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Resumo

Regras suplementares de execugdo tém sido utilizadas desde a década de 1950 para melhorar
o desempenho de cartas de controle. Em uma publicag¢do anterior, Quinino et al.(QUININO
et al., 2023), sugerimos uma melhoria para um procedimento conhecido como "Klein’s 2-of-
2", uma regra suplementar simples e eficiente que sinaliza que o processo estd fora de controle
apenas quando duas médias sequenciais de amostras sdo observadas acima do limite de controle
superior (UCL) ou abaixo do limite de controle inferior (LCL). O uso dessa regra resulta em
uma reducdo substancial no average run length (ARL) na detec¢do de pequenos deslocamentos
no processo, embora essa melhoria tenha sido atestada apenas em comparacdo com a carta
de controle tradicional X, que visa apenas monitorar a média de um processo. Este trabalho
propde implementar o "Klein’s 2-of-2" para um tipo mais complexo de carta de controle, a
carta de controle conjunta X — S2, que visa monitorar simultaneamente a média e a varidncia de
um processo, uma aplicagdo importante em processos de alta qualidade. O uso dessa regra para
a carta X — S2 resulta em uma redugdo substancial no average run length (ARL) na detecgio
de pequenos deslocamentos no processo, em comparacao com a carta de controle tradicional
X - 52, mantendo também um alto nivel de aplicabilidade devido 2 facilidade de uso da regra
2-of-2 em ambientes praticos. A implementacdo da regra de execucdo de Klein para a carta
X - 52 foi realizada por meio de uma Cadeia de Markov de 15 estados, e seu desempenho foi
comparado tanto com a carta de controle basica X — S? quanto com duas aplica¢des da média
movel ponderada exponencialmente (EWMA), conhecida por ter excelentes capacidades na
deteccao de pequenos deslocamentos médios do processo, ao custo de um esquema de controle
mais complexo, proporcionando um desempenho competitivo mesmo em comparagcdo com a
carta de controle EWMA mais complexa.

Palavras-chave: cartas de controle; regras suplementares; ARL; cadeia de Markov.



Abstract

Supplementary run-rules have been used since the 1950s to improve the performance of control
charts. In a prior publication, Quinino et al.(QUININO et al., 2023), we have suggested an
improvement for a procedure known as Klein’s 2-of-2, a simple and efficient supplementary
rule which signals that the process is out-of-control only when two sequential sample averages
are observed above the upper control limit (UCL) or below the lower control limit (LCL). The
use of this rule results in a substantial reduction of the average run length (ARL) in detecting
small process shifts, although this improvement has only been attested when compared to the
traditional X control chart, which aims to only monitor a process’s mean. This work proposes to
implement Klein’s 2-of-2 for a more complex type of control chart, the X —S2 joint control chart,
which aims to monitor both the mean and the variance of a process simultaneously, an important
application in high quality processes. The use of this rule for the X — S? control chart results
in a substantial reduction of the average run length (ARL) in detecting small process shifts
when compared to the traditional X — S? control chart while also maintaining a high level of
applicability due to the 2-of-2 rule’s ease of use in practical environments. The implementation
of Klein’s run rule for the X — S? control chart was done through a 15 state Markov Chain, and
its performance was compared to both the basic X —S? control chart as well as two applications
of the exponentially weighted moving average (EWMA), known to have excellent capabilities in
detecting small process average shifts at the cost of a more complex control scheme, providing

a competitive performance even when compared to the more complex EWMA control chart.

Keywords: control charts; run rules; ARL; Markov chain.
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1 Introduction

Controlling the process mean and variance has been a challenge since the industrialization of
our society, as they are a fundamental component of quality control in most processes, allowing
for a consistent production and alerting an industry of significant changes. How to control these
variables is a discussion with hundreds of years of history, but one of the most popular and
efficient ways to do so are by using control charts. They are graphical displays created to allow a
practitioner to determine whether a process is in-control or out-of-control by collecting samples
at specified intervals and representing the values of some statistics on a graphic which includes
decision lines, called control limits. The main performance indicator for control charts is the
Average Run Length (ARL), defined by Montgomery (MONTGOMERY, 2020) as the average
number of points that must be plotted before a point indicates an out-of-control condition. This
performance indicator is normally divided in two metrics: 1- An in-control ARL, ARL,, that
is the average number of samples taken until the control chart indicates that process is out-
of-control when it is not, a false alarm; 2- An out-of-control ARL, ARL,, that is the average
number of samples collected after the process is out-of-control, for the control chart to indicate
that the process is indeed out-of-control. Normally the ARL, is fixed at certain values, usually
250,370 or 500, and the ARL; while maintaining the previously defined ARLys represents the

performance of the control chart.

The first control chart aiming to control a process mean was proposed in the 1930’s
by Walter A. Shewhart in his seminal book (SHEWHART, 1932), where he described what
ended up being the standard control chart used to control a process mean to this day, the X
control chart. Using the same principles of the X control chart we can construct a control chart
to monitor the process variance, named S? control chart. Notice that both the X and the 52
control charts aim to monitor a single parameter, the mean or the variance, respectively. As it is
often desirable to control both of these parameters at the same time, these two control charts are
almost always used together, as noted in Gan (GAN, 1995). The problem with this approach, as
mentioned by Gan (GAN, 1995), is that we are essentially looking at a bi-variate problem using
two uni-variate procedures, since both parameters can shift at the same time and changes in the
variance can affect the control limits of the mean chart. Thus, when using both control charts
together, a common practice, it is necessary to adjust their control limits to account for the fact
that we are considering a set of statistical inferences simultaneously, what is called the multiple

comparisons problem.

Control schemes that aim to link these two control charts are called joint monitoring
control schemes for the mean and variance. According to Chao and Chang (CHAO; CHENG,
1996), a control chart should be "simple to use, easy to understand, and quick to implement"

while also clearly indicating which parameter is out-of-control, as added in McCracken and
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Chakraborti (MCCRACKEN; CHAKRABORTI, 2013). Hence, one of the simplest joint moni-
toring tools used widely nowadays is the X — 52 control chart, where the two individual control
charts, X and S2, are used at the same time with adjusted limits. This control chart and its

details will be discussed below.

The X — 52 control chart is well-known for its use in the joint monitoring of the mean
and variance of processes in which the quality characteristic of interest (X) follows a normal
distribution with mean x4 and standard deviation o. The process is considered in-control when
/= [, the mean is equal to an in-control mean, and o = 0y, the standard deviation is equal
to an in-control standard deviation. The process is considered out-of-control when the mean
shifts from its target value, ug, to an out-of-control 1 = pg + doy, that is, it shifts from an in-
control state to an out-of-control state by ¢ standard deviations, where § # 0. The process may
also be considered out-of-control if the standard deviation shifts from its target value of o to
an out-of-control o; = 0y, that is, it shifts from an in-control state to an out-of-control state by
~ standard deviations, where v > 1. Costa and Rahim(COSTA; RAHIM, 2004) discuss that it is
usually assumed that the primary interest in variance quality control is in detecting increases in

o, since an increase corresponds to deterioration in quality, therefore v > 1.

As previously stated, the X — S2 control chart consists of two control charts, the X
control chart and the S control chart. The X control chart is the most commonly used tool
for controlling a process mean in the industry, while the S? control chart is considered the
most popular method for controlling the process variance. They are so ubiquitous due to their
simplicity and ability to detect large shifts quickly. However, both the X and the S? control
charts lack sensitivity in detecting small sustained shifts in the mean or variance, respectively,
that is, they present a high ARL; value for small shifts in the mean, §, or small shifts in
the variance, . To improve their sensitivity, several authors have proposed alternative control
chart approaches, such as the exponentially weighted moving average (EWMA), proposed in
Roberts (ROBERTS, 1959), cumulative sum (CUSUM) proposed in Page (PAGE, 1961), and
double exponentially weighted moving average (DEWMA), presented in Shamma and Shamma
(SHAMMA; SHAMMA, 1992). Such methods do present high sensitivity to detect small shifts
in the process mean(variance), small d(v) values, but are often considered too complex for im-
plementation in the industry, as discussed in Klein (KLEIN, 2000), Haq and Woodall (HAQ);
WOODALL, 2023) and harking back to Gan’s (GAN, 1995) statement about a control chart’s
simplicity, ease to implement and be understood. Aiming to improve the X and S2 control
chart’s sensitivity while maintaining their already established and widely used system, supple-
mentary run rules have been suggested throughout the history of quality control. Run rules are
a set of new procedures which aim to increase the sensitivity of a control chart, according to
Koutras et al. (KOUTRAS; BERSIMIS; MARAVELAKIS, 2007)

Different types of run rules, as described in Shmueli and Cohen (SHMUELI; COHEN,
2003), Champ (CHAMP, 1992), and Walker et al. (WALKER; PHILPOT; CLEMENT, 1991),
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have been proposed and compared in Palm (PALM, 1990). More recently, researchers such as
Rocha et al. (ROCHA; MEDEIROS; HO, 2015), Kim and Cho (KIM; CHO, 2020), Adeoti and
Malela-Majika (ADEOTI; MALELA-MAIJIKA, 2020), Tran (TRAN, 2018), Ruiz-Tamayo et
al. (RUIZ-TAMAYO et al., 2021), Malela-Majika et al. (MALELA-MAJIKA; MALANDALA,;
GRAHAM, 2018) and Karavigh and Amiri (KARAVIGH; AMIRI, 2022) have also suggested
different complex run rules aiming to improve the performance of control charts. Jalilibal et al.
(JALILIBAL et al., 2023) performs a recent literature review on run rules schemes for statistical
process monitoring. Unfortunately, as discussed in Klein (KLEIN, 2000), the X and S2 control
charts without any run rule are still the most used tools for quality control of a process mean
(variance) in practice, possibly because of a general perception that the implementation of mod-
ern methodologies with excellent ARL; values is too complex and difficult to interpret in an

industrial environment.

To address this difficulty, simpler run rules have been proposed, that is, run rules which
feature procedures that do not differ much from the standard X and S2 control charts. One
of the most prominent of these is the 2-of-2 rule proposed by Klein (KLEIN, 2000). In this
rule, the process is only signaled as out-of-control when two successive points are above an
upper control limit (UCL) or two successive points are below a lower control limit (LCL), thus
improving the control chart’s sensibility to small shifts. This paper proposes to apply the 2-
of-2 rule to the X — S2 control chart in order to improve its ability to detect small shifts in
the mean and variance while maintaining its simplicity, as, according to Hurwitz and Mathur
(HURWITZ; MATHUR, 1992), the 2-of-2 rule is simple and well-accepted in an industrial

environment, avoiding operational difficulties.

The remainder of the article is organized as follows. Section 2 develops the newly pro-
posed X — 52 control chart with klein’s 2-of-2 run rule. Section 3 discusses the performance of
the newly proposed control chart when compared to the standard X — 52 control chart, in sec-
tion 3.1, and the exponentially weighted moving average (EWMA) control scheme in section
3.2. An illustrative numerical example is the objective of Section 4. Section 5 closes this article
with a discussion and final remarks. Finally, all seven programs, developed in R and identified

from A to G, utilized throughout this paper are included in Appendix A to G.
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2 The improved X — S? control chart

As discussed in section 1, the X — S?2 control chart is widely used in the joint monitoring
of the mean and variance of processes. It consists of two different control charts, the X and the
52 control charts, with control limits such that the global ARLy, that is, average number of
samples collected until the X — S2 control chart indicates that the process is out-of-control

when it is not, is fixed at a desired number, usually 370.4.

For the X chart, the means Z of random samples of size n are computed and compared

with the upper control limit, UCL] = po + Z; /2% , and lower control limit, LCL = pq —
n
Zo /2%, where Z;_,» is the 100(1 — «/2)% percentile of the standard normal distribution. If
n

LCLg < X <UCL . the process is said to be in control, otherwise the process is considered
out-of-control.

For the S? control chart, the variances s? of each sample of size n and the statistics

_1yQ2
\2 = (n 012)5
0

are computed and compared to an upper control limit UCL}. = X3 o where

n=1>
XT_a+m-1 18 the 100(1 — a*)% percentile of the chi-squared distribution, with n — 1 degrees
of freedom. If x? < X%—a*;n—l’ the process is said to be in-control, otherwise the process is
considered out-of-control, notice that we do not establish a lower control limit (LCL) for this
control chart, harking back to Costa and Rahim(COSTA; RAHIM, 2004)’s discussion about the

primary interest in quality control being to detect increases in the variance, o2.

As previously stated, to use the joint X — S2 control chart it is necessary to calibrate the
false-alarm rate of each individual control chart (the X and S?2 control charts) in such a way that
the in-control joint average run length (AR L) is as planned. Considering the false-alarm rate of
the X control chart to be given by a and the false-alarm rate of the S2 control chart to be given
by a*, the false-alarm rate of the X — 52 control chart is given by [1 - (1 - a)(1 - a*)], where
usually o = a*, since the joint control chart would be out-of-control if any combination of the
X and S2 is out-of-control. As an example, if we seek an ARLy ~ 370, we would need a false-
alarm rate of 0.00135081 for both the X and S? control charts, so that ARLy = m ~
370. In this perspective, we will name the upper control limit and lower control limit for the
mean control chart as UCLg and LCL ¢, respectively, and the control limit for the variance
control chart as UC'Lge.

In this paper we aim to improve the performance of said X — S2 control chart by using
a supplementary run rule, proposed in Klein (KLEIN, 2000), named the 2-of-2 rule. It proposes
that an action must be taken only if there is a sequence of two X lying on the same side beyond
the control limits (above or below), that is, if X, ; > U CL)[-?“'" and X; > U CL)[-?“'" or X; ; <

LCLE n and X, < LOLEK!in or 2G5 gopKlein and £01 5 oLkl This simple
0 0
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and efficient run rule can be applied to the X — S2 control chart in order to improve its detection
of small shifts in the mean or variance while maintaining a similar level of complexity to that
of the standard joint control chart, therefore being a simpler and more feasible improvement to

be applied in practice.

The proposed procedure to implement said supplementary run rule in the X — S2 con-
trol chart can be described by a Markov chain with 15 states, E=[ XC - SC; X5 - SC; XSS -
SC, X1 - SC, XII - SC; XC - SF; XS -SF; XSS -SF; XI -SF;XII - SF;XC -
SFF;XS-SFF;XSS-SFF;XI-SFF;XII—-SFF], defined in Table 1.

Let p.. be the probability of a sample’s mean value being between the control limits
UCLE*™ and LOLE"™; p,, be the probability of a sample’s mean value being above the
upper control limit U CL)[-?“'"; P, be the probability of a sample’s mean value being below the
lower control limit LC' Lglem; pse the probability of a sample’s x? being below the control limit

UCLE*™ and p, the probability of a sample’s x* being above the control limit UC' LE}".

The transition matrix can be expressed by the following matrix (). Notice that the ele-
ments of the matrix are the conditioned probabilities, that is, the probability of reaching a state

of E depends only on the previous state. This is known as a markovian property.

XC-SC XS§-5C XSS-SC XI-SC XII-SC XC-SF XS-SF XSS-SF XI-SF XII-SF XC-SFF XS-SFF XSS-SFF XI-SFF XII-SFF

XC-5C Dac *Psc Pou * Psc 0 Dal * Psc 0 Dac *Psf  Dau *Dsf 0 Dal * Dsf 0 0 0 0 0 0
X§-5C Pae * Psc 0 Pru *Psc Pal * Psc 0 Pac * Psf 0 Pou *Dsf  Pal * Psf 0 0 0 0 0 0
XSS -sc Pzc *Psc Pau * Pse 0 Pal * Pse 0 Pac * Psf  Pru * Dsf 0 Pal * Psf 0 0 0 0 0 0
XI1-5C Dac *Psc Pau * Psc 0 0 Dol *Psc Pxe *Psf  Pau * Dsf 0 0 Dol * Dsf 0 0 0 0 0
XII1-5C Dac * Psc Pau * Psc 0 Pal * Psc 0 Pac * Psf  Pru * Psf 0 Pal * Psy 0 0 0 0 0 0
XC-SF Pac *Psc Pau * Psc 0 Pal * Psc 0 0 0 0 0 0 Paxc *Psf  Dau * Dsf 0 Dal * Psf 0
XS-SF Pxc * Psc 0 Pzu * Psc  Pal * Psc 0 0 0 0 0 0 Pzc * Psf 0 Pzu * Psf Pzl * Psf 0
XSS -SF Pxzc *Psc  Pau * Psc 0 Pal * Psc 0 Pxc *Psf  Pxu * Psf 0 Pal * Psf 0 0 0 0 0 0
XI1-SF Pzc *Psc  Pau * Psc 0 0 Pzl * Psc 0 0 0 0 0 Pxc *Psf  Pau * Dsf 0 0 Pal * Psf
XII-SF Pzc *Psc Pau * Pse 0 Pal * Pse 0 Pac * Psf  Pru * Dsf 0 Pl * Psf 0 0 0 0 0 0
XC-SFF | pec*Psc  Pau *Psc 0 Dal * Psc 0 Dac *Psf  Dau *Dsf 0 Dal * Psf 0 0 0 0 0 0
XS=SFF | pac*Psc  Paou*Psc 0 Pail * Psc 0 Pue *Dsf  Pou * Psf 0 Pat * Psf 0 0 0 0 0 0
XSS —-SFF | pac*Psc Pau * Dsec 0 Pzl * Psc 0 Pze * Psf  Paxu * Dsf 0 DPal * Dsf 0 0 0 0 0 0
XI-SFF Dac * Psc  Pau * Psc 0 Dal * Psc 0 Dac * Dsf  Pau * Psf 0 Dl * Dsf 0 0 0 0 0 0
XII-SFF \ pzc*Psc  Pru * Psc 0 Pl * Pse 0 Pzc * Psf  Pau * Dsf 0 Pal * Psf 0 0 0 0 0 0

In order to improve the reader’s understanding, Table 1 explains each state in the transi-

tion matrix.

Observe that states 3- X SS-SC,5-XI11-SC,8-XS55-SF,10-XII-SF,11-XC-SFF,
12-X5-SFF,13-XSS-SFF,14- XI-SFF and 15- XII - SFF, marked in bold,

indicate situations in which the process is adjusted.

The values of the probabilities p,c, pzu, Pai> Psc and psy depends on the upper control
limit, U CL)I-?“'", and lower control limit, LC’L?“’" for the X control chart and U CL?J“'" for
the S? control chart. Observe that the transition probabilities in () are simple multiplications,
since: 1) The samples of size n used for the control process are collected independently and with
identical distribution (iid); ii) The sample’s mean X is independent of the sample’s variance S2,
as observed in Chen et al.(CHEN; CHENG:; XIE, 2001).
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Table 1 — Explanation of each state

State Explanation

1-XC-SC | ucLE* i < X, < LOLE"™, S—("r” <ucrien

2-XS-5C | [Xi2UCLE*"n X, < UCLK“”"] S—";ﬁ <ucLklemn

3- XSS-SC [Xion X,] > UCLEk™, S—("r” < UCLK’“”

4-XI-5C | [Xi<LOLE""n X, > LC’LK“”"] M <ucLhen

5- XII-SC [Xio1n X;] < LOLK™, S—("r” < UCLK“”"

6-XC-SF | UCLE"" < X; < LOLE"™; 5@ > ULk

T-XS-SF | [Xi>UCLE " n X, < UCLK“”"], &:ﬁ > UCLEn

8- XSS-SF [Xi1n Xi] 2 UCLEem, 202D 5 UCLK’“”

9-XI-SF | [Xi<LCLE""n X, > LCLK“”"] M > UCLEn

10- XII-SF [Xio1 n Xi] < LOLE™™, S—(”Or” > UCLK’“”

1-XCSFF | UCLE"™ < X, < poLem; (S.GD) ) 5 LG UOLgn
12-XS-SFF | [X; > UCLE"“" 0 X, ; < UCLK“”O"] (Sl o Si0e 1>] > UCLEen
13- XSS-SFF | [X,.1 nX;] > UCLE ™, 2 1(: D 5 e 10>] > UCLK“”"

14-XI-SFF | [X, < LCLE*"n X, > LC’LK“””] [Zi 1(0" D SEl 1>] > UCLEen
15- XII-SFF | [X;, n X,;] < LOLElm, 1% lcf?f DN s 1>] > UCLK’””

Without loss of generality, standardized values of the quality characteristic, in which the
data follows a standard normal distribution N (19 = 0, 0 = 1) when in-control and a distribution
N(p = po + 00g,01 = yoo) when out-of-control, are used to quantify the ARL; values in
this paper in relation to shifts in the mean of § and shifts in the standard deviation of of a

multiplication factor of 7.

In order to calculate the ARL, values for the X — S joint control chart with the 2-of-2
run rule, it is necessary to evaluate the percentage of time, when the system is in equilibrium,
in which the process stays in each of the 15 states described in table 1. This can be calculated
through the stationary distribution given by 7 = {7y, 7o, 73, ... m15} wWith 7 = 7Q. Solving the
system of equations with the restriction ¥;°, m; = 1 yields 7. We highlight that the matrix Q
is irreducible and aperiodic. That is: i) It is possible to go from any state to any other state
(positive probability) in a finite number of n-steps, ()", guaranteeing irreducibility; ii) There
are no fixed cycles where the process always returns to the same set of states in fixed intervals,
guaranteeing that the the chain is aperiodic, that is, the greatest common divisor of all return
paths to a specific state is equal to 1. Note that period is a property of a class, and since the
chain is irreducible (having only one class), it suffices to evaluate a single state. For example,
state XC-SC in Q connects to itself with a positive probability, ensuring a period equal to 1,
and consequently, all states have a period equal to 1. According to Grimmett and Stirzaker
(GRIMMETT; STIRZAKER, 2020), a Markov Chain that is irreducible and aperiodic, with a
finite amount of states, guarantees the existence of a single stationary state being known as an
ergodic chain. Consequently, () does posses a stationary state. For further details, including

computational discussions using the R software, refer to Spedicato (SPEDICATO, ).
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The long term probability of an adjustment of the process is expressed as:

@:W3+7T5+7T8+7T10+7T11+7T12+7T13+7T14+7T15. (21)

Which is the sum of the probabilities to be in a state where the process is considered out-of-
control. The states where the process is considered out-of-control are denoted in bold in Table
1.

When the process is in-control the value of O is calculated with the hypothesis that
0 =0and v = 1, being defined as ©,. When the process is out-of-control the value of © will be
calculated with the hypothesis that 6 # 0 and/or v > 1, being defined as O;.

With control limits UCLE'™", LCLE'“™ and UC'Lg/*™ and considering a geometric
distribution with probability of success given by the Egs. (2.1), we are able to determine the

values of ARL, and ARL; in relation to ¢ and ~, expressed respectively by:

ARLy(6=0;v=1) = i (2.2)
©o
and
1
ARL; (0 #0;y>1) = —. (2.3)
©,

Note that the control limits U CLglei", LC’L?“’" and U Cnglei" are determined in such
a way to obtain a desired ARL, value, usually 250, 370.4 or 500. For example, if we set ARL =
370.4 and use n = 5 with standardized data, then U CL%M” = (.87822, LCL)I-?M” = —(.87822
and U CL?J”” = 10.051. If we use these limits, we would have a value of ARL; = 93.379 for
§ = 0.25 and v = 1.05. Using the traditional X — S2 control chart with the same definitions of
ARLg, n, 0 and v we would have UC Ly = 1.4309, LCL; = -1.4309, UC' Lg> = 17.842 and
ARL, =112.44.

In order to motivate practitioners, ensure reproducibility of results and facilitate the ex-
pansion of research, two programs, developed in R, to find the control limits and the ARL of the
standard X — 52 control chart and the newly proposed version are included in the supplementary

material available in the Appendix, identified as appendix A and B, respectively.
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3 Evaluating the performance of the im-
proved X - S2 control chart

This Chapter consists of 2 sections. In Sec. 3.1, we compared the performance of the control

chart proposed in this paper with the traditional X — S approach.

In Sec. 3.2, we compare the proposal of this work with a control chart using the expo-
nentially weighted moving average (EWMA) control scheme, which is a complex but powerful
alternative for detecting small shifts in both the mean and variance. The use of the EWMA

control scheme coupled with Klein’s 2-of-2 supplementary run rule is also discussed.

3.1 Comparison to the standard X - 52 control chart

Table 3 compares, in terms of ARL; and with an standard ARL, = 370.4, the per-
formance of the standard X — S2 control chart to that of the proposed X — S2 control chart
with Klein’s 2-of-2 rule applied. In order to have a significant comparison, sample sizes of
n = [4,5,6, 7], shifts in the mean of § = [0,0.25,0.5,0.75, 1, 1.25, 1.5] and shifts in the variance
of v = [1,1.05,1.1,1.2,1.3,1.4,1.5] were utilized. Additionally, Table 2 presents the control
limits for each case discussed in Table 3.

Table 2 — Control limits for the X — S2 control chart for an ARL of 370.4 and different sample
sizes (n)

n=4 n=>5 n=06 n="7
UCLy | 1.603 | 1.434 | 1309 | 1.212
LCL; | -1.603 | -1.434 | -1.309 | -1.212
UCLg: | 15.621 | 17.791 | 19.811 | 21.729
UCLY®™ | 0.982 | 0.878 | 0.802 | 0.742
LCLY" | -0.982 | -0.878 | -0.802 | -0.742
UCLEF™ | 8335 | 10.051 | 11.671 | 13.227

The results presented in table 3 were obtained through the programs A and B available
in the appendix. Program A calculates the ARL, values and control limits for the X —S2 control
chart, while Program B calculates the ARL; values and control limits for the X - S2 control
chart with Kleint’s 2-of-2 rule, utilizing a Markov Chain approach.

Aiming to verify the coherence of the results presented in table 3 for the Markov Chain
approach of the X — 52 control chart with Klein’s 2-of-2 rule, we have also developed a program
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C, also available in the Appendix, where results are obtained through Monte Carlo Simulations
for the X — S2 control chart with Klein’s 2-of-2 rule. We have verified that the ARL; results
obtained through a Monte Carlo simulation approach with 1000 different replicas, each with
one million runs, fluctuate around the results obtained through the Markov Chain approach for
the X — S2 control chart with Klein’s 2-of-2 rule. As an illustrative example: forn =5, =0.75
and v = 1.5, the Markov Chain approach results in a value of ARL; = 5.287; Employing a
Monte Carlo simulation featuring 1000 replicas with one million runs each, we obtain results
that fluctuate around an ARL; of 5.287 following a normal distribution, as shown in Figure 1.
All other values present in Table 3 were also verified through the same simulation approach and

reach similar results.

300

250 - Mean=5.287 _
Standart Deviation=0.004016

p-value=0.761 (Test for Normality / Anderson-Darling)

N
=1
S]
T
1

Frequency
@
3
T
|

=3
S]
T
1

50— -

Figure 1 — Results obtained through a Monte Carlo simulation approach for n = 5; 6 = 0.75;
~v=1.5
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Table 3 — ARL,; for the proposed improvement vs the standard X — S? control chart
n=4 n=>5 n==6 n="7
0 0% ARL; ARL; - Klein ARL; ARL;- Klein ARL; ARL;- Klein ARL; ARL;- Klein
0 1 370.400 370.400 370.400 370.400 370.400 370.400 370.400 370.400
0 1.05 | 202.710 208.780 196.590 199.160 191.290 191.020 186.560 183.940
0 1.1 | 119.650 126.240 112.730 115.280 106.860 106.360 101.710 98.867
0 1.2 50.108 55.295 44.981 47.182 40.804 41.067 37.300 36.273
0 1.3 25.398 29.388 22.016 24.051 19.366 20.260 17.227 17.437
0 14 14.841 18.055 12.569 14.458 10.846 12.008 9.496 10.245
0 1.5 9.656 12.357 8.064 9.812 6.887 8.130 5.985 6.947
0.25 1 204.080 158.190 180.380 134.270 160.620 115.450 143.950 100.350
025 1.05 | 126.600 109.000 112.440 93.377 100.850 81.248 91.157 71.545
025 1.1 82.260 76.696 72.894 65.563 65.376 57.112 59.175 50.448
025 12 39.247 40.893 34.231 34.202 30.322 29.331 27.173 25.617
025 13 21.518 24.251 18.410 19.801 16.043 16.680 14.175 14.375
025 14 13.207 15.879 11.123 12.764 9.569 10.647 8.366 9.126
025 1.5 8.873 11.300 7.396 9.023 6.315 7.515 5.492 6.453
0.5 1 65.619 39.269 49.996 29.108 39.303 22.565 31.676 18.104
05 1.05 | 48.292 33.298 37.801 25.365 30.440 20.118 25.065 16.454
0.5 1.1 36.395 28.284 29.090 22.019 23.881 17.798 20.013 14.797
0.5 1.2 21.928 20.481 17.976 16.364 15.118 13.549 12.961 11.516
0.5 13 14.156 15.043 11.714 12.121 9.946 10.133 8.609 8.700
0.5 1.4 9.727 11.363 8.061 9.166 6.861 7.690 5.957 6.637
0.5 1.5 7.068 8.891 5.854 7.175 4.985 6.041 4.336 5.242
0.75 1 21.798 12.597 15.341 9.162 11.397 7.122 8.825 5.810
0.75 1.05 | 18.097 11.912 13.139 8.859 10.014 6.997 7.921 5.776
075 1.1 15.236 11.244 11.365 8.530 8.859 6.838 7.142 5.707
075 1.2 11.136 9.919 8.661 7.769 6.997 6.384 5.818 5.433
075 13 8.396 8.634 6.711 6.908 5.554 5.777 4.718 4.988
075 1.4 6.507 7.467 5.288 6.051 4.443 5.119 3.826 4.467
075 1.5 5.180 6.473 4.252 5.287 3.608 4.511 3.136 3.969
1 1 8.596 5.694 5.926 4.345 4.393 3.572 3.439 3.092
1 1.05 7.756 5.679 5.504 4.388 4.171 3.632 3.321 3.153
1 1.1 7.050 5.647 5.133 4.415 3.969 3.679 3.209 3.206
1 1.2 5911 5.519 4.492 4.408 3.592 3.723 2.983 3.269
1 1.3 5.016 5.304 3.937 4.311 3.231 3.684 2.741 3.261
1 14 4.293 5.021 3.450 4.135 2.887 3.569 2.489 3.183
1 1.5 3.707 4.705 3.029 3.913 2.572 3.405 2.245 3.057
1.25 1 4.113 3.431 2.909 2.826 2.242 2.496 1.840 2.304
1.25 1.05 3.928 3.494 2.842 2.886 2.225 2.547 1.844 2.345
125 1.1 3.761 3.550 2.778 2.941 2.206 2.595 1.846 2.385
125 12 3.462 3.629 2.650 3.030 2.157 2.677 1.836 2.456
125 1.3 3.190 3.660 2.514 3.081 2.089 2.731 1.805 2.505
125 14 2.936 3.641 2.368 3.088 2.003 2.748 1.753 2.526
125 1.5 2.701 3.579 2.218 3.056 1.902 2.731 1.684 2.517
1.5 1 2.371 2.559 1.779 2.276 1.464 2.139 1.283 2.069
1.5 1.05 2.347 2.613 1.787 2.315 1.481 2.166 1.301 2.087
1.5 1.1 2.322 2.664 1.792 2.354 1.495 2.193 1.317 2.106
1.5 1.2 2.268 2757 1.793 2.428 1.516 2.249 1.344 2.146
1.5 13 2.205 2.829 1.780 2.490 1.524 2.298 1.360 2.183
1.5 1.4 2.132 2.877 1.752 2.533 1.518 2.334 1.364 2212
1.5 1.5 2.051 2.897 1.712 2.556 1.497 2.355 1.355 2.230




Chapter 3. Evaluating the performance of the improved X — S? control chart 22

The values in bold present in table 3 indicate the lower ARL, value between the X — S2
control chart and the X — S? control chart with Klein’s 2-of-2 supplementary run rule applied.
It is possible to observe that, generally, small shifts in the mean and/or variance favour the
use of the X — S2 with the 2-of-2 supplementary run rule, particularly when the sample size n

increases.

Figure 2 shows the results of table 3 for n = 5 graphically, in order to illustrate and
summarize the results. The X-axis represents shifts in the standart deviation, v, while shifts in
the mean, 4, were represented on the top of the graph’s 6 sections, each for a specific shift in the
mean. The Y-axis represents a ratio of the ARL; values of the X — S2 control chart with Klein’s
run rule, ARL?_E;Z, and the standard X — 5?2 control chart, ARL %_g2, thatis, values lower than 1
on the Y-axis represent a situation in which the proposed X — S2 control chart with Klein’s run

rule had a better performance than the X — S? standard joint control chart, in terms of ARL,.
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Figure 2 — Comparison of performance between the proposed X - 52 control chart and the
standard X — S? control chart

Figure 2 shows that the X — 52 control chart with Klein’s run rule presents a lower
average ARL, in relation to the standard X — S2 control chart for shifts in the mean of § =
0.25,0.5,0.75, 1 and shifts in variance of v = 1,1.05,1.1,1.2. It is also noticeable that the per-
formance difference, in terms of ARL;, of the proposed control chart and the standard X — 52
control chart is increased significantly for small shifts both in the mean and variance, such as
the cases where the variance didn’t change, v = 1 and the shift in the mean was lower than 0.75,
0 = 0.25,0.5,0.75. In these situations the proportion between the performance of the newly

proposed chart and the standard control chart was as low as 0.6.

For larger shifts in the mean, such as § = 1.25,1.50, we can see that the performance
of the standard joint control chart is superior thorough all shifts in variance, although it is also

important to highlight that most control charts, including the X — 52, are already sensible to



Chapter 3. Evaluating the performance of the improved X — S? control chart 23

large shifts in the parameters being controlled, presenting low ARL; values. The difference
in performance between both methods, although seeming to be large, is of 0.64 samples on
average, for a § = 1.50. The same difference in performance is of 9.69 samples on average for a
0 = 0.25. The notion that a better performance for large shifts is generally not as important was
discussed in Khoo (KHOOQ, 2003) where it is stated that the standard X control chart can detect
large shifts, at the earliest, one observation earlier than the X control chart using the 2-of-2 rule,
while "for small process average shifts, the difference in the time of detecting an out-of-control
signal between the standard Shewhart and the other schemes are quite significant".

These results contribute to the initial hypothesis that the addition of Klein’s 2-of-2 rule
to the X — S2 control chart would improve itt’s performance for small shifts both in the mean
and variance, making it more suitable for processes requiring control of small changes in these
two parameters while maintaining the simplicity which makes the standard X — S2 control chart

so ubiquitous in the industry.

3.2 Comparison to the EWMA control chart

In this section we aim to compare the performance of the improved X — S2 control
chart to the performance of a more complex control chart, well known for presenting good per-
formance results, the exponentially weighted moving average (EWMA) control chart, initially
proposed by Roberts (ROBERTS, 1959) to improve the sensitivity to small changes in the pro-
cess mean and adapted for the use in the joint monitoring of mean and variance in Chen et
al.(CHEN; CHENG:; XIE, 2001).

According to Klein(KLEIN, 2000), exponentially weighted moving average (EWMA)
schemes have excellent capabilities in detecting small process average shifts, as described in
Montgomery(MONTGOMERY, 2009). However, until now, they do not appear to have gained
widespread adoption beyond chemical process industries. This could be attributed to the percep-
tion that the necessary calculations are too intricate for regular shop floor operations and/or the
common organizational inertia linked with procedural changes. Hence, in this paper, we explore
variations of simpler traditional methods that might find more acceptance among practitioners.
Nevertheless, we consider it important to compare performance results with the EWMA control
scheme, since it is considered as the benchmark for detecting minor shifts in the mean and/or

variance.

In order to make such a comparison, it is important to define how does the EWMA
control scheme works for the X — 52 joint control chart. For this purpose, we cite the description
given in Chen et al.(CHEN; CHENG; XIE, 2001), where the EWMA X chart and the EWMA

log(.S?) control charts are described:

For the EWMA X chart, the control limits would be
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X /\1 go
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Where )\, and K are the parameters that control the performance of the EWMA X
chart. The plotted statistics are:

Ti=(1-M)Tp + M X;,0< M <1,i=1,2,... (3.2)

where Tjy = 11 is the starting value. For the modified EWMA log(.S2) chart, the control

limits are:
LCLﬁmm:c—}Q\/@di),
2 (3.3)

dXy
(2-X)’

UCLS

FEwma

:C+K2

Where )\, and K, are the parameters that control the performance of the EWMA log(.5?)
chart, c is the (approximate) mean of log(S?), given by:

C:hmﬁ)_ni1_3@ily+1agin4 4
and d is the (approximate) variance of log(.S?), given by:
d:n%1+(n392+3mﬁlﬁ_1asén5 (35)
The plotting statistics are:
Wi=(1-X)Wig +Aalog(5?),0< Ao <1,i=1,2,... (3.6)

where W, is the starting value which assumes the value c.

Table 5 compares the proposed X — 52 control chart with klein’s 2-of-2 rule performance,
in terms of ARL, to the performance of the X — 52 control chart using the EWMA proposition,
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found in Chen et al.(CHEN; CHENG:; XIE, 2001). The ARL; values obtained by Chen were
derived through a Monte Carlo simulation with 10 thousand runs. In order to compare both
results, we have adopted the parameters used in Chen et al.(CHEN; CHENG; XIE, 2001) for
the EWMA control chart, that is, an ARL, of 250, a sample size of n = 5, shifts in the mean
of § = (0,0.25,0.5,1,2) and shifts in the variance of v = (0.25,0.5,1,1.5,2) and A\; = Ay = \.
The parameters used for the EWMA control chart were A = 0.80 in EWMA-A and A = 0.1 in
EWMA-B, which were selected to encompass distinct values of A in the comparison, similarly
to Costa and Rahim (COSTA; RAHIM, 2004). All bilateral control limits for the cases discussed
in Table 5 are presented in Table 4.

Table 4 — Control limits for the different bilateral X — S2 control charts present in table 5, for

an ARLg of 250
X - 52 Klein EWMA (\ = 0.8) EWMA (A =0.1) X - 52
UCLKE™ = 0.917 | UCL¥yaa = 1128 | UCLYyy,4 = 0.288 | UCLy = 1.380
LCLKE = —0.917 | LCL a4 = —1.128 | LCLYy 3,4 = —0.288 | LCLg = ~1.380
UCLES™ =9.974 | UCL3hy 4 =2.274 | UCL34y 04 = 0.257 | UCLg: = 18.509
LCLKF™ = 0.635 | LCLSyy a4 = —2.814 | LCLS 0,4 = —0.797 | LCLg2 = 0.090

Notice that shifts in the variance where o; < oy were used, that is v < 1, signifying
that there is an interest in detecting decreases in the variance as well as increases. Thus, the S?
component of the X — S2 control chart, which was previously unilateral, only concerned with
detecting increases in the variance, was altered such that the X —52 control chart is now bilateral
and capable of detecting decreases in the variance, allowing for a proper comparison with the
EWMA control chart described in Chen et al.(CHEN; CHENG; XIE, 2001). The bilateral X-52
control chart with the 2-of-2 rule was implemented through a Markov Chain with 25 states. The
bilateral ARL; values presented in Table 5 for the standard X — 52 control chart, X — S2 control
chart using Klein’s 2-of-2 run rule were calculated by using programs D and E respectively. The
bilateral ARL values presented in Table 5 for the X — S? control chart utilizing the EWMA
control scheme were taken from Chen et al.(CHEN; CHENG; XIE, 2001), however they can be
reproduced through program F. Programs D, E and F are present in the supplementary material

available in the Appendix.

Figure 3 shows the results of table 5 graphically, in order to illustrate and summarize
the results. The X-axis represents shifts in the variance, «, while shifts in the mean, §, were
represented on the top of the graph’s 5 sections, each for a specific shift in the mean. The Y-
axis represents the In(ARL;) values for both control charts, the proposed control chart with
Klein’s 2-of-2 rule being represented by a square, m, and the control scheme using the EWMA
control chart being represented by a circle, @. Subfigure 3(a) refers to a comparison between
the proposed Klein method and the EWMA control scheme with A = 0.80, while Subfigure 3(b)

compares the proposed method with the EWMA control scheme using a A = 0.10 instead, in
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Table 5 — Comparison, in terms of ARL;, between a joint monitoring scheme using the expo-
nentially weighted moving average (EWMA) control chart using different A values
and the proposed improvement using Klein’s 2-of-2 rule.

Parameters Control charts

0 v Klein EWMA-A (A =0.8) EWMA-B(\=0.1) X - 52

0 025 2.120 2.400 2.500 6.151

0 0.5 | 10.387 20.600 5.300 69.643

0 1 |250.000 249.400 252.100 250.000

0 1.5 9.790 25.600 9.700 8.314

0 2 3.661 7.800 5.000 2.436
025 0.25| 2.120 2.500 2.600 6.151
0.25 0.5 | 10.387 20.600 5.300 69.642
025 1 132.890 99.500 25.100 127.080
025 1.5 9.053 17.400 8.800 7.516
025 2 3.593 6.800 4.800 2.379
05 025] 2.120 2.400 2.500 6.151
0.5 0.5 | 10.305 20.800 5.200 69.443
0.5 1 34.153 24.200 8.800 37.630
05 1.5 7.270 9.000 6.900 5.774
0.5 2 3.405 5.200 4.500 2.226

1 025 2.035 2.400 2.500 6.140

1 0.5 3.315 4.900 3.600 17.048

1 1 4.738 3.700 3.900 5.005

1 1.5 3.980 3.100 3.900 2.890

1 2 2.874 2.800 3.500 1.798

2 025 2.000 1.000 2.000 1.000

2 0.5 2.000 1.000 2.000 1.003

2 1 2.023 1.100 2.000 1.090

2 1.5 2.136 1.200 2.100 1.194

2 2 2.170 1.300 2.100 1.196

order to represent the EWMA method with different values of A and ensure a fair comparison.
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Figure 3 — Comparison of performance between the proposed X — S control chart and the
X — 52 control chart using the EWMA proposition



Chapter 3. Evaluating the performance of the improved X — S? control chart 28

The figure indicates that the proposed X —S2 control chart with the 2-of-2 rule presents a
very competitive performance even in relation to complex methodologies known to have strong
results, such as the EWMA, presenting a lower ARL value on several cases throughout the
values tested. Notably, the performance of the EWMA control chart is superior for large shifts
in the mean, but, as previously discussed in Section 3.1, large shifts may not be as relevant in

terms of performance, as the differences in samples collected are generally small.

These results show the proposed X — S2 control chart with Klein’s rule to be a very
interesting option, as it has a competitive performance in relation to a significantly more com-
plex control scheme, the EWMA, while maintaining a simplicity that made the standard X — 52
control chart so widely used, proposing only a small adjustment in the collection of samples

and a small adjustment on the calculation of the control limits.

Observing the results in Table 3, a noteworthy point that deserves evaluation is to
check if the performance of the discussed joint EWMA procedure in this section could be
improved by incorporating Klein’s procedure (2-of-2 rule). Thus, the EWMA procedure pre-
sented in Chen (CHEN; CHENG; XIE, 2001) was adapted to incorporate Klein’s rule, i.e.,
the process will be judged out of control if we observe two consecutive points of 7; above
(below) UCLX-Klein ([,C'[X-Kleiny and/or have two consecutive points of W; above (below)

FEwma FEwma

UCLS2—Klein (LCLSQ—Klein .

Ewma FEwma

The values of UC L Klein | [ ' [X-Klein {7C'[,5*~Klein and [C'L5,~ Kl were obtained
in such a way as to ensure an AR L close to 250, as adopted in the cases of Table 5. As in Chen
(CHEN; CHENG:; XIE, 2001), we used Monte Carlo simulations to estimate the values of ARL,
(value based on 500000 runs) withn = 5 and A = 0.1. The R program where we implemented the
joint EWMA procedure adding Klein’s 2-of-2 rule and obtained the values of ARL; through
Monte Carlo simulation is available as program G in the Appendix. Using programs F and G,
we calculated the ARL; values for the proposed joint EWMA and the proposed joint EWMA
incorporating Klein’s 2-of-2 rule. The ¢ and ~ values used for the simulations were those of

Table 5 as well as other small shifts in the mean and variance.

We can see in Figure 4 that the performance results for the two proposals are simi-
lar, with the joint EWMA control scheme’s performance being inferior to the joint EWMA
incorporating the Klein’s 2-2 rule only in a few cases where the shifts are small: (6;v) =
(0.05;0.95), (0.05; 1), (0.05;1.05), (0.25;0.95), (0.25; 1), (0.1;0.95), (0.1; 1), (0.1; 1.05). In this
sense, we understand that the use of the joint EWMA proposal with the supplementary 2-of-2
rule would only be recommended in comparison to the use of the joint EWMA scheme in case
it is necessary to detect very small changes in the mean and/or variance.

The control limits for the EWMA control scheme being used for the joint X —.S2 control
chart are presented in Table 4. For the EWMA control scheme with Klein’s 2-of-2 run rule, the
control limits were UCLX-Klein = (0 25957, LO'LX-Klein = _() 25957, UC LS. Klein = (.20497

FEwma FEwma FEwma

and LO LS -Klein — _() 7456,

FEwma
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Figure 4 — Comparison of the joint EWMA control chart versus the joint EWMA control chart
using the 2-of-2 run rule
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4 Numerical Example

In this section, we provide a numerical example based on Montgomery (MONTGOMERY,
2020), assuming that the described process has been in operation for a long time. The exam-
ple considers the production of piston rings for automotive engines through a forging process,
where controlling the inner ring diameters (D) is crucial for ensuring product quality. Small
changes in the average diameter of the pistons can lead to an increase in nonconforming units,

hence the need to quickly detect such variations.

Table 6 presents the data of the inner ring diameters for the 25 samples, each of size
n = 9, taken from the production process, presenting each individual value as well as each
sample’s mean X and variance S2. Samples in bold indicate sequences in which the process is
considered out-of-control in the X — 52 control chart with Kleins supplementary rule. Observe
that, for each sample, a decision is made on the process being in statistical control or out of
statistical control.

To evaluate the future capacity of the process, it is essential to establish statistical con-
trol. Under statistical control, the inner ring diameters follow a normal distribution with mean
o = 74.0508 mm and variance of = 0.47482 mm. If samples of size n = 5 are collected each
hour, the control limits aiming for an ARL( = 370.4 can be obtained through program B, pre-
sented in the Appendix, and Table 6, where, for the X control chart, U CL%M” = 74.468 and
LCL)I-?“'” = 73.634 and, for the S? control chart, UC’nglem =10.051.

In order to more directly compare the standard deviation (S) of the samples instead of

. _ 2 . . . y .
using y2 = (DS 12)3 for the control limits in the S2 control chart, UC LE}*™ was transformed in
gX p s
0

UCLg(lein Xr72

UC LEtin" where UC LElin" = 0 which can be directly compared to the standard

deviation, resulting in a value of UC' L&"™” = (.752.

n—1

In order to facilitate the reader’s understanding, Figure 5 presents the results of Table 6
in two graphs, for the mean and the standard deviation of the samples. The first graph represents
the X control chart, used to control the sample mean, and the second graph represents the 52
control chart, used to control the sample variance/standard deviation. The calculated upper and
lower control limits, in the case of the X control chart, or the upper control limit, in the case
of the S? control chart, are also represented in each graph. Samples with an in-control average
value are represented by a circle, @, and samples with an out-of-control average value are
represented by a square, m. Lastly, situations in which the process would be considered out-
of-control, two consecutive samples are beyond the same side of the control limits (above or
below), are circled. Notice that if any of the two control charts indicate that the process is
out-of-control using this run rule, the joint control chart will indicate that the process is out-of-

control.
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Table 6 — Example - inner diameter measurements (mm) of automobile engine piston rings

Sample X, X, X3 Xy X5 X X beyond control limits? S S beyond control limits? Decision
1 74.4357 | 74.5999 | 73.9342 | 73.4610 | 74.7280 | 74.2318 No 0.5258 No in-control
2 73.9415 | 74.2705 | 73.8179 | 74.0556 | 74.3251 | 74.0821 No 0.2149 No in-control
3 74.1459 | 74.9491 | 73.9810 | 74.5521 | 74.8735 | 74.5003 Yes (above UCL) 0.4298 No in-control
4 74.0997 | 74.5921 | 74.4758 | 74.2567 | 73.9703 | 74.2789 No 0.2573 No in-control
5 75.2493 | 74.7503 | 73.5058 | 73.4198 | 74.2975 | 74.2445 No 0.7896 Yes (above UCL) in-control
6 75.1547 | 73.3587 | 74.4780 | 75.1246 | 73.6130 | 74.3458 No 0.8351 Yes (above UCL) out-of-control
7 74.3572 | 73.9932 | 73.8009 | 73.6307 | 74.5064 | 74.0577 No 0.3686 No in-control
8 73.5098 | 74.0014 | 74.1039 | 73.3648 | 74.6444 | 73.9249 No 0.5102 No in-control
9 73.5265 | 73.4815 | 73.1418 | 74.0177 | 74.2900 | 73.6915 No 0.4577 No in-control
10 75.1802 | 74.5007 | 75.1190 | 75.1474 | 74.8506 | 74.9596 Yes (above UCL) 0.2880 No in-control
11 73.7025 | 73.6221 | 74.2995 | 73.5349 | 73.6022 | 73.7522 No 0.3118 No in-control
12 73.4093 | 73.9984 | 74.2685 | 73.5359 | 73.5414 | 73.7507 No 0.3661 No in-control
13 73.3414 | 74.0958 | 74.6182 | 75.5084 | 74.0438 | 74.3215 No 0.8040 Yes (above UCL) in-control
14 74.2642 | 74.5148 | 74.0881 | 73.4742 | 74.0550 | 74.0793 No 0.3843 No in-control
15 73.4588 | 72.5344 | 72.1376 | 72.7350 | 72.7788 | 72.7289 Yes (Below LCL) 0.5106 No in-control
16 75.0715 | 74.1691 | 74.3394 | 73.0938 | 74.0899 | 74.1527 No 0.7079 No in-control
17 74.4718 | 74.4386 | 73.7068 | 74.1232 | 73.8066 | 74.1094 No 0.3513 No in-control
18 73.7300 | 74.2468 | 74.4114 | 74.1108 | 73.8559 | 74.0710 No 0.2787 No in-control
19 74.2566 | 73.7013 | 74.3251 | 73.8000 | 74.3087 | 74.0783 No 0.3021 No in-control
20 74.4414 | 74.8761 | 74.4717 | 74.4444 | 74.4130 | 74.5293 Yes (above UCL) 0.1949 No in-control
21 75.8819 | 74.4186 | 74.6863 | 74.8287 | 73.8999 | 74.7431 Yes (above UCL) 0.7286 No out-of-control
22 73.4192 | 74.4942 | 74.5731 | 73.4163 | 74.4422 | 74.0690 No 0.5963 No in-control
23 73.5922 | 74.3617 | 74.2836 | 73.2267 | 74.8433 | 74.0615 No 0.6457 No in-control
24 75.1241 | 73.3756 | 74.5663 | 74.9275 | 73.7670 | 74.3521 No 0.7531 Yes (above UCL) in-control
25 75.0859 | 73.3279 | 74.5162 | 75.0222 | 73.6491 | 74.3203 No 0.7988 Yes (above UCL) out-of-control

75
S ™, Out-of-control
745 ! l/\, UCL=74.468
= 74
3
E wap LCL=73.634
v
73
1 3 5 9 1 13 15 17 19 21 23 25
Sample
1
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Figure 5 — joint control chart - inner diameter measurements (mm) of the automobile engine
piston rings.
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5 Final Remarks

In this paper we propose an improvement to the X — S2 control chart, aimed to control
the mean and variance of a process, while attempting to maintain the simplicity which made it
so widely used throughout the industry. Several propositions to improve the joint control chart’s
performance can be found throughout the literature, but few have been well-accepted in the
industry, demonstrating a resistance to implement complex solutions such as the introduction
of new control limits beyond the usual ones, new decision rules, etc, even if they present good

performance.

In order to improve the X — S2 performance while maintaining a simple approach, we
have applied a run rule proposed in Klein (KLEIN, 2000) named the 2-of-2 rule. The idea
of klein’s 2-of-2 rule is that the process is only signaled as out-of-control when two successive
points are above an upper control limit (UCL) or two successive points are below a lower control
limit (LCL), thus improving the control chart’s sensibility to small shifts. According to Hurwitz
and Mathur (HURWITZ; MATHUR, 1992), the 2-of-2 rule is simple and well-accepted in an
industrial environment, since it avoids operational difficulties and presents similar complexity
to that of the X — S2 control chart.

In order to apply the 2-of-2 rule to the joint X — 52 control chart, we have used a
Markov Chain approach. The performance results, in terms of ARL;, of the newly proposed
control chart were compared to the standard X — S control chart and to the more complex
X — 52 control chart with the exponentially weighted moving average (EWMA) control scheme.
The proposed control chart presented superior results for small shifts in the mean and variance
when compared to the standard joint control chart and very competitive performance results
when compared to the more complex EWMA joint control chart, all while being simple and

easy to implement.

Additionally, we have also evaluated combining the EWMA control scheme with Klein’s
2-0f-2 run rule for the joint X — S2 control chart. According to the results found in section 3.2,
we concluded that the joint EWMA control chart and joint EWMA control chart with the 2-of-2
run rule present very similar ARL; values, leading to the conclusion that Klein’s supplementary
run rule did not present a significant improvement when combined with the EWMA control
scheme.

A numeric example was presented and all seven programs utilized throughout this paper,
developed in R, are available in Appendix A to G.
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APPENDIX A — Control limits and ARL
of the X- S2 unilateral control chart for a

given sample size "n" and target ARL of
llllldlngl;()ll

#A control chart for the joint monitoring of mean and variance
rm(list = 1s())
##Markov chain

u0=0 #In-control average

ul=0.25 #out-of-control average (defined in the previous vector)

s0=1 #in-control standard deviation

s1=1.05 # out-of-control standard deviation (defined in the previous vector)
n=5 #Sample size

ARL0=370.4 #Target ARLO

OtiUCL <- function(alfa) {
alfag=l-(l-alfa[l])x(l-alfa(2])
ARL=1/alfag
ARLphi= (ARL-ARLO) "2
return (ARLphi)
}
#upper limit to be used in the optimize function. Change as needed.
LSa=1
LSb=1
#initial value. Change as needed.
ivxbar=0.04
ivs2=0.04
par_optim <- nlminb (c(ivxbar,ivs2),0tiUCL, lower=c (0,0),upper =c(LSa,LSb))
alfaa=par_optim[[1]][1] #Prob Xbar
alfab=par_optim([[1]][2] #Prob S2

#ARL1
LSCxb=gnorm((l-alfaa/2),u0,s0/(n"0.5))
LICxb=gnorm(alfaa/2,ul0,s0/(n"0.5))
LSCqui=qgchisqg((l-alfab), (n-1))

pc=pnorm (LICxb,ul,sl/ (n*0.5))
pa=l-pnorm(LSCxb,ul,sl/(n"0.5))
pb=1-pa-pc

pas=1l-pchisqg(LSCquix (s072/s1%2), (n-1))
pbs=1-pas

ARL1<-1/ (1-pbxpbs)

cat (' LSCxb='",LSCxb, "\n")
cat (' LICxb='",LICxb, "\n")
cat (' LSCqui=’,LSCqui, "\n")
cat (' Probxbar=’,alfaa, "\n")
cat (' Probs2=',alfab, "\n")
cat ("ARL1=',ARL1, "\n")
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APPENDIX B — Control limits and ARL
of the improved X- S? unilateral control
chart for a given sample size "n" and
target ARLy of "ARL("

#A control chart for the joint monitoring of mean and variance with Klein’s
supplementary rule

require (pracma)

rm(list = 1s())

FH A
u0=0 #In-control average
ul=0.25 #out-of-control average (defined in the previous vector)
s0=1 #in-control standard deviation
sl=1.05 # out-of-control standard deviation (defined in the previous vector)
n=5 #Sample size
ARL0=370.4 #Target ARLO

FH A S i 4
OtiUCL <- function (U) {#Optimization function used to find the UCL and LCL
UCLxb=gnorm( (1-U[1]/2),u0,s0/(n"0.5))
LCLxb=qgnorm(U[1]/2,u0,s0/(n"0.5))
LCs2=qchisqg((1-U[2]), (n-1))
#X-bar control chart
pxi=pnorm (LCLxb,ul,s0/(n"0.5))
pxs=1-pnorm (UCLxb,ul,s0/ (n"0.5))
pxc=l-pxs-pxi

#S2 control chart
psf=1-pchisqg(LCs2, (n-1))
psc=1l-psf
#Markov chain
size<—- 15 #Size of the Markov chain
MarkovChain<- matrix (0,nrow=size,ncol=size,byrow=TRUE)
MarkovChain([1l, ]<-

c (pxcxpsc, pxs*psc, 0, pxixpsc, 0, pxcxpsft, pxs*psf, 0, pxi*psft,0,0,0,0,0,0)
MarkovChain([2, ]<-

c (pxcxpsc, 0, pxs*xpsc, pxi*psc, 0, pxcxpsft, 0, pxs*xpsft, pxi*psft,0,0,0,0,0,0)
MarkovChain([3, ]<-

c (pxcxpsc, pxs*psc, 0, pxixpsc, 0, pxcxpsft, pxs*psf, 0, pxi*pst,0,0,0,0,0,0)
MarkovChain([4, ]<-

c (pxcxpsc, pxs*psc, 0,0, pxixpsc, pxcxpsft, pxs*psft, 0,0, pxixpsft,0,0,0,0,0)
MarkovChain([5, ]<-

c (pxcxpsc, pxs*psc, 0, pxixpsc, 0, pxcxpsft, pxs*psf, 0, pxi*pst,0,0,0,0,0,0)
MarkovChain([6, ]<—

c (pxcxpsc, pxs*psc, 0, pxi*xpsc,0,0,0,0,0,0,pxcxpst, pxs*pst, 0, pxixpsft,0)
MarkovChain([7, ]<-

c (pxcxpsc, 0, pxs*xpsc, pxi*psc,0,0,0,0,0,0,pxcxpsft, 0, pxs*xpsf, pxixpsft,0)
MarkovChain([8, ]<-

c (pxcxpsc, pxs*psc, 0, pxixpsc, 0, pxcxpsft, pxs*psf, 0, pxi*pst,0,0,0,0,0,0)
MarkovChain[9, ]<-

c (pxcxpsc, pxs*psc, 0,0, pxi*psc,0,0,0,0,0,pxcxpsft, pxs*psf, 0,0, pxixpsf)
MarkovChain[10, ]<-

c (pxcxpsc, pxs*psc, 0, pxi*psc, 0, pxc*psft, pxsxpsf, 0, pxixpsft,0,0,0,0,0,0)
MarkovChain([11l, ]<-

c (pxcxpsc, pxs*psc, 0, pxi*psc, 0, pxc*psft, pxsxpsf, 0, pxixpsf,0,0,0,0,0,0)
MarkovChain([12, ]<-

c (pxcxpsc, pxs*psc, 0, pxi*psc, 0, pxc*pst, pxsxpsf, 0, pxixpsft,0,0,0,0,0,0)
MarkovChain[13, ]<-

c (pxcxpsc, pxs*psc, 0, pxi*psc, 0, pxc*psft, pxsxpsf, 0, pxixpsf,0,0,0,0,0,0)
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MarkovChain[14,]<-

c (pxcxpsc, pxs*psc, 0,pxixpsc, 0, pxcxpsft, pxs*psf, 0, pxi*pst,0,0,0,0,0,0)
MarkovChain[15, ]<-

c (pxcxpsc, pxs*psc, 0,pxixpsc, 0, pxcxpsft, pxs*psf, 0, pxi*psft,0,0,0,0,0,0)

#The stationary distribution

A = t (MarkovChain) - eye(1l5)
A[15,] = ones(1,15)

B = zeros (15, 1)

B[15,1] =1

Solved_markov_chain = solve (A)%$*%B

ARL<- 1/sum(Solved_markov_chain[3, ], Solved_markov_chain[5, ],
Solved_markov_chain[8, ], Solved_markov_chain[10,],
Solved_markov_chain[1l1l,],Solved_markov_chain[12,],
Solved_markov_chain[13,],Solved_markov_chain[14,],
Solved_markov_chain[15,])

ARLphi= (ARL-ARLO) "2

return (ARLphi)
}

FH A S S
#Limit used in the optimize function for the x-bar control chart

LSa=1

LSb=1

#initial value. Change as needed.

ivxbar=0.04

ivs2=0.04

par_optim <- nlminb (c (ivxbar,ivs2),0tiUCL, lower=c (0,0),upper =c(LSa,LSb))#
Ua=par_optim[[1]][1] #Prob Xbar

Ub=par_optim[[1]][2] #Prob S2

UCLxb=gnorm( (1-Ua/2),u0,s0/(n"0.5)) #upper control limit for the x-bar
LCLxb=gnorm(Ua/2,u0,s0/(n"0.5)) #lower control limit for the x-bar
LCs2=qgchisqg((1-Ub), (n-1)) #control limit for the s2

#X-bar control chart
pxi=pnorm(LCLxb,ul,sl/(n"0.5))
pxs=1l-pnorm (UCLxb,ul,sl/ (n"0.5))
pxc=1l-pxs-pxi

#S2 control chart
psf=1-pchisqg(LCs2* (s0"2/s1"2), (n-1))
psc=l-psf

FHAFH A S S

#Now that we have the probabilities for this specific case, we solve it
through a Markov Chain again

size<- 15 #Size of the Markov chain

MarkovChain<- matrix (0,nrow=size,ncol=size, byrow=TRUE)

MarkovChain[1l, ]1<-

c (pxc*psc,pxs*psc, 0,pxi*psc,0,pxcxpst,pxs+psft,0,pxi*psf,0,0,0,0,0,0)
MarkovChain[2, ]<-

c (pxc*psc, 0, pxs*xpsc, pxi*psc, 0, pxcxpst, 0, pxs*psft, pxi*psf,0,0,0,0,0,0)
MarkovChain[3, ]1<-

c (pxc*psc, pxs*psc, 0,pxi*psc, 0, pxcxpst,pxs+psft,0,pxi*psf,0,0,0,0,0,0)
MarkovChain([4, ]1<-

c (pxc*psc,pxs*psc, 0,0, pxixpsc,pxc*pst,pxs+psft,0,0,pxi*xpsft,0,0,0,0,0)
MarkovChain[5, ]1<-

c (pxc*psc, pxs*psc, 0,pxi*psc, 0, pxcxpst,pxs+psft,0,pxi*psf,0,0,0,0,0,0)
MarkovChain[6, ]<—

c (pxc*psc, pxs*psc, 0,pxi*psc,0,0,0,0,0,0,pxc+pst,pxs*psf,0,pxixpst,0)
MarkovChain[7, ]1<-

c (pxc*psc, 0, pxs*xpsc, pxi*psc,0,0,0,0,0,0,pxc*psft, 0, pxs*psf,pxi*psf,0)
MarkovChain([8, ]<—

c (pxc*psc, pxs*psc, 0,pxi*psc, 0, pxcxpst,pxs+psft,0,pxi*psf,0,0,0,0,0,0)
MarkovChain[9, ]1<-

c (pxc*psc, pxs*psc,0,0,pxixpsc,0,0,0,0,0,pxc+psft,pxs*psf, 0,0, pxixpst)
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MarkovChain[10, ]<-

c (pxc*psc,pxs*psc, 0,pxi*psc, 0, pxcxpst,pxs+psft,0,pxi*psf,0,0,0,0,0,0)
MarkovChain[11l, ]<-

c (pxc*psc,pxs*psc, 0,pxi*psc,0,pxcxpst,pxs+psft,0,pxi*psf,0,0,0,0,0,0)
MarkovChain[12, ]<-

c (pxcxpsc, pxs*psc, 0, pxi*psc, 0, pxc*psft, pxs*xpsf, 0, pxixpsft,0,0,0,0,0,0)
MarkovChain[13, ]<-

c (pxcxpsc, pxs*psc, 0, pxi*psc, 0, pxc*psft, pxsxpsf, 0, pxixpst,0,0,0,0,0,0)
MarkovChain[14, ]<-

c (pxcx*psc, pxs*psc, 0, pxi*psc, 0, pxc*psft, pxsxpsf, 0, pxixpsft,0,0,0,0,0,0)
MarkovChain[15, ]<-

c (pxcxpsc, pxs*psc, 0, pxi*psc, 0, pxc*psft, pxs*xpsf, 0, pxixpsft,0,0,0,0,0,0)

#The stationary distribution
A = t (MarkovChain) - eye(1l5)

A[1l5,] = ones(1,15)

B = zeros (15, 1)

B[15,1] =1

Solved_markov_chain = solve (A)%$*%B

ARL1<- 1/sum(Solved_markov_chain[3,], Solved_markov_chain([5,],
Solved_markov_chain[8, ], Solved_markov_chain[10,],
Solved_markov_chain[1l1l,],Solved_markov_chain[12,],
Solved_markov_chain[13,],Solved_markov_chain[14,],

[15,]

Solved_markov_chain , 1)

options (digits=5)

cat (' UCLxb=',UCLxb, "\n")
cat (/ LCLxb=',LCLxb, "\n")
cat (' LCs2='",LCs2,"\n")
cat (ARL1=’,ARL1, "\n")
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APPENDIX C — ARL values for the
improved X- S2 unilateral control chart
for a given sample size "n" and target
ARL = 250 using Monte Carlo
simulations

library (pracma)
clear ()
tic ()

# Definition of parameters
# Target ARL0=370.4

# In-control

u0 = 0

sd0 =1

# Out-of-control - Table 2
ul = 0.5

sdl = 1.5
n =95

# Limits obtained by experimentation to reach target ARLO= 250
# LCL1=-0.98188; UCL1=0.98188; UCL2=8.3347 #n=4

LCL1 = -0.87822; UCL1 = 0.87822; UCL2 = 10.051 #n=5

# LCL1=-0.8017; UCL1=0.8017; UCL2=11.671 #n=6

# LCL1=-0.7422; UCL1=0.7422; UCL2=13.227 #n=7

runs = 1000000 # number of simulations for Monte Carlo
Result <- matrix (0, runs, 1)

for (i in l:runs) {

sl =0
s2 =0
sla = 0
D <= c()

while (sl < 2 & s2 < 2 & sla < 2) { # klein rule
RR <- rnorm(n, ul, sdl)

R = mean (RR)

V = var (RR)

T = R

W=V (n—- 1) / sdo0

if (T > UCL1l & W > UCL2) {
D <- rbind(D, 1)
sl = s1 +1
s2 0
sla = sla + 1

}

if (T < LCL1 & W > UCL2) {
D <- rbind(D, 1)
sl 0
s2 s2 + 1
sla = sla + 1
}
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if (T >= LCL1 & T <= UCL1l & W > UCL2) {
D <- rbind(D, 1)

sl =0
s2 =0
sla = sla + 1

}

if (T > UCL1l & W < UCL2) {
D <- rbind(D, 1)
sl = s1 +1
s2 =0
sla = 0
}

if (T < LCL1 & W < UCL2) {
D <- rbind(D, 1)

sl =0
s2 = s2 + 1
sla = 0

}

if (T >= LCL1 & T <= UCL1l & W < UCL2) {
D <- rbind(D, 1)

sl =0
s2 =0
sla =0
}
ua = T
sa = W
}
Result[i, 1] = sum(D)

}

ARL <- mean (Result[, 117)
cat ("ARL1=", ARL, "\n")
toc ()




43

APPENQIX D — Control limits and ARL
for the X- S? bilateral control chart for a

given sample size "n" and target ARL of
"lll_Z%ng;()"

#A control chart for the joint monitoring of mean and variance
rm(list = 1s())
##Markov chain

u0=0 #In-control average

ul=2 #out-of-control average (defined in the previous vector)

s0=1 #in-control standard deviation

s1=0.25 # out-of-control standard deviation (defined in the previous vector)
n=5 #Sample size

ARL0=250 #Target ARLO

OtiUCL <- function(alfa) {
alfag=l-(l-alfa[l])x(l-alfa(2])
ARL=1/alfag
ARLphi= (ARL-ARLO) *2
return (ARLphi)
}
#upper limit to be used in the optimize function. Change as needed.
LSa=1
LSb=1
#initial value. Change as needed.
ivxbar=0.04
ivs2=0.04
par_optim <- nlminb (c(ivxbar,ivs2),0tiUCL, lower=c (0,0),upper =c(LSa,LSb))
alfaa=par_optim[[1]][1] #Prob Xbar
alfab=par_optim([[1]][2] #Prob S2

#ARL1
LSCxb=gnorm((l-alfaa/2),u0,s0/(n"0.5))
LICxb=gnorm(alfaa/2,u0,s0/(n"0.5))
LSCqui=qgchisqg((l-alfab/2), (n-1))
LICqui=qgchisqg(alfab/2, (n-1))

pc=pnorm (LICxb,ul,sl/ (n”0.5))
pa=l-pnorm(LSCxb,ul,sl/ (n"0.5))
pb=1-pa-pc

pas=1l-pchisqg(LSCquix (s072/s1"2), (n-1))
pcs=pchisq(LICquix* (s0%2/s172), (n-1))
pbs=1-pas-pcs

ARL1<-1/ (1-pbxpbs)

cat (' LSCxb='",LSCxb, "\n")
cat (' LICxb=',LICxb, "\n")
cat (" LSCqui=’,LSCqui, "\n")
cat (' Probxbar=’,alfaa, "\n")
cat (' Probs2=',alfab, "\n")
cat ("ARL1=',ARL1, "\n")
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APPENDIX E - Control limits and ARL
for the improved X - S2 bilateral control
chart for a given sample size "n" and
target ARLy of "ARL("

#A control chart for the joint monitoring of mean and variance with Klein’s
supplementary rule

require (pracma)
rm(list = 1s())

Cat(INI’I\tI, ’ul’,’\t’,’Sl’,’\t’,’ARLl’,’\n’)

mlf<- ¢(0.00,0.25,0.50,1,2) #Vector containing different out-of-control averages

mlfs<— size (mlf)

slf<- ¢(0.25,0.50,1,1.50,2)#Vector containing different out-of-control standard
deviations

slfs<- size(slf)

nf<- c(5) #Vector containing different sample sizes

nfs<- size(nf)

FH A A S S
for(k in 1:nfs[2]) {
for(i in 1:mlfs[2]) {
for(j in 1l:s1fs[2]) {
u0=0 #In-control average
ul=mlf[i] #out-of-control average (defined in the previous vector)
s0=1 #in-control standard deviation
sl=slf[j]l# out-of-control standard deviation (defined in the previous vector)
n=nf[k] #Sample size
ARL0=250 #Target ARLO

FHAFH A S o
O0tiUCL <- function (U) {#Optimization function used to find the UCL and LCL
UCLxb=gnorm((1-U[1]/2),u0,s0/(n"0.5))
LCLxb=gnorm(U[1]/2,u0,s0/(n"0.5))
LCs2a=gchisqg ((1-U[2]), (n-1))
LCs2b=qgchisg(U[3], (n-1))

#X-bar control chart

pxl=pnorm (LCLxb,ul,s0/(n"0.5))
pxu=1l-pnorm (UCLxb,u0,s0/(n"0.5))
pxc=l-pxu-pxl

#S2 control chart
psu=l-pchisg(LCs2a, (n-1))
psl=pchisqg(LCs2b, (n-1))
psc=l-psu-psl

#Markov chain
size<- 25 #Size of the markov chain
MarkovChain<- matrix (0,nrow=size,ncol=size,byrow=TRUE)

MarkovChain[1l, ]<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxu*psc,pxu*psu,
pxuxpsl, 0,0, pxl*psc,pxl*psu, pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[2, ]<- c(pxcxpsc, 0, pxc*psl, pxcxpsu, 0, pxu*psc, 0, pxuxpsl,
pxuxpsu, 0, pxl*psc, 0, pxl*psl,pxlxpsu,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[3, ]1<- c(pxcxpsc,pxc*psu, 0,0, pxcxpsl, pxu*spsc, pxu*psu,
0,0, pxuxpsl, pxl*psc,pxl*psu,0,0,pxlxpsl,0,0,0,0,0,0,0,0,0,0)



APPENDIX E. Control limits and ARL for the improved X - S? bilateral control chart for a given sample size "'n"
and target ARLy of "ARLy" 45

MarkovChain[4, ]<- c(pxc*psc,pxc*psu,pxc*psl, 0,0, pxu*psc, pxu*xpsu,
pxuxpsl, 0,0, pxl+psc, pxl+psu,pxl+*psl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[5, ]<- c(pxc*psc,pxc*psu, pxc*psl, 0,0, pxuxpsc, pxu*xpsu,
pxuxpsl, 0,0, pxl+psc, pxl+psu,pxl+*psl,0,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[6, ]<- c(pxcxpsc, pxc*psu,pxc*psl,0,0,0,0,0,0,0,pxlxpsc,
pxlxpsu,pxl*psl, 0,0, pxu*xpsc, pxuxpsu, pxuxpsl,0,0,0,0,0,0,0)
MarkovChain[7, ]1<- c(pxcxpsc, 0, pxc*psl, pxc*psu,0,0,0,0,0,0,pxlxpsc,
0,pxl*psl, pxlxpsu, 0, pxuxpsc, 0, pxuxpsl, pxuxpsu,0,0,0,0,0,0)
MarkovChain[8, ]<- c(pxcxpsc,pxc*psu,0,0,pxcxpsl,0,0,0,0,0,pxlxpsc,
pxlxpsu, 0,0, pxlxpsl, pxu*psc, pxuxpsu, 0,0, pxuxpsl,0,0,0,0,0)
MarkovChain[9, ]<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxu*spsc, pxu*psu, pxu*psl,

0,0,pxl*psc,pxl*psu, pxl*xpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[10, ]<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*psu,
pxuxpsl, 0,0, pxl*psc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[1l1l, ]<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*psu,
pxuxpsl,0,0,0,0,0,0,0,0,0,0,0,0,pxlxpsc,pxl*xpsu,pxl* psl,0,0)
MarkovChain[12, ]1<- c(pxcxpsc,0,pxcxpsl, pxc*psu, 0, pxu*psc, 0, pxu*psl,
pxuxpsu,0,0,0,0,0,0,0,0,0,0,0,pxl*psc,0,pxlxpsl,pxl*psu,0)
MarkovChain[13, ]1<- c(pxcxpsc,pxc*psu, 0,0, pxcxpsl, pxuxpsc, pxu*psu, 0,0,
pxuxpsl,0,0,0,0,0,0,0,0,0,0,pxlxpsc,pxl*psu,0,0,pxl*xpsl)
MarkovChain[14, ]1<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*spsu, pxu*psl,
0,0, pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[1l5, ]1<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*spsu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[16, ]1<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*spsu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[17,]1<- c(pxcxpsc,0,pxcxpsl, 0,0, pxurpsc, pxuxpsu, pxu*psl, 0,0,
pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[18, ]1<- c(pxcxpsc,pxc*psu,0,0,0,pxurpsc, pxuxpsu, pxu*psl, 0,0,
pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[19, 1<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*xpsu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[20, ]<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*spsu, pxu*psl,
0,0, pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[21, ]1<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*spsu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[22, ]1<- c(pxcxpsc,0,pxcxpsl, 0,0, pxurpsc, pxuxpsu, pxu*psl, 0,0,
pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[23, ]1<- c(pxcxpsc,pxc*psu, 0,0, 0, pxurpsc, pxuxpsu, pxu*psl, 0,0,
pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[24, ]1<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*xpsu,pxu*psl, 0,0,
pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[25, ]1<- c(pxcxpsc,pxc*psu,pxc*psl, 0,0, pxuxpsc, pxu*psu, pxu*psl, 0,0,
pxlxpsc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

A = t (MarkovChain) - eye(25)
A[25,] = ones(1,25)

B = zeros (25, 1)

B[25,1] =1

Solved_markov_chain = solve (A)%$*%B

ARL<- 1/sum(Solved_markov_chain[4,],Solved_markov_chain[5, ],
Solved_markov_chain[9 ],Solved_markov_chain[10,],
Solved_markov_chain[1l ],Solved_markov_chain[l5
Solved_markov_chain[lG 1,Solved_markov_chain|[1l
Solved_markov_chain[18,],Solved_markov_chain]|
Solved_markov_chain[20,],Solved_markov_chain]|

[22,] [
[24,] [

]
, r]
19,],
21,1,
23,1
25,1

’

Solved_markov_chain , Solved_markov_chain
Solved_markov_chain ,Solved_markov_chain

14 14
4 )
ARLphi= (ARL-ARLO) "2
#ARLphi=ARL
return (ARLphi)
}

FHHHE AR ER AR R R R R R
LSa=0.06462 #Limit used in the optimize function for the x-bar control chart
LSb=0.11456 #Limit used in the optimize function for the s2 control chart
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par_optim <- nlminb(c(0.04,0.04,0.04),0tiUCL, lower=c(0,0,0),upper
=c (LSa, LSb,LSb)) #

Ua=par_optim[[1]][1] #Prob Xbar

Ub=par_optim[[1]][2] #Prob S2

Uc=par_optim[[1]][3]

UCLxb=gnorm( (1-Ua/2),u0,s0/ (n"0.5)) #upper control limit for the x-bar
LCLxb=gnorm(Ua/2,ul0,s0/ (n"0.5)) #lower control limit for the x-bar
LCs2a=qgchisqg((1-Ub), (n-1)) #control limit for the s2
LCs2b=qgchisqg(Uc, (n-1)) #control limit for the s2

#X-bar control chart
pxl<-pnorm(LCLxb,ul,sl/(n"0.5))
pxu=l-pnorm (UCLxb,ul,sl/ (n"0.5))
pxc=l-pxu-pxl

#S2 control chart
psu=1l-pchisqg(LCs2ax (s0"2/s1"2), (n-1))
psl=pchisqg(LCs2b* (s0"2/s1"2), (n-1))
psc=l-psu-psl
FHAFH S A
#Now that we have the probabilities for this specific case, we solve it
through a Markov Chain again
size<- 25 #Size of the markov chain
MarkovChain<- matrix (0, nrow=size,ncol=size, byrow=TRUE)

MarkovChain[l, ]<- c(pxc*psc,pxc*psu,pxc*psl,0,0,pxu*spsc,pxu*psu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxl*psl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[2, ]<- c(pxcx*psc,0,pxcxpsl, pxc*psu, 0, pxu*psc, 0, pxu*psl,
pxu*psu, 0, pxl*psc, 0,pxlxpsl, pxlxpsu,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[3, ]1<- c(pxc*psc,pxc*psu, 0,0, pxc*psl, pxu*psc,pxu*psu, 0,0,
pxu*psl,pxlxpsc,pxlxpsu,0,0,pxl*psl,0,0,0,0,0,0,0,0,0,0)

MarkovChain[4, ]<- c(pxc*psc,pxc*psu,pxc*psl,0,0,pxu*spsc,pxu*psu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxl*psl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[5, ]<- c(pxc*psc,pxc*psu,pxc*psl,0,0,pxu*spsc,pxu*psu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxl*psl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[6, ]<- c(pxc*psc,pxc*psu,pxc*psl,0,0,0,0,0,0,0,pxl*psc,pxl*psu,
pxlxpsl, 0,0, pxu*psc, pxuxpsu, pxuxpsl,0,0,0,0,0,0,0)

MarkovChain[7, ]<- c(pxc*psc,0,pxc*psl,pxc*psu,0,0,0,0,0
pxl*psl,pxlxpsu, 0, pxuxpsc, 0, pxuxpsl, pxu*xpsu,0,0,0,0,0,0
MarkovChain[8, ]<- c(pxc*psc,pxc*psu,0,0,pxc*psl,0,0,0,0
0,0,pxlxpsl, pxu*psc, pxuxpsu, 0,0, pxuxpsl,0,0,0,0,0)
MarkovChain[9, ]<- c(pxc*psc,pxc*psu,pxc*psl, 0,0, pxu*spsc,pxu*psu, pxu*psl,
0,0,pxlxpsc,pxl*psu,pxl*psl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[10, ]<- c(pxcx*psc,pxc*psu,pxc*psl, 0,0, pxusrpsc, pxu*spsu,pxu*psl,
0,0,pxlxpsc,pxl*psu,pxl*psl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[ll, ]<- c(pxcx*psc,pxc*psu,pxc*psl, 0,0, pxu*xpsc, pxu*spsu,pxu*psl,
0,0,0,0,0,0,0,0,0,0,0,0,pxl*psc,pxlxpsu,pxl+psl,0,0)

MarkovChain[12, ]<- c(pxcx*psc,0,pxcxpsl,pxc*psu, 0,pxu*psc, 0, pxuxpsl, pxu*psu,
0,0,0,0,0,0,0,0,0,0,0,pxl*psc,0,pxlxpsl,pxlxpsu,0)

MarkovChain[13, 1<- c(pxc*psc,pxcx*psu, 0, 0,pxcxpsl, pxuxpsc,pxu*psu, 0,0, pxu*psl,
0,0,0,0,0,0,0,0,0,0,pxlxpsc,pxl*psu,0,0,pxlxpsl)

MarkovChain[1l4, ]<- c(pxc*psc,pxcx*psu,pxc*psl, 0,0, pxu*psc,pxu*psu,

pxuxpsl, 0,0, pxl*psc, pxl+psu, pxl+*psl,0,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[1l5, ]1<- c(pxc*psc,pxc*psu,pxcxpsl, 0,0, pxurpsc, pxu*psu, pxuxpsl,
0,0,pxl*psc,pxl*psu, pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[1l6,]1<- c(pxc*psc,pxc*psu,pxc*psl, 0,0, pxurpsc,pxu*psu, pxuxpsl,
0,0,pxl*psc,pxl*psu, pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[1l7,]1<- c(pxc*psc,0,pxc*psl,0,0,pxu*psc,

pxuxpsu, pxuxpsl, 0, 0, pxlxpsc, pxl*psu, pxl+*psl,0,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[18, ]<- c(pxc*psc,pxcx*psu,0,0,0,pxu*psc,

pxuxpsu, pxuxpsl, 0, 0, pxlxpsc, pxl*psu, pxl+psl,0,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[1l9, ]1<- c(pxc*psc,pxc*psu,pxcx*psl, 0,0, pxurpsc, pxu*psu, pxuxpsl,
0,0,pxl*psc,pxl*psu, pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[20, ]<- c(pxc*psc,pxc*psu, pxc*psl, 0,0, pxurpsc, pxu*psu, pxuxpsl,
0,0,pxl*psc,pxl*psu, pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[21, ]<- c(pxc*psc,pxc*psu,pxcxpsl, 0,0, pxurpsc, pxu*psu, pxuxpsl,
0,0,pxl*psc,pxl*psu, pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[22, ]<- c(pxc*psc,0,pxc*psl, 0,0, pxu*psc, pxu*xpsu,

pxuxpsl, 0,0, pxl*psc, pxl+psu, pxl+*psl,0,0,0,0,0,0,0,0,0,0,0,0)

0,pxl*psc, 0,
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MarkovChain[23, ]1<- c(pxc*psc,pxc*psu,0,0,0,pxu*spsc, pxu*xpsu,

pxuxpsl, 0,0, pxl*psc,pxl+psu, pxl+*psl,0,0,0,0,0,0,0,0,0,0,0,0)
MarkovChain[24, ]1<- c(pxc*psc,pxcxpsu,pxcxpsl, 0,0, pxurpsc,pxu*psu, pxuxpsl, 0,0,

pxlxpsc, pxl+psu,pxl*psl,0,0,0,0,0,0,0,0,0,0,0,0)

MarkovChain[25, ]<- c(pxcx*psc,pxc*psu,pxc*psl, 0,0, pxu*rpsc, pxu*psu,pxu*psl, 0,0,

pxl*psc,pxl*psu,pxlxpsl,0,0,0,0,0,0,0,0,0,0,0,0)

#Solved_markov_chain<-MarkovChain%”7%$100000

a<- replicate(25,0)
for(l in 1l:size) {

}

all]l<- sum(MarkovChain[i,])

A = t (MarkovChain) - eye(25)
A[25,] = ones(1,25)

B = zeros (25, 1)

B[25,1] =1

Solved_markov_chain = solve (A)%$*%B

ARL1<- 1/sum(Solved_markov_chain([4, ], Solved_markov_chain([5,],

Solved_markov_chain[9, ], Solved_markov_chain[10,],
Solved_markov_chain[14,],Solved_markov_chain[1l5,

[ ]
Solved_markov_chain[16,],Solved_markov_chain[17,],
Solved_markov_chain[18,],Solved_markov_chain[19,],
Solved_markov_chain[20,], Solved_markov_chain[21,],
Solved_markov_chain[22,],Solved_markov_chain[23,],
Solved_markov_chain[24,], Solved_markov_chain[25,])

options (digits=5)
cat (n,’”\t’,ul,’”\t’,sl,’\t’,ARL1l, " \n’")

I8
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APPENDIX F — ARL values for the X-
S2 pilateral control chart with the EWMA

control scheme using Monte Carlo
simulations

library (pracma)

clear ()

tic ()

# Definition of parameters

#Target ARL0=250.

#In-control

u0=0

sd0=1

fout-of-control - Table 3.

ul=0.25

sd1l=0.5

lambdal=0.1

lambdaz=0.1

#Chen et. al. (2001)

k1=2.81

k2=2.86

n=5

LCL1=u0-k1lx ((lambdal/ (2-1lambdal))”~0.5) % (sd0/ (n"0.5))
UCL1=u0+klx* ( (lambdal/ (2-lambdal))~0.5) % (sd0/ (n~0.5))
c=log(sd072)-1/(n-1)-1/(3*x(n-1)"2)+2/(15% (n-1)"4)
d=2/(n-1)+2/ ((n-1)"2)+4/ (3%« (n—-1)*3)-16/ (15* (n-1) *5)
LCL2=c-k2* (d+xlambda2/ (2-lambda2)) 0.5

UCL2=c+k2* (dxlambda2/ (2-lambda2))~0.5

runs=100000
Result<-matrix (0, runs, 1)

for(i in 1l:runs) {

ua=0 #starting value

sa=c #starting value

s=0

D<-c ()

s<-0

while (s<1) {
RR<-rnorm(n,ul, sdl)
R=mean (RR)
V=var (RR)
T=lambdal*R+ (1-lambdal) *xua
W=lambda2x1log (V) + (1l-lambda2) xsa

if (T>UCL1 | T<LCL1 |W>UCL2 |W<LCL2) {
D<-rbind (D, 1)
s=s+1
telse(
D<-rbind (D, 1)
s=0

}
Result[i,1]=sum(D)
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ARL<-mean (Result[,1])
cat ("ARL1=",ARL, "\n")

toc ()
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APPENDIX G - ARL values for the X-
S? bilateral control chart with the EWMA
control scheme and Klein’'s 2-of-2 run
rule using Monte Carlo simulations

library (pracma)

clear ()

tic ()

# Definition of parameters
#Target ARL0=250.
#In-control

u0=0

sd0=1

#out-of-control

ul=0

sdl=1

lambdal=0.1

lambda2=0.1

n=5

#Limits obtained by experimentation to reach target ARLO
LCL1=-0.25957

UCL1=0.25957

LCL2=-0.7456

UCL2=0.20497
c=log(sd072)-1/(n-1)-1/(3%x(n-1)"2)+2/(15* (n-1)"4) #starting value
runs=10000
Result<-matrix (0, runs, 1)

for(i in 1l:runs) {

print (1)

ua=0 #starting value

sa=c #starting value

s1=0

s2=0

sla=0

s2a=0

D<-c ()

while (s1l<2 & s2<2 & sla<2 & s2a<2){ #klein rule
RR<-rnorm(n,ul, sdl)
R=mean (RR)
V=var (RR)
T=lambdal*R+ (1-lambdal) xua
W=lambda2x1log (V) + (l-lambda2) xsa

if (T>UCL1 & W>UCL2) {
D<-rbind (D, 1)
sl=sl+1
s2=0
sla=sla+l
s2a=0

}

if (T>UCL1 & W<LCL2) {
D<-rbind (D, 1)
sl=sl+1
s2=0
sla=0
s2a=s2a+l

}



APPENDIX G. ARL values for the X - S? bilateral control chart with the ENMA control scheme and Klein’s

2-0f-2 run rule using Monte Carlo simulations

51

if (T<LCL1l & W>UCL2) {

D<-rbind (D, 1)
s1=0

s2=s2+1
sla=sla+l
s2a=0

if (T<LCL1 & W<LCL2) {

D<-rbind (D, 1)
s1=0

s2=52+1
sla=0
s2a=s2atl

if (T>=LCL1 & T<= UCLl & W>=LCL2 & W<= UCL2

D<-rbind (D, 1)
s1=0
s2=0
sla=0
s2a=0

if (T>=LCL1 & T<= UCL1

D<-rbind (D, 1)
s1=0

s2=0

sla=0
s2a=s2a+l

if (T>=LCL1 & T<= UCL1

D<-rbind (D, 1)
s1=0

s2=0
sla=slat+l
s2a=0

if (W>=LCL2 & W<= UCL2

D<-rbind (D, 1)
sl=sl+1

s2=0

sla=0

s2a=0

if (W>=LCL2 & W<= UCL2

D<-rbind (D, 1)
s1=0

s2=52+1
sla=0

s2a=0

Result[i,1]=sum (D)

}

ARL<-mean (Result[,1])
cat ("ARL1=",ARL, "\n")
toc ()

W<=LCL2) {

W>=UCL2) {

T>=UCL1) {

T<=LCL1) {




