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H I G H L I G H T S

• A new 1D DNA Hamiltonian with twist angle dependence was obtained from a 3D model.

• We show the validity of the new Hamiltonian in the regime of small angles.

• Resulting melting transition are found to be very sharp, even first-order like in the limit of long sequences, without the need of additional non-linear potentials.• Model parameters are compatible with other microscopic models and hydrogen bond parameters are of the same order of magnitude than those from ab-initio
calculations.
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Abstract: The Peyrard-Bishop DNA model describes the molecular interactions with simple potentials which
allow efficient calculations of melting temperatures. However, it is based on a Hamiltonian that does not con-
sider the helical twist or any other relevant molecular dimensions. Here, we start from a more realistic 3D model
and work out several approximations to arrive at a new non-linear 1D Hamiltonian with a twist angle depen-
dence. Our approximations were numerically compared to full 3D calculations, and established its validity in the
regime of small angles. For long DNA sequences we obtain sharp, first-order-like melting, transitions.

1. Introduction

Statistical physics models of DNA using interaction potentials, in-
stead of statistical weights, made a debut with Peyrard and Bishop [1].
This model introduces several simplifications that leaves only a single
degree of freedom to integrate, transversal to the helical axis, and for
this reason it is commonly referred to as a 1D model [2–4]. This model
allows the calculation of the average base pair displacement, re-
presentative of the melting transition, and it was shown that there is an
increasing strand opening as temperatures increase. However, this
strand opening occurs only gradually with increasing temperature,
which has motivated the search for additional potentials that could
result in much sharper transitions [2,5,6]. The simplicity of the PB
model provides a computational efficiency that outcompetes atomistic
simulations for certain applications, such as describing melting in DNA
[7]. Evidently, the increased efficiency comes at the expense of lack
details describing the intramolecular interactions.

In recent years, our group used the mesoscopic Peyrard-Bishop (PB)
model for calculating melting temperatures in numerous nucleic acids
systems, for instance for deoxyinosine [8], GU mismatches in RNA [9]
and DNA-RNA hybrids [10]. Many of our findings correlate well with

existing structural data from NMR and X-ray measurements providing a
good level of validation for this theoretical approach. However, as
discussed in some of our previous publications [11], the missing heli-
city and the unusual definition of intramolecular distances of the ori-
ginal PB model [1] makes it difficult to compare the results with mi-
croscopic models, especially to those of molecular dynamics (MD) and
coarse-grained models [12]. This is of special interest for collisional MD
that integrates the PB model to study melting transitions [13]. The use
of an analytical 1D helicoidal Hamiltonian, preferably set in a similar
framework as MD models [14], and benefiting from the efficient
transfer integral (TI) technique for calculating the strand separation
would be desirable as it may overcome some of the interpretative
shortcomings of the PB model.

There have been several proposals for helicoidal Hamiltonians
within the framework of TI partition function calculation of the PB
model [15–17]. These models add the helical twist angle, but also add
constraints that make it difficult to integrate analytically the partition
function. The common approach is to fix beforehand the distance

+z zn n1 between consecutive base pairs, see Fig. 1, known as the
helical rise distance h [18]. By fixing h, the radial distance r and the
twist angle both need to be integrated numerically [15,19,20]. Unlike
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the PB model, the integration of the helicoidal Hamiltonian, restricted
in this way, does not result in an analytical 1D Hamiltonian. Other
helicoidal models based on the PB Hamiltonian that do not calculate
melting transitions or do not use the transfer integral method, such as
Refs. 21–26, are not covered here.

Our aim is to adapt a 3D Hamiltonian, with distances and angles as
shown in Fig. 1, and obtain an analytical expression for a 1D Ha-
miltonian with included twist angle dependence. A constant twist angle
defines the origin of the angles at each base pair. The setup of Fig. 1

follows closely that of B-DNA, which from crystallographic measure-
ments it is known to have a tilt angle of −0.1° and roll of 0.6° per base
pair step [18]. In other words, for short DNA sequences there is no
appreciable bending and the configuration shown in Fig. 1 is justified.

We integrate the 3D partition function by carefully introducing
approximations and restrictions and arrive at a new 1D Hamiltonian
with radial distance and twist angle dependence. For small twist angles,
the resulting melting transitions are sharp first-order-like with strong
discontinuity of the strand opening for very long DNA sequences. On
the other hand, as soon as the twist angles are increased these transi-
tions rapidly loose their strength. To evaluate the impact of the ap-
proximations, we numerically integrated the configurational part of the
partition function of the 3D Hamiltonian. We repeat these numerical
integrations also applying similar restrictions that were used for the 1D
Hamiltonian. These numerical tests show that the results from the he-
licoidal 1D Hamiltonian are qualitatively similar to the full 3D model
within the regime of small angles.

2. Model

The configurational part of the classical partition of a oligonucleo-
tide duplex composed of N base-pairs is written in terms of the polar
cylindrical coordinates z r, and

=
=

Z dz d r dr U z r z rexp[ ( , , , , , )]r z
N

n

N

n n n n n n n n n n n n
1

, 1 1 1 1

(1)

where = k T k1/( ),B B is the Boltzmann constant and T the absolute
temperature. is a density factor, which is taken here as a reciprocal
unit of volume, such that Zr z becomes adimensional. U is the config-
urational part of model Hamiltonian and is a function of the (z r, , )
positions of two consecutive base pairs. The customary periodic
boundary condition, where the last base-pair interacts with the first, is
represented by the potentialU N1, . The average radius rk , representing
the intra-strand opening, can be calculated as follows

=
=

r
Z
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For the case where all model parameters are the same at each site k, we
have = = …=r r rN1 .

The origins of the angles of consecutive base pairs are offset by a
fixed twist angle between base pair steps, see Fig. 1, which allows the
use of an single integration limit for all angle variables, that is,

Fig. 1. Schematic diagram of the 3D model. Base pairs n 1 and n are shown at their equilibrium positions, and the base pair +n 1 is rotated by +n 1 and stretched
from its equilibrium position to +rn 1. The twist angles (orange lines) define the offset between consecutive base pairs angle origins = 0 (brown lines). Green lines
show the stacking interaction between neighbouring bases, in particular the distances +Jn n1, are shown as a dark green lines and J0 are the equilibrium stacking
distance shown as light green lines. The grey circles show the radius of the equilibrium distance and the blue circle shows the stretched distance +rn 1. Hydrogen bond
distances are shown as thick dashed grey lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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[ , ]n . For rn the integrations are taken within the limits
r b[0, ]n . For z we integrate within a region ± around the rise dis-
tance h0 such that the limit is taken as

+z n h n h[( 1) , ( 1) ]n 0 0 (3)

the partition function is then written with explicit integration limits as

=

×

+

=
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where each integration symbol implies N-uple integrals. The interaction
potential U is divided into stacking interactions Wn n, 1 and base-pair
interactions Vn,

= +
U z r z r

V r W z r z r
( , , , , , )
( ) ( , , , , , )

n n n n n n n n

n n n n n n n n n n

, 1 1 1 1
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In terms of the polar cylindrical coordinates and considering the 3D
scheme shown in Fig. 1, the base-pair interaction potential is solely a
function of rn, that isV r( )n n and it brings no difficulty for the integration
of Eq. (4). Here we will use the Morse potential

=V r D e( ) [ 1]n n
a r R( ) 20 (6)

where D is the depth of the potential, a the width and R0 an equilibrium
distance. The stacking interaction W however depends on all co-
ordinates and links to consecutive base-pairs n and n 1, which is the
main point of difficulty for a full algebraic integration of the partition
function, Eq. (4). Therefore, our efforts will centre on the handling of
the 3D stacking potential and, unlike the base-pair potential, the spe-
cific form of this potential is a crucial aspect of the theoretical method.
Here, we use the harmonic potential as stacking interaction potential,
this is the form used in the original PB model [1] which has provided
good results for parametrization in heterogeneous DNA [11]. The po-
tential between neighbouring bases n and n 1 is given by

=W k J J
2

( ) ,n n n n, 1 , 1 0
2

(7)

where Jn n, 1, shown as a green line in Fig. 1, is the distance between two
bases belonging to the same strand. J0 is the equilibrium distance and k
the elastic constant. In polar cylindrical coordinates z r, and , shown
in Fig. 1, the distance Jn n, 1 is written as

= +J z fn n n n n n, 1 , 1
2

, 1
2

(8)

where fn n, 1 is the xy-projection

= + +f r r r r2 cos( )n n n n n n n n, 1
2

1
2

1 1 (9)

The equilibrium distance between the two consecutive base-pairs along
the z-axis is h0, corresponding to the rise distance and is the structural
twist angle [18]. For simplicity, we will assume that both bases at the
nth site are at the same distance in regard to the z axis, that is, they
move symmetrically with respect to the helical z axis. While this may
seem overly restrictive, we have shown that for the classical partition
function in the PB model this means that the elastic constant is simply
the average of the elastic parameters of each strand [27]. Therefore, the
elastic constant k is the equivalent constant of the two springs to each
side of the duplex strand.

We now expand Eq. (8) to first order of zn n, 1
2

+J z
f
z

1 1
2

.n n n n
n n

n n
, 1 , 1

, 1
2

, 1
2

(10)

To higher orders of zn n, 1
2 the remaining equations become quite

complicated. Therefore, for the sake of the discussion, we will present
here only the simpler development following the first order expansion
without loss of generality, and show the more complicated expansion to
second order in supplementary equations (S1–S3). We now use the

additional restriction

z Jn n, 1 0 (11)

which is similar as used by other authors [15,19,20]. However, the
crucial difference here is that we apply it after the expansion of Eq.
(10), as it enables us to carry out the remaining integrations and arrive
at an analytical form for the 1D Hamiltonian, which is the aim of this
work. After integration in z, and the partition function simplifies to

=
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For the angle integration we will use n n 1 , and the approx-
imation

+cos( ) 1
2n n 1

2

(13)

Note that a small difference n n 1 does not imply in a flattened
helix, since the angles are always offset by the helical twist , see Fig. 1.
Integrating over , we arrive at the final approximated form of the
partition function, after rearranging terms to symmetrize the integrand
function
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Note that the fluctuations along and around the z-axis are given by
and , respectively, which are now outside the remaining integration,
therefore those factors will simply cancel out when calculating ex-
pectation values, Eq. (2).

The remaining variable to integrate is in rn which can be handled by
the transfer integral technique where the kernel is

= ++K x y xy e k
J

x y xy( , ) ( ) exp
8

[( ) ]V x V y1/2 2 [ ( ) ( )]

0
2

2 2 2

(15)

In effect, this is now equivalent to a one-dimensional radial
Hamiltonian with a twist angle dependence

= + +U r r V r k
J

r r r r( , ) ( )
8
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2 2
1

2
(16)

The approximated partition function Eq. (14) can be evaluated via the
transfer integral (TI) technique [1,28]. In this technique the kernel is
discretized overM points in the interval b[0, ] and the partition function
becomes

=
=

Z (4 )TI
N

i

M

i
N2

1 (17)

The average radius r TI is calculated as

= =

=

r
r dr| |

TI
i
M

i
N b

i

i
M

i
N

1 0
2

1 (18)

where i are the eigenfunctions. For details of this procedure see Refs.
1,28,6. For the limit N this further simplifies to

=r r drlim | |
N

TI
b

0 1
2

(19)

where 1 is the eigenfunction with the highest eigenvalue 1 [1]. We
will refer to the approximation calculated by the TI technique as T1 and
T2, for the first and second order expansion of Eq. (8), kernels Eqs. (15)
and (S4), respectively.

2.1. Numerical tests

Here, we will compare numerically the approximated Eq. (17) to the
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fully integrated partition function Eq. (4). To our knowledge, the nu-
merical evaluation of the 3D Hamiltonian, Eq. (4), has not been per-
formed. One possible reason for this is that the numerical effort scales
with N 3. Even for the smallest possible number of base pairs, =N 2, it
has taken us of the order of days with parallel processing. Therefore, we
are limited to =N 2 for the evaluation of Eq. (4). On the other hand, the
TI solution Eq. (17) is valid for sequences of any length N.

We will keep the periodic boundary condition, which may seem odd
for a sequence of length of just =N 2, however there is no loss of
generality for the results presented here. The reason for this is that a
sequence of length =N 2 has two elastic constants, = =k k k1,2 2,1 ,
where the last one represents the periodic boundary condition. The
open boundary condition is simply setting =k k1,2 and =k 02,1 [28],
which for =N 2 turns out to be the exact equivalent of maintaining the
periodic boundary condition and setting = =k k k/21,2 2,1 .

We designated the partition function calculated from Eq. (4) as ZC,
where C stands for complete,

= =Z Z N b[ 2, , , ]C r z (20)

Furthermore, we calculate Eq. (20) by adding the restrictions of Eqs.
(11) and (13), which we called the restricted (R) calculation, which is a
subset of the ZC calculation,

= +Z Z z J ;cos( ) 1
2R C n n n n, 1 0 1

2

(21)

and it is expected that the TI calculations should be close to R. Details of
the numerical integrations are given in supplementary Section (S1).

Unless noted otherwise, for the numerical tests we used the fol-
lowing parameters: =D 0.2 eV, =a 42.5 nm−1, =k 4 eV/nm2, =J 0.70
nm, corresponding to a homogeneous oligonucleotide sequence, and
were largely chosen to highlight the main differences in the integration
methods. The value for J0 was adapted from Ref. 15. The equilibrium
distance was taken as =R 0.10 nm, as r represents half the distance
between the base pairs, this corresponds to a hydrogen equilibrium
bond distance of =R2 0.20 nm.

3. Results and discussion

The dependence of the average radius r as function of temperature
is shown in Fig. 2a for the numerical tests C, R, T1 and T2. In all cases,
the denaturation curves exhibit the characteristic sigmoidal shape of
the melting transition that has been the characteristic of the Peyrard-
Bishop model [1]. The approximated calculation to first order expan-
sion, T1, underestimates the average radius when compared to the C
and R calculations, especially as temperature increases. The restrictions
of Eqs. (11) and (13) do represent a substantial part of this reduction, as
shown by the differences between the C and R calculations. This is to be

expected as all three approximations, Eqs. (10, 11,13), essentially limit
the scope of the integration thus resulting in smaller r . However,
when we use the second order expansion T2, the result is very close to
the R calculation, therefore the differences between T1 and R are only
due to the order of the expansion of Eq. (8). The spectrum of n for T1 is
shown in Fig. 2b (see Fig. S1 for T2) and displays the characteristic anti-
crossing between successive eigenvalues [5], which is highlighted in
the zoomed-in inset. Unlike the spectra of the 1D models [29] where the
eigenvalues have a substantial gap at the anti-crossings, here in Fig. 2b
the gap between 1 and 2 is only 0.00042 or 0.24%. As the sequence
length N increases, the transition becomes increasingly abrupt, as
shown in Fig. 2c. In the limit of N , see Eq. (19), a discontinuity is
observed within resolution of =T 0.01 K. Barbi et al. [19] observed a
similar transition discontinuity at =T 350.74 K, using their model
parameters and a twist angle = 0.05 rad, we obtain 350.60 K, which is
in good agreement in view of the approximations that we are using.

For moderate sequence lengths, for instance =N 25, the helicoidal
model already shows much steeper transitions (Fig. 3a) than other PB-
type models, Fig. 3b. Some examples of different model parameters are
shown in Fig. 3a. Varying the Morse potential D changes the tempera-
ture where the transitions occurs but not the r at high temperatures.
The stacking parameter k on the other hand has an influence on both
the onset of the transition and the high temperature value of r .

Fig. 2. Panel (a): calculated average radius r as function of temperature for calculations of type C (black curve), R (blue short dashed), T1 (green long dashed) and
T2 (red short dashed). Panel (b): 10 highest eigenvalues n for T1 (T2 in Fig. S1), the inset shows a zoom-into highlight the anti-crossings. Panel (c): T1 average radius
r for sequence length =N 10 (red dashed), 40 (orange dotted) and tending to (thick blue), the vertical dotted blue line shows the discontinuity for N within
resolution of =T 0.01 K. Integration limits are = 10 2 nm, = 0.05 rad, = 0.01 rad and =b 20 nm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Calculated average radius r for T1 (panel a, for T2 see Fig. S2) and
calculated 1D average displacement y (panel b) as function of temperature for
sequences of size =N 25. Panel (a): Morse parameters are =D 0.2 eV for all
curves, except dashed black curve for which =D 0.15 eV was used; Stacking
parameters are =k 4 eV/nm2 for the red solid curve and black dashed curve,
the remaining dotted curves are indicated in eV/nm2. Parameters for the T1
were = 10 2 nm, = 0.05 rad, = 0.01 rad and =b 20 nm. Panel (b): para-
meters for the 1D DPB model as in Ref. 33, and for PB and SB as in Ref. 29. Also
shown as dashed curves, with suffix ND (non-divergent), are the calculations
with added angle = 0.01 rad as in Eq. (23).
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To understand the differences between the helicoidal and PB-type
models it is instructive to look at the symmetrized kernel Eq. (15) used
for the T1 calculation, see supplementary Eq. (S4) for T2, and compare
it to the PB kernel [1]

= +K x y e k x y( , ) exp ( )
2PB

V x V y2 [ ( ) ( )]
2

(22)

One important difference is the x y( ) to the fourth order in stacking
term of Eq. (15), instead of second order for the PB kernel [1]. There-
fore, the harmonic 3D stacking seemingly maps into an anharmonic
stacking term in the helicoidal model. However, in our tests with the
helicoidal model, such a fourth power term is not the main cause of a
steep transition, although it has an important influence on which
temperature the transition starts and how large r becomes at higher
temperatures. What actually ensures the abrupt rise of r is the xy( )1/2

factor which comes from the integration in r, which does not exists in
the PB model. Supplementary Fig. S3 shows that by removing xy( )1/2 the
sigmoidal increase of r is no longer present. It also has an effect on
magnitude of the potential parameters. For instance, the D we used to
obtain a transition at higher temperatures is much closer to actual en-
ergies of the hydrogen bonds used in MD and quantum mechanical
calculations, around 0.15 eV per hydrogen bond [14,30], whereas for
the PB model these potentials are typically an order of magnitude
smaller [11]. The elastic constants k are similar in magnitude to those
already in use in the PB model and compare within order of magnitude
to those used in MD, 4 to 10 eV/nm2 [31,32]. The last factor in Eq. (15)
contains the twist angle which plays a crucial role in preventing the
divergence in the integration, we will discuss this in more detail next.

All PB-type models suffer from a numerical divergence, this is be-
comes especially apparent for the anharmonic Dauxois-Peyrard-Bishop
(DPB) model and was discussed in detail by Zhang et al. [28]. One
tentative approach to circumvent this divergence was to add a twist
angle to Eq. (22) [7],

+x y x xy y( ) ( 2 cos )2 2 2 (23)

which mimics a small out of plane angle. This procedure avoids the
divergence for any PB model [29] but also reduces the steepness of the
transition, see dashed curves Fig. 3b. In general, the solvent-barrier (SB)
model [29], another PB-type Hamiltonian, has a much steeper increase
of the displacement than the anharmonic DBP [33] or the original
harmonic PB model [1]. Some authors have used Eq. (23) as a twist
angle model with large angles and basically observe the suppression of

the transition steepness [34]. The helicoidal model also shows the di-
vergence problem if the twist angle is zero, = 0, as shown in Fig. 4.
The radius r diverges much more strongly than the partition function
Zr z due to the additional variable r in the integration of Eq. (2).
Therefore the onset of the divergence for r , Fig. 4b, occurs at a much
shorter b than for Zr z, Fig. 4a. The divergence appears equally for the C
and TI calculations, and consequently is not a particularity introduced
by the approximations or by the transfer integral technique. Setting the
twist angle to a non-zero value, no matter how small, removes the
divergence entirely and therefore brings some justification to the si-
milar approach used in the PB model, Eq. (23) [29]. When we increase
the upper limit b we observe that both the partition function and radius,
Fig. 4, converge to constant values for >b 12 nm, including at higher
temperatures, see supplementary Fig. S4. Therefore, by using this type
of analysis we ensure that the results do not depend on integration cut-
off values.

The average radius r follows in general that of the restricted nu-
merical integration R. Deviations of T1, T2 and R, from the unrestricted
calculation C, become larger if we move away from the conditions
where the approximations are valid, which is for small angles ( < 0.01
rad) and small longitudinal displacements ( < ×2 10 2 nm), see
Fig. 5a,b. The limit of the angle and the upper limit for the z
variable both appear as constant factors in Eq. (14) and therefore are
cancelled in the calculation of the average radius. As a consequence, the
average radius is constant for and , for the approximated calculation
as shown in Fig. 5a,b. The same happens for R, which validates the T1
and T2 within these restriction. For the twist angle we observe a
progressive reduction of the average radius r after = 0.02 rad. For
larger angles, r tends towards the equilibrium radius r0 in all cases,
which is consistent with the idea that the strands can not separate
without unwinding the helix.

The analytical form of the Hamiltonian Eq. (16) and its associated TI
kernel Eq. (15) allows for a straightforward use in established PB cal-
culations and implementations [35]. This means that the new model
can now be adapted to heterogeneous sequences and parameterised
from melting temperatures in a similar way as for the PB model in DNA
and RNA [11]. The improved compatibility of the model with MD
means that we are able to use similar model parameters and compare
the displacements r to hydrogen bond lengths resulting from atomistic
simulations [31,14].

Fig. 4. Calculated (a) configurational part of the partition function Zr z and (b) average radius r as function of the upper limit b of the integration variable r, at
200 K, for C (black), T1 (green) and T2 (red). Full curves are for a twist angle of = 0.05 rad and dashed curves for = 0. Integration limits are = 10 2 nm, = 0.01
rad. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Conclusions

We have developed and tested several approximations that allow
the 3D Hamiltonian to be analytically integrated and resulted in a new
1D Hamiltonian with twist angle dependence. A first-order-like transi-
tion is observed, much steeper than for any PB model. This transition
arises naturally in the helicoidal model, without the need of additional
anharmonic potentials.

The results of the new helicoidal model, when compared to the
restricted and unrestricted 3D calculations, points to a quantitative
agreement in regime of small integration angles. Therefore, this ap-
proximated model, in particular represented by the Hamiltonian of Eq.
(16), is expected to be useful for situations where the DNA helix is
completely unwound. This is typically the case close to the temperature
of DNA denaturation. We believe that its primary use will be for re-
placing PB-like Hamiltonians in melting temperature calculations [7],
as it can be used within the framework of the TI method that already
exists for the PB models [35]. The helicoidal model considers a similar
structural definition as used in molecular dynamics [14], which enables
the use of compatible parameters, such as hydrogen bond equilibrium
distances. In addition, we showed that the Morse potential parameters
are now much closer to those that are obtained from quantum me-
chanical calculations [30].
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