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Resumo

O Differential Evolution é um algoritmo evolutivo clássico para otimização. Pos-

sui apenas três parâmetros, é fácil de implementar e poderoso. Embora seja amplamente

utilizado, com muitos artigos propondo variantes e resultados experimentais, apenas al-

guns artigos buscam resultados anaĺıticos. Este trabalho tem dois objetivos: um teórico e

um prático. O objetivo teórico é ampliar a compreensão da dinâmica do algoritmo, para

isso, começamos expondo alguns resultados da literatura e em seguida alguns resultados

originais. O objetivo prático é criar um método adequado para escolher os parâmetros

do algoritmo. Esse método é derivado dos resultados anaĺıticos e testado com sucesso em

relação a funções de teste t́ıpicas.

Palavras-chave: evolução diferencial; otimização; escolha de parâmetros; algoritimos

estocásticos; algoritimos genéticos.



Abstract

The Differential Evolution is a long-established evolutionary algorithm for opti-

mization. It has only three parameters, it is easy to implement and powerful. While

being widely used, with many papers proposing variants and experimental results, only a

few articles seek analytical results. This work has two objectives: a theoretical one and a

practical one. The theoretical objective is to enlarge the understanding of the dynamics

of the algorithm, for this, we begin exposing some results from the literature and then

some original results. The practical objective is to create a suitable method to choose

the parameters of the algorithm. That method is derived from the analytical results and

successfully tested against typical test functions.

Keywords: differential evolution; optimization; parameter choosing; stochastic algo-

rithms; genetic algorithms.
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Chapter 1

The algorithm

1.1 Basic algorithm and variants

Proposed by Price and Storn in a series of papers [11, 15, 16], the Differential

Evolution is a long-established algorithm [10] that aims to optimize functions f : X → P

where X is a continuous domain, called search space, and P is a partially ordered set (in

this text we study the case X = Rn and P = R). In this entire monograph the objective

function is f : Rn → R and the dimension of the search space is n.

An execution of the algorithm starts by uniformly selecting a set

X0 = {x0
1, · · · , x0

N} ⊂ Rn

with N points, known as the initial population, from a domain region where one expects

to find the global minimum. After the initialization the algorithm iterates producing a

sequence of populations X0 → X1 → X2 → · · · → XTf until a stop criterion is reached.

The population X t = {xt
1, · · · , xt

N} ⊂ X is the t-th generation and each element xt
i ∈ X t

is an individual.

To build the (t+1)-th generation the algorithm processes the t-th generation using

three operations (as in Algorithm 1): reproduction and mutation, crossover and selection.

The way each one of these operations is performed defines each variant of the Differential

Evolution. We use the notation DE/X/Y/Z to denote these variants, X stands for the

reproduction, Y for the mutation and Z for the crossover. The selection is always elitist,

e.g., given two individuals x and y with f(x) < f(y) we will always select x.

1.1.1 Reproduction and mutation

Algorithm 1 relies on two operations: mutation (that outputs an individual ui)

and crossover (that outputs an individual oi). The three main configurations for the
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Algorithm 1: General Differential Evolution algorithm.

Input: N , n, F , Cr, f(x)
/* N: number of individuals in population */

/* n: decision variable dimension */

/* F: scaling factor */

/* Cr: crossover rate */

/* f(x): objective function */

Output: x∗

/* Generate the initial population (N individuals in Rn): */

1 X0 ← initial population(N, n)
/* Let X0 = {x1, · · · , xN} where xi ∈ Rn for all i = 1, · · · , n */

2 t← 0
3 while not stopping condition do
4 for i← 1 : N do

/* Perform mutation: */

5 ui ←mutation(F, i,X t)
/* Perform crossover: */

6 oi ← crossover(Cr, ui, i, X
t)

/* Perform elitist selection: */

7 if f(oi) < f(xi) then
/* Change xi: */

8 xi ← oi

9 else
/* Keep xi: */

10 xi ← xi

11 t← t + 1
/* Store the population for the next iteration: */

12 X t ← {x1, . . . , xN}
/* Get the best point that was visited: */

13 x∗ ← arg mini∈{1,...,N} f(xi)

reproduction and mutation operator are:

1. DE/rand/k/Z, where ui is generated by uniformly choosing 2k + 1 distinct individ-

uals {xt
r1
, · · · , xt

r2k+1
} in X t and operating

ui ← xt
r1

+
k∑

l=1

Fl(x
t
r2l
− xt

r2l+1
) (1.1)

where F1, · · · , Fk are algorithm’s parameters defined during the initialization. Usu-

ally F1 = · · · = Fk = F and F is known as the scaling factor ;

2. DE/best/k/Z, let xt
best ∈ X t be the individual of X t with the minimum value by f .

Here ui is generated by uniformly choosing 2k distinct individuals {xt
r1
, · · · , xrt2k

}
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in X t − {xt
best} and operating

ui ← xt
best +

k∑
l=1

Fl(x
t
r2l−1
− xt

r2l
) (1.2)

where F1, · · · , Fk are previously defined parameters of the algorithm;

3. DE/current/k/Z, where ui is generated by uniformly choosing 2k distinct individuals

{xt
r1
, · · · , xrt2k

} ⊂ X t − {xt
i} and operating

ui ← xt
i +

k∑
l=1

Fl(x
t
r2l−1
− xt

r2l
) (1.3)

where F1, · · · , Fk are previously defined parameters of the algorithm.

One may also choose an intermediary configuration, an example is the DE/current-

to-best/k/Z, where 2k distinct individuals {xt
r1
, · · · , xrt2k

} ⊂ X t − {xt
i, x

t
best} ⊂ X t are

uniformly chosen and we operate

ui ← λxt
best + (1− λ)xt

i +
k∑

l=1

Fl(x
t
r2l−1
− xt

r2l
) (1.4)

where λ ∈ (0, 1), as well as F1, · · · , Fk, are previously defined parameters of the Differential

Evolution.

1.1.2 Crossover

There are two main crossover variants, the binomial and the exponential, de-

noted by DE/X/Y/bin and DE/X/Y/exp, respectively. Let xt
i =

[
xi
1 · · · xi

n

]T
, ui =[

ui
1 · · · ui

n

]T
and oi =

[
oi1 · · · oin

]T
. In the binomial variant we uniformly choose n

values v1, · · · , vn on the interval (0, 1) and set

ois =

ui
s, if vs ≤ Cr

xi
s, if vs > Cr

for all s = 1, · · · , n (1.5)

where Cr is a parameter of the algorithm defined during the initialization, known as

crossover parameter .

In the exponential variant we choose two numbers, k and l, the first is uniformly

chosen in the set {1, · · · , n} and the second is chosen by a geometric distribution with

success rate Cr. Then we set:

ok =

uk, if k − 1 = k + m (mod n) for some m ∈ {1, · · · , l}
xk, otherwise

(1.6)
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1.1.3 Complexity

If the stop criterion is given by a fixed number Tf of iterations one may calculate

the time complexity of the algorithm in terms of the time complexity of the objective

function f .

For each individual xt
i a DE/X/k/Z mutation needs to choose, without replacement,

O(k) individuals from a list with O(N) individuals, the time complexity of choosing k

elements out of N is O
(
k
(
1 + log N

k

))
[9], after that the algorithm computes ui in O(nk).

Therefore, the mutation is O
(
k
(
n + log N

k

))
. The crossover operator has complexity O(n)

because it iterates over n dimensions with O(1) operations. All the operations are executed

for each one of the N individuals every iteration, then, excluding the selection (that relies

on the evaluation of f), the final time complexity is O
(
Tf ×N × k ×

(
n + log N

k

))
, and

the amount of evaluations of f is Tf ×N . Assuming that the size of the population is, at

most, exponential on n, then the algorithm is O (Tf ×N × k × n).

The space complexity is simply O(nN) since one needs to store only the i − th

population and the ui or oi individuals for every j = 1, · · · , n depending on which stage

of the algorithm the individual is. It is also useful to store the image of each individual

by f to prevent unnecessary computations of f .

1.1.4 Other variants

Two other small variants are present in the literature. In the mutation operator

it is common that when computing ui the uniformly chosen individuals must also be

distinct from xi. And in the crossover step it is common to see variants where at least

one of the entries must suffer crossover. Those variants are often ignored when analysing

the algorithm since for high values of N and n their impacts are negligible [10].

1.1.5 Important definitions

We now state the algorithm in a more rigorous way, naming some important

sets and events. The Differential Evolution algorithm variant to be studied here is the

DE/rand/1/bin variant defined by the pseudo-code presented in Algorithm 2.
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Algorithm 2: Differential Evolution algorithm, DE/rand/1/bin variant.

Input: N , n, F , Cr, f(x)
/* N: number of individuals in population */

/* n: decision variable dimension */

/* F: scaling factor */

/* Cr: crossover rate */

/* f(x): objective function */

Output: x∗

/* Generate initial population (N individuals in Rn): */

1 X0 ← initial population(N, n)
/* Let X0 = vec(x1, · · · , xN) where xi ∈ Rn for all i = 1, · · · , n */

2 t← 0
3 while not stopping condition do
4 for i← 1 : N do
5 i1 ← i

/* Select 3 elements, without replacement, from the set

{1, 2, . . . , N} − {i1}, with uniform probability: */

6 {i2, i3, i4} ← rand select(3, {1, 2, . . . , N} − {i})
/* Retrieve the individuals to be submitted to crossover and

mutation, formally we have Bi = (i1, i2, i3, i4): */

7 x̄1 ← X t[i1]
8 x̄2 ← X t[i2]
9 x̄3 ← X t[i3]

10 x̄4 ← X t[i4]
/* Build the set Ai ⊂ {1, 2, . . . , n} by a random choice such that

each element is put in Ai with probability Cr: */

11 Ai ← rand subset(n,Cr)
/* Perform mutation and crossover: */

12 oi ←
∑

j ̸∈Ai
⟨x̄1, ej⟩ej +

∑
j∈Ai
⟨x̄2 + F.(x̄3 − x̄4), ej⟩ej

/* Perform elitist selection: */

13 if f(oi) < f(x̄i) then
14 x̄i ← oi/* If oi is better then x̄i updates the value of x̄i */

15 t← t + 1
/* Store the population for the next iteration: */

16 X t ← vec(x̄1, . . . , x̄N)

/* Get the best point that was visited: */

17 x∗ ← arg mini∈{1,...,N} f(xi)

We can represent a population ρ of N ≥ 4 individuals x1, · · · , xN ∈ Rn as a set of

column vectors ρ = (x1, · · · , xN) ∈ Rn×N 1. We also define Bn×N as the unit ball centered

on the origin.

Let k ≤ n be a positive integer, A be a subset of {1, 2, · · · , n} such that |A| = k and

B = (i1, i2, i3, i4) a sequence of four distinct integers in {1, 2, · · · , N}, we say that (A,B)

1When we see a population as a point in Rn×N we use the greek letter ρ. When we see it as a state
during the execution of the algorithm we use Xt.
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is a k-configuration. We also say that λ = {(Ai,Bi)}Ni=1 is an iteration rule if (Ai,Bi) is a

ki-configuration for every i = 1, · · · , N such that Bi = (i, ·, ·, ·). By following Algorithm

(2) we can see the role played by an iteration rule {(Ai,Bi)}Ni=1 at each iteration: tuples

Bi store which individuals were chosen for the mutation step and sets Ai store which

coordinates from the original individual i were used by the crossover. An iteration rule

fully characterizes an iteration.

A population ρ = (x1, · · · , xN) ∈ Rn×N is (A,B)-contracting if

f(o) < f(xi1), where o =
∑
j ̸∈A

⟨xi1 , ej⟩ej +
∑
j∈A

⟨xi2 + F (xi3 − xi4), ej⟩ej (1.7)

and ej is the j-th canonical vector. We also define ∆A,B to be the set of all (A,B)-

contracting populations ρ ∈ BN×n and Λn
k to be the set of all populations ρ ∈ BN×n such

that ρ ̸∈ ∆A,B for all (A,B) k-configuration. A population ρ ∈ Λn
k is called a k-fixed

population.

Finally, we define a separable function f : Rn → R as a function such that for every

i = 1, · · · , n and every choice of (x1, · · · , xi−1, xi+1, · · · , xn), (x′
1, · · · , x′

i−1, x
′
i+1, · · · , x′

n) ∈
Rn−1 we have

Si = argminxi∈Rf(x1, · · · , xn) = argminx′
i∈R

f(x′
1, · · · , x′

n). (1.8)

Notice that if f is separable, then

argminx∈Rnf(x) = S1 × S2 × · · · × Sn. (1.9)

Examples of separable functions are additive functions of the form

f(x1, · · · , xn) = f1(x1) + · · ·+ fn(xn)

or multiplicative functions of the form

f(x1, · · · , xn) =
n∏

i=1

fi(xi),

where fi is a real function for every i = 1, · · · , n.

1.2 Some properties and remarks

In the next chapters some analytical results about the algorithm will be presented,

but before that we introduce the plots that will be used on the text and also show an
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Figure 1.1: Typical execution of the DE algorithm for f(x) = ||x||2 with n = 2, N = 12,
F = 0.75 and Cr = 0.5.

execution of the algorithm. Figure 1.1 shows an execution of the algorithm for the function

f(x) = ||x||22.
To visualize the evolution of the algorithm in higher dimensions we plot two curves:

the best function value reached by the algorithm (see Figures 1.2(a) and 1.2(c)) and

the distance of the best individual to the optimum (see Figures 1.2(b) and 1.2(d)). To

construct, for example, Figures 1.2(a) and 1.2(b) 50 executions of the algorithm were

run. For each generation t we compute the 10% (lower dotted), 25% (lower dashed), 50%

(solid), 75% (upper dashed) and 90% (upper dotted) quantiles of the best f value over

all executions, producing five curves that relates each generation with its best f value

(Figure 1.2(a)), the process to plot the distance of the best individual to the optimum is

analogous (Figure 1.2(b)). To compare executions with different parameters or different

algorithms we set the x-axis to be the number of function evaluations. Figures 1.2(c)

and 1.2(d) were constructed using the mean of 50 runs, each one with a budget of 10000

evaluations.

A first behavior that one may observe is that a population can get stuck around

a local optimum depending on the parameter F and on the function f (see subsection

1.3.2). That behavior can be justified by the elitist selection.
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Figure 1.2: (a) Value of the function on the best individual (xt
best) at each generation

t. (b) Distance of the best individual xt
best to the optimum x∗ at each generation. (c)

Value of the function for the best individual for each amount of function evaluations. (d)
Distance of the best individual to the optimum x∗ for each amount of function evaluations.
All with N = 2n, Cr = 0.5 and F = 0.75. Each curve was produced with 50 executions,
representing the 10% (lower dotted), 25% (lower dashed), 50% (solid), 75% (upper dashed)
and 90% (upper dotted) quantiles.

One may also notice that the algorithm can’t distinguish functions that have the

same relative positions, i.e., if f(x) < f(y) if and only if g(x) < g(y) then the algorithm

can’t distinguish f and g.

Finally, Figures 1.2(c) and 1.2(d) shows the impact of the number of dimensions

of the domain in the algorithm’s performance. That kind of behavior was reported and

justified previously for other optimization algorithms (see [2] for an example) and is known

as the curse of dimensionality.

The curse of dimensionality was a term coined by Richard Bellman, the father

of Dynamic Programming, to describe the exponential trade-off between the number of

dimensions of the search space and the amount of function evaluations needed to find the
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optimum. In this work we aim to study that behavior for the Differential Evolution.

1.3 Convergence

An evolutionary algorithm that aims to minimize a function f : D → R by iterating

each generation using only the previous one can be seen as a homogeneous Markov chain2

(X t : Ω→ E) defined on a probability space (Ω,F ,P), with state space given by E = DN

(where N is the number of individuals) and with a kernel K that stands for the transition

rules (mutation, crossover and selection).

To define the kernel we need a measurable space (E,F), that can be done in several

ways depending on the domain D. For example, if D = Rn one can set F as the borelians,

if |D| <∞ we can choose the power set.

In this section we will see a simple criterion developed by Rudolph [13] that allows

us to ensure the convergence of an evolutionary algorithm to the optimum. We will also

see an objective function, designed by Hu et. al [7], for which the DE may not converge

to the optimum depending on the initial population.

1.3.1 Convergence definitions

Let f ∗ be the minimum value of f , define b : E → R as b((x1, · · · , xN)) =

min1≤i≤N f(xi) and d : E → R as d(X) = b(X) − f ∗. Now we can define what it

means for an algorithm to converge:

Definition 1.1 (Convergence of an evolutionary algorithm, from [13]). Let (X t)t≥0 be the

Markov chain defined by an evolutionary algorithm. We say that the algorithm converges

in probability to the optimum if

lim
t→∞

P(d(X t) > ϵ) = 0 (1.10)

for any ϵ > 0 and for all initial distribution of X0. We say that an algorithm converges

completely to the optimum if

∞∑
t=1

P(d(X t) > ϵ) <∞ (1.11)

2See Appendix A
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for any ϵ > 0 and for all initial distribution of X0.

Note that complete convergence is just almost everywhere convergence and implies

convergence in probability. Before the main result we need a lemma:

Lemma 1.1 ( [13] ). Let ϵ > 0 and Aϵ = {ρ ∈ E : d(ρ) < ϵ}. If there exists δ = δ(ϵ) ∈
(0, 1] such that K(ρ,Aϵ) ≥ δ for all ρ ∈ Ac

ϵ (i.e., ρ ̸∈ Aϵ) and K(ρ,Aϵ) = 1 for all ρ ∈ Aϵ,

then

K(t)(ρ,Aϵ) ≥ 1− (1− δ)t (1.12)

for all t ≥ 1.

Proof. We start by using induction to show that K(t)(ρ,Aϵ) = 1 for all t ≥ 1 and all

ρ ∈ Aϵ. The base case is covered by the hypothesis, so let’s assume it holds for t to show

it for t + 1. Using that K(ρ,Ac
ϵ) = 0 we get:

K(t+1)(ρ,Aϵ) =

∫
E

K(t)(y, Aϵ)K(ρ, dy) (1.13)

=

∫
Aϵ

K(t)(y, Aϵ)K(ρ, dy) +

∫
Ac

ϵ

K(t)(y, Aϵ)K(ρ, dy) (1.14)

=

∫
Aϵ

K(ρ, dy) + 0 = K(ρ,Aϵ) = 1 (1.15)

Now we show, also by induction, that K(t)(ρ,Aϵ) ≥ 1 − (1 − δ)t for all t ≥ 1 and

all ρ ∈ E. If t = 1 then K(1)(ρ,Aϵ) = K(ρ,Aϵ) ≥ δ = 1 − (1 − δ)1. Assuming it for t,

then:

K(t+1)(ρ,Aϵ) =

∫
E

K(t)(y, Aϵ)K(ρ, dy) (1.16)

=

∫
Aϵ

K(t)(y, Aϵ)K(ρ, dy) +

∫
Ac

ϵ

K(t)(y, Aϵ)K(ρ, dy) (1.17)

= K(ρ,Aϵ) +

∫
Ac

ϵ

K(t)(y, Aϵ)K(ρ, dy) (1.18)

≥ K(ρ,Aϵ) + (1− (1− δ)t)

∫
Ac

ϵ

K(ρ, dy) (1.19)

= K(ρ,Aϵ) + K(ρ,Ac
ϵ)− (1− δ)tK(ρ,Ac

ϵ) (1.20)

= 1− (1− δ)t(1−K(ρ,Aϵ)) (1.21)

≥ 1− (1− δ)t+1 (1.22)

Theorem 1.1 ( [13] ). An evolutionary algorithm whose kernel fulfills the hypothesis

of Lemma 1.1 converges completely to the minimum regardless of the initial distribution

p : F → [0, 1].
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Proof. Let (X t)t≥0 be a sequence of populations generated by the algorithm, we want to

show that (d(X t))t≥0 converges completely to zero. Let ϵ > 0 and δ = δ(ϵ), then

P(X t ∈ Aϵ) =

∫
E

K(t)(ρ,Aϵ)p(dρ) ≥ (1− (1− δ)t)

∫
E

p(dρ) = 1− (1− δ)t (1.23)

and finally
∞∑
t=1

P(d(X t) > ϵ) ≤
∞∑
t=1

(1− δ)t =
1− δ

δ
<∞. (1.24)

Example 1.1. Let f : [0, 1]m → R be a continuous function to be optimized by the

following algorithm: let X t = {xt
1, · · · , xt

N} be the population at time t, at each iteration

uniformly and independently pick N points ot1, · · · , otN and generate X t+1 by setting xt+1
i

as xt
i if f(xt

i) ≤ f(oti) or as oti otherwise. Then, for every ϵ > 0,

K(ρ,Aϵ) =

1, if ρ ∈ Aϵ

1− (1−m(Aϵ))
N , if ρ ̸∈ Aϵ

where m is the Lebesgue measure. Choosing δ = δ(ϵ) = 1 − (1 − m(Aϵ))
N ∈ (0, 1] and

using Theorem 1.1 we can see that this algorithm converges.

Unfortunately, we can’t use Theorem 1.1 to study the convergence of the DE

algorithm. Although the condition K(ρ,Aϵ) = 1 hols for every ρ ∈ Aϵ, it is possible that

K(ρ,Aϵ) = 0 for some ρ ̸∈ Aϵ, we just need ρ to be far enough from Aϵ.

One may think about K by looking at the mutation (Km), crossover (Kc) and se-

lection (Ks) kernels separately. Operating first with the mutation, then with the crossover

and using an elitist selection we compute:

K(ρ,Aϵ) =

1, if ρ ∈ Aϵ∫
E
Kc(y, Aϵ)Km(ρ, dy), if ρ ̸∈ Aϵ

(1.25)

If the crossover has a probability p < 1 and ∀ϵ > 0 ∃δ = δ(ϵ) such that Km(ρ,Aϵ) ≥
δ ∀ρ ∈ E, then ∫

E

Kc(y, Aϵ)Km(ρ, dy) ≥
∫
Aϵ

Kc(y, A)Km(ρ, dy) (1.26)

≥ (1− p)

∫
Aϵ

Km(ρ, dy) ≥ (1− p)δ (1.27)

and so K is on the hypothesis of Theorem 1.1.

Theorem 1.2. If an evolutionary algorithm has elitist selection, a crossover probability of

p ≤ 1 and the mutation kernel Km fulfills the hypothesis of Lemma 1.1 then the algorithm

converges completely.
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Proof. Follows from the observations above.

That way, by looking at each operation at a time we can obtain information about

the dynamics of the algorithm. This idea will be explored later to study the algorithm on

high dimensions.

1.3.2 The non-convergence of the algorithm

In [7] the authors designed a family of functions for which the convergence to the

optimum isn’t assured regardless of the initial distribution. Let k be a positive integer

and define:

fk(x) =



−kx− 1, if − 2
k
< x < − 1

k

kx + 1, if − 1
k
≤ x < 0

−x
k

+ 1, if 0 ≤ x < k − 1

1
k
, if k − 1 ≤ x ≤ k

(1.28)

1

k -12k -1 k-1 k

k -1

Figure 1.3: The fk function.

Take any version of the DE that uses l difference vectors during the mutation (i.e.

DE//l) and set F ≤ 1
l
. Note that if X t ∈

[
k
2
, k
]N

then the operations of mutation and

crossover reach only points on [0, k]. Since every point in
[
0, k

2

]
is worse than any point

in
[
k
2
, k
]

we have that X t+1 ∈
[
k
2
, k
]
. Taking ϵ = 1

k
and

S =

{
(x1, · · · , xN) ∈ E :

k

2
≤ xi ≤ 0 ∀i = 1, · · · , N

}
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we have that:

P(X t ∈ Aϵ) ≤ 1− P
(
X0 ∈ S

)
(1.29)

Then, if P(X0 ∈ S) > 0 the DE algorithm won’t converge even in probability to

the optimum. For example, let X0 be uniformly distributed on [0, k]N , then P(X0 ∈ S) =∏N
i=1 P

(
k
2
≤ xi ≤ k

)
= 2−N > 0.

1.3.3 Population diversity analysis

Since the selection step is strongly dependent on the objective function f , it is

difficult to produce general results about the algorithm. On the other hand, the first

two operators (mutation and crossover) don’t need f . In [18] Zaharie studied these first

operations and obtained results on critical values for parameters.

On evolutionary algorithms the concept of population diversity plays an important

role. During the execution of an evolutionary algorithm we want to have populations that

encode as many information as possible. For instance, a population ρ = (x1, · · · , xN) ∈
Rn×N where xi = (x1

i , · · · , xn
i ) for all i = 1, · · · , n and x1

i = x1
j for all 1 ≤ i, j ≤ N

can’t explore the first coordinate of Rn since all of its first coordinates are the same. The

following definition encapsulates the idea of population diversity:

Definition 1.2 (Population variance, [18]). Let ρ = (x1, · · · , xN) ∈ R1×N be a population

of scalars, its variance is defined by

Var(ρ) =
1

N

N∑
i=1

(xi − Eρ)2 (1.30)

where Eρ = 1
N

∑N
i=1 xi. If ρ = (x1, · · · , xN) ∈ Rn×N is a population of vectors xi =

(x1
i , · · · , xn

i ) we define its variance as

Var(ρ) =
1

n

n∑
j=1

Var(ρj) (1.31)

where ρj = (xj
1, x

j
2, · · · , xj

N).

Notice that if ρ = (x1, · · · , xN) is a scalar population then the populations U =

(u1, · · · , uN) generated after the mutation step and O = (o1, · · · , oN) generated by U after

crossover are random vectors. We also define E(ρ) = 1
N

∑N
i=1 xi and E(ρ2) = 1

N

∑N
i=1 x

2
i .

Remark 1.1. In the following theorem, Zaharie studied the population variance of the

Differential Evolution with a minor modification: during the mutation step for xi, the al-

gorithm now selects three distinct individuals xi1 , xi2 , xi3 to construct ui = xi1 +F (xi2 , xi3)
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without requiring that i ̸= ij for all j = 1, 2, 3. Higher values of N produce lower proba-

bilities that i = ij for some j ∈ {1, 2, 3}, then for high values of N that variant behaves

closely to the algorithm defined in 2.

Theorem 1.3 ([18]). Let ρ = (x1, · · · , xN) be a scalar population, U = (u1, · · · , uN) the

result of the mutation step and O = (o1, · · · , oN) the result of the crossover step between

ρ and U , then

E(Var(U)) =

(
2F 2 +

N − 1

N

)
Var(ρ) (1.32)

and

E(Var(O)) =

(
1 + 2CrF

2 − 2Cr

N
+

C2
r

N

)
Var(ρ). (1.33)

Proof. See Appendix B.

1.3.4 Critical region for parameters

Theorem B provides a critical region for the parameters F , N and Cr. We must

set

1 + 2CrF
2 − 2Cr

N
+

C2
r

N
≥ 1 (1.34)

to avoid loosing population diversity. Since the analysis was performed ignoring the

selection and reproduction step it is interesting to experimentally verify if the impact of

this step is relevant.

Usually, the inequality 1.34 is used to obtain a critical value of F , given by

Fcrit =
√

1
N
− Cr

2N
. In [18] the author also performs experiments to verify if premature

convergence occurs when F < Fcrit, founding premature convergence in most of the execu-

tions meeting F < Fcrit. Se say that premature convergence occurs during an experiment

when the improvements became meaningless. Since it is a behavior experimentally ob-

served, premature convergence occurs both when the algorithm is really converging to an

undesirable population (that doesn’t have an optimum individual) or when the algorithm

is converging to a desirable population, but very slowly.
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Chapter 2

Using the Sphere Function

In this chapter we set f : Rn → R as the sphere function f(x) = ⟨x, x⟩ = ||x||22.
Using this f we try to understand how the algorithm behaves for high values of n, looking

for probabilities of improvement and fixed points.

2.1 Motivation

Figure 2.1 exemplifies how different values of k changes the way a k-configuration

(A,B) acts on a population ρ.

x y

zo2

o1

w

Figure 2.1: The individual w can’t be enhanced by o1 = u = y + F (x − z) using all two
dimensions (case (A,B) = ({1, 2}, (w, y, x, z))), regardless of the F parameter (the point
o1 is always outside the level set). But using only one dimension and a suitable value of
F we can update w to o2 (case (A,B) = ({1}, (w, y, x, z))). Note that A = {1} means
we are performing the crossover only on the first coordinate and B = (w, y, x, z) that the
mutation will produce an individual u = y + F (x− z) to crossover with w.

To analyse the effect of a k-mutation we modified the DE to do only k-mutations

and looked at the following values:

• mic, the mean over all executions of the number of times that an individual was

replaced by its offspring;
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• mir, the mean value of the ratio between the objective function on best individual

of the first iteration and on the best of the last iteration;

• ms, the number of executions that reach a population ρ ∈ Λn
k .

Tables 2.1, 2.2 and 2.3 were constructed using 100 executions of the algorithm

per k, n combination, a stop criterion of 100 generations and F = 0.75. Note that the

improvement rate mir gets worse as k increases, nevertheless, for the tested values of N

lower than 2n the mean number of improvements mic decreases and then starts to grow

again. The results also point to the idea that k-fixed populations are common for values

of k close to n.

k mic mir ms

1 146.11 0.049 -

2 144.85 0.039 -

3 133.9 0.041 -

4 130.27 0.056 -

5 132.13 0.108 -

6 139.77 0.183 -

7 153.23 0.312 -

8 140.61 0.634 -

k mic mir ms

1 293.19 0.011 -

2 268.4 0.009 -

3 237.18 0.011 -

4 212.52 0.013 -

5 197.84 0.014 -

6 190.82 0.020 -

7 208.09 0.045 -

8 - - 9

k mic mir ms

1 576.57 0.007 -

2 518.8 0.009 -

3 454.31 0.011 -

4 398.46 0.016 -

5 351.73 0.021 -

6 318.06 0.027 -

7 291.51 0.034 -

8 - - 60

Table 2.1: n = 8

k mic mir ms

2 266.02 0.098 -

4 210.89 0.107 -

6 172.31 0.131 -

8 152.23 0.150 -

10 138.99 0.162 -

12 145.19 0.166 -

14 184.48 0.219 -

16 - - 31

k mic mir ms

2 517.65 0.098 -

4 399.4 0.118 -

6 315.33 0.154 -

8 253.63 0.208 -

10 210.6 0.253 -

12 187.02 0.283 -

14 196.78 0.233 -

16 - - 75

k mic mir ms

2 1026.71 0.096 -

4 779.1 0.123 -

6 609.27 0.164 -

8 478.26 0.234 -

10 378.45 0.305 -

12 305.37 0.390 -

14 271.14 0.418 -

16 - - 94

Table 2.2: n = 16
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k mic mir ms

4 397.5 0.342 -

8 253.28 0.440 -

12 171.56 0.554 -

16 121.29 0.662 -

20 97.17 0.715 -

24 98.75 0.659 -

28 126.28 0.514 -

32 - - 74

k mic mir ms

4 782.49 0.353 -

8 483.55 0.454 -

12 318.16 0.603 -

16 210.85 0.720 -

20 147.71 0.816 -

24 117.19 0.833 -

28 123.91 0.753 -

32 - - 98

k mic mir ms

4 1551.5 0.346 -

8 954.1 0.472 -

12 609.14 0.613 -

16 389.63 0.756 -

20 255.05 0.862 -

24 177.67 0.932 -

28 144.92 0.913 -

32 - - 97

Table 2.3: n = 32

In the DE algorithm the choice of k on each crossover operation depends on the

parameter Cr. Therefore, by analysing k-configurations we might expect glimpses on how

to choose the parameter Cr. Some experimental research was done with this purpose. In

[12], the authors recommended Cr < 0.2 for separable functions and Cr > 0.9 for non-

separable functions, but they used a fixed scaling factor F = 0.9 and didn’t study the

influence of n on the choice of these parameters. In [15] the author gives similar advice to

the user, but adds that the value of F must be on the interval [0.5, 1] and that N should

be equal to 10n. A more recent article [2] discusses the well known curse of dimensionality

with experimental evidence, saying that since the time complexity is super-linear on n

the use of population sizes N lower then n is needed. The article also points out that it

seems to be possible to compensate lower values of N with smarter values of F . Despite

of the abundance of empirical evidence, few articles give rigorous justifications of their

results.

2.2 Probabilities of improvement

2.2.1 Improvements from k-mutations

Figure 2.1 shows that it is possible to create configurations from which the DE

algorithm can’t provide any improvement using 2-configurations, but it doesn’t answer

how frequent these configurations are, the next theorem starts to answer that.

Theorem 2.1 ( Resende and Takahashi ). For a fixed scaling factor F , let pk(F ) be the
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probability that a randomly uniformly chosen population ρ ∈ Bn×N belongs to ∆A,B for a

fixed k-configuration (A,B), then pk(F ) is independent of both n and N and

pk(F ) =
γ− k

2αk

kβ
(
k
2
, k
2

+ 1
) + 1− Iα

(
k

2
,
k

2
+ 1

)
(2.1)

where

β(a, b) =

∫ 1

0

ra−1(1− r)b−1dr (2.2)

is the beta function,

Ix(a, b) =

∫ x

0
ra−1(1− r)b−1dr

β(a, b)
(2.3)

is the normalized incomplete beta function,

γ = 2F 2 + 1 ≥ 1 (2.4)

and α = γ
1+γ

.

Moreover, pk(F ) ≤ Drk for some D ∈ R and 0 < r < 1. Therefore, pk(F )→ 0 as

k goes to ∞.

Before proving the theorem we need the following lemma:

Lemma 2.1. Let Vn = vol(Bn) be the volume of a n-dimensional ball of unitary radius,

then: ∫ π

0

· · ·
∫ π

0

senn−2θn−2 · · · senθ1dθn−2 · · · dθ1 =
n

2π
Vn

Proof. It follows from the definition of Vn as an integral in spherical coordinates.

Proof of Theorem 2.1, first part. Using ρ = (x1, · · · , xN) as a column vector and assum-

ing w.l.g. that A = {1, 2, · · · , k} and B = (1, 2, 3, 4), the inequality (1.7) can be seem as

ρTMρ < 0, where

MnN×nN =



−In,k 0 0 0 0

0 In,k F In,k −F In,k 0

0 F In,k F 2In,k −F 2In,k 0

0 −F In,k −F 2In,k F 2In,k 0

0 0 0 0 0


, In,k =

[
Ik 0

0 0

]
n×n

(2.5)

and Ik as the k × k identity matrix.

The matrix M is symmetric and, therefore, diagonalizable in the form STDS,

with S orthogonal. The eigenvalues of M are 0 with multiplicity nN − 2k, 2F 2 + 1 with

multiplicity k and −1 with multiplicity k.

Let C = ∆A,B∩Bn×N . Since S is orthogonal, vol(C) = vol(S(C)). The probability

that p ∈ Bn×N belongs to C is given by vol(C)
VnN

= vol(S(C))
VnN

. Using that S(Bn×N) = Bn×N

we get

S(C) =
{

(ξ, η, ω) ∈ Bn×N : ||ξ||2 < γ−1||η||2
}

(2.6)
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where ω ∈ RnN−2k, ξ, η ∈ Rk and γ = 2F 2 + 1.

Using χ as the indicator function we have, by Fubini (see, for example, [1]):

vol(S(∆A,B)) =

∫
||ω||2≤1

∫
||(ξ,η)||2≤1−||ω||2

χS(C)dξdηdω (2.7)

= vol(A)

∫
||ω||2≤1

(
1− ||ω||2

)k
dω (2.8)

where A = {(ξ, η) ∈ B2k : ||ξ||22 < γ−1||η||22}.
We compute the last integral using spherical coordinates and the lemma:∫ 1

0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

(1− r2)krnN−2k−1

nN−2k−2∏
i=1

sini θidθ1 · · · dθnN−2k−1dr (2.9)

= (2n− k)VnN−2kβ (2n− k, k + 1) (2.10)

The volume of A is calculated in two parts, fixing η we look at which intervals the

inequality ||ξ||22 < 1−||η||22 dominates ||ξ||22 < γ−1||η||22 and vice-versa. The first inequality

dominates when ||η||22 > α (where α = γ(1 + γ)−1) and the last otherwise.

vol(A) =

∫
||η||2≤α

Vk(γ− 1
2 ||η||)kdη +

∫
α<||η||2≤1

Vk(1− ||η||2) k
2 dη (2.11)

= kV 2
k

(
γ− k

2

∫ √
α

0

r2k−1dr +

∫ 1

√
α

(1− r2)
k
2 rk−1dr

)
(2.12)

Then:

pk =
vol(S(∆A,B))

VnN

=
γ− k

2αk

kβ
(
k
2
, k
2

+ 1
) + 1− Iα

(
k

2
,
k

2
+ 1

)
(2.13)

Proof of Theorem 2.1, part 2. Using that kβ
(
k
2
, k
2

+ 1
)
≥ 2−k1:

γ− k
2αk

kβ
(
k
2
, k
2

+ 1
) ≤ rk1 (2.14)

where r1 = 2 γ
1
2

1+γ
. Since F > 0 it is true that 0 < 2γ

1
2

1+γ
< 1, then the first term of pk goes

to zero.

Now, we need to show that 1 − Iα
(
k
2
, k
2

+ 1
)
→ 0 as k → ∞. Let s ∈ R, the

inequalities (r(1− r))s ≤ rs−1(1− r)s ≤ (r(1− r))s−1 holds for 0 ≤ r ≤ 1.

Let g : [0, 1]→ R be the map r 7→ r(1−r), then g ∈ L1([0, 1]) and so ||g||p → ||g||∞
when p→∞2. Since ||g||∞ = 1

4
we have that ∀ϵ > 0 ∃k0(ϵ) ∈ R such that for all k ≥ k0

we get: (
1

4
− ϵ

)k

≤
∫ 1

0

(r(1− r))kdr ≤
(

1

4
+ ϵ

)k

(2.15)

1Easily follows from the sharper inequality β(x, y) ≥ 1
xy [6].

2Note that this holds because the interval [0, 1] has finite measure.
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Since 1
2
< α < 1 and g is a decreasing function in

[
1
2
, 1
]

we take ϵ such that

α(1− α) < 1
4
− ϵ to get that:

1− Iα

(
k

2
,
k

2
+ 1

)
=

∫ 1

α
r

k
2
−1(1− r)

k
2 dr∫ 1

0
r

k
2
−1(1− r)

k
2 dr

(2.16)

≤ (1− α)α
k
2
−1(1− α)

k
2∫ 1

0
(r(1− r))

k
2 dr

(2.17)

≤ (1− α)α
k
2
−1(1− α)

k
2(

1
4
− ϵ
) k

2

(2.18)

≤
(

1

α
− 1

)
rk2 (2.19)

Where r2 =
(

α(1−α)
1
4
−ϵ

) 1
2

=
(

1
1
4
−ϵ

) 1
2 γ

1
2

1+γ
< 1, showing that the last term of pk also

goes to zero. Setting r = max(r1, r2) < 1 and D = 1
α

we have that pk ≤ Drk.

Remark 2.1. Theorem 2.1 implies that pk exponentially approaches zero as k grows. The

decreasing of pk with k is significant even for low values of k, as it can be seen in Figure

2.2. The same figure shows that there is a strong dependence between the behavior of pk

and F .

0 10 20 30
k

0.0

0.1

0.2

0.3

0.4

p k

F = 0.5

F = 0.75

F = 1

Figure 2.2: Variation of pk(F ) as a function of k, for different values of F .

Using Theorem 2.1, it is possible to estimate the probability p̃k(F ) that at least one

individual in a randomly uniformly chosen population with N individuals will be improved

in one iteration if using only k-crossovers. Noticing that given two k-configurations (A,B)

and (A′,B′), the events ρ ∈ ∆A,B and ρ ∈ ∆A′,B′ are not necessarily independent, then:

pk(F ) ≤ p̃k(F ) ≤ Npk(F ) (2.20)



2.2. Probabilities of improvement 30

Since pk(F )→ 0 as k →∞ and assuming that the population size N is polynomial on n,

it is true that p̃k(F )→ 0 when k →∞, showing that the number of evasive configurations

grows with the number of dimensions used on the mutation.

2.2.2 Introducing the crossover probability

Now, allowing the crossover operator to use or not any dimension, the Theorem 2.2

presents the expression of the probability pCr,n(F ) that in a randomly uniformly chosen

population ρ ∈ Bn×N a given individual will be improved after one iteration.

Theorem 2.2 ( Resende and Takahashi ). Consider the objective function f(x) = ||x||22
and a population ρ = {x1, · · · , xN} such that it is randomly uniformly distributed inside

the set Bn×N . Let the individuals labeled as xi1, xi2, xi3, xi4 be chosen randomly, with

uniform probability and without replacement, from the population. Let also the offspring

o be defined by equation (1.7), with the elements of set A chosen randomly from the set

{1, . . . , n} by a Bernoulli trial with probability of success given by Cr. For a fixed scaling

factor F , let pCr,n(F ) denote the probability that f(o) < f(x1). Then:

pCr,n(F ) =
n∑

k=1

(
n

k

)
Ck

r (1− Cr)
n−kpk(F ) (2.21)

Proof. The number of elements in the set A, given by k, becomes an outcome of a random

variable sampled from a binomial distribution with success probability Cr. The expression

(2.21) comes from the application of (2.1), summing over all possible values of k.

Theorem 2.3 shows an upper bound for pCr,n(F ) as a function of the number of

problem dimensions n.

Theorem 2.3. Let Cr ∈ [0, 1] be a real number and pCr,n(F ) be defined as in equation

(2.21), then pCr,n(F ) ≤ Csn, where C ∈ R comes from Theorem 2.1 and s ∈ (0, 1).

Proof of Theorem 2.3. We know that pk ≤ Crk for some C ∈ R and 0 < r < 1, then:

pCr,n ≤ C

n∑
k=0

(
n

k

)
(rCr)

k(1− Cr)
n−k (2.22)

Since (rCr)
k(1− Cr)

n−k ≤ sn
(
k
n

)k (n−k
n

)n−k3 with s = 1− Cr + rCr:

pCr,n ≤ Csn
n∑

k=0

(
n

k

)(
k

n

)k (
n− k

n

)n−k

≤ Csn (2.23)

3To see that take the map h : x 7→ xk(s− x)n−k with x ∈ [0, s], then we have h′(x) = 0⇒ x = s k
n .
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Where the last inequality comes from
(
k
n

)k (n−k
n

)n−k ≤ 1
2n

and
∑n

k=0

(
n
k

)
= 2n.

Define p̃Cr,n(F ) as the probability that a randomly uniformly chosen population

with N individuals can be improved on the first iteration of the DE. We estimate:

pCr,n(F ) ≤ p̃Cr,n(F ) ≤ NpCr,n(F ) (2.24)

And, analogously to p̃k(F ), it is true that p̃Cr,n(F ) → 0 as n → ∞. In the

next subsections we analyse some implications of these results. Note that Theorem 2.2

rigorously states the curse of dimensionality to the Differential Evolution algorithm since

for any fixed parameter configuration the algorithm fails to provide enhancements as n

grows.

2.3 Fixed points and improvement quality

Proposition 2.1. Let P(A) = vol(A)
vol(Bn×N )

= vol(A) for every borelian A, where vol is the

Lebesgue measure. For a fixed N ≥ 4 and n ≥ 1 it holds that

lim
F→∞

P (Λn
1 ) = 1 (2.25)

and for a fixed F > 0 and N ≥ 4 it holds that

lim
n→∞

P (Λn
n) = 1 (2.26)

Proof of Proposition 2.1. First notice that Λn
1 = Bn×N − ∪(A,B)∆A,B, where the union is

over all 1-configurations. Considering that the number of 1-configurations is 4!
(
N
4

)
n, then:

P (Λn
1 ) ≥ 1−

∑
(A,B)

P(∆A,B) = 1− 4!n

(
N

4

)
p1(F ) (2.27)

By definition:

p1(F ) =
γ− 1

2α

β
(
1
2
, 1
2

+ 1
) + 1− Iα

(
1

2
,
1

2
+ 1

)
(2.28)

where γ = 2F 2 + 1 and α = γ
1+γ

. Since limF→∞ α = 1, then, by Lebesgue domi-

nated convergence theorem, limF→∞ Iα
(
1
2
, 1
2

+ 1
)

= 1 and limF→∞ γ− 1
2 = 0, thereby

limF→∞ p1(F ) = 0. Using equation (2.27) we conclude that limF→∞ P (Λn
1 ) = 1.
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We prove the second limit analogously. Since Λn
n = Bn×N −∪(A,B)∆A,B, where the

union is over all n-configurations and considering that the number of n-configurations is

4!
(
N
4

)
, then

P (Λn
n) ≥ 1−

∑
(A,B)

P(∆A,B) = 1− 4!

(
N

4

)
pn(F )→ 1 (2.29)

since pn(F )→ 0 when n→∞.

Remark 2.2. Note that if (1.7) holds then the norm of at least one coordinate of o

decreases in relation to xi1, so Λn
k ⊂ Λn

1 for all k = 1, · · · , n. Then the set of fixed points

of the DE with crossover rate Cr ∈ (0, 1) is just Λn
1 .

Theorem 2.1 shows that the relative size of the set of fixed points goes to one as n

increases (justifying the experimental results from Tables 2.1, 2.2 and 2.3) and that the

value of F is critical to control the amount of fixed points on the algorithm.

The probabilities pk(F ) and pCr,n(F ) give us information about the existence or

not of an improvement, but don’t tell us about how good or bad this improvement can

be. Let δ ∈ (0, 1), an offspring o of w is δ-better then w if f(o) ≤ δf(w), a population

ρ = (x1, · · · , xN) is δ-improvable if there is an individual xi capable of produce an offspring

oi that is δ-better then xi. The next theorem shows that the improvements can be as bad

as we want them to be.

Proposition 2.2. For every δ ∈ (0, 1) there is a set Bδ ∈ Bn×N of positive probability

such that every ρ ∈ Bδ is not δ-improvable.

Proof of Proposition 2.2. If ρ = (x1, · · · , xn) is δ-improvable and xi ̸= 0 for every i =

1, · · · , n, then there exists some xi and a possible offspring oi such that δ ≥ f(oi)
f(xi)

. There-

fore the minimum possible δ is given by min f(oi)
f(xi)

, where the minimum is taken over all

individuals xi and over of all their possible offspring oi. Let x∗ ̸= 0 be an individual

such that ρ∗ = (x∗, · · · , x∗) ∈ Bn×N and ρ = (x1, · · · , xn) be a population such that

||ρ − ρ∗||2 < ϵ for some ϵ > 0. By the definition of the offspring and the triangular

inequality

||oi − x∗||2 < (1 + 2F )ϵ (2.30)

and since ||ρ− ρ∗||2 < ϵ:

||xi − x∗||2 < ϵ (2.31)

Then

lim
ϵ→0

f(oi)

f(xi)
= 1 (2.32)

for every xi i = 1, · · · , n and every possible offspring. Since the number of individuals

and possible offspring is finite we define Bδ ∈ Bn×N as the ball centered on ρ∗ with radius

ϵδ = min ϵxi,oi where ϵxi,oi is such that f(oi)
f(xi)

> δ for every ϵ < ϵxi,oi .
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2.4 The dependence between improvements

Let (A1,B1), · · · , (As,Bs) be k1, k2, · · · , ks configurations, respectively. We want to

study the probability that a randomly uniformly chosen ρ ∈ Bn×N belongs to ∩si=1∆Ai,Bi
.

Given a k-contraction (A,B) and a population ρ = (x1, · · · , xN) we say that xi,d is an

active entry for (A,B) if i ∈ A and d ∈ B. We say that the configurations

(A1,B1), · · · , (As,Bs)

act disjointly on a population ρ if they have no active entry in common. Since configura-

tions may share active entries one may expect some dependence.

Let X be the random variable that counts the number of common active entries

between all the s configurations above. We may write X =
∑

Xxi,d
where Xxi,d

is the

indicator variable of the event xi,d is a common active entry for all the s configurations.

Setting E to be the expectation over all choices of k1, · · · , ks configurations, we have

EX =
∑

EXxi,d
= nNEXx1,1 = nN

s∏
i=1

4ki
nN

(2.33)

since P(Xxi,d
= 1) =

∏s
i=1

4ki
nN

because we first verify if they share the same i and then

the same d. Using the Markov Inequality:

P(X = 0) ≥ 1− nN
s∏

i=1

4ki
nN

(2.34)

On Tables 2.1, 2.2 and 2.3 one may observe that, for N ≤ n the quantity mic

decreases until certain k and then starts to increase. A possible explanation for this

behavior is that when k starts to increase the improvements become more dependent

and the occurrence of one improvement leads, with high probability, to the occurrence of

another one.

If we don’t restrict ourselves only to k-configurations, allowing the crossover oper-

ator to select different values of k, a similar analysis leads to EX = nN
(
4Cr

N

)s
, showing

that lower values of Cr are also effective promoting configurations that act disjointly.

2.5 Choosing parameters

For a fixed n, the value of pCr,n(F ) is a function of Cr and F , Figure 2.3 shows

how those variables are related for different values of n. The existence of a simple and
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explicit expression for pCr,n gives a strategy to choose Cr: given the values of F and n

one may choose Cr = C∗
r , where C∗

r is the one that maximizes pCr,n(F ).
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Figure 2.3: Contour plots of ln (pCr,n). The dashed line is the critical F for each Cr given
by equation 1.34 and the thicker line is the Cr value that maximizes pCr,n for each F .

One must keep in mind that C∗
r only maximizes the probability that a single choice

of four individuals in ρ will produce an improvement after one iteration assuming that ρ

is uniformly distributed on Bn×N . It does not take into account the dependencies between

individuals when looping through several choices and it also does not take into account

that after various iterations we may have a population distribution not even close to an

uniform distribution. And, of course, the value of pCr,n was calculated for the function

f(x) = ||x||2 and might not work as well for other functions. Therefore, the choice of

Cr = C∗
r is a heuristics.

Until now we have evaluated some expressions that led us to a heuristics. In the

next chapter some experiments will help us clarify how the algorithm runs on certain

scenarios and how helpful our heuristics is.
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Chapter 3

Experimental results

The analytical results from the last chapter concerns only about the first iteration

of the algorithm, as we will see in the next chapter the analytical understanding of the in-

teractions between generations seems to require new developments on dynamical systems.

Therefore, to support the value of our analytical results to the full run we performed some

experiments.

3.1 Empirical enhancements for the sphere function

A numerical experiment is performed in order to measure the empirical proportion

of enhancements attained with the operation (1.7) when the individuals xi are distributed

uniformly1 on the unit ball Bn. The function f1 is defined as:

f1(x) = xT x (3.1)

Function f1 has a unique point of minimum, which corresponds to the origin of

the space. The minus gradient of this function induces a vector field which has a zero-

dimensional attractor (the point of minimum) and which points toward a line passing

through this point, from any point of the space.

All theoretical predictions should hold for this function. Different combinations of

n and Cr are adopted, and all simulations employ the scaling factor F = 0.75. For each

combination of parameters, the sequence of steps described in the following protocol for

1-step experiments is executed 10000 times:

1Notice that this is different from the condition assumed in Theorem 2.2, which requires ρ ∈ Bn×N .
The experiment is performed with the more usual condition ρ ⊂ Bn, and the results obtained are
essentially the same that would be obtained with the exact condition.
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Protocol for 1-step experiments

(i) a population ρ with N individuals is generated randomly choosing N individuals

independently and uniformly in Bn;

(ii) each individual in ρ is chosen once as x1, and (x2, x3, x4) are chosen randomly from

the remainder individuals;

(iii) for each x1, a set A is generated by n Bernoulli trials performed sequentially on the

elements of the set {1, . . . , n} with probability of each such element being included

in A given by Cr;

(iv) the operation defined by (1.7) is executed with the configuration (A,B) where B =

(1, 2, 3, 4), generating an offspring o;

(v) if f(o) < f(x1), then the counter of the number of enhancements achieved with that

combination of n and Cr is increased by one.

Table 3.1 presents the results of this experiment, comparing the value of pCr,n

obtained by evaluating expression (2.21) with the empirical value p̂Cr,n obtained by divid-

ing the count of the number of enhancements by the number of trials. This experiment

shows that the expression (2.21) provides an accurate prediction of the probability of

enhancement of DE individuals for uniformly distributed populations in the minimization

of function f1. We also point that pCr,n belongs to the 95% confidence interval2 for all

experiments.

Another set of experiments is performed in order to examine what happens in the

case of different objective functions. The particular case of functions which are not sepa-

rable is focused. The following unit vectors are defined for being used in the construction

of functions with suitable features:

vns =
1√
n


1

1
...

1

 vs =


1

0
...

0

 (3.2)

The vector vns will be used to define an eigenvector of non-separable functions, and the

vector vs will define an eigenvector of separable functions.

2The (1 − α)-confidence interval was estimated by the classical normal approximation as p̂Cr,n ±
z1−α

2

√
p̂Cr,n(1−p̂Cr,n)

n , where z1−α
2

is the 1 − α
2 percentile of the standard normal distribution. For

α = 5% we have z ≈ 1.96.



3.1. Empirical enhancements for the sphere function 37

n Cr pCr,n p̂Cr,n 95% confidence interval
eq. (2.21)

8 0.125 0.2313 0.2311 (0.2228, 0.2394)
16 0.125 0.2790 0.2798 (0.2710, 0.2886)
32 0.125 0.2473 0.2481 (0.2396, 0.2566)
8 0.500 0.2469 0.2470 (0.2385, 0.2555)
16 0.500 0.1581 0.1593 (0.1521, 0.1665)
32 0.500 0.0738 0.0741 (0.0690, 0.0792)
8 0.875 0.1719 0.1719 (0.1645, 0.1793)
16 0.875 0.0862 0.0863 (0.0808, 0.0918)
32 0.875 0.0257 0.0259 (0.0228, 0.0290)

Table 3.1: Results from a numerical experiment for testing the expression (2.21) for the
probability of enhancement pCr,n in the optimization of function f1. Each line shows: the
problem dimension n; the crossover rate Cr; the analytical value of pCr,n provided by eq.
(2.21); the empirical estimation of pCr,n, indicated by p̂Cr,n. All runs were performed with
the scaling factor F = 0.75.

In order to establish two limiting cases, the functions f2 and f3 are defined. Func-

tion f2 corresponds to the squared distance from x to the line which crosses the origin, in

the direction of vector v:

f2(x) = wT w (3.3)

in which w is defined as:

w = x− v xT v

The minus gradient of f2 induces a vector field pointing towards the line x = κ v. There-

fore, this vector field has a 1-dimensional attractor, given by this line. The function f2

becomes f s
2 for v = vs, and becomes fns

2 for v = vns.

Function f3 corresponds to the squared distance from x to the (n− 1)-dimensional

hyperplane that crosses the origin and is perpendicular to vector v:

f3(x) = (xT v)2 (3.4)

The minus gradient of f3 induces a vector field that points towards the (n−1)-dimensional

hyperplane defined by xT v = 0. Therefore, this vector field has an (n − 1)-dimensional

attractor, represented by this hyperplane. Function f3 becomes f s
3 for v = vs, and becomes

fns
3 for v = vns.

Finally, the quadratic function f4 is defined:

f4(x) = xT Qx (3.5)
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Figure 3.1: Contours of functions f2, f3 and fns
4 . Notice that the levels curves of function

fns
4 approximates the level curves of function f2 as ϕ→ 0+ or the level curves of function
f3 as ϕ→∞.

with Q given by:

Q = V T DV

V =
[
v1 v2 . . . vn

]
vTi vj = 0 ∀j ̸= i; vTi vi = 1

D = diag(ϕ, 1, 1, . . . , 1)

Function f4 becomes f s
4 for v1 = vs, and becomes fns

4 for v1 = vns. It should be noticed

that:

ϕ = 1⇒ f4(x) = f1(x) lim
ϕ→0+

f4(x) = f2(x) lim
ϕ→∞

f4(x) = f3(x) (3.6)

When ϕ ≈ 0, the structure of functions generated by f4 may be understood as

being composed of two scales: in the first scale, the line x = κv works as an attractor.

In the second scale, the point x = [ 0 · · · 0 ]T becomes an atractor, inside the first

atractor. When ϕ ≫ 0, that structure also behaves as being composed of two scales: in

the first scale, the hyperplane xTv = 0 works as an attractor. In the second scale, the

point x = [ 0 · · · 0 ]T becomes an atractor inside the first atractor.

The first experiment with non-separable functions is performed considering the

functions fns
2 and fns

4 , the last one with ϕ = 10−2 and ϕ = 10−4. Those functions represent

the situation in which the vector field of function enhancement is 1-dimensional, in an
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n Cr pCr,n−1 p̂Cr,n p̂Cr,n p̂Cr,n

f1 fns
2 fns

4 fns
4

ϕ = 10−4 ϕ = 10−2

9 0.125 0.2313 0.2506 0.2513 0.2498
17 0.125 0.2790 0.2859 0.2853 0.2853
33 0.125 0.2473 0.2477 0.2474 0.2481
9 0.500 0.2469 0.2483 0.2491 0.2482
17 0.500 0.1581 0.1579 0.1587 0.1593
33 0.500 0.0738 0.0736 0.0742 0.0742
9 0.875 0.1719 0.1715 0.1723 0.1721
17 0.875 0.0862 0.0870 0.0870 0.0860
33 0.875 0.0257 0.0258 0.0260 0.0256

Table 3.2: Empirical probability of enhancement p̂Cr,n, for functions with 1-dimensional
attractor. The columns represent: the problem dimension n; the value of Cr; the value of
pCr,n−1 (calculated analytically), for function f1; the empirical values of pCr,n, indicated
by p̂Cr,n for functions fns

2 and fns
4 . In the case of fns

4 , the values ϕ = 10−4 and ϕ = 10−2

are considered. All runs were performed with the scaling factor F = 0.75.

exact sense in the case of function fns
2 and in an approximate sense in the case of the

two instances of function fns
4 . Table 3.2 presents in each row: the problem dimension n;

the crossover rate Cr; the analytical value of pCr,n−1 (which represents the probability of

enhancement of a function f1 in a problem with dimension n−1); the empirical evaluation

of the probability of enhancement, indicated by p̂Cr,n, for functions fns
2 and fns

4 in n

dimensions. In the case of fns
4 , the results are presented for ϕ = 10−4 and ϕ = 10−2.

In all cases, the estimate p̂Cr,n is calculated using 10000 runs of the protocol for 1-step

experiments, with the scaling factor F = 0.75.

From Table 3.2, it is interesting to notice that:

pCr,n−1[f1] ≈ p̂Cr,n[fns
2 ] ≈ p̂Cr,n[fns

4 (ϕ = 10−4)] ≈ p̂Cr,n[fns
4 (ϕ = 10−2)] (3.7)

for all pairs (n,Cr), with an error order greater than 10−3 only in the cases (9, 0.125) and

(17, 0.125). This suggests that when the geometric pattern of the possible enhancements

is organized as a vector field pointing towards a line in dimension n, the probability

of enhancement behaves in the same way as in the case when the geometrical pattern of

enhancements is organized as a vector field pointing towards one point in dimension n−1.

It is worthy to mention that another set of experiments was conducted with functions f s
2

and f s
4 . In that experiment, the relations (3.7) held in all cases, including the two ones

in which the former experiment presented some discrepancy.

The second experiment with non-separable functions is conducted considering the

functions f s
3 , fns

3 , f s
4 and fns

4 . Both f s
4 and fns

4 are considered with ϕ = 102 and ϕ = 104.

Those functions represent the situation in which the vector field of function enhancements

is (n − 1)-dimensional, in an exact sense in the case of functions fns
3 and f s

3 , and in an

approximate sense in the case of all instances of functions fns
4 and f s

4 . Table 3.3 presents
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n Cr pCr,1 p̂Cr,n p̂Cr,n p̂Cr,n p̂Cr,n p̂Cr,n p̂Cr,n

f1 fns
3 fns

4 fns
4 f s

3 f s
4 f s

4

ϕ = 102 ϕ = 104 ϕ = 102 ϕ = 104

9 0.125 0.0478 0.3204 0.3146 0.3198 0.0481 0.2490 0.2498
17 0.125 0.0478 0.4146 0.4708 0.4142 0.0477 0.2905 0.2922
33 0.125 0.0478 0.4789 0.4239 0.4781 0.0478 0.2618 0.2648
9 0.500 0.1914 0.4226 0.4701 0.4237 0.1920 0.3043 0.3143
17 0.500 0.1914 0.4245 0.3790 0.4240 0.1910 0.2520 0.2701
33 0.500 0.1914 0.4233 0.3434 0.4214 0.1913 0.1952 0.2281
9 0.875 0.3349 0.3926 0.3574 0.3910 0.3346 0.3270 0.3572
17 0.875 0.3349 0.3931 0.3574 0.3908 0.3352 0.2919 0.3445
33 0.875 0.3349 0.3935 0.2853 0.3897 0.3349 0.2471 0.3362
9 1.000 0.3828 0.3827 0.3437 0.3816 0.3826 0.3439 0.3826
17 1.000 0.3828 0.3829 0.3141 0.3802 0.3834 0.3148 0.3820
33 1.000 0.3828 0.3817 0.2682 0.3800 0.3821 0.2671 0.3811

Table 3.3: Empirical probability of enhancement p̂Cr,n, for non-separable functions with
(n − 1)-dimensional attractor. The columns represent: the problem dimension n; the
value of Cr; the analytical value of pCr,1 (the probability of enhancement of function f1
in the case of a 1-dimensional problem); the empirical values of pCr,n, indicated by p̂Cr,n

for functions fns
3 , f s

3 , fns
4 and f s

4 . In the case of fns
4 and f s

4 , the values ϕ = 102, ϕ = 104

are considered. All runs were performed with the scaling factor F = 0.75 and initial
population distributed uniformly in Bn.

in each row: the problem dimension n; the crossover rate Cr; the analytical value of pCr,1

(the probability of enhancement of function f1 in the case of a 1-dimensional problem); the

empirical evaluation of the probability of enhancement, indicated by p̂Cr,n, for functions

fns
3 , f s

3 , fns
4 and f s

4 . In all cases, the estimate p̂Cr,n is based on 10000 runs of the protocol

for 1-step experiments, using the scaling factor F = 0.75.

Function f3 represents an extremal situation in which the possible enhancements

are organized as a vector field pointing towards a hyperplane of dimension n − 1. The

enhancements occur, in this case, in a single dimension, along the normal direction to the

hyperplane. An interesting information presented in Table 3.3 is that p̂Cr,n for function

f s
3 , in n dimensions, corresponds to the value of pCr,1 – the probability of enhancement

in a 1-dimensional f1 problem. It should be noticed that the minimization of function

f s
3 (x) means the same as the minimization of the absolute value of the first component of

x, no matter what happens with the other n − 1 components – which explains why the

approximate equality p̂Cr,n[f s
3 ] ≈ pCr,1[f1] holds for all values of n and Cr. An important

fact about DE algorithm is revealed when the same experiment is performed with function

fns
3 . This function corresponds to a simple rotation of f s

3 , now putting the hyperplane’s

normal vector in the direction vns = [ 1 · · · 1 ]T . This means that, in the case of fns
3 ,

all components of x matter for enhancing the solution. By virtue of this, the probabilities

of enhancement pCr,n[fns
3 ] become significantly greater than in the case of function f s

3 .
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n Cr p̂Cr,n p̂Cr,n p̂Cr,n p̂Cr,n p̂Cr,n p̂Cr,n p̂Cr,n

f1 fns
2 fns

3 fns
4 fns

4 fns
4 fns

4

ϕ = 10−4 ϕ = 10−2 ϕ = 102 ϕ = 104

9 0.125 0.3508 0.3504 0.3487 0.3502 0.3492 0.3493 0.3496
17 0.125 0.4470 0.4474 0.4480 0.4467 0.4471 0.4492 0.4482
33 0.125 0.4910 0.4879 0.4941 0.4905 0.4907 0.4921 0.4946
9 0.500 0.4986 0.4985 0.4978 0.4966 0.4980 0.5000 0.4980
17 0.500 0.4983 0.4965 0.5000 0.4979 0.4981 0.4996 0.5000
33 0.500 0.4969 0.4912 0.4998 0.4928 0.4931 0.5014 0.4996
9 0.875 0.4986 0.4997 0.4995 0.4988 0.4986 0.4995 0.4994
17 0.875 0.4990 0.4975 0.4993 0.4983 0.4984 0.4997 0.5009
33 0.875 0.4958 0.4956 0.5006 0.4961 0.4946 0.5000 0.4999

Table 3.4: Estimated probability of enhancement pCr,n, when the initial population is far
away the function enhancement attractor.The columns represent: the problem dimension
n; the value of Cr; the empirical values of pCr,n, indicated by p̂Cr,n for functions f1, f

ns
2 ,

fns
3 and fns

4 , this last one with ϕ = 102 and ϕ = 10−2. All runs were performed with the
scaling factor F = 0.75. The initial population, in all cases, is distributed uniformly in a
unit ball centered in a point located at a distance d = 1000 from the function attractor.

This feature will have an important role in the global behavior of DE algorithm. The last

observation on Table 3.3 refers to the comparison between p̂Cr,n[f s
3 ] and the two instances

of p̂Cr,n[f s
4 ]. It can be seen that p̂Cr,n[f s

3 ] < p̂Cr,n[f s
4 ] for all combinations of (Cr, n), which

may be explained by noticing that, in the case of functions f s
4 , there is the possibility that

an enhancement occur due to some components of vector x other than the first one.

A third experiment is conducted considering the functions f1, fns
2 , fns

3 and fns
4 ,

this last one with ϕ = 102 and ϕ = 10−2. Now, the element to be investigated is the

effect of the initial population being distant from the function attractor. In this way, the

population is generated with uniform distribution inside a unit ball whose center is located

at a distance of 1000 in relation to each attractor. In the cases of functions f1, f
ns
3 and fns

4

with ϕ = 102, the center is located on the direction of vector vns = [ 1 · · · 1 ]T , and in

the cases of functions fns
2 and fns

4 with ϕ = 10−2 it is located on a direction orthogonal to

vns. Table 3.4 presents in each row: the problem dimension n; the crossover rate Cr; the

empirical evaluation of the probability of enhancement, indicated by p̂Cr,n, for functions

f1, f
ns
2 , fns

3 and fns
4 , this last one considering the cases ϕ = 102 and ϕ = 10−2. In all cases,

the estimate p̂Cr,n is calculated by 10000 executions of the protocol for 1-step experiments,

using the scaling factor F = 0.75.

The main conclusion that can be extracted from Table 3.4 is that, for all consid-

ered functions, the probability of enhancement at a large distance from the attractor is

approximately equal to 0.5. This effect can be explained by the following reasoning: (i)

at a large distance, the function contour curves in the neighborhood of the DE popula-

tion becomes similar to hyperplanes; (ii) every time an offspring o is compared to the

respective individual xi1 , the offspring may be on either sides of the contour curve that
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passes on xi1 , with the same probability. Therefore, the probability of enhancement is

0.5. It should be noticed that even the cases of (n,Cr) equal to (9, 0.125) and (17, 0.125)

don’t contradict this reasoning: the smaller probability of enhancement, in that cases,

comes from the cases in which the offspring remains equal to xi1 , which occur due to the

non-negligible probability of no component of the vector resulting from mutation being

selected for crossover, with that combinations of parameters. Notice that, discounting

those situations of no mutation, the analytical values of the probability of enhancement

for the optimization of f1 in the case of initial population far from the origin become

p∞Cr,n
= 1

2
− 1

2
(1− Cr)

n and then p∞0.125,9 = 0.3497 and p∞0.125,17 = 0.4483.

3.2 The dynamics of a full run

The analysis of the probability of enhancement of the individuals suggests that the

dynamics of DE population may be described as a multi-step process. For instance, in

the case of the simple function f1, considering an initial population which is launched far

from the point of minimum, the steps are:

1. The population approaches the attractor (the point of minimum). In this process,

it becomes more spread.

2. After having included the attractor within its convex hull, the population starts to

contract around the attractor, until the convergence.

In this subsection, some experiments considering n = 3 are performed in order to allow

the visualization of the results. This multi-phase behavior of DE algorithm are examined

in those experiments.

Figure 3.2 shows a sequence of populations, that start in a unit ball whose center

is situated at a distance 20 from the point of minimum. The population becomes more

spread until it reaches that point, and then starts a contraction towards it.

Figure 3.3 shows the evolution of the distance of the population to the point of

minimum of function f1 through the iterations, in a logarithm scale. Five curves are

shown, representing the last individual among: the 10% best ones, the 25% best ones, the

50% best ones, the 75% best ones and the 90% best ones. The DE algorithm is run with

a population of 50 individuals, Cr = 0.5 and F = 0.75.

It can be seen that, in the first 20 iterations, the distance to the point of minimum

decreased very slowly – which corresponds to the phase of population expansion. After
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Figure 3.2: Sequence of populations. The initial population is shown in blue, and the
next ones following the order: red, green, magenta. The point of minimum, which is the
origin, is located within the cloud of the last population.
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Figure 3.3: Distance from the individuals to the point of minimim of function f1. Five
curves are shown, representing the last individual among: the 10% best ones, the 25%
best ones, the 50% best ones, the 75% best ones and the 90% best ones, in each iteration
of the optimization process.

the 20th iteration, that distance started a process of exponential decrease, at a rate of
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more than 103 for each 60 iterations.

One should notice that the description of this two-phase behavior is consistent

with the information provided in Tables 3.1 and 3.4. A high probability of enhancement

when the population is far from the attractor means that a large proportion of the new

individuals are accepted, leading to an increase on the spread of population. A smaller

probability of enhancement when the population cloud includes the attractor means that

only the new individuals that are created towards the point of minimum are accepted.

Table 3.5 shows the empirical estimation of the probability of enhancement, mea-

sured on the DE population in some moments of the optimization process. This measure-

ment is performed in the following way:

• The DE algorithm is run until it reaches each value of iteration indicated in the

first column of Table 3.5. Once reaching that number of iterations, the algorithm is

interrupted, and the estimation of the probability of enhancement on that iteration

is performed as explained next. After each interruption, the algorithm proceeds

from the point it was interrupted.

• When the algorithm is interrupted, the current population of DE on that iteration

is used as the initial population in an experiment in which only one iteration of

DE is performed, and the number of enhancements is registered. This experiment

is repeated 2000 times, with the same initial population. The average number of

enhancements per individual per repetition is taken as the empirical probability of

enhancement of that population on that specific iteration number.

This table shows that before starting the optimization process, the probability of enhance-

ment of the initial population is 0.4379, which is approximately equal to the analytical

value of the probability of enhancement calculated for function f1 with initial population

far from the origin, p0.5,3(∞) = 0.4375. This probability decreases until nearly the 45th

iteration, when it reaches a value near to 0.30, which is kept up to the end of the run. The

analytical value of pCr,n for function f1 and initial population with uniform distribution

in a unit ball around the origin is p0.5,3 = 0.2980.

The results presented in Table 3.5 suggest that, in the case of function f1, each

one of the two phases of the process of convergence towards the problem solution is

characterized by a particular value of the probability of enhancement: the first phase,

when far from the attractor, by 1
2

and the second phase, after including the attractor

within its convex hull, by pCr,n.

More complex multi-phase dynamics are observed in the case of objective functions

with attractors which have multiple scales with higher dimensions in the initial scales. An

experiment is performed for the optimization of function fns
4 , ϕ = 10−4, with the initial

population within a unit ball around the origin and parameters N = 150, Cr = 0.5 and

F = 0.75. Figure 3.4 shows the initial population and the 20th iteration population. It can
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iteration p̂Cr,n

0 0.4379
15 0.4334
30 0.3676
45 0.3018
60 0.3011
75 0.2966
90 0.2994
105 0.2976
120 0.2951
135 0.3018
150 0.2933

Table 3.5: Empirical estimates of the probability of enhancement measured on the DE
population on different moments along the process of optimization of function f1 with
initial population within a unit ball whose center is located at a distance 20 in relation
to the origin. The DE parameters are Cr = 0.5, F = 0.75, and the problem dimension is
n = 3. The analytical value of pCr,n for function f1 and initial population with uniform
distribution in a unit ball around the origin, p0.5,3 = 0.2980, is approximated by the
empirical estimates p̂ after iteration 45.

be seen that the initial population is located within a unit sphere, while the 20th iteration

population becomes distributed along a line (the function first-scale attractor). Figure

3.5 shows the evolution of the distances from the individuals to the point of minimum

and from the individuals to the attractor line. The range of distances to the the point

of minimum initially grows approximately on the first 25 iterations, and then starts to

decrease exponentially. The distances to the attractor line initially decrease fast on the

first 25 iterations, and then their rate of decrease reduces, but after the 25th iteration

the decrease is still exponential. In all steps after the 25th iteration, all individuals keep

moving on the attractor line, in a process that becomes approximately one-dimensional.

Once again, it should be noticed that the behavior presented in figures 3.4 and 3.5

is consistent with the information presented in Table 3.2. That table essentially says that,

on the initial stages of the evolution of population in this problem, the probability of an

enhancement which moves the individual towards the attractor line is greater than the

probability of an enhancement which moves it towards the point of minimum. Therefore,

there is an average movement towards the attractor line before the final convergence

towards the minimum.

A very important feature of the function fns
4 is that, if the population becomes

distributed exactly on the first-scale attractor (a line), the improvements on the individu-

als of such a population will require that all dimensions are changed simultaneously. Any

movement which involves less dimensions will move the point away from the attractor,

being non-enhancing. In the usual case when the population becomes distributed approx-

imately on the attractor, there will be movements involving less than n dimensions which
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Figure 3.4: The initial population (blue) and the 20th iteration population (red) of a DE
in the minimization of fns

4 with ϕ = 10−4. A black line represents the first-scale attractor
of the objective function.
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Figure 3.5: Distance, in logarithm scale, from the individuals: (left) to the point of
minimim of function fns

4 , ϕ = 10−4; and (right) to the line that represents the first
attractor of the function. Five curves are shown, representing the last individual among:
the 10% nearest ones, the 25% nearest ones, the 50% nearest ones, the 75% nearest ones
and the 90% nearest ones, in each iteration of the optimization process.

may represent an enhancement, but those enhancements will be necessarily small. Table

3.6 presents the empirical probability of enhancement for this experiment and also for

similar experiments considering different values of Cr. Those empirical probabilities are

measured in the same way as in the experiments reported in Table 3.5. The table also

presents the average number of dimensions that are involved in the enhancements, k̄, as

a proportion of the number of problem dimensions, n.

It can be seen that, for Cr ∈ {1/2, 2/3, 1}, except in the iterations 0 and 15,

more than 90% of the dimensions were involved in the enhancements. As n = 3, this

means that the large majority of enhancements involved all the three dimensions. Even
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iteration Cr = 1/3 Cr = 1/2 Cr = 2/3 Cr = 1
k̄ p̂ k̄ p̂ k̄ p̂ k̄ p̂

0 0.4797 0.2741 0.5535 0.3240 0.6703 0.3491 1 0.3189
15 0.5328 0.0682 0.7812 0.0681 0.9512 0.1006 1 0.2759
30 0.6546 0.0304 0.9056 0.0424 0.9779 0.0868 1 0.2760
45 0.7263 0.0212 0.9190 0.0419 0.9737 0.0856 1 0.2754
60 0.7821 0.0168 0.9252 0.0402 0.9721 0.0866 1 0.2754
75 0.8102 0.0151 0.9314 0.0406 0.9759 0.0862 1 0.2719
90 0.8319 0.0141 0.9336 0.0398 0.9752 0.0862 1 0.2790
105 0.8367 0.0141 0.9339 0.0405 0.9772 0.0869 1 0.2726
120 0.8292 0.0148 0.9328 0.0398 0.9765 0.0861 1 0.2740
135 0.8042 0.0157 0.9258 0.0399 0.9754 0.0854 1 0.2760
150 0.8020 0.0156 0.9277 0.0400 0.9729 0.0869 1 0.2734

Table 3.6: The average number of dimensions involved in each enhancement, k̄, presented
as a fraction of n, and the empirical probability of enhancement, p̂, considering the DE
populations occurring on different moments along the process of optimization of function
fns
4 , ϕ = 10−4 with initial population within a unit ball around the origin, for different

values of Cr. The scaling factor is set as F = 0.75, and the problem dimension is n = 3.

in the case of Cr = 1/3, in which most of the mutations involved only one dimension, the

enhancements after iteration 75 involved 80% of the dimensions, on average. It should be

noticed that, in all cases, the population was committed to approach the function attractor

on the first iterations, which allowed enhancements involving 1 or 2 dimensions. After

the population becoming disposed along the attractor, most of the enhancements should

involve all 3 dimensions. This means that the average number of dimensions involved in

enhancements grows when the population reaches the stage in which it is disposed along

the attractor and starts to contract along it.

It is interesting to notice that the formula for pk(F ), presented in equation (2.1),

seems to provide some accurate information regarding this experiment. The idea is to

produce an estimate of the steady-state value of p̂ in the cases presented in Table 3.6 by

the formula:

p(Cr) = pk(F )|k=3,F=0.75 · (Cr)
n|n=3 (3.8)

This formula calculates the probability of enhancement as the product of the probability

of 3 dimensions being selected for crossover, given by (Cr)
n, by the probability of en-

hancement if 3 dimensions are involved in crossover, given by (2.1). The application of

this formula leads to: p(1) = 0.2759, p(2/3) = 0.0819, p(1/2) = 0.0345, p(1/3) = 0.0102.

It can be seen that p(1) is quite accurate, and p(2/3) is still reasonable accurate. The

values of p(1/2) and p(1/3), on the other hand, underestimate the respective empirical

values because, in those cases, there is a significant number of crossover trials with less

than 3 dimensions involved, which leads to some enhancements provided by those trials

that become relevant, although small. The difference between the behavior of the DE

algorithm in the case Cr = 1/3 and the case Cr = 1 can be observed in Figure 3.6. The
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much faster convergence of the case Cr = 1 is explained both by the higher probability of

enhancement and by the higher size of enhancement, compared with the enhancements

that occur by crossover with less than 3 dimensions.
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Figure 3.6: Distance, in logarithm scale, from the individuals to the point of minimim
of function fns

4 , ϕ = 10−4. Blue: DE algorithm with Cr = 1. Red: DE algorithm with
Cr = 1/3. Five curves are shown in each case, representing the last individual among:
the 10% nearest ones, the 25% nearest ones, the 50% nearest ones, the 75% nearest ones
and the 90% nearest ones, in each iteration of the optimization process.
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Figure 3.7: The initial population (blue) and the 20th iteration population (red) of a DE
in the minimization of fns

4 with ϕ = 104. A black line represents the normal direction to
the plane which is the first-scale attractor of the objective function.

Another experiment is performed for the optimization of function fns
4 , ϕ = 104,

with the initial population within a unit ball around the origin and parameters N = 150,

Cr = 0.5 and F = 0.75. Figure 3.7 shows the initial population and the 20th iteration
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population. It can be seen that the initial population is located within a unit sphere,

while the 20th iteration population becomes distributed along a plane (the function first-

scale attractor) whose normal direction is also presented as a black line. Figure 3.8

shows the evolution of the distances from the individuals to the point of minimum and

from the individuals to the attractor plane. The range of distances to the the point

of minimum initially grows approximately on the first 25 iterations, and then starts to

decrease exponentially. The distances to the attractor plane initially decrease fast on

the first 25 iterations, and then reduces the rate of decrease; after the 25th iteration the

decrease is still exponential. In all steps after the 25th iteration, all individuals keep

moving on the attractor plane, in a (n− 1)-dimensional process.
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Figure 3.8: Distance, in logarithm scale, from the individuals to: (left) the point of
minimim of function fns

4 , ϕ = 104; and (right) the plane that represents the first attractor
of the function. Five curves are shown, representing the last individual among: the 10%
nearest ones, the 25% nearest ones, the 50% nearest ones, the 75% nearest ones and the
90% nearest ones, in each iteration of the optimization process.

As in the case of function fns
4 with ϕ = 10−4, also for fns

4 with ϕ = 104 it occurs

that if the population becomes distributed exactly on the first-scale attractor (now a

plane), the improvements on the individuals of such a population will require that all

dimensions are changed simultaneously. Any movement which involves less dimensions

will move the point away from the attractor, being non-enhancing. Again, in the usual

case when the population becomes distributed approximately on the attractor, there will

be movements involving less than n dimensions which may represent an enhancement, but

those enhancements will be necessarily small. Table 3.7 presents the empirical probability

of enhancement for this function, considering different values of Cr. Those empirical

probabilities are measured in the same way as in the experiments reported in Table

3.5. The table also presents the average number of dimensions that are involved in the

enhancements, k̄, as a proportion of the number of problem dimensions, n.
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iteration Cr = 1/3 Cr = 1/2 Cr = 2/3 Cr = 1
k̄ p̂ k̄ p̂ k̄ p̂ k̄ p̂

0 0.4643 0.3115 0.5563 0.3855 0.6787 0.3974 1.0000 0.3885
15 0.5997 0.0433 0.8715 0.0515 0.9575 0.0956 1.0000 0.2700
30 0.7187 0.0223 0.9158 0.0417 0.9739 0.0873 1.0000 0.2757
45 0.7686 0.0181 0.9295 0.0397 0.9724 0.0878 1.0000 0.2723
60 0.8046 0.0160 0.9320 0.0405 0.9710 0.0869 1.0000 0.2739
75 0.8274 0.0152 0.9361 0.0398 0.9745 0.0885 1.0000 0.2725
90 0.8184 0.0151 0.9408 0.0392 0.9748 0.0882 1.0000 0.2727
105 0.8228 0.0147 0.9333 0.0398 0.9748 0.0857 1.0000 0.2753
120 0.8250 0.0146 0.9292 0.0407 0.9764 0.0869 1.0000 0.2761
135 0.8250 0.0148 0.9188 0.0401 0.9724 0.0876 1.0000 0.2795
150 0.8354 0.0144 0.9445 0.0399 0.9771 0.0887 1.0000 0.2726

Table 3.7: The average number of dimensions involved in each enhancement, k̄, presented
as a fraction of n, and the empirical probability of enhancement, p̂, considering the DE
populations occurring on different moments along the process of optimization of function
fns
4 , ϕ = 104 with initial population within a unit ball around the origin, for different

values of Cr. The scaling factor is set as F = 0.75, and the problem dimension is n = 3.

The most noticeable feature of Table 3.7 is that it does not differ significantly from

Table 3.6 in any entry. This suggests that the probability of enhancement, in the case of

non-separable functions with two scales does not depend on the dimension of the attractor

of the first scale. Again, a close approximation of those probabilities can be performed

by using equation (2.1).

One last experiment is performed in order to examine the role of the non separate-

ness of functions in the former results. The function f s
4 is employed, with ϕ = 10−4 and

ϕ = 104, initial population within a unit ball around the origin and parameters N = 150

and F = 0.75. Now, only Cr = 1/3 and Cr = 1 are considered. The results are presented

in Table 3.8. It can be seen that the cases with Cr = 1 both lead to the same results of

the non-separable case. On the other hand, now the cases with Cr = 1/3 have a greater

probability of enhancement, which approaches p̂ = 0.247. This empirical probability is

near to the value pCr,n|Cr=1/3,n=3 = 0.2515.

Figure 3.9 shows that the DE algorithm performs similarly with Cr = 1/3 and

with Cr = 1, in this experiment, both for the case ϕ = 104 and ϕ = 10−4. The version

with Cr = 1, in both cases, presents a delay due to the need for the population reaching

the function attractor before starting the contraction phase. In the case of the version

with Cr = 1/3, the contraction starts from the beginning.

Remark 3.1. It should be noticed that figures 3.3, 3.6, 3.8 and 3.9 show an interesting

pattern: the algorithm, in all those cases, seems to reach a kind of steady-state behavior

after a transient initial phase. In this steady-state, the relative distance between quantiles

becomes unchanged iteration after iteration, in the logarithm scale. As in all those figures
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ϕ = 10−4 ϕ = 10−4 ϕ = 104 ϕ = 104

iteration Cr = 1/3 Cr = 1 Cr = 1/3 Cr = 1
k̄ p̂ k̄ p̂ k̄ p̂ k̄ p̂

0 0.4653 0.2604 1.0000 0.3202 0.4723 0.2640 1.0000 0.3874
15 0.4640 0.2421 1.0000 0.2769 0.4670 0.2465 1.0000 0.2759
30 0.4753 0.2493 1.0000 0.2748 0.4776 0.2447 1.0000 0.2702
45 0.4782 0.2472 1.0000 0.2790 0.4770 0.2469 1.0000 0.2765
60 0.4745 0.2480 1.0000 0.2756 0.4765 0.2438 1.0000 0.2735
75 0.4762 0.2469 1.0000 0.2771 0.4777 0.2433 1.0000 0.2712
90 0.4773 0.2478 1.0000 0.2778 0.4779 0.2427 1.0000 0.2740
105 0.4781 0.2438 1.0000 0.2761 0.4768 0.2429 1.0000 0.2722
120 0.4773 0.2469 1.0000 0.2731 0.4780 0.2428 1.0000 0.2686
135 0.4759 0.2475 1.0000 0.2768 0.4767 0.2461 1.0000 0.2708
150 0.4757 0.2419 1.0000 0.2748 0.4780 0.2464 1.0000 0.2754

Table 3.8: The average number of dimensions involved in each enhancement, k̄, presented
as a fraction of n, and the empirical probability of enhancement, p̂, considering the DE
populations occurring on different moments along the process of optimization of function
f s
4 , with ϕ = 104 and ϕ = 10−4 with initial population within a unit ball around the

origin, for different values of Cr. The scaling factor is set as F = 0.75, and the problem
dimension is n = 3.
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Figure 3.9: Distance, in logarithm scale, from the individuals to the point of minimum of
function f s

4 , with ϕ = 104 (left) and ϕ = 10−4 (right). Blue: DE algorithm with Cr = 1.
Red: DE algorithm with Cr = 1/3. Five curves are shown in each case, representing the
last individual among: the 10% nearest ones, the 25% nearest ones, the 50% nearest ones,
the 75% nearest ones and the 90% nearest ones, in each iteration of the optimization
process.

there is a constant negative slope in the distances which are represented, those data sug-

gest that in the steady-state the population becomes distributed according to a geometric

pattern which is modified by a contraction which preserves the geometry and produces the

convergence of population towards the point of optimal. This conjecture is also consistent
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with the existence of a similar steady-state behavior of the probability of convergence, as

indicated in tables 3.5, 3.6, 3.7 and 3.8.

3.3 Behavior in Large Dimensions

Define p̃pop(Cr, F, n,N) as the probability that at least one individual from a ran-

dom population of N individuals uniformly distributed within Bn×N is improved on the

first iteration of the DE with parameters F and Cr, in the case of objective function f1

with decision variable space of dimension n. Assuming independence between the proba-

bility of enhancement of different individuals, the expression of p̃pop(Cr, F, n,N) is given

by:

p̃pop(Cr, F, n,N) = 1− (1− pCr,n(F ))N (3.9)

The Theorem 2.3 shows that the probability of an individual being improved after

one iteration approaches zero, for large values of n. And, analogously to what happens

with p̃k(F )when k →∞, it is true that p̃Cr,F,n,N → 0 as n→∞. Expression (3.9) reveals

what is the effect of growing the population size N in compensating the effect of growth

of n. The data corresponding to the evaluation of this expression is presented in Table

3.9. It becomes clear that, when n > 256, for most populations generated randomly there

will be no enhancement in the first iteration of DE, so the algorithm will not even start.

The evaluation of (3.9), as presented in Table 3.9 suggests that the DE algorithm

will not be useful in arbitrarily large dimensions. This table also suggests that the DE may

be useful up to a maximal dimension that is somewhere between n = 100 and n = 200.

In this section, the behavior of the DE algorithm is examined as the problem dimension

grows up to a value of n within that range. In order to establish a baseline for comparison,

a basic Evolutionary Strategy (ES) algorithm is employed, as described next.
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n pCr,n(F ) ppop(Cr, F, n,N) ppop(Cr, F, n,N)
N = n N = 3n

2 0.2714 0.4691 0.8504
4 0.2998 0.7596 0.9861
8 0.2469 0.8966 0.9989
16 0.1581 0.9363 0.9997
32 0.0738 0.9141 0.9994
64 0.0193 0.7127 0.9763
128 0.0016 0.1897 0.4679
256 1.54e-05 0.0039 0.0117
512 1.80e-09 9.21e-07 2.7623e-06
1024 1.14e-16 1.14e-13 3.4106e-13

Table 3.9: Probability of enhancement of a population, for different problem dimensions. n
is the problem dimension. pCr,n(F ) is the probability of enhancement of a given individual,
from a population with uniform distribution, calculated by expression (2.21). ppop is
the probability of enhancement of at leas one individual in a population with N = n
individuals with uniform distribution. In all cases, it was considered Cr = 0.5 and F =
0.75.

Algorithm 3: Basic Evolution Strategy algorithm, (λ + 1) variant.

1 Generate initial population of NES individuals within a sphere of radius R = R0

around the initial point x0, with uniform probability

2 xop ← the point in population with the best objective function value

3 while not stopping condition do

4 Generate population of NES individuals within a sphere of radius R around

the point xop, with uniform probability

5 nenh ← number of new individuals better than xop

6 if nenh > 0 then

7 xop ← the point in population with the best objective function value

8 else

9 R← R/1.2

10 if nenh > NES/5 then

11 R← 1.5R

The Figure 3.10(a) presents the comparison of one run of DE algorithm with one

run of the basic ES algorithm for the minimization of function f1 considering a decision

variable space of n = 5 dimensions, with both algorithms having a budget of 10000

function evaluations. Figure 3.10(b) presents a similar comparison, for function fns
4 with

ϕ = 10−4, also considering n = 5, and both algorithms having a budget of 100000 function

evaluations. Both (a) and (b) are performed with ES population NES = 5, and DE

population N = 10.
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Figure 3.10: (a) Distance, in logarithm scale, from the best solution to the point of
minimum of function f1; DE: blue, ES: red. (b) Distance, in logarithm scale, from the
best solution to the point of minimum of function fns

4 , with ϕ = 104; DE: blue, ES:
red. In all cases, n = 5. Each curve was produced with 50 executions, representing the
10% (lower dotted),25% (lower dashed),50% (solid), 75% (upper dashed) and 90% (upper
dotted) quantiles. Both populations (for DE and ES) were initialized on [−1, 1]n and the
ES with R0 = 1.

The data presented in Figure 3.10 makes it clear that the DE algorithm is relevant

mainly for problems in which the objective function has “elongated” contour curves.

In fact, the distribution of the DE population according to the contour curves on each

iteration, as studied in the last section, provides an implicit mechanism for compensating

the curvature of function graphics. In this way, the DE is able to reach a much tighter

approximation of the function optimal in functions like fns
4 . In the case of functions with

contour curves that are nearly spherical, like f1, the basic ES outperforms the DE.

The issue to be studied in this section is the effect of the growth of the decision

space dimension. In the case of function f1, the ES outperforms the DE by a large margin

in all experiments, for any value of n. In fact, when n reaches nearly 185, the DE starts

to present a behavior in which the ability of enhancing the solution is lost: the initial

solution is not improved at all, in most of runs. In those cases, the initial population of

DE had become a fixed point. On the other hand, the experiments conducted here have

found that the ES retains its capability of enhancing the objective function f1 at least up

to n = 10000.

Considering now the function fns
4 with ϕ = 10−4, new experiments were performed

for n ∈ {15, 25, 50, 100}. Again, the experiments are performed with ES population

NES = 5, and DE population N = 10. Figure 3.11 shows the results of those experiments.

In all cases the DE outperforms the ES, reaching better approximations of the point

of optimal. In all cases, the DE stopped the process of approaching the point of optimal

when a fixed point was reached. In order to examine the issue of the fixed point, another
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Figure 3.11: Distance, in logarithm scale, from the best solution to the point of minimum
of function fns

4 with ϕ = 10−4. In all cases: DE: blue, ES: red. Each curve was produced
with 50 executions, representing the 10% (lower dotted),25% (lower dashed),50% (solid),
75% (upper dashed) and 90% (upper dotted) quantiles. Both populations (for DE and
ES) were initialized on [−1, 1]n and the ES with R0 = 1.

set of experiments were performed for n = 15, now varying the size of DE population

within the set N ∈ {10, 20, 40, 80}. The results are presented in Figure 3.12.

Those experiments show that a small DE population, with N = 10, is susceptible

to reach a fixed point earlier than larger populations. However, when the population

becomes larger than N = 40, it seems that there is no further gain in increasing its size.

In any case, the behavior of the DE population seems to present a decreasing convergence

rate which approaches zero.
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Figure 3.12: Distance, in logarithm scale, from the best solution of DE to the point of
minimum of function fns

4 with ϕ = 10−4 and n = 15, and a budget of 50000 function
evaluations. (a) N ∈ {10, 20, 40, 80}. (b) The situation N = 40 is run again with a
budget of 300000 function evaluations. Each curve was produced with 50 executions,
representing the 10% (lower dotted),25% (lower dashed),50% (solid), 75% (upper dashed)
and 90% (upper dotted) quantiles. All populations were initialized on [−1, 1]n.

3.4 Coordinate transformation for function

regularization

The former sections have provided evidence suggesting that:

• The DE algorithm performs better as the contour curves of the objective function

become more spherical, around the point of optimal.

• After some iterations, the population of the DE becomes distributed according to

the shape of the contour curves of the objective function, no matter what was its

initial distribution.

This observation leads to the following idea for enhancing the performance of the DE

algorithm:

1. After some iterations, compute a space coordinate transformation such that the

distribution of the transformed population becomes as similar as possible to a sphere.

This transformation involves the translation of the population by the vector t, which

is calculated as the mean of the current population. The translation matrix T is
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defined as:

t =
1

N

N∑
i=1

xi

T = t · 11×N

(3.10)

in which 11×N denotes a row vector with N coordinates, with all coordinates filled

with 1. A linear transformation matrix Q is calculated as:

Q =
(√

(X − T ) · (X − T )T
)−1

(3.11)

in which S =
√

(X − T ) · (X − T )T is an n×n matrix such that S ·ST = (X−T ) ·
(X − T )T .

2. Perform the coordinate transformation, and continue the execution of DE algorithm

on the transformed population. The transformed population X̃ is given by:

X̃ = Q · (X − T ) (3.12)

3. On each time a transformation is performed, compute also the total transformation

whose inverse application leads back to the original coordinates. Start from the

identity transformation:

t̃ = 0n×1 Q̃ = In (3.13)

in which 0n×1 denotes a zero column vector with n dimensions and In denotes

the n × n identity matrix. On each time a transformation is performed, the total

transformation is updated as:

t̃ = t̃ + Q−1 · t

Q̃ = Q · Q̃
(3.14)

4. Repeat periodically the coordinate transformation procedure.

5. On the end, transform the solution back to the original space coordinates. Assuming

that the final solution, in the final coordinates, is stored in X̃, the final population

is recovered as:

X = Q̃−1 · X̃ + t̃ (3.15)

The following two algorithms clarify the idea, the coordinate transformation is

shown in Algorithm 4 and Algorithm 5 incorporates the coordinate transformation in the

DE algorithm.

A numerical experiment has been conducted in order to examine the effect of the

coordinate change procedure. The DE algorithm was run on function fns
4 with ϕ =

104, on a decision space dimension n = 50. A population of N = 100 individuals was

employed, and the parameters Cr = 0.5 and F = 0.75 were employed. In one run, the
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Algorithm 4: Update coordinates.

Input: X, Q̃, t̃, N
/* N: number of individuals in population */

/* X: a population with N individuals in Rn */

/* Q̃: a n× n matrix */

/* t̃: a vector in Rn */

Output: X, Q̃, t̃
/* Get the mean of X: */

1 t← 1
N

∑N
i=1 xi

/* Repeat t N times to construct T: */

2 T ← t · 11×N

/* Compute an auxiliary variable S: */

3 S ←
√

(X − T )(X − T )T

/* Compute Q: */

4 Q← S−1

/* Update X, Q̃ and t̃: */

5 X ← Q(X − T )

6 t̃← t̃ + Q̃−1t

7 Q̃← QQ̃

DE algorithm was as before, and in another run the coordinate transformation procedure

was included, performing one coordinate transformation each 100 iterations. In order to

establish a performance baseline, the DE algorithm was run also on function f1, on the

same dimension and using the same parameters. The results are presented in Figure 3.13.

The observation of Figure 3.13 suggests that the coordinate transformation proce-

dure was able to avoid the effect of the population being attracted to a fixed point, which

occurs in the case of the DE without that transformation. In fact, the rate of convergence

that was obtained for function fns
4 became almost the same that was achieved in the more

favorable case of function f1. This suggests that the contour surfaces of the function fns
4

in the transformed coordinates should have become almost spherical, as intended.

3.5 Coordinate transformation with optimal Cr

In Section 2.5 we discussed how to use the analytical pCr,n(F ) value to optimize

the choice of Cr for a given F or vice versa. Now we combine this method with the

coordinate transformation from last section. Figures 3.14, 3.15, 3.16, 3.17 and 3.18 show

how four versions of the algorithm behave for different test functions. The fist version

is the original DE without modifications, the second is the DE with optimal Cr, the
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Algorithm 5: Differential Evolution algorithm with coordinate transformation.

Input: N , n, F , Cr, f(x)
/* The parameters are the same as in Algorithm 2 */

Output: x∗

/* Generate initial population (N individuals in Rn): */

1 X0 ← initial population(N, n)
/* Let X0 = vec(x1, · · · , xN) where xi ∈ Rn for all i = 1, · · · , n */

2 t← 0
/* Initializing coordinate transformation: */

3 Q̃← In
4 t̃← 0n×1

5 while not stopping condition do
6 for i← 1 : N do
7 i1 ← i

/* Select 3 elements, without replacement, from the set

{1, 2, . . . , N} − {i1}, with uniform probability: */

8 {i2, i3, i4} ← rand select(3, {1, 2, . . . , N} − {i})
/* Retrieve the individuals to be submitted to crossover and

mutation: */

9 x̄1 ← X t[i1]
10 x̄2 ← X t[i2]
11 x̄3 ← X t[i3]
12 x̄4 ← X t[i4]

/* Build the set A ⊂ {1, 2, . . . , n} by a random choice such that

each element is put in A with probability Cr: */

13 A ← rand subset(n,Cr)
/* Perform mutation and crossover: */

14 oi ←
∑

j ̸∈A⟨x̄1, ej⟩ej +
∑

j∈A⟨x̄2 + F.(x̄3 − x̄4), ej⟩ej
/* Perform elitist selection: */

15 if f(Q̃−1oi + t̃) < f(Q̃−1x̄1 + t̃) then
16 x̄i ← oi/* If oi is better then x̄i updates the value of x̄i */

17 t← t + 1
/* Store the population for the next iteration: */

18 X t ← vec(x̄1, . . . , x̄N)
/* Update coordinate system: */

19 if its time to update coordinate system then

20 X t, Q̃, t̃← update coordinates(X t, Q̃, t̃, N)

/* Get the best point that was visited in the last coordinate

system: */

21 x∗ ← arg mini∈{1,...,N} f(xi)
/* Convert to the original coordinate system: */

22 x∗ ← Q̃−1x̄∗ + t̃

third is the DE with coordinate transformation and the last is the DE with coordinate

transformation and optimal Cr.
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(a) ϕ = 104.
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Figure 3.13: Distance, in logarithm scale, from the best solution of DE to the point of
minimum of function fns

4 with n = 50. Green: DE algorithm with coordinate transforma-
tion procedure. Blue: DE algorithm without coordinate transformation. Red: baseline
data, from DE algorithm on function f1. In all cases, the population is N = 100, and
the parameters are defined as Cr = 0.5 and F = 0.75. Each curve was produced with 50
executions (each execution with a budget of 5 × 106 function evaluations), representing
the 10% (lower dotted),25% (lower dashed),50% (solid), 75% (upper dashed) and 90%
(upper dotted) quantiles. All populations were initialized on [−1, 1]n.

The test bed is composed by:

1. Sphere function,

f t
1(x) = ||x||22 (3.16)

with minimum f t
1(x

∗) = 0 at x∗ =
[
0 0 · · · 0

]
. The population is initialized on

[−1, 1]n.

2. Rastrigin function,

f t
2(x) = 10n +

n∑
i=1

[x2
i − 10cos(2πxi)][−5.12, 5.12]n (3.17)

with minimum f t
2(x

∗) = 0 at x∗ =
[
0 0 · · · 0

]
. The population is initialized on

[−5.12, 5.12]n.

3. Rosenbrock function,

f t
3(x) =

n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] (3.18)

with minimum f t
3(x

∗) = 0 at x∗ =
[
1 1 · · · 1

]
. The population is initialized on

[−5.12, 5.12]n.



3.5. Coordinate transformation with optimal Cr 61

4. Styblinski-Tang function,

f t
4(x) =

1

2

n∑
i=1

(x4
i − 16x2

i + 5xi)− L, (3.19)

where

L = min
x∈Rn

1

2

n∑
i=1

(x4
i − 16x2

i + 5xi) = min
x∈R

n

2
(x4 − 16x2 + 5x) ≈ −39.16599n, (3.20)

with minimum f t
4(x

∗) = 0 at x∗ =
[
c c · · · c

]
, where c ≈ −2.90353. The popu-

lation is initialized on [−5, 5]n.

5. Griewank function,

f t
5(x) = 1 +

n∑
i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
(3.21)

with minimum f t
5(x

∗) = 0 at x∗ =
[
0 0 · · · 0

]
. The population is initialized on

[−600, 600]n.

Each Figure shows at (a) a heat map with the two-dimensional version of the

function and at (c) a cut of the two-dimensional version with x2 constant containing the

global optima. At (b) and (e) the best objective value, in logarithm scale, attained by

each generation for n = 5 and n = 50, respectively. At (c) and (f) the distance, in

logarithm scale, from the best solution of DE to the point of minimum of each function

for n = 5 and n = 50, respectively.

All sub figures (b), (c), (e) and (f) were obtained with 50 runs, where each run used

N = 2n, F = 0.75. The lines are the 10% (lower dotted), 25% (lower dashed), 50% (solid),

75% (upper dashed) and 90% (upper dotted) quantiles of the respective curves (f(xt
best)

or ||xt
best − x∗||). The blue lines represent the DE without coordinate transformation

and Cr = 0.5. The green lines represent the DE without coordinate transformation

and Cr = 0.5. The red lines represent the DE without coordinate transformation and

Cr = C∗
r (F, n) (defined in section 2.5). The black lines represent the DE with coordinate

transformation and Cr = C∗
r (F, n).

In this work we archived two main results: the computation of C∗
r and the modified

Differential Evolution algorithm with coordinate transformation. The value of C∗
r was

calculated from the sphere function and takes profit of the separability of the sphere

function. The modified DE introduces a coordinate transformation that tries to locally

fit the level curves of any function onto something close to the level curves of the sphere

function.

Even though it’s expensive, the DE is a widely used algorithm, even to work with

differentiable multimodal functions, because it tends to not get stuck in a local optimal
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0 5000 10000 15000 20000
t

10−7

10−5

10−3

10−1

‖x
be
st
−
x
∗ ‖

(f) Distances to x∗ with n = 50

Figure 3.14: Plots for f t
1: Sphere function. Each curve was produced from 50 trials,

representing the 10% (lower dotted), 25% (lower dashed), 50% (solid), 75% (upper dashed)
and 90% (upper dotted) quantiles. All populations were initialized on [−1, 1]n with F =
0.75. Blue: pure DE with Cr = 0.5; Green: DE with base transformation and Cr = 0.5;
Red: pure DE with Cr = C∗

r ; Black: DE with base transformation and Cr = C∗
r . The

stopping criteria was given by f(xbest) < ϵ, where ϵ ≈ 2.2× 10−16 is the machine epsilon,
or a maximum of 50000 iterations.

and look to the full picture. That is a feature that must be preserved by any modification

or parameter choice.

Before analyzing the results we recall that for F = 0.75 we have C∗
r (F, 5) ≈ 0.421

and C∗
r (F, 50) ≈ 0.046. As said in Section 2.1, the experimental results in the literature

point to values of F ∈ [0.5, 1] and to values of Cr < 0.2 for separable functions and

Cr > 0.9 for non-separable functions, all the results deal with low-dimensional search

spaces, mainly n < 10. In [12] the author also studied elliptical non-separable functions,

such as fns
4 , saying that those functions offer the biggest challenge to the Differential

Evolution.

When n = 5 the value of C∗
r is close to 0.5, justifying the behavior observed on

all plots (b) and (c), where the solid and dashed lines were close to each other, even

with a small difference in favor of the dashed lines. We can also notice that for n = 5

the coordinate transformation procedure wasn’t helpful, it only outperforms the usual

DE for the Rosenbrock function (f t
3, Figures 3.16(b) and 3.16(c)) and only on the 10%

quantile (e.g. the best executions with coordinate transformation are better then the best

executions without). The geometry of the Rosenbrock function has elongated contour
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Figure 3.15: Plots for f t
2: Rastrigin function. Each curve was produced from 50 trials,

representing the 10% (lower dotted), 25% (lower dashed), 50% (solid), 75% (upper dashed)
and 90% (upper dotted) quantiles. All populations were initialized on [−5.12, 5.12]n with
F = 0.75. Blue: pure DE with Cr = 0.5; Green: DE with base transformation and
Cr = 0.5; Red: pure DE with Cr = C∗

r ; Black: DE with base transformation and Cr = C∗
r .

The stopping criteria was given by f(xbest) < ϵ, where ϵ ≈ 2.2 × 10−16 is the machine
epsilon, or a maximum of 50000 iterations.

curves, justifying the improvement.

For the sphere function (f t
1, Figures 3.14(b) and 3.14(c)) the transformation pro-

cedure doesn’t bring any improvement, in fact, changing the basis of perfectly spherical

level curves can just turn then onto a more stretched and rotated shape.

When n = 50 the value of C∗
r is far from 0.5. For the sphere function the DE with

coordinate transformation is still worse then the pure DE for both Cr = 0.5 and Cr = C∗
r ,

but the choice of Cr = C∗
r is better on both cases (f t

1, Figures 3.14(e) and 3.14(f)).

The Rastrigin function is multimodal and locally separable, it has a global structure

similar to the sphere function, but with waves coming down to the optimal (see Figures

3.15(a) and 3.15(d)). In that case the pure DE with optimal Cr outperforms the other

three curves: the pure DE with Cr = 0.5 wasn’t able to perform a good search as in the

sphere function and the DE with coordinate transformation converges too fast to local

optima. Functions f t
4 and f t

5 have a similar behavior.

The Rosenbrock function has an elongated and curved geometry, see Figure 3.16(a),

that is well explored by the coordinate transformation procedure. The interesting point

is that the coordinate transformation with Cr = C∗
r loses to Cr = 0.5 since it converges
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Figure 3.16: Plots for f t
3: Rosenbrock function. Each curve was produced from 50 trials,

representing the 10% (lower dotted), 25% (lower dashed), 50% (solid), 75% (upper dashed)
and 90% (upper dotted) quantiles. All populations were initialized on [−5.12, 5.12]n with
F = 0.75. Blue: pure DE with Cr = 0.5; Green: DE with base transformation and
Cr = 0.5; Red: pure DE with Cr = C∗

r ; Black: DE with base transformation and Cr = C∗
r .

The stopping criteria was given by f(xbest) < ϵ, where ϵ ≈ 2.2 × 10−16 is the machine
epsilon, or a maximum of 50000 iterations.

too fast.

Usually, the Differential Evolution is used combined with other algorithms to per-

form a broad search over the search space that will then be refined by other techniques.

In all experiments the pure DE with Cr = C∗
r quickly approaches the global minimum.

This suggests that one could use the pure DE with Cr = C∗
r until it converges and then

use the DE with coordinate transformation procedure to look for elongated shapes.
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Figure 3.17: Plots for f t
4: Styblinski-Tang function. Each curve was produced from 50

trials, representing the 10% (lower dotted),25% (lower dashed),50% (solid), 75% (upper
dashed) and 90% (upper dotted) quantiles. All populations were initialized on [−5, 5]n

with F = 0.75. Blue: pure DE with Cr = 0.5; Green: DE with base transformation
and Cr = 0.5; Red: pure DE with Cr = C∗

r ; Black: DE with base transformation and
Cr = C∗

r . The stopping criteria was given by f(xbest) < ϵ, where ϵ ≈ 2.2 × 10−16 is the
machine epsilon, or a maximum of 50000 iterations.
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Figure 3.18: Plots for f t
5: Griewank function. Each curve was produced from 50 trials,

representing the 10% (lower dotted), 25% (lower dashed), 50% (solid), 75% (upper dashed)
and 90% (upper dotted) quantiles. All populations were initialized on [−600, 600]n with
F = 0.75. Blue: pure DE with Cr = 0.5; Green: DE with base transformation and
Cr = 0.5; Red: pure DE with Cr = C∗

r ; Black: DE with base transformation and Cr = C∗
r .

The stopping criteria was given by f(xbest) < ϵ, where ϵ ≈ 2.2 × 10−16 is the machine
epsilon, or a maximum of 50000 iterations.
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Chapter 4

The Differential Evolution as a

Dynamical System

So far, all our results deal with the first iteration of the algorithm. It is natural

to ask how the algorithm evolves over time, but this is not a simple problem. In this

chapter we aim to pose this question in a more formal way, but not answering it. So, we

introduce the notion of random dynamical systems and discuss how this tool can be used

to model the Differential Evolution algorithm. We also discuss the current results and

their limitations.

4.1 Definitions

Definition 4.1 (Metric dynamical system). A metric dynamical system (MDS) Θ =

(Ω,F ,P, (θt)t∈T) with time T (T = Z or T = R) is a probability space (Ω,F ,P) with a

family of transformations θt : Ω→ Ω, t ∈ T such that:

1. θ0 = Id and θt+s = θt ◦ θs for all t, s ∈ T;

2. The map (t, ω) 7→ θt(ω) is measurable;

3. The probability P is θt-invariant for all t ∈ T, i.e. P(B) = P(θtB) for all B ∈ F
and for all t ∈ T.

A well-known example of metric dynamical system is the left-shift operator. Let Σ

be a finite set (called alphabet) with the power set σ-algebra and µ a probability measure.

Let Ω = ΣZ, F be given by the cylinder σ-algebra and P be the product measure, define

θ : Ω → Ω by θ((xi)i∈Z) = (xi−1)i∈Z. Using θt = θ ◦ · · · ◦ θ︸ ︷︷ ︸
t times

and T = Z it is easy to see

that Θ = (Ω,F ,P, (θt)t∈T) is a metric dynamical system with time Z.
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Definition 4.2 (Random dynamical system). If Θ = (Ω,F ,P, (θt)t∈T) is a metric dynam-

ical system we define a random dynamical system (RDS) on a measurable space (X,B)

over Θ as a map

φ : T× Ω×X → X (4.1)

(t, ω, x) 7→ φ(t, ω, x) (4.2)

with the following properties:

1. φ is measurable;

2. The maps φ(t, ω) : X → X form a cocycle over (θt)t∈T, i.e. φ(0, ω) = id for all

ω ∈ Ω and φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω) for all s, t ∈ T, ω ∈ Ω.

To see the Differential Evolution as a random dynamical system we first define a

metric dynamical system. Let Σ be the set of all iteration rules. If

λ = ((A1,B1), · · · , (AN ,BN))

is an iteration rule of k1, · · · , kN -configurations, respectively, we define a probability µ on

P(Σ) by:

µ(λ) =
N∏
i=1

Cki
r (1− Cr)

n−ki

3!
(
N−1
3

) (4.3)

Using Ω = ΣZ, F as the cylinder σ-algebra and P as the measure induced by µ we

construct, as in the last section, the left-shift metric dynamical system. Now we need to

construct a random dynamical system. Let X = Rn×N be the set of all populations and

define

D : Σ×X → X (4.4)

(λ, ρ) 7→ D(λ, ρ) (4.5)

to be the function that takes a rule λ and updates a population ρ = (x1, · · · , xN) by

changing xi to oi when f(oi) < f(xi). Now define φ(1, ω, ρ) = D(λ1, ρ) where ω =

(λk)k∈N and extend φ by the recursion φ(t, ω, ρ) = φ(t−1, θ1ω, φ(1, ω, ρ)), completing the

definition of the Differential Evolution as a random dynamical system.

To study some properties of the functions D(λ, ·) we need first to write them

carefully. For a fixed iteration rule λ = ((A1,B1), · · · , (AN ,BN)) we can define O(λ, ρ)

as the function that associates each individual of a population with its offspring. Let

Bi = (i1, i2, i3, i4), then

O : Σ×X → X (4.6)

(λ, ρ) 7→ ρ′ (4.7)
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where ρ′ = (o1, · · · , oN) and

oi =
∑
j ̸∈Ai

⟨xi1 , ej⟩ej +
∑
j∈Ai

⟨xi2 + F (xi3 − xi4), ej⟩ej. (4.8)

We now define V : X → RN as V(ρ) = (f(x1), · · · , f(xN)) where ρ = (x1, · · · , xn)

and finally D(λ, ρ) = (x′
1, · · · , x′

N) where

x′
i =

oi, if πi(V(O(λ, ρ))− V(ρ)) < 0

xi, otherwise
. (4.9)

4.2 Properties of the algorithm

In the next two subsections we state some properties of the Differential Evolution

that don’t depend on the objective function f .

4.2.1 A linear structure

For a fixed iteration rule λ = ((A1,B1), · · · , (AN ,BN)) let ∆1
i = ∆(Ai,Bi)

1 and

∆0
i = ∆c

(Ai,Bi)
for all i = 1, · · · , N . Define

∆ξ =
N⋂
i=1

∆αi
i (4.10)

for every tuple ξ = (α1, · · · , αN) of elements in {0, 1}. Notice that ∆ξ is the set of

populations ρ = (x1, · · · , xN) where the iteration rule λ can improve individuals {xi :

αi = 1}, but can’t improve individuals {xi : αi = 0}. Therefore, {∆ξ : ξ} is a finite

partition of the search space.

Proposition 4.1. Let ∆ξ and D(λ, ·) : X → X be defined as before. The restriction

D(λ, ·)|∆ξ is linear2.

Proof of Proposition 4.1. Let ρ = (x1, · · · , xN) ∈ ∆ξ, ρ′ = D(λ, ρ) = (x′
1, · · · , x′

N) ∈ X

and ξ = {α1, · · · , αN}. If αi = 0 then x′
i = xi. If αi = 1 then

x′
i =

∑
j ̸∈Ai

⟨xi1 , ej⟩ej +
∑
j∈Ai

⟨xi2 + F (xi3 − xi4), ej⟩ej (4.11)

1Using your definition of V it is easy to see that ∆(Ai,Bi) = {ρ ∈ X : πi(V(D(ρ))− V(ρ)) < 0}.
2The shape of the set ∆(Ai,Bi) depends on the objective function f , but the linearity is a property of

the algorithm for any objective function.
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where Bi = (i1, i2, i3, i4), i1 = i and ej is the j-th canonical vector. Thus, x′
i is a linear

combination of x1, · · · , xN for every i = 1, · · · , N . Then D(λ, ·)|∆ξ is linear.

4.2.2 Discontinuities

Since D(λ, ·) is piecewise linear then it is continuous in the interior of each set ∆ξ.

But it is not difficult to construct a configuration where discontinuity occurs. Take, for

example, the configuration in Figure 4.1. Let (A,B) be a configuration with A = {2},
B = (w, x, y, z) and F = 1, producing the offspring o of w in the figure. Also assume

that the dotted circumference is the level curve for the value f(o) and that the function

is smaller inside the circle than outside.

x

y

w

z
o

+

w-

w0

Figure 4.1: Example of discontinuity of D(λ, ·) at ρ = (w0, x, y, z). If w is inside the circle
(lower level curves) then D(λ, ·) will keep w as it is. If w is outside the circle (higher
level curves) then D(λ, ·) will exchange w for o. So, if w+ is outside the circle on the
y-axis and w− is inside the circle, also on the y-axis, then limw+→w0 D(λ, ·) = (o, ·, ·, ·),
but limw−→w0 D(λ, ·) = (w0, ·, ·, ·).

If w is inside the circle (e.g. w = w−) then D(λ, ·) will keep w as it is. If w is

outside the circle (e.g. w = w+) then D(λ, ·) will exchange w for o. So, if λ is an iteration

rule λ that has the configuration (A,B), then D(λ, ·) is discontinuous at ρ = (w0, x, y, z).

In fact, we can even introduce a perturbation and find more discontinuous configurations,

all that matters is that w transits from lower level curves to higher level curves without

passing near o. The following proposition characterizes the set of discontinuities of D(λ, ·).
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Proposition 4.2. Let ∆ξ and D(λ, ·) : X → X be defined as before. The set Cξ = {ρ ∈
∂∆ξ : D(λ, ·) is continuous at ρ} has zero measure.

Proof of Proposition 4.2. Let ρ = (x1, · · · , xN) ∈ Cξ. Since ρ ∈ ∂∆ξ then there exists a

configuration (Ai,Bi) such that ρ ∈ ∆(Ai,Bi) and a sequence of populations ρn ̸∈ ∆(Ai,Bi),

n ≥ 0, such that ρn → ρ. Note that it is also possible that ρ ̸∈ ∆(Ai,Bi) and ρn ∈ ∆(Ai,Bi),

but this case is analogous.

By continuity we have that D(λ, ρn) → D(λ, ρ). Since ρ ∈ ∆(Ai,Bi) we know that

x′
i = oi and since ρn = (x1

n, · · · , xN
n) ̸∈ ∆(Ai,Bi) we also know that xi

n′ = xi
n. Then

xi
n − oi → 0 when ρn → ρ and so xi = oi. Then Cξ ⊂ ∪Ni=1{ρ ∈ X : xi = oi}.

Since {ρ ∈ X : xi = oi} is a proper subspace of X when Ai ̸= ∅, then Cξ has zero

measure. The case Ai = ∅ has ∆(Ai,Bi) = ∅ and then ρ ̸∈ Cξ.

Then, in terms of measure, the set of continuous points of D(λ, ·) is basically

∪ξ(∆ξ)◦.

4.3 A brief literature review and expectations

Unfortunately, as pointed out by [10], there is a lack of well-developed theoretical

foundations when it comes to evolutionary algorithms analysis. On the other hand, a lot

of work has been done in Random Dynamical Systems. We now want to discuss what

kind of results exist and what are the main barriers to apply them to the Differential

Evolution algorithm.

It is easy to see that if f has a global minimum then V(φ(t, ω, ρ)) always converges

(not necessarily to the minimum) since πi(V(φ(t + 1, ω, ρ))) ≤ πi(V(φ(t, ω, ρ))) for all

t ≥ 0, ω ∈ Ω and ρ ∈ X. But since the system contains discontinuities it is not even

clear if the population itself will always converge to a fixed point. We also know, from

Theorem 2.2 that even when improvements happen they could be arbitrarily bad.

On the other hand, our experimental results show that exponential convergence

(at least for functions like the sphere function) seems to be the rule. The most studied

Random Dynamical System are the linear cocycles, the definition follows.

Definition 4.3 (Linear cocycle). Let Θ = (Ω,F ,P, (θt)t∈T) be a metric dynamical system

with time T = Z, (Rd,B(Rd)) be the usual Rd with the Borel σ-algebra and A : Ω→ GL(d)

be a measurable function with values on the linear group GL(d) of d×d invertible matrices
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with real coefficients. A linear cocycle is a random dynamical system over Θ given by

φ : Z× Ω× Rd → Rd (4.12)

(t, ω, x) 7→ At(ω)x (4.13)

where At(ω) = A(θt−1(ω)) ◦ A(θt−2(ω)) ◦ · · · ◦ A(ω).

There are many theorems concerning about the quantities

γ+(ω) = lim
t

1

t
log ||At(ω)|| and γ−(ω) = lim

t

1

t
log ||At(ω)−1||−1, (4.14)

called Lyapunov exponents (see [17] for some examples). The function γ+(ω) counts how

much the cocycle can stretch a vector from Rd (since that is the definition of the induced

norm) while the function γ−(ω) counts how much the cocycle can shrink a vector from Rd.

Some results, like the Oseledets theorem (also in [17]), in fact, calculate those quantities.

The Differential Evolution is not a linear cocycle, but it is piecewise linear. A

similar result would give information about the convergence rate of the algorithm, at

least for the sphere function.

Another property, that is commonly employed in the study of non-linear Random

Dynamical Systems, is Lipschitz continuity (see [5] for an example). When φ(t, ω, ·) =

ϕθtω◦· · ·◦ϕθ0ω we say that the Random Dynamical System is an Iterated Random Function

and if all ϕ are Lipschitz we say that the System is Lipschitz. Taking ϕθtω = D(λt, ·) where

ω = (λk)k∈N we can see the Differential Evolution as an Iterated Random Function, but

not a Lipschitz one.

Although it is not Lipschitz, one may assume, for instance, that ||D(λ, ρ)− ρ∗|| ≤
||ρ − ρ∗|| where ρ∗ = (x∗, · · · , x∗), i.e., that the population isn’t always getting further

away from the optimum. That is the case for well behaved functions near the optimum,

take f : Rn → R with such that f ′′ exists and is positive definite, for example.

Other feature that needs careful examination is the set of fixed points, Theorem

2.1 shows that high values of F are strongly related to the amount of fixed points. Zaharie

([18]) shows that low values of F are related to premature convergence. Is there a value

of F for which the set of fixed points has zero measure at least for radial functions? Our

experimental results stand in favor of the existence of such value, but our attempts to

prove it have failed.

The main difficulty posed by the Differential Evolution is the elitist selection,

that imposes natural discontinuity. Some works ([3] and [4]) remove the elitist selection

changing it for a smoother function. They try to approximate the Differential Evolution

algorithm with a continuous time model and study the properties of that model. Then,

using tools like Lyapunov’s second method, they were able to establish analogies with the

gradient descending method and to study the behavior of their model near the optimum.
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As [10] says, most theoretical approaches to the Differential Evolution only try to

study a simpler model of the algorithm or only look at one operation, not capturing the

interactions caused by multiple iterations.

As we show, behind its simplicity and elegance, the Differential Evolution has an

intrinsically complex behavior, with fixed points, discontinuities and low quality enhance-

ments. An ideal tool to study the algorithm needs to be able to counterbalance those

characteristics with the linearity over iterations.
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Chapter 5

Conclusion

Our two goals with this work were to better understand the dynamics of the Differ-

ential Evolution and to develop a method for helping the choose of algorithm parameters.

Theorems 2.1 and 2.2 strike both problems.

By setting the objective function as f(x) = ||x||2 and computing the probability

of enhancement after a full iteration we were able to improve Zaharie’s work [18] with

further understanding of the parameters F and Cr. We show that when the dimension

n of the search space increases and the parameters are kept fixed the probability that

an enhancement occurs goes exponentially to zero. That computation was also useful for

measuring the set of fixed points.

We also developed a heuristics to choose the parameter Cr when F is given. Our

experimental results showed the efficacy of our heuristics. The well behaved and calculated

probabilities for f(x) = ||x||2 led to investigation of separable and non-separable functions,

producing a new Differential Evolution variant based on coordinate transformations to

deal with functions with elongated geometry. Together with Zaharie’s results, we can

propose the following method to choose parameters: (a) If the function one is trying to

optimize has an elongated geometry choose the variation with change of coordinates; (b)

Take N according with the available computational power; (c) Then, let F > Fcrit to

avoid premature convergence, where

Fcrit =

√
1

N
− Cr

2N
<

√
1

N
, (5.1)

but take care because high values of F are related with fixed points. Experimental results

from the literature [15] recommend F ∈
[
1
2
, 1
]
; (d) Finally, let Cr = C∗

r .

At the end, without the assumption that f(x) = ||x||2, we also presented results

about the dynamical structure of the algorithm, viewing it as a Random Dynamical Sys-

tem. This may represent a meaningful contribution to the comprehension of the problem

itself.
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Appendix A

This appendix presents some definitions and results about Markov chains used in

the previous chapters. For further reference see [8] and [14].

Definition A.1. Let (Ω,G,P) be a probability space, (E,F) be a measurable space and T

a set. If Xt : Ω → E is a random variable for every t ∈ T , then the family (X t)t∈T is a

stochastic process with time T . If T = N the process has discrete time. The set E is the

state space and if T = N the sequence X0(ω), X1(ω), · · · is a sample sequence for every

fixed ω ∈ Ω.

Definition A.2. A discrete time Markov chain is a stochastic process (X t)t∈T such that

P(X t ∈ A|X t1 , · · · , X tk) = P(X t ∈ A|X tk) a.e. (A.1)

for every A ∈ F , k ∈ N and 0 < t1 < · · · < tk < t. If

P(X t+s ∈ A|X t) = P(Xs ∈ A|X0) a.e. (A.2)

for every t, s ∈ T , then the Markov chain is also homogeneous.

If (X t)t∈N is a discrete homogeneous Markov chain then we can understand it by

looking at its kernel.

Definition A.3. The kernel of a discrete homogeneous Markov chain (X t)t∈N is a function

K : E ×F → [0, 1] such that

1. K(ρ,A) = P(X1 ∈ A|X0 = ρ) for every ρ ∈ E,A ∈ F ;

2. K(ρ, ·) : F → [0, 1] is a measure on (E,F) for every fixed ρ ∈ E;

3. and K(·, A) : E → [0, 1] is measurable for every fixed A ∈ F .

We also define the t-th iteration of K by

K(t)(ρ,A) =

K(ρ,A), if t = 1∫
E
K(t−1)(y, A)K(ρ, dy), if t > 1

(A.3)

for every t ≥ 1.
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Then, if X0 has a law p(·) we have

P(X t ∈ A) =

p(A), if t = 0∫
E
K(t)(y, A)p(dy), if t ≥ 1

(A.4)

for every t ∈ N.
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Appendix B

Here we state Zaharie’s theorem again and transcript her demonstration.

Theorem ([18]). Let ρ = (x1, · · · , xN) be a scalar population, U = (u1, · · · , uN) the result

of the mutation step and O = (o1, · · · , oN) the result of the crossover step between ρ and

U , then

E(Var(U)) =

(
2F 2 +

N − 1

N

)
Var(ρ) (B.1)

and

E(Var(O)) =

(
1 + 2CrF

2 − 2Cr

N
+

C2
r

N

)
Var(ρ). (B.2)

Proof. Since

E(Var(U)) = E

(
1

N

N∑
i=1

(xi1 + F (xi2 − xi3))
2

)
− E

( 1

N

N∑
i=1

(xi1 + F (xi2 − xi3))

)2


(B.3)

we can calculate Var(U) by calculating the two terms above as following:

E

(
1

N

N∑
i=1

(xi1 + F (xi2 − xi3))
2

)
= E

(
1

N

N∑
i=1

(x2
i1

+ 2Fxi1(xi2 − xi3) + F 2(xi2 − xi3)
2)

)
(B.4)

= E
(
x2
i1

)
+ 2FE(xi1(xi2 − xi3)) + F 2E

(
(xi2 − xi3)

2
)

(B.5)

Using that E(x2
ij

) = E(ρ2) for all j = 1, 2, 3 and that E(xi1xi2) = E(xi2xi3) =

E(xi1xi3) we write:

E

(
1

N

N∑
i=1

(xi1 + F (xi2 − xi3))
2

)
= (1 + 2F 2)E(ρ2)− 2F 2E(xi2xi3) (B.6)

Now, for the second term we compute:

E

( 1

N

N∑
i=1

(xi1 + F (xi2 − xi3))

)2
 = E

(
1

N2

N∑
i=1

(xi1 + F (xi2 − xi3))
2 (B.7)

+
1

N2

∑
i ̸=l

(xi1 + F (xi2 − xi3))(xl1 + F (xl2 − xl3))

)
(B.8)
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Since E(xi1 +F (xi2 −xi3)) is independent of i and when i ̸= l it holds that xij and

xlk are independent for every 1 ≤ j, k ≤ 3:

1

N2
E

(∑
i ̸=l

(xi1 + F (xi2 − xi3))(xl1 + F (xl2 − xl3))

)
=

N − 1

N
(E(xi1 + F (xi2 − xi3)))

2

(B.9)

=
N − 1

N
(E(ρ))2 (B.10)

Hence:

E (Var(U)) =

(
1− 1

N

)(
(1 + 2F 2)E(ρ2)− 2F 2E(xi2xi3)− (E(ρ))2

)
(B.11)

Now we need to evaluate E(xi1xi2), by definition:

E(xi1xi2) =
∑
j,k

xjxkP(i1 = j, i2 = k) (B.12)

=
1

N(N − 1)

∑
j ̸=k

xjxk (B.13)

=
1

N − 1

(∑
j

xj

(
1

N

∑
k ̸=j

xk

))
(B.14)

=
1

N − 1

(∑
j

xj

(
E(ρ)− xj

N

))
(B.15)

=
N(E(ρ))2 − E(ρ2)

N − 1
(B.16)

Therefore:

E (Var(U)) =

(
1− 1

N

)(
1 + 2F 2 N

N − 1

)(
E(ρ2)− (E(ρ))2

)
(B.17)

=

(
2F 2 +

N − 1

N

)
Var(ρ) (B.18)

To compute E(Var(O)) we start with

E (Var(O)) = E

(
1

N

N∑
i=1

o2i

)
− E

( 1

N

N∑
i=1

oi

)2
 (B.19)

and then evaluate each term. The first goes by the linearity of the expectation:

E

(
1

N

N∑
i=1

o2i

)
=

1

N

N∑
i=1

E(o2i ) (B.20)

=
1

N

N∑
i=1

CrE(u2
i ) + (1− Cr)E(x2

i ) (B.21)

= CrE

(
1

N

N∑
i=1

u2
i

)
+ (1− Cr)E

(
1

N

N∑
i=1

x2
i

)
(B.22)
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And on the second term we use the independence of oi and oj when i ̸= j:

E

( 1

N

N∑
i=1

oi

)2
 =

1

N2
E

((
N∑
i=1

o2i

)
+

(∑
i ̸=l

oiol

))
(B.23)

=
1

N
E

(
1

N

N∑
i=1

o2i

)
+

1

N2

∑
i ̸=l

E(oi)E(ol) (B.24)

Now we need to calculate
∑

i ̸=l E(oi)E(ol), since E(ui) = E(ρ) we write:∑
i ̸=l

E(oi)E(ol) =
∑
i ̸=l

(CrE(ui) + (1− Cr)xi)(CrE(ul) + (1− Cr)xl) (B.25)

=
∑
i ̸=l

(CrE(ρ) + (1− Cr)xi)(CrE(ρ) + (1− Cr)xl) (B.26)

=

(
N∑
i=1

(CrE(ρ) + (1− Cr)xi)

)2

−
N∑
i=1

(CrE(ρ) + (1− Cr)xi)
2 (B.27)

= (N2 − 2NCr + NC2
r )(E(ρ))2 −N(1− Cr)

2E(ρ2) (B.28)

Replacing B.28 on B.24 and then B.24 and B.22 on B.19 one obtains B.2, com-

pleting the proof.
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