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Resumo

Detecção, descrição e correspondência de pontos de interesse são componentes essenciais

de muitas aplicações de visão computacional. Ao longo dos anos, vários algoritmos foram

propostos para resolver tarefas de detecção e descrição de pontos de interesse. Com a

revolução do aprendizado profundo, os métodos baseados em algoritmos de aprendizado

para detecção e descrição de pontos de interesse superaram os métodos artesanais. A

fim de melhorar a correspondência, propomos a detecção e descrição de pontos de inter-

esse aprendidos em conjunto. No entanto, esses métodos pretendem melhorar as corre-

spondências de forma indireta por meio da similaridade dos descritores. Devido a isso,

alguns métodos propõem incluir correspondências no pipeline de treinamento, porém não

com correspondências verdadeiras dos descritores que estão treinando, culminando em um

baixo número de correspondências corretas. Além disso, os métodos para detectar pontos

de interesse não se preocupam com a deformação não ŕıgida dos objetos; portanto, a ro-

bustez a deformações não ŕıgidas também é um fator chave a ser considerado ao localizar

pontos para correspondência visual. Neste trabalho, mostramos que um alto número de

correspondências corretas pode ser alcançado aprendendo como detectar bons pontos de

interesse independentemente do método descritor. E apresentamos um novo método de

aprendizado de máquina para a detecção de ponto-chave projetado para maximizar o

número de correspondências corretas para a tarefa de correspondência de imagem não

ŕıgida. Nossa estratégia de treinamento usa correspondências verdadeiras, obtidas combi-

nando pares de imagens anotadas com um extrator de descritor predefinido, como ground-

truth para treinar uma rede neural convolucional (CNN) de maneira semi-supervisionada.

Otimizamos a arquitetura do modelo aplicando transformações geométricas conhecidas às

imagens como sinal de supervisão. Experimentos mostram que nosso método supera os

detectores de ponto-chave existentes em imagens reais de objetos não ŕıgidos em 20 p.p.

na Mean Matching Accuracy e também melhora o desempenho da correspondência de

vários descritores quando acoplados ao nosso método de detecção. Também empregamos

o método proposto em uma aplicação desafiadora: recuperação de objetos, ao qual o nosso

detector apresenta desempenho no mesmo ńıvel dos melhores detectores de ponto-chave

dispońıveis.

Palavras-chave: Objetos deformáveis, correspondência visual, matching de pontos-

chaves.



Abstract

Keypoint detection, description, and matching are essential component of many com-

puter vision applications. Throughout the years numerous algorithms were proposed to

solve keypoint detection and description tasks. With the deep learning “revolution”,

learned keypoint detection and description methods surpassed hand-crafted ones. In or-

der to improve matching, joint-learned keypoint detection, and description were proposed.

However, these methods intend to improve matching indirectly through the similarity of

the descriptors. Because of that, some methods propose to include matching in the train-

ing pipeline, but not with true matches of the descriptors they are training, culminating

in a low number of correct matches. In addition, methods to detect keypoints are not

concerned with non-rigid deformation of objects; therefore, robustness to non-rigid defor-

mations is also a key factor to consider while locating points for visual correspondence.

In this work, we claim that a high number of correct matches can be achieved by learning

how to detect good keypoints independently of the descriptor method. We present a novel

learned keypoint detection method designed to maximize the number of correct matches

for the task of non-rigid image correspondence. Our training framework uses true cor-

respondences, obtained by matching annotated image pairs with a predefined descriptor

extractor, as a ground-truth to train a convolutional neural network (CNN) in a semi-

supervised fashion. We optimize the model architecture by applying known geometric

transformations to images as the supervisory signal. Experiments show that our method

outperforms the state-of-the-art keypoint detector on real images of non-rigid objects by

20 p.p. on Mean Matching Accuracy and also improves the matching performance of

several descriptors when coupled with our detection method. We also employ the pro-

posed method in one challenging application: object retrieval, where our detector exhibits

performance on par with the best available keypoint detectors.

Keywords: Deformable Objects, Visual Correspondence, Matching
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Chapter 1

Introduction

High-quality matching of features of images from cameras in different poses and conditions

is an important challenge in several computer vision tasks. Applications tasks such as

Content-Based Image Retrieval, Structure-from-Motion (SfM) [15, 40], tracking points as

a camera or an object of interest [54], and registration [50, 37], are examples of tasks

which high-quality feature matching is crucial. The first step for feature matching is to

select a set of locations in the images with some properties, such as corners or blobs, to be

further described and matched; these kind of localized features are called interest points

or simply keypoints. DeTone et al. [9] define keypoints in RGB images as 2D locations in

an image that are stable and repeatable from different lighting conditions and viewpoints.

Seminal works such as Harris Corner [14], SIFT [20], and SURF [5] allowed significant

advancements in many applications tasks using the above constraints. It is clear that an

effective keypoint detector should be repeatable and invariant to different illumination

conditions and equivariant to viewpoint and scale changes.

However, knowing that the final purpose of the keypoint is the high quality of

the matching, a keypoint detector should also consider matching in its point selection

methodology because repeatability does not imply good points to be matched at the

end. For example, points on edges and repetitive patterns that usually occur in man-

made structures are challenging to be matched due to the high texture ambiguity. Add

knowledge of the match on keypoint detection is a big challenge for the hand-crafted

detectors due to the fact that we need first to detect to then describe the points and

so match them. In addition, there is little knowledge about the real behavior of the

descriptors in different contexts, e.g., some descriptors can be less robust on lighting

changes. Descriptors are intended to describe a local region, thus the described points are

highly discriminative to be found in another image of the same scene. However, a local

region detected by a specific detector can be a good region to a descriptor, increasing

the number of correct matches, and, at the same time, can be a bad region to another

descriptor, degrading matching performance. To surpass that problem, recent works use

deep learning techniques for the tasks of detecting and describing keypoints such that

keypoint detection and description are in the same learning pipeline; that is called jointly

learned approaches [33, 12, 22, 52, 42, 44]. Deep jointly learned methods deliver results
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Figure 1.1: Example of object deformation over time.

that significantly outperform the handcrafted counterpart [20, 5].

Jointly learned detection and description methods link detection and description,

improving matching performance. However, However, joint learning of detection and

description do not consider matching on the pipeline. Performing the matching simulta-

neously with the detection and description often has high computational complexity [52].

Given two images A and B with feature sets FA and FB, matching them has a time com-

plexity of O(|FA| · |FB|). As each pixel in the image may potentially become a feature,

the problem quickly becomes intractable, needing carefully designed training schemes and

massive computational resources [43].

Furthermore, beyond rigid transformations, objects may have different shapes over

time due to deformations, as it can be observed in Figure 1.1. Therefore, robustness to

non-rigid deformations is also a key factor to consider while locating points for visual

correspondence. Regarding the non-rigid transformation, very few works have been pro-

posed to address the non-rigid deformation invariance task. The recent explorations, such

as the work of Yu [56] propose to tackle non-rigid deformation but rely on depth infor-

mation. Despite the advances achieved, RGB cameras are still by far the most common

type of imaging sensor. Some recent works have treated the description problem in non-

rigid deformation images [8, 29, 32]. However, as far as we know, no work has proposed
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a detection method to deal with non-rigid deformations for RGB images. Given all this

background, can we aggregate knowledge of real matches of a given descriptor in detection

without massive computational resources? And can this detector be robust to non-rigid

deformations in images? In this thesis, we present a learned detection strategy designed

to tackle non-rigid deformations on still images (please see Figure 4.1 for some qualitative

results). We address the keypoint detection problem efficiently in a well-defined manner

exploiting the assumption that good features to be detected are also salient points that

are likely to yield correct matches. We aggregate knowledge of real matches by proposing

a novel learned detection methodology that predicts ground-truth matching maps based

on an existing detector-descriptor configuration. The network is trained to learn to de-

tect good features according to the map derived from true descriptor matches. It is worth

mentioning that our approach can be easily coupled with any combination of existing

detector-descriptor pairs. Because of the above characteristic, our method can be used in

scenarios in which descriptors cannot be changed and we aim to improve the matching

by changing the detector method. We evaluate our detector on three different bench-

mark datasets (Kinect1, Kinect2, and DeSurT) of real deformable objects, as well as with

application scenarios on content-based object retrieval, validating that our method can

reach state-of-the-art performance not only in matching evaluation scores but also in a

practical related computer vision task. Figure 4.1 illustrates the behavior of our detector

in comparison with the recent ASLFeat detector [22] and the final matching quality of

detected keypoints.

1.1 Objective and Contributions

Our goal is to develop a keypoint detector method capable of surpassing the men-

tioned problems of aggregating knowledge of real matches of a given descriptor on the

detector without massive computational resources and, at the same time, creating a de-

tector robust to non-rigid deformations in images.

The main contribution of our work is two-fold:

• Propose and implement a novel keypoint detection training framework aimed to

improve the matching performance of existing descriptors;

• Propose and implement the first learned keypoint detector optimized to cope with

non-rigid deformations that work only using standard RGB images.

Parts of the results in this thesis were presented and published at the main track
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of SIBGRAPI 2022 [23]

1.2 Thesis Organization

This thesis is organized in the following chapters. In Chapter 2, we review the

recent state-of-the-art of detection techniques present in the literature. In Chapter 3, we

present the proposed method and the implementation details. In Chapter 4, we present

experiment details and the evolution of our method. Sequentially, in Chapter 5, we

present the results by testing the proposed approach and state-of-the-art detectors and

comparing it to recent detectors. Finally, in Chapter 6, we discuss the results and research

perspectives.
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Chapter 2

Theoretical Background

In this chapter, we explore and detail important concepts and techniques used in keypoint

detection and matching of objects with non-rigid deformations, as well as more details on

important detection algorithms for our proposed method.

2.1 Keypoint detection, description, and matching

The first step for feature matching is to select a set of locations in the images

with some property, such as corners or blobs, to be further described and matched; these

kinds of localized features are called interest points or simply keypoints. DeTone et al. [9]

define keypoints in RGB images as 2D locations in an image that are stable and repeatable

from different lighting conditions and viewpoints. The selected local regions of the image

should be described. The descriptor algorithm summarizes the region in a vector that

represents uniquely that location with the aim of finding that specific point in another

image. Because of that, descriptors should be distinctive and unique. It is common to find

detector and descriptor algorithms that are complementary, that is, they are made to be

used together. However, they can be used separately, that is the case of the SIFT detector

and descriptor, an example of a handcrafted method to detect and describe keypoints.

2.1.1 SIFT detector and descriptor

Distinctive Image Features from Scale-Invariant Keypoints, known as SIFT, is the

most cited method of feature detection and description. SIFT is one of the handcrafted

methods that implement a mathematical strategy to detect patterns on the image, which

are the keypoints. We use the SIFT detector to introduce the handcrafted general strategy



2.1. Keypoint detection, description, and matching 17

and background.

The SIFT algorithm is composed of four main steps: scale-space extrema detection,

keypoint localization, orientation assignment, and feature descriptor generation. The

first step, scale-space extrema detection, in the SIFT algorithm is to create a scale-space

representation of the input image by convolving the image with a Gaussian kernel at

different scales. This is done to detect features at different scales. The scale-space is then

searched for extrema, which are points that have maximum or minimum values in both

the spatial and scale dimensions. Once the extrema are detected, potential keypoints

are identified by comparing them to their neighboring points. The extrema that are not

sufficiently stable and repeatable across scales are discarded as they are likely to be noise or

background features. After keypoints are identified, their orientation is assigned by taking

the gradient magnitude and orientation of the pixel values around the keypoint. The

gradient orientation histogram is then generated and the peak orientation is selected as

the keypoint’s orientation. Finally, a feature descriptor is generated for each keypoint by

computing the gradient magnitudes and orientations around the keypoint at the selected

scale and orientation. These gradient values are then transformed into a descriptor vector,

which is normalized to make it invariant to changes in illumination and contrast.

2.1.2 Convolution Neural Network for keypoint detection and

description

Convolutional Neural Networks (CNNs) have been successfully applied to a wide

range of computer vision tasks, including object detection, image segmentation, and key-

point detection and description. It is not different for keypoint detection and description.

We use ASLFeat [22] as an example of the usage of CNN in keypoint detection description

pipeline.

2.1.3 ASLFeat detector and descriptor

ASLFeat uses CNN to extract features from the input image and generate a final

score map to select the keypoints location and select the equivalent descriptor of that

location.

Figure 2.1 shows ASLFeat CNN architecture for the detection and description of
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Figure 2.1: ASLFeat [22] detection and description CNN architecture.

keypoints by learning. In the ASLFeat method, the convolutional layers are used to extract

features, differently of handcrafted methods that use a mathematical strategy to extract

the local features. ASLFeat uses 9 layers to extract features to generate a descriptor map

at the end of the layers. ASLFeat uses three different layers to extract the keypoints

using a peakness strategy. The peakness strategy selects peaks in the partial score map

of the layer. The final score map is generated from a weighted sum of the 3 partial

score maps generated. To the convolutional layers extract relevant features to generate

the descriptor in the last layer and the keypoints as mentioned above, the training of

the network uses two images of the same scene and enforces equal final score maps, as

well as equal descriptors for each equivalent pixel across the images. To be invariant to

illumination, viewpoint, and other transformations, input images are transformed before

passing through the network, forcing the learning of the algorithm to that transformation

variation.

Strategies similar to the one use of the ASLFeat are used by other CNN-based

keypoint detectors and descriptors.

2.1.4 Brute force matching and ratio test

Given a set of image descriptors computed from two different images, these image

descriptors can be mutually matched by for each point finding the point in the other image

domain that minimizes the Euclidean distance between the descriptors represented as D-

dimensional vectors. To suppress matches that could be regarded as possibly ambiguous,

Lowe et al. [20] only accepted matches for which the ratio between the distances to the

nearest and the next nearest points is less than 0.8. That strategy is called Ratio Test

for matching of features.
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Chapter 3

Related Work

This chapter first reviews core feature detection and description techniques that relate to

ours. Then, we discuss recent methods for detecting and describing local features designed

for handling non-rigid deformations.

3.1 Handcrafted methods

In this section, we present some handcrafted detectors and descriptors through the

years and the state-of-the-art of this category.

Such as in many areas of computer science, computer vision has been affected by

the machine learning trend. Handcrafted nomenclature was not used till the advance

of machine learning in the sub-area of feature extraction. Handcrafted approaches are

designed algorithms without a training phase on data to adjust their parameters. They

are with data-driven approaches where part of the parameters of the algorithm (or the

entire set of paramaters) are set after a tranining phase on some data samples. Classical

detectors and descriptors are, most of them, called handcrafted detectors and descriptors.

It does not mean that there are no handcrafted parts in the most recent works or in

learned methods.

3.1.1 Handcrafted detectors

For many years, handcrafted detectors have dominated the field of detection, with

the Harris Corner detector [14] being one of the most widely recognized and utilized

methods. Also known as traditional detectors, handcrafted detectors aim to localize

geometric structures through engineered algorithms. The Harris and Hessian [6] detectors
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use first and second-order derivatives to find corners or blobs in images. Those detectors

have been further extended to handle affine transformation and also detect features in

multi-scale [26, 24]. The main limitation of these methods lay in the transformation of

the geometric structure, such as scale.

Lowe’s work, Distinctive Image Features from Scale-Invariant Keypoints, known

as SIFT [20], is the most cited detector paper of feature detection. The SIFT algorithm

looks for blobs over multiple scale levels. Later, SURF [5] accelerated the detection process

based on SIFT scale space by using integral images and an approximation of the Hessian

matrix. Multi-scale improvements also were proposed in KAZE [2] and its extension,

A-KAZE [1], where the Hessian detector was applied to a non-linear diffusion scale space

in contrast to widely used Gaussian pyramid. And most recently, Zhang and Sun have

proposed an improvement in corner detection by applying first-order and second-order

intensity variation along with multiple directions, the SOAGDD algorithm [58], reaching

the state-of-the-art of handcrafted detectors. Handcrafted detectors have the limitation

of not being easily adaptable to be robust to non-rigid deformations.

3.1.2 Handcrafted descriptors

Handcrafted descriptors are mostly based on local statistics (e.g., gradients). They

use a fixed configuration for region pooling, for example, SIFT descriptor [20] and its

variant such SURF descriptor [5]. GLOH descriptor [25] uses a polar arrangement of

summing regions, while DAISY [48] employs a set of multi-size circular regions grouped

into rings. This approach has the advantage of proving invariant representation of the

local patches. Most of the handcrafted local descriptors has a strong rotation equivariance,

which most learned models lack [52]. On the other hand, handcrafted descriptors suffer

from the same problem of handcrafted keypoint detectors of not to be easily adaptable

to be robust to non-rigid deformations since its not easy to model a statistical algorithm

to deal with deformations in RGB images.

3.2 Learned-based methods

Learned-based algorithms started gradually to be used for feature extraction tasks.

Over the years, deep learning algorithms started to be used by the computer vision com-
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munity; they were initially used for high-level tasks. With the growth of data, computa-

tional power availability, and the research on deep learning, the deep approaches started

to be used for dozen of computer vision low-level tasks, such as feature extraction [45].

Feature extraction and image matching pipelines using learned-based methods became

the new gold standard approach. On the flip side, these learning-based approaches are

mostly applied to feature description tasks and jointly detection-description.

3.2.1 Learned-based detectors

In the feature detection field, Features from Accelerated Segment Test (FAST) [35]

was one of the first attempts to use machine learning to derive a corner keypoint detec-

tor. FAST algorithm uses a Decision Tree classifier to speed up the detection task, i.e.,

the computational efficiency is its most important advantage. Nevertheless, it reaches

consistent repeatability results, as could be confirmed in our experiments (see Chapter

5.5). Based on the FAST detector and aiming to have an open-source alternative to SIFT

and SURF detector and descriptor, the Oriented FAST and Rotated BRIEF (ORB) [36]

method was proposed. ORB performance is similar to the SIFT on the task of feature

detection while is almost two orders of magnitude faster. The main idea is that ORB

adds an orientation component and multi-scale to the FAST keypoints.

With the success of deep-learned methods in general object detection and fea-

ture descriptors, the research community was motivated to explore similar techniques

for feature detectors. Thus, CNNs started to be used for the keypoint detection task.

TILDE [53] trained multiple piece-wise linear regression models to identify interest points

that are robust under severe weather and illumination changes. Lenc and Vedaldi [19]

introduced a new formulation to train CNN based on feature co-variant constraints and

added predefined detector anchors, showing improved stability in training. QuadNet [39]

has focused on learning keypoint detection for repeatability by increasing the keypoint in

repeatable areas between image pairs. As QuadNet has employed the ranking loss, Zhang

et al. [57] added the grid-wise peakiness for the sparse detection. Laguna and Mikola-

jczyk [18] have stated that QuadNet [39] and Zhang et al. [57] repeatability is high, but

their matched keypoints have low accuracy since the ground truth of keypoints location

is not well defined. KCNN [10] and KeyNet [18] resorted to using handcrafted keypoints

in training due to the consistent representation of handcrafted keypoints to low-level fea-

tures. Nevertheless, these methods can provide poor detection if the handcrafted have

some bias that could not help to detect good keypoints, e.g., clustering keypoints along

edges and corners and fail where handcrafted methods fail [44]. Our method uses a stan-
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dard detector on the training process. However, the training framework filters the bad

keypoints.

The recent work of Suwanwimolkul et al. [44] enforces the importance of consider-

ing low-level features in the detection of good and accurate keypoints. They claim that

improving the low-level feature can improve matched keypoint location and descriptor

matching as well. Low-Level Feature (LLF) detector [44] is based on R2D2 [33] key-

point detection. LLF in combination with others descriptor algorithms has increased the

matching mean score by increasing the keypoint detection accuracy and repeatability. A

drawback of this method is that it does not consider real matching scenarios, which, in

practice, do not improve the matching accuracy of the detected keypoints. It is worth

noticing that some handcrafted approaches, such as SIFT, is still a good baseline method

due to its stability across different types of scenes and applications.

3.2.2 Learned-based descriptors

Learning-based feature descriptors can be divided into two groups: the one that

applies its method to a sparse set of keypoint detected by a standard keypoint detector

and the one that densely describes the image. For the first group, we have the work of

Simo-Serra et al. [41] as one of the first works to use deep networks to describe keypoints.

After that, we have the work of Balntas et al. [4], Mishchuk et al. [27] and Contextdesc [21].

Contextdesc descriptor, for example, receives a set of keypoints and use visual context en-

coder that integrates high-level visual understandings from regional image representation

and a geometric context encoder that consumes unordered points and exploits geometric

cues from 2D keypoint distribution. For the second group, the one that describes densely

over the image, i.e., descriptor algorithms that are able to generate a descriptor from each

pixel of an image, one of the first works we can find is the work of Savinov et al. [38], Noh

et al. [30], and Fathy et al. [13]. Fathy et al., for example, propose a CNN-driven scheme

for coarse-to-fine hierarchical matching, as an effective and principled replacement for

conventional pyramid approaches to learn more effective dense descriptors in the context

of geometric matching tasks.

Learned-based descriptors are usually trained using a metric learning loss that

seeks to maximize the similarity of descriptors corresponding to the same patches and

minimize it otherwise [33]. This is the case of some works such as Contextdesc [21], the

PN-Net [3], L2-Net [46], and Sosnet [47]. Contrastive loss and triplet loss were widely

used to train these networks to optimize the global objective based on local comparison

with local patches.
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3.2.3 Jointly learned detector and descriptors

The detection and description tasks were traditionaly tackled as two separate tasks.

We could use a handcrafted detector with a learned descriptor, a learned keypoint with a

handcrafted descriptor, or both learned approaches. Because of the correlation between

detection and descriptor matching, the most recent works in the feature extraction pipeline

have proposed the joint learning of detection and description tasks, which means that the

detection and description are in the same network and are trained as a unique task.

Some recent works [12, 22] have claimed that detection and description are inseparably

tangled. Thus, keypoints should be detected based on the repeatability and reliability of

descriptors.

LIFT algorithm [55] was the first to propose the jointly learned approach. In the

following, using a large-scale dataset of annotated landmark images [30] trained DELF,

an approach targeted for image retrieval that learns local features as a by-product of a

classification loss coupled with an attention mechanism. R2D2 [33] uses deep learning

to jointly enhance detection and description via learning discriminability and give less

importance to repeatability for improving the description and matching. In the R2D2

work, the reliability is trained based on the Average-Precision metric while simultaneously

optimizing for the descriptor. SuperPoint [9] method presents a network that first extracts

salient points and then a transformation between pairs of images. Superpoint network

was trained with annotated corners. For other path, D2-Net [12] proposes the describe-

and-detect approach. The algorithm first computes a set of CNN feature maps; the maps

are used to compute the descriptors and detect keypoints. This approach tries to make

detection better for matching tasks. D2-Net uses local maxima of feature maps to extract

the keypoint. The results of D2-Net were surpassed by other works as the R2D2. Recent

works [22, 44] have stated that R2D2, as other jointly learned approaches, has a lack of

low-level information and keypoint accuracy since it down-sample the image and does not

use a robust method to recover keypoint localization.

Following the idea of D2-Net, the ASLFeat algorithm [22] uses the describe-and-

detect approach modifying its network and reusing some R2D2 ideas to perform strong

shape-awareness geometric invariance and improve keypoint localization. For that, ASLFeat

adds for the first time in the feature extraction pipeline the Deformable Convolutional

Network (DCN) and detects keypoint in three different layers of the network to, in the

end, joint detection score map and make the detection partially scale-invariant, and, make

the localization accuracy of detected keypoint in the original image more robust to the

down-sample performed by the network. In addition, the network was retrained end-to-

end. Also claiming to enhance the low-level feature and keypoint accuracy, the recent LLF

method [44] has compared the newest detectors and descriptors in the feature matching
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problem.

In general, in jointly learned detection keypoints are selected using thresholds such

as the detection score of D2-Net [12] or the local peakiness score of ASLFeat [22]. There-

fore, the matched keypoints do not always have high accuracy. Figure 4.1 shows these

problems of handcrafted keypoint selection in the ASLFeat methods. The highlighted

squared region is an edge region where ASFeat detector applies an edge threshold to se-

lect only good points on edges. However, we can see that there are a large number of

points clustered over the edges and an incorrect match. Conversely, in our proposed ap-

proach, the peaks are generated directly from the network output. And as can be seen in

the score map of Figure 4.1-b, the score map generated tries to peak a point, attenuating

the high score edges effect. In addition, in our proposed approach, the detector is trained

to improve matching accuracy with real image pairs.

Fewer works consider descriptor matching in the training pipeline, such as our

approach. GLAM [51] detects keypoints based on matching quality; however, for a very

specific domain of retinal images. SEKD [42] proposes a non-domain specific detector and

descriptor by first detecting keypoints based on repeatability and then filtering the reliable

keypoints based on the matching. This approach can yield subpar results when a large

set of good keypoints for matching is not found in the repeatability optimization stage.

DISK [52] considers detection and description in a probabilistic relaxation and applies

a reinforcement learning strategy to optimize detection and description jointly. As a

drawback, the method requires careful hyperparameter tuning to converge. Tonioni [49]

trained a decision tree to learn to select 3D keypoints based on good matches. The

authors argue that good features to be detected are those likely to yield correct matches.

We apply a similar strategy on 2D keypoints. Similarly to GLAM [51], we use the results

of matching descriptors, however, with a weighting strategy for the Matching Heatmap,

applied to a general domain.

3.3 Keypoint detection and description for

non-rigid deformations

Rigid deformations on objects are the one which the position and orientation of

points in the object relative to an internal reference frame are not changed; for example,

rotation and translation. Non-rigid deformations on objects are the deformations which

position and orientation of points within the object are changed relative to both an internal

and external reference frame. In our work, we consider isometric non-rigid deformations,
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which deformations preserve distances across points in the surface of the object.

To circumvent the problem of non-rigid deformations on keypoint description, de-

scriptors such as the DEAL method [32] propose a deformation-aware local feature de-

scription strategy that learns to describe non-rigid patches without depth information.

DaLi descriptor [28] encodes features robust to non-rigid deformations and illumination

changes. In the same context, Nascimento et al. propose GeoBit descriptor [29], a de-

scriptor that uses geodesics from object surfaces to compute isometric-invariant features

working with RGB-D images, while in Geopatch [31] Potje et al. propose a description

strategies with the key idea of learning feature representations on undistorted local image

patches using surface geodesics working with RGB-D images. Note that none of the above

works deal with 2D feature detection on images with non-rigid deformations.

In this work, we propose a methodology that can be used to obtain keypoints

robust to non-rigid deformations relying only on visual information, which is a novel

accomplishment to the best of our knowledge.
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Chapter 4

Methodology

In this chapter, we detail the main steps of our methodology. It is a novel pipeline to

detect keypoints with the property of being robust to non-rigid deformation and improve

matching tasks. We first designed a network to learn to extract keypoints from images

being affected by non-rigid deformations. Secondly, we proposed a training framework

to enforces keypoints to be detected in repeatable locations having confident matching

probability for a given descriptor.

In the first task, a network learns to extract keypoints from images being affected

by non-rigid deformations. We use the same idea of rigid transformation for training a

network. However, in addition to homographic changes, we add non-rigid deformations

on the training dataset, as we show in the next sections. For the second task, a training

framework enforces keypoints to be detected in repeatable locations having a confident

matching probability for a given descriptor. We first use the assumption that a model can

learn to extract the features of a good descriptor looking at the descriptors and selecting

good descriptors based on its matching. As this strategy is not easy to be learned, we use

the local information on the input image of the good descriptors, i.e., the region around

the keypoint of that descriptor, as a feature to be learned. With that, the model can

learn the likelihood of a region generating a good descriptor to be matched for improving

the detector.

4.1 Network design

Our designed network receives an image as input and outputs a score map whose

peaks are the location of keypoints good to be matched. Works such Superpoint [9], D2-

net [12], and ASLFeat [22] networks generate score map from a downsampled tensor of

the input image. As the score map needs to be in the same resolution as the input image,

the generated score map is upsampled to be in the same resolution as the input image.

Our main goal is to output peaks in the score map. In the upsample process, the score



4.1. Network design 27

ASLFeat detector and descriptor Our Detector + ASLFeat descriptor
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Figure 4.1: Results on detecting good keypoints. a) Input image with non-rigid de-
formations; b) Score maps of ASLFeat and ours; c) Correct matches (green) and incorrect
ones (red), as well as circles representing the detected keypoints. One can notice that not
all peaks in the score map are keypoints because we chose the top 1,024 according to the
score value. Notably, our method provides more reliable points to be matched.

map peaks can be shifted, interfering with detector accuracy and consequently degrading

matching quality. Because of that, we adopt a 4-level deep Unet [34] with a final sigmoid

activation function as our network architecture. That way, the network outputs a signal

to each pixel of the input image.

In the past, Unet [34] was used successfully in dense regression and semantic seg-

mentation tasks. The Unet architecture (Figure 4.2) is composed of 3 × 3 convolution

blocks with batch normalization and ReLU activation. High-resolution features from the

contracting path are combined with the upsampled output; a successive convolution layer

can then learn to assemble a more precise output based on this information. In the up-

sampling part Unet has also a large number of feature channels, which allows the network

to propagate context information to higher resolution layers. As a consequence, the ex-
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Figure 4.2: Overview of the network architecture used as a backbone for key-
point detection. The Siamese network is optimized to detect reliable keypoints to be
matched for a given descriptor. Each green block represents a 3 × 3 2D convolution,
followed by batch normalization and ReLU activation function. The two branches share
the weights.

pansive path is symmetric to the contracting path and yields a U-shaped architecture

that names the architecture.

In the training process, we want the network to learn a score map by imitating a

Matching Heatmap that works as a ground-truth. As in the training process we have two

images of the same scene, and the same peaks in the two equivalent Matching Heatmaps.

Because of that, to improve repeatability of equivalent score maps, we use a Siamese

scheme [17]. Siamese networks were first introduced by Bromley and LeCun [7] to solve

signature verification as an image matching problem. A Siamese neural network consists

of twin networks that accept distinct inputs but are joined by an energy function at the

top. This function computes some metrics between the highest level feature representation

on each side. Figure 4.2 illustrates that process. The weights of the two branches are

shared.
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Figure 4.3: Overview of the detector training framework. Our framework is com-
posed of four steps: i) First, we detect the keypoints using a base detector for images
A, B and B’ (an anchor and two transformed versions of the anchor with random ho-
mography and non-rigid image transformations); ii) Then, we extract the descriptors on
the detected keypoints and then find correspondences with the nearest neighbor search;
iii) Using the correct matches, we build a Matching Heatmap (MH) from the location of
correct matches for each input image; iv) MH weighting based on keypoint quality, i.e.,
true matching repeatability.

4.2 Keypoint detection learning framework

Learned keypoints as Key.net [18], and describe-to-detect extraction methods such

as R2D2 [33], and ASLFeat [22] focus their training framework on the repeatability of

keypoints, and not consider non-rigid deformations. Unlike these works, in our learning

strategy, the key idea is to leverage an existing detector-descriptor pair to bootstrap the

learning process that is focused on highly confident matches in images with non-rigid

deformations. To that aim, we use correct matches of images with non-rigid deformation

of the same scene as a Matching Heatmap that works as a guide to the learning process.

Let A ∈ RH×W be an image from our training dataset, defined as the anchor

image. We generate images B and B′ by applying two different deformations composed

of a random homography and a thin-plate spline warp (TPS) [11] (g and g′ respectively) on

the anchor image A. The TPS warps representing 2D coordinates are often used to model
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non-rigid deformations, giving us an apparatus to work with this type of transformation.

The homography warps give us some invariance to viewpoints’ rigid changes. In the

sequence, for images A, B and B′, we detect k salient keypoints according to a base

detector. In our experiments, we use k = 0.02 × H × W , which results in keypoints

covering a good portion of all image regions.

Once we have selected the salient pixels, we extract descriptors for each keypoint

location and then match the descriptors of image A with the descriptors of image B, and

descriptors of image A with descriptors of image B′. Please notice that the positions

of the correct matches can be found using g and g′ in this setup. For each image, the

keypoint position (x, y) of a descriptor that passes the mutual nearest and ratio matching

tests (and that is also a correct match) is added to the set Ci, where i is the index of

the keypoint for image A, B, or B′. We train our model in a semi-supervised manner

to detect keypoints using the location of correct matches of descriptors as ground-truth

for the training. We name the generated map using true matches by Matching Heatmap

(MH). This process is summarised in Figure 4.3.

Let Ma1,Ma2 be the MH of A (relative to the matching with B and B′ consecu-

tively), and Mb1,Mb2 the MH of B and B′ (relative to the matching of both with A), with

values ranging in [0, 1], where the value 0 means low matching confidence regions and 1

means high matching confidence regions. The MH has the same resolution as the input

image, and then we set the MH value as 1 in the position (x, y) if it is in the set Ci. In

the last step, we combine the MH from all pairwise matches in a way that map locations

have more weight where descriptors were correctly matched on both match attempts, i.e.,

matches of image A with B and A with B′. As a result, we have a final MH for image

A as: Ma = (Ma1 + Ma2)/2. For images B and B′, we apply a similar idea, except that

now it has three degrees of weight. Considering image B, we have descriptors that are

correct in both image pairs; descriptors that are correct in the match of B and A, and

descriptors that are correct in the match of B′ and A. The latter is also represented on

MH of B, but with a small weight. The same idea is applied to B′. That way, we have

the global MHs for B: Mb = (g(Ma) + Mb1)/2, and for B′: Mb′ = (g′(Ma) + Mb2)/2. To

make the global MHs easier to be learned by the CNN model, we apply a 3× 3 Gaussian

kernel in all individual MHs. Finally, the matching map (Figure 4.3) has the information

of confident locations to be matched for each image.

In addition, the above strategy increases the number of positive samples since

points that were matched only in B are now added with a small weight in B′, and

vice versa. Notice that by choosing only correct matches, we are consequently selecting

repeatable keypoints, meaning that our model implicitly learns to be repeatable. To

further enforce the repeatability of detected points, we also employ a Siamese scheme [7] to

maximize similarities of the score map and the MH of the anchor image and its variations

at the same time. This strategy also improves the repeatability of the detector under
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geometric transformations. Our method is agnostic to the choice of the base detector

and descriptor. In the experiments section, we will show the capability of the proposed

detection approach to improve the matching capability of two recent descriptors.

4.3 Loss function

Due to the imbalance between the number of positive and negative pixels in the

MH, the full map in the training stage tends to bias the model towards predicting a map

with very low scores on average. To solve this problem, we randomly sample a fixed

number of negative examples at each pass of an image in training. Considering that n is

the amount of positive examples in an image, we uniformly sample n negatives examples

and back-propagate 2n examples.

We formulate the strategy as a binary pixel-wise mask F having value 1 on the

chosen pixels and 0 otherwise. Given an image I, its relative MH M , and the model

output score map S, we define S ′ = S × F . As we aim to maximize the similarity across

the MH and the score map image, the cosine similarity (cossim) between S ′ and M is

adopted:

Lcossim(I) = 1 − cossim (S ′,M) . (4.1)

When cossim(S ′,M) is maximized, the MH and the score map tend to be close.

R2D2 [33] uses a similar strategy applying the cosine similarity as its loss function. Al-

though cosine similarity has good convergence properties, it disregards the magnitude of

the values between the score maps and therefore, we also consider the L2 loss:

Lsimple(I) =
1

2n

H·W∑
i=1

(S ′
i −Mi)

2
. (4.2)

We further exploit the fact that the regressed map needs to peak at the position of the

keypoints; that fact, in practice, it also allows a better performance of the detector in

repeatability and matching scores. Thus, for even faster convergence, we employ a third

loss term in order to force the local peakiness of the score map, based on ASLFeat [22]

peakiness strategy. Considering a set of non-overlapping patches P = {p} that contains

all N × N patches within the image I where there is at least one non-zero pixel on the

equivalent location of the patch on M , the peakiness loss term of the score map is defined

as:

Lpeak(I) = 1 − 1

|P|
∑
p∈P

(
max
(i,j)∈p

Si,j − (i, j) ∈ pmeanSi,j

)
. (4.3)

The loss L is given by the weighted sum of the cossim, L2 and peak losses:

L(I) = λ1Lcossim(I) + λ2Lsimple(I) + λ3Lpeak(I). (4.4)
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Because of the Siamese scheme, the final loss function becomes the sum of the loss

L applied to the images in both branches. That way, we have:

Lfinal = L1 + L1, (4.5)

where L1 = L(I1), L2 = L(I2), and I1 and I2 are the input images of the Siamese network.
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Chapter 5

State of the art comparison

In this chapter, we show the dataset used in our experiments, the evaluation methodology

and baseline used, and the ablation study and sensibility analysis to support our decisions

and select the best parameters for the final and definitive method.

Our approach expects a base detector and a base descriptor to generate the data for

training our framework. Given the wide variety of detectors and descriptors available, we

chose ASLFeat [22] because, in addition to being the state-of-the-art detection-description

task, its architecture has deformable convolutional kernels. The deformable kernels target

learning dynamic receptive fields to accommodate the ability to model geometric varia-

tions, which is a important feature in our context since we are dealing with non-rigid

transformations. We also selected the DEAL [32] descriptor, which is robust to non-rigid

deformations.

5.1 Implementation details

The weights λ1, λ2, and λ3 were empirically found by performing a grid search on

a range of sensible values, and we kept the ones that best enhanced the convergence of the

score maps. The weights used in the experiments are, λ1 = 3.0, λ2 = 1.0 and λ3 = 0.3.

Even though most of the results are from real images, our network is trained using only

synthetic warps. We use part of [32] simulated data to apply the non-rigid deformations

and homography as explained on Section 4.2. The dataset comprises 400× 300 resolution

images. In the training step, a random image from the dataset is chosen as the anchor

image A (see Section 4.2). In total, 10, 000 pairs of images with different and random

transformations were used in the training pipeline. We optimize the network via Adam

with an initial learning rate of 0.006, scaling it by 0.9 every 500 step for 7 epochs. We used

a batch size of 12 images containing at least 32 peaks in its MH. With approximately 150

positive examples per MH, our model was trained on about 1.5M positive examples. In

order to balance examples at each iteration, we randomly select negative examples. And
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for each input image, we cut a convex region formed by the positive examples to avoid

selecting negative examples on good regions of the image, however not detected due to

occlusions, which can, that way, confound the model.

In the testing, we used non-maximum suppression (NMS) with a window size of

5 × 5 pixels. Just to ensure that we will not have points on edges, we also post-process

the keypoints with an edge elimination step as SIFT edge elimination method (with a

threshold of 10). The top-k keypoints regarding detection scores are kept, while filtering

those whose scores are lower than 0.2.

5.2 Datasets

We evaluate our detector in different publicly available datasets containing de-

formable objects in diverse viewing conditions such as illumination, viewpoint, and non-

rigid deformation. For that, we selected the dataset recently proposed by Nascimento et

al. [31], and Potje et al. [29], i.e., Kinect1 and Kinect2, respectively; and one proposed by

DeSurT [54]. Each dataset has folders with a base image and target images with some

geometric and non-rigid transformation computing a total of 770 images. They contain

color images of 11 deforming real-world objects and ground-truth correspondences are

done following the protocol of [16]. Kinect1 and Kinect2 datasets have images with non-

rigid deformations and small variation on rotation and translation. DeSurt has images

with non-rigid deformations, small rotation and perspective changes.

Figure 5.1 shows some examples of images from these datasets and their deforma-

tion.

5.3 Metrics and baselines

Since the main goal of our feature detection is to maximize the number of correct

feature matches, the performance assessment uses the Mean Matching Accuracy (MMA)

in combination with the Matching Score (MS). The MMA metric is computed as in

Revaud [33], where the matching accuracy is the average percentage of correct matches

in an image pair considering multiple pixel error threshold. In our experiments, we use

an error threshold of three pixels, which we call MMA@3. The MS can be defined as the
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Figure 5.1: Image sample of the used dataset. The base image (left-most image)
and two target images with different non-rigid deformation (images of column two and
column three) from dataset Kinect1 and Kinect2

average ratio between ground-truth correspondences that can be recovered by the whole

pipeline and the total number of estimated features within the shared viewpoint region

when matching points from the first image to the second and the second image to the

first one.

Since keypoint repeatability is also the most used metric for detector evaluation and

has an indirect influence on MS, we use the keypoint Repeatability Rate (RR) to compare

our detector with the existing ones. RR is defined as the ratio of possible matches and

the minimum number of keypoints in the shared view with a pixels error threshold e. In

our experiments, we use e = 3, the same value used in most of the papers that evaluate

detectors.
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We compare our results against five detectors. We consider two handcrafted detec-

tors: SIFT [20] and AKAZE [2], that provide stable keypoints and are still considered good

baselines according to a recent study [16]; FAST [35], a basic corner detector; Keynet [18],

a cutting edge learned based detector; and one state-of-the-art jointly learned detection

and description method, ASLFeat [22].

5.4 Ablation and sensitivity analysis

In this section, we present some ablation study and sensibility analysis that was

used to support our decisions and select the best parameters for the final and definitive

model of keypoint detection. For that, we consider the RR, MS, MMA@3, and the number

of inliers as metrics to compare different configurations.

5.4.1 Network fine-tuning

In this study, we evaluate if the network achieves better results from two training

strategies: (i) fine-tuning a pre-trained network to detect and describe; and (ii) from

scratch training.

For fine-tuning, we used part of the pre-trained ASLFeat architecture as the basis

of the new network, adding layers to learn to detect good keypoints for matching and

robust to non-rigid deformations. The architecture of ASLFeat and the new architecture

used for training (called Our Experimental Detector) can be seen in Figure 5.2. The idea

is that we can use the pre-trained features by ASLFeat and back-propagate the signal

only in the new layers (Figure 5.2 b-ii). For strategy (ii), which can be seen in Figure 4.2,

we perform the training from scratch using the Unet architecture from the input image.

To test the two strategies, we train the models till convergence and use the best re-

sult of parameters configuration. We test on the three aforementioned non-rigid datasets:

Kinect1 [29], Kinect2 [29], and DeSurT [54].

Table 5.1 shows the large advantage of training the network from scratch. An-

alyzing the training data, we could notice that it was harder to train the network with

fine-tuning. The base layers is trained just for repeatability. Because of that, points with

a high signal for repeatability but a bad point for matching make the training process

harder and confuse the model in the learning process.
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Figure 5.2: Our Experimental Detector. On the top of figure (a) one can see the
ASLFeat detector architecture; on the bottom of figure (b) we have our experimental
architecture with two main parts: a piece of ASLFeat architecture (b-i) (into the dotted
square), and our new proposed layers to learn good matches (b-ii).

Table 5.1: Experiment on Network with fine-tuning. The higher the better. Bold
is the best for the column.

Networking Training RR MS MMA@3 Inliers

Fine-tuning 0.26 0.21 0.77 121
Unet from scratch 0.50 0.43 0.80 170
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5.4.2 Ablation of siamese training architecture

As part of ablation studies, we train our model using two configurations: (i) a

Siamese network scheme and (ii) using a standard network training scheme, i.e., using

a single branch. The experiments show that a Siamese scheme (i) helps the model to

learn repeatable keypoints and improve MS, as can be seen in Table 5.2. RR increased

from 0.46 to 0.50, and MS from 0.39 to 0.43 by using the Siamese scheme, and MMA@3

decreased from 0.81 to 0.80. However, inliers significantly increase from 150 to 170.

Table 5.2: Ablation of siamese trainning architecture. The higher the better. Bold
is the best for the column.

Networking Training RR MS MMA@3 Inliers

Siamese Network Scheme 0.50 0.43 0.80 170
Standard Scheme 0.46 0.39 0.81 150

5.4.3 Ablation on loss function

To evaluate the contribution of the components of our proposed loss function

(Equation 4.4), and support our implementations decisions, we evaluate three different

setups: (i) using cosine similarity term only; (ii) full loss of Equation 4.4 with equal

weights to cosine similarity and L2 losses, i.e., λ1 = 1.0, λ2 = 1.0, and λ3 = 0.3; and

(iii) the complete loss of Equation 4.4 with optimal weights. We train the models until

convergence and test them in the same datasets of Table 5.4. The final result with mean

RR, MS, MMA@3, and inliers of all datasets can be seen in Table 5.3, with the best

results in bold. The results in Table 5.3 show that setup (iii) is the best one. MMA@3

with a value of 1 p.p. higher for the setup (i) can be explained by the smaller number of

inliers. Complete loss setup has a higher number of inliers and MS, maintaining a high

MMA@3, being that way, the chosen configuration.
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Table 5.3: Sensibility Analysis on loss. The higher the better. Bold is the best for
the column.

Loss combination RR MS MMA@3 Inliers

Lcossim 0.42 0.37 0.81 121
Lcossim + Lsimple 0.48 0.39 0.80 155
L (complete) 0.50 0.43 0.80 170

5.4.4 Sensitivity analysis on keypoint weights of training

framework

To support the weighting step choice in our training framework, we also report

the strategy of giving equal weights according to repeatable matching, where all MHs

peaks have a constant value of 1.0. We obtained values of 0.45 and 0.37 for the RR

and MS on equal weights strategy, which is significantly lower than what we achieved

using the proposed weighted Matching Heatmap strategy (0.50 and 0.43 for RR and MS,

respectively).

5.5 Experiments

In this section, we show the obtained results of our detector in three different

datasets for three metrics and one real world application.

Table 5.4: Detector + ASLFeat descriptor matching performance comparison.
Best in bold and second-best underlined. The higher the value, the better.

Dataset 770 pairs total - MS / MMA@3 pixels

Detector
+

ASLFeat
Kinect1 Kinect2 DeSurT Mean

SIFT 0.35 / 0.77 0.37 / 0.85 0.26 / 0.63 0.33 / 0.75
FAST 0.43 / 0.69 0.53 / 0.85 0.33 / 0.56 0.43 / 0.70
AKAZE 0.39 / 0.66 0.49 / 0.76 0.26 / 0.48 0.40 / 0.66
Keynet 0.31 / 0.65 0.35 / 0.62 0.24 / 0.51 0.30 / 0.59
ASLFeat 0.31 / 0.58 0.39 / 0.69 0.28 / 0.53 0.33 / 0.60

Ours 0.49 / 0.86 0.48 / 0.89 0.31 / 0.66 0.43 / 0.80
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Table 5.5: Detector + DEAL descriptor matching performance comparison.
Best in bold and second-best underlined. The higher the value, the better.

Dataset 770 pairs total - MS / MMA@3 pixels

Detector
+

DEAL
Kinect1 Kinect2 DeSurT Mean

SIFT 0.33 / 0.68 0.38 / 0.85 0.27 / 0.63 0.33 / 0.72
FAST 0.36 / 0.58 0.51 / 0.81 0.29 / 0.49 0.39 / 0.63
AKAZE 0.38 / 0.65 0.47 / 0.74 0.23 / 0.42 0.36 / 0.60
Keynet 0.27 / 0.58 0.34 / 0.59 0.22 / 0.45 0.28 / 0.54
ASLFeat 0.31 / 0.66 0.40 / 0.73 0.25 / 0.54 0.32 / 0.64

Ours 0.45 / 0.79 0.46 / 0.85 0.28 / 0.59 0.40 / 0.74

Tables 5.4 and 5.5 represent experiments results. The tables show MS and MMA

with 3 pixel error threshold for each dataset for several combinations of Detector +

Descriptor. For that two experiments, we detect a fixed amount of keypoints, 1,024

keypoints, for each detector on each image. With that experiments, we aim to analyze

how the detected keypoints influence the quality of the matching. For this purpose, we

chose two descriptors: ASLFeat [22] and DEAL [32]. ASLFeat [22], a state-of-the-art

detector & descriptor that employs deformable convolutions. And also DEAL [32], a

deformation-aware descriptor invariant to non-rigid transformations. With that, we can

test our detector with a descriptor that was not trained to describe non-rigid objects and

was trained in a describe-and-detect manner; that is the case of ASLFeat. And with a

descriptor that is not trained in a describe-and-detect manner, but is invariant to non-

rigid transformations; that is the case of DEAL. For results on Table 5.4, we train our

detector with ASLFeat keypoints and describe them with ASLFeat descriptor. For results

on Table 5.5, we train our detector with ASLFeat keypoints and describe them with DEAL

descriptor.

In Table 5.4, one can see that our detector reaches the best MMA for all datasets.

In comparison with ASLFeat detector, our method increases the avg. MMA scores from

0.60 to 0.80 (20 p.p.) when replacing ASLFeat’s detector to our detector, and has a

significant distance of 5 p.p. from the second best MMA (SIFT-ASLFeat). For MS, we

achieve the best mean as well as the FAST detector, however, we achieve 10 p.p. in MMA

mean.

One can see, in Table 5.5 that, on average, our keypoints paired with DEAL

descriptors outperforms all detector-DEAL combinations in both MS and MMA metrics.

Our detector achieves most of the best and second-best MS and MMA scores, increasing,

on average, about 7 p.p. and 2 p.p. for MS and MMA, respectively, in comparison with

SIFT, detector that was used to train the DEAL descriptor.
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Figure 5.3: Qualitative results on a real non-rigid matching of dataset
Kinect1/Bag. The green lines show correct correspondences, while the red lines de-
pict wrong correspondences.
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Figure 5.4: Qualitative results on a real non-rigid matching of dataset
Kinect1/Blanket. The green lines show correct correspondences, while the red lines
depict wrong correspondences.
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Figure 5.5: Qualitative results on a real non-rigid matching of dataset
Kinect1/Shirt1. The green lines show correct correspondences, while the red lines
depict wrong correspondences.
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Since our main goal is the quality of matching, RR is not the main metric to

evaluate. However, we also analyze the detectors’ repeatability with the RR score. From

all methods, FAST has the best RR with 0.59 on average. As second best, AKAZE,

ASLFeat, and our method reach a RR of 0.50. The worst detector in RR metric was

SIFT with 0.43. These scores show that our detector could also reach a competitive RR,

while increasing the MMA and MS matching metrics. It is worth noticing that ASLFeat

detector, even if presenting a high RR has the smaller MS and MMA, as can be seen in

Table 5.4. One can also note that a high RR does not imply good matching scores.

One can see that handcrafted detectors perform similarly or worst than the learned

detectors of literature in matching evaluation. That happens because learned detectors

are trained in specific contexts with images from some dataset with some characteristics,

and that way, could not generalize well for different domains. Since there is no detector

trained for non-rigid deformations, the detectors can not generalize well for that type

of image. Handcrafted detectors are more general and could generalize well for different

domains, having a more stable result independent of the domain.

5.5.1 Quantitative Results

Figures 5.3, 5.4, and 5.5 show matching examples of our detector combined with

different descriptors in comparison with the detector that the descriptor was trained

with. Our method is able to deliver well-distributed matches in the image as well as SIFT

and ASLFeat detectors, but with improved accuracy. In Figure 5.3, one can notice that

Our-ASLFeat combination detected keypoints that was 100% correctly matched, and our

keypoints with DEAL descriptors have only one keypoint that was wrong matched; while

SIFT-DEAL and ASLFeat-ASLFeat combination have several wrong matches. And can

be noticed that the amount of keypoint detected, as well as the spatial distribution of

keypoints in the image detected, are similar for all the three detectors. Figure 5.4 shows a

similar result for Our-ASLFeat, however Our-DEAL combination present a similar number

of wrong matches. Figure 5.5 shows a very similar result for Our-ASLFeat in comparison

with Figure 5.4. And Our-DEAL combination has a better visual result than SIFT-DEAL

combination.

The visual results are in agreement with the results in the tables above. From

the Table 5.4, one can see a great superior result of Our-ASLFeat in comparison with

ASLFeat-ASLFeat combination, while from the Table 5.5, Our-DEAL combination has

a better performance than SIFT-DEAL combination, but the difference between them is

not that big. These results can be explained by the fact that in both cases, our detector
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was trained with ASLFeat keypoints, and the ASLFeat keypoints was trained to couple

with ASLFeat descriptors, fact that improved final matching performance.

5.6 Results on the application of object retrieval

To further demonstrate the effectiveness of our detector in potential applications,

we performed experiments in one important related real-world task: content-based object

retrieval. The goal is to retrieve the top K images corresponding to a given query. To

represent each image, we used a Bag-of-Visual-Words approach. For each keypoint, we

first construct a visual dictionary with the DEAL [32] descriptor, which is used to compute

a global descriptor for each image. Given a query image, we calculate the global descriptor

and use the K-Nearest Neighbor search to obtain the top K closest objects.

We use retrieval accuracy (the number of correct objects retrieved in the top K

images) to evaluate the performance of the detectors. Since the queries and database of

the application are deformable, we choose only to use a descriptor that models isometric

deformations.

Figure 5.6 shows the retrieval accuracy for K = 20, where our detector performed

similarly to the other methods. For K > 6, our detector performed similar to SIFT [20],

with is the method used to train the non-rigid descriptor. The results indicate that

our detector can perform well even on a non-matching task. Because of influence of

ASLFeat [22] keypoints used in the training methodology, one can see that for values of

K ≤ 6 our method fail. However, one can see that methods that are good on matching

task as shown in Tables 5.4 and 5.5, such as AKAZE and FAST, do not perform well for

K > 10, while our method maintain the maximum accuracy.
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Figure 5.6: Non-rigid object retrieval application. The chart shows the retrieval
accuracy@K for K = 20 using a non-rigid descriptor and various detectors.
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Chapter 6

Conclusion

In this work, we proposed a novel approach to detect keypoints on images affected by

non-rigid deformations, emphasizing improved matching scores, which contributed as the

first detector trained to be robust to non-rigid transformation.

Our main contribution is a semi-supervised training framework for training a CNN

with non-rigidly deformed images exploring the hypothesis that a detector can learn the

likelihood of correct matching for a given descriptor. We explore several solutions to the

Matching Heatmap strategy on the detector training, choosing the one that uses weights

for different matching repeatability.

The experimental results show that our method achieved state-of-the-art detection

and matching performance on non-rigid deformation datasets. In general, we could see

that our detector remained stable both in relation to MS and MMA, as well as between

the datasets and between the different descriptors. Even when dealing with descriptors

with different proposals and training forms, and one of them was not trained to describe

with invariance to non-rigid transformations, our detector achieved good results, learning

to be robust, during the detection, of this type of transformation, which resulted in a bet-

ter quality matching. Through extensive investigation, we observed that the repeatability

of the detector alone is not enough to make a good detector. We also show the efficiency

of our detector in non-rigid object retrieval, a real-world application, demonstrating that

learning to detect good keypoints is a promising research direction for performance im-

provement in real-world tasks.

6.1 Future Works

A limitation of our work is that the framework still depends on a base keypoint

detector, and may be biased toward specific local characteristics of the base detector.

Removing the base detector from the pipeline, and learning to detect directly from the

descriptor, is a possible improvement. We can do that by using dense descriptor method
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and matching all the descriptors of two images in a way that the model can learn from the

good matches which local regions are good to be detected. However, one of the difficulties

of that strategy is the ambiguity on similar regions of an image such as textureless areas

where the matching method can find a matching and the local patch there is no relevant

information to train the model. We believe that investigating the usage of semantics

descriptors could be a good path to surpass the above problem of textureless areas.

Another drawback of our method is the light sensibility. Because of the bad results

of matching on dark regions of the image, our method tends to detect a few points

in regions with low illumination, which can be bad in some contexts and applications.

However, a future experiment with lighting conditions changes should be done to confirm

that hypothesis.

A path to future work is to apply our learning approach of the Matching Heatmap

strategy to train in the rigid domain using, for example, homography, and testing on tra-

ditional datasets such as HPatches. That way, we could see the behavior of the proposed

method on the rigid transformation domain and investigate how we can improve matching

for transformations such as rotation and scale, with task-specific training, i.e., training

focused on rotation or on scale transformation.



49

Bibliography

[1] Pablo F Alcantarilla and T Solutions. Fast explicit diffusion for accelerated features

in nonlinear scale spaces. TPAMI, 34(7):1281–1298, 2013.

[2] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davison. KAZE fea-

tures. In ECCV, 2012.

[3] Vassileios Balntas, Edward Johns, Lilian Tang, and Krystian Mikolajczyk. Pn-net:

Conjoined triple deep network for learning local image descriptors. arXiv preprint

arXiv:1601.05030, 2016.

[4] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning

local feature descriptors with triplets and shallow convolutional neural networks. In

Bmvc, volume 1, page 3, 2016.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.

In ECCV, 2006.

[6] Paul Beaudet. Rotationally invariant image operators. In International Conference

on Pattern Recognition (ICPR), 1978.

[7] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.

Signature verification using a” siamese” time delay neural network. Advances in

neural information processing systems, 6, 1993.

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen

Wei. Deformable convolutional networks. In ICCV, pages 764–773, 2017.

[9] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperPoint: self-

supervised interest point detection and description. In CVPR Workshops, 2018.

[10] Paolo Di Febbo, Carlo Dal Mutto, Kinh Tieu, and Stefano Mattoccia. KCNN:

extremely-efficient hardware keypoint detection with a compact convolutional neural

network. In CVPR Workshops, 2018.

[11] Gianluca Donato and Serge Belongie. Approximate thin plate spline mappings. In

ECCV, 2002.

[12] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko

Torii, and Torsten Sattler. D2-net: A trainable CNN for joint description and detec-

tion of local features. In CVPR, 2019.



Bibliography 50

[13] Mohammed E Fathy, Quoc-Huy Tran, M Zeeshan Zia, Paul Vernaza, and Manmohan

Chandraker. Hierarchical metric learning and matching for 2d and 3d geometric

correspondences. In ECCV, pages 803–819, 2018.

[14] Chris Harris, Mike Stephens, et al. A combined corner and edge detector. In Alvey

vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[15] Jared Heinly, Johannes L Schonberger, Enrique Dunn, and Jan-Michael Frahm. Re-

constructing the world* in six days*(as captured by the yahoo 100 million image

dataset). In CVPR, 2015.

[16] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo

Yi, and Eduard Trulls. Image matching across wide baselines: From paper to practice.

IJCV, 129(2), 2021.

[17] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks

for one-shot image recognition. In ICML, volume 2, page 0. Lille, 2015.

[18] Axel Barroso Laguna and Krystian Mikolajczyk. Key. net: Keypoint detection by

handcrafted and learned cnn filters revisited. TPAMI, 2022.

[19] Karel Lenc and Andrea Vedaldi. Learning covariant feature detectors. In ECCV,

pages 100–117. Springer, 2016.

[20] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV,

60(2), 2004.

[21] Zixin Luo, Tianwei Shen, Lei Zhou, Jiahui Zhang, Yao Yao, Shiwei Li, Tian Fang,

and Long Quan. ContextDesc: local descriptor augmentation with cross-modality

context. In CVPR, 2019.

[22] Zixin Luo, Lei Zhou, Xuyang Bai, Hongkai Chen, Jiahui Zhang, Yao Yao, Shiwei Li,

Tian Fang, and Long Quan. ASLFeat: learning local features of accurate shape and

localization. In CVPR, 2020.

[23] Welerson Melo, Guilherme Potje, Felipe Cadar, Renato Martins, and Erickson R

Nascimento. Learning to detect good keypoints to match non-rigid objects in rgb

images. In 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images

(SIBGRAPI), volume 1, pages 61–66. IEEE, 2022.

[24] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point

detectors. IJCV, 60(1):63–86, 2004.

[25] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local de-

scriptors. TPAMI, 27(10):1615–1630, 2005.



Bibliography 51

[26] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri

Matas, Frederik Schaffalitzky, Timor Kadir, and L Van Gool. A comparison of affine

region detectors. IJCV, 65(1):43–72, 2005.

[27] Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenovic, and Jiri Matas. Working

hard to know your neighbor’s margins: Local descriptor learning loss. arXiv preprint

arXiv:1705.10872, 2017.

[28] Francesc Moreno-Noguer. Deformation and illumination invariant feature point de-

scriptor. In CVPR, 2011.

[29] Erickson R Nascimento, Guilherme Potje, Renato Martins, Felipe Cadar, Mario FM

Campos, and Ruzena Bajcsy. GEOBIT: a geodesic-based binary descriptor invariant

to non-rigid deformations for RGB-D images. In ICCV, 2019.

[30] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-

scale image retrieval with attentive deep local features. In ICCV, pages 3456–3465,

2017.

[31] Guilherme Potje, Renato Martins, Felipe Cadar, and Erickson R Nascimento. Learn-

ing geodesic-aware local features from rgb-d images. Computer Vision and Image

Understanding, 219:103409, 2022.

[32] Guilherme Potje, Renato Martins, Felipe Chamone, and Erickson Nascimento. Ex-

tracting deformation-aware local features by learning to deform. NeurIPS, 2021.

[33] Jerome Revaud, Cesar De Souza, Martin Humenberger, and Philippe Weinzaepfel.

R2d2: Reliable and repeatable detector and descriptor. NeurIPS, 2019.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In International Conference on Medical

image computing and computer-assisted intervention, 2015.

[35] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detec-

tion. In ECCV, 2006.

[36] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient

alternative to SIFT or SURF. In ICCV, 2011.

[37] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.

Superglue: Learning feature matching with graph neural networks. In CVPR, 2020.

[38] Nikolay Savinov, Lubor Ladicky, and Marc Pollefeys. Matching neural paths: transfer

from recognition to correspondence search. Advances in Neural Information Process-

ing Systems, 30, 2017.



Bibliography 52

[39] Nikolay Savinov, Akihito Seki, Lubor Ladicky, Torsten Sattler, and Marc Pollefeys.

Quad-networks: unsupervised learning to rank for interest point detection. In CVPR,

2017.

[40] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited.

In CVPR, 2016.

[41] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and

Francesc Moreno-Noguer. Discriminative learning of deep convolutional feature point

descriptors. In ICCV, pages 118–126, 2015.

[42] Yafei Song, Ling Cai, Jia Li, Yonghong Tian, and Mingyang Li. SEKD: self-evolving

keypoint detection and description. arXiv preprint arXiv:2006.05077, 2020.

[43] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. LoFTR:

detector-free local feature matching with transformers. In CVPR, 2021.

[44] Suwichaya Suwanwimolkul, Satoshi Komorita, and Kazuyuki Tasaka. Learning of

low-level feature keypoints for accurate and robust detection. In WACV, 2021.

[45] Richard Szeliski. Computer vision: algorithms and applications. Springer Science &

Business Media, 2010.

[46] Yurun Tian, Bin Fan, and Fuchao Wu. L2-net: Deep learning of discriminative patch

descriptor in euclidean space. In CVPR, pages 661–669, 2017.

[47] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen, and Vassileios Balntas.

Sosnet: Second order similarity regularization for local descriptor learning. In CVPR,

pages 11016–11025, 2019.

[48] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An efficient dense descriptor

applied to wide-baseline stereo. TPAMI, 32(5):815–830, 2009.

[49] Alessio Tonioni, Samuele Salti, Federico Tombari, Riccardo Spezialetti, and Luigi Di

Stefano. Learning to detect good 3d keypoints. IJCV, 126(1), 2018.

[50] Quoc-Huy Tran, Tat-Jun Chin, Gustavo Carneiro, Michael S Brown, and David

Suter. In defence of ransac for outlier rejection in deformable registration. In ECCV,

2012.

[51] Prune Truong, Stefanos Apostolopoulos, Agata Mosinska, Samuel Stucky, Carlos

Ciller, and Sandro De Zanet. GLAMpoints: greedily learned accurate match points.

In ICCV, 2019.

[52] Micha l Tyszkiewicz, Pascal Fua, and Eduard Trulls. DISK: learning local features

with policy gradient. NeurIPS, 2020.



Bibliography 53

[53] Yannick Verdie, Kwang Yi, Pascal Fua, and Vincent Lepetit. Tilde: A temporally

invariant learned detector. In CVPR, pages 5279–5288, 2015.

[54] Tao Wang, Haibin Ling, Congyan Lang, Songhe Feng, and Xiaohui Hou. Deformable

surface tracking by graph matching. In ICCV, 2019.

[55] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. Lift: Learned

invariant feature transform. In ECCV, pages 467–483. Springer, 2016.

[56] Yang You, Wenhai Liu, Yong-Lu Li, Weiming Wang, and Cewu Lu. Ukpgan: Unsu-

pervised keypoint ganeration. arXiv preprint arXiv:2011.11974, 2020.

[57] Linguang Zhang and Szymon Rusinkiewicz. Learning to detect features in texture

images. In CVPR, 2018.

[58] Weichuan Zhang and Changming Sun. Corner detection using second-order general-

ized gaussian directional derivative representations. TPAMI, 43(4):1213–1224, 2019.


	Introduction
	Objective and Contributions
	Thesis Organization

	Theoretical Background
	Keypoint detection, description, and matching
	SIFT detector and descriptor
	Convolution Neural Network for keypoint detection and description
	ASLFeat detector and descriptor
	Brute force matching and ratio test


	Related Work
	Handcrafted methods
	Handcrafted detectors
	Handcrafted descriptors

	Learned-based methods
	Learned-based detectors
	Learned-based descriptors
	Jointly learned detector and descriptors

	Keypoint detection and description for non-rigid deformations

	Methodology
	Network design
	Keypoint detection learning framework
	Loss function

	State of the art comparison
	Implementation details
	Datasets
	Metrics and baselines
	Ablation and sensitivity analysis
	Network fine-tuning
	Ablation of siamese training architecture
	Ablation on loss function
	Sensitivity analysis on keypoint weights of training framework

	Experiments
	Quantitative Results

	Results on the application of object retrieval

	Conclusion
	Future Works

	Bibliography

