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Resumo
Neste trabalho, estudaremos folheações holomorfas de grau quatro no espaço proje-

tivo complexo P𝑛, com 𝑛 ≥ 3, com especial foco em obter um teorema estrutural para essas
folheações. Mais ainda, para uma folheação ℱ de grau 𝑑 ≥ 4 com 𝑘∘-jato suficientente
alto, provamos que ℱ é transversalmente afim fora de uma hipersuperfície compacta, ou
ℱ é transversalmente projetiva fora de uma hipersuperfície compacta, ou ℱ é o Pull-back
de uma folheação em P2 por um mapa racional.

Palavras-chaves: folheação holomorfa; integral primeira racional; estrutura
transversal afim; estrutura transversal projetiva pura; pull-back de folheações;
seqüencias de godbillon-vey.



Abstract
In this work, we study holomorphic foliations of degree four on complex projective

space P𝑛, where 𝑛 ≥ 3, with a special focus on obtaining a structural theorem for these
foliations. Furthermore, for a foliation ℱ of degree 𝑑 ≥ 4 with a sufficiently high 𝑘𝑡ℎ-
jet, we prove that either ℱ is transversely affine outside a compact hypersurface, or ℱ is
transversely projective outside a compact hypersurface, or ℱ is the pull-back of a foliation
on P2 by a rational map.

Key words: holomorphic foliation; rational first integral; affine transverse struc-
ture; pure projective transverse structure; pull-back of foliations; godbillon-vey
sequences.
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1 Introduction

The study of Holomorphic Foliations has attracted the attention of many mathe-
maticians and has been gaining more attention in recent decades. For instance, foliations
are known to play an important role in the study of subvarieties of projective varieties. One
beautiful example is a result given by Bogomolov [1] about the famous Green-Griffiths-
Lang conjecture. On the other hand, techniques from algebraic geometry have been ex-
tremely useful in the study singular holomorphic foliations, for instance, J.-P. Jouanolou,
in his celebrated Lectures Notes [11] proved that a generic vector field of degree than one
on the complex projective plane does not admit any invariant algebraic curve.

Specifically, in Brazil, the theory of holomorphic foliations has had its beginnings
with the works of Ivan Kupka, Airton Medeiros, César Camacho, Jacob Palis, Alcides
Lins Neto, Paulo Sad, Marcio Soares, among others. They were important to consolidate
a very active research area in Brazil.

Among the attention that researchers of holomorphic foliations dedicate to the
theory, much effort has been given to the problem of classifying holomorphic foliations
into complex manifolds, in particular, to foliations on complex projective spaces, mostly
in codimension one foliations. More specifically, an example of such interest is the fol-
lowing conjecture which is attributed to different authors (Marco Brunella, Alcides Lins
Neto,. . . ):

Main Conjecture. Any codimension one holomorphic foliation ℱ on P𝑛, with
𝑛 ≥ 3,

(*) either ℱ admits a transverse projective structure with poles on some invariant hy-
persurface

(**) or ℱ is a pull-back of a holomorphic foliation 𝒢 on P2 by a rational map Φ : P𝑛 99K

P2.

The concepts used in the previous conjecture will be explained throughout this
work. We emphasize that a codimension one singular holomorphic foliation ℱ on the
complex projective space P𝑛 have a special characteristic, in an affine chart C𝑛 ⊂ P𝑛, it
can be defined by the vanishing of a 1-form, 𝜔 = 0, which is integrable, that is, satisfying
𝜔 ∧ 𝑑𝜔 = 0, whose coefficients are complex polynomials. If we establish the degree 𝑑 of ℱ
as the number of tangencies (counted with multiplicity) of a generic linearly embedded
P1 with ℱ then we can consider the space of codimension one holomorphic foliations of a
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specific degree. The Zariski closure of this set can be identified with an algebraic set and
therefore naturally has irreducible components.

With a focus on explaining these irreducible components to certain degrees, several
works have been done and much progress has already been made. The first case, which
could be considered is the space of codimension one foliations of degree-zero on P𝑛, has
already been proved that it has only one component and it is isomorphic to the Grass-
mannian of lines in P𝑛, a proof of this fact can be found in [9]. In P𝑛, 𝑛 ≥ 3, the space of
holomorphic foliations of degree-one has two irreducible components, this fact was proved
by Jouanolou in [11].

Much later, Dominique Cerveau and Alcides Lins Neto resumed studies on irre-
ducible components and published a result that brought studies on irreducible components
back into the spotlight. In [5], they proved that in P𝑛, 𝑛 ≥ 3, the space of codimension one
foliations of degree-two has six irreducible components, but more than that, they explicitly
show the generic element of each one of these irreducible components. These components
are called Linear pull-back foliations, Rational components, Logarithmic components, and
a Exceptional component. Cerveau-Lins Neto’s work was an invaluable contribution and
served as a motivation for several researchers to focus their studies on the classification
of irreducible components of the space of holomorphic foliations on complex projective
spaces.

Despite the advances in these studies, the classification problem of irreducible com-
ponents of the space of holomorphic foliations is not simple to be solved. For instance,
after the complete description of the irreducible components of the degree-two foliations
space on P𝑛, with 𝑛 ≥ 3, it has not yet been possible to explain all the irreducible com-
ponents of the space of codimension one holomorphic foliations on P𝑛, 𝑛 ≥ 3, of degree
𝑑 ≥ 3. However, Cerveau and Lins Neto has proved a structural theorem for degree-three
foliations in [6]:

Theorem 1. Let ℱ be a holomorphic codimension one foliation of degree-three on P𝑛,
with 𝑛 ≥ 3. Then:

• either ℱ has a rational first integral,

• or ℱ has an affine transverse structure with poles on an invariant hypersurface,

• or ℱ = Φ*(𝒢), where Φ : P𝑛 99K P2 is a rational map and 𝒢 is a foliation on P2.

According to Cerveau and Lins Neto [6], the main conjecture seems to be reasonable
(at least for codimension one foliations of small degree) for the following reasons: first of
all, if K is a field of positive characteristic, every codimension one holomorphic foliation
on a projective manifold over K, in particular on P𝑛

K, is defined by a closed global 1-form
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(see for instance [7, Section 6]). On the other hand, if ℱ is a codimension one foliation on
P𝑛 and 𝑝 is a prime number then it is possible to define ℱ𝑝, the reduction modulo 𝑝 of ℱ .
The idea to construct ℱ𝑝 is the following: both ℱ and P𝑛, can be defined over a finitely
generated Z-algebra 𝑅 and then we can reduce modulo the prime ideal ⟨𝑝⟩ ⊂ 𝑅 to obtain
a foliation on a variety over a field of characteristic 𝑝, (see for instance Shepherd-Barron
[19]). Having now the foliation ℱ𝑝, there is a conjecture of Grothendieck-Katz-type which
says that if for almost all 𝑝 the foliation ℱ𝑝 has a non-constant rational first integral
then ℱ itself has a non-constant rational first integral. In [6], Cerveau and Lins Neto
announcement a result due to F. Touzet:

Theorem 2 (F. Touzet). The Grothendieck-Katz conjecture implies that any foliation of
degree ≤ 𝑛− 1 on P𝑛, either admits a projective transverse structure, or is a pull-back of
some foliation on P𝑘, 𝑘 < 𝑛, by some rational map.

Recently in [15], F. Loray, J. V. Pereira and F. Touzet proved a more accurate
structural theorem for codimension one foliations of degree-three on P3, and in [8], Raphael
Constant da Costa, Ruben Lizarbe and J. V. Pereira extend this result to P𝑛, 𝑛 ≥ 3, as
follows:

Theorem 3. If ℱ is a codimension one singular holomorphic foliation on P𝑛, 𝑛 ≥ 3, of
degree three. Then

• either ℱ is defined by a closed rational 1-form without codimension one zeros;

• or there exists an algebraically integrable codimension two foliation of degree one
tangent to ℱ ;

• or ℱ is a linear pull-back of a degree-three foliation on P2;

• or ℱ admits a rational first integral.

Furthermore, Da Costa, Lizarbe and Pereira [8, Theorem B] provide a complete
list of the irreducible components of the space of foliations of degree-three on P𝑛, 𝑛 ≥ 3,
whose general elements do not admit a rational first integral:

Theorem 4. The space of codimension one foliations of degree-three on P𝑛, 𝑛 ≥ 3, has
exactly 18 distinct irreducible components whose general elements correspond to foliations
which do not admit a rational first integral.

However, even in [8], a complete classification of the irreducible components of the
space of foliations of degree-three on P𝑛, 𝑛 ≥ 3 is not known, but they establish the
following result.
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Theorem 5. The space of codimension one foliations of degree-three on P𝑛, 𝑛 ≥ 3, has
at least 24 distinct irreducible components.

Motivated by the above results, this work is devoted to study of codimension one
holomorphic foliations of degree four on P𝑛, with 𝑛 ≥ 3. One of the goals of this thesis is
to obtain a structural theorem for degree-four foliations on P𝑛, 𝑛 ≥ 3, similar to Cerveau-
Lins Neto’s theorem [6, Theorem 1].

Our main theorem is the following:

Theorem A. Let ℱ be a codimension one holomorphic foliation of degree four on P𝑛,
with 𝑛 ≥ 3. Then,

(i) either ℱ admits a rational first integral;

(ii) or ℱ is transversely affine outside a compact hypersurface;

(iii) or ℱ is a pure transversely projective outside a compact hypersurface;

(iv) or ℱ = Φ*(𝒢), where Φ : P𝑛 99K P2 is a rational map and 𝒢 is a holomorphic
foliation on P2.

(v) or there exists a birational map Ψ : P𝑛−1 × P1 99K P𝑛 such that the foliation Ψ*(ℱ)
is defined by a 1-form described as follows:

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡,

where the 1-forms 𝛽𝑗 do not depend on 𝑡 ∈ P1, for all 0 ≤ 𝑗 ≤ 4.

In order to prove our main result, we will use the tools of the proof of [6] and
techniques concerning foliations which admit a finite Godbillon-Vey sequence (cf. [3] and
[7]).

Note that in order to confirm the Main Conjecture for degree four codimension one
foliations on P𝑛, 𝑛 ≥ 3, it is necessary to prove that item (𝑣) is equivalent to some of the
previous items. We hope to prove this fact in the near future. One of the difference between
Theorem A and the structural theorem of degree three foliations given by Cerveau-Lins
Neto [6] is that pure transversely projective foliations exist. That is, there are foliations of
degree four with projective transverse structure that is not affine. See the example given
in [7, Section 5.4].

Now, let us focus on foliations of degree 𝑑 ≥ 4. Let ℱ be a degree 𝑑 foliation on P𝑛.
Then, ℱ can be represented in an affine coordinate system C𝑛 ≃ 𝐸 ⊂ P𝑛 by an integrable
polynomial 1-form

𝜔𝐸 =
𝑑+1∑︁
𝑗=0

𝜔𝑗
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where the coefficients of the 1-forms 𝜔𝑗 are polynomials homogeneous of degree 𝑗, 0 ≤
𝑗 ≤ 𝑑+ 1, and 𝑖𝑅(𝜔𝑑+1) = 0. Given 𝑝 ∈ 𝐸, let 𝑗𝑘

𝑝 (𝜔𝐸) be the 𝑘𝑡ℎ-jet of 𝜔𝐸 at 𝑝, and let

𝒥 (ℱ , 𝑝) = 𝑚𝑖𝑛{𝑘 ≥ 0 : 𝑗𝑘
𝑝 (𝜔𝐸) ̸= 0}.

Note that 𝒥 (ℱ , 𝑝) depends only on 𝑝 and ℱ , and not on 𝐸 and 𝜔𝐸. Moreover, the singular
set of ℱ is given by

(ℱ) = {𝑝 ∈ P𝑛 : 𝒥 (ℱ , 𝑝) ≥ 1}.

It is well-known that (ℱ) is an algebraic set and always contains irreducible components
of codimension two, (cf. [12]).

Motivated by the family of foliations of [7, Section 5.4], where the first 𝑘𝑡ℎ-jets
(𝑘 < 3) of the 1-form defining this family are all zero, we propose the following structural
theorem for foliations of degree 𝑑 ≥ 4 in P𝑛, with 𝑛 ≥ 3.

Theorem B. Let ℱ be a codimension one holomorphic foliation of degree 𝑑 ≥ 4 on P𝑛,
with 𝑛 ≥ 3. Suppose that one of the two conditions is satisfied:

1. for all 𝑝 ∈ (ℱ), we have 𝒥 (ℱ , 𝑝) = 1;

2. there exists 𝑝 ∈ (ℱ) such that 𝒥 (ℱ , 𝑝) ≥ 𝑑− 1.

Then,

(i) either ℱ admits a rational first integral;

(ii) or ℱ is transversely affine outside a compact hypersurface;

(iii) or ℱ is a pure transversely projective outside a compact hypersurface;

(iv) or ℱ = Φ*(𝒢), where Φ : P𝑛 99K P2 is a rational map and 𝒢 is a holomorphic
foliation on P2.

The Thesis is organized as follows: in Chapter 2, we define the concept of holomor-
phic foliations and state some important results about codimension one foliations on P𝑛.
We also define the concept of the affine and projective transverse structure of a foliation.
Moreover, we define the notion of a Godbillon-Vey sequence and establish important re-
sults of foliations that admit a Godbillon-Vey sequence with finite length. Chapter 1 ends
with some formulas of indices of foliations that we will use throughout this text. Chapter
3 is devoted to prove Theorem A. In order to prove our main result, we will divide it
into several lemmas. Our proof is given step to step. Each step is according to length of a
Godbillon-Vey sequence adapted to a degree-four foliation. Finally, in Chapter 4, we will
establish some open problems related to Theorem A.
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2 Holomorphic Foliations

In this chapter, we will state some definitions and results well known in Folia-
tion theory on complex manifolds that will be useful to prove our results in the forward
chapters.

2.1 Preliminaries about Foliations
We start this section introducing the basic concepts of holomorphic foliations on

complex manifolds. The dimension of the complex manifolds in this work always be the
complex dimension, unless otherwise noted.

Definition 2.1. Let 𝑀 be a complex manifold of dimension 𝑛 ≥ 2. A holomorphic
foliation of dimension 1 ≤ 𝑘 < 𝑛, is a decomposition ℱ of 𝑀 in complex submanifolds (call
the leaves of the foliation ℱ) of dimension 𝑘, biunivocally immersed, with the following
proprieties:

(i) ∀𝑝 ∈ 𝑀 there is only one submanifold 𝐿𝑝 of the decomposition passing through 𝑝;

(ii) ∀𝑝 ∈ 𝑀 there is a holomorphic chart of 𝑀 , called distinguished chart of ℱ , (𝜙,𝑈),
𝑝 ∈ 𝑈 , 𝜙 : 𝑈 → 𝜙(𝑈) ⊂ C𝑛, such that 𝜙(𝑈) = 𝑃 × 𝑄, where 𝑃 and 𝑄 are open
subsets in C𝑘 and C𝑛−𝑘 respectively;

(iii) If 𝐿 is a leaf of ℱ such that 𝐿 ∩ 𝑈 ̸= ∅, then 𝐿 ∩ 𝑈 =
⋃︁

𝑞∈𝐷𝐿,𝑈

𝜙−1(𝑃 × {𝑞}), where

𝐷𝐿,𝑈 is a countable subset of 𝑄.

The subsets 𝑈 of the form 𝜙(𝑃 ×{𝑞}) are called distinguished chart plaques (𝜙,𝑈).

Remark 2.1. A holomorphic foliation ℱ of dimension 𝑘 in 𝑀 induces a distribution of
planes of dimension 𝑘 on 𝑀 , denoted by 𝑇ℱ , which is defined by

𝑇𝑝ℱ = 𝑇𝑝(𝐿𝑝) = tangent space of the leaf 𝐿𝑝 of ℱ at 𝑝.

It follows from (𝑖𝑖𝑖) that the distribution 𝑇ℱ is holomorphic. It defines a holomor-
phic vector subbundle of the holomorphic tangent bundle 𝑇𝑀 of 𝑀 .

There are other two ways to define foliations, equivalent to the above definition,
are as follows:

Proposition 2.1 (Lins Neto - Scárdua [13]). A dimension 𝑘 holomorphic foliation ℱ on
𝑀 can also be defined in the following equivalent ways:
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(1) Description given by distinguished charts: ℱ is given by a holomorphic atlas of 𝑀 ,
𝒜 = {(𝜙𝛼, 𝑈𝛼) : 𝛼 ∈ 𝐼} where

(1.1) 𝜙𝛼(𝑈𝛼) = 𝑃𝛼 ×𝑄𝛼, where 𝑃𝛼, 𝑄𝛼 are open subsets of C𝑘 and C𝑛−𝑘 respectively.

(1.2) If 𝑈𝛼 ∩ 𝑈𝛽 ̸= ∅, then the change of charts 𝜙𝛽 ∘ 𝜙−1
𝛼 is locally of the form

𝜙𝛽 ∘ 𝜙−1
𝛼 (𝑥𝛼, 𝑦𝛼) = (ℎ𝛼𝛽(𝑥𝛼, 𝑦𝛼), 𝑔𝛼𝛽(𝑦𝛼))

In this case the plaques of ℱ in 𝑈𝛼 are the subsets of the form 𝜙−1
𝛼 (𝑃𝛼 × {𝑞}).

(2) Description by local submersions: ℱ is given by an open cover 𝑀 = ⋃︀
𝛼∈𝐼 𝑈𝛼 and by

collections {𝑦𝛼}𝛼∈𝐼 and {𝑔𝛼𝛽}𝑈𝛼𝛽 ̸=∅ that satisfy:

(2.1) ∀𝛼 ∈ 𝐼, 𝑦𝛼 : 𝑈𝛼 → C𝑛−𝑘 is a holomorphic submersion.

(2.2) If 𝑈𝛼 ∩ 𝑈𝛽 ̸= ∅, then 𝑦𝛼 = 𝑔𝛼𝛽(𝑦𝛽) where 𝑔𝛼𝛽 : 𝑦𝛽(𝑈𝛼 ∩ 𝑈𝛽) ⊂ C𝑘 → 𝑦𝛼(𝑈𝛼 ∩
𝑈𝛽) ⊂ C𝑘 is a local biholomorphism.
In this case the plaques of ℱ in 𝑈𝛼 are subsets of the form 𝑦−1

𝛼 (𝑞), 𝑞 ∈ 𝑉𝛼 =
𝑦𝛼(𝑈𝛼).

Definition 2.2. Given two complex manifolds 𝑀 and 𝑁 , a holomorphic map 𝑓 : 𝑀 → 𝑁

and a holomorphic foliation ℱ in 𝑁 of codimension 𝑘, we say that 𝑓 is transversal to ℱ ,
if for every point 𝑞 ∈ 𝑁 , the vector subspaces 𝑑𝑓𝑞(𝑇𝑞𝑀) and 𝑇𝑝ℱ generate the tangent
space 𝑇𝑝𝑁 , where 𝑝 = 𝑓(𝑞).

Another important concept that we will use is pullback foliation.

Definition 2.3. Let 𝑀 and 𝑁 be complex manifolds and 𝑓 : 𝑀 → 𝑁 be a holomorphic
map transversal to a foliation ℱ in 𝑁 of codimension 𝑘. Then there is a holomorphic
foliation 𝑓 *(ℱ) in 𝑀 , of codimension 𝑘, whose leaves are the connected components of
the inverse images of the leaves 𝐿 of ℱ , 𝑓−1(𝐿) in 𝑁 . The foliation 𝑓 *(ℱ) is called pullback
foliation of ℱ under 𝑓 .

Pullback foliations are a type of foliations that are very important in the study
of foliation theory, they form an important family in the space of holomorphic foliations
that we will discuss later.

Let 𝑀 be a complex manifold of dimension 𝑛, and 𝜔 be a non-identically zero
holomorphic 1-form in𝑀 . Let 𝑆𝑖𝑛𝑔(𝜔) = {𝑝 ∈ 𝑀 : 𝜔𝑝 = 0} be the singular set of 𝜔. In this
case, 𝜔 induces a holomorphic distribution of hyperplanes Ω in the open 𝑁 = 𝑀∖𝑆𝑖𝑛𝑔(𝜔),
defined by:

Ω𝑝 = 𝑘𝑒𝑟(𝜔𝑝) = {𝑣 ∈ 𝑇𝑝𝑀 : 𝜔𝑝(𝑣) = 0}.
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Definition 2.4. We say that 𝜔 (or Ω) is integrable, if there is a holomorphic foliation ℱ
in 𝑁 such that 𝑇ℱ = Ω. In other words, the tangent space of the leaf of ℱ at 𝑝 coincides
with Ω𝑝.

A characterization that replaces the above definition is the well-known Frobenius
Theorem which tells us that 𝜔 is integrable if, and only if, 𝜔∧𝑑𝜔 = 0. This characterization
will be used a lot in this work. We commonly say that the foliation ℱ is defined by the
differential equation 𝜔 = 0.

Remark 2.2. If 𝜂 is a holomorphic 1-form such that 𝜂 = 𝑓𝜔, where 𝑓 is a holomorphic
map on 𝑁 that does not vanish, then the hyperplane distribution induced by 𝜂 coincides
with 𝜔, in particular, the foliation induced by 𝜔 = 0 coincides with the foliation induced
by 𝜂 = 0.

The next result is what allows us to locally use holomorphic 1-forms to define
codimension one holomorphic foliations by working with them rather than dealing with
the foliation itself.

Proposition 2.2 (Lins Neto - Scárdua [13]). Let 𝑀 be a complex manifold of dimension
𝑛 ≥ 2 and ℱ be a holomorphic foliation of codimension one on 𝑀 . Then there are
collections 𝒲 = {𝜔𝛼}𝛼∈𝐼 , 𝒰 = {𝑈𝛼}𝛼∈𝐼 and 𝒢 = {𝑔𝛼𝛽}𝑈𝛼∩𝑈𝛽 ̸=∅ such that:

(i) 𝒰 is an open cover of 𝑀 .

(ii) 𝜔𝛼 is an integrable holomorphic 1-form into 𝑈𝛼 that does not vanish at any point.

(iii) 𝑔𝛼𝛽 ∈ 𝒪*(𝑈𝛼 ∩ 𝑈𝛽), set of holomorphic functions that does not vanish in 𝑈𝛼 ∩ 𝑈𝛽.

(iv) In 𝑈𝛼 ∩ 𝑈𝛽 ̸= ∅, we have 𝜔𝛼 = 𝑔𝛼𝛽 · 𝜔𝛽.

(v) If 𝑝 ∈ 𝑈𝛼, then 𝑇𝑝ℱ = 𝑘𝑒𝑟(𝜔𝛼(𝑝)).

Conversely, if there are collections 𝒲, 𝒰 and 𝒢 satisfying (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) and (𝑖𝑣), then
there is a holomorphic foliation ℱ on 𝑀 that satisfies (𝑣).

In view of the Proposition 2.2, we can define singular codimension one holomorphic
foliations as follows:

Definition 2.5. Let 𝑀 be a complex manifold of dimension 𝑛 ≥ 2. A singular codimen-
sion one holomorphic foliation on 𝑀 is an object ℱ given by collections {𝜔𝛼}𝛼∈𝐼 , {𝑈𝛼}𝛼∈𝐼

and {𝑔𝛼𝛽}𝑈𝛼∩𝑈𝛽 ̸=∅ such that:

(i) {𝑈𝛼}𝛼∈𝐼 is a open cover of 𝑀 .
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(ii) 𝜔𝛼 is a holomorphic 1-form integrable in 𝑈𝛼 that does not identically zero in 𝑈𝛼.

(iii) 𝑔𝛼𝛽 ∈ 𝒪*(𝑈𝛼 ∩ 𝑈𝛽).

(iv) If 𝑈𝛼 ∩ 𝑈𝛽 ̸= ∅, then 𝜔𝛼 = 𝑔𝛼𝛽 · 𝜔𝛽 in 𝑈𝛼 ∩ 𝑈𝛽.

For each 1-form 𝜔𝛼, let us consider its singular set given by:

𝑆𝑖𝑛𝑔(𝜔𝛼) = {𝑝 ∈ 𝑈𝛼 : 𝜔𝛼(𝑝) = 0} := 𝑆𝛼

Note that 𝑆𝛼 is a complex subvariety in 𝑈𝛼, 𝑔𝛼𝛽 ∈ 𝒪*(𝑈𝛼 ∩ 𝑈𝛽) and 𝜔𝛼 = 𝑔𝛼𝛽 · 𝜔𝛽 in
𝑈𝛼 ∩ 𝑈𝛽 ̸= ∅, then we have 𝑆𝛼 ∩ 𝑈𝛼 ∩ 𝑈𝛽 = 𝑆𝛽 ∩ 𝑈𝛼 ∩ 𝑈𝛽, hence

𝑆𝑖𝑛𝑔(ℱ) :=
⋃︁
𝛼∈𝐼

𝑆𝛼

is a complex subvariety in 𝑀 .

Codimention one holomorphic foliations with singularities is an important field of
study in Foliation theory and in this work we will deal only with this type of foliations.

Definition 2.6. Let ℱ be a codimension one holomorphic foliation in 𝑀 . A meromorphic
( holomorphic) first integral of ℱ is a non-constant meromorphic (holomorphic) function
in 𝑀 , say 𝑓 , such that 𝑓 is constant along the leaves of ℱ .

Remark 2.3. If ℱ is a codimension one holomorphic foliation, given by an integrable
holomorphic 1-form 𝜔 in 𝑀 , then a meromorphic (holomorphic) function 𝑓 is a first
integral of ℱ if, and only if , 𝜔 ∧ 𝑑𝑓 ≡ 0.

2.2 Interior product and Lie Derivative
Let 𝑀 be a connected compact complex manifold of dimension 𝑛. We shall denote

by Θ𝑀 the set of holomorphic vector fields over 𝑀 .

Definition 2.7. Let 𝑋 ∈ Θ𝑀 be a holomorphic vector field on 𝑀 . We will denote by
𝑖𝑋(𝜔) the contraction of 𝜔 ∈ Ω𝑘

𝑀 , 1 < 𝑘 ≤ 𝑛, in the direction of the vector field 𝑋 or the
interior product of the vector field 𝑋 and the form 𝜔, it is defined as follows:

𝑖𝑋 : Ω𝑘
𝑀 −→ Ω𝑘−1

𝑀(2.1)

𝜔 ↦→ 𝑖𝑋(𝜔)

where 𝑖𝑋(𝜔)𝑝(𝑣1, · · · , 𝑣𝑘−1) = 𝜔𝑝(𝑋(𝑝), 𝑣1, · · · , 𝑣𝑘−1), for each 𝑝 ∈ 𝑀 and 𝑣1, · · · , 𝑣𝑘−1 ∈
𝑇𝑝𝑀 .

The following result compiles two important properties of the interior product.
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Proposition 2.3 (Tu [20]). For a vector field 𝑋 ∈ Θ𝑀 , 𝑖𝑋 : Ω*
𝑀 −→ Ω*−1

𝑀 , we have the
following properties:

(i) 𝑖𝑋 ∘ 𝑖𝑋 = 0;

(ii) For 𝜔 ∈ Ω𝑘
𝑀 and 𝜂 ∈ Ω𝑡

𝑀 ,

𝑖𝑋(𝜔 ∧ 𝜂) = 𝑖𝑋(𝜔) ∧ 𝜂 + (−1)𝑘𝜔 ∧ 𝑖𝑋(𝜂).

Now, we present the concepts of Lie derivative of a form in the direction of a vector
field that will be of great importance for the proof of the main result in the following
chapter.

Let 𝑋 be a vector field on 𝑀 , then there is a neighborhood 𝑈 of a point 𝑝 ∈ 𝑀 ,
where 𝑋 has a local flow, that is, there exists a small disk Δ centered at 0 ∈ C and a
holomorphic map

𝜙 : Δ × 𝑈 → 𝑀

such that if we put 𝜙𝑡(𝑞) = 𝜙(𝑡, 𝑞), then

𝜕

𝜕𝑡
𝜙𝑡(𝑞) = 𝑋(𝜙𝑡(𝑞)), 𝜙0(𝑞) = 𝑞 𝑓𝑜𝑟 𝑞 ∈ 𝑈.

Definition 2.8. For 𝑋 a holomorphic vector field and 𝜔 ∈ Ω𝑘
𝑀 a 𝑘-form on a complex

manifold 𝑀 , the Lie derivative ℒ𝑋(𝜔) at 𝑝 ∈ 𝑀 is

ℒ𝑋(𝜔)𝑝 = lim
𝑡→0

𝜙*
𝑡 (𝜔𝜙𝑡(𝑝)) − 𝜔𝑝

𝑡
= lim

𝑡→0

(𝜙*
𝑡𝜔)𝑝 − 𝜔𝑝

𝑡
= 𝑑

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡=0

(𝜙*
𝑡𝜔)𝑝.

If𝑋 =
𝑛∑︁

𝑗=1
𝑎𝑗

𝜕

𝜕𝑧𝑗

is a local holomorphic vector field on𝑀 , then for each holomorphic

function 𝑓 on 𝑀 we have
𝑋(𝑓) =

𝑛∑︁
𝑗=1

𝑎𝑗
𝜕𝑓

𝜕𝑧𝑗

.

Some calculations that will be made in the next chapter are facilitated by the following
proposition:

Proposition 2.4 (Tu [20]). If 𝑓 is a holomorphic map and 𝑋 a vector field on 𝑀 , then

ℒ𝑋(𝑓) = 𝑋(𝑓).

Now we state the main properties of the Lie derivative.

Theorem 6 (Tu [20]). Assume that 𝑋 is a holomorphic vector field on a complex manifold
𝑀 .
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(i) The Lie derivative ℒ𝑋 : Ω*
𝑀 → Ω*

𝑀 is a derivation: it’s a C-linear map and if
𝜔 ∈ Ω𝑘

𝑀 and 𝜌 ∈ Ω𝑙
𝑀 , then

ℒ𝑋(𝜔 ∧ 𝜌) = (ℒ𝑋𝜔) ∧ 𝜌+ 𝜔 ∧ (ℒ𝑋𝜌).

(ii) The Lie derivative ℒ𝑋 commutes with the exterior derivative 𝑑.

(iii) (Cartan’s magic formula) ℒ𝑋 = 𝑑𝑖𝑋 + 𝑖𝑋𝑑.

And to finish this section we have a global formula for Lie derivative.

Theorem 7 (Tu [20]). For a holomorphic k-form 𝜔 and vector fields 𝑋, 𝑌1, · · · , 𝑌𝑘 on a
complex manifold 𝑀 , we have

(ℒ𝑋𝜔)(𝑌1, · · · , 𝑌𝑘) = 𝑋(𝜔(𝑌1, · · · , 𝑌𝑘)) −
𝑘∑︁

𝑖=1
𝜔(𝑌1, · · · , [𝑋, 𝑌𝑖], · · · , 𝑌𝑘).

2.3 Codimension one holomorphic foliations on the complex pro-
jective space
We will denote complex projective space by P𝑛 as there will be no confusion with the

real projective space as we will not mention it in this text. We will also use the notation
ℱ1(𝑛, 𝑑) instead of ℱ1(P𝑛,𝒪P𝑛(𝑑 + 2)) for the space of codimension one holomorphic
foliations of degree 𝑑 in the complex projective space of dimension 𝑛.

One of the main results that we will use for codimension one holomorphic foliations
on P𝑛 is the following:

Theorem 8 (Lins Neto - Scárdua [13]). Let ℱ be a codimension one holomorphic foliation
on P𝑛 and ℱ* = Π*(ℱ), where Π : C𝑛+1∖{0} → P𝑛 is the canonical projection. Then there
exists an integrable holomorphic 1-form in C𝑛+1,

𝜔 =
𝑛∑︁

𝑗=0
𝜔𝑗𝑑𝑥𝑗

whose coefficients 𝜔0, · · · , 𝜔𝑛 are homogeneous complex polynomials of the same degree,
such that 𝜔 = 0 defines ℱ* in C𝑛+1∖{0}. In particular, for every affine chart 𝐸 ⊂ P𝑛,
ℱ|𝐸 can be defined by an integrable polynomial 1-form.

We say that the 1-form 𝜔 represents ℱ in homogeneous coordinates of P𝑛.

Remark 2.4. Since Π−1([𝑝]) is a line that passes through the origin of C𝑛+1 for every
[𝑝] ∈ P𝑛, we have every line Π−1([𝑝]) is contained in the leaves of ℱ*. In terms of the
1-form 𝜔 this can be expressed by the relationship:

𝑖𝑅(𝜔) =
𝑛∑︁

𝑗=0
𝑥𝑗𝜔𝑗 ≡ 0
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where 𝑅 =
𝑛∑︁

𝑗=0
𝑥𝑗

𝜕

𝜕𝑥𝑗

denotes the radial vector field in C𝑛+1.

Let us fix a holomorphic foliation ℱ of codimension one and a line 𝐿 ⊂ P𝑛, not
invariant by ℱ , that is, such that 𝐿 is not contained in a leaf of ℱ nor in 𝑠𝑖𝑛𝑔(ℱ). Let 𝑝 ∈ 𝐿

and take an affine chart C𝑛 ≃ 𝐸 such that 𝑝 ∈ 𝐸. Let 𝜔 be a complex polynomial 1-form
representing ℱ in 𝐸. We say that 𝑝 is a tangency point of ℱ with 𝐿, if the restriction 𝜔|𝐿

vanishes at 0, (here 𝑝 is identify with the origin 0 of 𝐸 ≃ C𝑛). The tangency multiplicity
of ℱ with 𝐿 at 𝑝 is, by definition, the order at 𝑝 as zero of 𝜔|𝐿 . It is easy to prove that the
above concepts are independent of the affine chart 𝐸 and the 1-form 𝜔 which represents
ℱ . With this, the following definition is natural:

Definition 2.9. The degree of a codimension one holomorphic foliation ℱ in P𝑛, is the
number of tangencies, counted with multiplicity, of ℱ with a generic non-invariant line
by ℱ .

Remark 2.5. Let ℱ be a codimension one holomorphic foliation of degree 𝑑 in P𝑛 and 𝜔
be a 1-form representing ℱ in homogeneous coordinates. Suppose that 𝑐𝑜𝑑(𝑠𝑖𝑛𝑔(ℱ)) ≥ 2
(codimension of the singular set of ℱ). We have:

1. If 𝜔1 is another 1-form that represents ℱ in homogeneous coordinates, then 𝜔1 = 𝑎𝜔,
where 𝑎 ∈ C*.

2. The degree of the coefficients of 𝜔 is 𝑑+ 1.

Note that Remark 2.5 implies that the space of codimension one holomorphic foli-
ations of degree 𝑑 on P𝑛 is naturally identified with the projectivized of the following set
of 1-forms in C𝑛+1:

ℱ1(𝑛, 𝑑) = P

⎛⎝{𝜔 : 𝜔 ∧ 𝑑𝜔 = 0, 𝑖𝑅(𝜔) = 0, 𝜔 =
𝑛∑︁

𝑗=0
𝜔𝑗𝑑𝑥𝑗, and 𝑐𝑜𝑑(𝑠𝑖𝑛𝑔(𝜔)) ≥ 2}

⎞⎠
where 𝜔𝑗 are homogeneous polynomials of degree 𝑑 + 1. Note that ℱ1(𝑛, 𝑑) can be seen
as an algebraic subset of a space of complex polynomials.

Let us give some examples of foliations on P𝑛.

Exemple 2.1 (Foliations with rational first integral). Let 𝑃,𝑄 : C𝑛+1 → C be a homo-
geneous polynomials such that deg(𝑃 ) = deg(𝑄) = 𝑘 ≥ 1. Then 𝜔 = 𝑄𝑑𝑃 −𝑃𝑑𝑄 defines
a codimension-one foliation ℱ on P𝑛 with a rational first integral 𝑃/𝑄.

Exemple 2.2 (Foliations associated to closed meromorphic 1-forms). If 𝜔 is a closed
meromorphic 1-form on P𝑛, 𝑛 ≥ 2, then it define a codimension-one holomorphic foliation
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on P𝑛. By [14, Proposition. 1.2.5], we have 𝜔 has a decomposition

𝜔 =
∑︁

𝑖

𝜆𝑖
𝑑𝑓𝑖

𝑓𝑖

+ 𝑑ℎ,

where the 𝜆𝑖’s are complex numbers and the 𝑓𝑖’s and ℎ are rational functions. The leaves
are (outside the singular set of the foliation) the connected components of the level sets
of the multivalued function ∑︀𝑖 𝜆𝑖 log 𝑓𝑖 + ℎ.

2.4 Affine and projective transverse structures
Let ℱ be a codimension one holomorphic foliation on a complex manifold 𝑀 of

dimension 𝑛, with singular set 𝑠𝑖𝑛𝑔(ℱ). Such foliation can be given outside its singular
set by an atlas of holomorphic submersions 𝑦𝑖 : 𝑈𝑖 → C such that if 𝑈𝑖 ∩ 𝑈𝑗 ̸= ∅, then
𝑦𝑖 = 𝑔𝑖𝑗(𝑦𝑗), for some biholomorphism 𝑔𝑖𝑗 between open subsets of C.

Definition 2.10. We say that ℱ is transversely affine or ℱ admits an affine transverse
structure, if it is possible to choose an atlas of submersions as above {𝑦𝑖 : 𝑈𝑖 → C}𝑖∈𝐼 ,
defining ℱ in 𝑀∖𝑠𝑖𝑛𝑔(ℱ), whose changes of coordinates are affine, that is, 𝑦𝑖 = 𝑎𝑖𝑗𝑦𝑗 + 𝑏𝑖𝑗

over 𝑈𝑖 ∩ 𝑈𝑗 ̸= ∅, where 𝑎𝑖𝑗, 𝑏𝑖𝑗 are constants.

The problem of deciding the existence of transverse structures for a given foliation
is equivalent, in certain cases, to a problem in 1-forms, as shown in the following result:

Theorem 9 (Lins Neto - Scárdua [13]). Let ℱ be a codimension one holomorphic foliation
on a complex manifold 𝑀 . Suppose that ℱ can be defined by a meromorphic 1-form, that
is, that there exists an integrable meromorphic 1-form 𝜔, which defines ℱ outside its pole
divisor, (𝜔)∞. The foliation ℱ is transversely affine in the open 𝑈∖𝑠𝑖𝑛𝑔(ℱ) if and only if
there is a meromorphic 1-form 𝜂 in 𝑀 satisfying the following properties:

(a) 𝜂 is closed;

(b) 𝑑𝜔 = 𝜂 ∧ 𝜔;

(c) (𝜂)∞ = (𝜔)∞;

(d) The order of the pole of 𝜂 along any irreducible component of (𝜂)∞ is one;

(e) For every irreducible component 𝐿 of (𝜔)∞, we have 𝑅𝑒𝑠(𝜂, 𝐿) = −(order of (𝜔)∞|𝐿).

Furthermore, two pairs (Ω, 𝜂) and (Ω′, 𝜂′) define the same affine structure for ℱ
in 𝑈 if and only if there is a meromorphic function 𝑔 : 𝑀 → C satisfying Ω′ = 𝑔Ω and
𝜂′ = 𝜂 + 𝑑𝑔

𝑔
.
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Definition 2.11. We shall call a pair (𝜔, 𝜂) that satisfies the properties of Theorem 9 for
a foliation ℱ defined by 𝜔 of affine pair.

Definition 2.12. Let ℱ be a codimension one holomorphic foliation in 𝑀 . We say that
ℱ is transversely projective on 𝑀 or ℱ admits a projective transverse structure if it is
possible to choose an atlas of holomorphic submersions 𝑦𝑖 : 𝑈𝑖 → C adapted to ℱ such
that 𝑀∖𝑠𝑖𝑛𝑔(ℱ) =

⋃︁
𝑖

𝑈𝑖 and having projective relations,

𝑦𝑖 = 𝑎𝑖𝑗𝑦𝑗 + 𝑏𝑖𝑗

𝑐𝑖𝑗𝑦𝑗 + 𝑑𝑖𝑗

over 𝑈𝑖 ∩ 𝑈𝑗 ̸= ∅, where 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗, 𝑑𝑖𝑗 : 𝑈𝑖 ∩ 𝑈𝑗 → C are locally constants with 𝑎𝑖𝑗𝑑𝑖𝑗 −
𝑏𝑖𝑗𝑐𝑖𝑗 = 1 in 𝑈𝑖 ∩ 𝑈𝑗.

As in the affine case, there is a formulation of the existence of projective transverse
structures for a foliation in terms of 1-forms:

Theorem 10 (Lins Neto - Scárdua [13]). Let ℱ be a codimension one holomorphic fo-
liation on 𝑀 given by an integrable holomorphic 1-form 𝜔, suppose that there is a holo-
morphic 1-form 𝜂 in 𝑀 such that 𝑑𝜔 = 𝜂 ∧ 𝜔. The foliation ℱ is transversely projective
in 𝑀 if and only if there is a holomorphic 1-form 𝜉 in 𝑀 satisfying:

(i) 𝑑𝜂 = 𝜔 ∧ 𝜉;

(ii) 𝑑𝜉 = 𝜉 ∧ 𝜂.

Furthermore, (𝜔, 𝜂, 𝜉) and (𝜔′, 𝜂′, 𝜉′) are two triple that define the same projective structure
for ℱ if, and only if:

𝜔′ = 𝑓𝜔

𝜂′ = 𝜂 + 𝑑𝑓

𝑓
+ 2𝑔𝜔

𝜉′ = 1
𝑓

(𝜉 − 2𝑑𝑔 − 2𝑔𝜂 − 2𝑔2𝜔)

for some holomorphic functions 𝑓 : 𝑀 → C* e 𝑔 : 𝑀 → C.

Definition 2.13. A tripe (𝜔, 𝜂, 𝜉) of 1-meromorphic forms in 𝑀 is called a projective
triple if it satisfies the projective relations:

𝑑𝜔 = 𝜂 ∧ 𝜔

𝑑𝜂 = 𝜔 ∧ 𝜉

𝑑𝜉 = 𝜉 ∧ 𝜂

Let ℱ be a codimension one holomorphic foliation in 𝑀 . We say that (𝜔, 𝜂, 𝜉) is a pro-
jective triple for ℱ , if ℱ is defined by 𝜔 outside the pole divisor (𝜔)∞.
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Note that given a codimension one holomorphic foliation ℱ that admits a projective
transverse structure, it can also have an affine transversely structure, but in general this
does not happen. On the other hand, if the foliation ℱ admits an affine transversely
structure we can say that it admits a projective transversely structure because, given
the affine pair (𝜔, 𝜂) that defines the affine transverse structure, we can define a natural
projective triple (𝜔′, 𝜂′, 𝜉), where 𝜔 = 𝜔′, 𝜂 = 𝜂′ and 𝜉 ≡ 0. Thus, we have the following
definition:

Definition 2.14. Given a codimension one holomorphic foliation ℱ , we say that it admits
a pure projective transverse structure when it admits a projective transversely structure
but does not admit an affine transversely structure.

We also have a local normal form for a foliation which admits a projective transverse
structure, see for instance [10, III 3.16]:

Theorem 11. Given a codimension one foliation ℱ defined on 𝑀 , where 𝑀 is a complex
manifold and 𝑈 an open subset in 𝑀 , suppose there is a projective triple (𝜔, 𝜂, 𝜉) for ℱ ,
we can then find in the neighborhood of each point of 𝑈 holomorphic functions (𝑓, 𝑔, ℎ),
such that: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜔 = −𝑔𝑑𝑓

𝜂 = 𝑑𝑔
𝑔

− ℎ𝜔

𝜉 = 1
2ℎ

2𝜔 + ℎ𝜂 + 𝑑ℎ

If (𝑓 ′, 𝑔′, ℎ′) is another triple satisfying the same relations, then 𝑓 ′ = 𝜙 ∘ 𝑓 for some
automorphism 𝜙.

To continue, we give an example of a foliation with a pure projective transverse
structure which not admit an affine transverse structure.

Exemple 2.3. A Riccati foliation ℱ in P2 in an affine chat (𝑥, 𝑦) ∈ C2 →˓ P2 is given by
the polynomial 1-form Ω = 𝑝(𝑥)𝑑𝑦 − (𝑦2𝑐(𝑥) − 𝑦𝑏(𝑥) − 𝑎(𝑥))𝑑𝑥 where 𝑝, 𝑎, 𝑏 and 𝑐 are
polynomials. Let us now calculate a projective triplet for Ω.

Suppose 𝜂 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, where 𝐴 and 𝐵 are meromorphic functions in C2 such
that 𝑑Ω = 𝜂 ∧ Ω. On the one hand,

𝑑Ω = (𝑝′(𝑥) + 2𝑦𝑐(𝑥) − 𝑏(𝑥))𝑑𝑥 ∧ 𝑑𝑦.

On the other hand, we have

𝜂 ∧ 𝜔 = [𝐴𝑑𝑥+𝐵𝑑𝑦] ∧ [𝑝(𝑥)𝑑𝑦 − (𝑦2𝑐(𝑥) − 𝑦𝑏(𝑥) − 𝑎(𝑥))𝑑𝑥]

= 𝐴𝑝(𝑥)𝑑𝑥 ∧ 𝑑𝑦 +𝐵(𝑦2 − 𝑦𝑏(𝑥) − 𝑎(𝑥))𝑑𝑥 ∧ 𝑑𝑦

= [𝐴𝑝(𝑥) +𝐵(𝑦2 − 𝑦𝑏(𝑥) − 𝑎(𝑥))]𝑑𝑥 ∧ 𝑑𝑦(2.2)
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Choosing 𝐵 = 0 we get

𝐴𝑝(𝑥)𝑑𝑥 ∧ 𝑑𝑦 = (𝑝′(𝑥) + 2𝑦𝑐(𝑥) − 𝑏(𝑥))𝑑𝑥 ∧ 𝑑𝑦

⇒ 𝐴𝑝(𝑥) = 𝑝′(𝑥) + 2𝑦𝑐(𝑥) − 𝑏(𝑥)

⇒ 𝐴 = 𝑝′(𝑥) + 2𝑦𝑐(𝑥) − 𝑏(𝑥)
𝑝(𝑥)(2.3)

Therefore, 𝜂 = 𝑝′(𝑥) + 2𝑦𝑐(𝑥) − 𝑏(𝑥)
𝑝(𝑥) 𝑑𝑥. Now we have 𝑑𝜂 = 2𝑐(𝑥)

𝑝(𝑥) 𝑑𝑥 ∧ 𝑑𝑦 and in a similar
way to what we did above let us define 𝜉 = 𝐶𝑑𝑥+𝐷𝑑𝑦 where 𝐷 and 𝐶 are meromorphic
functions such that 𝑑𝜂 = Ω ∧ 𝜉 and computing the second part of the last equality

Ω ∧ 𝜉 = [𝑝(𝑥)𝑑𝑦 − (𝑦2𝑐(𝑥) − 𝑦𝑏(𝑥) − 𝑎(𝑥))𝑑𝑥] ∧ [𝐶𝑑𝑥+𝐷𝑑𝑦]

= −𝑝(𝑥)𝐶𝑑𝑥 ∧ 𝑑𝑦 −𝐷(𝑦2𝑐(𝑥) − 𝑦𝑏(𝑥) − 𝑎(𝑥))𝑑𝑥 ∧ 𝑑𝑦(2.4)

taking 𝐷 = 0, we get

− 𝑝(𝑥)𝐶𝑑𝑥 ∧ 𝑑𝑦 = 2𝑐(𝑥)
𝑝(𝑥) 𝑑𝑥 ∧ 𝑑𝑦

⇒ −𝑝(𝑥)𝐶 = 2𝑐(𝑥)
𝑝(𝑥)

⇒ 𝐶 = −2𝑐(𝑥)
𝑝2(𝑥)(2.5)

Thus, 𝜉 = − 2𝑐(𝑥)
𝑝2(𝑥)𝑑𝑥 and (Ω, 𝜂, 𝜉) it’s a projective triple, the last condition being trivially

satisfied 𝑑𝜉 = 0 = 𝜉 ∧ 𝜂.

2.5 Godbillon-Vey Sequences
In this section we are going to deal with an important tool that will be widely used

in the demonstration of the main result, which is the Godbillon-Vey sequence. The reader
may consult references [10] and [3] for a detailed study of Godbillon-Vey sequences.

Definition 2.15. Let ℱ be a codimension one holomorphic foliation on a complex man-
ifold 𝑀 . A Godbillon-Vey Sequence (abbreviated G-V-S) associated to ℱ is a sequence of
meromorphic 1-forms in 𝑀 , say (Ω𝑗)𝑗≥0, such that:

1) ℱ is defined by Ω0, outside its pole set (Ω0)∞. In particular, Ω0 is integrable, i.e.,

Ω0 ∧ 𝑑Ω0 = 0.

2) The 1-form defined by the formal power series

(2.6) Ω = 𝑑𝑧 + Ω0 + 𝑧Ω1 + 𝑧2

2 Ω2 +
∑︁
𝑗≥3

𝑧𝑗

𝑗! Ω𝑗

is integrable.
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When there exists 𝑁 ∈ N such that Ω𝑁 ̸= 0 but Ω𝑗 = 0 for all 𝑗 > 𝑁 then
we say that ℱ admits a finite G-V-S of length 𝑁 . In this case, the 1-form in (2.6) is
meromorphic and can be extended meromorphically to 𝑀 × P1. Since it is integrable, it
defines a codimension one foliation ℋ in 𝑀 × P1 such that ℋ|𝑀×{0} = ℱ .

Remark 2.6. Let ℱ and 𝒢 be foliations on complex manifolds 𝑀 and 𝑌 , respectively.
Suppose that 𝒢 admits a finite G-V-S of length𝑁 and that ℱ = Φ*(𝒢), where Φ : 𝑀 99K 𝑌

is a rational map. Then ℱ also admits a G-V-S of length 𝑁 . A proof of this fact can be
found in [7].

Remark 2.7. When ℱ admits a G-V-S of length𝑁 ≤ 2 then ℱ has a projective transverse
structure with poles in a hypersurface. When 𝑁 = 1 then the structure is in fact affine,
see for instance [18].

For foliations that admit G-V-S of length ≥ 3, we have the following result:

Theorem 12 (Cerveau - Lins-Neto - Loray - Pereira - Touzet [7]). Let ℱ be a codimension
one foliation on a complex manifold 𝑀 that admits a G-V-S of length 𝑁 ≥ 3. Then

• or ℱ is transversely affine;

• or there is a compact Riemann surface 𝑆, 1-meromorphic forms 𝛼0, · · · , 𝛼𝑁 in 𝑆

and a rational map 𝜑 : 𝑀 → 𝑆×P1 such that ℱ is defined by the 1-form Ω = 𝜑*(𝜂),
where

(2.7) 𝜂 = 𝑑𝑧 + 𝛼0 + 𝑧𝛼1 + · · · + 𝑧𝑁𝛼𝑁 .

When 𝑀 = P𝑛, 𝑛 ≥ 3, necessarily 𝑆 = P1 and the 1-form in 2.7 can be written as

𝜂 = 𝑑𝑧 − 𝑃 (𝑡, 𝑧)𝑑𝑡,

where 𝑃 ∈ C(𝑡)[𝑧] and ℱ = 𝜑*(𝒢), where 𝒢 is defined in P1 × P1 by the differential
equation 𝑑𝑧

𝑑𝑡
= 𝑃 (𝑡, 𝑧).

There is a very interesting construction of a G-V-S associated to a codimension one
foliation when there exists a vector field transverse to it. More precisely, let 𝜔 be a 1-form
defining ℱ and assume that there exists a vector field 𝑋 satisfying 𝜔(𝑋) = 1. Then, the
integrability condition of 𝜔 is equivalent to

(2.8) 𝜔 ∧ 𝑑𝜔 = 0 ⇔ 𝑑𝜔 = 𝜔 ∧ ℒ𝑋(𝜔).

In fact, from ℒ𝑋𝜔 = 𝑑(𝜔(𝑋)) + 𝑑𝜔(𝑋, ·) = 𝑑𝜔(𝑋, ·), we derive

0 = 𝜔 ∧ 𝑑𝜔(𝑋, ·, ·) = 𝜔(𝑋) · 𝑑𝜔 − 𝜔 ∧ (𝑑𝜔(𝑋, ·)) = 𝑑𝜔 − 𝜔 ∧ ℒ𝑋𝜔.
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The converse is trivial. Applying this identity to the formal 1-form

(2.9) Ω = 𝑑𝑧 + 𝜔0 + 𝑧𝜔1 + 𝑧2

2 𝜔2 + . . .+ 𝑧𝑘

𝑘!𝜔𝑘 + . . .

together with the vector field 𝑋 = 𝜕𝑧, we derive

(2.10) Ω ∧ 𝑑Ω = 0 ⇔
∞∑︁

𝑘=0

𝑧𝑘

𝑘! 𝑑𝜔𝑘 =
(︃ ∞∑︁

𝑘=0

𝑧𝑘

𝑘!𝜔𝑘

)︃
∧
(︃ ∞∑︁

𝑘=1

𝑧𝑘−1

(𝑘 − 1)!𝜔𝑘

)︃
.

Therefore, we get from the integrability condition for Ω:

𝑑𝜔0 = 𝜔0 ∧ 𝜔1

𝑑𝜔1 = 𝜔0 ∧ 𝜔2

𝑑𝜔2 = 𝜔0 ∧ 𝜔3 + 𝜔1 ∧ 𝜔2

𝑑𝜔3 = 𝜔0 ∧ 𝜔4 + 2𝜔1 ∧ 𝜔3

.

.

.

𝑑𝜔𝑘 = 𝜔0 ∧ 𝜔𝑘+1 +
𝑘∑︁

𝑗=1

(︃
𝑗

𝑘

)︃
𝜔𝑗 ∧ 𝜔𝑘+1−𝑗

.

.

Hence, if we start with 𝜔 and 𝑋 satisfying 𝜔(𝑋) = 1, then the iterated Lie derivates
𝜔𝑘 := ℒ𝑘

𝑋𝜔 define a Godbillon-Vey sequence for ℱ . For a recent account of the Godbillon-
Vey sequences we refer the reader [7].

2.6 Baum-Bott Theory
Let ℱ be a one-dimensional holomorphic foliation with isolated singularities in

𝑈 ⊂ C2. Let us fix the holomorphic vector field 𝑋 = 𝑃 (𝑥, 𝑦) 𝜕
𝜕𝑥

+𝑄(𝑥, 𝑦) 𝜕
𝜕𝑦

that defines
ℱ in 𝑈 and Ω = 𝑃 (𝑥, 𝑦)𝑑𝑦 −𝑄(𝑥, 𝑦)𝑑𝑥 the dual 1-form to 𝑋.

Lemma 2.1 (Lins Neto - Scárdua [13]). There exists a (1,0)-form 𝜂 which is 𝒞∞ in
𝑉 = 𝑈∖𝑠𝑖𝑛𝑔(ℱ) satisfying the following properties:

(a) 𝑑Ω = 𝜂 ∧ Ω;

(b) 𝜂 ∧ 𝑑𝜂 is closed;

(c) the cohomology class of 𝜂 ∧ 𝑑𝜂 in 𝐻3
𝐷𝑅(𝑉 ) depends only of ℱ .

Let 𝑝 be a singular point of ℱ . Since 𝑝 is an isolated singularity, let us fix a ball
𝐵 = 𝐵(𝑃, 𝜌) ⊂ 𝑈 such that the only singularity of ℱ in 𝐵 is 𝑝.
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Definition 2.16. The Baum-Bott index of ℱ at 𝑝 is the complex number

𝐵𝐵(ℱ , 𝑝) = 𝑅𝑒𝑠(𝜂 ∧ 𝑑𝜂, 𝑝)

where 𝑅𝑒𝑠(𝜂∧𝑑𝜂, 𝑝) is the residue of 𝜂∧𝑑𝜂 at 𝑝: let 0 < 𝑟 < 𝜌 and 𝑆𝑟 = 𝑆3(𝑃, 𝑟) = 𝜕𝐵(𝑝, 𝜌)
(3-sphere in C2 centered at 𝑝). Then

𝑅𝑒𝑠(𝜂 ∧ 𝑑𝜂, 𝑝) = 1
8𝑉

∫︁
𝑆𝑟

𝜂 ∧ 𝑑𝜂,

where 𝑉 is the volume of the ball of radius 1 in C2 with the Euclidean metric.

Remark 2.8. The integral above is invariant over 𝑟, it does not depend on 𝑟 since 𝜂∧𝑑𝜂 is
closed. In fact for any compact 𝐾 with regular boundary 𝑀 = 𝜕𝐾, such that 𝑝 ∈ 𝑖𝑛𝑡(𝐾)
is the unique singularity of ℱ in 𝐾 holds

𝑅𝑒𝑠(𝜂 ∧ 𝑑𝜂, 𝑝) = 1
8𝑉

∫︁
𝑆𝑟

𝜂 ∧ 𝑑𝜂 = 1
8𝑉

∫︁
𝑀
𝜂 ∧ 𝑑𝜂

It follows that 𝐵𝐵(ℱ , 𝑝) is invariant by change of coordinates, that is, if 𝜙 : 𝑉 → 𝑈 is a
biholomorphism then

𝐵𝐵(𝜙*(ℱ), 𝜙−1(𝑝)) = 𝐵𝐵(ℱ , 𝑝).

Proposition 2.5 (Lins Neto - Scárdua [13]). Let ℱ be a holomorphic foliation with
isolated singularities in 𝑈 ⊂ C2 and 𝐴 an open with compact closure 𝐴 ⊂ 𝑈 , whose
boundary 𝜕𝐴 is regular by parts and 𝜕𝐴 ∩ 𝑠𝑖𝑛𝑔(ℱ) = ∅. Let 𝜂 be as in the previous
Lemma 2.1. Then ∑︁

𝑝∈(𝑠𝑖𝑛𝑔(ℱ)∩𝐴)
𝐵𝐵(ℱ , 𝑝) = 1

8𝑉

∫︁
𝜕𝐴
𝜂 ∧ 𝑑𝜂.

Theorem 13 (Baum-Bott’s theorem for foliations on P2). Let ℱ be a holomorphic folia-
tion on P2 of degree 𝑑, with isolated singularities. Then∑︁

𝑝∈𝑠𝑖𝑛𝑔(ℱ)
𝐵𝐵(ℱ , 𝑝) = (𝑑+ 2)2.

Let ℱ be a codimension one holomorphic foliations on P𝑛, 𝑛 ≥ 3 and 𝑠𝑖𝑛𝑔(ℱ)
its singular set, we supose that 𝑠𝑖𝑛𝑔(ℱ) is an analytic subset of P𝑛 of codimension at
least 2. In this sense, we can consider 𝑠𝑖𝑛𝑔2(ℱ) the union of the irreducible components
of 𝑠𝑖𝑛𝑔(ℱ) whose codimension is precisely 2. This subset 𝑠𝑖𝑛𝑔2(ℱ) represents the most
important part of 𝑠𝑖𝑛𝑔(ℱ) (cf. [2]) and moreover we can state a fundamental lemma.

Lemma 2.2 (Lins Neto [12]). Let ℱ be a codimension-one holomorphic foliation on P𝑛,
𝑛 ≥ 3. Then the singular set 𝑠𝑖𝑛𝑔(ℱ) has non trivial components of complex dimension
𝑛− 2. That is 𝑠𝑖𝑛𝑔2(ℱ) ̸= ∅.

Let Γ ∈ 𝑠𝑖𝑛𝑔2(ℱ). Given a smooth point 𝑝 ∈ Γ and a germ of embedding 𝑖 :
(C2, 0) −→ (P𝑛, 𝑝) transverse to Γ, we define 𝐵𝐵(ℱ ,Γ, 𝑖, 𝑝) := 𝐵𝐵(𝑖*(ℱ), 0). We then
have the following result:
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Theorem 14 (Cerveau - Lins Neto [6]). There is a proper analytic subset Γ1 ⊂ Γ such
that:

(a) if 𝑝 ∈ Γ∖Γ1 then 𝐵𝐵(ℱ ,Γ, 𝑖, 𝑝) does not depend on the embedding 𝑖 : (C2, 0) −→
(P𝑛, 𝑝) transverse to Γ. We will then denote 𝐵𝐵(ℱ ,Γ, 𝑝) := 𝐵𝐵(ℱ ,Γ, 𝑖, 𝑝);

(b) the map 𝑝 ∈ Γ∖Γ1 ↦−→ 𝐵𝐵(ℱ ,Γ, 𝑝) ∈ C is constant.

We denote by 𝐵𝐵(ℱ ,Γ) := 𝐵𝐵(ℱ ,Γ, 𝑝), where 𝑝 ∈ Γ∖Γ1.
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3 Foliations of degree four on P𝑛, 𝑛 ≥ 3

According to Cerveau [4], all known foliations ℱ (of codimension-one) on P𝑛, 𝑛 ≥ 3,
satisfy the following alternative:

(*) either ℱ admits a projective transverse structure

(**) or ℱ is a rational pull-back of a foliation ℱ0 on P2.

It is not known if the previous alternative is always satisfied or if there exist other types
of foliations on P𝑛. In this chapter we will present some results about a classification
of codimension one foliations of degree four in P𝑛. In our context, we will show that
codimension one holomorphic foliations of degree four on P𝑛, 𝑛 ≥ 3, satisfy the previous
alternative, up to rational first integral.

The main result of this chapter is as follows:

Theorem A. Let ℱ be a codimension one holomorphic foliation of degree four on P𝑛,
with 𝑛 ≥ 3. Then,

(i) either ℱ admits a rational first integral;

(ii) or ℱ is transversely affine outside a compact hypersurface;

(iii) or ℱ is a pure transversely projective outside a compact hypersurface;

(iv) or ℱ = Φ*(𝒢), where Φ : P𝑛 99K P2 is a rational map and 𝒢 is a holomorphic
foliation on P2.

(v) or there exists a birational map Ψ : P𝑛−1 × P1 99K P𝑛 such that the foliation Ψ*(ℱ)
is defined by a 1-form described as follows:

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡,

where the 1-forms 𝛽𝑗 do not depend on 𝑡 ∈ P1, for all 0 ≤ 𝑗 ≤ 4.

We emphasize that Theorem A has been motivated by the main result of Cerveau
- Lins Neto [6], (see Theorem 15 to continuation). They provided a classification of codi-
mension one holomorphic foliations of degree three on the complex projective space.

Theorem 15 (Cerveau - Lins Neto [6]). Let ℱ be a codimension one holomorphic foliation
of degree three on P𝑛, 𝑛 ≥ 3. Then:
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(i) either ℱ has a rational first integral;

(ii) or ℱ has an affine transversely structure with poles on some an invariant hypersur-
face;

(iii) or ℱ = 𝑔*(𝒢), where 𝑔 : P𝑛 99K P2 is a rational map and 𝒢 a holomorphic foliation
on P2.

By Definition 2.9 and Theorem 8, a holomorphic foliation ℱ on P𝑛 of degree 𝑑 can
be represented by an affine coordinate system C𝑛 ≃ 𝐸 ⊂ P𝑛 by an integrable polynomial

1-form 𝜔𝐸 =
𝑑+1∑︁
𝑗=0

𝜔𝑗 where the coefficients of the 1-forms 𝜔𝑗 are polynomials homogenous

of degree 𝑗, 0 ≤ 𝑗 ≤ 𝑑 + 1, and 𝑖𝑅(𝜔𝑑+1) = 0, where 𝑅 is the radial vector field. The
1-form 𝜔𝐸 can be considered as a meromorphic 1-form in P𝑛 with poles of order 𝑑+ 2 in
the hyperplane at infinity of 𝐸. Given 𝑝 ∈ 𝐸, we define the set

𝒥 (ℱ , 𝑝) = 𝑚𝑖𝑛{𝑘 ≥ 0 | 𝑗𝑘
𝑝 (𝜔𝐸) ̸= 0}.

It is proved that 𝒥 (ℱ , 𝑝) depends only on 𝑝 and ℱ and does not depends on 𝐸 or 𝜔𝐸.

Another important theorem due to Cerveau and Lins Neto in [6] that we will use
as an important tool is the following result:

Theorem 16 (Cerveau - Lins Neto [6]). Let ℱ be a codimension one holomorphic foliation
on P𝑛, 𝑛 ≥ 3. Assume that 𝑠𝑖𝑛𝑔(ℱ) has an irreducible component of codimension two Γ
such that

(i) 𝐵𝐵(ℱ ,Γ) ̸= 0;

(ii) The algebraic set {𝑝 ∈ Γ|𝒥 (ℱ , 𝑝) > 1} has codimension four in P𝑛.

Then ℱ has a rational first integral.

Remark 3.1. As a consequence of Lemma 2.2 that 𝑠𝑖𝑛𝑔(ℱ) has at least one component
of codimension two, say Γ, such that 𝐵𝐵(ℱ ,Γ) ̸= 0, where ℱ is a codimension one
holomorphic foliation on P𝑛, 𝑛 ≥ 3.

As a consequence we have the following corollary:

Corollary 3.1 (Cerveau - Lins Neto [6]). Let ℱ be a codimension one holomorphic fo-
liation on P𝑛, 𝑛 ≥ 3. If 𝒥 (ℱ , 𝑝) ≤ 1, ∀ 𝑝 ∈ P𝑛, then ℱ has a rational first integral.
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Let ℱ be a codimension one holomorphic foliation of degree four in P𝑛, 𝑛 ≥ 3.
In order to prove Theorem A, we consider two possibilities: either there exists a point
𝑝 ∈ P𝑛 such that 𝒥 (ℱ , 𝑝) ≥ 2, or 𝒥 (ℱ , 𝑝) = 1 for all 𝑝 ∈ P𝑛. In the second case, we have
ℱ admits a rational first integral by Corollary 3.1. Hence we do not noting to prove in
Theorem A.

Therefore, we shall assume that there exists a point 𝑝 ∈ P𝑛 such that 𝒥 (ℱ , 𝑝) ≥ 2.
Taking affine coordinates (𝑧1, · · · , 𝑧𝑛) ∈ C𝑛 ⊂ P𝑛, where 𝑝 = 0 ∈ C𝑛, we can assume that
ℱ|C𝑛 is given by the polynomial 1-form

𝜔 = 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5,(3.1)

where 𝛼𝑗 are homogeneous polynomial 1-forms of degree 𝑗, with 𝑗 = 2, 3, 4, 5 and

𝑖𝑅(𝛼5) = 0, 𝑅 =
𝑛∑︁

𝑖=1
𝑧𝑖
𝜕

𝜕𝑧𝑖

.(3.2)

We now look at the pull-back of 𝜔 by the blow-up of P𝑛 at zero 0 ∈ C𝑛 ⊂ P𝑛. Let
𝜋 : P̃𝑛 → P𝑛 be the punctual blow-up at 0 ∈ C𝑛 ⊂ P𝑛. We calculate 𝜋*(ℱ) in the chart

(𝜏1, · · · , 𝜏𝑛−1, 𝑥) = (𝜏, 𝑥) ∈ C𝑛−1 × C ↦→ (𝑥𝜏, 𝑥) = (𝑧1, · · · , 𝑧𝑛) ∈ C𝑛 ⊂ P𝑛.

Putting 𝛼𝑗(𝑧) =
𝑛∑︁

𝑖=1
𝑃𝑗𝑖(𝑧)𝑑𝑧𝑖 and writing

𝐹𝑗(𝜏, 1) =
𝑛−1∑︁
𝑖=1

𝑃𝑗−1𝑖(𝜏, 1)𝜏𝑖 + 𝑃𝑗−1𝑖(𝜏, 1),

where 𝑃𝑗−1𝑖 are homogeneous polynomials of degree 𝑗 − 1, we obtain

𝜋*(𝜔) = 𝜋*(𝛼2 + 𝛼3 + 𝛼4 + 𝛼5)

= 𝑥2[𝑥𝜃2 + 𝑥2𝜃3 + 𝑥3𝜃4 + 𝑥4𝜃5 + (𝐹3(𝜏, 1) + 𝑥𝐹4(𝜏, 1) + 𝑥2𝐹5(𝜏, 1))𝑑𝑥](3.3)

where 𝜃𝑗 =
𝑛−1∑︁
𝑖=1

𝑃𝑗𝑖(𝜏, 1)𝑑𝜏𝑖 and it is important to note that 𝐹6(𝜏, 1) = 𝑖𝑅(𝛼5) ≡ 0 by

equation (3.2).

Now, we will use the following notation 𝐹𝑖(𝜏, 1) := 𝐹𝑖. Under the conditions de-
scribed above we have the following possibilities for 𝜔 and 𝐹 ′

𝑖𝑠:

1) 𝑖𝑅(𝜔) = 0 or equivalently 𝐹3 = 𝐹4 = 𝐹5 = 0;

2) 𝐹4 = 𝐹5 = 0 and 𝐹3 ̸= 0;

3) 𝐹3 = 𝐹4 = 0 and 𝐹5 ̸= 0;
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4) Possibilities solved in an analogous way:

a) 𝐹3 = 𝐹5 = 0 and 𝐹4 ̸= 0;

b) 𝐹3 = 0 and 𝐹4 ̸= 0 ̸= 𝐹5;

5) 𝐹5 = 0 and 𝐹3 ̸= 0 ̸= 𝐹4;

6) 𝐹4 = 0 and 𝐹3 ̸= 0 ̸= 𝐹5;

7) 𝐹3 ̸= 0 and 𝐹4 ̸= 0 and 𝐹5 ̸= 0.

We will explore these possibilities through the following lemmas considering 𝜔 and
ℱ under the conditions described above unless otherwise noted.

Note that

𝑖𝑅(𝜔) =𝑖𝑅(𝜔)

=𝑖𝑅(𝛼2 + 𝛼3 + 𝛼4 + 𝛼5)

=𝑖𝑅(𝛼2) + 𝑖𝑅(𝛼3) + 𝑖𝑅(𝛼4) + 𝑖𝑅(𝛼5)

=𝐹3 + 𝐹4 + 𝐹5 + 0 = 0

How 𝐹 ′
𝑖𝑠 are polinimial maps of diferent degrees, we have 𝐹𝑖 = 0, for all 𝑖 = 3, 4, 5.

Lemma 3.1 (Case 1). Suppose that ℱ|C𝑛 is defined by 𝜔 as in (3.1) and 𝑖𝑅(𝜔) = 0 or,
equivalently, 𝐹3 = 𝐹4 = 𝐹5 = 0. Then ℱ is a pullback of a foliation on P𝑛−1 by a linear
map.

Proof. First of all, it follows from (3.1) that 𝛼5 ̸= 0, otherwise ℱ would have a degree
less than or equal to 3, an absurd. Now, note that the integrability condition of 𝜔 implies
that

𝜔 ∧ 𝑑𝜔 = 0 ⇒ 𝑖𝑅(𝜔 ∧ 𝑑𝜔) = 0

⇒ 𝑖𝑅(𝜔) ∧ 𝑑𝜔 − 𝜔 ∧ 𝑖𝑅(𝑑𝜔) = 0.(3.4)

Hence, since 𝑖𝑅(𝜔) = 0, we have

(3.5) 𝜔 ∧ 𝑖𝑅(𝑑𝜔) = 0.

On the other hand, by Cartan’s magic formula

ℒ𝑅(𝜔) = 𝑑𝑖𝑅(𝜔) + 𝑖𝑅(𝑑𝜔)

ℒ𝑅(𝜔) = 𝑖𝑅(𝑑𝜔),(3.6)
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thus, the Lie derivative of 𝜔 with respect to radial vector field 𝑅 is

ℒ𝑅(𝜔) = ℒ𝑅(𝛼2 + 𝛼3 + 𝛼4 + 𝛼5)

= ℒ𝑅(𝛼2) + ℒ𝑅(𝛼3) + ℒ𝑅(𝛼4) + ℒ𝑅(𝛼5)

= 3𝛼2 + 4𝛼3 + 5𝛼4 + 6𝛼5.(3.7)

Applying (3.5) and (3.6), we get

(𝛼2 + 𝛼3 + 𝛼4 + 𝛼5) ∧ (3𝛼2 + 4𝛼3 + 5𝛼4 + 6𝛼5) = 4𝛼2 ∧ 𝛼3 + 5𝛼2 ∧ 𝛼4 + 6𝛼2 ∧ 𝛼5

+ 3𝛼3 ∧ 𝛼2 + 5𝛼3 ∧ 𝛼4 + 6𝛼3 ∧ 𝛼5

+ 3𝛼4 ∧ 𝛼2 + 4𝛼4 ∧ 𝛼3 + 6𝛼4 ∧ 𝛼5

+ 3𝛼5 ∧ 𝛼2 + 4𝛼5 ∧ 𝛼3 + 5𝛼5 ∧ 𝛼4

= 𝛼2 ∧ 𝛼3 + 2𝛼2 ∧ 𝛼4 + 3𝛼2 ∧ 𝛼5

+ 𝛼3 ∧ 𝛼4 + 2𝛼3 ∧ 𝛼5 + 𝛼4 ∧ 𝛼5 = 0(3.8)

From the last equality follows

𝛼2 ∧ 𝛼3 = 𝛼2 ∧ 𝛼4 = 𝛼2 ∧ 𝛼5 = 𝛼3 ∧ 𝛼4 = 𝛼3 ∧ 𝛼5 = 𝛼4 ∧ 𝛼5 = 0.

Since the coefficients of 𝛼𝑗’s are homogeneous polynomials of degree 𝑗, each of these outer
products generates a homogeneous 2-form polynomial of a degree different from each
other, so none of them can be a combination of the others. Since 𝛼5 ̸= 0 and

𝛼2 ∧ 𝛼5 = 𝛼3 ∧ 𝛼5 = 𝛼4 ∧ 𝛼5 = 0

then there exists meromorphic functions 𝑓𝑗, 𝑗 = 2, 3, 4, such that 𝛼𝑗 = 𝑓𝑗𝛼5. We assert
that 𝑓𝑗 = 0 for all 𝑗 = 2, 3, 4. Indeed, suppose by contradiction that some 𝑓𝑗 ̸= 0. Since

𝜔 = 𝑓2𝛼5 + 𝑓3𝛼5 + 𝑓4𝛼5 + 𝛼5 = (𝑓2 + 𝑓3 + 𝑓4 + 1)𝛼5,

we have that the coefficients of (𝑓2 + 𝑓3 + 𝑓4 + 1)𝛼5 could be of a degree different than 5,
it is an absurd, because ℱ has degree 4 by hypothesis. The assertion is proved.

Therefore, all 𝑓𝑗 = 0 and hence 𝛼𝑗 = 0, for all 𝑗 = 2, 3, 4. In particular, we have
𝜔 = 𝛼5, since 𝛼5 is integrable (by Theorem 8 ) it defines a foliation of degree 4 on
P𝑛−1 which we shall denote by ℱ𝑛−1. Whereas P𝑛−1 is the set of lines that pass through
0 ∈ C𝑛 ⊂ P𝑛, there exists a natural projection 𝜋 : P𝑛 → P𝑛−1 such that

ℱ = 𝜋*(ℱ𝑛−1).

Finally, ℱ is a linear pull-back from a codimension foliation on P𝑛−1 of four degree.

Lemma 3.2 (Case 2). Suppose that 𝐹4 = 𝐹5 = 0 and 𝐹3 ̸= 0. Then, either ℱ has an
affine transverse structure, or ℱ is a pullback by a rational map of a foliation on P2.
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Proof. Putting 𝛽𝑗 = 𝜃𝑗+1

𝐹3
, it follows from (4.4) that

𝑥2𝜋*(𝜔) = 𝑥𝜃2 + 𝑥2𝜃3 + 𝑥3𝜃4 + 𝑥4𝜃5 + 𝐹3𝑑𝑥

𝜂 = 𝑥2𝜋*(𝜔)
𝐹3

= 𝑥𝛽1 + 𝑥2𝛽2 + 𝑥3𝛽3 + 𝑥4𝛽4 + 𝑑𝑥.(3.9)

Note that 𝛽𝑗, for all 1 ≤ 𝑗 ≤ 4, does not depend on 𝑥. We can obtain a finite G-V-S

(𝜂0 = 𝜂, 𝜂1, 𝜂2, 𝜂3, 𝜂4),

where 𝜂( 𝜕
𝜕𝑥

) = 1, 𝜂𝑗 = ℒ𝑗
𝜕𝑥

(𝜂), here ℒ𝑗
𝜕𝑥

(𝜂) denotes the 𝑗-th Lie derivative along 𝜕𝑥 of the
form 𝜂.
We have two subcases:
Subcase 1. (𝛽4 = 0 and 𝛽3 ̸= 0) or (𝛽4 ̸= 0). In this case, ℱ admits a finite G-S-V of
length ≥ 3. Therefore, Theorem 12 implies that either ℱ has an affine transverse structure
or it is a pull-back by a rational map of a foliation on P2(P1 × P1 birrational to P2).
Subcase 2. 𝛽4 = 𝛽3 = 0. In this case, ℱ admits a finite G-V-S of length ≤ 2, where

𝜂 = 𝑑𝑥+ 𝑥𝛽1 + 𝑥2𝛽2.

Taking the change of coordinates 𝑥 = 1
𝑤

, we get Ω = − 𝜂
𝑤2 = 𝑑𝑤 − 𝛽2 − 𝑤𝛽1 and

𝑑Ω = − 𝑑𝛽2 − 𝑑𝑤 ∧ 𝛽1 − 𝑤𝑑𝛽1(3.10)

We assert that 𝛽1 is closed, that is, 𝑑𝛽1 = 0. In fact, we have

−𝛽1 ∧ Ω = −𝛽1 ∧ (𝑑𝑤 − 𝛽2 − 𝑤𝛽1) = −𝛽1 ∧ 𝑑𝑤 + 𝛽1 ∧ 𝛽2.(3.11)

From the integrability condition of Ω, we get

0 = Ω ∧ 𝑑Ω = (𝑑𝑤 − 𝛽2 − 𝑤𝛽1) ∧ (−𝑑𝛽2 − 𝑑𝑤 ∧ 𝛽1 − 𝑤𝑑𝛽1)

= −𝑑𝑤 ∧ 𝑑𝛽2 − 𝑤𝑑𝑤 ∧ 𝑑𝛽1 + 𝛽2 ∧ 𝑑𝛽2 − 𝛽2 ∧ 𝛽1 ∧ 𝑑𝑤

+ 𝑤𝛽2 ∧ 𝑑𝛽1 + 𝑤𝛽1 ∧ 𝑑𝛽2 + 𝑤2𝛽1 ∧ 𝑑𝛽1(3.12)

Using Lie derivative ℒ2
𝜕𝑤

(Ω ∧ 𝑑Ω) = 2𝛽1 ∧ 𝑑𝛽1 = 0 ⇒ 𝑤2𝛽1 ∧ 𝑑𝛽1 = 0. Again using Lie
derivative

ℒ𝜕𝑤(Ω ∧ 𝑑Ω) = −𝑑𝑤 ∧ 𝑑𝛽1 + 𝛽2 ∧ 𝑑𝛽1 + 𝛽1 ∧ 𝑑𝛽2 = 0(3.13)

From the equality (3.13), we obtain that 𝑑𝑤 ∧ 𝑑𝛽1 = 0, because 𝛽2 ∧ 𝑑𝛽1 + 𝛽1 ∧ 𝑑𝛽2 does
not depend on 𝑑𝑤. Since 𝑑𝑤 ̸= 0, and 𝑑𝛽1 does not depend on 𝑤, we get 𝑑𝛽1 = 0 and the
assertion is proved.

Therefore (3.10) it really comes down to

𝑑Ω = −𝑑𝛽2 − 𝑑𝑤 ∧ 𝛽1.(3.14)
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Let us show that equations (3.14) and (3.11) are equals, which implies that Ω has
an affine transversely structure, and therefore ℱ has too. To show the equality is sufficient
to prove that

𝑑𝛽2 = 𝛽2 ∧ 𝛽1.

It follows from (3.13) that 𝛽2 ∧ 𝑑𝛽1 + 𝛽1 ∧ 𝑑𝛽2 = 0 ⇒ 𝑤𝛽2 ∧ 𝑑𝛽1 + 𝑤𝛽1 ∧ 𝑑𝛽2 = 0. Then
we summarize Ω ∧ 𝑑Ω in

Ω ∧ 𝑑Ω = −𝑑𝑤 ∧ 𝑑𝛽2 + 𝛽2 ∧ 𝑑𝛽2 − 𝛽2 ∧ 𝛽1 ∧ 𝑑𝑤 = 0

of the above equal 𝛽2 ∧ 𝑑𝛽2 = 0, as the other parcels depend on 𝑑𝑤. Finally

(𝑑𝛽2 − 𝛽2 ∧ 𝛽1) ∧ 𝑑𝑤 = 0 ⇒ 𝑑𝛽2 − 𝛽2 ∧ 𝛽1 = 0 ⇒ 𝑑𝛽2 = 𝛽2 ∧ 𝛽1.(3.15)

As consequence from (3.10) and (3.11), we get

𝑑Ω = −𝛽1 ∧ Ω.

This implies that 𝜂 has an affine transverse structure and thus ℱ has too.

Lemma 3.3 (Case 3). Suppose 𝐹4 = 𝐹3 = 0 and 𝐹5 ̸= 0. Then either ℱ has an affine
transverse structure, or ℱ is a pullback by a rational map of a foliation on P2, or ℱ has
a pure projective transverse structure.

Proof. From hypothesis, we obtain

𝑥−3𝜋*(𝜔) = 𝜃2 + 𝑥𝜃3 + 𝑥2𝜃4 + 𝑥3𝜃5 + 𝑥𝐹5𝑑𝑥(3.16)

⇒𝜂 = 𝜋*(𝜔)
𝐹5𝑥3 = 𝜃2

𝐹5
+ 𝑥𝜃3

𝐹5
+ 𝑥2𝜃4

𝐹5
+ 𝑥3𝜃5

𝐹5
+ 𝑥𝑑𝑥

Applying a transformation on 𝜂 by the map 𝜓(𝜏, 𝑧) = (𝜏, 1
𝑧
) = (𝜏, 𝑥) we get

𝜓*(𝜂) =
⎡⎣ 𝜃2

𝐹5
+ 𝜃3

𝑧𝐹5
+ 𝜃4

𝑧2𝐹5
+ 𝜃5

𝑧3𝐹5
− 1
𝑧3𝑑𝑧

⎤⎦
⇒𝜓*(𝜂) = − 1

𝑧3

⎡⎣− 𝑧3𝜃2

𝐹5
− 𝑧2𝜃3

𝐹5
− 𝑧𝜃4

𝐹5
− 𝜃5

𝐹5
+ 𝑑𝑧

⎤⎦
⇒ − 𝑧3𝜓*(𝜂) =

⎡⎣𝑧3 −𝜃2

𝐹5
+ 𝑧2 −𝜃3

𝐹5
+ 𝑧

−𝜃4

𝐹5
+ −𝜃5

𝐹5
+ 𝑑𝑧

⎤⎦
⇒ − 𝑧3𝜓*(𝜂) = 𝛽0 + 𝑧𝛽1 + 𝑧2𝛽2 + 𝑧3𝛽3 + 𝑑𝑧,

where 𝛽0 = − 𝜃5

𝐹5
, 𝛽1 = − 𝜃4

𝐹5
, 𝛽2 = − 𝜃3

𝐹5
and 𝛽3 = − 𝜃2

𝐹5
.

Note that, −𝑧3𝜓*(𝜂) and therefore 𝜂 admits a finite G-V-S of length ≥ 3 if 𝛽3 ̸= 0.
Hence, in this case, by applying Theorem 12, ℱ has an affine transverse structure or it is
pullback by a rational map of a foliation on P2.
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On the other hand, suppose that 𝛽3 = 0, that is, 𝜃2 = 0. It follows from (3.16) that

𝑥−3𝜋*(𝜔) = 𝜃2 + 𝑥𝜃3 + 𝑥2𝜃4 + 𝑥3𝜃5 + 𝑥𝐹5𝑑𝑥

⇒𝜂 = 𝑥−4𝜋*(𝜔)
𝐹5

= 𝛽0 + 𝑥𝛽1 + 𝑥2𝛽2 + 𝑑𝑥(3.17)

where 𝛽𝑗 = 𝜃𝑗+3

𝐹5
for 𝑗 = 0, 1, 2. Calculating now the iterated Lie derivatives with respect

to the vector field 𝜕𝑥 we have:

ℒ𝜕𝑥(𝜂) = 𝛽1 + 2𝑥𝛽2(3.18)

ℒ2
𝜕𝑥

(𝜂) = 2𝛽2(3.19)

From the integrability condition of 𝜂, we obtain

0 = 𝜂 ∧ 𝑑𝜂 =(𝛽0 + 𝑥𝛽1 + 𝑥2𝛽2 + 𝑑𝑥) ∧ (𝑑𝛽0 + 𝑑𝑥 ∧ 𝛽1 + 𝑥𝑑𝛽1 + 2𝑥𝑑𝑥 ∧ 𝛽2 + 𝑥2𝑑𝛽2)

=𝛽0 ∧ 𝑑𝛽0 + 𝛽0 ∧ 𝑑𝑥 ∧ 𝛽1 + 𝑥𝛽0 ∧ 𝑑𝛽1 + 2𝑥𝛽0 ∧ 𝑑𝑥 ∧ 𝛽2 + 𝑥2𝛽0 ∧ 𝑑𝛽2

+𝑥𝛽1 ∧ 𝑑𝛽0 + 𝑥2𝛽1 ∧ 𝑑𝛽1 + 2𝑥2𝛽1 ∧ 𝑑𝑥 ∧ 𝛽2 + 𝑥3𝛽1 ∧ 𝑑𝛽2

+𝑥2𝛽2 ∧ 𝑑𝛽0 + 𝑥2𝛽2 ∧ 𝑑𝑥 ∧ 𝛽1 + 𝑥3𝛽2 ∧ 𝑑𝛽1 + 𝑥4𝛽2 ∧ 𝑑𝛽2

+𝑑𝑥 ∧ 𝑑𝛽0 + 𝑥𝑑𝑥 ∧ 𝑑𝛽1 + 𝑥2𝑑𝑥 ∧ 𝑑𝛽2

=𝛽0 ∧ 𝑑𝛽0 + 𝛽0 ∧ 𝑑𝑥 ∧ 𝛽1 + 𝑑𝑥 ∧ 𝑑𝛽0

+𝑥𝛽0 ∧ 𝑑𝛽1 + 2𝑥𝛽0 ∧ 𝑑𝑥 ∧ 𝛽2 + 𝑥𝛽1 ∧ 𝑑𝛽0 + 𝑥𝑑𝑥 ∧ 𝑑𝛽1

+𝑥2𝛽0 ∧ 𝑑𝛽2 + 𝑥2𝛽1 ∧ 𝑑𝛽1 + 2𝑥2𝛽1 ∧ 𝑑𝑥 ∧ 𝛽2 + 𝑥2𝛽2 ∧ 𝑑𝛽0 + 𝑥2𝛽2 ∧ 𝑑𝑥 ∧ 𝛽1 + 𝑥2𝑑𝑥 ∧ 𝑑𝛽2

+𝑥3𝛽1 ∧ 𝑑𝛽2 + 𝑥3𝛽2 ∧ 𝑑𝛽1

+𝑥4𝛽2 ∧ 𝑑𝛽2.

(3.20)

Now let us calculate some iterates of the Lie derivatives of 𝜂 ∧ 𝑑𝜂 with respect to the
vector field 𝜕𝑥. First, by calculating ℒ4

𝜕𝑥
(𝜂 ∧ 𝑑𝜂), we have

𝛽2 ∧ 𝑑𝛽2 = 0.(3.21)

Calculating now ℒ3
𝜕𝑥

(𝜂 ∧ 𝑑𝜂) and using (3.21) we have

𝛽1 ∧ 𝑑𝛽2 + 𝛽2 ∧ 𝑑𝛽1 = 0 ⇒ 𝑑(𝛽1 ∧ 𝛽2) = 0.(3.22)

In ℒ2
𝜕𝑥

(𝜂 ∧ 𝑑𝜂) and using (3.22) and (3.21), one has

𝛽0 ∧ 𝑑𝛽2 + 𝛽1 ∧ 𝑑𝛽1 + 2𝛽1 ∧ 𝑑𝑥 ∧ 𝛽2 + 𝛽2 ∧ 𝑑𝛽0 + 𝛽2 ∧ 𝑑𝑥 ∧ 𝛽1 + 𝑑𝑥 ∧ 𝑑𝛽2 = 0

⇒𝛽0 ∧ 𝑑𝛽2 + 𝛽1 ∧ 𝑑𝛽1 + 𝛽2 ∧ 𝑑𝛽0 − 𝛽1 ∧ 𝛽2 ∧ 𝑑𝑥+ 𝑑𝛽2 ∧ 𝑑𝑥 = 0

⇒(𝛽0 ∧ 𝑑𝛽2 + 𝛽1 ∧ 𝑑𝛽1 + 𝛽2 ∧ 𝑑𝛽0) + (−𝛽1 ∧ 𝛽2 + 𝑑𝛽2) ∧ 𝑑𝑥 = 0.(3.23)
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Remark 3.2. Note that the expression (𝛽0 ∧ 𝑑𝛽2 + 𝛽1 ∧ 𝑑𝛽1 + 𝛽2 ∧ 𝑑𝛽0) does not depend
on 𝑑𝑥 while (−𝛽1 ∧ 𝛽2 + 𝑑𝛽2) ∧ 𝑑𝑥 depends, but (−𝛽1 ∧ 𝛽2 + 𝑑𝛽2) does not depend on 𝑑𝑥,
then

(−𝛽1 ∧ 𝛽2 + 𝑑𝛽2) ∧ 𝑑𝑥 = 0

⇒ 𝛽1 ∧ 𝛽2 = 𝑑𝛽2(3.24)

Now in ℒ1
𝜕𝑥

(𝜂 ∧ 𝑑𝜂), using the equations (3.21), (3.22), (3.23), and an argument
similar to Remark 3.2 we have

𝛽0 ∧ 𝑑𝛽1 + 2𝛽0 ∧ 𝑑𝑥 ∧ 𝛽2 + 𝛽1 ∧ 𝑑𝛽0 + 𝑑𝑥 ∧ 𝑑𝛽1 = 0(3.25)

⇒2𝛽0 ∧ 𝑑𝑥 ∧ 𝛽2 + 𝑑𝑥 ∧ 𝑑𝛽1 = 0

⇒𝑑𝑥 ∧ (−2𝛽0 ∧ 𝛽2 + 𝑑𝛽1) = 0

⇒2𝛽0 ∧ 𝛽2 = 𝑑𝛽1(3.26)

Hence ℒ1
𝜕𝑥

(𝜂 ∧ 𝑑𝜂) with the equations (3.21), (3.22), (3.23), and (3.25) gives us

𝛽0 ∧ 𝑑𝛽0 + 𝛽0 ∧ 𝑑𝑥 ∧ 𝛽1 + 𝑑𝑥 ∧ 𝑑𝛽0 = 0

which gives us two equations

𝛽0 ∧ 𝑑𝛽0 = 0 and

𝛽0 ∧ 𝑑𝑥 ∧ 𝛽1 + 𝑑𝑥 ∧ 𝑑𝛽0 = 0,

again by Remark 3.2. Of the second equality we have

𝛽0 ∧ 𝛽1 = 𝑑𝛽0.(3.27)

Finally, it follows from (3.24), (3.26) and (3.27):⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝛽0 = 𝛽0 ∧ 𝛽1

𝑑𝛽1 = 2𝛽0 ∧ 𝛽2

𝑑𝛽2 = 𝛽1 ∧ 𝛽2

We shall now show the triple (𝜂,Ω, 𝜓) which defines a projective transverse structure for
𝜂 satisfying ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝜂 = Ω ∧ 𝜂

𝑑Ω = 𝜂 ∧ 𝜉

𝑑𝜉 = 𝜉 ∧ Ω
By taking Ω = −ℒ𝜕𝑥(𝜂) = −𝛽1 − 2𝑥𝛽2, we have

Ω ∧ 𝜂 = (−𝛽1 − 2𝑥𝛽2) ∧ (𝛽0 + 𝑥𝛽1 + 𝑥2𝛽2 + 𝑑𝑥)

= −𝛽1 ∧ 𝛽0 − 𝑥2𝛽1 ∧ 𝛽2 − 𝛽1 ∧ 𝑑𝑥− 2𝑥𝛽2 ∧ 𝛽0 − 2𝑥2𝛽2 ∧ 𝛽1 − 2𝑥𝛽2 ∧ 𝑑𝑥

= 𝑑𝛽0 − 𝑥2𝑑𝛽2 − 𝛽1 ∧ 𝑑𝑥+ 𝑥𝑑𝛽1 + 2𝑥2𝑑𝛽2 − 2𝑥𝛽2 ∧ 𝑑𝑥

= 𝑑𝛽0 + 𝑑𝑥 ∧ 𝛽1 + 𝑥𝑑𝛽1 + 2𝑥𝑑𝑥 ∧ 𝛽2 + 𝑥2𝑑𝛽2

= 𝑑𝜂.(3.28)
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On the other hand, by calculating 𝑑Ω, we have

𝑑Ω = −𝑑𝛽1 − 2𝑑𝑥 ∧ 𝛽2 − 2𝑥𝑑𝛽2

= −2𝛽0 ∧ 𝛽2 − 2𝑑𝑥 ∧ 𝛽2 − 2𝑥𝛽1 ∧ 𝛽2

= 𝛽0 ∧ (−2𝛽2) + 𝑑𝑥 ∧ (−2𝛽2) + 𝑥𝛽1 ∧ (−2𝛽2)

= (𝛽0 + 𝑑𝑥+ 𝑥𝛽1) ∧ (−2𝛽2)

= (𝛽0 + 𝑑𝑥+ 𝑥𝛽1 + 𝑥2𝛽2) ∧ (−2𝛽2)

= 𝜂 ∧ (−2𝛽2).(3.29)

The second equality is obtained from the relations found in (3.24), (3.26), and (3.27).

Now, we take 𝜉 = −ℒ2
𝜕𝑥

(𝜂) = −2𝛽2, which satisfies the following equality

𝑑𝜉 = − 2𝑑𝛽2 = −2𝛽1 ∧ 𝛽2

=(−2𝛽2) ∧ (−𝛽1)

=(−2𝛽2) ∧ (−𝛽1 − 2𝑥𝛽2)

=𝜉 ∧ Ω.(3.30)

Note that Ω is closed if and only if 𝛽2 = 0 which, consequently, we will have 𝜉 = 0 and
the structure will be affine. On the other hand, if 𝛽2 ̸= 0, then the foliation has a pure
projective transverse structure.

Lemma 3.4 (Case 4). Suppose 𝐹3 = 0 and 𝐹4 ̸= 0. Then, either ℱ has an affine trans-
verse structure, or ℱ is a pull-back by a rational map of a foliation on P2.

Proof. We will divide the proof in two subcases and in each of them we shall get a 1-form
similar to

(3.31) 𝜂 = 𝛽0 + 𝑥𝛽1 + 𝑥2𝛽2 + 𝑑𝑥

satisfying ℒ𝜕𝑥(𝛽𝑗) = 0 and 𝑖𝜕𝑥(𝛽𝑗) = 0 for all 𝑗 = 0, 1, 2. With this in hand, we shall thus
obtain some of the expected results.
Subcase 1: Suppose that 𝐹5 = 0.

𝑥−2𝜋*(𝜔) = 𝑥𝜃2 + 𝑥2𝜃3 + 𝑥3𝜃4 + 𝑥4𝜃5 + 𝑥𝐹4𝑑𝑥

⇒𝜂 = 𝑥−3𝜋*(𝜔)
𝐹4

= 𝛽0 + 𝑥𝛽1 + 𝑥2𝛽2 + 𝑥3𝛽3 + 𝑑𝑥(3.32)

where 𝛽𝑗 = 𝜃𝑗+2
𝐹4

, 𝑗 = 0, 1, 2, 3. Suppose then that 𝛽3 = 0, otherwise we would get a finite
G-V-S of length ≥ 3 and we would have nothing else to do, so we get an expression like
(3.31).
Subcase 2: Suppose now 𝐹5 ̸= 0.

𝑥−3𝜋*(𝜔) = 𝜃2 + 𝑥𝜃3 + 𝑥2𝜃4 + 𝑥3𝜃5 + (𝐹4 + 𝑥𝐹5)𝑑𝑥 = 𝜂
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Consider the map Ψ(𝜏, 𝑧) = (𝜏, 𝐹4
𝐹5

𝑧
1−𝑧

) = (𝜏, 𝑥) and we calculate the pull-back of 𝜂 for
this map:

Ψ*(𝜂) = 𝜃2 + 𝐹4

𝐹5

𝑧

1 − 𝑧
𝜃3 + 𝐹 2

4
𝐹 2

5

𝑧2

(1 − 𝑧)2 𝜃4 + 𝐹 3
4
𝐹 3

5

𝑧3

(1 − 𝑧)3 𝜃5 +
(︂
𝐹4 + 𝐹4

𝐹5

𝑧

1 − 𝑧
𝐹5

)︂
𝑑
(︂

+𝐹4

𝐹5

𝑧

1 − 𝑧

)︂

= 𝜃2 + 𝐹4𝑧

𝐹5(1 − 𝑧)𝜃3 + 𝐹 2
4 𝑧

2

𝐹 2
5 (1 − 𝑧)2 𝜃4 + 𝐹 3

4 𝑧
3

𝐹 3
5 (1 − 𝑧)3 𝜃5

+
(︂
𝐹4 + 𝐹4𝑧

1 − 𝑧

)︂ [︃
𝑧𝑑𝐹4

(1 − 𝑧)𝐹5
+ 𝐹4𝑑𝑧

(1 − 𝑧)𝐹5
− 𝑧𝐹4𝑑𝐹5

(1 − 𝑧)𝐹 2
5

+ 𝐹4𝑧𝑑𝑧

(1 − 𝑧)2𝐹5

]︃

= 𝜃2 + 𝐹4𝑧

𝐹5(1 − 𝑧)𝜃3 + 𝐹 2
4 𝑧

2

𝐹 2
5 (1 − 𝑧)2 𝜃4 + 𝐹 3

4 𝑧
3

𝐹 3
5 (1 − 𝑧)3 𝜃5

+ 𝐹4𝑧𝑑𝐹4

(1 − 𝑧)𝐹5
+ 𝐹 2

4 𝑑𝑧

(1 − 𝑧)𝐹5
− 𝑧𝐹 2

4 𝑑𝐹5

(1 − 𝑧)𝐹 2
5

+ 𝐹 2
4 𝑧𝑑𝑧

(1 − 𝑧)2𝐹5

+ 𝐹4𝑧
2𝑑𝐹4

(1 − 𝑧)2𝐹5
+ 𝑧𝐹 2

4 𝑑𝑧

(1 − 𝑧)2𝐹5
− 𝑧2𝐹 2

4 𝑑𝐹5

(1 − 𝑧)2𝐹 2
5

+ 𝐹 2
4 𝑧

2𝑑𝑧

(1 − 𝑧)3𝐹5

= 𝐹 2
4

𝐹5(1 − 𝑧)3

[︂
(1 − 3𝑧 + 3𝑧2 − 𝑧3)𝐹5𝜃2

𝐹 2
4

+ (𝑧 − 2𝑧2 + 𝑧3) 𝜃3

𝐹4
+ (𝑧2 − 𝑧3) 𝜃4

𝐹5
+ 𝑧3𝐹4𝜃5

𝐹 2
5

+(𝑧 − 2𝑧2 + 𝑧3)𝑑𝐹4

𝐹4
− (𝑧 − 2𝑧2 + 𝑧3)𝑑𝐹5

𝐹5
+ (𝑧2 − 𝑧3)𝑑𝐹4

𝐹4
− (𝑧2 − 𝑧3)𝑑𝐹5

𝐹5
+ 𝑑𝑧

]︂

= 𝐹 2
4

𝐹5(1−𝑧)3

[︂
𝐹5𝜃2
𝐹 2

4
+𝑧
(︂

− 3𝐹5𝜃2
𝐹 2

4

)︂
+𝑧2

(︂
3𝐹5𝜃2

𝐹 2
4

)︂
+𝑧3

(︂
− 𝐹5𝜃2

𝐹 2
4

)︂
+𝑧
(︂

𝜃3
𝐹4

)︂
+𝑧2

(︂
− 2 𝜃3

𝐹4

)︂
+𝑧3

(︂
𝜃3
𝐹4

)︂
+𝑧2

(︂
𝜃4
𝐹5

)︂
+𝑧3

(︂
− 𝜃4

𝐹5

)︂
+𝑧3

(︂
𝐹4𝜃5
𝐹 2

5

)︂
+𝑧
(︂

𝑑𝐹4
𝐹4

)︂
+𝑧2

(︂
− 2𝑑𝐹4

𝐹4

)︂
+𝑧3

(︂
𝑑𝐹4
𝐹4

)︂
+𝑧
(︂

− 𝑑𝐹5
𝐹5

)︂
+𝑧2

(︂
2𝑑𝐹4

𝐹4

)︂
+𝑧3

(︂
− 𝑑𝐹5

𝐹5

)︂
+𝑧2

(︂
𝑑𝐹4
𝐹4

)︂
+𝑧3

(︂
− 𝑑𝐹4

𝐹4

)︂
+𝑧2

(︂
− 𝑑𝐹5

𝐹5

)︂
+𝑧3

(︂
𝑑𝐹5
𝐹5

)︂
+ 𝑑𝑧

]︂

Omitting 𝐹 2
4

𝐹5(1 − 𝑧)3 and grouping the terms that have the same power as 𝑧 we obtain:

= 𝐹5𝜃2
𝐹 2

4
+ 𝑧

(︂
− 3𝐹5𝜃2

𝐹 2
4

+ 𝜃3
𝐹4

+ 𝑑𝐹4
𝐹4

− 𝑑𝐹5
𝐹5

)︂
+ 𝑧2

(︂
3𝐹5𝜃2

𝐹 2
4

− 2 𝜃3
𝐹4

+ 𝜃4
𝐹5

− 𝑑𝐹4
𝐹4

+ 𝑑𝐹5
𝐹5

)︂
+𝑧3

(︂
− 𝐹5𝜃2

𝐹 2
4

+ 𝜃3
𝐹4

− 𝜃4
𝐹5

+ 𝐹4𝜃5
𝐹 2

5

)︂
+ 𝑑𝑧

= 𝛽0 + 𝑧𝛽1 + 𝑧2𝛽2 + 𝑧3𝛽3 + 𝑑𝑧 = 𝜂

As in the previous case we assume 𝛽3 = 0 for the same reason, we get an expression
equal to (3.31).

We will now work both cases at the same time as they both fell into the form (3.31).
Remembering that in the initial blow-up we have 𝜋*(𝛼2) = 𝑥2[𝑥𝜃2 + 𝐹3(𝜏, 1)𝑑𝑥] = 𝑥3𝜃2.
When 𝛼2 = 0 we have 𝛽0 = 0 and 𝜂 = 𝑥𝛽1 + 𝑥2𝛽2 + 𝑑𝑥 where we fall into the Lemma 3.2,
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so let us assume 𝛼2 ̸= 0. The integrability condition of 𝜔 gives us

(𝛼2 + 𝛼3 + 𝛼4 + 𝛼5) ∧ (𝑑𝛼2 + 𝑑𝛼3 + 𝑑𝛼4 + 𝑑𝛼5) =𝛼2 ∧ 𝑑𝛼2 + 𝛼2 ∧ 𝑑𝛼3 + 𝛼2 ∧ 𝑑𝛼4 + 𝛼2 ∧ 𝑑𝛼5

+𝛼3 ∧ 𝑑𝛼2 + 𝛼3 ∧ 𝑑𝛼3 + 𝛼3 ∧ 𝑑𝛼4 + 𝛼3 ∧ 𝑑𝛼5

+𝛼4 ∧ 𝑑𝛼2 + 𝛼4 ∧ 𝑑𝛼3 + 𝛼4 ∧ 𝑑𝛼4 + 𝛼4 ∧ 𝑑𝛼5

+𝛼5 ∧ 𝑑𝛼2 + 𝛼5 ∧ 𝑑𝛼3 + 𝛼5 ∧ 𝑑𝛼4 + 𝛼5 ∧ 𝑑𝛼5 = 0(3.33)

The coefficients of 𝛼𝑗 are homogeneous polynomials of degree 𝑗, then the coefficients of
𝛼2 ∧ 𝑑𝛼2 are homogeneous polynomials of degree 3 and none of the other 2-forms in
the other parcels have coefficients of degree 3, then 𝛼2 ∧ 𝑑𝛼2 = 0. In particular, either
𝐶𝑜𝑑(𝑆𝑖𝑛𝑔(𝛼2)) ≥ 2 and 𝛼2 define a degree 1 foliation in P𝑛−1; or 𝛼2 = ℎ𝛼1, where 𝛼1

defines a zero degree foliation in P𝑛−1 (𝛼2 = ℎ𝛼1, in this case 𝐶𝑜𝑑(𝑆𝑖𝑛𝑔(𝛼2)) < 2, and the
foliation needs to be saturated and therefore what is left is a 1-form polynomial of degree
1). In both cases 𝛼2 has an integrating factor, that is, there exists a function 𝑓 such that
𝑑(𝑓−1𝛼2) = 0.

In Subcase 1, we have:

𝜋*

⎛⎝𝛼2

𝑓

⎞⎠ = 𝜃2

𝑓(𝜏, 1) ⇒ 𝑑

⎛⎝ 𝜃2

𝑓(𝜏, 1)

⎞⎠ = 0 ⇒ 𝑑

⎛⎝𝐹4(𝜏, 1)
𝑓(𝜏, 1) 𝛽0

⎞⎠ = 0(3.34)

We will put 𝐹1(𝜏) := 𝑓(𝜏, 1)
𝐹4(𝜏, 1) for this case.

In Subcase 2, we have:

𝜋*

⎛⎝𝛼2

𝑓

⎞⎠ = 𝜃2

𝑓(𝜏, 1) ⇒ 𝑑

⎛⎝ 𝜃2

𝑓(𝜏, 1)

⎞⎠ = 0 ⇒ 𝑑

⎛⎝ 𝐹 2
4 (𝜏, 1)

𝐹5(𝜏, 1)𝑓(𝜏, 1)𝛽0

⎞⎠ = 0(3.35)

We will put 𝐹2(𝜏) := 𝐹5(𝜏, 1)𝑓(𝜏, 1)
𝐹 2

4 (𝜏, 1) for this case.

Now consider the map Φ𝑖(𝜏, 𝑧) = (𝜏, 𝐹𝑖(𝜏)𝑧) = (𝜏, 𝑥), 𝑖 = 1, 2. If 𝜂 is the one that
appears in Subcase 1, just use Φ1, if it is 𝜂 in Subcase 2, just use Φ2, so we will omit
the indices of Φ𝑖 and 𝐹𝑖 because the calculation we will make with these applications in
one case is identical to the other. If 𝜂 is like in (3.31), a direct calculation gives us:

Φ*(𝜂) =𝐹 ·
(︂
𝑑𝑧 + 𝐹−1𝛽0 +

(︂
𝛽1 + 𝑑𝐹

𝐹

)︂
𝑧 + 𝐹𝛽2𝑧

2
)︂

=𝐹 ·
(︂
𝑑𝑧 + 𝛽0 + 𝛽1𝑧 + 𝛽2𝑧

2
)︂

= 𝐹𝜂.

Let us consider the birational map 𝜑(𝜏, 𝑤) = (𝜏, 1
𝑤

) = (𝜏, 𝑧). Then

𝜑*(𝜂) = −𝑤2𝜂

where 𝜂 = 𝑑𝑤− 𝛽2 −𝑤𝛽1 −𝑤2𝛽0. Making calculations in 𝜂 analogous to the calculations
made in Lemma 3.3, we find:



Chapter 3. Foliations of degree four on P𝑛, 𝑛 ≥ 3 41

(3.36)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝛽0 = 𝛽0 ∧ 𝛽1

𝑑𝛽1 = 2𝛽0 ∧ 𝛽2

𝑑𝛽2 = 𝛽1 ∧ 𝛽2

From (3.34) and (3.35) we have 𝑑𝛽0 = 0 and by the first equation in (3.36) we obtain
𝛽0 ∧ 𝛽1 = 0. Denoting by ℳ𝑘 the set of meromorphic functions in P𝑘. It follows from
𝛽0 ∧ 𝛽1 = 0 that there exists 𝑔 ∈ ℳ𝑛−1 such that 𝛽1 = 𝑔𝛽0.

The second relation in (3.36) gives us

𝑑𝛽1 = 𝑑𝑔 ∧ 𝛽0 = 2𝛽0 ∧ 𝛽2 ⇒ 𝑑𝑔 ∧ 𝛽0 + 2𝛽2 ∧ 𝛽0 = 0

⇒ (𝑑𝑔 + 2𝛽2) ∧ 𝛽0 = 0.

Therefore, there exists ℎ ∈ ℳ𝑛−1 such that

𝑑𝑔

2 + 𝛽2 = ℎ𝛽0 ⇒ 𝛽2 = ℎ𝛽0 − 𝑑𝑔

2 .

The third relation in (3.36) implies

𝑑𝛽2 = 𝑑ℎ ∧ 𝛽0 =𝛽1 ∧ 𝛽2 = 𝑔𝛽0 ∧

⎛⎝ℎ𝛽0 − 𝑑𝑔

2

⎞⎠ = 𝑔
𝑑𝑔

2 ∧ 𝛽0

⇒𝑑ℎ ∧ 𝛽0 = 𝑔
𝑑𝑔

2 ∧ 𝛽0 ⇒

⎛⎝𝑑ℎ− 𝑔
𝑑𝑔

2

⎞⎠ ∧ 𝛽0 = 0

⇒𝑑

⎛⎝ℎ− 𝑔2

4

⎞⎠ ∧ 𝛽0 = 0.(3.37)

Let us denote by 𝒢 the foliation generated by 𝛽0 in P𝑛−1. Note that 𝛽0 generates a foliation
in P𝑛−1 because it is defined in C𝑛−1 and moreover it is closed.

We have two possibilities:
Possibility I: 𝒢 has no non-constant first integral. We claim that 𝜔 has an integral factor.
In fact, by (3.37)

𝑑
(︂
ℎ− 𝑔2

4

)︂
∧ 𝛽0 = 0 ⇒ ℎ = 𝑔2

4 + 𝑐,

where 𝑐 ∈ C, otherwise 𝒢 would have non-constant first integral. We can then write:

𝜂 = 𝑑𝑤 − 𝛽2 − 𝑤𝛽1 − 𝑤2𝛽0 = 𝑑𝑤 −
(︂
𝑔2

4 + 𝑐
)︂
𝛽0 − 𝑑𝑔

2 − 𝑔𝛽0𝑤 − 𝛽0𝑤
2

= 𝑑𝑤 − 𝑑𝑔

2 −
(︂
𝑔

4 + 𝑐+ 𝑔𝑤 + 𝑤2
)︂
𝛽0

= 𝑑
(︂
𝑤 − 𝑔

2

)︂
−
(︂[︂
𝑤 + 𝑔

2

]︂2
+ 𝑐

)︂
𝛽0,(3.38)
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in particular, if we set 𝒫 :=
(︂[︂
𝑤 + 𝑔

2

]︂2
+ 𝑐

)︂−1
𝜂, then

𝒫 :=
𝑑(𝑤 − 𝑔

2)[︁
𝑤 + 𝑔

2

]︁2
+ 𝑐

− 𝛽0 ⇒ 𝑑𝛽0 = 0.

Therefore 𝜂 has an integral factor and therefore 𝜔 as well. Then there exists ℎ such that

𝑑(ℎ𝜔) = 0 ⇒ 𝑑ℎ ∧ 𝜔 + ℎ𝑑𝜔 = 0

⇒ −𝑑ℎ

ℎ
∧ 𝜔 = 𝑑𝑤.(3.39)

Hence 𝜔 has an affine transverse structure.

Possibility II: 𝒢 has non-constant first integral. We claim that ℱ is the pull-back
of a Riccati equation on P1 × P1 by a birational map. In fact, by Stein’s Factorization
Theorem 𝒢 has a meromorphic first integral, say 𝑓 , with connected fibers: if 𝜑 ∈ ℳ𝑛−1

and 𝑑𝜑 ∧ 𝑑𝑓 = 0 then there exists 𝜓 ∈ ℳ1 such that 𝜑 = 𝜓(𝑓) where 𝜓(𝑓) = 𝜓 ∘ 𝑓 .
On the other hand, the relation (3.37) implies that there exists 𝜑2 ∈ ℳ1 such that

𝑑
(︂
ℎ− 𝑔2

4

)︂
∧ 𝛽0 = 0 ⇒ 𝑑

(︂
ℎ− 𝑔2

4

)︂
∧ 𝜑1𝑑𝑓 = 0 ⇒ 𝑑

(︂
ℎ− 𝑔2

4

)︂
∧ 𝑑𝑓 = 0

and by Stein’s Factorization Theorem

ℎ− 𝑔2

4 = 𝜓2(𝑓) ⇒ ℎ = 𝜓2(𝑓) + 𝑔2

4 ,

replacing in 𝜂 we have

𝜂 =𝑑𝑤 −
(︂
ℎ𝛽0 − 𝑑𝑔

2

)︂
− 𝑤(𝑔𝛽0) − 𝛽0𝑤

2

=𝑑
(︂
𝑤 − 𝑔

2

)︂
+ (−ℎ− 𝑤𝑔 − 𝑤2)𝛽0

=𝑑
(︂
𝑤 − 𝑔

2

)︂
−
(︂
𝑔2

4 + 𝜓2(𝑓) + 𝑤𝑔 + 𝑤2
)︂
𝜓1(𝑓)𝑑𝑓

=𝑑
(︂
𝑤 − 𝑔

2

)︂
−
(︂[︂
𝑤 + 𝑔

2

]︂2
+ 𝜓2(𝑓)

)︂
𝜓1(𝑓)𝑑𝑓(3.40)

Consider the rational map Φ1 : P𝑛−1 × P1 99K P1 × P1 given by

Φ1(𝜏, 𝑤) =
(︂
𝑓(𝜏), 𝑤 − 𝑔(𝜏)

2

)︂
:= (𝑥, 𝑦)

Then 𝜂 = Φ*(𝜃), where
𝜃 = 𝑑𝑦 − (𝑦2 + 𝜓2(𝑥))𝜓1(𝑥)𝑑𝑥

Note that 𝜃 is an integrable 1-form that defines a Riccati equation in P1 ×P1 and further-
more, it has an affine transverse structure as we wanted, then 𝜔 has an affine transverse
structure.
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Lemma 3.5 (Case 5). Suppose that 𝐹5 ≡ 0, and 𝐹3 ̸≡ 0 ̸≡ 𝐹4. Then, there exists a
birational map Ψ : P𝑛−1 × P1 99K P𝑛 such that the foliation Ψ*(ℱ) is defined by a 1-form
described as follows:

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡,

where the 1-forms 𝛽𝑗 do not depend on 𝑡 ∈ P1, for all 0 ≤ 𝑗 ≤ 4.

Proof. We consider (𝜏, 𝑥) ∈ C𝑛−1 ×CP𝑛−1 ×P1 as outlined in (4.3), so that the blowing-up
𝜎 extends to a birational map 𝜓1 : P𝑛−1 × P1 99K P𝑛−1 × P1. If 𝐹5 ≡ 0, it can be inferred
from (4.4) that

(3.41) 𝜂 = 𝑥𝜃2 + 𝑥2𝜃3 + 𝑥3𝜃4 + 𝑥4𝜃5 + (𝐹3(𝜏, 1) + 𝑥𝐹4(𝜏, 1))𝑑𝑥,

and the pull-back foliation 𝜓*
1(ℱ) is induced by 𝜂. We will perform a series of pull-

backs by birational maps on 𝜂 until the desired result is achieved. To begin, we initiate
the pull-back by applying the birational map 𝜓𝑧 : P𝑛−1 × P1 99K P𝑛−1 × P1 defined as
𝜓𝑧(𝜏, 𝑧) = (𝜏, 1

𝑧
) = (𝜏, 𝑥). Consequently, 𝜓*

𝑧(𝜂) = 𝜂𝑧

𝑧4 , where

𝜂𝑧 = 𝜃5 + 𝑧𝜃4 + 𝑧2𝜃3 + 𝑧3𝜃2 − (𝑧𝐹4 + 𝑧2𝐹3)𝑑𝑧.

Continuing, we consider the birational map 𝜓𝑡 : P𝑛−1 × P1 99K P𝑛−1 × P1 defined as

𝜓𝑡(𝜏, 𝑡) =
⎛⎝𝜏, 𝐹4(𝜏,1)

𝐹3(𝜏,1)𝑡

(1 − 𝑡)

⎞⎠ = (𝜏, 𝑧). Calculatting the pull-back we have

𝜓*
𝑧(𝜂) = 1

𝑧
𝜃2 + 1

𝑧
𝜃2 + 1

𝑧
𝜃2 + 1

𝑧
𝜃2 −

(︂
𝐹3 + 1

𝑧
𝐹4

)︂
𝑑
(︂1
𝑧

)︂
= 1

𝑧4

[︁
𝑧3𝜃2 + 𝑧2𝜃3 + 𝑧𝜃4 + 𝜃5 − (𝑧2𝐹3 + 𝑧𝐹4)𝑑𝑧

]︁

Omitting 1
𝑧4 we have

𝜂𝑧 = 𝜃5 + 𝑧𝜃4 + 𝑧2𝜃3 + 𝑧3𝜃2 − (𝑧𝐹4 + 𝑧2𝐹3)𝑑𝑧.
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We will now pullback 𝜂𝑧 by the application 𝜓𝑡(𝜏, 𝑡) =
(︃
𝜏,
𝐹4

𝐹3

𝑡

(1 − 𝑡)

)︃
:

𝜓*
𝑡 (𝜂𝑧) = 𝜃5 +

(︃
𝐹4

𝐹3

𝑡

(1 − 𝑡)

)︃
𝜃4 +

(︃
𝐹 2

4
𝐹 2

3

𝑡2

(1 − 𝑡)2

)︃
𝜃3 +

(︃
𝐹 3

4
𝐹 3

3

𝑡3

(1 − 𝑡)3

)︃
𝜃2

−
(︃(︃

𝐹4

𝐹3

𝑡

(1 − 𝑡)

)︃
𝐹4 +

(︃
𝐹 2

4
𝐹 2

3

𝑡2

(1 − 𝑡)2

)︃
𝐹3

)︃
𝑑

(︃
𝐹4

𝐹3

𝑡

(1 − 𝑡)

)︃

= 𝜃5 +
(︃
𝐹4

𝐹3

𝑡

(1 − 𝑡)

)︃
𝜃4 +

(︃
𝐹 2

4
𝐹 2

3

𝑡2

(1 − 𝑡)2

)︃
𝜃3 +

(︃
𝐹 3

4
𝐹 3

3

𝑡3

(1 − 𝑡)3

)︃
𝜃2

−
(︃(︃

𝐹 2
4
𝐹3

𝑡

(1 − 𝑡)

)︃
+
(︃
𝐹 2

4
𝐹3

𝑡2

(1 − 𝑡)2

)︃)︃(︃
𝐹4

(1 − 𝑡)𝐹3
𝑑𝑡+ 𝑡

(1 − 𝑡)𝐹3
𝑑𝐹4

+ 𝑡𝐹4

(1 − 𝑡)2𝐹3
𝑑𝑡+ 𝑡𝐹4

(1 − 𝑡)𝐹 2
3
𝑑𝐹3

)︃

= 𝜃5 +
(︃
𝐹4

𝐹3

𝑡

(1 − 𝑡)

)︃
𝜃4 +

(︃
𝐹 2

4
𝐹 2

3

𝑡2

(1 − 𝑡)2

)︃
𝜃3 +

(︃
𝐹 3

4
𝐹 3

3

𝑡3

(1 − 𝑡)3

)︃
𝜃2

−

⎛⎝ 𝑡𝐹 3
4

(1 − 𝑡)2𝐹 2
3
𝑑𝑡+ 𝑡2𝐹 2

4
(1 − 𝑡)2𝐹 2

3
𝑑𝐹4 + 𝑡2𝐹 3

4
(1 − 𝑡)3𝐹 2

3
𝑑𝑡− 𝑡2𝐹 3

4
(1 − 𝑡)2𝐹 3

3
𝑑𝐹3

+ 𝑡2𝐹 3
4

(1 − 𝑡)3𝐹 2
3
𝑑𝑡+ 𝑡3𝐹 2

4
(1 − 𝑡)3𝐹 2

3
𝑑𝐹4 + 𝑡3𝐹 3

4
(1 − 𝑡)4𝐹 2

3
𝑑𝑡− 𝑡3𝐹 3

4
(1 − 𝑡)3𝐹 3

3
𝑑𝐹3

⎞⎠
= 𝐹 3

4
(1 − 𝑡)4𝐹 2

3

⎡⎣(1 − 𝑡)4𝐹
2
3
𝐹 3

4
𝜃5 + 𝑡(1 − 𝑡)3 𝐹3

𝐹 2
4
𝜃4 + 𝑡2(1 − 𝑡)2 𝜃3

𝐹4
+ 𝑡3(1 − 𝑡) 𝜃2

𝐹3

−𝑡2(1 − 𝑡)2𝑑𝐹4

𝐹4
+ 𝑡2(1 − 𝑡)2𝑑𝐹3

𝐹3
− 𝑡3(1 − 𝑡)𝑑𝐹4

𝐹4
+ 𝑡3(1 − 𝑡)𝑑𝐹3

𝐹3

−
(︁
𝑡(1 − 𝑡)2 + 𝑡2(1 − 𝑡) + 𝑡2(1 − 𝑡) + 𝑡3

)︁
𝑑𝑡

⎤⎦

= 𝐹 3
4

(1 − 𝑡)4𝐹 2
3

⎡⎣(1 − 4𝑡+ 6𝑡2 − 4𝑡3 + 𝑡4)𝐹
2
3
𝐹 3

4
𝜃5 + (𝑡− 3𝑡2 + 3𝑡3 − 𝑡4)𝐹3

𝐹 2
4
𝜃4 + (𝑡2 − 2𝑡3 + 𝑡4) 𝜃3

𝐹4

+(𝑡3 − 𝑡4) 𝜃2

𝐹3
− (𝑡2 − 2𝑡3 + 𝑡4)𝑑𝐹4

𝐹4
+ (𝑡2 − 2𝑡3 + 𝑡4)𝑑𝐹3

𝐹3
− (𝑡3 − 𝑡4)𝑑𝐹4

𝐹4
+ (𝑡3 − 𝑡4)𝑑𝐹3

𝐹3
− 𝑡𝑑𝑡

⎤⎦
= 𝐹 3

4
(1 − 𝑡)4𝐹 2

3

⎡⎣(︃𝐹 2
3
𝐹 3

4
𝜃5

)︃
+ 𝑡

(︃
−4𝐹

2
3
𝐹 3

4
𝜃5 + 𝐹3

𝐹 2
4
𝜃4

)︃
+ 𝑡2

(︃
6𝐹

2
3
𝐹 3

4
𝜃5 − 3𝐹3

𝐹 2
4
𝜃4 + 𝜃3

𝐹4
− 𝑑𝐹4

𝐹4
+ 𝑑𝐹3

𝐹3

)︃

+𝑡3
(︃

−4𝐹
2
3
𝐹 3

4
𝜃5 + 3𝐹3

𝐹 2
4
𝜃4 − 2 𝜃3

𝐹4
+ 2𝑑𝐹4

𝐹4
+ 𝑑𝐹3

𝐹3
+ 𝜃2

𝐹3

)︃
+ 𝑡4

⎛⎝𝐹 2
3
𝐹 3

4
𝜃5 − 𝐹3

𝐹 2
4
𝜃4 + 𝜃3

𝐹4
− 𝜃2

𝐹3

−𝑑𝐹4

𝐹4
+ 𝑑𝐹3

𝐹3
+ 𝑑𝐹4

𝐹4
− 𝑑𝐹3

𝐹3

⎞⎠− 𝑡𝑑𝑡

⎤⎦ = 𝐹 3
4

(1 − 𝑡)4𝐹 2
3
𝜂𝑡

𝜓*
𝑡 (𝜂𝑧) = 𝐹 3

4
(1−𝑡)4𝐹 2

3
𝜂𝑡, where

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡
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with

𝛽0 = 𝐹 2
3
𝐹 3

4
𝜃5

𝛽1 = −4𝐹
2
3
𝐹 3

4
𝜃5 + 𝐹3

𝐹 2
4
𝜃4

𝛽2 = 6𝐹
2
3
𝐹 3

4
𝜃5 − 3𝐹3

𝐹 2
4
𝜃4 + 𝜃3

𝐹4
− 𝑑𝐹4

𝐹4
+ 𝑑𝐹3

𝐹3

𝛽3 = −4𝐹
2
3
𝐹 3

4
𝜃5 + 3𝐹3

𝐹 2
4
𝜃4 − 2 𝜃3

𝐹4
+ 2𝑑𝐹4

𝐹4
+ 𝑑𝐹3

𝐹3
+ 𝜃2

𝐹3

𝛽4 = 𝐹 2
3
𝐹 3

4
𝜃5 − 𝐹3

𝐹 2
4
𝜃4 + 𝜃3

𝐹4
− 𝜃2

𝐹3

The proof concludes by observing that the 1-forms 𝛽𝑗 are dependent solely on 𝜏 , for all
0 ≤ 𝑗 ≤ 4, and taking Ψ := 𝜓1 ∘ 𝜓𝑧 ∘ 𝜓𝑡.

Lemma 3.6 (Cases 6 and 7). Suppose that 𝐹4 ≡ 0, and 𝐹3 ̸≡ 0, 𝐹5 ̸≡ 0; or 𝐹3 ̸≡ 0,
𝐹4 ̸≡ 0, and 𝐹5 ̸≡ 0. Then, the foliation ℱ is either transversely affine or is the pull-back
by a rational map of a foliation on P2, or there exists a birational map Ψ : P𝑛−1×P1 99K P𝑛

such that the foliation Ψ*(ℱ) is defined by a 1-form described as follows:

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡,

where the 1-forms 𝛽𝑗 do not depend on 𝑡 ∈ P1, for all 0 ≤ 𝑗 ≤ 4.

Proof. As in Lemma 3.5. the map 𝜎 extends to a birational map 𝜓1 : P𝑛−1 × P1 99K

P𝑛−1 × P1. Then, following from equation (4.4), the foliation 𝜓*(ℱ) is defined by the
1-form:

𝜂 = 𝑥𝜃2 + 𝑥2𝜃3 + 𝑥3𝜃4 + 𝑥4𝜃5 + (𝐹3(𝜏, 1) + 𝑥𝐹4(𝜏, 1) + 𝑥2𝐹5(𝜏, 1))𝑑𝑥.(3.42)

Since 𝐹5 ̸≡ 0, we can divide the expression of 𝜂 by 𝐹5(𝜏, 1) and obtain:

𝜂1 = 𝑥𝛼2 + 𝑥2𝛼3 + 𝑥3𝛼4 + 𝑥4𝛼5 +
(︃
𝐹3(𝜏, 1)
𝐹5(𝜏, 1) + 𝑥

𝐹4(𝜏, 1)
𝐹5(𝜏, 1) + 𝑥2

)︃
𝑑𝑥,(3.43)

where 𝛼𝑗 = 𝜃𝑗/𝐹5(𝜏, 1), for all 2 ≤ 𝑗 ≤ 5. Now, we factorize the polynomial

𝑥2 + 𝑥
𝐹4(𝜏, 1)
𝐹5(𝜏, 1) + 𝐹3(𝜏, 1)

𝐹5(𝜏, 1) = (𝑥− 𝑐1(𝜏))(𝑥− 𝑐2(𝜏)).

Note that 𝑐1(𝜏) and 𝑐2(𝜏) are not identically zero, as assumed from the hypotheses 𝐹3 ̸≡ 0,
𝐹5 ̸≡ 0, and 𝑐1(𝜏) · 𝑐2(𝜏) = 𝐹3(𝜏,1)

𝐹5(𝜏,1) .

First, we consider the birational map 𝜓𝑧 : P𝑛−1 × P1 99K P𝑛−1 × P1 defined by
𝜓𝑧(𝜏, 𝑧) =

(︁
𝜏, 𝑐1(𝜏)𝑧

𝑧−1

)︁
= (𝜏, 𝑥). A direct calculation yields 𝜓*

𝑧(𝜂1) = 𝑐2
1

(𝑧−1)4𝜂𝑧, where

(3.44) 𝜂𝑧 = 𝑧𝛾1 + 𝑧2𝛾2 + 𝑧3𝛾3 + 𝑧4𝛾4 − [(𝑐1(𝜏) − 𝑐2(𝜏))𝑧 + 𝑐2(𝜏)]𝑑𝑧



Chapter 3. Foliations of degree four on P𝑛, 𝑛 ≥ 3 46

with

𝛾1 = 𝛼2

𝑐1(𝜏) − 𝑐2(𝜏)𝑑𝑐1(𝜏)
𝑐1(𝜏)

𝛾2 = 3𝛼2

𝑐1(𝜏) + 𝛼3 + (2𝑐2(𝜏) − 𝑐1(𝜏))𝑑𝑐1(𝜏)
𝑐1(𝜏)

𝛾3 = −3𝛼2

𝑐1(𝜏) − 2𝛼3 − 𝑐1(𝜏)𝛼4 + (𝑐1(𝜏) − 𝑐2(𝜏))𝑑𝑐1(𝜏)
𝑐1(𝜏)

𝛾4 = 𝛼2

𝑐1(𝜏) + 𝛼3 + 𝑐1(𝜏)𝛼4 + 𝑐2
1(𝜏)𝛼5

Now we will analyze the expression of 𝜂𝑧 in (3.44), observing that we have the following
subcases:
Subcase I. 𝑐1(𝜏) = 𝑐2(𝜏). In this situation, we have that

(3.45) 𝜂𝑧 = 𝑧𝛾1 + 𝑧2𝛾2 + 𝑧3𝛾3 + 𝑧4𝛾4 + 𝑐2(𝜏)𝑑𝑧

Since 𝑐2(𝜏) is not identically zero, we can divide 𝜂𝑧 by 𝑐2(𝜏) and obtain a 1-form 𝜂 that is
equivalent to the 1-form derived in equation (3.9) of Lemma 3.2. Hence, we can conclude
that the foliation ℱ is either transversely affine or is the pull-back by a rational map of
a foliation on P2.
Subcase II. 𝑐1(𝜏) ̸= 𝑐2(𝜏). In this subcase, the 1-form 𝜂𝑧 is equivalent to the 1-form
derived in equation (3.41) of Lemma 3.5. Therefore, we can conclude that there exists a
birational map Ψ : P𝑛−1 × P1 99K P𝑛−1 × P1 such that the foliation Ψ*(ℱ) is defined by a
1-form described as follows:

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡,

where the 1-forms 𝛽𝑗 do not depend on 𝑡 ∈ P1, for all 0 ≤ 𝑗 ≤ 4.

We can condense the results obtained in the Lemmas 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6
in the following proposition: In the above situation we have the five possibilities:

(i) either ℱ is transversely affine outside a compact hypersurface;

(ii) or ℱ is pure transversely projective outside a compact hypersurface;

(iii) or ℱ is a pull-back by a rational map of a foliation on P2;

(iv) or ℱ is a pull-back by a linear map 𝜋 : P𝑛 → P𝑛−1 of a foliation of degree four on
P𝑛−1.

(v) or there exists a birational map Ψ : P𝑛−1 × P1 99K P𝑛 such that the foliation Ψ*(ℱ)
is defined by a 1-form described as follows:

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡,

where the 1-forms 𝛽𝑗 do not depend on 𝑡 ∈ P1, for all 0 ≤ 𝑗 ≤ 4.
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In particular, if 𝑛 = 3 then ℱ satisfies (𝑖), (𝑖𝑖), (𝑣), or (𝑖𝑖𝑖). Finally, we give a proof of
Theorem A.

3.1 Proof of Theorem A
We give the proof by induction on the dimension 𝑛 ≥ 3. If 𝑛 = 3, then Theorem A

follows from Corollary 3.1 and Proposition 3. Let us assume that Theorem A is true for
𝑛− 1 ≥ 3 and prove that it holds for 𝑛.

Let ℱ be a codimension one foliation of degree four on P𝑛, 𝑛 ≥ 4. It follows from
Corollary 3.1 and Proposition 3 that, either ℱ satisfies one of the conclusions of Theorem
A, or ℱ is the pull-back by a linear map 𝜋 : P𝑛 → P𝑛−1 of a foliation ℱ𝑛−1 of degree four
on P𝑛−1. In this last case, as Theorem A holds true for 𝑛− 1, it follows that one the five
possibilities outlined below must also be true:

(i) ℱ𝑛−1 has a rational first integral, say 𝐹 : P𝑛−1 99K P1. In this case, 𝐹 ∘𝜋 is a rational
first integral of ℱ and we are done.

(ii) ℱ𝑛−1 is transversely affine. In this case, ℱ𝑛−1 admits a G-V-S of length one. Hence,
ℱ also admits a G-V-S of length one by Remark ??.

(iii) ℱ𝑛−1 is transversely projective. In this case, ℱ𝑛−1 admits a G-V-S of length two.
Hence, ℱ also admits a G-V-S of length two by Remark ??.

(iv) ℱ𝑛−1 = Φ*(𝒢), where 𝒢 is a foliation on P2 and Φ : P𝑛−1 99K P2 a rational map. In
this case, we get ℱ = (Φ ∘ 𝜋)*(𝒢) and we are done.

(v) There exists a birational map Ψ1 : P𝑛−2 × P1 99K P𝑛−1 such that the foliation
Ψ*

1(ℱ𝑛−1) is defined by a 1-form described as follows:

𝜂𝑡 = 𝛽0 + 𝑡𝛽1 + 𝑡2𝛽2 + 𝑡3𝛽3 + 𝑡4𝛽4 − 𝑡𝑑𝑡,

where the 1-forms 𝛽𝑗 do not depend on 𝑡 ∈ P1, for all 0 ≤ 𝑗 ≤ 4. Now consider any
rational map 𝜑 : P𝑛−1 × P1 99K P𝑛−2 × P1 such that it fixes the variable at P1, and
choose any birational map Ψ such that 𝜋 ∘ Ψ = Ψ1 ∘ 𝜑. With this, we have that

Ψ*(ℱ) = Ψ*(𝜋*(ℱ𝑛−1)) = (𝜋 ∘ Ψ)*(ℱ𝑛−1) = (Ψ1 ∘ 𝜑)*(ℱ𝑛−1) = 𝜑*(Ψ*
1(ℱ𝑛−1))

Using the fact that 𝜑 fixes the variable over P1, we deduce that Ψ*(ℱ) is defined by
a 1-form similar to item (𝑣). This concludes the proof of Theorem A.
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4 Foliations of hight degree

We decided to include this chapter with a new result that emerged as a result of
the main theorem. The result that will be demonstrated is the Theorem B:

Theorem B. Let ℱ be a codimension one holomorphic foliation of degree 𝑑 ≥ 4 on P𝑛,
with 𝑛 ≥ 3. Suppose that one of the two conditions is satisfied:

1. for all 𝑝 ∈ (ℱ), we have 𝒥 (ℱ , 𝑝) = 1;

2. there exists 𝑝 ∈ (ℱ) such that 𝒥 (ℱ , 𝑝) ≥ 𝑑− 1.

Then,

(i) either ℱ admits a rational first integral;

(ii) or ℱ is transversely affine outside a compact hypersurface;

(iii) or ℱ is a pure transversely projective outside a compact hypersurface;

(iv) or ℱ = Φ*(𝒢), where Φ : P𝑛 99K P2 is a rational map and 𝒢 is a holomorphic
foliation on P2.

Proof. Let ℱ be a codimension one holomorphic foliation of degree 𝑑 ≥ 4 in P𝑛, 𝑛 ≥ 3.
Suppose that one of the two conditions is satisfied:

1. for all 𝑝 ∈ (ℱ), we have 𝒥 (ℱ , 𝑝) = 1;

2. there exists 𝑝 ∈ (ℱ) such that 𝒥 (ℱ , 𝑝) ≥ 𝑑− 1.

In the first case, ℱ admits a rational first integral by invoking Corollary 3.1. This conse-
quently establishes the validity of assertion (𝑖) within Theorem B.

Therefore, we shall assume that there exists a point 𝑝 ∈ P𝑛 such that 𝒥 (ℱ , 𝑝) ≥
𝑑− 1. By employing affine coordinates (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛 ⊂ P𝑛, where 𝑝 = 0 ∈ C𝑛, we can
conveniently consider ℱ|C𝑛 : 𝜔 = 0, where 𝜔 is a polynomial 1-form in C𝑛 expressed as
follows:

(4.1) 𝜔 = 𝛼𝑑−1 + 𝛼𝑑 + 𝛼𝑑+1,

here, 𝛼𝑗 corresponds to homogeneous polynomial 1-forms of degree 𝑗, 𝑑− 1 ≤ 𝑗 ≤ 𝑑+ 1,
and

𝑖𝑅(𝛼𝑑+1) = 0, with 𝑅 =
𝑛∑︁

𝑖=1
𝑧𝑖𝜕𝑧𝑖.(4.2)
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Once again, we will express 𝛼𝑗 as: 𝛼𝑗(𝑧) :=
𝑛∑︁

𝑖=1
𝑃𝑗𝑖(𝑧)𝑑𝑧𝑖, with 𝑑 − 1 ≤ 𝑗 ≤ 𝑑 + 1.

Additionally, we introduce

𝐹𝑗(𝑧) := 𝑖𝑅(𝛼𝑗−1) =
𝑛∑︁

𝑖=1
𝑧𝑖 · 𝑃𝑗−1𝑖(𝑧), 𝑑− 1 ≤ 𝑗 ≤ 𝑑+ 1,

where 𝑃𝑗−1𝑖 are homogeneous polynomials of degree 𝑗 − 1. Note that 𝐹𝑑+2 ≡ 0 by (4.2).

We proceed to examine the pull-back of 𝜔 through the process of blowing-up of P𝑛

at 0 ∈ C𝑛 ⊂ P𝑛. Let 𝜎 : P̃𝑛 → P𝑛 denote the blow-up at 0 ∈ C𝑛 ⊂ P𝑛, and let ℱ̃ represent
the strict transform of ℱ by 𝜎. Our objective is to calculate 𝜎*(𝜔) within the chart

(𝜏1, . . . , 𝜏𝑛−1, 𝑥) = (𝜏, 𝑥) ∈ C𝑛−1 × C ↦→ (𝑥𝜏, 𝑥) = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛 ⊂ P𝑛.(4.3)

We have

𝜎*(𝜔) = 𝑥𝑑−1(𝑥𝜃𝑑−1 + 𝑥2𝜃𝑑 + 𝑥3𝜃𝑑+1 + (𝐹𝑑(𝜏, 1) + 𝑥𝐹𝑑+1(𝜏, 1) + 𝑥2𝐹𝑑+2(𝜏, 1)))

where
𝜃𝑗 =

𝑛−1∑︁
𝑖=1

𝑃𝑗𝑖(𝜏, 1)𝑑𝜏𝑖, 𝑑− 1 ≤ 𝑗 ≤ 𝑑+ 1

depends only on 𝜏 . Utilizing the condition 𝐹𝑑+2(𝜏, 1) ≡ 0, we derive the 1-form 𝜂 as
follows:

(4.4) 𝜂 = 𝑥𝜃𝑑−1 + 𝑥2𝜃𝑑 + 𝑥3𝜃𝑑+1 + (𝐹𝑑(𝜏, 1) + 𝑥𝐹𝑑+1(𝜏, 1))𝑑𝑥.

This 1-form serves to define the foliation ℱ̃ in the chart (𝜏, 𝑥).

Given the aforementioned conditions, we are presented with the subsequent possi-
bilities for 𝐹𝑖:

(1) 𝐹𝑑 ≡ 0, 𝐹𝑑+1 ̸≡ 0;

(2) 𝐹𝑑 ̸≡ 0, 𝐹𝑑+1 ≡ 0;

(3) 𝐹𝑑 ̸≡ 0, 𝐹𝑑+1 ̸≡ 0.

In the case (1), after dividing 𝜂 by 𝑥 · 𝐹𝑑+1, we have

𝜂1 = 𝛾0 + 𝑥𝛾1 + 𝑥2𝛾2 + 𝑑𝑥,

where 𝛾0 = 𝜃𝑑−1/𝐹𝑑+1, 𝛾1 = 𝜃𝑑/𝐹𝑑+1, and 𝛾2 = 𝜃𝑑+1/𝐹𝑑+1 depends only on 𝜏 . The 1-form
𝜂1 is equivalent to the 1-form from (3.17) of Lemma 3.3. Therefore, we can conclude either
ℱ is transversely affine, or ℱ is the pull-back by a rational map of a foliation on P2, or
ℱ is pure transversely projective.



Chapter 4. Foliations of hight degree 50

In the case (2), after dividing 𝜂 by 𝐹𝑑, we have

𝜂1 = 𝑥𝛾1 + 𝑥2𝛾2 + 𝑥3𝛾3 + 𝑑𝑥,

where 𝛾1 = 𝜃𝑑−1/𝐹𝑑, 𝛾2 = 𝜃𝑑/𝐹𝑑, and 𝛾3 = 𝜃𝑑+1/𝐹𝑑 depends only on 𝜏 . The 1-form 𝜂1

is equivalent to the 1-form from (3.9) of Lemma 3.2, Subcase II. Consequently, we can
deduce that either ℱ is transversely affine, or ℱ is the pull-back by a rational map of a
foliation on P2.

In the case (3), we consider the birational map 𝜓𝑧 : P𝑛−1 ×P1 99K P𝑛−1 ×P1 defined
as 𝜓𝑧(𝜏, 𝑧) =

(︁
𝜏, 𝐹𝑑(𝜏,1)𝑧

1−𝐹𝑑+1(𝜏,1)𝑧

)︁
. A direct calculation yields 𝜓*

𝑧(𝜂1) = 𝐹 2
𝑑

(1−𝐹𝑑+1(𝜏,1)𝑧)𝜂𝑧, where

𝜂𝑧 = 𝑧𝛽1 + 𝑧2𝛽2 + 𝑧3𝛽3 + 𝑑𝑧

with

𝛽1 = 𝜃𝑑−1

𝐹𝑑

+ 𝑑𝐹𝑑

𝐹𝑑

𝛽2 = −𝐹𝑑+1

𝐹𝑑

𝜃𝑑−1 + 𝜃𝑑 − 𝐹𝑑−1
𝑑𝐹𝑑

𝐹𝑑

+ 𝑑𝐹𝑑+1

𝛽3 = −𝐹𝑑+1𝜃𝑑 + 𝐹𝑑𝜃𝑑+1

Once again, the 1-form 𝜂𝑧 is equivalent to the 1-form from (3.9) of Lemma 3.2, Subcase
II. Thus, we can deduce that either ℱ is transversely affine, or ℱ is the pull-back by a
rational map of a foliation on P2. This finishes the proof of Theorem B.



51

5 Open Problems

In this chapter we will talk about some open problems about the results proved in
this work and others that are related to them.

Of course, the interesting questions arises and we can pose the following problem:

Problem 1. The item (𝑣) of the Theorem A is equivalent to any of the other items (𝑖),
(𝑖𝑖), (𝑖𝑖𝑖) or (𝑖𝑣)?

In particular, every codimension one foliation on P5 of degree-four also has a trivial
canonical bundle. Thus, we can pose another problem:

Problem 2. It is possible to provide a classification of codimension one holomorphic
foliations on P5 of degree-four?

It seems reasonable to hope that Theorem A will give a clue to a classification of
the irreducible components of the space of degree-four foliations on P𝑛, 𝑛 ≥ 3, which are
not the pull-back by rational maps of foliations on P2. However, the analysis of the irre-
ducible components of rational pull-back or logarithmic type seems to be more delicate,
since we have no control on the degrees of the objects that appear in ours proofs.

Problem 3. Classify the irreducible components of the space of codimension one folia-
tions of degree-four on P𝑛, with 𝑛 ≥ 3.

According to [8], it is known at least 24 distinct irreducible components of the
space of foliations of degree-three on P𝑛, with 𝑛 ≥ 3. Moreover, they assert that there are
missed irreducible components that correspond to foliations with rational first integrals.
One problem on the subject that seems interesting is the following:

Problem 4. Does the number of irreducible components of the space of codimension one
foliations of degree-four on P𝑛, with 𝑛 ≥ 3 vary with 𝑛?



52

Bibliography

[1] F. Bogomolov. Families of curves on a surfaces of general type. Sov. Math. Dokl.
18:1294-1297, (1977).

[2] M. Brunella, C. Perrone. Exceptional singularities of codimension one holomorphic
foliations. Publicacions Matemàtiques 55, 295-312 (2011).

[3] C. Camacho, B. Scárdua. Beyond Liouvillian transcendence, Math. Res. Lett. 6
(1999), no. 1, 31-41.

[4] D. Cerveau. Codimension one holomorphic foliations on P𝑛
C: Problems in complex

geometry. RACSAM 2012. DOI 10.1007/s13398-012-0087-1.

[5] D. Cerveau and A. Lins Neto. Irreducible components of the space of holomorphic
foliations of degree two in CP𝑛, 𝑛 ≥ 3. Ann. of Math. (2), 143(3):577-612, 1996.

[6] D. Cerveau and A. Lins Neto. A structural theorem for codimension-one foliations on
P𝑛, 𝑛 ≥ 3, with an application to degree-three foliations. Annali della Scuola Normale
Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 1-41.

[7] Cerveau, D.; Lins-Neto, A.; Loray, F.; Pereira, J. V.; and Touzet, F. Complex codi-
mension one singular foliations and Godbillon-Vey sequences. Mosc. Math. J. 7
(2007), no. 1. pp. 21-54.

[8] R. C. da Costa, R. Lizarbe and J. V. Pereira. Codimension one foliations of degree
three on projective spaces. Bulletin des Sciences Mathématiques 174 (2022): 103092.

[9] J. Déserti and D. Cerveau. Feuilletages et actions de groupes sur les espaces projectifs.
Mém. Soc. Math. Fr. (N.S.), (103):vi+124pp. (2006), 2005.

[10] C. Godbillon and J. Vey. Un invariant des feuilletages de codimension un, C. R.
Acad. Sci. Paris Sr. A-B 273 (1971), 92-95.

[11] J. P. Jouanolou. Équations de Pfaff algébriques, volume 708 of Lecture Notes in
Mathematics. Spinger, Berlin, 1979.

[12] A. Lins Neto. A note on projective Levi flats and minimal sets of algebraic foliations.
Ann. Inst. Fourier (Grenoble) 49(4), 1369-1385 (1999).

[13] Lins Neto, A.; Scardua, B. Folheações Algébricas Complexas. Projeto Euclides, Rio
de Janeiro: IMPA, 2015.



Bibliography 53

[14] A. Lins Neto. Componentes irredutíveis dos espaços de folheações. Publicações
Matemáticas do IMPA. Instituto Nacional de Matemática Pura e Aplicada (IMPA),
Rio de Janeiro, 2007. 260 Colóquio Brasileiro de Matemática.

[15] F. Loray, J. V. Pereira and F. Touzet. Deformation of rational curves along foliations.
Ann. Sc. Norm. Pisa Cl. Sci. (5), 21:1315-1331, 2020 .

[16] Frank Loray, Jorge Vitório Pereira, and Frédéric Touzet. Foliations with trivial canon-
ical bundle on Fano 3-folds. Math. Nachr., 286(8-9):921-940, 2013.

[17] Singer, Michael F. Liouvillian First Integrals of Differential Equations. Transactions
of the American Mathematical Society, vol. 333, no. 2, 1992, pp. 673–688. JSTOR.

[18] B. A. Scárdua. Transversely affine and transversely projective holomorphic foliations,
Ann. Sci. École Norm. Sup. 30 (1997), 169-204.

[19] N. I. Shepherd-Barron. Semi-stability and reduction mod 𝑝. Topology 37 (1998), no.
3, 659-664.

[20] L. W. Tu. An Introduction to Manifolds. Spinger, New York, New York, 2011.


	9bca8d8fa389ad95063092aa4698727e38fbc35f08b6e2504dc9ee0230f05699.pdf
	9bca8d8fa389ad95063092aa4698727e38fbc35f08b6e2504dc9ee0230f05699.pdf
	9bca8d8fa389ad95063092aa4698727e38fbc35f08b6e2504dc9ee0230f05699.pdf
	9bca8d8fa389ad95063092aa4698727e38fbc35f08b6e2504dc9ee0230f05699.pdf
	Contents
	Introduction
	Holomorphic Foliations
	Preliminaries about Foliations
	Interior product and Lie Derivative
	Codimension one holomorphic foliations on the complex projective space
	Affine and projective transverse structures
	Godbillon-Vey Sequences
	Baum-Bott Theory

	Foliations of degree four on Pn, n3
	Proof of Theorem A

	Foliations of hight degree
	Open Problems
	Bibliography


