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Giovanna Ávila Riqueti

SAXJS: SAX BASED ONLINE CHANGE POINT DETECTION

Belo Horizonte
2024
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Resumo

Séries temporais são representações organizadas cronologicamente ao longo do tempo,

usadas para descrever a dinâmica de um determinado sistema. O comportamento deste

sistema pode apresentar variações ao longo do tempo, e os pontos no tempo onde essas

variações ocorrem são chamados de pontos de mudança. Detectar esses pontos de mudança

é uma tarefa importante com diversas aplicações relevantes para o mundo atual, como no

monitoramento de mudanças climáticas, investigação de problemas médicos, compreensão

de ondas cerebrais, padrões de sono e aprimoramento da classificação de imagens como

uma etapa de pré-processamento.

Apesar da detecção de ponto de mudança ser uma área explorada na literatura por

décadas, ainda existem alguns desafios. Notavelmente, existe a demanda por algoritmos que

operem de forma online sem que seja preciso a informação da série temporal por completo,

e por algoritmos que demonstrem adaptabilidade a diversos sistemas. Neste trabalho,

nós propomos um novo método capaz de resolver esses desafios. Nossa abordagem é

baseada em transformações de séries temporais do tipo Symbolic Aggregate ApproXimation

(SAX), simbologia de Bag-of-Patterns (BOP), probabilidade de transição entre śımbolos e

distância Jensen-Shannon. Avaliamos nosso algoritmo proposto utilizando casos sintéticos

e dados do mundo real, comparando-o com métodos de detecção de pontos de mudança

do estado da arte e obtivemos os melhores resultados em aproximadamente 71% dos

experimentos.

Palavras-chave: detecção de ponto de mudança; representação de séries temporais;

Symbolic Aggregate Approximation (SAX).



Abstract

Time series are chronologically organized representations over time used to describe the

dynamics of a given system. The behavior of this system can manifest variations over time,

and the points in time where these variations occur are called change points. Detecting

these change points is an important task with several relevant applications for the current

world, such as monitoring climate change, investigating medical issues, understanding

brainwaves, sleep patterns, and enhancing image classification as a pre-processing step.

Despite being an area explored in the literature for decades, the change point

detection field still has some challenges. Notably, there are demands for online algorithms

capable of operating without the entirety of time series information, and algorithms

that demonstrate adaptability across diverse systems. In this work, we propose a novel

framework to solve these challenges. This framework is based on Symbolic Aggregate Ap-

proXimation (SAX) transformation, Bag-of-Patterns (BOP) symbology, the probability of

transition between symbols, and the Jensen-Shannon distance. We evaluate our framework

with synthetic data and real-world cases in comparison to state-of-the-art change point

detection algorithms and we have the best values in approximately 71% of the experiments.

Keywords: change point detection; time series representation; Symbolic Aggregate

Approximation (SAX).
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Chapter 1

Introduction

The current chapter introduces this dissertation work entitled “SAXJS: SAX Based Online

Change Point Detection”. We discuss this work’s initial considerations and motivation

in Section 1.1. After, in Section 1.2, we show the goals we intend to achieve. Section 1.3

highlights the contributions made. Finally, Section 1.4 describes the organization we

followed in this work.

1.1 Motivation

Time series are an ordered sequence of data evenly spaced over time used to describe

the behavior of a given system. This system’s behavior may exhibit changes, such as the

rise in temperature captured by a sensor near a fire. These changes can have external

causes, like a fire outbreak, or internal causes, such as a sensor malfunction.

Detecting these change points (CPs) is an important task with several relevant

applications for the current world, such as detecting climate change to monitor the effects

of global warming [62], investigating some medical problems, as well as understanding

brainwaves [23] and sleep monitoring [6], for example. It also can be applied to improve

image segmentation and, consequently, image classification [75].

Another application is detecting a point in the field of human activity using wearable

sensors. The detection of change points is helpful in this application to segment activities,

minimize interruptions while interacting with humans, provide activity-aware services, and

help monitor health status [2].

The algorithms to detect these changes can be divided into two main fields: offline

and online. The offline techniques are only applicable with the entire time series information

[67]. The online, otherwise, can be real-time or ε-real-time, where the ε is the number of

points necessary to look ahead [2]. The need for more online algorithms is one of the most

crucial challenges in the study area of change point detection.

Despite being an area explored in the literature for decades [5], it still has challenges
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other than the need for online algorithms. For instance, there is a necessity for algorithms

that can be adaptable in different systems. In addition, in many real-world problems, the

amount of change is more interesting than the change itself. Another example, climate

researchers can be interested in knowing how much the temperature changes instead of

just detecting the change [2].

In order to solve these challenges, our work proposes a new online framework for

detecting change points, called SAXJS, based on comparing the probability distribution of

time series symbolic representation. The time series symbolic representation chosen was

the Symbolic Aggregate ApproXimation (SAX) [42] transformation, and the distance to

measure probability distributions was the Jensen-Shannon distance [44]. Our algorithm has

four different versions, which are SAXJS-Symbols (SAXJS-S), SAXJS-Transitional (SAXJS-

T), SAXJS-τ and SAXJS-BOP. In all versions, we transform the data of two adjacent

sliding windows into an SAX representation and calculate a probability distribution.

This probability distribution is computed considering the probability of a symbol or the

probability of symbols’ transition depending on the version approach.

In both the SAXJS-S and SAXJS-BOP versions, we consider symbols’s probability

distribution. However, in SAXJS-S we consider the SAX representation as the symbols, and

in the SAXJS-BOP we use the Bag-of-Patterns (BOP) [43] symbology with a user-defined

number of neighbors. In SAXJS-T and SAXJS-τ , we create a SAX symbols’ transition

graph and consider each edge probability. The difference between SAXJS-T and SAXJS-τ

is that SAXJS-τ adds a τ hyperparameter. Unlike SAXJS-T, where the symbol connects

to its next neighbor in time t, in SAXJS-τ , it connects to its neighbor in time t+ τ .

In all versions, the windows’ probability distribution is compared by calculating

the Jensen-Shannon distance between them. For each Jensen-Shannon value, we applied

the Savitzky–Golay filter [52], which fits a low-degree polynomial based on its adjacent

data to smooth the data. As the Jensen-Shannon value is smoothed we also apply a

maximum value detection algorithm that analyzes a user-determined number of neighbors.

The maximum value must be greater than a defined threshold value to be considered as a

possible change point.

1.2 Objectives

The main objective of this dissertation is to answer the following question:

Research problem: Is it possible to detect change points in an online and

adaptable to different systems manner using time series symbolic transformation
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probability distribution?

To that end, a fundamental step is to understand how a time series can be trans-

formed into a symbolic representation and how this symbolic representation can improve

our goal of detecting a change point. Thus, we tackle the main objectives of this dissertation

by answering the following questions:

• How can we extract change point information from a time series? Our goal

here is to use the time series symbolic transformation in the design of a framework

to identify the breakpoints in a time series in which the behavior is changed. Our

method must extract time series features that, efficiently and effectively, help to

identify the change points.

• Is SAX symbols’ distribution capable of providing good change point de-

tection? In the design of our framework, one of our hypotheses is that transforming

the time series into a SAX symbols distribution based on the characteristics of this

method (such as computationally inexpensive and robustness to outliers) can create

a satisfactory online change point detection. Positively contributing to this field.

• Is SAX symbols’ transition distribution capable of providing good change

point detection? In the design of our framework, another hypothesis is that

transforming the time series into a transition distribution of SAX symbols can

provide a more robust online change point detection as the transition information

can be of great value to detect frequency changes.

• Is Bag-of-Patterns (BOP) based distribution capable of providing good

change point detection? Another hypothesis is that establishing a symbology by

integrating the concept of Bag-of-Patterns (BOP) into SAX symbols could enhance

robust online change point detection. This enhancement stems from the superior

capability of Bag-of-Patterns (BOP) effectively representing the connections between

neighborhoods compared to isolated SAX symbols, which can lead to better frequency

changes detection.

1.3 Contributions

Our main contributions can be summarized as follows.
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• Transition graph with SAX symbols: We propose a novel time series represen-

tation based on the transitional graph of Symbolic Aggregate Approximation (SAX)

symbols, providing better change point results.

• Bag-of-Patterns (BOP) with sliding window division at the beginning

of the process: We proposed a novel time series representation based on sliding

windows at the beginning of Bag-of-Patterns(BOP), providing better change point

results.

• Definition, modeling, and application of Online change point Detection

Framework: We proposed a novel online change point detection framework with four

variations, using SAX transformation, transitional graph, and BOP transformation.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 provides a

literature overview about time series symbolical representation and change point detection

algorithms. Chapter 3 presents our proposal of a novel change point detection called

SAXJS and highlights its advantages and disadvantages. Chapter 4 describes the parameter

configurations, the data sets, and the metrics used to evaluate our framework. Chapter 5

compares our framework proposal with other state-of-art change point algorithms and

evaluate our method in change point free environment. Chapter 6 summarizes the

contributions of this dissertation and presents some research directions for our future

works.
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Chapter 2

Literature Review

This work presents a novel online change point detection framework that compares a time

series symbolic representation probability distribution called SAX. As this work involves

time series symbolic representations and change-point detection, in this chapter, we discuss

different time series symbolic representations and highlight the advantages of SAX for

our proposal of constructing an online change-point detection method in Section 2.1.

Section 2.2 discusses distinct approaches to detect change points. Section 2.3 presents our

final remarks, finalizing the chapter.

2.1 Time Series symbolical representations

A time series is a collection of chronological observations of one or many dimensions.

One of its most distinct characteristics is its high dimensionality. Although analyzing

the whole series can be important for its statistics, it is not required for many data

mining algorithms, as their goal is more centered on knowledge discovery. Therefore, it is

necessary to find a time series representation that can reduce the time series dimensionality

while preserving its essential characteristic to the analyses. Reducing the time series

dimensionality is also important to lower execution time [17] and reducing storage space

since fewer bits are required for each value [41]. Although there are many time series

representations, we focus on symbolic transformation to create a probability distribution

of symbols to measure the similarity between distributions and identify change points.

The symbolic transformation consists of discretizing a time series numerical value

into symbols [16]. This approach opens the possibility of using algorithms and data

structures associated with symbolical representation, for example, hashing, Markov models,

suffix trees, decision trees, and the Jaccard coefficient. Utilizing a symbolic data structure

can aid in constructing a probability distribution, as it reduces dimensionality, it allows

for a controlled number of symbols in a time series, and enhancing robustness to noise by

representing noisy data with symbols. Moreover, the chosen methodology for transforming
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time series values into symbols can accentuate crucial features for change point detection,

enhancing the sensitivity of symbol distribution to factors such as changes in amplitude.

We found in the literature two two approaches for symbolic transformation of time

series: one based on discretizing raw time series and the other based on discretizing Fourier

coefficients [19] as shown in Figure 2.1. We present these two approaches in Sections 2.1.1

and 2.1.2, respectively, and discuss the advantages and disadvantages of each symbolic

representation. In Section 2.1.3, we discuss which transformation method is more effective

in achieving our goal of extracting useful information to detect change points.

Figure 2.1: Diagram of symbolic transformation.

Source: Created by the author.

2.1.1 Approaches based on discretizing raw time series

The most commonly used transformation to discretize raw time series is the Symbolic

Aggregate Approximation (SAX). The SAX technique [41] involves normalizing the time

series data to achieve a mean (µ) of zero and unitary variance, empirically ensuring an

equiprobable distribution of symbols [54]. Having an equiprobable distribution, SAX

constructs a Gaussian curve and determines the breakpoints that divide the time series

into b equal-sized areas under a Gaussian distribution curve. Each area under the Gaussian

curve corresponds to a symbol. SAX has a low computation cost of O(n), and symbols

occupy less space than numbers. The SAX is commonly used with Piecewise Aggregate

Approximation (PAA) [32]; first, the time series is reduced to PAA representation, and

then the SAX is used. PAA is a dimensionality reduction method representing each

fixed-length segment as its mean value.

Besides its low computational cost and better space occupation, the SAX trans-

formation also allows distance measures to be defined under symbolic space as it lower

bounds the true distance between the original time series. This lower bound property

also ensures that the algorithm’s assertiveness remains unaffected, even in cases where

the time series deviates from a Gaussian distribution [41]. Additionally, it also enhances
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robustness against noise by converting noisy data into standardized symbols according to

their distribution within the Gaussian curve.This characteristic is important to provide

satisfactory results to data mining analysis, such as clustering, classification, and anomaly

detection [41]. Nevertheless, SAX has the disadvantage of not capturing certain features or

behaviors of the time series, such as trends, the amplitude distance between SAX symbols,

and the frequency of SAX sequences and sets of symbols.

There are several SAX variants proposed in the literature, and part of them works

to add information to the SAX symbols in the sequence, capturing these distinct features

or behaviors that SAX does not initially capture. This type of variation is discussed in

Section 2.1.1.1. The other part of algorithms based on SAX uses SAX sequence structures

to create a new representation. This other strategy is mentioned in Section 2.1.1.2.

2.1.1.1 Strategy based on adding information to SAX symbols

One of the first SAX variants [46] consists of adding trend information by calculating

the minimum and maximum of each segmentation. However, this approach triples the

SAX transformation dimension. The TD-SAX [64] and SAX-BD [25] also try adding trend

information to SAX symbols differently. TD-SAX [64] calculates the distance between

the endpoints of the segments and doubles the SAX symbol’s dimension. SAX-BD [25]

also doubles the SAX symbol’s dimension by adding the boundary distance, which is the

distance from the minimum and maximum value to the average value.

To study the spread of the values within a segment and improve the similarity

measure calculation, the SAX-SD [78] adds the standard deviation information. EN-

SAX [79] tries to solve a different problem than its ancestors. Its goal is to overcome the

SAX drawback of two-time series with different shapes that may be mapped to the same

SAX representation. To solve this problem, EN-SAX adds the entropy information of

the series, which can measure the degree of disorder in the series. SAX-VFD [76] also

uses entropy; however, it uses entropy in a vector with various other information such as

statistical measures of mean, standard deviation, kurtosis, and skewness. It also includes

fluctuation features such as slope, absolute energy, and sum over first-order differencing.

Each feature is represented as an SAX segmentation.

Multivariate Symbolic Aggregate Approximation (MSAX) [49] is a SAX variant to

represent multivariate time series. First, MSAX checks if the variables are independent

of each other. If they are, the data are normalized. If they are dependent, a linear

transformation is applied. Then, the PAA and SAX transformations are applied, and the

matrix is transformed into a sequence of symbols.
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All of the SAX variants discussed in this section, with MSAX as an exception,

increase the dimensionality of the symbolical representation. Increasing the dimensionality

escalates memory consumption and increases the necessity for a larger time series to ensure

a reasonable sample size for all symbols. Therefore, using these types of SAX variants is

not an advantage to our algorithm’s focus on probability distribution unless it adds an

essential feature to detect change points. EN-SAX introduces a compelling feature for

change point detection, enabling the identification of time series patterns, which can be

valuable for detecting shifts in frequency. Nonetheless, it adds a real value to the symbolic

representation, making the probability calculation complex.

2.1.1.2 Strategy based on using SAX sequence structure to create a new

representation

Instead of adding information to the SAX representation, other algorithms use

the SAX sequence structure to create a new representation. One of the first methods

that use this approach is the Bag-of-patterns [43]. The Bag-of-patterns (BOP) involves

concatenating the SAX symbols with their neighboring symbols using sliding windows. For

instance, consider a time series sequence denoted as Ĉ = ĉ1, · · · , ĉN with size N , consisting

of b symbols options, with a chosen value of d = 3 to represent the number of neighbors to

be concatenated. For example, having a symbol ct in timestamp t will be concatenated

with ct+1 and ct+2 becoming one single symbol. In creating these subsequences, in some

cases, we might see that multiple consecutive subsequences are mapped to the exact string.

Therefore, to avoid over-counting these sequences, there is an option to apply numerosity

reduction, which consists of recording only the first sequence associated with its first

appearance and ignoring the rest until we find another sequence. As an example, suppose

we obtain the following sequence of SAX strings:

X̂ ≡ aba aba aac aac aac cab cab

With the numerous reductions, we would record the following sequence instead:

X̂1 ≡ aba1aac2cab5

Having this sequence of symbols for the entire time series, we divide this sequence

into sliding windows to create the Mij matrix, where i is the number of symbols and j is

the first timestamp of each sliding window. Each M(i, j) value is the frequency of the ith

subsequence occurrence in the jth sliding window.
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The BOP method encounters a memory occupancy challenge as the matrix size

grows exponentially with the combination of symbol variations (b) and the number of

neighboring symbols to concatenate (d). For example, when b = 4, you have four SAX

symbol options (a, b, c, d), and with d = 5, you generate 45 = 1025 rows in the matrix.

Despite its apparent size, the matrix is likely to be sparse, as is the case with text data. In

experiments, they find that only about 10% of all strings have some subsequence assigned

to them. One way to overcome this problem is to eliminate words that never occur in the

data or to set a maximum row threshold size.

The BOP strategy of grouping sequences of SAX symbols can be interesting for

the problem of detecting change points since using the sequence as a symbol it would be

possible to capture the oscillations of the data, thus capturing changes in variance and

frequency. To capture variance and frequency changes, in this work, we will use the BOP

to create a new symbology whose probability assignment will be used to identify change

points.

Based on BOP, another algorithm called Symbolic Aggregation approXimation in

Vector Space Model (SAX-VSM) [61]. The SAX-VSM has two significant differences from

BOP. The first difference is that the time series is separated into sliding windows at the

beginning of the process instead of at the end. The other difference is that SAX-VSM

applies TF-IDF, a technique to evaluate the importance of a word in a document, using

each sliding window as a document to create a frequency matrix. Using the TF-IDF

method, the number of rows becomes the only subsequence that appears in a time series.

Therefore, the matrix size does not grow exponentially. Nevertheless, employing TF-IDF

is not a suitable approach for our proposal. This is because, to construct a probability

distribution from the symbols in two consecutive windows, we must ensure that the symbols

are consistent between both windows. This requirement is not met when only the occurring

symbols are considered, as a symbol may be present in one window but absent in another.

One of the most recent methods that use SAX sequence structure to create a new

representation is the Pattern-Based Embedding for Time Series Classification (PETSC) [20].

First, PETSC transforms a time series into SAX transformations using sliding windows.

Then, to discover sequential patterns, they extend techniques from frequent discriminative

and top k pattern mining to reduce the number of candidate sequences [18, 22]. The best

candidate sequences vary in length, duration, and resolution. These sequences are then

used to train a linear model. PETSC has the advantage of having low computational costs

and supports real-time applications. PETSC also does not require stringent assumptions

about the time series format, making it more adaptable to data from different contexts.

However, varying the sequence in length and duration can make its sequence repetition

harder to reproduce a probability distribution.
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2.1.2 Methods based on discretizing Fourier coefficients

Instead of discretizing raw time series, these methods apply Fourier coefficient-based

transformations and then discretize to obtain symbolic information. The most commonly

used method in this field is the Symbolic Fourier Approximation (SFA) [58]. The SFA

algorithm consists of two steps. Discrete Fourier Transformation (DFT) [71] is applied in

the first step. The idea of DFT is to decompose a time series using sinusoidal waves as

basic functions. Each wave is represented by a complex number Xf identified as the Fourier

coefficient, where the magnitude represents the amplitude and the phase is the initial phase

of the angle. The Fourier coefficients are transformed into symbols in the second step using

the Multiple Coefficient Binning (MCB) transformation. MCB transformation divides the

coefficients into w groups. Then, it applies an equi-depth or equi-width binning to each

histogram to define the c numbers of breakpoints, defining the intervals corresponding to

an alphabetic symbol.

Based on the SFA transformation, the Bag-of-SFA symbols (BOSS) [57] algorithm

divides a time series into sliding windows in each applied SFA transformation. All

SFA symbols in all sliding windows are counted to construct a frequency vector. The

numerosity reduction is often used to avoid outweighing subsequences. BOSS reduces

the SFA complexity from O(W log W ) to O(1), where W is the window size, and is more

invariant to noise. There are multiple versions of BOSS; one example is the Randomized

BOSS (RBOSS) [47]. RBOSS introduces a random factor in the choice of the sliding

window lengths, which makes it easier for the classifier to build and save memory space.

Another example is the SP-BOSS [37], which combines temporal and phase-independent

features and uses Spatial Pyramids and other computer vision strategies.

Similarly to BOSS, word extraction for time series classification (WEASEL) [59]

also uses sliding windows and SFA transformation in each window. The distinction lies

in WEASEL’s utilization of multiple window sizes and the ANOVA test to pinpoint

optimal breakpoints for binning Fourier Coefficients, enhancing its efficacy in tackling

classification problems. Consequently, WEASEL relies on a supervised step for this purpose.

Furthermore, WEASEL incorporates a feature selection process that uses the Chi-square

test to reduce the size of the feature vector while retaining critical information essential

for classification. WEASEL plus Multivariate Unsupervised Symbols and Derivates

(MUSE) [60] is its multivariate version.

The Temporal Dictionary Ensemble (TDE) [37] combines the Spacial Pyramids

Algorithm (BOSS-SP) and the original BOSS to create a symbology. This method has

the same problem as BOSS-SP, which is the high memory cost of Spatial Pyramids. As

the Fourier Coefficient transforms the series into the frequency domain, the symbolical

transformation only captures the frequency aspect of the change. Therefore, using a
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discretization applied to the Fourier coefficient is not an interesting idea for our project,

and we chose to try different strategies to capture frequency changes.

2.1.3 Discussion

As shown in this section, many options exist for symbolic discretization of time

series in the literature. However, few meet the objective of our work, which is to build

a change point algorithm based on distribution probability. Constructing a probability

distribution necessitates a limited set of symbols, as an excess of symbols may lead to

some not appearing within a segment of the time series, demanding an extensive time

series length. The incorporation of real numbers to the SAX symbolization in most cases

amplifies the number of potential symbols significantly, making these symbolizations

impractical.

Furthermore, many symbolic representations transform time series into Fourier

coefficients and then apply the symbolic transformation. This process highlights changes in

the frequency range to the detriment of identifying changes in amplitude and variance. This

more restricted approach would not help our algorithm, whose main characteristic is that

it is adaptable to different systems. Another issue contributing to some representations,

such as PETSC, that our algorithm cannot use is that they have a variable symbol size.

When there are several symbol possibilities, it becomes more difficult to calculate the

probability of each symbol, as we do not know which one symbol will appear for a given

time series.

Therefore, we decided to adapt SAX and BOP to achieve our goals and create a

change point to capture different changes. The advantages of SAX are its low computational

cost, its lower bound, its robustness to noise and the capture of amplitude shift in time

series [41]. This possibility of capturing amplitude shift is a standout compared to other

discretization methods based on equi-width and equi-depth. Despite these advantages,

SAX symbolization has disadvantages, as its symbolic representation does not capture

the variance and frequency shifts. To fix it, we propose two versions of our framework

(SAXJS-T and SAXJS-τ) to use SAX with graphs, as it is possible to see the shifts in

connection patterns instead of symbols. By identifying patterns of connections between

symbols, it is easier to identify data oscillations and, consequently, changes in frequency

and variance.

In another version of our framework called SAXJS-BOP, we use a BOP variation to

capture the connection of symbols as it makes a new representation by concatenating SAX

symbols in a sequence. The drawback of SAX-BOP is its exponential growth of symbols,
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which leads to the necessity of time series with more length to turn its frequency matrix

less sparse [43]. We detailed our framework and how we adapted SAX and BOP to solve

the change point problem in Chapter 3.

2.2 Change point detection

Change point detection (CPD) is the problem of detecting abrupt and smooth

changes in a time series. Still, differently from anomaly detection, the underlying dynamics

of the time series changes [2]. Through the last decade, many algorithms have been designed

and adapted to solve the CPD problem. In Section 2.2.1, we review the techniques used in

the algorithms to detect change points. Section 2.2.2 defines the criterion used to compare

CPD algorithms based on its characteristics.

2.2.1 Algorithms techniques

Figure 2.2 presents a taxonomy of the techniques used for change point detection.

The first division in the taxonomy is the Supervised, Unsupervised, or Semi-Supervised

methods.

2.2.1.1 Supervised methods

The Supervised methods need manual labeling change point examples to train the

model to predict the correct output for new input time series data. The multi-class

classifiers are used when the number of possible process states is specified, and the change

point algorithm is trained to find each state boundary. This approach uses a sliding

window through the data, analyzing if each point is a change point and needs a diverse

and sufficient amount of training data to learn each space’s underlying characteristics and

differentiate them. A variety of machine learning classifiers can be used in Multi-Class

strategies such as the Gaussian mixture model (GMM) [12], Support Vector Machine [53]

and Hidden Markov model [24].
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Figure 2.2: Diagram of change point detection methods.

Source: Strongly based on [3].

The Binary class problems only recognize two states: if the point is a change point

or not, which can lead to a class imbalance problem. Some machine learning classifiers

such as Support Vector Machine, Naive Bayes, and logistic regression [21] were tested

using this strategy. The Pyramid Recurrent Neural Networks for Multi-Scale Change

point Detection (PRNN) [15] is also a supervised learning method that is designed to be

scale-invariant by incorporating wavelets and pyramid analysis on Neural Network.

The third Supervised methods approach is the Virtual Classifier [26], which

can also be used to interpret the change between two consecutive windows. For each

consecutive window, the first window is attached with the hypothetical label (+1) and the

second with (-1). Then, The algorithm is trained with any human-interpretable machine

learning method such as Association Rules and Decision Tree. Next, the algorithm changes

the label of the ones classified as change points, increasing its accuracy.
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2.2.1.2 Unsupervised methods

Conversely, unsupervised learning (UL) strives to find patterns or relationships in

a data set without being given any labeled examples. UL segments the data in a change

point detection scenario and analyzes its statistical structure [3]. Subspace Model is a

UL paradigm where states represent the time series, and to detect change points, these

approaches estimate the distance between these state spaces. For example, the Subspace

Identification (SI) algorithm [31] builds an observation matrix based on the state space

model generated through a sliding window. Based on this matrix, the authors calculate

the distances between the subspaces to detect change points. The Singular Spectrum

Transformation (SST) [48] is also a Subspace Model algorithm. The major difference

between SI and SST is SI considers a noise factor, and SST does not consider the noise

system.

Besides Singular Value Decomposition (SVD) used in SI and SST, it is also possible

to use an autoencoder to create this subspace, as done in Autoencoder-based Breakpoint.

Detection procedure (ABD) [39]. The Partially time-invariant representation (TIRE) [14]

uses an autoencoder to estimate time-invariant features. But instead of only using the

time-invariant features, the authors use the Fourier transform to extract frequency domain

information and combine both (time and frequency). TIRE uses the Euclidean distance

between the sliding window to detect changes in the dynamics. Lastly, ADAptative

GAussian (ADAGA) [7] is also an example of the subspace approach to detect change

points. ADAGA infers a Gaussian Process model for a window and a subwindow and uses

a hypothesis test to evaluate if the subwindow data is from a different Gaussian process.

One of its main strengths is the adaptability of the subwindow and window sizes as they

increase until the change point, and then the window is spoiled.

Another UL paradigm utilizes Likelihood Ratio to analyze two consecutive

intervals of the same state based on their probability density or probability distribution

comparison. The first step of this approach is to calculate the probability density of the

intervals separately, and the second step is to compute the ratio between the probabilities.

The most known Likelihood Ratio algorithm for change point detection is the Cumulative

Sum (CUSUM) [51]. CUSUM accumulates the likelihood of deviations to a reference point,

and when its accumulated sum exceeds a threshold, the approach detects a change point.

Change Finder [74] is another commonly used method whose strategy consists of fitting

a time series onto an Auto Regression (AR) model to get its statistical behavior. The

difference of the AR model probability distributions of consecutive spaces is calculated.

The AR model is applied again to the result time series difference, and a score function is

calculated. CUSUM and Change Finder rely on pre-designed parametric models and are

less flexible in real-world scenarios.
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Unlike the predecessors that calculate both consecutive intervals probability densi-

ties, Kullback-Leibler (KL) importance estimation procedure (KLIEP) [63] focuses on the

direct ratio of probabilities. KLIEP estimates the direct ratio using KL divergence, which

is defined by the equation comparing probability p(x) and probability p′(x):

KL[p(x)||p′(x)] := −
∫

p′(x)log
p(x)

p′(x)
dx. (2.1)

The method Unconstrained Least-squares Importance Fitting (uLSIF) [27, 30] also

estimates the direct ratio, but using Pearson (PE) divergence defined by the equation:

PE[p(x)||p′(x)] := −
∫

p′(x)(
p(x)

p′(x)
− 1).2

KL and PE divergence can be unbounded depending on the condition of the second

interval probability p′(x). The Relative uLSIF (RuLSIF) [45] solves this problem by using

an σ-relative value between 0 < σ < 1 changing the PE equation as follows:

PEσ[p(x)||p′(x)] := PE(p(x)||σp(x) + (1− σ)p′(x)).

RuLSIF is bounded above 1
σ
, and it is proved that its convergence ratio is faster

than uLSIF [73]. If σ = 0, the density ratio is reduced to a plain and gets “smoother” as

σ gets bigger.

Kernel-based methods uses unsupervised kernel-based test statistics to check the

homogeneity of data in two windows. As one example of this strategy, KernelCPD [8, 4]

uses one of the three Kernels: linear, cosine, or Gaussian, and is complemented with

a Pruned Exact Linear Time (Pelt) [34]. Pelt detects change points by minimizing a

cost function over possible locations and the number of change points. To reduce the

computational cost, Pelt prunes the data set using the minimal distance between change

points (a.k.a. minsize), a cost function regularizer (i.e., a larger regularized value induces

the model to find more change points), and the grid of possible change points. More

recently, studies have tried a deep learning approach. The Kernel Learning Change Point

Detection (KL-CPD)[9] is a kernel learning framework that optimizes a lower bound of

test power using an auxiliary generative model.

Following the probabilistic methods, which tries to estimate the probability

based on previous probabilities, there is the Online Bayesian Network (OBN) [1]. OBN

model learns a probability distribution based on the last “run length”, the time since the

most recent change point. This gives rise to a recursive message passing between the joint

distribution of “run length” and observation data. OBN had some recent modifications

as the Bayesian On-line Change point Detection with Model Selection (BOCPDMS) [35],

which is proposed as a spacially structured Vector Autoregression (VARs) for modeling

the space between change points and deciding online the best models for representing the

data. The Robust BOCPDMS (RBOCPDMS) [36] adds the β-divergence to the General
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Bayesian Inference, which gives different weights to observation data and reduces the

influence of the outliers.

The change point problem can also be adapted to a Clustering problem by

comparing if a point t in time is in the different cluster as its next point t+ 1 and how far

these clusters are. The Sliding Window and bottom-up (SWAB) [33] uses a bottom-up

cluster strategy, and in every window, the leftmost cluster sequence is reported and

replaced in the next window. In contrast, the Shapelet-based [77] attempts to separate

the data by recursively clustering the time series based on its shape until no separation

is possible. The last change point technique is the Unsupervised field is Graph-based

methods. This technique is used in the work of Chen and Zang [10], in which the time

series points are represented as graph nodes, and a two-sample test is applied in this new

representation.

2.2.1.3 Semi-supervised methods

To solve the Supervised learning problem of having a sufficient amount of annotated

data, which may not always be available, and the UL problem of possibly making wrong

assumptions in the parametric approach, the Semi-supervised field appears as a new

possibility in the change point literature. The AL-CPD [13] implements this new approach

by using Active Learning, which queries a human annotator to find labels that efficiently

can better identify change points. First, the algorithm works unsupervised using TIRE

to find candidates’ change points. Then, a Random Forest Classifier is run as a form of

double validation for the candidates. The TIRE method was adapted to a semi-supervised

version to find new change points by changing the time-invariant loss closer to the change

points confirmed by the Random Forest.

2.2.2 Criterion to classify Change Point Detection algorithms

In this Section, we present the two principal criterion used to analyze CPD algo-

rithms according to its characteristics: whether the algorithm operates in an ’online’ or

’offline’ mode, and its adaptability to multiple systems. The offline techniques only apply

with the complete time series information [67]. The online, otherwise, can be real-time or

ε-real-time, where the ε is the number of points necessary to look ahead [2]. Offline and
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Online have different applicabilities. The first is more related to data segmentation, and

as it has the whole time series information, the number of False positives can decrease.

The online is great for monitoring systems, and it has the advantage of notifying the

change point close to its occurrence in time, thus enabling faster actions to be taken [40].

Online algorithms are one of the most crucial challenges in the study area of change point

detection.

The second criterion involves assessing the algorithm’s adaptability to various

systems. This adaptability is evaluated based on certain methodological characteristics.

Firstly, it is determined whether the method learns in a Supervised or Unsupervised

manner. As Supervised method depends on having a sufficient quality and quantity of

training data [2] it is not applicable to multiple real-world scenarios, presenting a drawback

to their adaptability across multiple systems.

The second characteristics is if the method is parametric or nonparametric. Para-

metric approaches specify a particular function form to be learned and try to estimate

its unknown parameters. In contrast, the nonparametric does not make any assumptions

about the properties of an underlying function [2]. As it makes fewer assumptions, the

nonparametric algorithms are more adaptable to different systems with different data sizes.

The nonparametric approach usually has better computational cost and scale compared to

parametric algorithms [10].

One example of parametric approach is the Online Bayesian Network (OBN), which

makes an assumption about the prior probability distribution. The newer versions of OBN,

including BOCPDMS and RBOCPDMS smooths the prior probability distribution choice

by using a Model Selection step, although the assumption regarding the prior probability

distribution persists, maintaining a parametric approach. Although SAX assumes a normal

distribution, its assertiveness remains unaffected even if this assumption is not fulfilled

due to its inherent lower bound property, which is not the case of those using Bayesian

statistical techniques. This feature renders SAX more adaptable to different systems than

these methods.

2.3 Chapter Remarks

Change Point Detection (CPD) has many applications, an area explored in the

literature for decades, as seen in this Section. However, it still has some challenges, such as

the need for online methods to deal with stream data and more adaptable algorithms for

different systems [2]. The table 2.1 defines CPD algorithms according to their technique,

if they are online and if they have some drawbacks that may reduce its adaptability to
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different systems or its scalability. As with most real-world problems, the change points

are not known, in Table 2.1, we only compare and analyze Unsupervised techniques.

Table 2.1: CPD algorithm criteria.

Method name Algorithm technique Online Drawbacks
SI Subspace model Parametric approach
SST Subspace model Parametric approach.
SAXJS Subspace model SAX makes assumption

about the data following
an Gaussian distribution.

ABD Subspace model Difficult to choose hyper-
parameters in complex
models.

TIRE Subspace model Need to know if the data
has frequency changes be-
fore its application.

ADAGA Subspace model The implementation of
the algorithm has a scal-
ability problem.

CUSUM Likelihood Ratio Parametric approach
Change Finder Likelihood Ratio Parametric approach
KLIEP Likelihood Ratio Cross-validation step re-

duces scalability.
ulSIF Likelihood Ratio Cross-validation step re-

duces scalability.
RulSIF Likelihood Ratio * Cross-validation step re-

duces scalability.
KernelCPD Kernel-based methods Complexity of O(n2).
KL-CPD Kernel-based methods Difficult to choose hyper-

parameters in complex
models.

OBN Probabilistic methods Parametric approach.
BOCPDMS Probabilistic methods Parametric approach.
RBOCPDMS Probabilistic methods Parametric approach.
SWAB Clustering It does not have many re-

cent mentions in the liter-
ature.

Shapelet-based Clustering It does not have many re-
cent mentions in the liter-
ature.

Graph-based method Graph-based method It does not have many re-
cent mentions in the liter-
ature.

* Adapted to online in this work.

In this work, we sought to validate our proposal by comparing it with methods

employing various algorithmic techniques, giving preference to the most recent, online,
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and adaptable approaches. We used TIRE as a benchmark for the subspace modeling

technique, comparing it to SAXJS, as it incorporates more contemporary technologies

such as autoencoders and deep learning. Given its online nature, we also attempted a

comparison with ADAGA. However, we encountered a significant runtime issue, making

completing the analysis on larger time series data impractical within our timeframe. For a

single time series of substantial size, ADAGA’s grid-search runtime exceeded five days,

which led us to exclude the ADAGA analysis from our primary work. We could only

generate results using grid-search for the Run Log data set as it is the smallest data we

tested. We also could generate results using its default value for synthetic data sets with

changes every 100 steps. Both results and the ADAGA’s parameter configuration can

be found in Appendix A. Nevertheless, we propose to include ADAGA analysis in future

research. Despite ADAGA’s use of techniques to reduce complexity, the use of Scipy

library have a scalability issue if larger time series [7].

For the likelihood ratio, we choose to compare with RulSIF, which is more robust

than ulSIF and KLIEP and a more computationally efficient method than KLIEP [45] and

is a trendy method in literature [2]. Despite being less expensive than KLIEP, it still has

a step of cross-validation, such as ulSIF, which also has the best σ parameter for kernel

estimation, which still hinders its implementation. RulSIF was originally offline because

of its post-process of detecting change points based on a threshold. Therefore, we changed

this post-process to transform online, but we kept the essence of density estimation that

defines RuLSIF implementation. We perform the same post-process as SAXJS, smoothing

the results and applying peak detection.

We tested with KernelCPD for Kernel-based methods. For Probabilistic Methods,

we tested BOCPDMS because it is less complex than RBOCPDMS, and both are online [69].

The problem with probabilistic methods is that they have to make assumptions about the

parameters of the data. BOCPDMS and RBOCPDMS try to make it more adaptable by

performing an online model selection [35, 36].

The advantage of SAXJS over these online models is that it does not require a

search for better parameters, such as RuLSIF. This results in reduced complexity and

computational costs. Its computational cost is also better than KernelCPD and than

algorithms that use more complex techniques such as autoencoders and deep learning.

Moreover, SAXJS is more adaptable to different systems than BOCPDMS as it makes

less assumptions about the data. Additionally, SAXJS does not need to know if the data

have frequency changes to decide its hyperparameters as TIRE has. As Clustering and

Graph-based techniques are not frequently cited in the recent literature, we decided not to

include these two techniques in the analysis.
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Chapter 3

SAXJS: our proposed method

In this chapter, we want to answer our first specific objective:

How can we extract change point information from a time series?

To answer this question and achieve our goal, we developed a framework composed

of five steps: symbolic aggregation approximation (SAX) transformation, probability

distribution construction, Jensen-Shannon distance calculation, and data smoothing and

peak detection. Before we present our framework steps, we define and formalize the

problem in Section 3.1. In Section 3.2, we explain the five steps of our proposed algorithm

and highlight the difference between the four SAXJS variations (SAXJS-S, SAXJS-T,

SAXJS-τ and SAXJS-BOP). In Section 3.3, we detailed the algorithm in a pseudo-code

and analyzed its time complexity. In Section 3.4, we finalize the chapter discussing the

advantages and disadvantages of each SAXJS variation.

3.1 Preliminaries, Fundamentals, and Definitions

Before we present our proposal, we will briefly define and formalize the problem.

These definitions will be used throughout the thesis.

Definition 1 A time series is a sequence of data points indexed (or listed or represented

graphically) by some time representation. More commonly, a time series is a sequence of

successive points typically equally spaced in time; thus, it is a discrete-time data sequence.

Definition 2 Let S be a time series with st ∈ S in a particular timestamp t with size N .

We assume the existence of some probability distribution function P for st ∈ S. Therefore,

with this definition, the time series can be considered a stochastic process [66]. Since P
can be described by a set of parameters πt for a given point st, we can formalize that if

there is an existence of a change point in the times series S = {s1, s2, s3, · · · , sN} we have:
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πs1 = πs2 = · · · = πs∗T
̸= πsT∗+1

= · · · = πsN ,

where we consider the change point between πT ∗ and πT ∗+1 because πT ∗ ̸= πT ∗+1. More

formally, ∃T where we have T ∗ ≤ T < T ∗ + 1, if this inequality does not occur, we don’t

have a change point. We define T ∗ as being the time of the change point of S in the

interval {s1, s2, s3, · · · , sN}.

Detecting a change point is a challenging task as it tries to identify a change in the

intrinsic characteristics of the data rather than an anomaly. Some approaches consider

finding outliers (anomalies) and, by doing so, investigate how these outliers are related to

the change points [65]. The change points are related to a change in the dynamics of the

underlying model. So, change points have characteristics of a new model and can not be

considered an outlier. Assuming a model change, detecting a change point can be seen as

a change of dynamics (or phase transition) detection.

Definition 3 Let A be an algorithm that finds a change point T∗ in the interval

{s1, s2, s3, · · · , sn} for a time series S. We define that A-performance is given in λ-

real time as the interval needed to detect the change point T . So, if an algorithm is said

to be λ-real time we have it find the change point T in the interval [t − λ, t + λ], where

t−λ ≤ T < t+λ. The offline approach considers the whole time series S having a λ value

approximated to N , as for the online approach, the λ can be a smaller number compared

to N .

As an online framework, we define two adjacent windows that represents an slice of

S of size W . The first window is characterize by the time series w0 = {s0, s1, s2, ..., sW}
and the second window is characterize by the time series w1 = {sW+1, sW+2, sW+3, ..., s2W}.
We discretize both windows into two sequences of symbols Ĉ0 = {ĉ1, · · · , ĉW} and Ĉ1 =

{ĉW+1, · · · , ĉ2W}. We calculate the distance between the probability distribution of both

windows symbols sequences to evaluate if the point W + 1 ∈ w1 is a change point. Then,

we move to next point W + 2 and repeat the process.

3.2 SAXJS algorithm steps

This section presents our framework steps to detect if a certain point in time t of a

time series S is a change point. As showed in Figure 3.1, our framework operate using

two consecutive sliding windows of size W and evaluate if the first point of the second
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window is a change point or not. The Figure 3.2 summarize our framework steps and the

operations made inside each window.

Figure 3.1: Example of sliding window operation.

Source: Created by the author.

In Section 3.2.1, we explain the first step of our algorithm: applying SAX trans-

formation in our time series in both two adjacent windows. Section 3.2.2 describes how

we extract the probability distribution from the SAX sequence. We use three distinct

strategies to calculate the probability distribution, and each strategy corresponds to a

different SAXJS variation. Section 3.2.3 presents the Jensen-Shannon distance calculation

used to compare two probability distributions. In Section 3.2.4, we describe the data

smoothing process of the Jensen-Shannon values and the peak detection method used to

identify change points.

Figure 3.2: Diagram of our Framework steps using two adjacent windows of size W .

Source: Created by the author.
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3.2.1 SAX transformation

Figure 3.3: SAX whole process using two sequential windows.

Source: Created by the author inspired by [42].

First, we discretize the time series windows wt and wt+W of size W into a symbolic

string sequence using the Symbolic Aggregate Approximation (SAX) transformation [42].

The SAX process with two sequential windows is shown in Figure 3.3. As evident from the

Figure, the data from both windows are normalized and fit into a Gaussian distribution

with three equal-sized areas. Points within the first area are denoted by the symbol a,

those within the second area are represented as b, and the third area is designated as

c. Upon completion of this process, we obtain the SAX sequence for each window, with

the SAX sequence in pink corresponding to the first window and the green sequence

corresponding to the second window.

The SAX algorithm considers that since a normalized time series has a Gaussian

Distribution [38], we can determine the breakpoints that divide the time series into b

equal-sizes areas under the Gaussian curve, being b a user-defined value. The breakpoints

are a sorted list of numbers B = {β1, ..., βα−1} such that the area under a N (0, 1) Gaussian

curve from βi to βi+1 =
1
b
are all equal-sized.

Therefore, all the time series elements are represented by letters according to

their value compared to the breakpoints. For example, if the value is under the smallest

breakpoint, it is mapped to the symbol “a”.

Let αi represents the ith element of the alphabet, for example, α1 = a and α3 = c.

Thus, considering the time series w0 ≡ {st}Wt=0 of size W and time t, the mapping from
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a time series representation to a word Ĉ = {ĉ1, · · · , ĉW} is obtained by Ĉi = αj, if

βj−1 ≤ ci < βj.

3.2.2 Probability distribution calculation

After we had the SAX symbolization with b symbols, there are three possible

strategies for calculating the probability distribution, thereby generating multiple versions

of the SAXJS algorithm. In the following subsections, we describe these three possibilities.

In Section 3.2.2.1, we describe the SAX symbols frequency calculation strategy, corre-

sponding to the SAXJS-Symbols (SAXJS-S) version. In Section 3.2.2.2, we elaborated

the transitional frequency matrix strategy on both SAXJS-Transitional (SAXJS-T) and

SAXJS-τ versions. In Section 3.2.2.3, we explain the SAXJS-BOP variation (probability

distribution based on Bag-of-patterns (BOP)).

3.2.2.1 SAX symbols frequency (SAXJS-S version)

The first option to obtain the probability distribution is the SAXJS-S version,

which involves calculating the relative frequencies of all b symbols. This relative frequency

can be computed when a particular symbol appears in a time series window (fb), divided

by the window length (W ). As a result, calculating these relative frequencies allows us to

construct the probability distribution histogram P ≡ p(b), which is defined by:

p(b) =
fb
W

. (3.1)

3.2.2.2 Transitional Frequency Matrix (SAXJS-T and SAXJS-τ versions)

The second option consists of calculating the probability distribution based on a

matrix of the transition frequency of each symbol. The process of constructing this matrix

is shown in Figure 3.4 using a small window as an example. As shown in Figure, we create

a matrix with each i row and each j column is an alphabetic symbol according to the
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Figure 3.4: Example of constructing the symbols’ transition frequency matrix and the
effects using different τ . The SAX sequences are the same use in Figure 3.3.

Source: Created by the author.

number b of possible SAX symbols. Considering the SAX sequence Ĉ = {ĉ1, ..., ĉW}, we
connect the symbol ct in time t with the symbol ct+τ . The distinction between SAXJS-T

and SAXJS-τ lies in the use of τ : while SAXJS-T sets τ to a fixed value of one, SAXJS-τ

allows for a variable τ value. Then, we count the sequential connections from one symbol

αt to another symbol αt+1 and add this count to the matrix in position of row αt and

column αt+1. This matrix arrangement resembles a directed graph, with each SAX symbol

representing a node and the weight of each edge indicating the frequency of connections

between symbols.

The matrix is converted to a probability matrix using Equation (3.2) being a each

count of transitions between the SAX symbols in each row i and each j column. Then,

the probability matrix is converted to a 1-dimensional array by row order.

Paij =
aij∑A

j=1,i=1 aij
. (3.2)
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Figure 3.5: Example of constructing the new symbolical sequence based on SAX sequences.
The SAX sequences are the same use in Figure 3.3.

Source: Created by the author inspired by [42].

3.2.2.3 SAX symbols aggregation based on Bag-of-Patterns (BOP)

(SAXJS-BOP version)

The third option is to use the SAX symbols in an aggregation based on Bag-of-

Patterns (BOP). Figure 3.5 illustrates the process in a small data set as an example.

Taking into account the discrete SAX sequence Ĉ = {ĉ1, · · · , ĉN} of size W , we group

the symbols in Ĉ into groups of user-defined size of d. For example, if we have d = 3, a

symbol ct in time t will be concatenated with symbols ct+1 and ct+2 generating one single

symbol X following the representation X = ctct+1ct+2. Consequently, we have bd symbols

since every b symbol can be concatenated with every b symbols including itself d times.

The difference from BOP is that the sliding windows are done at the beginning of the

process to guarantee the online characteristic. After creating the new symbology sequence

X, the probability P ≡ p(bd) of each symbol is calculated as

P =
fbd

W
, (3.3)

Where fbd are the symbols in X and W is the window length.
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3.2.3 Jensen-Shannon distance calculation

For each window wt and wt+W , we calculate the Jensen-Shannon distance [44]

between its probabilities distributions Pt and Pt+W following the equation:√
D(Pt||m) +D(Pt+W ||m)

2
(3.4)

Where D is the KL divergence described in Equation 2.1, and m is the pointwise

mean of Pt and Pt+W . Jensen-Shannon is a distance measure. Thus, it has the advantage

of being symmetric compared to dissimilarity measures [80] used in other CPD algorithms

such as KL and PE divergence used in KLIEP, uLSIF, and RuLSIF, respectively.

We calculate the Jensen-Shannon distance measure in time stamp t between the

probabilities Pt and Pt+W of the two consecutive windows. Both consecutive windows

move to the time stamp t + 1, and the Jensen-Shannon distance measure is calculated

again.

Figure 3.6: Example of Jensen-Shannon construction in time t = 5 and t = 6.

Source: Created by the author.
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The Figure 3.6 illustrate how the Jensen-Shannon series are constructed based on

the timestamps of the original time series how the windows slide through series generating

the Jensen-Shannon information. First the two time series inside both windows (colored

in pink and green) pass through the previous steps of SAX sequence (Section 3.2.1)

and probability distribution calculation (Section 3.2.2). Then, the result of probability

distribution is used in Jensen-Shannon calculation and it is added to the Jensen-Shannon

results time series in the time t corresponding to the time of first point (circulated in red)

in the second time window.

3.2.4 Data smoothing and peak detection

After calculating the Jensen-Shannon distance, we apply the Savitzky–Golay filter.

The Savitzky–Golay filter is a digital filter that can be applied to time series to smooth

the series by fitting a low-degree polynomial with its adjacent data and using a linear

least squares method [52]. The number of adjacency points g is a parameter chosen by

user definition, and the degree of polynomial is fixed at 3. To detect the peaks, we use

the argrelextrema function in python [70], which calculates the relative extrema of data

considering a neighborhood. For the size of the neighborhood, we set the value of p for

both sizes, so we have to look for 2p points ahead. Therefore, to evaluate if a point t is a

change point, our method requires W + g + 2p points ahead.

The Savitzky–Golay filter is necessary to reduce the noise in order to be possible to

use a smaller size of neighbors to detect peak without detecting False positive (small local

peaks that does not represent a global peak). The Figure 3.7 shows an example of a small

local peak circulated in Red and its disappearance after applying Savitzky–Golay filter.

Figure 3.7: Example of Savitzky-Golay filter reducing the number of False Positive peaks
(red circles).

Source: Created by the author.
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3.3 Complexity Analysis

In this Section, we detail the algorithm complexity analysis by scanning the pseudo-

code in Algorithm 3.1. This algorithm provides a pseudo-code outline of our proposed

framework SAXJS, including all the versions (SAXJS-S, SAXJS-T, SAXJS-τ , and SAXJS-

BOP). It takes as input a time series S(t), window-size W , SAX number of symbols b,

number of jumps τ , number of SAX symbols to aggregate d, number of neighbors g and

p, the name of the method chosen to calculate the probability distribution c and the

threshold to consider a CP or not. First, it is instantiated 3 lists. The first list, called

“alljs” (Line 1), is created to keep all Jensen-Shannon (JS) results. The second “allsav”

(Line 2) is created to save all JS results smoothed by the Savitzky-Golay filter. The last

list (Line 3) is called “allresults” and keeps the final results whether it is a CP or not.

It then iterates the time series. The first operation inside the iteration in Line

4 is the SAX transformation executed in Line 5. This transformation is detailed in

Section 3.2.1. As cited in [41], SAX operation has an O(W ) computational cost. After

SAX transformation, in Lines 6 and 7, the SAX sequence is divided in two consecutive

windows sax1 and sax2 of size W . Then, the probability distribution is calculated for

both SAX sequences in Lines 8 and 9 using the Algorithm 3.2 detailed in Section 3.2.1.

As highlighted in Algorithm 3.2, there are four possible options to calculate

probability distribution: SAXJS-S (from Line 2 to 8), SAXJS-T (from Line 10 to 16),

SAXJS-τ (from Line 18 to 24) and SAXJS-BOP (from Line 26 to 32). All the options

are divided into two steps: the first consists of counting the symbols’ frequency in the

SAX sequence, and the second consists of normalizing the vector or matrix of the symbol’s

frequency. As SAXJS-S iterates in all the points in the SAX sequence (Lines 3 and 4), its

first step has the complexity of O(W ). For SAXJS-T (Lines 11 and 12) once we count

the symbols connections, the last symbol would not have the next symbol to connect so

that the complexity would be O(W + 1) For SAXJS-τ (Lines 19 and 20) and SAXJS-BOP

(Lines 27 and 28), we iterate over W − τ and W − (W mod d)) points, respectively. Thus,

their complexity is O(W − τ) and O(W − (W mod d)).

The second step of normalizing the frequency of each symbol depends on the

symbology chosen in each version. For SAXJS-S (Lines 6 and 7), we count and normalize

the frequency of each b SAX symbol. Therefore, as we create an ordered dictionary and

add 1 to the count of the symbols, it has the complexity of O(b) to normalize all symbols.

For SAXJS-T (Lines 14 and 15) and SAXJS-τ (Lines 16 and 17), we use the connection

between 2 symbols as a symbology, so the number of possible connections is b2 because

each symbol can connect to any other symbol including itself. Being b2 symbols, the

complexity of the normalization is O(b2). In SAXJS-BOP (Lines 30 and 31), it is possible

to choose the number of SAX symbols that will be concatenated to form one symbology
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Require: Time series S(t) = {st}Lt=1, window-size n, SAX number of symbols b, number
of jumps τ , number of SAX symbols to aggregate d, number of neighbors g and p,
the method chosen to calculate the probability distribution c and the threshold to
consider a CP or not. Time series length L must be greater than n.

1: alljs← []
2: allsav ← []
3: allresults← []
4: for i← 0 to (N − 2W ) do
5: saxseq ← SAX sequence of size 2W
6: sax1 ← sax1[i:W ] ▷ sax1 is the sax sequence of the first window
7: sax2 ← sax1[i+W :i+2W ] ▷ sax2 is the sax sequence of the second window
8: prob1← calculateProbabDistrib(sax1,b,τ , d, c), algorithm 3.2 ▷ prob1 is the

probability distribution of the first window
9: prob2 ← calculateProbabDistrib(sax2,b,τ , d, c), algorithm 3.2 ▷ prob2 is the

probability distribution of the second window
10: jsresult ← Jensen-Shannon(prob1,prob2)
11: alljs.append(jsresult)
12: if LENGTH(alljs) ≥ g) then
13: savresult ← Savgovitz(allsav[:g])
14: alljs.append(savresult)
15: end if
16: if LENGTH(allsav) ≥ 2p then
17: resultsav ← allsav[LENGTH(allsav) - p] ▷ Get the value in the last p position

of allsav
18: if resultsav ≥ threshold then
19: Add on allsavfilter only the values in the last 2p positions in allsav that are

bigger than the threshold
20: agrelresult ← agrelextrema(allsavfilter[:2p])
21: if resultsav == agrelresult then
22: allresults.append(1) ▷ It is a CP
23: else
24: allresults.append(0) ▷ It is not a CP
25: end if
26: else
27: allresults.append(0) ▷ The point is not a CP
28: end if
29: end if
30: end forreturn allresults

Algoritmo 3.1: SAXJS: proposed algorithm.
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Require: A SAX sequence Ĉ = {ĉ1, · · · , ĉW}, SAX number of symbols b, number of
jumps τ , number of SAX symbols to concatenate d and the name of the method to
use c

1: W ← LENGTH(saxseq)
2: if c == ”SAXJS-S” then ▷ Use the option described in Subsection 3.2.2.1
3: for i ← 0 to W do
4: Add 1 to the SAX symbols that appear in position i of sax sequence saxseq.
5: end for
6: for i ← 0 to b do
7: Normalize the SAX symbol in position i ▷ Equation 3.1
8: end for

return Probability distribution of each b SAX symbols
9: end if

10: if c == ”SAXJS-T” then ▷ Subsection 3.2.2.2
11: for i ← 0 to W − 1 do
12: Add 1 to the connections between i and i+1 position in a graph of all possible

SAX symbols connections.
13: end for
14: for i ← 0 to b2 do
15: Normalize the SAX symbol connection in position i ▷ Equation 3.2
16: end for

return Probability distribution of each SAX symbols connection
17: end if
18: if c == ”SAXJS-τ” then ▷ Subsection 3.2.2.2
19: for i ← 0 to W − τ do
20: Add 1 to the connections between i and i+1 position in a graph of all possible

SAX symbols connections.
21: end for
22: for i ← 0 to b2 do
23: Normalize the SAX symbol connection in position i ▷ Equation 3.2
24: end for

return Probability distribution of each SAX symbols connection
25: end if
26: if c == ”SAXJS-BOP” then ▷ Subsection 3.2.2.3
27: for i ← 0 to W − (W mod d) by d do
28: Concatenate the SAX symbol in position i to its next d symbols
29: end for
30: for i ← 0 to bd do
31: Normalize the SAX symbol concatenation in position i ▷ Equation 3.3
32: end for

return Probability distribution of each SAX symbols concatenation
33: end if

Algoritmo 3.2: Probability distribution calculation.
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by a user-defined variable d. Hence, the complexity is O(bd). For the algorithm to work,

W must be much greater than the number of symbols (b for SAXJS-S, b2 for SAXJS-T

and SAXJS-τ and bd for SAXJS-BOP) to have a sufficient frequency of each symbol and

not to have a very sparse vector of probability distribution which would generate a not

satisfactory Jensen-Shannon calculation. Therefore, the first step’s complexity surpasses

the second step’s complexity in all the SAXJS options.

Then, the Algorithm 3.2 is finalized, and we come back to 3.1 Line 10 where

the Jensen-Shannon calculation is executed. The Jensen-Shannon iterates over all the

probability distribution vectors. Therefore, its complexity equals the number of symbols

of each SAXJS variation. Its calculation is more detailed in Equation 3.4. The next

part of the Savitzky-Golay filter application has a complexity of O(g) corresponding to

the number of neighbors g as it fits a polynomial equation to smooth a point in time t

based on its neighbors. The filter is only applied when the minimal number of neighbors

is achieved, as is seen in the condition in Line 21.

The peak detection step starts in Line 17 of Algorithm 3.1. It filters the allsav

array by getting its last 2p values, which are bigger or equal to the threshold. As it gets

the last 2p values to filter, this process has a O(p) complexity. Then, the agrelextrema

operation compares a point in time t with some neighbors p on both sides to analyze if it

is the greater point and, then, if it can be a CP. Therefore, its complexity is O(p).

Summarizing all the operations inside the Line 4, we have the following complexity:

• SAX transformation (Line 5): O(W )

• Probability distribution (Lines 8 and 9):

– SAXJS-S option: O(W )

– SAXJS-T: O(W − 1)

– SAXJS-τ : O(W − τ)

– SAXJS-BOP: O(W − (W mod d))

• Jensen-Shannon calculation (Line 13): O(g)

• Peak detection (Line 17 to 21): O(p)

As the window size W is always the largest user-defined value, the O(W ) complexity

of SAX transformation dominates the other complexity of many symbols and some

neighbors. The operation is done for every point of the time series S(t) of size N

except the first points in time where N ≥ 2W because the algorithm must have the

two consecutive windows complete to work and be possible to compare its probability

distributions. Nevertheless, the final complexity of the algorithm is O(NW ) as we run the

complexity O(W ) N times and N >= 2W .
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3.4 Advantages and disadvantages

Figure 3.8: Example of two-time series with different frequencies and their respective SAX
symbol sequences.

Source: Created by the author.

Figure 3.8 summarizes the difference between SAXJS versions and their disad-

vantages and advantages. Comparing the frequencies generated by each version from

an SAX sequence, we can observe that SAXJS-S has the same distribution for both

windows; therefore, it does not capture the difference of frequency shifts between the

shape of the two-time series. On the other hand, SAXJS-T, SAXJS-τ , and SAXJS-BOP

can capture these changes, generating different distributions. However, in SAXJS-BOP,

several symbols do not appear in the SAX sequence, which produces many zeros in the

probability distribution, which can be a problem when measuring the distance between

probability distributions.

In summary, our proposed online framework to detect CPs called SAXJS and its

versions have the following characteristics:

• Online: all SAXJS variations are online, eliminating the necessity for the complete

time series information and enabling it to run on streaming data.

• It does not have a cross-validation step: our framework does not have a step

of cross-validation that may burden the process, such as RuLSIF.

• Robustness to noise: The application of time series discretization using SAX

enhances algorithm robustness against noise by transforming noisy data into stan-

dardized symbols based on their distribution within the Gaussian curve.

• Scalability: Our framework is based on simple and fast transformation, with a

O(NW ) computational cost. It allows its application in huge time series.
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SAXJS and its versions also have some disadvantages, such as the following:

• Design for only univariate data: our framework is designed to deal with only

1-dimensional time series and does not work in multivariate data.

• Needs more data in the sliding window: To obtain a probability distribution

with few zeros, the sliding window must be large enough so that most symbols appear

in the SAX sequence. Consequently, the sliding window must have a length W

greater than other CPD algorithms require. As SAXJS-BOP requires more symbols,

it needs more data in the sliding window than other methods.

• The SAXJS-S captures worse frequency shift than the other versions: As

shown in Figure 3.8, the SAXJS-S does not capture frequency shifts satisfactorily

compared to other SAXJS versions.



51

Chapter 4

SAXJS experiments Setup

In this chapter, we describe the quality metrics, the different data sets used in the

experiments, and the parameter configurations used to evaluate the SAXJS compared to

other state-of-the-art CPD algorithms. In Section 4.1, we explain the evaluation metrics.

Section 4.3 describes all the different scenarios data sets, including synthetic data and

real-world cases. Section 4.4 presents the hyperparameter configuration employed in the

grid search for both SAXJS versions and other CPD methods.

4.1 Evaluation measures

This section explains the metrics used to evaluate the quality of the change point

methods. We use the Receiver Operating Characteristic (ROC) curve and the area under

the curve (AUC) (Section 4.1.1) and the detection delay (Section 4.1.2). In order to

evaluate the cases without change points, we use a different way to calculate the False

Positive Rate (FPR) as the one seen to create the ROC curve (Section 4.2).

4.1.1 Receiver Operating Characteristic (ROC) curve and the

area under the curve (AUC)

Following the strategy used in [45], the Receiver Operating Characteristic (ROC)

curve and the area under the curve (AUC) are calculated using the definition of true

positive rate (TPR) and false positive rate (FPR) described in [30] as

• True positive rate (TPR): ncc

nrc

• False positive rate (FPR):nal−ncc

nal
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where ncc is the number of times the change point alarm was correct, nrc is the number of

all ground truth change points, and nal is the number of all change points alarms.

A detection alarm at time t is considered correct if a true change point exists at

step t∗ such that [t ∗ −I, t ∗+I], being I, the tolerance range. To avoid duplication, the

kth alarm at the step tk if tk − tk−1 < 2I is removed.

Following the example in [45], the tolerance range I for the synthetic data set with

changes in every 100 steps is 10 for the synthetic data with changes in every 1000 steps

I = 100. The HASC data set was tested with I = 10 and I = 100. For Bee dance and

Well log, we use I = 10, and for Run-log, we use I = 5 following the example in [7].

4.1.2 Detection delay calculation

In addition to the ROC curve and the AUC value, we also evaluate the detection

delay, which is the measure of how close each predicted change point is to the actual

change point by the following equation 4.1 based on [3]. This metric helps measure the

algorithm’s accuracy in detecting the specific change point within the tolerance range. We

only discuss detection delay when the interval tolerance is higher than 50 because very

small tolerance intervals mean that the detection delay values for different algorithms

do not have so many differences. However, the detection delays for data sets other than

HASC with I = 100 and synthetic data with changes every 1000 steps can be seen in

Appendix B.

delay =

∑ncc

i=1 Predicted(CPs)i − Actual(CPs)i
ncc

. (4.1)

4.2 False Positive Rate(FPR) for cases without

changes

To assess scenarios devoid of change points, we employ an alternative method for

computing the False Positive Rate (FPR) described in [3] with the Equation:

nFP

N
,
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where nFP is the total of false positives in our detection and N is the time series

size.

4.3 Data sets descriptions

This section comprehensively describes all the data sets employed in the experiments

to evaluate the SAXJS algorithm, comparing it with other state-of-the-art methods. We

leverage a total of 7 scenarios of data, as it aligns with the average number commonly

utilized in the change point literature [14, 9, 35]. We choose a variety of data sets from

various domain applications with different lengths, numbers of CPs, and CPs distances,

as shown in Table 4.1 to demonstrate the adaptability of our algorithm across diverse

scenarios. These 9 data are grouped into a total of 7 scenarios. The first group are

synthetic data sets with changes every 100 points (JM 100, SV 100 and CC 100). The

second are synthetic sata sets with changes every 1000 points(JM 1000, SV 1000, CC

1000). The third to sixth are the real world data: HASC Challenge 2011, Bee dance, Well

Log and Run Log. Finally, the seventh group are the time series without change points

with sizes of 5000 and 50000.

Table 4.1: Overview of data sets (synthetic and real-world cases). Mean and standard
deviation are reported for data sets consisting of multiple time series.

Data set Length #series #CPs
CPs distances

Q10 Q50 Q90
No change 5000 5000 0 0 ± 0 0 0 0
No change 50000 50000 0 0 ± 0 0 0 o
JM 100 & SV 100 4998 2 49 ± 0 100 100 100

CC 100 4862 1 48 100 100 100
JM 1000 & SV 1000 49998 2 49 ± 0 1000 1000 1000

CC 1000 48968 1 48 1000 1000 1000
Bee dance 827 ± 202 6 20 ± 4 19 45 77
HASC-2011 10931 ± 229 5 12 ± 0.4 755 917 1029
Well log 4050 1 11 59 180 515
Run Log 376 1 8 18 36 59

In Section 4.3.1, we explain the creation of the synthetic data sets used to evaluate

SAXJS performance in a controlled environment. The purpose of assessing the algorithm

in a controlled environment is to ascertain its capability to detect fundamental changes

in time series such as mean, variance, and frequency, while also ensuring it refrains from

detecting changes in cases where the series remains without change points. After evaluating

the quality of SAXJS in a controlled environment, it is crucial to assess its performance in
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real-world scenarios to determine the practical viability of our algorithm. We describe the

data sets from real-world cases in Sections 4.3.2.

4.3.1 Synthetic data sets

To evaluate SAXJS in a controlled environment, we created eight different time

series of synthetic data. In the first and second, we create time series with size 5000 and

50000, respectively, free of changes. Then, in the third and fourth time series, we inserted

mean changes every 100 steps and in the second time series, we inserted mean changes

in every 1000 steps. The fifth and sixth series exhibited scaling variance alterations at

intervals of 100 and 1000 steps, and in the seventh and eighth, we inserted coefficient

changes in every 100 and 1000 steps. The following is the description of the synthetic

bases for every change category analyzed as suggested in [45, 14]:

• No change: The following 1-dimensional model borrowed from [74] is used to

generate approximately 5000 samples (i.e., t = 1, . . . , 5000) and approximately

50000 samples (i.e., t = 1, . . . , 50000):

y(t) = 0.6y(t− 1)− 0.5y(t− 2) + ϵt,

where ϵt is a Gaussian noise with mean µ and standard deviation equal to 1.5. The

initial values are set as y(1) = y(2) = 0. As the series does not have change points,

µ and standard deviation never change.

• Jumping mean (JM): The same model of the data set with no changes is used

with mean µ and standard deviation 1.5. A change point is inserted every 100-time

steps or 1000-time steps increasing the intensity of the jumping mean change by

modifying µ at time t according to

µN =

0, N = 1,

µN−1 +
N
16
, N = {2, ..., 49},

where N is a natural number such that 100(N − 1) + 1 <= t <= 100N .

• Scaling variance (SV): The same model is used, but a change point is inserted

every 100 or 1000 steps increasing the intensity of the variance change by modifying

the standard deviation α at time t as

α =

1, N = {1, 3, ..., 49}

ln(ϵ+ N
4
), N = {2, 4, ..., 48}

.
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• Changing coefficient (CC): The model used to generate the series follows the

equation described in [14]:

y(t) = y(t− 1) + ϵt,

where ϵt Gaussian noise with standard deviation set to 1.5 and mu set to 0. For

every segment in 100 or 1000 steps, the coefficient y is alternatively sampled from

U([0, 0, 5]) and U([0.8, 0.95]) to generate clear differences in autocorrelation and

frequency content between segments. The objective of this synthetic dataset is to

evaluate our algorithm in frequency changes.

4.3.2 Real-world cases

As shown in Figure 4.1, we evaluate SAXJS using four real-world cases. The first

real-world case is a change point benchmark data set [2] HASC Challenge 2011 [28]

also used to evaluate TIRE [14] and RuLSIF [45]. HASC Challenge 2011 is a collaborative

project to collect human activity data from accelerometer sensors on wearable devices.

Each participant in the project should gather at least 5 out of the 6 activities for at least

5 seconds: stay, walk, jogging, skip, stair-up, and stair-down.

The total time of the activities should be at least 120 seconds. The challenge has a

committee to evaluate whether the annotation is correct. The HASC Challenge 2011 [29]

gathered and composed 4897 accelerometer data with 116 subjects. As the accelerometer

data is 3-dimensional, we use the l2-norm transformation following [45]. We evaluate the

5 first participants’ accelerometer data, as outlined in the reference [45].

The second real-world case is the Bee dance [50] data set, which consists of six

3-dimensional time series of the bee positions (location in 2D plane and angle differences).

As the data are 3-dimensional, we use the l2-norm transformation as well. Information on

the bee’s position makes it possible to identify the bee’s dance, which is classified as left

turn, right turn, and waggle. The identification of bees’ dance is of interest to ethnologists

as its length (duration) and representation correspond to the distance and the orientation

of the food source. Bee dance is often used to evaluate CPD algorithm [9, 11, 68, 69, 72]

and TIRE [14].

The last real-world scenarios are Well log and Run Log. They are 2-time series

part of the Alan Turing Institute project [69] to create a data set with benchmarks

specifically tailored for the evaluation of CPD algorithms. The Well log data set, initially

examined in [56], comprises nuclear magnetic resonance measurements acquired during
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the drilling of a well. Changes in the time series’ mean correlate with alterations in rock

stratification. This benchmark was also used in the TIRE evaluation. The Run Log

data set represents a runner’s pace during an interval training session with instructions

alternating between run and walk. This data was also used to evaluate ADAGA [7].

4.4 Parameters settings

This section presents an overview of the hyperparameters utilized in the grid search

for each SAXJS version and state-of-the-art CPD method across various scenarios, including

synthetic data and real-world cases. Each CPD algorithm requires the configuration of

distinct hyperparameters with different meanings. In the Sections 4.4.1 to 4.4.5, we

describe the hyperparameter configuration of every CPD algorithm for all scenarios.

Following is the list of all CPD methods with their respective hyperparameter meanings:

• SAXJS:

– W : window size of the SAX transformation.

– b: number of SAX symbols.

– g: number of neighbors to fit the low-degree polynomial in the Savitzky–Golay

filter application.

– p: number of neighbors to compare in the peak detection.

– Threshold: threshold for defining CPs.

– d: number of SAX symbols to aggregate in one symbol (only for the SAXJS-BOP

version).

– τ : number of jumps to establish the connection between symbols (only for the

SAXJS-τ version).

• KernelCPD:

– Kernel: the kernel model.

– Jump: controls the grid of possible change points.

– min-size: minimal segment length to prune the data set.

– pen: The penalty > 0 to be used in the optimization function. The lower the

pen, the more CPs are found.

• RuLSIF:
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– K: number of kernels.

– σ: controls the relative PE-divergence. The lower the σ, the more the density

ratio is plain and less “smooth”.

– W : window size of sequential windows to be compared.

– g: We use the same Savitzky–Golay filter application as it is used in SAXJS.

– p: We use the same peak detection as in SAXJS.

– Threshold: threshold to define CPs.

• TIRE

– W : window size of sequential windows to be compared.

– M : length of Fourier transform.

– Invar: number of time-invariant features.

– h: number of features (timeinvariant+ instantaneous).

– Ka: number of Autoencoders.

– epoch: number of epochs to train the neural network.

– δ: if its to use time domain.

– β: if its to use frequency domain.

– Threshold: threshold to define CPs.

TIRE creators use two versions of these hyperparameter values: v1 and v2. These

two versions are tested with only time domain features, frequency domain features,

and both.

• BOCPDMS

– Intensity: intensity of the Hazard function.

– Gamma α0: α parameter of the Inverse Gamma.

– Gamma β0: β parameter of the Inverse Gamma.

– Threshold: threshold to define CPs.

4.4.1 Synthetic cases (interval 100)

The first scenario encompasses synthetic data with mean, variance, and frequency

changes occurring regularly at intervals of either 100 or 1000 steps. The versions with
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changes every 100 steps and every 1000 steps have unique hyperparameter configurations.

In this subsection, we focus on the version with change points at regular intervals of 100

steps. For the change in every 100 steps, we use the following parameter settings for

SAXJS versions and other CPD algorithms:

• SAXJS: For every SAXJS version, we use the same W : (50,60,70,80,90,100), g:

(11,21,31,41), p: (5,10,15) and Threshold from 0.3 to 0.8 by 0.01. Compared to the

configuration used in every 1000 steps case, the values of W, g, and p change due

to the smaller length and CPs distance of synthetic data sets with changes every

100 points. For SAXJS-S, SAXJS-T and SAXJS-τ , we use b: (3,4,5,6,7,8,9). For

the SAXJS-BOP, we use b: (3,4,5,6,7) due to the memory increase described in the

Chapter 2 by using the d: (2,3). For the SAXJS-τ , we use 2 to 10 by 1.

• KernelCPD: We tested the three available Kernel options: (linear, cosine, Gaussian).

We use the values from 1 to 10 by 1 for the Jump. The min-size varied from 10 to

50 by 10. The pen values varied from 1 to 55 by 5.

• RuLSIF: We used the same parameter settings of σ : (0.1, 0.2) and k : (5, 10, 15) as

suggested in [45]. The window size W was set according to the length of the data set

and the CPs distance. Therefore, for the change in every 100 steps, W varies from

50 to 100 by 10. To run the method online, we applied the same data smoothing and

peak detection strategy as SAXJS and used the same hyperparameters configurations

of g: (11,21,31,41), p: (5,10,15). As the PE divergence results scale differs from the

Jensen-Shannon distance, the Threshold varies from 0.1 to 2 by 0.1.

• TIRE: For all the scenarios, we use the same configuration set described in [14]

as the majority of the data sets largely overlap with ours, and the sensitivity

analyses of TIRE shows that its good performance does not critically depends on

its hyperparameters. The only hyperparameter we changed is the threshold ranging

from 0.05 to 0.55 by 0.01.

• BOCPDMS: For all the scenarios, we use the suggestion of hyperparameters

configuration described in [69]:

– Intensity: (10, 50, 100, 200)

– Gamma α0: (0.01, 0.1, 1, 10, 100)

– Gamma β0: (0.01, 0.1, 1, 10, 100)

Gerrit JJ Van den Burg and Christopher KI Williams [69] used 30 minutes as the

algorithm time out, but because our time series has a larger length, we used 3 hours

as the time out. The threshold change is different for each case. The threshold

for the synthetic data set with changes every 100 intervals was from 50 to 400 by
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50. These values were determined through an empirical test, which compared the

threshold options from 1 to 10 with a range of 50 to 400.

4.4.2 Synthetic cases (interval 1000) and real-world case:

HASC Challenge 2011

As the CPs distances of the synthetic cases with changes every 1000 steps and

HASC Challenge 2011 are comparable, we utilize the same following parameter settings:

• SAXJS For every SAXJS version, we use the same W values from 300 to 800 by 100,

g: (81,101,201), p: (5,10,15,20), and Threshold from 0.3 to 0.8 by 0.01. Compared to

the configuration used in every 100 steps case, the values of W, g, p, and τ change

due to the larger length and CPs distance of synthetic data sets with changes every

1000 points. The τ varies from 2 to 15 by 1. We use the same configuration set for

the hyperparameters b, d, and Threshold as the other scenarios.

• KernelCPD: The Kernel, Jump, and pen values are the same for every data set.

The min-size varied from 50 to 150 by 10.

• RuLSIF: We use the same hyperparameter configuration described in [45], except

for W. The window size W, g, and p are always the same as SAXJS.

• TIRE: We use the same v1 and v2 configuration as the one described in [14] and

vary the threshold from 0.05 to 0.55 by 0.01.

• BOCPDMS: For all the scenarios, we use the suggestion of hyperparameters

configuration described in [69], except for the threshold. For this case, we use the

threshold of 50 to 400 by 50 for HASC and 1 to 10 for synthetic data.

4.4.3 Real-world cases: Bee dance and Run log

For all the SAXJS and other CPD algorithms, we utilize the same hyperparameter

configuration for the Bee dance and the Run log real-world cases, as both data sets are

comparable in CPs distance. The only hyperparameters that can change are the ones

related to window sizes, as the Bee dance time series is longer than Run-log time series.
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• SAXJS For every SAXJS version, we use the same W : (30,40,50,60,70,80,90,100),

g: (5,11,15), p: (5,10,15) due to the length and CPs distance of the series. We use

the same configuration set for the hyperparameters b, d, and Threshold as the other

scenarios. For the τ , we use 2 to 10 by 1 due to the smaller length of the series in

comparison to HASC and synthetic data with changes in every 1000 steps length.

• KernelCPD: The Kernel, Jump, and pen values are the same for every data set.

For the Run-log, the min-size varied from 2 to 90 by 2. For the Bee dance, the

min-size varied from 10 to 140 by 10, including 5. For the Run log, the min-size

varied from 2 to 30 by 2 and from 30 to 90 by 10.

• TIRE: We use the same v1 and v2 configuration as the one described in [14] and

varied the threshold from 0.05 to 0.55 by 0.01. As the Run-log is the only data set

not used to evaluate TIRE, we test the window-size: (20, 30, 40, 50, 60, 70, 80, 90,

100).

• RuLSIF: We use the same hyperparameter configuration described in [45], except

for W. The window size W, g and p are always the same as SAXJS.

• BOCPDMS: As Bee Dance is also used in the BOCPDMS evaluation, we used

the same parameter configuration described in [35]. The threshold was the only

parameter different. We used thresholds: (50, 100, 150, 200, 250, 300). We use the

threshold from 1 to 10 by 1 for the Run log.

4.4.4 Real-world cases: Well log

The last real-world case to be explored is the Well log data set. For this data set,

we use the following parameter configuration for every CPD algorithm:

• SAXJS: For every SAXJS version, we use the same W : (60, 70, 80, 90, 100, 200,

300, 400), g: (5, 15, 25, 85), p: (5, 10, 15, 20). We use the same configuration set for

the hyperparameters b, d, and Threshold as the other scenarios. For the τ , we use 2

to 10 by 1.

• KernelCPD: The Kernel, Jump, and pen values are the same for every data set.

The min-size varied from 10 to 140 by 10, including 5.

• TIRE: We use the same v1 and v2 configuration as the one described in [14] and

varied the threshold from 0.05 to 0.55 by 0.01.
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• RuLSIF: We use the same hyperparameter configuration described in [45], except

for W. The window size W, g and p are always the same as SAXJS.

• BOCPDMS: For all the scenarios, we use the suggestion of hyperparameters

configuration described in [69], except for the threshold. We use the threshold from

1 to 10 by 1 for this case.

4.4.5 Synthetic cases free of changes

For this data set, we employed a distinct approach aimed at assessing our Frame-

work’s ability to sustain robustness and refrain from detecting change points in series

where they are absent. As such, we exclusively evaluate our Framework using the optimal

values identified in each Grid Search with the minimal Threshold of 0.30 that we use in all

the experiments. Larger data sets, such as Synthetic data (changing every 1000 points),

HASC Challenge 1000 are tested with the time series free of changes of length of 50000.

Conversely, for smaller data sets such as Synthetic data (changing every 100 points), Bee

Dance, Well Log and Run Log we utilize the series with no changes of length 5000.



62

Chapter 5

SAXJS evaluation with different

scenarios

Our main goal, as described in Section 1.2, is to propose a novel CPD framework that

is online, and adaptable to different systems. To investigate if we achieve this goal,

in this Chapter, we evaluate our proposed framework performance and adaptability in

different scenarios using the data sets and metrics detailed in Chapter 4. By evaluating our

algorithm in different scenarios we are capable of answering the following three questions:

• Is SAX symbols’ distribution capable of providing good change point

detection?

• Is SAX symbols’ transition distribution capable of providing good change

point detection?

• Is Bag-of-Patterns (BOP) based distribution capable of providing good

change point detection?

We believe that the SAX symbols’, SAX symbols’ transitions, and BOP distributions,

based on their characteristics (discussed in Chapter 3), are transformations capable of

highligh a time series’s underlying patterns that lead to CPs. This section aims to evaluate

the capability of these three models in detecting CPs in synthetic and real-world scenarios

by comparing its results with state-of-the-art methods. To fine tune the algorithms, we

adopted a Grid Search approach on the hyperparameters described in Chapter 4 and

compare the best models of each state-of-art methods.

In Section 5.1, we investigate the capability of our framework to detect CPs in a

synthetic data set that includes changes in mean, variance, and coefficient. In Section 5.2,

5.3, 5.4 and 5.5, we test our algorithm with real-world CPs cases of accelerometer sensors,

bee dance sensors, nuclear magnetic resonance and pace of a runner during a training

session, respectively. In Section 5.6, we tested our algorithm capability of not detecting

false positives in a series with no change points. In Section 5.7, we present the Final

Remarks of the chapter by comparing and discussing the results of our framework and its

variations in the different scenarios.
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5.1 Synthetic cases: Jumping mean, Scaling variance,

and Changing coefficient

First, we evaluate our framework using six synthetic data sets with manually

inserted change points every 100 and 1000 steps to analyze the SAXJS capability to detect

mean, variance, and coefficient changes (also known as frequency changes).

Figure 5.1: (Synthetic data with change in every 100 steps). Illustrative time series samples
(upper) and the change point score obtained by SAXJS-T (lower). Black vertical lines
mark the true change points.

(a) JM 100 (b) SV 100

(c) CC 100

Source: Created by the author.

In Figures 5.1a, 5.1b, and 5.1c, we plotted samples of the synthetic data sets with

changes in every 100 steps (blue curves), true change points (black vertical lines), and

the change point score (red curves) obtained by SAXJS-T, the method with the biggest

average AUC. Analyzing the plots, we can see that the algorithm captures the mean and

variance changes, while there are more false positives for the change coefficient data set,

as shown in Figure 5.1c. In Figures 5.2a, 5.2b, and 5.2c, we can see that the algorithm

seems to capture all the changes, including the changing coefficient better, having the

peaks synchronized with the real change points.

Observing Table 5.1 and 5.2, we can see the AUC values for the synthetic data set

with changes in every 100 steps and every 1000 steps, respectively. The results show that

the SAXJS variations perform better in scaling variance and changing coefficients. The

jumping mean data set also has a satisfactory performance with an AUC higher than 0.8

for all SAXJS versions, considering changes every 100 and 1000 steps. However, it was

inferior to TIRE results.



5.1. Synthetic cases: Jumping mean, Scaling variance, and Changing coefficient 64

Figure 5.2: (Synthetic data with change in every 1000 steps). Illustrative time series
samples (upper) and the change point score obtained by SAXJS-T (lower). Black vertical
lines mark the true change-points.

(a) JM 1000 (b) SV 1000

(c) CC 1000

Source: Created by the author.

Table 5.1: AUC values for synthetic datasets with changes every 100 steps

JM 100 SV 100 CC 100 Average AUC
KernelCPD 0.830 0.307 0.313 0.483
RuLSIF 0.862 0.730 0.413 0.668
TIRE 0.906 0.881 0.385 0.724
BOCPDMS 0.260 0.818 0.290 0.456
SAXJS-S 0.850 0.807 0.436 0.698
SAXJS-T 0.882 0.922 0.498 0.767
SAXJS-τ 0.892 0.940 0.324 0.719
SAXJS-BOP 0.835 0.878 0.537 0.75

When evaluating a smaller data set with the changes happening every 100 points, all

the competitors’ average AUC, except for TIRE, were below 0.7, and all SAXJS variations’

AUC were larger than 0.7, except for SAXJS-S. The highest average AUC value was the

SAXJS-T of 0.767, followed by SAXJS-BOP with an AUC of 0.75 and TIRE with an AUC

of 0.724.

For the data set with changes in every 1000 steps, the SAXJS variation AUC average

was better than its competitors, except for RuLSIF in comparison to SAXJS-S. RulSIF

showed satisfactory results with an average AUC of 0.905 which is larger than SAXJS-S

of 0.793. The best result was the SAXJS-BOP with an average AUC of 0.968, followed

by an average AUC of 0.950 for the SAXJS-T method. As expected, the SAXJS-BOP

has a better result when the data set is larger because the aggregation of SAX symbols

generated more symbols, requiring a larger data set to have a considerable frequency of

every symbol. Analyzing Table 5.3, we can observe that SAXJS variations have a smaller
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Table 5.2: AUC values for synthetic datasets with changes every 1000 steps

JM 1000 SV 1000 CC 1000 Average AUC
KernelCPD 0.953 0.123 0.579 0.552
RuLSIF 0.936 0.949 0.830 0.905
TIRE 0.980 0.756 0.587 0.774
BOCPDMS 0.326 0.948 0.978 0.751
SAXJS-S 0.816 0.796 0.766 0.793
SAXJS-T 0.898 0.945 0.970 0.938
SAXJS-τ 0.945 0.954 0.951 0.950
SAXJS-BOP 0.949 0.978 0.976 0.968

Table 5.3: (Synthetic data with changes in every 1000 points). Detection delay comparison
of each CPD method with best parameters setting according to AUC.

JM 1000 SV 1000 CC 1000 Average Delay
KernelCPD 8.09 62.10 43.21 37.80
RulSIF 9.67 11.16 39.20 20.01
TIRE 15.81 76.59 53.19 48.53
BOCPDMS 22.75 18.84 35.34 25.64
SAXJS-S 6.39 8.86 33.20 16.15
SAXJS-T 7.69 13.27 29.39 16.78
SAXJS-tau 8.84 11.79 29.93 16.85
SAXJS-BOP 16.55 16.35 29.04 20.65

average delay than its competitors, except for SAXJS-BOP that has a larger delay than

RulSIF.

5.2 Real-world cases: HASC Challenge 2011

We tested our framework in four different real-world databases. In this Section, we

discuss about the tests in the first real-world database. The first is the HASC (Human

Activity Sensing Consortium) Challenge, a collaborative project to collect accelerometer

sensor data in wearable devices. The accelerometer data have 3-dimensional information

that we use l2-norm, which is the square root of the sum of the squared vectors, to transform

in 1-dimensional following [45]. We evaluate our method with the five first different

participant information: person101, person102, person103, person104, and person105, as

outlined in the reference [45].

In Figures 5.3a, 5.3b, 5.3c, 5.3d and 5.4, we plotted examples of HASC original

time series (blue curve), true change points (vertical black lines), and the change point

score obtained by SAXJS (red curves). Observing the Figures 5.3a, 5.3c, 5.3d and 5.4, it
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Figure 5.3: (HASC Challenge data from person101 to person104) Illustrative time series
samples (upper) and the best change point score obtained by our proposed method (lower).
Black vertical lines mark the true change points.

(a) Person101 (b) Person102

(c) Person103 (d) Person104

Source: Created by the author.

Figure 5.4: (HASC Challenge data person105). Illustrative time series samples (upper)
and the best change point score obtained by our proposed method (lower). Black vertical
lines mark the true change-points.

Source: Created by the author.

is possible to conclude that Person101, Person103, Person104 and Person105 have very

similar behaviours. It shows that the algorithm captures all changing behaviors but has

difficulty capturing the frequency changes between 5000 and 6000 and 7000 and 8000,

which is difficult to visualize even for human eyes. Comparing these four results, Person103

has the most prominent Jensen-Shannon distance (red curve) peak between 7000 and 8000.

The Person102 (Figure 5.3b) is the most different participant compared to others, and

it has more variant CPs distances. Analyzing its Figure, we can see false positive CPs

between timestamps 6000 and 7000 and the difficulty in capturing the variance change

between timestamps 2000 and 3000.

Analyzing the results in Table 5.4 considering the tolerance interval of I = 100,
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Table 5.4: AUC values for HASC Challenge using I = 10.

person101 person102 person103 person104 person105 Average
KernelCPD 0.664 0.545 0.710 0.605 0.544 0.619
RuLSIF 0.557 0.404 0.633 0.485 0.558 0.527
TIRE 0.074 0.008 0.536 0.010 0.109 0.147
BOCPDMS 0.523 0.571 0.545 0.667 0.597 0.581
SAXJS-S 0.778 0.818 0.759 0.774 0.875 0.801
SAXJS-T 0.804 0.795 0.811 0.788 0.875 0.815
SAXJS-τ 0.845 0.801 0.837 0.863 0.875 0.844
SAXJS-BOP 0.829 0.732 0.805 0.755 0.879 0.8

Table 5.5: AUC values for HASC Challenge using I = 100.

person101 person102 person103 person104 person105 Average
KernelCPD 0.978 0.954 0.997 0.967 0.929 0.965
RuLSIF 0.875 0.946 0.864 0.875 0.875 0.888
TIRE 0.863 0.848 0.917 0.917 0.917 0.892
BOCPDMS 0.799 0.812 0.839 0.872 0.782 0.821
SAXJS-S 0.875 0.864 0.882 0.875 0.875 0.874
SAXJS-T 0.875 0.930 0.917 0.899 0.875 0.899
SAXJS-τ 0.917 0.955 0.958 0.917 0.917 0.933
SAXJS-BOP 0.929 0.880 0.942 0.902 0.949 0.920

Table 5.6: (HASC Challenge 2011 data). Detection delay comparison of each CPD method
with best parameters setting according to AUC for tolerance interval I = 100.

person101 person102 person103 person104 person105 Average
KernelCPD 43.25 16.82 12.42 47.75 51.58 34.36
RulSIF 15.33 35.20 16.00 15.44 14.56 19.31
TIRE 38.56 33.12 22.60 31.80 33.12 31.84
BOCPDMS 23.55 14.44 10.78 5.5 14.22 13.70
SAXJS-S 22.56 8.75 13.30 20.78 12.89 15.66
SAXJS-T 25.33 12.00 15.00 19.60 9.22 16.23
SAXJS-tau 9.27 21.30 14.18 8.70 13.10 13.31
SAXJS-BOP 14.64 16.50 13.27 20.73 11.45 15.32

it is possible to conclude that all SAXJS variations have competitive results. However,

in most cases, it is not better than KernelCPD, and SAXJS-S is worse than TIRE and

RuLSIF. But considering a more restrictive interval such as I = 10 showed in Table 5.5,

the SAXJS has better results than other methods due to its low delay to find the change

point as shown in the delay time mean in Table 5.6. All SAXJS versions have a detection

delay time smaller than the other algorithms, except for the BOCPDMS. Despite the

slight detection delay of BOCPDMS, it did not perform satisfactorily in CPs detection,

considering a tolerance interval of I = 10.

SAXJS-τ achieves the best result of all SAXJS options in both interval tolerance.

Despite its superior performance, all versions exhibit similar average AUC results, with
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the largest difference of AUC average being 0.059 observed between the average AUC

of SAXJS-S and SAXJS-τ within the tolerance interval I = 100. Furthermore, across

all tolerance intervals, the average AUC values for all versions consistently exceed 0.8,

indicating a satisfactory outcome.

5.3 Real-world cases: Bee dance

In this Section, we present and discuss about the results of the second real-world

database. The second real-world data set was a set of bee positions used to identify

the changes in bee dance. The Figures 5.5a, 5.5b, 5.5c, 5.5d, 5.5e and 5.5f shows the 6

sequences of bee positions we use to test our framework. Analyzing its Figures, we notice

that the changes are more subtle and smooth than the other CPs data set we analyzed.

The subtlety of changes can be the reason why the AUC results for SAXJS variations and

other CPD methods are not as satisfactory as for other datasets, especially for Sequence 1,

2, and 3. For these three Sequences, the only method with good results with AUC larger

than 0.8 was RuLSIF, and SAXJS-τ was the only one besides RuLSIF with an AUC larger

than 0.75.

Table 5.7: AUC values for Bee Dance using I = 10.

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Average
KernelCPD 0.621 0.634 0.678 0.660 0.750 0.660 0.667
RuLSIF 0.588 0.619 0.808 0.730 0.789 0.857 0.732
TIRE 0.323 0.365 0.225 0.436 0.340 0.663 0.392
BOCPDMS 0.344 0.281 0.394 0.254 0.537 0.584 0.399
SAXJS-S 0.497 0.472 0.681 0.690 0.509 0.955 0.634
SAXJS-T 0.521 0.521 0.692 0.730 0.727 0.953 0.691
SAXJS-τ 0.698 0.683 0.782 0.750 0.883 1.0 0.799
SAXJS-BOP 0.561 0.637 0.719 0.782 0.811 0.855 0.728

The poor performance of the SAXJS variations in these 3 sequences is further

elucidated by analyzing Figures 5.5a, 5.5b, and 5.5c. It becomes evident that the red curve

consistently maintains elevated values across all series transformations, not confined solely

to the occurrence of change points. This characteristic poses a challenge in accurately

identifying the peaks.

Analyzing Sequence 4 AUC results, it becomes evident that the outcomes of

SAXJS variations surpass those of Sequences 1, 2, and 3, Specifically, SAXJS-T, SAXJS-τ ,

SAX-BOP and RuLSIF exhibit AUC values exceeding 0.7. Observing the Sequence 4

(Figure 5.5d), the Jensen-Shannon distance behavior of keeping high values during all the
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Figure 5.5: (Bee dance data Sequence 1 to 6. Illustrative time series samples (upper) and
the best change point score obtained by our proposed method (lower). Black vertical lines
mark the true change points.

(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

(e) Sequence 5 (f) Sequence 6

Source: Created by the author.

series is also observed in this Sequence, but less predominant than in Sequence 1 and 2. It

also seems to have many false positive peaks.

For Sequence 5, the SAXJS-τ and SAXJS-BOP have satisfactorily AUC values

higher than 0.80, and no other CPD method has similar performance. Analyzing Figure 5.5e,

we can observe the behavior of high values in some parts of the series, but overall, it is

possible to observe that most of the peaks match the real CPs. For Sequence 6, RuLSIF

has the bigger AUC of of all state-of-the-art methods, its AUC is 0.857, and all SAXJS

variations have a bigger AUC than 0.90, except for SAXJS-BOP. SAXJS-τ obtains a score

of 1.0. In the Sequence 6 (Figure 5.5f), it is possible to notice that peaks match the real

CPs, and the peaks that do not match are inside the interval of tolerance.

In conclusion, SAXJS’ AUC scores are comparable to other CPD methods, having

bad performance in Sequences 1 and 2. In Sequences 4, 5, and 6, SAXJS’ and RuLSIF’s

scores improve, while the other methods, except for KernelCPD in Sequence 5, remain

below 0.7. SAXJS-τ obtains the best score in Sequences 1,2,5 and 6. SAXJS-BOP obtained

the best AUC in Sequence 4, and RuLSIF had the best result in Sequence 3.
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5.4 Real-world cases: Well log

In this Section, we evaluate our framework with the third real-world case called

Well log. Well log data set is a representation of a nuclear magnetic response data and

changes in the time series’ mean correlate with alterations in rock stratification. These

time series also have some noisy data represented as anomalies with abrupted low values.

As seen in Table 5.8, all SAXJS variations have higher results than other state-of-the-art

CPD methods, showing its robustness to noisy data. The lowest AUC score for an SAXJS

version was 0.848, and the highest AUC score from other CPD methods was 0.799. These

satisfactory results can be seen in Figure 5.6.

Figure 5.6: (Well log data). Illustrative time series samples (upper) and the best change
point score obtained by our proposed method (lower). Black vertical lines mark the true
change-points.

Source: Created by the author.

Table 5.8: AUC values for Well log using I = 10.

Well log
KernelCPD 0.778
RuLSIF 0.799
TIRE 0.541
BOCPDMS 0.710
SAXJS-S 1.0
SAXJS-T 0.848
SAXJS-τ 1.0
SAXJS-BOP 0.917

It shows that all points of real CPs (vertical black lines) correspond to peaks in the

Jensen-Shannon distance series (red curves). Although we can observe other peaks in the

series of Jensen-Shannon values, the peaks corresponding to real CPs are the only ones

that exceed the threshold of 0.75.
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Observing the Well log data shape in Figure 5.6, it becomes evident that the

predominant alterations are in amplitude rather than frequency. This observation could

explain why SAXJS-S has the highest result of AUC, along with SAXJS-τ , as SAXJS-S is

not adapted to capture shifts in frequency satisfactorily.

5.5 Real-world cases: Run log

In this Section, we discuss about the last analyzed real-world case: the Run log

data. Run log set represents the pace of a runner during a training session. This data set

is the smallest time series from the Real-World and synthetic cases, and it has the worst

SAXJS performance of all series as observed in Table 5.9. These results may be due to

the difficulty of SAXJS methods dealing with fewer points. However, despite SAXJS-BOP

being the version that needed the largest data length, its result was the second highest

among all SAXJS variations. Although the method did not stand out, its AUC results

were comparable to other CPD methods. In Figure 5.7, we can see that some real CPs

match with Jensen-Shannon peaks, and others do not.

Figure 5.7: (Run log data). Illustrative time series samples (upper) and the best change
point score obtained by our proposed method (lower). Black vertical lines mark the true
change-points.

Source: Created by the author.
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Table 5.9: AUC values for Run log using I = 5.

Run Log
KernelCPD 0.944
RuLSIF 0.750
TIRE 0.713
BOCPDMS 0.867
SAXJS-S 0.746
SAXJS-T 0.758
SAXJS-τ 0.786
SAXJS-BOP 0.784

5.6 Syntethic case: no change points

In this section, we analyze the performance of our Framework in a change point

free environment. To conduct this analysis, we retrieve the optimal parameters from

the Grid Search for each SAXJS version and other datasets. Subsequently, we execute

the best parameter configuration with the minimal Threshold of 0.30 on the time series

devoid of change points according to the data set size. The parameter configurations of

data sets with bigger length such as JM 1000, SV 1000, CC 1000, all HASC Challenge

2011 participantes were tested in the time series with no change points of size 50000. In

contrast, the parameter configurations of data sets with smaller length such as JM 100,

SV 100, CC 100, all Bee dance sequences, Well Log and Run Log were tested in the time

series free with change points of size 5000. In order to evaluate the results, we use the

False Positive Rate(FPR) described in [3] which calculates the rate of False Positive in

comparison to all the points in the data set.

In Table 5.10, the outcomes of the optimal configurations for SAXJS-S and

SAXJS-T are presented, while Table 5.11 showcases the results corresponding to the best

setups of SAXJS-τ and SAXJS-BOP. Comparing all the SAXJS versions, we can conclude

that SAXJS-S has the most optimal results with 14 FPR results being equal to 0.000

(highlighted in blue) and no FPR larger than 0.050 (highlighted in red) which means a

more than 5% of the data being considerate False Positive. The second best result was

SAXJS-τ with 8 FPR with 0.000 as a result and 3 above 0.050. The third was SAXJS-T

with 6 FPR equal to 0.00 and 3 superior to 0.050. The worst result was SAXJS-BOP with

1 FPR equal to 0.000 and 3 larger than 0.050.

The superior performance of SAXJS-S can be attributed to its utilization of less

symbols when comparate to other SAXJS versions. SAXJS-S utilizes only b symbols, which

is the number of possible SAX symbols, while SAXJS-T and SAXJS-τ use b2 symbols and

SAXJS-BOP considers bd being d the number of neighbors to concatenate into a symbol.

By employing fewer symbols, less data is required to achieve the objective of avoiding a
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Table 5.10: (SAXJS-S and SAXJS-T) False Positive Rate(FPR) for all the data sets with
its best parameters configurations previously set with past experiments using Grid Search.

SAXJS-S SAXJS-T
Data set Best configuration FPR Best configuration FPR
JM 100 W = 60, b = 9, g =

31, p = 15
0.000 W = 50, b = 3, g =

31, p = 15
0.004

SV 100 W = 90, b = 9, g =
11, p = 10

0.000 W = 100, b = 7,
g = 31, p = 15

0.020

CC 100 W = 90, b = 8, g =
41, p = 15

0.000 W = 90, b = 9, g =
41, p = 15

0.017

JM 1000 W = 300, b = 8,
g = 101, p = 20

0.000 W = 500, b = 9,
g = 201, p = 20

0.000

SV 1000 W = 300, b = 9,
g = 101, p = 15

0.000 W = 500, b = 9,
g = 201, p = 20

0.000

CC 1000 W = 900, b = 8,
g = 201, p = 15

0.000 W = 900, b = 9,
g = 201, p = 15

0.000

HASC 2011 p101 W = 300, b = 5,
g = 201, p = 20

0.000 W = 500, b = 4,
g = 201, p = 5

0.000

HASC 2011 p102 W = 300, b = 5,
g = 201, p = 20

0.000 W = 200, b = 9,
g = 201, p = 20

0.006

HASC 2011 p103 W = 200, b = 5,
g = 81, p = 15

0.000 W = 500, b = 9,
g = 201, p = 5

0.000

HASC 2011 p104 W = 300, b = 5,
g = 201, p = 20

0.000 W = 200, b = 7,
g = 201, p = 10

0.001

HASC 2011 p105 W = 300, b = 5,
g = 201, p = 20

0.000 W = 300, b = 5,
g = 201, p = 20

0.000

Bee dance Seq1 W = 30, b = 5, g =
5, p = 15

0.005 W = 30, b = 6, g =
5, p = 5

0.068

Bee dance Seq2 W = 30, b = 7, g =
15, p = 5

0.012 W = 40, b = 5, g =
5, p = 5

0.065

Bee dance Seq3 W = 60, b = 4, g =
5, p = 15

0.000 W = 90, b = 6, g =
5, p = 20

0.025

Bee dance Seq4 W = 30, b = 9, g =
5, p = 5

0.033 W = 40, b = 4, g =
5, p = 5

0.057

Bee dance Seq5 W = 30, b = 5, g =
5, p = 5

0.005 W = 50, b = 4, g =
5, p = 5

0.040

Bee dance Seq6 W = 40, b = 3, g =
5, p = 5

0.000 W = 40, b = 3, g =
15, p = 5

0.014

Run log W = 30, b = 4, g =
11, p = 5

0.002 W = 30, b = 6, g =
15, p = 10

0.035

Well log W = 60, b = 3, g =
25, p = 5

0.000 W = 60, b = 3, g =
15, p = 20

0.003

sparse probability distribution vector and prevents the calculation of Jensen-Shannon of

showing anomalous results. This hypotheses of less symbols is confirmed by observing the

both tables and analysing that instances of 0.000 in FPR for SAXJS-S, absent in SAXJS-τ ,
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Table 5.11: (SAXJS-τ and SAXJS-BOP) False Positive Rate(FPR) for all the data sets
with its best parameters configurations previously set with past experiments using Grid
Search.

SAXJS-τ SAXJS-BOP
Data set Best configuration FPR Best configuration FPR
JM 100 W = 60, b = 4, τ = 11,

g = 41, p = 15
0.013 W = 70, d = 2, b = 4,

g = 41, p = 15
0.017

SV 100 W = 100, b = 5, τ = 7,
g = 21, p = 15

0.008 W = 100, d = 2, b = 4,
g = 41, p = 15

0.014

CC 100 W = 50, b = 9, τ = 10,
g = 11, p = 5

0.056 W = 50, d = 3, b = 7,
g = 11, p = 5

0.056

JM 1000 W = 300, b = 8, τ = 3,
g = 201, p = 20

0.000 W = 400, d = 3, b = 4,
g = 201, p = 10

0.006

SV 1000 W = 300, b = 9, τ =
14, g = 201, p = 20

0.000 W = 700, d = 3, b = 5,
g = 201, p = 20

0.005

CC 1000 W = 500, b = 9, τ = 2,
g = 201, p = 20

0.000 W = 500, d = 2, b = 7,
g = 201, p = 20

0.000

HASC 2011 p101 W = 600, b = 7, τ =
11, g = 201, p = 5

0.000 W = 600, d = 3, b = 7,
g = 201, p = 20

0.005

HASC 2011 p102 W = 400, b = 6, τ = 6,
g = 101, p = 10

0.000 W = 200, d = 3, b = 4,
g = 201, p = 15

0.006

HASC 2011 p103 W = 500, b = 8, τ = 8,
g = 201, p = 5

0.000 W = 500, d = 3, b = 6,
g = 201, p = 20

0.005

HASC 2011 p104 W = 600, b = 9, τ =
14, g = 201, p = 10

0.000 W = 600, d = 3, b = 7,
g = 201, p = 10

0.007

HASC 2011 p105 W = 500, b = 7, τ = 7,
g = 201, p = 20

0.000 W = 600, d = 3, b = 7,
g = 201, p = 10

0.007

Bee dance Seq1 W = 60, b = 5, τ = 10,
g = 15, p = 15

0.021 W = 30, d = 3, b = 7,
g = 5, p = 5

0.052

Bee dance Seq2 W = 50, b = 6, τ = 10,
g = 5, p = 5

0.068 W = 30, d = 3, b = 7,
g = 5, p = 5

0.052

Bee dance Seq3 W = 70, b = 4, τ = 10,
g = 11, p = 11

0.012 W = 100, d = 3, b = 4,
g = 11, p = 15

0.021

Bee dance Seq4 W = 80, b = 7, τ = 4,
g = 5, p = 15

0.024 W = 30, d = 3, b = 4,
g = 11, p = 15

0.028

Bee dance Seq5 W = 40, b = 7, τ = 10,
g = 11, p = 5

0.059 W = 30, d = 3, b = 7,
g = 5, p = 10

0.022

Bee dance Seq6 W = 50, b = 7, τ = 9,
g = 11, p = 10

0.032 W = 40, d = 2, b = 3,
g = 11, p = 10

0.033

Run log W = 60, b = 4, τ = 4,
g = 15, p = 15

0.018 W = 30, d = 2, b = 2,
g = 11, p = 15

0.014

Well log W = 70, b = 7, τ = 7,
g = 15, p = 20

0.019 W = 60, d = 3, b = 2,
g = 25, p = 20

0.017

occurred solely within smaller datasets where the window size (W) was either smaller or

equal to 100.
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The SAXJS-T and SAXJS-τ were very similar with a difference of only 2 FPR

with value 0.000 in SAXJS-τ . In conclusion, all versions of SAXJS yielded satisfactory

results, with numerous instances of FPR equal to 0.000 and only a few values equal to

or exceeding 0.050, except for SAXJS-BOP, which had only one instance of 0.000 FPR.

SAXJS-BOP bad performance can be explained as it needs a larger window size(W) in

comparison to others, which reinforces its necessity of more data to work properly.

5.7 Final Remarks

This chapter presents the results of all SAXJS variations and other CPD methods

in diverse scenarios, including synthetic data sets and real-world cases with different

characteristics, such as length, number of CPs, and CPs distances. Analyzing the outcomes

of CPD in all these real-world cases, it is evident that all variations of SAXJS have adapted

well to diverse contexts.

SAXJS has the largest AUC for all synthetic and real-world data, except for Run

log and HASC with a tolerance interval of I = 100. Despite not having the best AUC

result, the AUC values of all SAXJS variations are satisfactory and above 0.7 in both cases.

In general, SAXJS has the best AUC result in 5 out of 7 analysed cases (in analyzed data,

we include synthetic data with changes every 100 and 1000, HASC with interval tolerance

of I = 10 and I = 100, Bee dance, Well log, Run log), approximately 71% of success rate.

All SAXJS variations have very similar results, although SAXJS-S when compared

to other SAXJS options, has the worst performance in 5 out of 8 analyzed context

(including the synthetic data without change points inserted). SAXJS-S only achieves its

best results compared to other SAXJS versions in the environment free of change points

and the Well Log context, where there is no frequency shift, which evidences its difficulty

in capturing this type of change. The difficulty SAXJS-S faces in capturing frequencies

becomes more apparent when analyzing a synthetic data set. In this scenario, its AUC

demonstrates a less favorable performance compared to most other CPD methods when

assessing coefficient changes.

Consequently, we deduce that constructing a probability distribution based on

the connections between SAX symbols, and the different aspects between SAXJS-S and

SAXJS-T versions reveals positive outcomes. Although SAXJS-τ has the largest AUC

results compared to SAXJS-T, the largest AUC difference between the methods is 0.152

in Well log data. The performance of SAXJS-τ on time series without change points also

surpassed that of SAXJS-T, albeit by a narrow margin of only 2 FPR values at 0.000.

SAXJS-BOP also shows satisfactory AUC even in small data sets such as Run log and Bee
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dance, which could be a withdrawal of the method. However, SAXJS-BOP had the worst

and unsatisfactory result in the analysis of the scenario with the absence of change points.
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Chapter 6

Conclusion and Future Directions

This Dissertation proposes a framework to detect change points in univariate time series. It

is an important field with several applications in different contexts, such as climate change,

human activity detection, health monitoring, and image feature selection. There are

decades of study in change point detection, still, the necessity of online, low computational

cost and adaptable to multiple systems algorithms remains as a solution to deal with

streaming large data.

The framework comprises five steps: SAX transformation, probability distribution

calculation, Jensen-Shannon distance calculation, and Data smoothing and peak detection.

As Data smoothing and peak detection steps add more points to the sliding window,

in Future Work, we plan to investigate new techniques to detect the peaks using its

prominence information and then reduce the number of points ahead of time t needed to

detect the change point. Consequently, by reducing the number of points ahead of t, we

ensure that the algorithm is closer to real-time.

The probability distribution calculation is the most important step as we introduce

four alternatives. The first option corresponds to the SAXJS-S version and consists of

calculating the probability distribution based on the frequency of SAX symbols. The

second option corresponds to SAXJS-T and SAXJS-τ . In these variations, we introduce a

new data representation based on a graph construction of the SAX connections. The only

difference between SAXJS-T and SAXJS-τ is using a variable defined by the user called

τ , which is the jump in connections to construct the graph. The last option is to use a

variation of BOP introduced in our work in which the sliding window division is made

before the SAX transformation to keep its online characteristic.

We evaluate our framework’s ability to detect change points with a synthetic data

set with mean, variance, and coefficient changes every 100 and 1000 steps and other

real-world cases. In choosing real-world cases, we focus on benchmark data for change

point analysis from different contexts with different lengths and change point distances.

Our proposed algorithm has the most significant AUC (evaluation metric we use) compared

to other change point algorithms in most synthetic and real-world data, proving that our

framework competes with the literature and even outperforms it. After evaluating our

framework in a synthetic environment with changes in mean, variance and coefficient and
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in real-world scenarios, we proceeded to conduct an experiment with synthetic datasets

devoid of any inserted change points. In this experiment, SAXJS-S had the best result

and SAXJS-τ and SAXJS-T also demonstrate satisfactory outcomes. SAXJS-BOP was

the only SAXJS versions which exhibited poor performance.

In addition to the satisfactory results in AUC comparison, our framework has

other advantages when compared to different change point algorithms we tested, which

are its online, robustness to noise, and low computational cost nature. We conducted

tests using Change Point Detection (CPD) algorithms employing diverse strategies. The

algorithms selected for comparison with our framework include TIRE, KernelCPD, RuLSIF,

BOCPDMS, and ADAGA.

TIRE relies on a Subspace Model using autoencoder, KernelCPD employs a Kernel-

Based method, RuLSIF utilizes a Likelihood Ratio strategy based on estimating density

ratio, and BOCPDMS operates as a probabilistic method with model selection. Kernel-

CPD and TIRE are offline, and RuLSIF has been adapted for online use in this study.

BOCPDMS is an online method but is parametric. We tried to test our data sets with

ADAGA, a nonparametric and online application, although we had a problem with runtime,

and the analysis was left for future work. SAXJS has another advantage in comparison to

RuLSIF which is it does not have a cross-validation step that may burden the process.

As Future work, we also plan to do a sensitivity analysis of our algorithm to test

its robustness to different hyperparameter configurations and use statistical tests to define

the best threshold options. In addition, we plan to construct an open source library of

our framework and adapt our algorithm for multivariate context by using other dimension

information in SAX transformation.

Previous to this work, in [55], we presented some preliminary results of this

dissertation about the use of SAXJS-τ in the context of wearable sensor data.
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Appendix A

ADAGA parameter configurations

and Experiments results

In this chapter, we outline the hyperparameters intended for utilization in grid search for

ADAGA, resenting their respective configurations for every dataset under examination.

Subsequently, we provide the results of the ADAGA that were successfully executed.

ADAGA uses the following hyperparameters:

• kernel-approx: kernel approximation strategy. It has three options to approximate

the Gaussian Kernel (inducing points, QFF, and linear approximation).

• n: number of points to use in the approximation strategy.

• Kernel: kernel model.

• min-window-size: Minimum number of points in a window.

• n-batchs: number of batches in which the overall trajectory is partitioned.

• delta: the delta hyperparameter to calculate the thresholds.

We planned to use the batch size as 1 for all scenarios to obtain more accurate

results, as suggested in [7]. We would test all the kernel possibilities: Radial Basis Function

(RBF), Rational Quadratic (RQ), Matern52, Linear, and Periodic, and all three possible

methods for calculating Kernel approximation. The hyperparameters change according to

the length of the series and the Kernel approximation approach. For each data set, we use

the following hyperparameter configuration:

• Synthetic cases (interval 100):

– For the inducing points strategy:

∗ n:(10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210)

∗ min-window-size: (15, 45, 75, 115, 145, 175, 205, 235, 265, 295)

∗ delta: (0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

– For the QFFs strategy:
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∗ n:(10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210)

∗ min-window-size: (15, 45, 75, 115, 145, 175, 205, 235, 265, 295)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

– For the Linear approximation strategy:

∗ min-window-size: (15, 45, 75, 115, 145, 175, 205, 235, 265, 295)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

• Synthetic cases (interval 1000) and real-world case: HASC Challenge

2011:

– For the inducing points strategy:

∗ n:(10, 50, 100, 200, 300, 400, 700, 800)

∗ min-window-size: (15, 55, 115, 215, 315, 415, 515, 615)

∗ delta: (0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

– For the QFFs strategy:

∗ n:(10, 50, 100, 200, 300, 400, 700, 800)

∗ min-window-size: (15, 55, 115, 215, 315, 415, 515, 615)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

– For the Linear approximation strategy:

∗ min-window-size: (15, 55, 115, 215, 315, 415, 515, 615, 715, 815)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

• Real-world cases: Bee dance and Run log:

– For the inducing points strategy:

∗ n:(10, 30, 50, 70, 90, 110)

∗ min-window-size: (15, 35, 55, 75, 95, 115)

∗ delta: (0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

– For the QFFs strategy:

∗ n:(10, 30, 50, 70, 90, 110)

∗ min-window-size: (15, 35, 55, 75, 95, 115)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

– For the Linear approximation strategy:

∗ min-window-size: (15, 35, 55, 75, 95, 115, 135, 145)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

• Real-world cases: Well log:
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– For the inducing points strategy:

∗ n:(10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210)

∗ min-window-size: (15, 45, 75, 115, 145, 175, 205, 235)

∗ delta: (0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

– For the QFFs strategy:

∗ n:(10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210)

∗ min-window-size: (15, 45, 75, 115, 145, 175, 205, 235)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

– For the Linear approximation strategy:

∗ min-window-size: (15, 45, 75, 115, 145, 175, 205, 235, 265, 295)

∗ delta: (0.05, 0.1, 0.2, 0.3, 0.4)

As the Run log is the smallest time series we tested, we could run the grid search

just for it without exceeding the 5-day limit. The result for the Run log was an AUC

of 0.767, very similar to other algorithms whose AUC values varied between 0.944 and

0.713. We could test ADAGA default hyperparameter configuration with the synthetic

data set (changes every 100 steps), and the results are unsatisfactory, as we can observe in

Table A.1.

Table A.1: AUC values for synthetic datasets with changes every 100 steps

JM 100 SV 100 CC 100 Average AUC
ADAGA 0.275 0.402 0.405 0.361
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Appendix B

Detection delay tables

In this chapter, we present the detection delay information for all SAXJS variations and

state-of-the-art methods for all data sets, except those with an interval tolerance greater

than 50. The Tables B.1, B.2, B.3, B.4 and B.5 shows the results for synthetic data sets

with changes every 100 steps, HASC, Bee dance, Well Log and Run log, respectively.

Observing all these tables, it is possible to notice that detection delay variation between

CPD methods is small, and it does not bring insights into the quality of the methods.

Table B.1: (Synthetic data with changes in every 100 points). Detection delay comparison
of each CPD method with best parameters setting according to AUC.

JM 100 SV 100 CC 100 Average Delay
KernelCPD 2.93 4.58 4.75 4.09
RulSIF 3.69 4.39 3.89 3.99
TIRE 2.88 3.57 5.04 3.83
BOCPDMS 5.00 2.74 3.60 3.78
SAXJS-S 3.00 2.77 5.82 3.86
SAXJS-T 2.71 3.38 4.03 3.37
SAXJS-τ 2.54 3.20 4.12 3.29
SAXJS-BOP 3.29 3.34 5.14 3.92

Table B.2: (HASC Challenge 2011 data). Detection delay comparison of each CPD method
with best parameters setting according to AUC for tolerance interval I = 10.

person101 person102 person103 person104 person105 Average
KernelCPD 3.14 0.00 3.29 2.75 3.62 2.56
RulSIF 5.83 4.75 4.86 6.33 4.57 4.39
TIRE 5.00 0.00 5.20 2.00 8.00 4.04
BOCPDMS 2.14 2.89 1.50 3.67 2.57 2.13
SAXJS-S 5.12 4.71 6.00 5.62 5.00 4.41
SAXJS-T 4.33 4.14 6.25 4.12 4.67 3.92
SAXJS-τ 4.00 5.62 3.22 3.44 3.33 3.27
SAXJS-BOP 3.22 4.57 5.38 5.50 4.55 3.87
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Table B.3: (Bee dance data). Detection delay comparison of each CPD method with best
parameters setting according to AUC.

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Average
KernelCPD 4.06 4.45 4.62 5.06 4.21 4.00 4.40
RulSIF 4.73 5.33 4.38 4.79 4.65 4.42 4.72
TIRE 4.38 5.00 5.60 5.86 5.94 5.18 5.33
BOCPDMS 6.67 6.64 4.20 4.33 5.11 4.38 5.22
SAXJS-S 4.40 5.00 4.86 5.00 5.06 4.46 4.80
SAXJS-T 4.80 5.65 4.40 4.36 3.95 5.23 4.73
SAXJS-τ 5.69 5.24 7.00 6.50 3.96 3.93 5.39
SAXJS-BOP 4.25 5.10 5.00 4.20 3.61 3.92 4.35

Table B.4: (Well Log data). Detection delay comparison of each CPD method with best
parameters setting according to AUC.

Well Log
KernelCPD 2.82
RulSIF 4.50
TIRE 4.00
BOCPDMS 4.00
SAXJS-S 3.70
SAXJS-T 3.11
SAXJS-τ 5.40
SAXJS-BOP 2.90

Table B.5: (Run Log data). Detection delay comparison of each CPD method with best
parameters setting according to AUC.

Run Log
KernelCPD 1.25
RulSIF 2.33
TIRE 1.40
BOCPDMS 1.25
ADAGA 0.75
SAXJS-S 1.33
SAXJS-T 1.67
SAXJS-τ 1.25
SAXJS-BOP 2.00
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