
part of the	6,000000	4 689009
you have a	5 000000	6 148371
in the wild	5 000000	3 739713
the text answer	5,000000	3 541465
everywhere in the	5,000000	4 264479
in a group	5.000000	5 055714
circle the animals	5,000000	3 500743
can be found	5.000000	3 935567
do not have	5.000000	5 247205
types of insect	5.000000	6.014156
text answer the	5,000000	3.5/1/65
are known for	5.000000	3.846374
vertebrates have backhones	5.000000	7 200905
is an animal	5.000000	2 055620
use the words	5.000000	2 056662
most of the	4.000000	4 054120
active at night	4.000000	5.039123
vertebrates vertebrates have	4.000000	7.87/009
their lives in	4.00000	1.014000
they have a	4.00000	4.742300
a backbana and	4.00000	4.009007
a packoone and	4.000000	4.003ZUZ

Туре	Frequency: 01 - Freq	Dispersion: 01_CV
ticks and mites	4.000000	4.884998
in the box	4.000000	4.650365
they are also	4.000000	5.778201
all of the	4.000000	4,711899
that they use	4.000000	5.712939
animals that live	4.000000	4.842426
the box to	4 000000	4 650365
live in groups	4 000000	7 874008
the world except	4 000000	4 769286
among the most	4 000000	5 300032
kind of animal	4 000000	5 963591
all birds have	4 000000	5 267944
take care of	4 000000	5.062369
not have a	4.000000	6.072326
1 what is	4.000000	4 373073
on the outside	4.000000	4.913070
the words in	4.000000	4.650365
closely related to	4.000000	4.030303
they are related	4.000000	4.313670
they live in	4.000000	4.313070 E 725602
this magne that	4.00000	5.735003
uns means unau	4.000000	5.57 1055
afe the only	4.00000	0.343070
or their lives	4.00000	4.742300
the largest living	4.00000	5.097130
lungs live on	4.00000	7.874008
are related to	4.000000	4.313670
they do not	4.000000	4.192743
words in the	4.000000	4.650365
help each other	4.000000	7.874008
to keep them	4.000000	4.243512
these animals are	4.000000	4.731002
are closely related	4.000000	4.139159
look at the	4.000000	4.858444
today there are	4.000000	5.697098
the same animal	3.000000	4.822382
over the world	3.000000	6.141360
million known species	3.000000	5.987682
they are the	3.000000	6.473027
found almost everywhere	3.000000	6.599412
75 percent of	3.000000	5.987682
2 what is	3.000000	5.120161
is in danger	3.000000	5.437691
the name of	3.000000	5.448135
like their parents	3.000000	5.523216
all animals are	3.000000	5.987682
it is also	3.000000	4.579777
though they cannot	3.000000	6.661270
for more than	3.000000	6.191844
scientists are constantly	3.000000	5.987682
silverfish and bees	3.000000	5.987682
draw your favorite	3.000000	6.057243
webs to catch	3.000000	4.563359

6 4-grams

in danger of 3.00000 F.443136 lay eggs lungs live 3.00000 F.874008 lived on earth for 3.00000 6.04001 look at the pictures 3.00000 6.04001 look at the pictures 3.00000 6.04001 lice grasshoppers silverfish and 3.00000 6.044001 are among the most 3.00000 6.044001 al animals in fact about 3.00000 6.044001 do thave a 3.000000 6.044001 animals in fact about 3.00000 6.044001 do not have a 3.000000 6.044001 sitverfish and bees are 3.000000 6.044001 insects insects developed on 3.000000 6.044001 insects insects developed on 3.000000 7.874008 a species or type 3.000000 7.874008 a species or type 3.000000 7.874008 a species or type 3.000000 6.044001 at about 75 percent of all 3.000000 6.044001 fainstas ar insects insects 3.000000 <td< th=""><th>Туре</th><th>Frequency: 01 - Freq</th><th>Dispersion: 01_CV</th></td<>	Туре	Frequency: 01 - Freq	Dispersion: 01_CV
lay eggs lungs live 3.00000 7.874008 lived on earth for 3.00000 6.004001 look at the pictures 3.00000 5.219482 lise grasshopers silvefish and 3.00000 6.004001 are among the most 3.00000 6.004001 are among the most 3.00000 6.04001 are among the most 3.00000 6.04001 ari mais are insects 3.00000 6.04001 animals in fact about 3.00000 6.04001 are about 1 million 3.00000 6.04001 buterflies beetles ants flies 3.00000 6.04001 buterflies beetles ants flies 3.00000 6.04001 buterflies beetles ants flies 3.00000 6.04263 eggs lungs live on 3.00000 7.874008 a species or type 3.00000 7.874008 largest group of animals 3.00000 6.044001 fact about 75 percent 3.00000 6.044001 fact about 75 percent 3.000000 6.044001 6.044001 fact about 75 percent of all 3.	is in danger of	3.000000	5.443136
ived on earth for 3.00000 6.201262 insects developed on earth 3.00000 5.219482 files grasshoppers silverfish and 3.00000 6.004001 invests are insects 3.00000 6.004001 are among the most 3.00000 6.004001 animals are insects 3.00000 6.004001 do not have a 3.00000 6.004001 are stoul 1 million 3.00000 6.004001 insects insects developed on 3.00000 6.004001 insects developed on 3.00000 6.042638 eggs lungs live on 3.00000 6.04401 insects developed on 3.00000 6.04401 are about 1 million 3.00000 6.04401 are about 2 percent 3.00000 6.04401 are about 2 percent 3.00000 6.004001 are about 2 percent 3.000000 6.004001	lay eggs lungs live	3.000000	7.874008
insects developed on earth 3 000000 6 .004001 look at the pictures 3 000000 6 .004001 are among the most 3 000000 6 .004001 are among the most 3 000000 6 .004001 are among the most 3 000000 6 .004001 animals are insects 3 000000 6 .004001 animals in fact about 3 000000 6 .004001 animals in fact about 3 000000 6 .004001 are about 1 million 3 000000 6 .004001 but entilies beetles ants flies 3 000000 6 .004001 insects insects developed on 3 000000 6 .004001 insects insects developed on 3 000000 6 .004001 largest group of animals 3 000000 6 .004001 largest group of animals 3 000000 6 .004001 apresids or type 3 .000000 6 .004001 apresids roup of animals 3 .000000 6 .004001 apresids roup of animals 3 .000000 6 .004001 before humans did today 3 .000000 6 .004001 <	lived on earth for	3.000000	6.201262
lock at the pictures 3.000000 5.219482 lies grasshoppers silverfish and 3.000000 6.004001 are among the most 3.000000 6.004001 at animals are insects 3.000000 6.004001 animals are insects 3.000000 6.004001 animals are insects 3.000000 6.004001 do not have a 3.000000 6.004001 are about 1 million 3.000000 6.004001 butteffiles bettelse ants files 3.000000 6.004001 insects insects developed on 3.000000 6.042638 eggs lungs live on 3.000000 7.874008 a species or type 3.000000 6.63324 b help each other 3.000000 6.004001 arimed as are insects insects 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 b targest group of 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 b targest group of 3.0	insects developed on earth	3.000000	6.004001
nes grasshoppers silverfish and 3.00000 6.093550 are among the most 3.00000 6.693550 are among the most 3.00000 6.604001 all animals are insects 3.00000 6.004001 do not have a 3.00000 6.004001 do not have a 3.00000 6.004001 do not have a 3.00000 6.004001 gra about 1million 3.00000 6.004001 but efficis beetles ants flies 3.00000 6.004001 insects insects developed on 3.00000 6.63324 to help each other 3.000000 6.63324 to help each other 3.000000 6.004001 a species or type 3.000000 6.004001 a fact about 75 percent 3.000000 6.004001 a fact about 75 percent of all 3.000000 6.004001 bese are all insects 3.000000 <t< td=""><td>look at the pictures</td><td>3.000000</td><td>5.219482</td></t<>	look at the pictures	3.000000	5.219482
are among the most 3.000000 6.093550 teeth that they use 3.000000 6.004001 animals are insects 3.000000 6.004001 animals are insects 3.000000 6.004001 animals are insects 3.000000 6.004001 are about 1 million 3.000000 6.004001 are about 1 million 3.000000 6.004001 butteffiles beetles ants files 3.000000 6.004001 insects insects developed on 3.000000 6.042638 eggs lungs live on 3.000000 7.874008 a species or type 3.000000 6.044001 largest group of animals 3.000000 6.044001 fact about 75 percent 3.000000 6.004001 fact about 75 percent of all 3.000000 6.004001 bees are all insects 3.000	flies grasshoppers silverfish and	3.000000	6.004001
tech hat they use 3 000000 5.54263 all animals are insects 3 000000 6.004001 animals in act about 3 000000 6.004001 do not have a 3 000000 6.004001 are about 1 million 3 000000 6.004001 builteris beetles ants files 3 000000 6.004001 builteris beetles ants files 3 000000 6.004001 insects insects developed on 3 000000 6.042638 eggs lungs live on 3 000000 6.653324 to help each other 3 000000 6.044001 largest group of animals 3 000000 6.044001 at about 75 percent 3 000000 6.004001 at about 75 percent 3 000000 6.004001 the largest group of 3 000000 6.004001 the largest group of 3 000000 6.004001 the largest group of 3 000000 6.004001 species or type of 3 000000 6.004001 percent of all 3 000000 6.004001 species or type of 3 000000	are among the most	3.000000	6.093550
all animals are insects 3.00000 6.004001 animals in fact about 3.00000 6.004001 animals in fact about 3.00000 5.652698 silverifsh and bees are 3.00000 6.004001 are about 1 million 3.00000 6.004001 butterflies beetles ants flies 3.00000 6.004001 insects insects developed on 3.00000 6.042638 eggs lungs live on 3.000000 7.874008 a species or type 3.000000 7.874008 a species or type 3.000000 7.874008 largest group of animals 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 the largest group of 3.000000 6.004001 the largest group of 3.000000 6.004001 the largest group of 3.000000 6.004001 the insects are the 3.000000 6.004001 bes are all in sects 3.000000 6.004001 clinsect and scientists 3.000000 6.004001 species ortype of 3.000000<	teeth that they use	3.000000	5.540263
animals in fact about 3 00000 6 04001 do not have a 3 00000 5 652698 silverfish and bees are 3 00000 6 004001 are about 1 million 3 00000 6 004001 butteflies beeles ants flies 3 00000 6 004001 insects insects developed on 3 00000 6 04203 a species or type 3 000000 7 874008 a species or type 3 000000 6 04203 to help each other 3 000000 6 044001 fargest group of animals 3 000000 6 044001 animals are insects insects 3 000000 6 044001 animals are insects insects 3 000000 6 044001 theigest group of 3 000000 6 044	all animals are insects	3.000000	6.004001
do not have a 3.00000 5.652698 silverfish and bees are 3.00000 6.004001 ser about 1 million 3.00000 6.004001 butterfiles beetles ants flies 3.00000 6.004001 insects insects developed on 3.00000 6.042638 eggs lungs live on 3.000000 7.874008 a species or type 3.000000 6.653324 to help each other 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 before humans did today 3.000000 6.004001 be are insects insects 3.000000 6.004001 be are stript out of 3.000000 6.004001 cisterists are the 3.000000 6.004001 stript out of all insects 3.000000 6.004001 scientists are constantly discovering as 0.00000 </td <td>animals in fact about</td> <td>3.000000</td> <td>6.004001</td>	animals in fact about	3.000000	6.004001
silverfish and bees are 3.00000 6.004001 are about 1 million 3.00000 6.004001 insects insects developed on 3.00000 6.004001 insects insects developed on 3.00000 6.004001 insects insects developed on 3.00000 6.042638 eggs lungs live on 3.00000 7.874008 a species or type 3.00000 6.653324 to help each other 3.000000 6.004001 fargest group of animals 3.000000 6.004001 animals are insects insects 3.000000 6.004001 animals are insects 3.000000 6.004001 thelgest group of 3.000000 6.004001 thelgest group of 3.000000 6.004001 these are all insects 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discoveri	do not have a	3.000000	5.652698
are about 1 million 3.00000 6.004001 butterflies bettles ants flies 3.00000 6.004001 insects insects developed on 3.00000 6.04233 eggs lungs live on 3.000000 7.874008 a species or type 3.000000 7.874008 a species or type 3.000000 7.874008 largest group of animals 3.000000 6.004001 largest group of animals 3.000000 6.004001 atingest group of animals 3.000000 6.004001 atingest group of 3.000000 6.004001 before humans did today 3.000000 6.004001 best group of 3.000000 6.004001 best are the 3.000000 6.004001 best are the 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.004001 species or types 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientist are constantly discovering 3.0	silverfish and bees are	3.000000	6.004001
butterflies beetles ants flies 3.00000 6.004001 insects insects developed on 3.00000 6.042638 eggs lungs live on 3.000000 7.874008 a species or type 3.000000 7.874008 a species or type 3.000000 7.874008 largest group of animals 3.000000 7.874008 largest group of animals 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 before humans did today 3.000000 6.004001 before humans did today 3.000000 6.004001 besa are all insects 3.000000 6.004001 ciscovering new species butterflies 3.000000 6.004001 scientists are constant	are about 1 million	3.000000	6.004001
insects insects developed on 3.00000 6.042638 ive on land and 3.000000 7.874008 a species or type 3.000000 7.874008 a species or type 3.000000 6.653324 to help each other 3.000000 6.042638 largest group of animals 3.000000 6.004001 act about 75 percent 3.000000 6.004001 animals are insects insects 3.000000 6.004001 before humans did today 3.000000 6.004001 the largest group of 3.000000 6.004001 the insects are the 3.000000 6.004001 bees are all insects 3.000000 6.004001 species or type of 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 species butterflies ents 3.000000 6.004001 known species or types 3.0	butterflies beetles ants flies	3.000000	6.004001
live on land and 3.00000 6.042638 eggs lungs live on 3.00000 7.874008 a species or type 3.00000 6.653324 to help each other 3.00000 6.004001 largest group of animals 3.00000 6.004001 animals are insects insects 3.00000 6.004001 animals are insects insects 3.00000 6.004001 before humans did today 3.00000 6.004001 for percent of all 3.00000 6.004001 bes are all insects 3.00000 6.004001 bes are all insects 3.00000 6.004001 species or type of 3.00000 6.004001 bes are all insects 3.00000 6.004001 discovering new species butterflies 3.00000 6.004001 discovering new species butterflies 3.00000 6.004001 species or types 3.00000 6.004001 species or types 3.00000 6.004001 scientists are constantly discovering 3.000000 6.004001 more species or types <	insects insects developed on	3.000000	6.004001
eggs lungs live on 3.000000 7.874008 a species or type 3.000000 6.653324 to help each other 3.000000 6.004001 largest group of animals 3.000000 6.004001 animals are insects insects 3.000000 6.004001 animals are insects insects 3.000000 6.004001 before humans did today 3.000000 6.004001 the largest group of 3.000000 6.004001 bese are all insects 3.000000 6.004001 bese are all insects 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.004001 scientists 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering a 3.000000 6.004001 scientists are constantly discovering new species scientists are constantly discovering new species 3.000000 6.004001 nown species or types 3.000000 6.004001 nown species or types 3.000000	live on land and	3.000000	6.042638
a species or type 3.000000 6.653324 to help each other 3.000000 7.874008 largest group of animals 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 animals are insects insects 3.000000 6.004001 before humans did today 3.000000 6.004001 75 percent of all 3.000000 6.004001 75 percent of all 3.000000 6.004001 bees are all insects 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 nammals that live in 3.000000 6.004001 and bees are all 3.000000 6.004001 and bees are all 3.000000 6.004001 ons	egas lunas live on	3.000000	7.874008
to help each other 3.000000 7.874008 largest group of animals 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 animals are insects insects 3.000000 6.004001 before humans did today 3.000000 6.004001 the largest group of 3.000000 6.004001 75 percent of all 3.000000 6.004001 bees are all insects 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 species butterflies beetles ants 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 mammals that live in 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001	a species or type	3.000000	6.653324
largest group of animals 3.000000 6.004001 fact about 75 percent 3.000000 6.004001 animals are insects insects 3.000000 6.004001 before humans did today 3.000000 6.004001 the largest group of 3.000000 6.004001 the largest group of 3.000000 6.004001 bees are all insects 3.000000 6.004001 bees are the 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 discovering new species or type of 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 mammals that live in 3.000000 6.004001 constantly discovering new species 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001	to help each other	3.000000	7.874008
Tack about 75 percent 3.000000 6.004001 animals are insects insects 3.000000 6.004001 before humans did today 3.000000 6.004001 the largest group of 3.000000 6.004001 75 percent of all 3.000000 6.004001 bees are all insects 3.000000 6.004001 the insects are the 3.000000 6.603324 have lived on earth 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are onlypes 3.000000 6.004001 known species of types 3.000000 6.004001 nown species of types 3.000000 6.004001 animals that live in 3.000000 6.004001 and bees are all 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 <	largest group of animals	3.000000	6.004001
animals are insects insects 3.000000 6.004001 before humans did today 3.000000 6.004001 the largest group of 3.000000 6.004001 75 percent of all 3.000000 6.004001 bees are all insects 3.000000 6.004001 species or type of 3.000000 6.004001 species or type of 3.000000 6.653324 have lived on earth 3.000000 6.004001 scientists 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 known species or types 3.000000 6.004001 known species or types 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 of there are 3.000000 6.004001 not have a backbone 3.000000 6.004001 1 3.000000<	fact about 75 percent	3.000000	6.004001
before humans did today 3.00000 6.004001 the largest group of 3.00000 6.004001 75 percent of all 3.00000 6.004001 bees are all insects 3.00000 6.004001 bees are the 3.00000 6.004001 species or type of 3.00000 6.004001 species or type of 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 known species or types 3.000000 6.004001 known species or types 3.000000 6.004001 known species or types 3.000000 6.004001 mammals that live in 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 or types of insect 3.000000 6.004001 or types of insect <td>animals are insects insects</td> <td>3.000000</td> <td>6.004001</td>	animals are insects insects	3.000000	6.004001
Instrument Instrument To percent of all 3.00000 6.004001 75 percent of all 3.00000 6.004001 bees are all insects 3.00000 6.004001 the insects are the 3.00000 6.004001 species or type of 3.00000 6.021262 of insect and scientists 3.00000 6.004001 discovering new species butterflies 3.00000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 known species or types 3.000000 6.004001 known species or types 3.000000 6.004001 admost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 n million known species 3.000000 <td>before humans did today</td> <td>3 000000</td> <td>6 004001</td>	before humans did today	3 000000	6 004001
The hyper of all 3.00000 6.004001 bees are all insects 3.00000 6.004001 species or type of 3.00000 6.653324 have lived on earth 3.00000 6.004001 discovering new species butterflies 3.00000 6.004001 scientists are constantly discovering 3.000000 6.004001 mammals that live in 3.000000 6.004001 mammals that live in 3.000000 6.004001 did day there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 not have a backbone 3.000000 6.004001	the largest group of	3 000000	6 004001
In proceeding 0.00000 0.00001 bees are all insects 3.000000 6.004001 species or type of 3.000000 6.053324 have lived on earth 3.000000 6.004001 of insect and scientists 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 mmmals that live in 3.000000 6.004001 maxmals that live in 3.000000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 or types of insect 3.000000 6.004001 or ty	75 nercent of all	3,000000	6 004001
bit of an entropy of the insects are the 3.000000 6.004001 species or type of 3.000000 6.653324 have lived on earth 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 mmmals that live in 3.000000 6.004001 constantly discovering new species 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 or types of insect 3.000000 6.004001 or types of insect 3.000000 6.004001 or types of insect 3.000000 6.004001 on earth for more 3.000000 6.004001 are closely related to 3.000000	bees are all inserts	3,000000	6 004001
Investes of type of 3.000000 6.653324 have lived on earth 3.000000 6.004001 discovering new species butterflies 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 scientists are constantly discovering 3.000000 6.004001 species butterflies bettes ants 3.000000 6.004001 known species or types 3.000000 6.004001 mammals that live in 3.000000 6.004001 mammals that live in 3.000000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.004001 1 million known species 3.000000 6.004001 1 million known species 3.000000 6.004001 1 adbees are all 3.000000 6.004001 1 million known species	the insects are the	3,000000	6 004001
Insert lived on earth 3.00000 6.201262 of insect and scientists 3.00000 6.004001 discovering new species butterflies 3.00000 6.004001 scientists are constantly discovering 3.00000 6.004001 species butterflies beetles ants 3.00000 6.004001 known species or types 3.00000 6.004001 mammals that live in 3.00000 6.004001 constantly discovering new species 3.00000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 no earth for more 3.000000 6.004001 netth for more 3.000000 6.004001 are closely related to 3.000000 6.004001 are closely related to 3.000000 6.004001	species or type of	3 000000	6 653324
Initial of the second scientists 3.00000 6.004001 discovering new species butterflies 3.00000 6.004001 scientists are constantly discovering 3.00000 6.004001 species butterflies beetles ants 3.00000 6.004001 known species or types 3.00000 6.004001 mammals that live in 3.00000 6.004001 constantly discovering new species 3.00000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 nearth for more 3.000000 6.004001 or earth for more 3.000000 6.004001 are closely related to 3.000000 6.004001 are closely related to 3.000000 6.004001 are closely related to 3.000000 6.004001 an	have lived on earth	3 000000	6 201262
discovering new species butterflies 3.00000 6.004001 scientists are constantly discovering 3.00000 6.004001 species butterflies beetles ants 3.00000 6.004001 known species or types 3.00000 6.004001 mammals that live in 3.00000 6.004001 constantly discovering new species 3.00000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 not heve a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.201262 spend most of their 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 are closely related to 3.000000 6.004001	of insect and scientists	3,000000	6.004001
Scientists are constantly discovering 3.00000 6.004001 species butterflies beetles ants 3.000000 6.004001 known species or types 3.000000 6.004001 mammals that live in 3.000000 6.004001 constantly discovering new species 3.000000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.004001 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.004001 on earth for more 3.000000 6.004001 are closely related to 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 5.455544 million known species or 3.000000 6.004001	discovering new species butterflies	3.000000	6.004001
Species butterflies beetles ants 3.000000 6.004001 known species or types 3.000000 6.004001 mammals that live in 3.000000 7.874008 constantly discovering new species 3.000000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 1 million known species 3.000000 6.004001 1 million known species 3.000000 6.004001 or earth for more 3.000000 6.004001 are closely related to 3.000000 6.004001 are closely related to 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million	scientists are constantly discovering	3 000000	6 004001
bits bits bits known species or types 3.000000 6.004001 mammals that live in 3.000000 6.004001 constantly discovering new species 3.000000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 1 million known species 3.000000 6.004001 1 million known species 3.000000 6.004001 or earth for more 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	species butterflies beetles ants	3 000000	6 004001
mammals that live in 3.00000 7.874008 constantly discovering new species 3.00000 6.004001 did today there are 3.00000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.004001 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.004001 on earth for more 3.000000 6.004001 on earth for more 3.000000 6.004001 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	known species or types	3 000000	6 004001
Instruction Instruction constantly discovering new species 3.000000 6.004001 did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.004001 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.004001 on earth for more 3.000000 6.004001 or all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 5.455544 million known species or 3.000000 6.004001	mammals that live in	3 000000	7 874008
did today there are 3.000000 6.004001 almost everywhere in the 3.000000 6.601114 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.004001 not have a backbone 3.000000 6.004001 1 million known species 3.000000 6.004001 1 million known species 3.000000 6.201262 spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	constantly discovering new species	3 000000	6 004001
almost everywhere in the 3.000000 6.601114 and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.372989 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.004001 on earth for more 3.000000 6.201262 spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 6.004001 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 5.455544 million known species or 3.000000 6.004001	did today there are	3 000000	6 004001
and bees are all 3.000000 6.004001 not have a backbone 3.000000 6.372989 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.004001 on earth for more 3.000000 6.201262 spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	almost everywhere in the	3 000000	6 601114
Initial Initial Initial not have a backbone 3.000000 6.372989 or types of insect 3.000000 6.004001 1 million known species 3.000000 6.201262 spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	and bees are all	3,000000	6.004001
Initiation Initiation Initiation or types of insect 3.000000 6.004001 1 million known species 3.000000 6.004001 on earth for more 3.000000 6.201262 spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	not have a backbone	3 000000	6 372989
1 million known species 3.000000 6.004001 on earth for more 3.000000 6.201262 spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	or types of insect	3 000000	6 004001
on earth for more 3.000000 6.201262 spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	1 million known species	3 000000	6 004001
spend most of their 3.000000 5.530194 of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001 developed on earth long 3.000000 6.004001	on earth for more	3,000000	6 201262
of all animals are 3.000000 6.004001 are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001	spend most of their	3,000000	5 530194
are closely related to 3.000000 4.769630 humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001 developed on earth long 3.000000 6.004001	of all animals are	3,000000	6 004001
Interview State File File humans did today there 3.000000 6.004001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001 developed on earth long 3.000000 6.004001	are closely related to	3,000000	4 769630
Initiality did today area 5.000000 5.000001 beetles ants flies grasshoppers 3.000000 6.004001 and scientists are constantly 3.000000 5.455544 million known species or 3.000000 6.004001 developed on earth long 3.000000 6.004001	humans did today there	3,000000	6.004001
and scientists are constantly 3.000000 6.004001 is the name of 3.000000 5.455544 million known species or 3.000000 6.004001 developed on earth long 3.000000 6.004001	heetles ants flies grasshonners	3 000000	6 004001
is the name of 3.000000 5.455544 million known species or 3.000000 6.004001 developed on earth long 3.000000 6.004001	and scientists are constantly	3 000000	6 004001
million known species or 3.000000 6.004001 developed on earth long 3.000000 6.004001	is the name of	3 000000	5 455544
developed on earth long 3 000000 6 004001	million known species or	3,000000	6 004001
	developed on earth long	3 000000	6 004001

group of animals in 3 000000 6 004001 about 7 million known 3 000000 6 004001 about 7 million known 3 000000 6 004001 their lives in water 2 000000 6 555711 a backbone and they 2 000000 5 555711 a backbone and they 2 000000 7 874008 packbone and they 2 000000 7 874008 griders are relided kinds of 2 000000 7 874008 griders are relided kinds of 2 000000 5 670445 draw a line between 2 000000 5 87555 for making silk webs 2 000000 5 870045 what kind of animal 2 000000 5 65043 part of their lives 2 000000 5 65043 say its name out 2 000000 5 534838 to the group of 2 000000 5 534838 to the group of 2 000000 7 874008 polsonous snakes that have 2 000000 7 874008 that spend most of 2 000000 7 874008 of lipin jinsects the 2 000000	Туре	V Frequency: 01 - Freq	Dispersion: 01 CV
about 75 percent of 3 00000 6 004001 about 1 million known 3 00000 6 004001 metri Iwes In water 2 000000 5 555711 as large as a 2 000000 5 555711 as backbone and they 2 000000 6 534838 help each other care 2 000000 7 874008 are related kinds of 2 000000 5 87155 for an aline between 2 000000 5 87555 for making silk webs 2 000000 5 871645 what kind of animal 2 000000 7 874008 part of their lives 2 000000 7 874008 part of their lives 2 000000 7 874008 part of their lives 2 000000 5 531810 on outside sources to 2 000000 5 534838 to this in diager 2 000000 5 534838 to the group of 2 000000 5 752634 to flying insects the 2 000000 7 874008 poisonous snakes that have 2 000000 7 874008 grows hair at some 2 000000 7 874008	group of animals in	3,000000	6.004001
about 1 million known 3 00000 6 .04001 ther lives in water 2 00000 6 .820170 as large as 2 000000 5.556711 a backbone and they 2 000000 5.534838 hat are found all 2 000000 7.874008 spiclers are eight-legged creatures 2 000000 7.874008 spiclers are eight-legged creatures 2 000000 5.670645 draw a line between 2 000000 5.670645 what kind of animal 2 000000 5.670645 what kind of animal 2 000000 5.62013 say its name out 2 000000 5.582013 say its name out 2 000000 5.531810 on outside sources to 2 000000 5.534838 to the group of 2 000000 7.874008 poisonous snakes that have 2 000000 7.874008 poisonous snakes that have 2 000000 7.874008 poisonous snakes that ave 2 000000 7.874008 poisonous snakes that ave 2 000000 7.874008 poisonous snakes that ave	about 75 percent of	3.000000	6.004001
their lives in water 2 000000 6 x20170 as large as a 2 000000 5 x55711 as backbone and they 2 000000 5 x54838 that are found all 2 000000 7 x74008 are related kinds of 2 000000 7 x74008 spiders are eight-legged creatures 2 000000 6 x763455 for making silk webs 2 000000 5 x76445 what kind of animal 2 000000 7 x74008 pard of their lives 2 000000 7 x74008 all have wings though 2 000000 7 x74008 all have ings though 2 000000 7 x74008 as a the group of 2 000000 5 x526213 say its name out 2 000000 5 x54838 to that can produce milk 2 000000 7 x74008 polsonous snakes that have 2 000000 7 x74008 polsonous snakes that have 2 000000 7 x74008 marmals that belong to 2 000000 7 x74008 grows hair at some outore milk 2 000000 7 x74008 ord filying insects the	about 1 million known	3.000000	6.004001
as large as a 2000000 5.554838 a backbone and they 2000000 5.534838 that are found all 2.000000 7.874008 are related kinds of 2.000000 7.874008 spiders are eight-legged creatures 2.000000 5.670645 draw a line between 2.000000 5.670645 what kind of animal 2.000000 5.62013 apart of their lives 2.000000 5.62013 ay its name out 2.000000 5.534838 to the group of 2.000000 5.534838 to the group of 2.000000 5.534838 on outside sources to 2.000000 5.534838 to the group of 2.000000 7.874008 poisonous snakes that have 2.000000 7.874008 poisonous snakes that have 2.000000 7.874008 grows hair at some 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big citles 2.000000 7.874008 grows hair at some 2.000000 7.874008 <td>their lives in water</td> <td>2.000000</td> <td>6.820170</td>	their lives in water	2.000000	6.820170
a backbone and they 2.000000 5.534838 that are found all 2.000000 7.874008 are related kinds of 2.000000 7.874008 spiders are eight-legged creatures 2.000000 5.670645 draw a line between 2.000000 5.670645 draw a line between 2.000000 5.670645 what kind of animal 2.000000 7.874008 pard of their lives 2.000000 7.874008 all have wings though 2.000000 5.630640 all have wings though 2.000000 5.531810 on outside sources to 2.000000 5.531810 on outside sources to 2.000000 5.534338 to the group of 2.000000 7.874008 that aproduce milk 2.000000 7.874008 that spend most of 2.000000 7.874008 opisonous snakes that have 2.000000 7.874008 grows hair at some 2.000000 7.874008 opisonous snakes that have 2.000000 7.874008 opisonous snakes that have 2.000	as large as a	2.000000	5.555711
that are found all 2.000000 6.783953 help each other care 2.000000 7.874008 are related kinds of 2.000000 7.874008 spiders are eight-legged creatures 2.000000 6.351555 for making silk webs 2.000000 5.670645 what kind of animal 2.000000 5.670645 what kind of animal 2.000000 5.600640 all have wings though 2.000000 5.62013 say its name out 2.000000 5.53483 on outside sources to 2.000000 5.53483 to the group of 2.000000 7.874008 polsonous snakes that have 2.000000 7.874008 mammals that belong to 2.000000 7.874008 pigeons in big oftes 2.000000	a backbone and they	2.000000	5.534838
help each other care 2 00000 7 874008 are related kinds of 2 00000 5 870645 draw a line between 2 00000 6 351555 for making silk webs 2 00000 7 874008 what kind of animal 2 00000 7 874008 part of their lives 2 00000 7 874008 all have wings though 2 00000 7 874008 that is in danger 2 000000 5 531810 on outside sources to 2 000000 5 534813 to any of the group of 2 000000 5 534813 to be group of 2 000000 7 874008 poisonous snakes that have 2 000000 7 874008 poisonous snakes that have 2 000000 7 874008 poisonous snakes that have 2 000000 7 874008 grows hair at some 2 000000 7 874008 grows hair at some 2 000000 7 874008 pigeons in big citles 2 000000 7 874008 some animals et at only 2 000000 7 874008 loong periods of time 2 000000	that are found all	2.000000	6.783953
are related kinds of 2 000000 7.874008 spiders are eight-legged creatures 2 000000 6.570645 draw a line between 2 000000 7.874008 what kind of animal 2 000000 7.874008 part of their lives 2 000000 5.600645 all have wings though 2 000000 5.62013 say its name out 2 000000 5.531810 on outside sources to 2 000000 5.534833 to the group of 2 000000 5.52215 that can produce milk 2 000000 7.874008 poisonus snakes that have 2 000000 7.874008 that spend most of 2 000000 7.874008 grows hair at some 2 000000 7.874008 mammals that belong to 2 000000 7.874008 grows hair at some 2 000000 7.874008 to grows hair at some 2 000000 7.874008 to grows hair at some 2 000000 7.874008 pigens in big cities 2 000000 7.874008 tori grows hair at some 2 000000	help each other care	2.000000	7.874008
spiders are eight-legged creatures 2 000000 5.670645 draw a line between 2 000000 5.870645 what kind of animal 2 000000 7.874008 part of their lives 2 000000 7.874008 all have wings though 2 000000 7.874008 say its name out 2 000000 5.52013 say its name out 2 000000 5.531810 on outside sources to 2 000000 5.53433 to the group of 2 000000 7.874008 poisonus snakes that have 2 000000 7.874008 poisonus snakes that have 2 000000 7.874008 poisonus snakes that have 2 000000 7.874008 pageons in big cities 2 000000 7.874008 pigeons in big cities 2 000000 7.874008 sorme animals eat only 2 000000 7.874008 long periods of time 2 000000 7.874008 long periods of time 2 000000 7.874008 sorme animals eat only 2 000000 7.874008 long periods of time 2 00	are related kinds of	2.000000	7.874008
draw a line between 2.00000 6.351555 for making silk webs 2.00000 5.670645 what kind of animal 2.000000 7.874008 part of their lives 2.000000 7.874008 all have wings though 2.000000 7.874008 all have wings though 2.000000 5.562013 say its name out 2.000000 5.534838 on outside sources to 2.000000 7.874008 on outside sources to 2.000000 7.874008 that can produce milk 2.000000 7.874008 poisonous snakes that have 2.000000 7.874008 mammals that belong to 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 have glands that can 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 long periods of time 2.000000	spiders are eight-legged creatures	2.000000	5.670645
for making silk webs 2.00000 5.670645 what kind of animal 2.00000 7.874008 part of their lives 2.000000 5.600640 all have wings though 2.000000 5.52013 say its name out 2.000000 5.531810 on outside sources to 2.000000 5.534838 to the group of 2.000000 5.534838 to the group of 2.000000 7.874008 poisonous snakes that have 2.000000 7.874008 poisonous snakes that have 2.000000 7.874008 grows hair at some 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 long periods of time 2.000000 7.874008 tare small mammals that 2.000000 7.	draw a line between	2.000000	6.351555
what kind of animal 2 00000 7.874008 part of their lives 2 000000 5.60040 all have wings though 2 000000 5.552013 say its name out 2 000000 5.531810 on outside sources to 2 000000 5.534838 to the group of 2 000000 6.5534838 to the group of 2 000000 7.874008 that can produce milk 2 000000 7.874008 poisonous snakes that have 2 000000 7.874008 mammals that belong to 2 000000 7.874008 grows hair at some 2 000000 7.874008 some animals that belong to 2 000000 7.874008 some animals eat only 2 000000 7.874008 long periods of time 2 000000 7.874008 to the animals that 2 000000 7.	for making silk webs	2.000000	5.670645
part of their lives 2.00000 5.600640 all have wings though 2.00000 7.874008 that is in danger 2.00000 5.552013 say its name out 2.00000 5.531810 on outside sources to 2.00000 5.531810 on outside sources to 2.00000 6.058216 that can produce milk 2.00000 7.874008 poisonous snakes that have 2.00000 7.874008 poisonous snakes that have 2.00000 7.874008 grows hair at some 2.00000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals et at only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 tore small mammals that 2.000000 7.874008 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 7.874008 tive in groups to 2.000000	what kind of animal	2.000000	7.874008
all have wings though 2.00000 7.874008 that is in danger 2.00000 5.551810 on outside sources to 2.00000 5.531810 on outside sources to 2.00000 6.534838 to the group of 2.00000 7.874008 poisonous snakes that have 2.000000 7.874008 poisonous snakes that have 2.000000 7.874008 poisonous snakes that have 2.000000 7.874008 mammals that belong to 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 animals that 2.000000 7.874008 uhat is a baby 2.000000 7.874008 ive in groups to 2.000000 5.52025 are small mammals that 2.000000 7.874008 live in groups to 2.000000 7.87400	part of their lives	2.000000	5.600640
that is in darger 2.00000 5.562013 say its name out 2.00000 5.534830 to the group of 2.00000 5.534838 to the group of 2.00000 7.874008 poisonous snakes that have 2.000000 7.874008 that spend most of 2.000000 7.874008 off fying insects the 2.000000 7.874008 grows hair at some 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 are small mammals that 2.000000 7.874008 animals that tacan 2.000000 7.874008 are small mammals that 2.000000 7.874008 are small mammals that 2.000000 7.874008 scientific name of the 2.000000 7.874008 scientific name of the 2.000000 7.87400	all have wings though	2.000000	7.874008
say its name out 2.00000 5.531810 on outside sources to 2.00000 6.058216 that can produce milk 2.00000 7.874008 poisonous snakes that have 2.00000 7.874008 phat spend most of 2.000000 7.874008 offlying insects the 2.000000 7.874008 grows hair at some 2.000000 7.874008 grows hair at some 2.000000 7.874008 opigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 to the animals that 2.000000 7.874008 to the animals that 2.000000 7.874008 to the animals that 2.000000 5.523025 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 6.591190 what is a baby 2.000000 6.704868 scientific name of the 2.000000 <td< td=""><td>that is in danger</td><td>2.000000</td><td>5.562013</td></td<>	that is in danger	2.000000	5.562013
on outside sources to 2.00000 5.534838 to the group of 2.00000 6.058216 that can produce milk 2.00000 7.874008 poisonous snakes that have 2.00000 7.874008 of flying insects the 2.00000 7.874008 of flying insects the 2.00000 7.874008 grows hair at some 2.000000 7.874008 grows hair at some 2.000000 7.874008 ognes in big citles 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 long periods of time 2.000000 7.874008 to the animals that 2.000000 7.874008 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 7.874008 live in groups to 2.000000 7.874008 naimals that have feathers 2.000000 7.874008 are small mammals that 2.000000 7.874008 animals that proups 2.000000	say its name out	2.000000	5.531810
to the group of 2.00000 6.058216 that can produce milk 2.00000 7.874008 poisonous snakes that have 2.00000 7.874008 that spend most of 2.00000 5.752634 off flying insects the 2.00000 7.874008 mammals that belong to 2.00000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 to the animals that 2.000000 7.874008 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 6.591190 what is a baby 2.000000 7.874008 scientific name of the 2.000000 7.874008 scientific name of the 2.000000 7.874008 animals live in groups 2.000000 6.327378 moths are related kinds 2.000000	on outside sources to	2.000000	5.534838
that can produce milk 2.00000 7.874008 poisonous snakes that have 2.00000 7.874008 that spend most of 2.00000 7.874008 offlying insects the 2.00000 7.874008 mammals that belong to 2.00000 7.874008 grows hair at some 2.00000 7.874008 pigeons in big cities 2.00000 7.874008 some animals eat only 2.00000 7.874008 long periods of time 2.00000 7.874008 have glands that can 2.00000 7.874008 to the animals that 2.00000 5.523025 are small mammals that 2.000000 5.523025 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 7.874008 live in groups to 2.000000 7.874008 scientific name of the 2.000000 7.874008 scientific name of the 2.000000 7.874008 scorpions ticks and mites 2.000000 7.874008 fawn mouse calf chick 2.000000 <td>to the group of</td> <td>2.000000</td> <td>6.058216</td>	to the group of	2.000000	6.058216
poisonous snakes that have 2.00000 7.874008 that spend most of 2.00000 5.752634 of flying insects the 2.00000 7.874008 mammals that belong to 2.00000 7.874008 grows hair at some 2.00000 7.874008 pigeons in big cities 2.00000 7.874008 some animals eat only 2.00000 7.874008 long periods of time 2.00000 7.874008 have glands that can 2.00000 7.874008 have glands that can 2.00000 7.874008 to the animals that 2.00000 5.523025 are small mammals that 2.000000 5.521902 are small mammals that 2.000000 6.7814008 have fashers 2.000000 7.874008 via is a baby 2.000000 7.874008 scientific name of the 2.000000 7.874008 animals that have feathers 2.000000 7.874008 animals live in groups 2.000000 7.874008 animals live in groups 2.000000	that can produce milk	2.000000	7.874008
that spend most of 2.000000 5.752634 of flying insects the 2.000000 7.874008 mammals that belong to 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 to the animals that 2.000000 5.523025 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 7.874008 have dry skin covered 2.000000 7.874008 ive in groups to 2.000000 7.874008 naimals live in groups 2.000000 7.874008 animals live in groups 2.000000 7.874008 animals live in groups 2.000000 7.874008 animals that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 7.874008 animal that breathes air <t< td=""><td>poisonous snakes that have</td><td>2.000000</td><td>7.874008</td></t<>	poisonous snakes that have	2.000000	7.874008
of flying insects the 2.000000 7.874008 mammals that belong to 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 to the animals that 2.000000 5.523025 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 7.874008 live in groups to 2.000000 7.874008 nave dry skin covered 2.000000 7.874008 scientific name of the 2.000000 7.874008 animals live in groups 2.000000 7.874008 animal that breathes air <td< td=""><td>that spend most of</td><td>2.000000</td><td>5.752634</td></td<>	that spend most of	2.000000	5.752634
mammals that belong to 2.000000 7.874008 grows hair at some 2.000000 7.874008 pigeons in big cities 2.000000 7.874008 some animals eat only 2.000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 have glands that can 2.000000 5.523025 are small mammals that 2.000000 5.614016 animals that ave feathers 2.000000 6.591190 what is a baby 2.000000 7.874008 live in groups to 2.000000 7.874008 naimals live in groups to 2.000000 7.874008 naimals live in groups 2.000000 7.874008 animals live in groups 2.000000 7.874008 scientific name of the 2.000000 7.874008 animals live in groups 2.000000 7.874008 fawn mouse calf chick 2.000000 7.874008 animals live in groups 2.000000 7.874008 animal that breathes air 2.0	of flying insects the	2.000000	7.874008
grows hair at some 2.00000 7.874008 pigeons in big cities 2.00000 7.874008 some animals eat only 2.00000 7.874008 long periods of time 2.00000 7.874008 have glands that can 2.00000 7.874008 to the animals that 2.00000 5.523025 are small mammals that 2.000000 5.614016 animals that have feathers 2.000000 7.874008 what is a baby 2.000000 7.874008 live in groups to 2.000000 7.874008 have dry skin covered 2.000000 7.874008 scientific name of the 2.000000 7.874008 animals live in groups 2.000000 7.874008 fawr mouse calf chick 2.000000	mammals that belong to	2.000000	7.874008
pigeons in big cities 2 00000 7.874008 some animals eat only 2.00000 7.874008 long periods of time 2.00000 7.874008 have glands that can 2.00000 7.874008 to the animals that 2.00000 5.523025 are small mammals that 2.00000 5.614016 animals that have feathers 2.00000 6.591190 what is a bay 2.00000 7.874008 live in groups to 2.00000 7.874008 have dy skin covered 2.00000 7.874008 animals live in groups to 2.000000 7.874008 animals live in groups 2.000000 7.874008 animals that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.0000	grows hair at some	2.000000	7.874008
some animals eat only 2 000000 7.874008 long periods of time 2.000000 7.874008 have glands that can 2.000000 7.874008 to the animals that 2.000000 5.523025 are small mammals that 2.000000 6.591190 what is a baby 2.000000 7.874008 live in groups to 2.000000 7.874008 have dy skin covered 2.000000 7.874008 scientific name of the 2.000000 7.874008 animals live in groups 2.000000 7.874008 animals that breathes air 2.000000 7.874008 animal that breathes air 2.000000 7.874008 in a variety of 2.000000 7.874008 are invertebrates that live 2.000	pigeons in big cities	2.000000	7.874008
long periods of time 2.00000 7.874008 have glands that can 2.00000 7.874008 to the animals that 2.00000 5.523025 are small mammals that 2.00000 5.614016 animals that have feathers 2.00000 7.874008 what is a baby 2.00000 7.874008 live in groups to 2.00000 7.874008 have dry skin covered 2.00000 7.874008 scientific name of the 2.00000 7.874008 animals live in groups 2.000000 7.874008 fawn mouse calf chick 2.000000 7.874008 animals that breathes air 2.000000 7.874008 animal that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 7.874008 scorpions ticks and mites 2.000000 7.874008 silk webs to catch 2.000000 7.874008 are invertebrates that live 2.000000 5.63328 periods of time without 2.000000 5.633328 periods of time without <td< td=""><td>some animals eat only</td><td>2.000000</td><td>7.874008</td></td<>	some animals eat only	2.000000	7.874008
have glands that can 2.00000 7.874008 to the animals that 2.00000 5.523025 are small mammals that 2.00000 5.614016 animals that have feathers 2.00000 6.591190 what is a baby 2.00000 7.874008 live in groups to 2.000000 7.874008 have dry skin covered 2.000000 6.7044868 scientific name of the 2.000000 7.874008 animals live in groups 2.000000 7.874008 fawn mouse calf chick 2.000000 7.874008 animal that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 7.874008 scorpions ticks and mites 2.000000 6.327378 in a variety of 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 5.5533614 animals stand on the 2.0	long periods of time	2.000000	7.874008
to the animals that 2.00000 5.523025 are small mammals that 2.00000 5.614016 animals that have feathers 2.00000 6.591190 what is a baby 2.00000 7.874008 live in groups to 2.00000 7.874008 have dry skin covered 2.00000 7.874008 animals live in groups 2.000000 7.874008 animals hat breathes air 2.000000 7.874008 animal that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 6.327378 in a variety of 2.000000 5.670645 silk webs to catch 2.000000 5.593328 periods of time without 2.000000 5.533614 answer the questions how 2.000000 5.553284 box to complete the 2.000000	have glands that can	2.000000	7.874008
are small mammals that 2.00000 5.614016 animals that have feathers 2.00000 6.591190 what is a baby 2.00000 7.874008 live in groups to 2.00000 7.874008 have dry skin covered 2.00000 6.704868 scientific name of the 2.00000 7.874008 animals live in groups 2.00000 7.874008 animals live in groups 2.000000 7.874008 fawn mouse calf chick 2.000000 7.874008 animal that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 7.874008 scorpions ticks and mites 2.000000 7.874008 in a variety of 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 5.670645 are invertebrates that live 2.000000 5.893328 periods of time without 2.000000 5.833614 animals stand on the 2.000000 5.553284 birds are the only 2	to the animals that	2.000000	5.523025
animals that have feathers 2.00000 6.591190 what is a baby 2.00000 7.874008 live in groups to 2.00000 7.874008 have dry skin covered 2.00000 6.704868 scientific name of the 2.00000 7.874008 animals live in groups 2.00000 7.874008 animals live in groups 2.00000 7.874008 fawn mouse calf chick 2.00000 6.131854 moths are related kinds 2.00000 7.874008 animal that breathes air 2.00000 7.874008 scorpions ticks and mites 2.00000 6.327378 in a variety of 2.00000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 5.533614 animals stand on the 2.000000 5.553284 box to complete the 2.000000 <td>are small mammals that</td> <td>2.000000</td> <td>5.614016</td>	are small mammals that	2.000000	5.614016
what is a baby 2.00000 7.874008 live in groups to 2.00000 7.874008 have dry skin covered 2.00000 6.704868 scientific name of the 2.00000 7.874008 animals live in groups 2.00000 7.874008 animals live in groups 2.00000 7.874008 fawn mouse calf chick 2.00000 6.131854 moths are related kinds 2.00000 7.874008 animal that breathes air 2.00000 7.874008 scorpions ticks and mites 2.00000 7.874008 scorpions ticks and mites 2.000000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 5.593328 periods of time without 2.000000 5.533614 animals stand on the 2.000000 5.53284 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008	animals that have feathers	2.000000	6.591190
live in groups to 2.00000 7.874008 have dry skin covered 2.00000 6.704868 scientific name of the 2.00000 7.874008 animals live in groups 2.00000 7.874008 fawn mouse calf chick 2.00000 6.131854 moths are related kinds 2.00000 7.874008 animal that breathes air 2.00000 7.874008 scorpions ticks and mites 2.00000 6.327378 in a variety of 2.00000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.59328 periods of time without 2.000000 5.533614 animals stand on the 2.000000 5.553284 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008	what is a baby	2.000000	7.874008
have dry skin covered 2.00000 6.704868 scientific name of the 2.00000 7.874008 animals live in groups 2.00000 7.874008 fawn mouse calf chick 2.00000 6.131854 moths are related kinds 2.00000 7.874008 animal that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 6.327378 in a variety of 2.000000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 5.533614 animals stand on the 2.000000 5.553284 box to complete the 2.000000 7.874008 birds are the only 2.000000 7.874008	live in groups to	2.000000	7.874008
scientific name of the 2.000000 7.874008 animals live in groups 2.000000 7.874008 fawn mouse calf chick 2.000000 6.131854 moths are related kinds 2.000000 7.874008 animal that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 6.327378 in a variety of 2.000000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 5.533614 animals stand on the 2.000000 5.553284 box to complete the 2.000000 7.874008 brids are the only 2.000000 7.874008	have dry skin covered	2.000000	6.704868
animals live in groups 2.00000 7.874008 fawn mouse calf chick 2.00000 6.131854 moths are related kinds 2.00000 7.874008 animal that breathes air 2.000000 7.874008 scorpions ticks and mites 2.000000 6.327378 in a variety of 2.000000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 5.593328 periods of time without 2.000000 5.533614 animals stand on the 2.000000 5.533284 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008	scientific name of the	2.000000	7.874008
fawn mouse calf chick 2.00000 6.131854 moths are related kinds 2.00000 7.874008 animal that breathes air 2.00000 7.874008 scorpions ticks and mites 2.000000 6.327378 in a variety of 2.000000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 7.874008 answer the questions 1 2.000000 5.533614 animals stand on the 2.000000 5.53328 box to complete the 2.000000 7.874008 box to complete the 2.000000 7.874008 birds are the only 2.000000 7.874008	animals live in groups	2.000000	7.874008
moths are related kinds 2.00000 7.874008 animal that breathes air 2.00000 7.874008 scorpions ticks and mites 2.00000 6.327378 in a variety of 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 5.59328 periods of time without 2.000000 7.874008 answer the questions 1 2.000000 5.533614 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 5.553284 box to complete the 2.000000 7.874008 brots are the only 2.000000 7.874008	fawn mouse calf chick	2.000000	6.131854
animal that breathes air 2.00000 7.874008 scorpions ticks and mites 2.00000 6.327378 in a variety of 2.000000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 7.874008 answer the questions 1 2.000000 7.874008 answer the questions 1 2.000000 7.874008 ber of time without 2.000000 5.533614 animals stand on the 2.000000 5.553284 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	moths are related kinds	2.000000	7.874008
scorpions ticks and mites 2.00000 6.327378 in a variety of 2.00000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 5.593328 periods of time without 2.00000 7.874008 answer the questions 1 2.000000 5.533614 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 5.553284 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	animal that breathes air	2.000000	7.874008
in a variety of 2.00000 7.874008 there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 7.874008 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	scorpions ticks and mites	2.000000	6.327378
there are about 38,000 2.000000 5.670645 silk webs to catch 2.000000 5.670645 are invertebrates that live 2.000000 7.874008 answer the questions 1 2.000000 5.593328 periods of time without 2.000000 5.533614 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	in a variety of	2.000000	7.874008
silk webs to catch 2.00000 5.670645 are invertebrates that live 2.00000 7.874008 answer the questions 1 2.00000 5.593328 periods of time without 2.00000 7.874008 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	there are about 38,000	2.000000	5.670645
are invertebrates that live 2.00000 7.874008 answer the questions 1 2.00000 5.593328 periods of time without 2.000000 7.874008 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	silk webs to catch	2.000000	5.670645
answer the questions 1 2.00000 5.593328 periods of time without 2.000000 7.874008 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	are invertebrates that live	2.000000	7.874008
periods of time without 2.00000 7.874008 answer the questions how 2.000000 5.533614 animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	answer the questions 1	2.000000	5.593328
answer the questions how 2.000000 5.533614 animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	periods of time without	2.000000	7.874008
animals stand on the 2.000000 7.874008 box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	answer the questions how	2.000000	5.533614
box to complete the 2.000000 5.553284 birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	animals stand on the	2.000000	7.874008
birds are the only 2.000000 7.874008 the most intelligent of 2.000000 7.874008	box to complete the	2.000000	5.553284
the most intelligent of 2.000000 7.874008	birds are the only	2.000000	7.874008
	the most intelligent of	2.000000	7.874008

Source: #LancsBox 6.0.

Appendix PLearners' samples of language production: Neighborhood (T1)

Observation: the numbers on the left refer to the number a student has in each of the classes` class roll call.

Individual learner production in 4A and 4B groups

4A	Learner samples - class and homework
403	There are different types of medicines.
	This is because we use different medicines for different reasons
404	There is a restaurant nearby
407	Find the best road to the police station
414	City block with park and mall
424	Find the best road to your apartment
-	
4A	Learner samples - posttest
401	Find your way around a supermarket
	There is a park (mall, supermarket, school, park) nearby
402	Find the best road to
403	City block with apartments and buildings
406	There is a park nearby
	Find the best road to your
409	Find your way around a park
414	A school map, for example, help you plan
	There is a park nearby
415	Tall house where many people live
	They may be able to walk
419	Find the best road to your park
421	There is a hospital nearby
422	City block with homes and stores
1	

4B	Learner samples - class and homework
432	They may have parks, malls and shops
433	There is a Mall nearby
435	They may have a high school
438	They might need a house with more space
440	There is a shop nearby
444	There are many different types of shops
445	There is a pet shop nearby

4B	Learner samples - posttest	
427	Find the best road to your friend's house	
	There is a library nearby	
428	There is a hospital nearby	
429	Find the best road to your pet shop	
	City block with	
432	Find your way around a pet shop	
	Find the best road to your Mall	
	City block with houses and shops	
435	There is a bakery (hospital, park, bank) nearby	
447	Find your way around your neighborhood	

Source: Learner data from tests and classwork.

Individual learner sentences in 5A and 5B groups

5A	Learner samples - class and home work
501	There is a shop nearby (park, pet, shop, house, supermarket) nearby
503	Find the best road to parks
504	There is a bank nearby
506	City blocks with
513	The Mall where many people go
516	City block with church and bank
517	There are many different types of houses (parks, pet shops, library)
518	City blocks with
519	A Library is a wonderful place to visit
524	Tall houses where many people live
5A	Learner samples - posttests
502	Tall apartment where many people live
505	A Shopping is a wonderful place to visit
510	There is a park nearby
511	Find your way around the library
514	They may be able to walk to scholl and pet shop
523	They may also use public transportation to get to different parts of the
524	There is a bakery nearby

5B	Learner samples - class and home work			
526	Do you have friends in your neighborhood?			
527	City block with pet shop and stores			
529	Do you have high school in your neighborhood?			
531	There are many different types of restaurants			
547	They may be ablr to walk to school, the house, the	n pet shop,	the park,	
548	There is a Mall nearby (a park, a restaurant, a pet	t shop)		

5B	Learner samples - posttest
526	Find your way around a restaurant
527	City block with park and restaurant
531	Tall apartment buildings where many people live
533	Do you have friends in your neighborhood?
537	Find the best road to your friend's school
	Tall houses where many people live
	There is a park nearby
540	Find your way around a school
544	There are many different houses (shops, ice cream shops)
547	Find the best road to your school

Source: Learner data from tests and classwork.

Individual learner sentences in 6A and 6B groups

6A	Learner samples - class and home work
612	They may be able to walk to shop. The Mall and Park
	Who help kids to get to school?
	There is a shop nearby
613	When there is a picnic at the school, you clean up after yourself
	A map, for example, helps yo plan
616	The bakery is a wonderful place to visit
	There are many different types of (supermarkets, houses, schools

6A	Learner samples - posttest
612	Find your way around a nature park
	There is a bakery nearby
614	Find the best road to your Mall
616	Find the best road to your house
	Do you have frineds in your city?
621	They may be able to walk to the farm (the bank, the park and mall)

6B -	Learner samples - class and home work
630	They might need a pet shop
632	Find your way around a house
633	Do you have friends in your school?
	They may be able to walk to the library
634	If you were going on a hike in a zoo, you would need a map
635	They may be able to walk to school (to the park, to the house)
	(to the store, to the restaurant, to the office, to the bakery)
	The park is a wonderful place to visit
636	There is a supermarket nearby

6B	Learner samples - posttest
632	They may also use bus to get to different part of the city
	City block with homes and a library
	There is a restaurant nearby
633	Find the best road to your family's buildings
638	Find your way around a pet shop
640	Tall achool buildings where many people study
644	When you have a picnic at the school you clean up after yourself
646	Tall house where many people live
	Find your way around a hospital
	Find the best road to your friend's apartment

Source: Learner data from tests and classwork.

Appendix QLearners' samples of language production: Animals (T2)

Observation: the numbers on the left refer to the number a student has in each of the classes` class roll call.

Individual learner sentences in groups 4A and 4B

4A	Learner samples - class and homework
404	The giraffe eats a lot of leaves from the trees with its big neck
	The macaw moves by flying
405	I like gold fish
408	The horse run much fast
409	Tiger hav legs, long tail and run
411	I don't have dog
	Lion is a good hunter
412	The lion is the king
	Birds have feathers, fly
414	Some monkeys are small
415	Dogs have different breeds
	Giraffe have a long neck, walk
419	The lion is the king of the jungle
424	The tiger likes to eat meat
425	A dog is a very smart animal

4A	Learner samples - posttest	
401	Gazela are animals that have strong legs to run	
404	Rabbits are jumping animals	
	Turtle are kind of animal that lives in water	
405	Lions are animals that have strong legs to run	
406	Frogs are jumping animals	
408	Crickets are small animals that can jump very	
414	Spiders are insects that are found almost everywhere in the world	ł
415	Frogs are jumping insects	
419	Frogs are jumping animals	
421	Butterflies, parrot and bees can fly	
	Lions are animals that have strong legs to run	
425	Many people have dogs as pets	

Learner samples - class and home work		
The tiger is a fast animal that moves running		
The bird is a beutiful animal that moves flying		
The dog has four paws, tail, fur.		
The fish has scales, gills. Flippers		
The cat is smart		
The pig like to play in the mud		
The duck love water		
Cat is furry with four legs. It walks and run		
The birds are beautiful and colorful		
The lion has a beautiful mane		
The giraffe's neck is very long		
The elephants are very big and strong		
The lion's mane is so fluffy		
When I went to the zoo I saw na elephant		
The elephan has big ears and a trunk		
The bird is colorful and flies		
The fish is golden and swims		
The cat is fluffy and walks		
Lion has a big mane and he is very fast		
Fish has scales, hs flippers, to help swimming and r	noves swir	nming
The ducks like swimming		
	Learner samples - class and home work The tiger is a fast animal that moves running The bird is a beutiful animal that moves flying The dog has four paws, tail, fur. The fish has scales, gills. Flippers The cat is smart The duck love water Cat is furry with four legs. It walks and run The birds are beautiful and colorful The lion has a beautiful mane The giraffe's neck is very long The lion's mane is so fluffy When I went to the zoo I saw na elephant The bird is colorful and flies The fish is golden and swims The cat is fluffy and walks Lion has a big mane and he is very fast Fish has scales, hs flippers, to help swimming and r	Learner samples - class and home workThe tiger is a fast animal that moves runningThe bird is a beutiful animal that moves flyingThe dog has four paws, tail, fur.The fish has scales, gills. FlippersThe cat is smartThe pig like to play in the mudThe duck love waterCat is furry with four legs. It walks and runThe birds are beautiful and colorfulThe lion has a beautiful maneThe elephants are very big and strongThe elephants are very big and strongThe elephan has big ears and a trunkThe bird is colorful and fliesThe bird is colorful and fliesThe signaffer and swimsThe duck is fluffy and walksLion has a big mane and he is very fastFish has scales, hs flippers, to help swimming and moves swirThe ducks like swimming

4B	Learner samples - posttest
427	Shark (fish, octopus) are a kind of animals that live in the water
429	Crickets, ants and bees are all insects. They have 6 legs.
430	Zebras are animals that have strong legs to run
432	Shark are a kind of animal that lives in the water
433	Lion are animals that have strong legs to run
435	Giraffe are animals that have strong legs to run
436	Birds are cute animals
439	Frogs and rabbits are jump
440	Lion are animals that have strong legs to run
441	Rabbits are medium animals that can jump very well
442	Parrots are animals that have feathers. They lay eggs.
447	The zebra is striped in black and white
450	Hippos live in parts of Africa
451	Shark are a kind of animal that lives in the water

Source: Learner data from tests and classwork.

Individual learner sentences in 5A and 5B groups

5A	Learner samples - class and homework
501	Horses have hooves and are fast
	Elephant have a trunk
502	I admire the beauty of the giraffe
508	Monkey love banana and jump
509	A fish has gills and scales
	An octopus has tentacles
512	My dog is very messy and loves to walk
514	Lions are wild animals and they live in the jungle
520	The dog is a cute, affectionate and smart animal
524	Crickets are jumping insects
	Insects developed on Earth before human did

5A	Learner samples - posttest	
502	Shark are a kind of animal that lives in water	
504	Elephants cannot jump	
509	Shark are a kind of animal that lives in water	
511	Kangaroos are big animals can jump vey well	
512	Parrot are birds that cannot swim	
513	Sharks live in water	
518	Chickens are birds that cannot fly	
519	Blue parrots live in parts of Brasil	
520	Dogs are animals that are found almost everywhere in the wor	ld
521	Some insects can jump	

5B	Learner samples - class and homework	
526	The fish swims and has a very beautiful fin	
	The dog he walks has a tail and 4 paws	
527	The giraffe's neck is too big	
530	The lion has a mane	
536	I love cats but I don't have one	
541	The cat can climb and can walk and run	
	The tiger is carnivorous and can run	
542	The cat love to sleep	
5B	Learners samples - posttest	
-----	---	--
525	Horses are animals that have strong legs to run	
	Shark are a kind of animal that lives in the water	
526	Starfish are a kind of animal that lives in the water	
527	Rabbits ae jumping animals	
528	Horses are a kind of animal that lives in the farm	
529	Shark are a kind of animal that lives in the water	
530	Rabbits are jumping animal	
532	Rabbit are small animals that can jump very well	
536	Frogs are jumping insects	
537	Rabbits (dog, cat) are a kind of animal that lives in the house	
538	Shark are a kind of animal that lives in the water	
539	Lion a kind of animal that lives in the zoo	
541	Penguins are birds that cannot sing	
546	Some birds cannot fly	

Source: Learner data from tests and classwork.

Individual learner sentences in 6A and 6B groups

6A	Learner samples - class	and hom	e work		
601	Shark live in the ocean				
	The bird isn't beautiful				
603	The pig likes mud				
	The monkey loves bananas				
603	The butterfly has wings of man	y colors ar	nd it fly		
606	The dog besides being my favo	rite anima	l is also on	e of the mos	st beautiful
	The elephant is one of the larg	est animal	s		
	in the world ever known and i	s also the s	trongest		
608	I have an allergy to cats				
609	The cat eat fish				
610	Giraffes live in parts of Africa				
615	The lion normally eats meat				
623	The tiger have a whiskers and s	pots			

6A	Learner samples - posttest
601	Camel live in parts of Egito
603	Rabbits are small animals that can jump very well
604	Tigers are animals tha have strong bite
606	Many people have dogs as pets
611	Shark are a kind of animal that lives in the water
613	Ducks are animals that have feet. They lay eggs.
615	Many people have rabbits as pets
620	Lion is the largest of the cats
621	Giraffes live in parts of Africa

6B	Learner samples - class and homework
624	Cat walk and run, dog walk and run, bird fly, duck swim
625	The dog has paw
	The lion has a tail and a mane
	The fish has gills
	The tiger moves running
	Butterfly moves flying
627	Fish live in the ocean
	The horse eat plants
	The monkey eat bananas
628	The duck swim, the bird fly, the tiger run
	The turtle swim and walk
632	Parrot fly, not run
	Shark swim
633	The dog barks
	The horse run very fast
	The bird flies and is cute
	The fish swim
634	The cow has spots
	The giraffe walk and run
636	The elephant has a trunk and is very big
	The bird has a beak and is very colored
637	The mane of the lion is beautiful
638	The dog bark and bites
	I hate pigs
639	The cat has long whiskers
	The tiger is stripes
	The dog runs very fast
	The pig love to run in the mud
	The bird fly in the sky
644	A bird fly with feathers
	The lion have a mane
646	Ca'ts meows are much finer than dog's bark

-

6B	Learner samples - posttest	
624	Rabbit are small animals that can jump very well.	
	Horse are animals that have strong legs to run	
625	Chickens are birds that lay eggs	
627	The butterflies have two wings	
629	Sharks live in the sea	
630	Lion is the forest king	
631	The shark eat the octopus	
632	Chickens are birds that cannot fly	
633	Shark bites	
	Rabbit can jump very well	
635	Kangaroos jump high	
641	Shark lives in the water	
642	Fish live in the water and can be yellow, blue, red	
643	Aligators live in the swamp	