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Resumo

Esta tese consiste em duas partes distintas, cada uma estudando um problema diferente na teoria

dos corpos convexos. A primeira parte trata das medidas isotrópicas, mais especificamente, do

problema de descrever explicitamente os pesos na decomposição da identidade para um corpo

convexo na posição de John. Fazemos isso para a posição de John, ou seja, quando a bola

Euclidiana unitária n-dimensional Bn, é o elipsóide com volume máximo dentro de K, e para

a posição positiva de John em relação ao corpo convexo L, ou seja, quando L ¦ K e L tem

volume máximo dentre todas as imagens TL em K, onde T é uma matriz definida-positiva.

Também fazemos isso para elipsóides funcionais no sentido definido por Ivanov e Naszódi [30].

Consideramos funções log-côncavas próprias h : Rn → R (funções log-côncavas e semicontínuas

superiores que possuem integral positiva finita). Por [30], para cada s > 0 existe (e é única no

conjunto de funções log-côncavas próprias) uma função log-côncava com a maior integral sob a

condição de que esta seja pontualmente menor ou igual a h1/s. Essa função é chamada s-função

de John de h. Novamente, por [30], existe uma caracterização dessa função semelhante àquela

dada por John em seu teorema fundamental.

A segunda parte estuda o problema de caracterização de valuações semicontínuas superiores.

Denote por Convpac(R;R) o espaço de funções convexas de valor finito em R que são afins por

partes fora de uma conjunto compacto. Um funcional Z : Convpac(R;R) → R é chamado uma

valuação se

Z(u ( v) + Z(u ' v) = Z(u) + Z(v)

para todo u, v ∈ Convpac(R;R) tal que u ( v, u ' v ∈ Convpac(R;R). Aqui, u ( v e u ' v

denotam as funções máximo e mínimo pontuais de u, v ∈ Convpac(R;R), respectivamente. Uma

classificação de valuações semicontínuas superiores, invariantes por translação e inalterada por

adição de funções afins por partes no espaço Convpac(R;R) é estabelecida.

Palavras-chave: corpo convexo; posição de John; posição de Löwner; decomposição da

identidade; medidas isotrópicas; funções log-côncava; elipsoides funcionais; valuações no espaço

de funções convexas.



Abstract

This thesis consists in two separate parts, each studying a different problem in the theory of

convex bodies. The first part deals with isotropic measures, more specifically, the problem of

describing explicitly the weights in the decomposition of the identity for a convex body in John

position. We do this for the John position, that is, when the n-dimensional unit Euclidean ball

Bn, is the ellipsoid with maximum volume inside K, and for the positive John position with

respect to the convex body L, that is, when L ¦ K and L has maximal volume among all images

TL in K, where T is a positive-definite matrix. We also do this for functional ellipsoids in the

sense defined by Ivanov and Naszódi [30]. We consider proper log-concave functions h : Rn → R

(log-concave and upper semicontinuous functions that has finite positive integral). By [30], for

every s > 0 there is (and is unique in the set of proper log-concave functions) one log-concave

function with the largest integral under the condition that it is pointwise less than or equal to

h1/s. This function is called John s-function of h. Again, by [30] there exists a characterization

of this function similar to the one given by John in his fundamental theorem.

The second part studies the problem of characterizing upper semicontinuous valuations. Denote

by Convpac(R;R) the space of finite-valued, convex functions on R that are piecewise affine

outside of a compact set. A functional Z : Convpac(R;R) → R is called a valuation if

Z(u ( v) + Z(u ' v) = Z(u) + Z(v)

for all u, v ∈ Convpac(R;R) such that u( v, u' v ∈ Convpac(R;R). Here, u( v and u' v denote

the pointwise maximum and minimum of u, v ∈ Convpac(R;R), respectively. A classification

of upper semicontinuous, translation invariant valuations and unchanged by the addition of

piecewise affine functions on the space Convpac(R;R) is established.

Keywords: convex body; John position; Löwner position; decomposition of the identity;

isotropic measures; log-concave functions; functional ellipsoids; valuations on the space of convex

functions.
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Introduction

In 1948 F. John showed that if K is a convex body then there exists a unique ellipsoid EJ ¦ K of

maximal volume inside K, know today as John’s Ellipsoid. When the unit Euclidean ball Bn is

the John ellipsoid we say that K is in John position. A construction that is dual to John ellipsoid

is the Löwner ellipsoid EL § K which is the unique ellipsoid of minimal volume containing K.

The set K is in Löwner position if EL = Bn. F. John also showed a set of necessary conditions

for EJ to be the unit Euclidean ball Bn. John’s theorem can be stated as follows.

Theorem 0.1 ([32], Application 4, pag. 199 - 200). Assume K is in John position, then there

exists a finite set of points {À1, . . . , Àm} ¢ Sn−1 ∩ ∂K, positive numbers {c1, . . . , cm} and ¼ ̸= 0,

for which

m
∑

i=1

ciÀi ¹ Ài = ¼ Id and
m
∑

i=1

ciÀi = 0. (1)

Here v ¹ w is the rank-one matrix (v ¹ w)i,j = viwj , 1 f i, j f n.

The Theorem 0.1 guarantees that the atomic measure µK =
∑m

i=1 ci¶Ài is centered and isotropic,

but the existence of the measure µK is often show in a non-constructive way. Later Ball [11]

proved that the existence of a non-negative centered isotropic measure µK in the set of contact

points, guarantees that K is in John position if Bn ¦ K, or in Löwner position if K ¦ Bn. The

literature around the John/Löwner position and its relation to isotropic measures, is vast. The

relation between extremal position and isotropic measures was studied extensively in [23, 24, 25].

Extensions to related minimization problems were studied in [13, 14, 26, 34, 39]. Isotropic

measures can also be used in combination with the Brascamp-Lieb inequality to find reverse

isoperimetric inequalities, see [11, 9, 10, 40].

Artstein and Katzin showed that µK can be constructed as a weak approximation of uniform

measures on subsets of Sn−1. Moreover, they introduced a new one-parameter family of positions:

A convex body K is said to be in maximal intersection position of radius r if rBn is the ellipsoid

maximizing voln(rB
n∩K) among all ellipsoids of same volume as rBn. It is also shown that every

centrally symmetric convex body K admits at least one of such position TrK with Tr ∈ SLn(R),

and in this case the uniform measure in Sn−1∩r−1TrK is isotropic. The theorem due to Artstein

and Katzin is the following.

Theorem 0.2 ([6], Theorem 1.5). Let K ¢ R
n be a centrally symmetric convex body in John

position such that voln−1(∂K ∩ ∂E) = 0 for all but finitely many ellipsoids E. For every r > 1,
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denote by ¿r the uniform probability measure on Sn−1 ∩ r−1TrK, where TrK is in maximal

intersection position of radius r. Then there exists a sequence rj ¸ 1 such that the sequence of

measures ¿rj weakly converges to an isotropic measure whose support is contained in ∂K ∩Sn−1.

However it is worth mentioning that in practice there is a large body of computations to make.

First we need to find the matrix Tr, for r close to 1, such that TrK is in maximal intersection

position of radius r. Later we need to take the limit of some subsequence of the measures ¿r,

which is obtained from the matrices Tr.

Our first aim is to present a simple finite dimensional minimization problem whose solution

(when it exists) can be used to construct a non-negative centered isotropic measure as above.

The next step is to consider two convex bodies both different from the unit Euclidean ball. Let

K,L be convex bodies. We say that L is in maximal volume position inside K if L is its own

maximal volume image inside K. A simple compactness argument shows that for every pair of

convex bodies K and L there exists an affine image L1 of L which is of maximal volume in K,

but in this case the maximal volume position of L inside K is not necessarily unique. There is

a generalization of classical John’s Theorem 0.1 for the case where L is not the unit Euclidean

ball. Giannopoulos, Perissinaki and Tsolomitis proved the following theorem.

Theorem 0.3 ([25], Theorem 2.5). Let K,L be smooth convex bodies in R
n, such that L is of

maximal volume in K. If z ∈ intL, we can find contact points v1, . . . , vm of K − z and L − z,

contact points u1, . . . , um of the polar bodies (K − z)◦ and (L− z)◦, and positive reals c1, . . . , cm

such that

ïui, við = 1,
m
∑

i=1

ciui ¹ vi = Id,
m
∑

i=1

ciui = 0.

As mentioned before, Ball proved that for the classical John’s theorem the existence of an

isotropic measure supported on contact points is not only implied by, but also implies that

K is in John position. For the setting in which both bodies are not the unit Euclidean ball, this

characterization is not valid, since we do not have uniqueness of the maximal volume position.

However, one does obtain an “if and only if” characterization of the position by the existence of a

decomposition of the identity when considering a modification of the above position, namely the

positive John position: Let K,L be convex bodies with non-empty interior. A positive image of

L in K is a set of the form PL+v contained in K, with v ∈ R
n and P a positive-definite matrix.

We say that K is in positive John position with respect to L if L ¦ K and L has maximal

volume among all positive images of L in K. The positive John position was defined by Artstein

and Putterman in [7], see also [13]. The advantage of working with the positive John position is

due to the following result.

Proposition 0.1 ([7], Proposition 3.1). Let K,L be convex bodies with the origin in the interior

of K, and consider the set of positive images of L inside K,

AK,L = {PL+ v : P is defined positive, v ∈ R
n and PL+ v ¦ K}.

Then there is a unique element in AK,L of maximal volume.
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From this result Artstein and Putterman presented a proof for the following theorem that has

been proven by different methods in [13, 26].

Theorem 0.4 ([7], Theorem 1.2). Let K,L be convex bodies with the origin in the interior of

K. Then K is in positive John position with respect to L if and only if L ¦ K and there exist

contact points x1, . . . , xm of K and L, contact points y1, . . . , ym of the polar bodies K◦ and L◦

and c1, . . . , cm > 0 such that

ïxi, yið = 1,
m
∑

i=1

ci(xi ¹ yi + yi ¹ xi) = Id,
m
∑

i=1

ciyi = 0.

We give an explicit representation for a centered and isotropic measure, supported on contact

points between K and L, given that K is in positive John position in L.

In this way, we end our interest in constructing a centered and isotropic measure in the geometric

version. Our next step is to look for definitions for functional ellipsoids in order to find out if

there is a functional version of the decomposition of the identity like the one given in Theorem

0.1.

In 2018, Alonso-Gutiérrez, Gonzales Merino, Jiménez and Villa [4] extended the geometric notion

of the John ellipsoid to the setting of log-concave functions. Their idea was as follows: Fixed an

integrable log-concave function h on R
n, first they take any constant ´ ∈ (0, ||h||), where ||h|| is

the L∞ norm of h, and consider the superlevel set {x ∈ R
n : h(x) g ´} of h, which is a bounded

convex set with non-empty interior. Then they show that there is a unique height ´0 ∈ [0, ||h||]

for which ´0 voln(E) is maximal, where E is maximal volume ellipsoid inside the level set. Then

they define the John ellipsoid of h as the function E´0(x) = ´01E(x) obtained for this ´0.

Recently, in 2021, Ivanov and Naszódi [30] also extended the notion of the John ellipsoid to

the setting of logarithmically concave functions. Unlike the first ones, they defined a class of

functions on R
n indexed by s > 0. First they fix a proper log-concave function (log-concave and

upper semicotinuous function that has finite positive integral) h : Rn → [0,∞) and s > 0. Later

they prove that there is (and is unique in the set of proper log-concave functions) one function

log-concave with the largest integral under the condition that it is pointwise less than or equal to

h1/s. They call it the John s-function of h. In [30, Theorem 6.1] it is shown that as s → 0, the

John s-functions converge to characteristic functions of ellipsoids, that is, there is a relationship

between the first [4] and second approach [30]. Furthermore, they study the John s-functions as

s tends to infinity. It is shown that the limit may only be a Gaussian density (is not necessarily

unique).

Denote by |x|2 the Euclidean norm of x ∈ R
n. The height function of the unit ball Bn is given by

ℏBn+1(x) =
√

1− |x|22 if x ∈ Bn and 0 otherwise. Moreover, this function is proper log-concave.

An interesting fact about the second approach is that they give a characterization of the John

s-function of h similar to the one given by F. John in his fundamental theorem. Namely,

Theorem 0.5 ([30], Theorem 5.2). Let h be a proper log-concave function on R
n, s > 0. Assume

ℏ
s
Bn+1 f h, where ℏBn+1 is the height function of the unit Euclidean ball Bn+1. Then the following

are equivalent.
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(1) The function ℏ
s
Bn+1 is the John s-function of h;

(2) There are points u1, . . . , uk ∈ Bn ¢ R
n and positive weights c1, . . . , ck such that

(a) h(ui) = ℏ
s
Bn+1(ui) for all i = 1, . . . , k;

(b)
∑k

i=1 ciui ¹ ui = Id;

(c)
∑k

i=1 cih(ui)
1/sh(ui)

1/s = s;

(d)
∑k

i=1 ciui = 0.

For this reason we will adopt this definition of ellipsoid, in order to obtain a “centered and

isotropic measure” supported at the points of Bn where h1/s and its John s-function coincide.

In the second part of this thesis we study about valuations. A functional Z : Kn → A is called

a valuation if

Z(K) + Z(L) = Z(K ∩ L) + Z(K ∪ L)

for all K,L,K ∪ L ∈ Kn, where Kn is the set of convex bodies in R
n and A is an abelian

semigroup. Valuations play an important role in the geometry of convex bodies. For example,

the intrinsic volumes V0(K), V1(K), . . . , Vn(K) are valuations on Kn (see [28]). In particular,

V0(K) is the Euler characteristic, Vn(K) is the Lebesgue volume and 2Vn−1(K) is the surface

area of K. Another important valuation on Kn is the support function hK(·). On the space

Kn
0 of convex bodies with 0 as interior point, the function which associates each convex body

K ∈ Kn
0 with the polar body K◦ ∈ Kn

0 is a valuation on Kn
0 .

The interest in classifying valuations on Kn began with Hadwiger. Probably the most famous

result on valuations is the Hadwiger’s theorem. It classifies all continuous and rigid motion

invariant valuations on the space Kn equipped with the Hausdorff distance (see [28]). Ludwig

and Reitzner established an affine version of Hadwiger’s theorem, proving a classification of upper

semicontinuous valuations which are invariant under volume preserving maps (see [36]).

Currently, the notion of valuations has been extended to families of functions. We denote by

Conv(Rn;R) the space of finite-valued, convex functions on R
n. We define valuations on the

space Conv(Rn;R) and its subspaces taking values in an abelian semigroup as

Z(u) + Z(v) = Z(u ' v) + Z(u ( v)

for every u, v ∈ Conv(Rn;R) such that also their pointwise maximum u ( v and pointwise

minimum u ' v belong to Conv(Rn;R).

In 2000, Ludwig characterized the rigid motion invariant and upper semicontinuous valuations

defined on K2. Consider the set

W =

{

· : [0,+∞) → [0,∞) : · is concave, lim
t→0

·(t) = 0, and lim
t→+∞

·(t)/t = 0

}

.

Her theorem can be stated as follows.

Theorem 0.6 ([37]). Let µ : K2 → R be an upper semicontinuous and rigid motion invariant
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valuation. Then there are constants c0, c1, c2 ∈ R and a function · ∈ W such that

µ(K) = c0Ç(K) + c1L(K) + c2A(K) +

∫

S1

·(Ä(K,u))dH1(u) (2)

for every K ∈ K2.

Here L(K) and A(K) are the length and area of K, respectively, and Ä(K,u) is the curvature

radius of the boundary of K at the point with normal u ∈ S1.

Our goal is to prove a functional version of Theorem 0.6 for n = 1.

This work is structured as follows. In Chapter 1, we give a very short introduction to basic

convexity, we speak about the gauge and support functions. Later we present results already

known in the literature that are necessary to prove our results.

In Chapter 2, we present in details the problem of explicit representations of centered and

isotropic measures in John and Löwner positions as a simple finite dimensional minimization

problem whose solution (when it exists) can be used to construct a non-negative centered

isotropic measure. These results are published in the International Mathematics Research Notices

https://doi.org/10.1093/imrn/rnac269. Later, we present the construction of centered and

isotropic measures in positive John and positive Löwner positions. The results are not for

publication due to similarity with the previous case.

In Chapter 3, we study the theory of the functional John ellipsoid due to Ivanov and Naszódi [30].

Next, we introduce some news concepts related to this theory in order to construct explicitly, as

in the geometric case, a decomposition of the identity.

In Chapter 4, we give a introduction to valuations on convex bodies and on convex functions

and we obtain a classification of upper semicontinuous and translation invariant valuations on

the space of convex functions which is a piecewise linear function outside of a compact set of R.



Chapter 1

Preliminaries

In this chapter, we briefly review basic definitions, clarify the main notations and collect some

results that will be used in this work.

1.1 Basic convexity

We work in the space R
d equipped with the standard inner product

ï·, ·ð : Rd × R
d → R

defined as

ï(x1, . . . , xn), (y1, . . . , yn)ð = x1y1 + · · ·+ xnyn,

and denote the canonical basis vectors by e1, . . . , ed. Here, | · |2 =
√

ï·, ·ð denotes the usual

Euclidean norm in R
d. The unit Euclidean ball in the normed space (Rd, | · |2) is the set

Bd = {x ∈ R
d : |x|2 f 1}, and its boundary Sd−1 = {x ∈ R

d : |x|2 = 1} is the unit sphere.

A subset A ¦ R
d is called convex if for any x, y ∈ A and ¼ ∈ [0, 1] it holds (1 − ¼)x + ¼y ∈ A.

In others words, a subset A is convex when it contains any segment [x, y], where x, y ∈ A.

A function f : Rd → (−∞,+∞] is said to be convex if

f((1− ¼)x+ ¼y) f (1− ¼)f(x) + ¼f(y) (1.1)

for any x, y ∈ R
d and ¼ ∈ [0, 1]. A function f : Rd → [0,∞) is log-concave if f = e−È for some

convex function È : Rd → (−∞,∞]. We make the convention that e−∞ = 0. The name justifies

because a function g : Rd → [−∞,∞) is said to be concave if -g is convex. A direct computation

using (1.1) give us the following result.

Lemma 1.1. A function f : Rd → [0,∞) is log-concave if and only if

f(¼x+ (1− ¼)y) g f(x)¼f(y)1−¼,

for any x, y ∈ R
d and every ¼ ∈ (0, 1).
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For every convex function f : Rd → R and for any t ∈ (−∞,+∞] we can consider the sublevel

sets

{f < t} := {x ∈ R
d : f(x) < t}, {f f t} := {x ∈ R

d : f(x) f t},

which are convex sets. Then, the (effective) domain of f is defined as the set

dom f := {f < +∞}.

The epigraph of f is the set

epi(f) = {(x, t) ∈ R
d+1 : f(x) f t},

and f : Rd → (−∞,+∞] is convex if and only if epi(f) is a convex subset of Rd+1. We write

intA for the interior of A. The topological boundary of A will be denoted by ∂A.

We say that a function f : V → R defined in a vector subspace V ¦ R
d is coercive if

lim
|x|2→+∞

f(x) = +∞.

Theorem 1.1 ([46], Theorem 1.5.3). Every convex function f : Rd → (−∞,∞] is continuous

on int dom f and Lipschitzian on any compact subset of int dom f .

Proposition 1.1 ([46], Corollary 1.5.11). If I ¦ R is an interval and f : I → R is twice

differentiable, then f is convex if and only if f ′′ g 0.

In the general case, when f : Rd → (−∞,+∞] is neither smooth nor strictly convex, the gradient

of f , denoted by ∇f , exists almost everywhere in int dom f by Rademacher’s theorem (see, for

example, [15]), and a theorem of Alexandrov [1] and Busemann and Feller [17] guarantees the

existence of the Hessian, denoted by ∇2f , almost everywhere in int dom f .

Theorem 1.2 ([44], Theorem 2.14). Let f : U → R be twice differentiable on an open convex

set U ¢ R
d. Then f is convex on U if and only if ∇2f(x) is positive-semidefinite for all x ∈ U .

For A ¦ R
d, the set of all convex combinations

conv(A) =







m
∑

j=1

¼jxj : xj ∈ A and ¼j g 0 for any j = 1, . . . ,m, and
m
∑

j=1

¼j = 1







is called the convex hull of A.

The convex hull of a finite set of points is called a polytope.

Theorem 1.3 ([46], Theorem 1.1.2). If A ¦ R
d is convex, then conv(A) = A. For an arbitrary

set A ¦ R
d, conv(A) is the intersection of all convex subsets of Rd containing A.

We end this section with a definition of the central notion of this work.

Definition 1.1. A convex body is a set K ¦ R
d which is convex, compact and has non-empty

interior.



1.1. BASIC CONVEXITY 18

We define the Minkowski sum of sets A,B ¦ R
d as

A+B = {a+ b : a ∈ A and b ∈ B}

which can be (geometrically) interpreted as the union of all translates of B by the points of A

(and vice-versa). Moreover, the scalar multiplication is defined for a given set A ¦ R
d and for

some ¼ ∈ R as

¼A = {¼a : a ∈ A}.

Figure 1.1: The Minkowski sum of a square and a ball.

Source: Compiled by the author.

Throughout the text, the set of convex bodies in R
d will be denoted by Kd, and the set of convex

bodies which contain the origin as an interior point will be denoted by Kd
0. Regarding the space

Kd as a metric space is one of the most powerful techniques in convex geometry. For example, it

often allows us to solve problems by approximating arbitrary bodies by “well-behaved” bodies,

such as polytopes or smooth bodies. There is also a notion of distance between sets in R
d given

by

d(A,B) = inf{a− b : a ∈ A and b ∈ B},

for any given A,B ¢ R
d. However, this is not completely satisfactory, since this does not define

a metric. For example, d(A,B) = 0 whenever A ∩B ̸= ∅.

We define the Hausdorff distance between two sets K,L ∈ Kd by

dH(K,L) := inf{¼ g 0 : L ¦ K + ¼Bd and K ¦ L+ ¼Bd}.

It follows immediately from compactness that the minimum exists and is finite. Hence the spaces

Kd naturally become metric spaces with the Hausdorff metric dH. The space Kd of convex bodies

of Rd is a subset of the space of non-empty compact sets, and we can define a metric in this more

general family.

It is sometimes convenient to have a description of the convergence of convex bodies in terms of

convergent sequences of points.

Theorem 1.4 ([46], Theorem 1.8.8). The convergence limj→+∞Kj = K in Kd is equivalent to

the following conditions taken together:

1. Each point in K is the limit of a sequence (xi)i with xi ∈ Ki for i ∈ N;
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2. The limit of any convergent sequence (xij )j with xij ∈ Kij for each i, j ∈ N belongs to K.

1.2 Gauge and support functions

Let A ¦ R
d a non-empty set. The support function hA of A is defined by

hA(u) = sup{ïx, uð : x ∈ A} for u ∈ R
d.

Observe that hA enjoys the property hA(¼u) = ¼hA(u) for any u ∈ R
d and every ¼ g 0, that

is, hA is positively homogeneous. A function f : Rd → (−∞,+∞] is lower semicontinuous if its

epigraph is a closed set of Rd. The support function hA : Rd → (−∞,+∞] of a non-empty set

A ¦ R
d is convex and lower semicontinuous. Moreover, for a non-empty set A ¦ R

d it holds

hA(u) < +∞ for every u ∈ R
d if and only if A is bounded.

Let A ¦ R
d a non-empty set. The polar set of A is the set

A◦ = {x ∈ R
d : ïx, zð f 1, ∀z ∈ A} = {x ∈ R

d : hA(x) f 1}.

Figure 1.2: The convex body K = [−1, 1]2 and its polar set K◦ = conv{±(1, 0),±(0, 1)}.

Source: Compiled by the author.

Theorem 1.5 ([46], Theorem 1.6.1). If K ∈ Kd
0, then K◦ ∈ Kd

0. The converse is also true.

We define the gauge function of a set K ∈ Kd to be the function || · ||K : Rd → R such that

||x||K = inf{¼ > 0 : x ∈ ¼K}. (1.2)

The next results can be found in [46, Section 1.7].

Proposition 1.2. Let K be a convex body containing the origin as an interior point. Then the

gauge function || · ||K is a non-negative and finite-valued function satisfying:

1. ||x||K g 0 for all x ∈ R
d, with equality if and only if x = 0;

2. ||¼x||K = ¼||x||K for every ¼ g 0;

3. ||x+ y||K f ||x||K + ||y||K for any x, y ∈ R
d.
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Remark 1.1. Notice that, in particular, the gauge function of a convex body K ∈ Kd is sublinear.

Also, it only fails to be a norm because it is not homogeneous, but only positively homogeneous.

Corollary 1.1. Let K ∈ Kd
0. Then K is centered at the origin if and only if its gauge function

is a norm. In this case, the unit ball is K.

Proposition 1.3. Let K ∈ Kd
0. Then || · ||K is differentiable almost everywhere. We have that

|| · ||K is differentiable at x ∈ ∂K if and only if it is differentiable at tx for any t > 0. In this

case, we have the equality

∇||tx||K = ∇||x||K .

Moreover, if || · ||K is differentiable at x ∈ ∂K, then K has a unique unit outer normal vector

nK(x) at x, and

∇||x||K =
nK(x)

hK(nK(x))
. (1.3)

Consequently, ∇||x||K is non-zero and

|∇||x||K | =
1

hK(nK(x))
(1.4)

whenever || · ||K is differentiable at x ∈ ∂K.

We say that a convex body K is Ck or that it has a Ck-smooth boundary if ||x||K is a Ck

function in R
d \ {0}. A boundary point x of K is said to be a smooth point if K has a unique

unit outer normal vector at x. As a consequence of the previous proposition, for any K ∈ Kd
0 a

point x ∈ ∂K is a smooth point of ∂K if and only if || · ||K is differentiable at x.

1.3 Measure

In what follows, we recall that

vold(A) =

∫

Rd

1A(x)dx,

for every Borel measurable set A ¦ R
d, where vold(·) denotes the usual Lebesgue measure and

dx stands for the integration with respect to that measure. We also will denote by Hk the

k-dimensional Hausdorff measure for 0 < k f d.

Let K ¢ R
d be a convex body. Since K is compact and has non-empty interior, then

0 < vold(K) < +∞.

It is worth mentioning that vold(K) is the same as the d-dimensional Hausdorff measure Hd(K).

The surface area of K is defined to be the (d− 1)-dimensional Hausdorff measure Hd−1(∂K) of

its boundary. It is very common to denote the (d − 1)-Hausdorff measure on R
d by vold−1(K),

and sometimes we will adopt this notation.

Theorem 1.6 ([41], Theorem 8.5). If A ¦ R
d is a Borel set and T : Rd → R

d is a linear map,
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then T (A) is a Borel set and

vold(T (A)) = | det(T )| vold(A).

The co-area formula gives the integral (with respect to the Lebesgue measure) of an integrable

function over an open subset of Rd in terms of integrals of this function over the level sets of a

given Lipschitz function.

Theorem 1.7 ([41], Theorem 18.1). (Co-area formula) Let U ¢ R
d be an open set and u : U → R

be a Lipschitz function. For any integrable function f : U → R we have

∫

U
f(x)|∇u(x)|dx =

∫

R

(

∫

u−1({t})
f(y)dHd−1(y)

)

dt.

For us, the most important consequence of the co-area formula is the formula for integration by

polar coordinates.

Theorem 1.8. (Integration by polar coordinates) Let f : Rd → R be an integrable function.

Then
∫

Rd

f(x)dx =

∫ ∞

0

∫

Sd−1

f(tÀ)td−1dHd−1(À)dt.

An other consequence of the co-area formula is that one can derive a similar formula where the

unit sphere Sd−1 is replaced by a convex body having the origin as interior point.

Proposition 1.4. Let K ¢ R
d be a convex body which has the origin as interior point. Then

∫

Rd

f(x)dx =

∫ ∞

0

∫

∂K
f(tz)td−1hK(nk(z))dHd−1(z)dt

for any integrable function f : Rd → R.

We define the support of a function f : Rd → (−∞,+∞] to be the set

supp(f) = {x ∈ R
d : f(x) ̸= 0}.

Let Ω ¦ R
d be an open set on R

d. We say that a Borel measure µ is a Radon measure if

µ(C) < +∞ for every compact set C ¢ Ω. Consider µk a sequence of Radon measures in

Ω ¦ R
d. We say that µk converges weakly to a Radon measure µ in Ω if

lim
k→+∞

∫

Ω
´(x)dµk(x) =

∫

Ω
´(x)dµ(x) (1.5)

for every function ´ which is continuous with compact support on Ω.

Theorem 1.9 ([41], Proposition 4.26 ). If {µk}k∈N and µ are Radon measures on R
d , then the

following three statements are equivalent.

(i) µk weakly converges to µ;
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(ii) If K is compact and A is open, then

µ(K) g lim sup
k→+∞

µk(K)

µ(A) g lim inf
k→+∞

µk(A);

Theorem 1.10 ([12], Fatou’s Lemma 4.8). Let (X,ΣX , µ) be a measure space and (fn)n be a

sequence of non-negative measurable functions. Then

∫

X
lim inf
n→∞

fndµ f lim inf
n→∞

∫

X
fndµ,

where lim infn→∞ fn denotes the function which associates each x ∈ X to the inferior limit of

the sequence (fn(x))n.

Theorem 1.11 ([12], Lebesgue dominated convergence theorem 5.6). Let (X,ΣX , µ) be a

measure space, and let g : X → [0,+∞) be a non-negative integrable function. Let {fm}m

be a sequence of real functions satisfying:

1. |fm(x)| f g(x) for any m ∈ N and every x ∈ X, and

2. for µ-almost every x ∈ X the sequence (fm(x))m converges in R.

Then the function f : X → R defined as

f(x) = lim
m→∞

fm(x)

for each x ∈ X is integrable and

∫

X
fdµ = lim

m→∞

∫

X
fmdµ.

Proposition 1.5 ([12], Corollary 4.9). Let (X,ΣX , µ) be a measure space and let g : X → [0,∞]

be an ΣX-measurable function. Then,

V : ΣX → [0,∞], A 7→

∫

A
gdµ

is an outer measure.

Theorem 1.12 ([45], Theorem 3.3). (Jensen’s inequality) Consider (X,ΣX , µ) a probability

space. Let D ¦ R be an open interval, and let φ : D → R a convex function. If X is a topological

space with a Borel probability measure and f : X → D is an integrable function, then

φ

(∫

X
fdµ

)

f

∫

X
φ ◦ fdµ. (1.6)

Let ¼, µ be positive measures on a Ã-algebra F . We say that ¼ is absolutely continuous with

respect to µ, and write ¼j µ if ¼(E) = 0 for every E ∈ F for which µ(E) = 0. If there exists a

pair of disjoint sets A and B such that ¼ is concentrated on A and µ is concentrated on B, then
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we say that ¼ and µ are mutually singular, and write ¼ § µ.

Theorem 1.13 ([45], Theorem of Lebesgue-Radon-Nikodym 6.10). Let µ be a positive Ã-finite

measure on a Ã-algebra ΣX in a set X, and let ¼ be a positive measure on ΣX . Then ¼ has

a unique decomposition as ¼1 + ¼2 , where ¼1 and ¼2 are positive measures on ΣX such that

¼1 j µ, ¼2 § µ.

Theorem 1.14 ([45], Theorem 21.4). (Lusin’s Theorem) Let (X,ΣX , µ) be a Radon measure

space and Y be a second-countable topological space equipped with a Borel algebra, and let

f : X → Y be a measurable function. Given ε > 0, for every A ∈ ΣX of finite measure

there is a closed set E with µ(A \ E) < ε such that f restricted to E is continuous.

1.4 Linear Algebra

We denote by Md(R) the collection of all matrices M of order d × d with entries in R and we

consider this space equipped with the Frobenius inner product given by

ïA,BðF = tr(ATB) =
∑

i,j

Ai,jBi,j (1.7)

where A = (Ai,j), B = (Bi,j) and tr is the trace function defined in Md(R). The d × d identity

matrix will be denoted by Id. Note that the trace of a matrix M can be simply described as the

Frobenius inner product of M with Id.

The subgroup of Md(R) which consists the invertible matrices will be denoted by GLd(R). The

subgroup of GLd(R) consisting of all matrices whose determinant equals 1 will be denoted by

SLd(R) and the subgroup consisting of the orthogonal matrices will be denoted by Od(R). By

Theorem 1.6 the matrices in SLd(R) preserve Lebesgue volume, that is, if A ¦ R
d is a Borel set

and T ∈ SLd(R), then vold(A) = vold(TA).

The space Md(R) with the operator norm

||T ||op = max{|Tx|2 : x ∈ Bd}

is a normed space with dimension d2. The general linear group GLd(R) is an open subset of

Md(R) since GLd(R) = det−1(R \ {0}) and the determinant is a continuous function of Md(R).

Since SLd(R) = det−1({1}), we get that the special linear group is a closed group of Md(R).

Observe that the topology defined on Md(R) by the Frobenius inner product is the same topology

induced by the operator norm, since all norms in a finite-dimensional vector space give rise to

the same topology.

The next result is a classic result that can be found in most undergraduate linear algebra books

(see, for example, [41, page 78]).

Lemma 1.2. (Polar Decomposition) For every T ∈ GLd(R) there exist U,P ∈ GLd(R) where U

is orthogonal and P is symmetric and positive-definite such that T = PU .

We will use the notation Symd(R) for the subgroup of Md(R) of symmetric matrices and
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Symd,+(R) for the subgroup of symmetric and positive-definite matrices. Also define Symd,a(R) =

{A ∈ Symd(R) : tr(A) = a} ¢ Md(R) for a ∈ R. Since we can “choose” 1
2d(d + 1) entries for a

symmetric matrix, it follows that

dim(Symd(R)) =
1

2
d(d+ 1).

Notice that if T ∈ SLd(R) and T = UP for U ∈ Od(R) and P ∈ Symd,+(R), then we have that

P ∈ SLd(R).

We denote by v ¹ w the rank-one matrix (v ¹ w)i,j = viwj . Under the canonical isomorphism

between the linear map and its matrix representation in the canonical basis of Rd, the matrix

v ¹ w = v · wT is identified with the map (v ¹ w)(x) = ïx,wðv.

Lemma 1.3. Let u, v ∈ R
d and T ∈ Md(R). Then

ïTu, vð = ïT, v ¹ uðF .

Proof. Since both sides in the equality are linear in u and v (and also in T ), it is sufficient to

consider the case where u = ei and v = ek for some i, k = 1, . . . , d. If T = (ti,j)
d
i,j=1, then

ïTu, vð = ï(t1i, . . . , tdi), ekð = tki.

On the other hand, a direct computation shows that the matrix ek · e
T
i which represents v ¹ u

has 0 in all entries, except for the entry in the position ki, which is 1. Hence, by the definition

of matrix inner product, we have

ïT, v ¹ uðF = tki = ïTu, vð,

as we wanted to prove.

We consider the space Md(R)× R
l, where l ∈ N, equipped with the inner product

ï(A, v), (B,w)ð = ïA,BðF + ïv, wð2,

and for simplicity we will denote only

ï(A, v), (B,w)ð = ïA,Bð+ ïv, wð. (1.8)

For (A, v) ∈ Md(R) × R
l, we use ||(A, v)|| =

√

||A||2F + |v|22 which is the norm induced by the

inner product (1.8).

Lemma 1.4 ([5], Lemma 2.1.5). Let A,B ∈ GLd(R) be symmetric and positive-definite linear

matrices, and let ¼ ∈ (0, 1). Then

det((1− ¼)A+ ¼B) g det(A)1−¼ det(B)¼, (1.9)

and equality holds if and only if A = B.
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The set Symd,+(R) is an open convex cone in Symd(R) with apex at the origin. The inequality

(1.9) shows that the set

D = {T ∈ Symd,+(R) : det(T ) g 1} (1.10)

is a convex set. The following numerical inequality, which is a particular case of Theorem 1.12

(Jensen’s inequality) is known as the arithmetic-geometric inequality.

Lemma 1.5 ([45], page 63). Let a, b > 0 and let ¼ ∈ (0, 1). Then

¼a+ (1− ¼)b g a¼b1−¼.

Equality holds if and only if a = b.

Theorem 1.15 ([29], Theorem 9). (Spectral theorem) Let T ∈ Md(R) be symmetric. There exists

an orthonormal basis {v1, . . . , vd} of Rd and numbers ¼1, . . . , ¼d ∈ R, such that Tvj = ¼jvj for

each j = 1, . . . , d. In others words, Rd has an orthogonal basis of eigenvectors of T and

T = U [diag(¼1, . . . , ¼d)]U
−1

where U is the orthogonal matrix whose columns are v1, . . . , vd and, in particular det(T ) =

¼1 · · ·¼d. Moreover, if T is also positive-definite, then ¼1, . . . , ¼d > 0.

Here diag(¼1, . . . , ¼d) is the matrix whose entry xi,j is zero for i ̸= j and it is ¼i for i = j, for

each i, j = 1, . . . , d.

1.5 Additional results

The technique of Lagrange multipliers allows us to maximize/minimize a function, subject to an

implicit constraint. Let f : Rd → R
n be a C1 function, C ∈ R

n and M = {f = C} ¦ R
d. Now

suppose we are given a function h : Rd → R, and we want to find the local extremum of h on

M . That is, we want to minimize or maximize h subject to the constraint f = C.

Theorem 1.16 ([44], Theorem 6.12). (Lagrange multipliers) Let h : Rd → R, f : Rd → R
n be

C1 functions, C ∈ R
n and M = {f = C} ¦ R

d. Assume that for all x ∈ M , rank(f ′(x)) = n.

If h attains a constrained local extremum at a, subject to the constraint f = C, then there exist

¼1, . . . , ¼n ∈ R such that

∇h(a) =
n
∑

i=1

¼i∇fi(a).

Theorem 1.17 ([44], Theorem 9.60). (Rademacher) Let U ¦ R
d be an open set and f : U ¦

R
d → R a Lipschitz function. Then f is differentiable almost everywhere.

Theorem 1.18 ([18], Theorem 5.21). (Taylor expansion) A function f : Rd → R of class C2

around x0 admits at x0 the following Taylor expansion of order two

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x0)(x− x0) + o(|x− x0|

2
2),
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where x→ x0, limx→x0
o(|x−x0|22)

|x−x0|22
= 0 and Hf(x0) is the Hessian matrix of f at x0.

Lemma 1.6 (22, Lemma A.1). Let A,B ∈ Md(R), and assume that A is invertible. Then,

d

dε

∣

∣

∣

∣

ε=0

det(A+ εB) = det(A)ïA−1, Bð.

Theorem 1.19 ([33], Proposition 3.1). Let U ¦ R
d be open and f : U ¦ R

d → R
d−m of class

Ck, k g 1. If c ∈ R
d−m is a regular value of f , then f−1(c) is either empty or an m-dimensional

surface. For very p ∈ f−1(c), Tp(f
−1(c)) is the Kernel of f ′(p) : Rd → R

d−m.



Chapter 2

On Explicit representations of Isotropic

Measures in some positions

This chapter is based in the work “On Explicit Representations of Isotropic Measures in

John and Löwner Positions”, published in the International Mathematics Research Notices,

https://doi.org/10.1093/imrn/rnac269. We construct a non-negative centered isotropic

measure from the convex body K, which is in John position, whose existence is guaranteed

by John’s Theorem 2.3. The method we propose requires the minimization of a convex function

defined in a n(n+3)
2 -dimensional vector space. Furthermore, we find a geometric interpretation of

the minimizer of this convex function.

2.1 Existence of isotropic measures in John and Löwner positions

The main objective in this section is to present the so-called John’s theorem, characterizing the

John ellipsoid of a convex body.

An invertible affine transformation A is a linear function composed with a translation, that is,

A(·) = T (·) + v0 where T ∈ GLn(R) and v0 ∈ R
n. The image of a set U ¦ R

n under an affine

transformation is called an affine image of U . An affine image of a convex body K ¢ R
n is called

a position of K. An affine image of the unit Euclidean ball Bn is called an ellipsoid.

By Polar Decomposition 1.2, each operator A ∈ GLn(R) can be written as A = PU where P is

symmetric and positive-definite, and U is an orthogonal map. Then to obtain the ellipsoids of

R
n it need not to consider all matrices in Mn(R), but only the symmetric and positive-definite

ones. The advantage of working in the space Symn,+(R) is that by the Spectral Theorem 1.15

each matrix P ∈ Symn,+(R) is diagonalizable with an orthogonal basis of vectors.

The first result of this section states that any convex body K ¢ R
n contains a unique ellipsoid

of maximal volume.

Theorem 2.1 ([5], Proposition 2.1.6). If K is a convex body in R
n, then there exists a unique
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ellipsoid EKJ ¦ K such that

voln(E
K
J ) = sup{voln(E) : E ¦ K and E is an ellipsoid}.

We call EKJ the John ellipsoid of K.

A construction that is dual to John ellipsoid is the Löwner ellipsoid which is the unique ellipsoid

of minimal volume containing the convex body K.

Theorem 2.2 ([5], Proposition 2.1.7). Let K be a convex body. There exists a unique ellipsoid

EKL § K such that

voln(E
K
L ) = inf{voln(E) : K ¦ E and E is an ellipsoid}.

We call EKL the Löwner ellipsoid of K.

We say that a convex body is in John position if EKJ = Bn, and in Löwner position if EKL = Bn.

Notice that these definitions make sense, because an affine transformation preserves inclusion,

transforms ellipsoids in ellipsoids and by Theorem 1.6 multiply every volume by the same

constant. In other words, if EKJ = T (Bn) + v0 is the John ellipsoid of K, then we have

Bn = T−1(EKJ )− T−1(v0) ¦ T−1(K)− T−1(v0)

and Bn is the John ellipsoid of the position T−1(K)− T−1(v0) of K. Moreover, if K is in John

position, then T (K) + w0 is in John position if and only if w0 = 0 and T ∈ On(R), that is, the

John position of a convex body is unique up to orthogonal transformations. The same holds for

the Löwner position.

Figure 2.1: K1 is in John position and K2 is in Löwner position.

Source: Compiled by the author.

Let K,L ¦ R
n be convex bodies. A point x ∈ ∂K ∩ ∂L with the property that K and L are

supported by a common hyperplane at x is called a contact point of K,L. When L ¦ K, then

any point x ∈ ∂K ∩ ∂L is a contact point between K and L, because any hyperplane which

supports K at x also supports L at x.

Notice that if K is a convex body in John (Löwner) position, then the intersection Sn−1 ∩ ∂K



2.1. EXISTENCE OF ISOTROPIC MEASURES IN JOHN AND LÖWNER POSITIONS 29

must be non-empty, otherwise we would have that ³ := dist(Sn−1, ∂K) > 0 from where

(

1 +
³

2

)

Bn ¦ K,

and this would contradict the fact that Bn is the ellipsoid of maximum volume contained in K.

In what follows we introduce a theorem due to Fritz John which characterizes how the contact

points of a convex body in John position and its John ellipsoid are distributed.

Theorem 2.3 ([32], Application 4, pag. 199-200). Assume K ∈ Kn is in John (resp. Löwner)

position, then there exists a finite set of points {À1, . . . , Àm} ¢ Sn−1 ∩ ∂K, positive numbers

{c1, . . . , cm} ¢ R and ¼ ̸= 0, for which

m
∑

i=1

ciÀi ¹ Ài = ¼ Id and
m
∑

i=1

ciÀi = 0. (2.1)

The equality in (2.1) is called a decomposition of the identity. Note that taking traces in the first

equality of (2.1) we obtain
∑m

i=1 ci = n¼, since tr(Ài¹ Ài) = |Ài|2 = 1. This determines the value

of ¼.

Recalling that integration of Rn and Mn(R)-valued functions is understood to be coordinatewise,

we have the following definition.

Definition 2.1. A measure µ on the sphere Sn−1 is said to be isotropic if for some ¼ ̸= 0 holds

∫

Sn−1

(À ¹ À)dµ = ¼ Id (2.2)

and centered if

∫

Sn−1

Àdµ = 0. (2.3)

Then one can see that equation (2.1) can be expressed as the fact that the atomic measure

µK =
∑m

i=1 ci¶Ài is centered and isotropic.

Later Ball [11] proved the sufficiency part, that is, that the existence of a non-negative centered

isotropic measure µK in the set of contact points, guarantees that K is in John position if

Bn ¦ K, or in Löwner position if K ¦ Bn.

The existence of the measure µK in Theorem 2.3 is often shown in a non-constructive way. The

first proof is due to Fritz John. In [32] he proves the necessity part of the theorem using the

following result, which is an extension of the method of Lagrange multipliers to the case where

the number of constraints may be infinite.

Theorem 2.4 ([32], Necessary conditions for a minimum, pag. 198-200). Let V be a real vector

space of dimension n and U an open neighborhood in V, F : U → R a C1 function, S a compact

metric space and G : U × S → R a continuous function such that ∇uG(u, s) exists for every

u ∈ U, s ∈ S and ∇uG is continuous on S. (In optimization terms, F is the objective function
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and G represents the set of constraints.) Let A = {u ∈ U : G(u, s) f 0, ∀s ∈ S} (the feasible

set) and u0 ∈ A such that F (u0) = maxu∈A F (u). Then either ∇uF (u0) = 0, or there exist

s1, . . . , sm ∈ S,m f n and ¼1, . . . , ¼m ∈ R
+ such that G(u0, si) = 0 for all i = 1, . . . ,m and

∇uF (u0) =

m
∑

i=1

¼i∇uG(u0, si).

Other authors usually prove first that it is impossible to separate
(

Id
n , 0

)

∈ Mn(R)×R
n from the

set

{(À ¹ À, À) ∈ Mn(R)× R
n : À ∈ Sn−1 ∩ ∂K}

with linear functionals. The same approach can be found in [5, Section 2.1.3] and in [23, 27].

2.2 Maximal intersection position of radius r

Artstein and Katzin recently defined in [6] a one parameter family of positions of a convex body:

the so-called maximum intersection position of radius r. They show that such positions induces

an isotropic measure on the sphere when there are some good conditions in K. From that they

give an interpretation of John’s theorem as a limit case of the measures induced from the maximal

intersection positions. The one-parametric family of extremal positions defined by them is the

following.

Definition 2.2 ([6], Definition 1.2). For a centrally symmetric convex body K ¢ R
n, the

ellipsoid Er of volume rn voln(B
n) is a maximum intersection ellipsoid of radius r, if

voln(K ∩ Er) g voln(K ∩ E)

for all ellipsoids E of same volume rn voln(B
n). We say that K is in maximal intersection position

of radius r if rBn is a maximum intersection ellipsoid of radius r.

Recalling that EKJ and EKL denote the John ellipsoid and the Löwner ellipsoid of K, respectively,

if rJ is a positive number satisfying voln(E
K
J ) = rnJ voln(B

n) and rL is such that voln(E
K
L ) =

rnL voln(B
n), then K is in maximal intersection position of radius rJ if and only if r−1

J K is in

John position, and the same holds for the Löwner position, that is, up to a scaling, the maximal

intersection position of radius rJ is the John position, and the maximal intersection position of

radius rL is the Löwner position.

Their first result in [6] is the following.

Theorem 2.5 ([6], Theorem 1.3). Let K ¢ R
n be a centrally symmetric convex body such

that voln(∂K ∩ ∂E) = 0 for all but finitely many ellipsoids E, voln−1(∂K ∩ rSn−1) = 0, and

voln−1(K ∩ rSn−1) > 0. If K is in maximal intersection position of radius r, then the restriction

of the surface area measure on the sphere to Sn−1 ∩ r−1K is an isotropic measure.

When K is in John position we have r = rJ = 1 and Sn−1 ¢ K. Hence the theorem does not

include this case, since it is already known to everyone that the surface area measure on the

sphere is isotropic. Other result obtained in [6] is that if K is a convex body in John position
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and centrally symmetric, the measure given in Theorem 2.3 may be constructed as a limit of the

isotropic measures from Theorem 2.5.

Theorem 2.6 ([6], Theorem 1.5). Let K ¢ R
n be a centrally symmetric convex body in John

position such that voln−1(∂K ∩ ∂E) = 0 for all but finitely many ellipsoids E. For every r > 1,

denote by µr the uniform probability measure on Sn−1 \ r−1TrK, where TrK is in maximal

intersection position of radius r. Then there exists a sequence rj ¸ 1 such that the sequence of

measures µrj weakly converges to an isotropic measure whose support is contained in ∂K ∩Sn−1.

For Löwner position, we take r < 1 and µr as the uniform probability measure on the

set Sn−1 ∩ r−1TrK. It is shown, similarly the John position, that under the hypothesis

voln−1(∂K ∩ ∂E) = 0 for all but finitely many ellipsoids E , there exists a sequence rj · 1

such that the sequence of measures µrj weakly converges to an isotropic measure whose support

is contained in ∂K ∩ Sn−1.

About the maximum intersection position of radius r it is also worth mentioning that Artstein

and Katzin proved that such a position exists, but it is not yet known about the uniqueness of

this position for rJ < r < rL. What is already known, of course, is that if 0 < r < rJ or r > rL

then the maximum intersection ellipsoid Er of radius r is not unique and by John’s theorem if

r = rJ or r = rL then Er is unique. However, the case rJ < r < rL is a consequence of a

well-known conjecture:

Conjecture 2.1. For a convex body K ¢ R
n and a diagonal n× n matrix Λ, the function

ϕ(t) = voln(e
tΛK ∩Bn)

is log-concave in t, i.e.,

voln

(

e
t
2
ΛK ∩Bn

)2
g voln(e

tΛK ∩Bn)voln(K ∩Bn)

for all t ∈ R and all diagonal matrix Λ. Furthermore, equality is attained if and only if one of

the following hold: K ¢ Bn, Bn ¢ K, or Λ = ¼ Id for some ¼ ∈ R.

Proposition 2.1 ([6], Proposition 4.2). Assuming Conjecture 2.1 is true, if K is a centrally

symmetric convex body, the maximum intersection ellipsoid of radius r is unique for rJ < r < rL.

To conclude this section, it is important to make it clear that the isotropic measure is thus

constructed (in the symmetric case), but one can argue that in practice there is a large body

of computations to make. First of all, one has to solve a one-parameter family of minimization

problems (find the matrix Tr for r close to 1), and then take the limit of (some subsequence of)

all these measures µr.

2.3 Explicit representations of Isotropic Measures in John and

Löwner positions

In this section we will construct a non-negative centered isotropic measure from the convex

body K, which is in John position, whose existence is guaranteed by John’s Theorem 2.3. A



2.3. EXPLICIT REPRESENTATIONS OF ISOTROPIC MEASURES IN JOHN AND

LÖWNER POSITIONS 32

natural question about the existence of an isotropic measure would be about its usefulness.

And the answer is that we can often determine if a body is in John position just observing the

distribution of its contact points.

Throughout the text we will consider the following family of functions: for any r ∈ (1/2, 1) and

any function µ : R → R define

µr(s) = µ

(

s− 1

1− r

)

.

Let f, g : R → R be two measurable functions. We define the functional Lr : Mn(R) × R
n → R

by

Lr(A, v) =
1

1− r

∫

Rn

fr(||Ax+ v||K)gr(|x|2)dx,

and the functional Ir : Br × R
n ¦ Symn(R)× R

n → R by

Ir(M,w) =
1

1− r

∫

Rn

fr(||x||K)gr(|(Id + (1− r)M)−1(x− (1− r)w)|2)dx,

where the domain Br is the set of matrices M such that Id + (1 − r)M is invertible, and in

particular it contains the ball B(0, (1− r)−1) in the operator norm.

Observe that if (A, v) ∈ SLn(R)× R
n ¢ Mn(R)× R

n, then

Ir

(

A− Id

1− r
,

v

1− r

)

=
1

1− r

∫

Rn

fr(||x||K)gr(|A
−1(x− v)|2)dx

=
1

1− r

∫

Rn

fr(||Ax+ v||K)gr(|x|2)dx

= Lr(A, v). (2.4)

Let O be an orthogonal matrix. Since

Lr(AO, v) =
1

1− r

∫

Rn

fr(||AOx+ v||K)gr(|x|2)dx

=
1

1− r

∫

Rn

fr(||Ax+ v||K)gr(|O
−1x|2)dx

=
1

1− r

∫

Rn

fr(||Ax+ v||K)gr(|x|2)dx

= L(A, v),

then by Polar Decomposition 1.2, it suffices to know the behaviour of Lr restricted to

Symn,+(R)×R
n. In particular, a global minimum of the restriction of Lr to Symn,+(R)×R

n is

also a global minimum in Mn(R)× R
n.

The reason why we define these functionals is because it is known that isotropic measures often

show up if some suitable functional is maximized or minimized over all positions of a convex

body. Therefore, our objective is to construct such a measure from the functionals Lr and Ir,
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which, as we have seen, are related to (A, v) ∈ SLn(R)×R
n. The idea appear from the following

lemma.

Lemma 2.1. Assume that the functional Lr is smooth. Let (Ar, vr) be a global minimum of the

restriction of Lr to (Symn,+(R) ∩ SLn(R))× R
n. Then there exists ¼r ̸= 0 such that

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)∇||x||K ¹ xdx = (1− r)¼r Id

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)∇||x||Kdx = 0.

Note that if (Ar, vr) is a global minimum of the restriction of Lr to (Symn,+(R)∩SLn(R))×R
n,

then by Lemma 1.2, it is a global minimum of the restriction of Lr to the smooth hypersurface

SLn(R)× R
n ¦ Mn(R)× R

n. Moreover, if x ∈ Sn−1 ∩ ∂K then ∇||x||K = x.

Hence

1

1− r

∫

Sn−1∩∂K
(f ′)r(||x||K)gr(|A

−1
r (x− vr)|2)∇||x||K ¹ xdx

=
1

1− r

∫

Sn−1∩∂K
(f ′)r(||x||K)gr(|A

−1
r (x− vr)|2)x¹ xdx (2.5)

and

1

1− r

∫

Sn−1∩∂K
(f ′)r(||x||K)gr(|A

−1
r (x− vr)|2)∇||x||Kdx

=
1

1− r

∫

Sn−1∩∂K
(f ′)r(||x||K)gr(|A

−1
r (x− vr)|2)xdx. (2.6)

What we are going to do is assume some properties about f, g that will give us good properties

on the functionals Lr, Ir and allow us to show that the measure

1

1− r
(f ′)r(||x||K)gr(|A

−1
r (x− vr)|2)dx (2.7)

concentrates near Sn−1 ∩ ∂K as r → 1− and converges for some sequence rk → 1− to a centered

isotropic measure, as in Theorem 2.6.

Proof of Lemma 2.1. Let È : Mn(R) × R
n → R be the function defined by È(A, v) = det(A).

We know that SLn(R) = det−1({1}), where c = 1 is a regular value of the differentiable map È.

Since (Ar, vr) ∈ SLn(R) × R
n = È−1({1}) is a singular point of Lr restricted to SLn(R) × R

n,

then by Theorem 1.16 there exists ¼r ̸= 0 such that

∇Lr(Ar, vr) = ¼r∇È(Ar, vr), (2.8)

where the gradients are taken with respect to the whole space Mn(R)× R
n. By Lemma 1.6, for

(V,w) ∈ T(Ar,vr)(SLn(R)× R
n) we have

È′(Ar, vr)[V,w] = det(Ar)ïA
−T
r , V ð = ïA−T

r , V ð.
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Therefore,

∇È(Ar, vr) = (A−T
r , 0). (2.9)

On the other hand, if (V,w) ∈ T(Ar,vr)(SLn(R)× R
n), we have

L′
r(M, v)[V,w] =

1

1− r

∫

Rn

f ′r(||Mx+ v||K)ï∇||Mx+ v||K , V x+ wðgr(|x|2)dx

=
1

1− r

∫

Rn

f ′r(||Mx+ v||K)(ï∇||Mx+ v||K , V xð+ ï∇||Mx+ v||K , wð)gr(|x|2)dx.

By Lemma 1.3, we get

L′
r(M, v)[V,w] =

1

1− r

∫

Rn

f ′r(||Mx+ v||K)ï(∇||Mx+ v||K ¹ x,∇||Mx+ v||K), (V,w)ðgr(|x|2)dx.

Since

f ′r(s) =
d

ds
f

(

s− 1

1− r

)

=
1

1− r
f ′
(

s− 1

1− r

)

=
1

1− r
(f ′)r(s),

then making Cr =
1

(1− r)2
, we arrive at

L′
r(M, v)[V,w] =

〈

Cr

∫

Rn

(f ′)r(||Mx+ v||K)gr(|x|2)(∇||Mx+ v||K ¹ x,∇||Mx+ v||K)dx, (V,w)

〉

.

Therefore,

∇Lr(Ar, vr) = Cr

∫

Rn

(f ′)r(||Arx+ vr||K)gr(|x|2)(∇||Arx+ vr||K ¹ x,∇||Arx+ vr||K)dx.

(2.10)

Substituting equalities (2.9) and (2.10) in equality (2.8), we get

¼r(A
−T
r , 0) = Cr

∫

Rn

(f ′)r(||Arx+ vr||K)gr(|x|2)(∇||Arx+ vr||K ¹ x,∇||Arx+ vr||K)dx

= Cr

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)(∇||x||K ¹A−1

r (x− vr),∇||x||K)dx

= Cr

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)((∇||x||K ¹ x−∇||x||K ¹ vr)A

−T
r ,∇||x||K)dx.

Note that in the last equality above we used the property

x¹Ay = (x¹ y)AT ,

which is easily proved by noting that for any z ∈ R
n it holds

x¹Ay(z) = ïz,Ayðx = ïAT z, yðx = x¹ y(AT z) = x¹ yAT (z).
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By vector equality, we have

1

(1− r)2

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)(∇||x||K ¹ x−∇||x||K ¹ vr)dx = ¼r Id

1

(1− r)2

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)∇||x||Kdx = 0.

Since

0 =

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)∇||x||Kdx¹ vr

=

∫

Rn

(f ′)r(||x||K)gr(|A
−1
r (x− vr)|2)∇||x||K ¹ vrdx,

we conclude the proof.

2.3.1 Basic Results

In order to construct the measure (2.7), we will assume the following properties for f and g:

f1 f is locally Lipschitz;

f2 f is convex;

f3 f(x) = 0 for x f −1;

f4 f is strictly increasing in [−1,∞).

g1 g is locally Lipschitz;

g2 g is non-increasing;

g3 g(x) = 1 for x f −1;

g4 g(x) > 0 for x ∈ (−1, 1);

g5 g(x) = 0 for x g 1.

Two functions satisfying f1 to g5 are

f(x) =







0, if x f −1

x+ 1, if x > −1
, g(x) =



















1, if x f −1

1−x
2 , if x ∈ (−1, 1)

0, if x g 1

,

see Figures 2.2 and 2.3.

Figure 2.2: Functions f(green) and g(red).

Source: Compiled by the author.
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Figure 2.3: Functions fr(green) and gr(red).

Source: Compiled by the author.

These conditions (specially f2) will guarantee that the functional Lr has a unique global minimum

(Ar, vr) ∈ (Symn,+(R) ∩ SLn(R))× R
n for r ∈ (1/2, 1).

Throughout this section we will fix a convex body K ¦ R
n in John position. Since Bn ¦ K,

then 0 is an interior point of K.

We start by establishing basic properties of functionals Lr and Ir that will be useful in proving

the main results. In order to justify the hypotheses requested about f and g, in each proposition

we detail the properties of f, g that are necessary.

Proposition 2.2. Assume f1,g1,g5 are satisfied, then Lr, Ir are C1 for r ∈ (1/2, 1).

Proof. By Rademacher’s Theorem 1.17, since f, g, || · ||K , | · |2 are locally Lipschitz, then f, g, || ·

||K , |·|2 are differentiable almost everywhere. In particular, f(||Mx+v||K)g(|x|2) is differentiable

almost everywhere, where (A, v) ∈ Mn(R)×R
n and fr(||x||K)gr(|(Id+(1−r)M)−1(x−(1−r)w)|2)

is differentiable almost everywhere in Br × R
n.

Definition 2.3. We say that a function f : U ¦ R
d → R is coercive if lim

|x|2→∞
f(x) = +∞.

A one-parameter family of functions fr : U ¦ R
d → R is said to be coercive uniformly in r if

fr(x) g f(x) for every |x|2 g C for some C > 0 and some coercive function f .

For a function f : R → R we say that f is coercive to the right if lim
x→∞

f(x) = +∞.

Observe that a coercive and convex function defined in a convex set must have points of minimum,

and that if the convexity of the function is strict the minimum is unique.

Lemma 2.2 ([8], Lemma 12). A convex function È : Rd → R with an isolated local minimum

must be coercive.

Recall that by (1.10), the set

D = {T ∈ Symn,+(R) : det(T ) g 1}

is a convex set.
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Proposition 2.3. Assume f2, f3, f4,g3, then the family of functionals Lr restricted to D × R
n

is coercive, uniformly for r ∈ (1/2, 1).

Proof. Let (A, v) ∈ D × R
n be arbitrarily given. Since A is symmetric and positive-definite,

there exists w an eigenvector of A of eigenvalue ||A||op = max{¼ : ¼ is an eigenvalue of A}, with

Euclidean norm 1
2 ||A||op and such that ïv, wð g 0. Consider the half-space

S = {x ∈ R
n : ïx, v + wð g ïv + w, v + wð}

where clearly v + w ∈ ∂S. Let S̄ = A−1(S − v) be a half-space. Since

A−1 ((v + w)− v) = A−1(w) =
1

||A||op
w =

1

2

w

|w|2
,

then 1
2
w

|w|2
∈ ∂S̄. Applying the inverse of the affine transformation,

voln

((

1

2
ABn + v

)

∩ S

)

= det(A) voln

(

1

2
Bn ∩ S̄

)

.

Since the volume of the intersection of 1
2B

n with a half-space (not containing the origin) is a

decreasing function of the distance of this half-space to the origin, and since

d(0, S̄) f

∣

∣

∣

∣

1

2

w

|w|2

∣

∣

∣

∣

2

= 1/2,

we have voln
(

1
2B

n ∩ S̄
)

g Cn where Cn > 0 is a dimensional constant. Also, ïv, wð g 0 implies

|x|2 g |v + w|2 g
√

|v|22 + |w|22

for every x ∈ S.

Since the convex body K is contained in the unit Euclidean ball, there exists a constant C > 0

such that

||Ax+ v||K g C|Ax+ v|2
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for all (A, v) ∈ D × R
n. Using g3, that f, g are non-negative, and that f is non-decreasing,

Lr(A, v) =
1

1− r

∫

Rn

fr(||Ax+ v||K)gr(|x|2)dx

g
1

1− r

∫

rBn

fr(||Ax+ v||K)dx

g 2 det(A)−1

∫

( 1
2
ABn+v)∩S

fr(C|x|2)dx

g 2 det(A)−1 voln

((

1

2
ABn + v

)

∩ S

)

fr

(

C
√

|v|22 + |w|22

)

g 2 det(A)−1 voln

((

1

2
ABn + v

)

∩ S

)

fr

(

C

√

|v|22 +
1

4
||A||2op

)

g 2Cnf





C
√

|v|22 +
1
4 ||A||

2
op − 1

1− r



 .

For C
√

|v|22 +
1
4 ||A||

2
op g 1, we obtain

Lr(A, v) g Cnf

(

√

|v|22 +
1

4
||A||2op − 1

)

,

and since by f2 and f4 we have that f is coercive to the right, it follows that Lr is coercive to

the right as well.

Proposition 2.4. Let r ∈ (1/2, 1) and assume g3,g4, f2, f3, f4. The function Lr restricted to

D × R
n is positive and convex.

Proof. Positive: Take (A, v) ∈ D × R
n and assume Lr(A, v) = 0. Since the functions fr, gr are

non-negative, we have that if gr(|x|2) > 0 then fr(||Ax+ v||K) = 0. In other words,

x ∈ (2− r)Bn ⇒ Ax+ v ∈ rK.

Hence, (2− r)ABn + v ¦ rK. Since K is in John position, det

(

2− r

r
A

)

f 1 from where

det(A) f

(

r

2− r

)n

< 1,

which contradicts the fact that A ∈ D.

Convex: Let (A, v), (B,w) ∈ D × R
n, and ¼ ∈ [0, 1]. By f3, f4, f is non-decreasing. Using this
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fact, the convexity of the gauge function of K and f2,

Lr(¼(A, v) + (1− ¼)(B,w)) =
1

1− r

∫

Rn

fr(||(¼A+ (1− ¼)B)x+ (¼v + (1− ¼)w)||K)gr(|x|2)dx

=
1

1− r

∫

Rn

fr(||¼(Ax+ v) + (1− ¼)(Bx+ w)||K)gr(|x|2)dx

f
1

1− r

∫

Rn

fr(¼||Ax+ v||K + (1− ¼)||Bx+ w||K)gr(|x|2)dx (2.11)

f
1

1− r

∫

Rn

(¼fr(||Ax+ v||K) + (1− ¼)fr(||Bx+ w||K))gr(|x|2)dx

= ¼Lr(A, v) + (1− ¼)Lr(B,w),

and this is the desired inequality.

Proposition 2.5. Assume g5, f3, then for r ∈ (1/2, 1) we have Lr(Id, 0) f C where C is a

constant depending only on f and n.

Proof. By g5 and polar coordinates, we get

Lr(Id, 0) =
1

1− r

∫

Rn

fr(||x||K)gr(|x|2)dx

f
1

1− r

∫

(2−r)Bn

fr(||x||K)dx

=
1

1− r

∫

Sn−1

∫ 2−r

0
sn−1fr(s||À||K)dsdHn−1(À).

Since K is in John position, then Sn−1 ¢ K. From where it follows ||À||K f 1 for all À ∈ Sn−1.

Furthermore, since fr is non-decreasing

Lr(Id, 0) f
1

1− r

∫

Sn−1

∫ 2−r

0
sn−1fr(s)dsdH

n−1(À).

Making the substitution s = 1 + (1− r)t, recalling that fr(s) = f(t) and using f3 we arrive at

Lr(Id, 0) f

∫

Sn−1

∫ 1

− 1
1−r

(1 + (1− r)t)n−1f(t)dtdHn−1(À)

f

∫

Sn−1

∫ 1

−1
(1 + (1− r)t)n−1f(t)dtdHn−1(À)

f 2n−1 voln−1(S
n−1)

∫ 1

−1
f(t)dt f C.

Lemma 2.3. Let n g 2, A,B ∈ GLn(R) and v, w ∈ R
n be such that Ax + v is a multiple of

Bx + w for every x in an open set U ¦ R
n. Then there exists a ̸= 0 for which A = aB and

v = aw.

Proof. First, we can assume that Ax+ v ̸= 0 for every x ∈ U , because if it does not we consider
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the open set U \{−A−1v}. The same we can assume for (B,w), that is, Bx+w ̸= 0 for all x ∈ U .

Now since Ax+ v is a multiple of Bx+ w for every x, then there is a function a : U ¦ R
n → R

such that

Ax+ v = a(x)(Bx+ w). (2.12)

For any x0 ∈ U , choose a coordinate i for which (Bx0 + w)i ̸= 0. Thus,

a(x) =
(Ax+ v)i
(Bx+ w)i

guarantees that a(x) is a C∞ function near x0.

Taking the directional derivative of equation (2.12) with respect to x, in the direction of a vector

x1, we arrive at

Ax1 = ï∇a(x), x1ð(Bx+ w) + a(x)Bx1. (2.13)

Now taking in (2.13), the directional derivative with respect to x, in the direction of x2, at x = x0

0 = (xT1Ha(x0)x2)(Bx0 + w) + ï∇a(x0), x1ðBx2 + ï∇a(x0), x2ðBx1.

We claim that ∇a(x0) = 0. Indeed, if ∇a(x0) ̸= 0 and B∇a(x0) is parallel to Bx0 + w it is

enough for us to take x1 = ∇a(x0) and x2 orthogonal to ∇a(x0) to obtain

0 = (∇a(x0)
THa(x0)x2)(Bx0 + w) + ï∇a(x0),∇a(x0)ðBx2,

which implies B∇a(x0) = 0 because Bx2 is not parallel to B∇a(x0). This contradicts the fact

that B is invertible.

If B∇a(x0) is not parallel to Bx0 + w we take x1 = x2 = ∇a(x0) to get

0 = (∇a(x0)
THa(x0)∇a(x0))(Bx0 + w) + 2ï∇a(x0),∇a(x0)ðB∇a(x0),

which implies B∇a(x0) = 0 and we conclude that ∇a(x0) = 0.

For x = x0, by (2.13)

Ax1 = ï∇a(x0), x1ð(Bx0 + w) + a(x0)Bx1

= ((Bx0 + w)¹∇a(x0))x1 + a(x0)Bx1

and the equality for every x1 implies

A = (Bx0 + w)¹∇a(x0) + a(x0)B. (2.14)

By (2.14) becomes A = a(x0)B, and by (2.12) for x = x0 we get

a(x0)Bx0 + v = a(x0)(Bx0 + w)
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which implies v = a(x0)w.

Finally A ∈ GLn(R) implies a = a(x0) ̸= 0. The proof is complete.

2.3.2 Main Results in the geometric setting

Our first result is an immediate consequence of the Lagrange multipliers and explicitly gives us

a centered and isotropic measure from a function F satisfying some conditions. Consider the set

F = {F : R → [0,∞) : F is non-decreasing, convex, strictly convex in [0,∞), and F ′(0) > 0}.

(2.15)

Theorem 2.7. Let K be a convex body in John position. Choose any finite positive and non-zero

measure ¿ in Sn−1 with support inside Sn−1 ∩ ∂K, and any C1 function F ∈ F . Consider the

convex functional I¿ : Symn(R)× R
n → R defined by

I¿(M,w) =

∫

Sn−1

F (ïÀ,MÀ + wð)d¿(À).

If the restriction of I¿ to Symn,0(R)×R
n is coercive then for any global minimum (M0, w0), the

measure

F ′(ïÀ,M0À + w0ð)d¿(À)

is non-negative, non-zero, centered and isotropic.

By Lemma 2.2, if I¿ has an isolated local minimum, then it must be coercive so the coercivity

can be established locally once a minimum is found.

Let us consider the situation where Sn−1 ∩ ∂K is finite. In this case, a natural choice of ¿ is the

counting measure c.

Corollary 2.1. Let K be a convex body in John position and assume

Sn−1 ∩ ∂K = {À1, . . . , Àm}.

Choose any C1 function F ∈ F . Consider the convex functional Ic : Symn(R)×R
n → R defined

by

Ic(M,w) =
m
∑

i=1

F (ïÀi,MÀi + wð).

If the restriction of Ic to Symn,0(R)×R
n is coercive then for any global minimum (M0, w0), the

numbers

ci = F ′(ïÀi,M0Ài + w0ð), i = 1, . . . ,m,

together with the vectors Ài, i = 1, . . . ,m, satisfy equation (2.1).

For a convex body L, the 0-th curvature measure C0(L, ·) is a measure in ∂L that generalizes

the Gauss-Kronecker curvature »(x) of ∂L, for sets with non-smooth boundary (see, [46, Section
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4 and formula (4.10)]). By [46, (4.25)], if L is C2-smooth, and A ¦ ∂L , we have

C0(L,A) =

∫

A
»(x)dHn−1(x). (2.16)

We shall need the following property.

Proposition 2.6 ([46], Theorem 4.5.1). The support of the measure C0(convA, ·) is exactly A,

where A ¦ R
n is any set.

For the convex body K there is a canonical choice of measure ¿ given by

¿K = C0(conv(S
n−1 ∩ ∂K), ·),

and will play a special role in Theorem 2.9 below. Depending on the set Sn−1 ∩ ∂K and the

measure ¿, the function I¿ might or might not have a minimum. This can be a consequence of

a “bad choice” of ¿, or of the fact that Sn−1 ∩ ∂K is degenerate in some sense. To make this

precise we recall the following properties about John position. A proof can be found for the

symmetric case in [5, proof of Theorem 2.1.10 and Lemma 2.1.13]. In the general case, the proof

is analogue.

Theorem 2.8. Let L be any convex body. The following statements are equivalent

(i) L is in John position;

(ii) Bn ¦ L and for every (M,w) ∈ (Symn,0(R)×R
n) \ {(0, 0)} there exists À ∈ Sn−1 ∩ ∂L for

which ïÀ,MÀ + wð g 0;

(iii) Bn ¦ L and
(

1
n Id, 0

)

∈ conv({(À ¹ À, À) : À ∈ Sn−1 ∩ ∂L}).

Theorem 2.9. The following statements are equivalent

(i) The restriction of I¿ to Symn,0(R)× R
n is coercive;

(ii) For every (M,w) ∈ (Symn,0(R)× R
n) \ {(0, 0)}

¿({À ∈ Sn−1 ∩ ∂K : ïÀ,MÀ + wð > 0}) > 0;

If ¿ = ¿K or if Sn−1 ∩ ∂K is finite and ¿ = c, the statements above are also equivalent to

the following:

(iii)
(

1
n Id, 0

)

lies in the interior of conv({(À¹ À, À) : À ∈ Sn−1∩∂K}) ¦ Symn,1(R)×R
n, where

the interior is taken with respect to Symn,1(R)× R
n.

Proof. We start by proving that (i) ⇒ (ii). Assume by contradiction that for some (M,w) ∈

(Symn,0(R)×R
n) \ {(0, 0)} it holds ïÀ,MÀ +wð f 0 for ¿-almost every À. For ¼ > 1, since F is
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non-decreasing,

I¿(¼(M,w)) =

∫

Sn−1∩∂K
F (¼ïÀ,MÀ + wð)d¿

f

∫

Sn−1∩∂K
F (ïÀ,MÀ + wð)d¿

= I¿(M,w),

which contradicts the coercivity of I¿ .

Now suppose that it holds (ii). Denote by x+ = max{x, 0} the positive part of x and consider

the function

E(M,w) =

∫

Sn−1

ïÀ,MÀ + wð+d¿.

By hypothesis, E is positive in Symn,0(R)×R
n \ {(0, 0)}. By Dominated Convergence Theorem

1.11, the function E is continuous, and there is ε > 0 such that E(M,w) g ε for every

(M,w) ∈ Symn,0(R) × R
n with ||(M,w)|| = 1. Using the comparison F (x) g F ′(0)x+ and

writing (M̄, w̄) = ||(M,w)||−1(M,w), we deduce that

I¿(M,w) g

∫

Sn−1

F ′(0)ïÀ,MÀ + wð+d¿

g ||(M,w)||

∫

Sn−1

F ′(0)ïÀ, M̄À + w̄ð+d¿

g ||(M,w)||F ′(0)ε,

which implies the coercivity of I¿ .

So far we have shown that (i) ô (ii). Now we assume (iii) for ¿ = ¿K and show that it holds

(ii). Let (M,w) ∈ Symn,0(R) × R
n \ {(0, 0)}. First we show that there exists À0 ∈ Sn−1 ∩ ∂K

such that ïÀ0,MÀ0 + wð > 0. Indeed,
(

Id
n , 0

)

belongs to the boundary of the half-space

F = {(N, u) ∈ Symn,1(R) × R
n : ï(N, u), (M,w)ð f 0}, so by the hypothesis, we cannot have

conv({À ¹ À : À ∈ Sn−1 ∩ ∂K}) ¦ F .

Now we may find ε > 0 such that |À − À0|2 < ε implies ïÀ,MÀ + wð > 0 as well. Since À0 is in

the support of ¿K , by Proposition 2.6 we have ¿K(B(À0, ε)) > 0. This implies that

¿K({À ∈ Sn−1 ∩ ∂K : ïÀ,MÀ + wð > 0}) > 0.

The implication (ii) ⇒ (iii) for ¿ = ¿K follows because ¿({À ∈ Sn−1∩∂K : ïÀ,MÀ+wð > 0}) > 0

implies {À ∈ Sn−1 ∩ ∂K : ïÀ,MÀ + wð > 0} is non-empty.

To finish, if Sn−1 ∩ ∂K is finite and ¿ = c then conv(Sn−1 ∩ ∂K) is a polytope and ¿K is an

atomic measure supported in Sn−1∩∂K, by Proposition 2.6 again. The equivalence then follows

from the case ¿ = ¿K .

Notice that these conditions do not depend on the choice of F but only on the measure ¿.

Theorem 2.9 shows that the condition of coercivity in Theorem 2.7 corresponds to a generic

situation.
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Example 2.1. Consider K the Octagon that is in John position. The set of contact points

between K and B2 is given by

S1 ∩ ∂K = {±(1, 0),±(0, 1),±(1, 1),±(1,−1)}.

Figure 2.4: Contact points between K and B2.

Source: Compiled by the author.

For each matrix M =

(

a b

b −a

)

∈ Sym2,0(R) and vector w = (c, d) ∈ R
2, we can show that

for some i = 1, . . . , 8, it holds

ïÀi,MÀi + wð > 0.

Here a, b, c, d ∈ R are such that at least one of them is non-zero. Therefore, by Theorem 2.9, the

functional

Ic(M,w) =

8
∑

i=1

eïÀi,MÀi+wð,

given in Corollary 2.1, is coercive.

Proof of Theorem 2.7. By Theorem 1.19, the set Symn,0(R)×R
n is the orthogonal complement

of (Id, 0) in Symn(R) × R
n. Now we compute the derivative of I¿ in the direction of (V,w), at

the point (M, v) and we use the Lemma 1.3

ï∇I¿(M, v), (V,w)ð =

∫

Sn−1

F ′(ïÀ,MÀ + vð)ï∇(ïÀ,MÀ + vð), (V,w)ðd¿

=

∫

Sn−1

F ′(ïÀ,MÀ + vð)ïÀ, V À + wðd¿

=

∫

Sn−1

F ′(ïÀ,MÀ + vð)(ïÀ ¹ À, V ð+ ïÀ, wð)d¿

=

∫

Sn−1

F ′(ïÀ,MÀ + vð)ï(À ¹ À, À), (V,w)ðd¿

=

〈∫

Sn−1

F ′(ïÀ,MÀ + vð)(À ¹ À, À)d¿, (V,w)

〉

.
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We deduce that

∇I¿(M, v) =

∫

Sn−1

F ′(ïÀ,MÀ + vð)(À ¹ À, À)d¿

since this expression already in Symn(R)× R
n.

The gradient of the function È(M, v) = tr(M) is ∇È(M, v) = (Id, 0). Since È−1({0}) =

Symn,0(R) × R
n, (M0, w0) ∈ Symn(R) × R

n is a singular point of I¿ and 0 is a regular value of

È, then by Theorem 1.16 there exists ¼ > 0 such that

∇I¿(M0, w0) = ¼∇È(M0, w0),

that is,
∫

Sn−1

F ′(ïÀ,M0À + w0ð)(À ¹ À, À)d¿ = ¼(Id, 0).

Equivalently,

∫

Sn−1

F ′(ïÀ,M0À + w0ð)(À ¹ À)d¿ = ¼ Id (2.17)

∫

Sn−1

F ′(ïÀ,M0À + w0ð)Àd¿ = 0.

Since F is non-decreasing, F ′(ïÀ,M0À + w0ð) g 0. Taking traces in equation (2.17) we get

¼ =
1

n

∫

Sn−1

F ′(ïÀ,M0À + w0ð)d¿.

By Theorem 2.9, we know that ïÀ,M0À+w0ð > 0 for a set of positive ¿-measure. Since F ′(x) g 0

for every x and F ′(x) > 0 for x g 0, we deduce that ¼ > 0 and the proof is complete.

Theorem 2.10. Let K be a convex body in John position and let f, g satisfy all the properties

f1 to g5, then for every r ∈ (1/2, 1) the restriction of Lr to (Symn,+(R) ∩ SLn(R)) × R
n has a

unique minimum (Ar, vr) with lim
r→1−

(Ar, vr) = (Id, 0). Likewise, the restriction of the Ir to

Sr =

(

(Symn,+(R) ∩ SLn(R))− Id

1− r

)

× R
n

has the unique minimum (Mr, vr) =

(

A− Id

1− r
,
vr

1− r

)

with tr

(

Mr

||Mr||F

)

→ 0 as r → 1−.

Remark 2.1. The fact that (Ar, vr) → (Id, 0) is saying that the position of K that minimizes Lr,

converges to the John position as r → 1−. The functional Ir is a “blowup” of Lr, by a change

of coordinates that concentrates near (Id, 0) and stretches the distances by a factor of 1
1−r . The

restriction of Lr to the smooth surface (Symn,+(R)∩ SLn(R))×R
n takes the same values as the

restriction of Ir to Sr. Now notice that in a neighborhood of the origin, as r → 1−, the surface Sr

approaches the tangent space to (Symn,+(R)∩SLn(R))×R
n at (Id, 0), which is Symn,0(R)×R

n.

At the same time, -(Mr, wr) is the incremental quotient of (Ar, vr) at r = 1. The statement that
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tr
(

Mr
||Mr||F

)

→ 0 means that the line going through Id and Mr gets more and more parallel to

Symn,0(R).

Proof of Theorem 2.10. First we show that for r ∈ (1/2, 1), the restriction of Lr to D × R
n has

exactly one global minimum (Ar, vr).

Since by Proposition 2.3 Lr is coercive, by Proposition 2.4 it is convex and D × R
n is closed

and convex, then Lr admits at least one minimum. Assume the minimum is attained in two

different points (A, v) and (B,w). Since by Proposition 2.4 Lr is convex, then there is equality

in equation (2.11) for every ¼ ∈ [0, 1] and since fr is strictly increasing in [r,+∞), Ax + v and

Bx+w are multiples for every x ∈ (2− r)Bn such that ||Ax+ v||K > r or ||Bx+w||K > r. We

claim that ((2− r)ABn+ v) \ rK has non-empty interior. Indeed, since (2− r)ABn+ v and rK

are convex bodies, then to say that ((2− r)ABn + v) \ rK has empty interior is the same as to

say that ((2− r)ABn + v) ¦ rK, that is,
(

2−r
r ABn + v

)

¦ K. And since K is in John position,

then det
(

2−r
r A

)

f 1, meaning

det(A) f

(

r

2− r

)n

< 1

which contradicts the fact that A ∈ D. Thus, by Lemma 2.3 there exists a > 0 such that

A = aB, v = aw.

If a = 1 we are done. Assume without loss of generality that a > 1. Since (ABn + v) \ rK has

non-empty interior (because K is in John position and det(A) = a det(B) > 1) then there exists

x ∈ Bn (where gr is non-zero) such that Ax+ v ∈ (rK)c (where fr is strictly increasing). From

where it follows that

Lr(B,w) < Lr(A, v),

which is absurd.

Now we show that Ar ∈ SLn(R). If det(Ar) > 1 then again (ArB
n + vr) \ rK has non-empty

interior and

Lr(det(Ar)
−1/n(Ar, vr)) =

1

1− r

∫

Rn

fr(|| det(Ar)
−1/n(Arx+ vr)||K)gr(|x|2)dx

<
1

1− r

∫

Rn

fr(||Arx+ vr||K)gr(|x|2)dx

= Lr(Ar, vr).

This last inequality contradicts the minimality of (Ar, vr). We conclude then that Ar ∈ ∂D =

SLn(R) ∩ Symn,+(R).

Denote Mr =
Ar − Id

1− r
, wr =

vr
1− r

. Since Ar ∈ SLn(R), then by equation (2.4) we have

Ir(Mr, wr) = Lr(Ar, vr) and (Mr, wr) is the unique global minimum of the restriction of Ir

to
(

(Symn,+(R) ∩ SLn(R))− Id

1− r

)

× R
n.
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Now let us prove that (Ar, vr) → (Id, 0). Assume that (Ar, vr) does not converge to (Id, 0).

By Propositions 2.3 and 2.5, the sequence {(Ar, vr)}r is bounded. Then there is a sequence

rk → 1−such that {(Ark , vrk)}k converges. Assume that (Ark , vrk) → (A∗, v∗) ∈ (Symn,+(R) ∩

SLn(R)) × R
n, with (A∗, v∗) ̸= (Id, 0). Since the John position is unique up to orthogonal

transformations and A∗ ∈ Symn,+(R), the set (A∗Bn + v∗) \K has positive Lebesgue measure.

Take µ < 1 such that µA∗Bn + v∗ \ K has positive Lebesgue measure. For large k, we have

µA∗Bn + v∗ ¦ ArkBn + vrk . By Fatou’s Lemma 1.10,

lim inf
k→∞

Lrk(Ark , vrk) g
∫

Rn\Bn

lim inf
k→∞

1

1− rk
frk(||x||K)grk(|A−1

rk
(x− vr)|2)dx

g
∫

µA∗Bn+v∗\K
lim inf
k→∞

1

1− rk
frk(||x||K)g(0)dx

= +∞,

which is absurd because by minimality of (Ark , vrk) and Proposition 2.5,

Lrk(Ark , vrk) f Lrk(Id, 0) f C.

Note that we used for large k

grk(|A−1
rk

(x− vrk)|2) g g(0)

in µA∗Bn + v∗ \K, because if x = µA∗x̃+ v∗, where x̃ ∈ Bn, ||x||K > 1, we have

x ∈ µA∗Bn + v∗ \K ⇒ A−1
rk

(µA∗x̃+ v∗ − vrk) ¦ A−1
rk

(ArkB
n) = Bn ⇒ |A−1

rk
(x− vrk)|2 f 1

and by g2 it follows that

grk(|A−1
rk

(x− vr)|2) = g

(

|A−1
rk

(x− vr)|2 − 1

1− r

)

g g(0).

It remains to show that tr

(

Mr

||Mr||F

)

→ 0. Recall that the trace is the differential of det at

Id ∈ Mn(R) and by Taylor 1.18,

det(Id+V ) = 1 + tr(V ) + o(||V ||F )

where
o(ε)

ε
→ 0 as ε→ 0.

Taking V = (1− r)Mr, we get

1 = det(Ar)

= det(Id+(1− r)Mr)

= 1 + (1− r)tr(Mr) + o((1− r)||Mr||F ).
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Therefore,

tr

(

Mr

||Mr||F

)

=
tr(Mr)

||Mr||F
= −o((1− r)||Mr||F )

(1− r)||Mr||F
→ 0

as r → 1−.

The functional Ir captures the asymptotic behaviour of the minimizers (Ar, vr) when r → 1−,

as following theorem explains.

Theorem 2.11. Assume K has a C1-smooth boundary and all the properties f1 to g5 are

satisfied. The functional Ir(M,w) is extends continuously to r = 1 as

I1(M,w) =

∫

Sn−1∩∂K
F (ïÀ,MÀ + wð)dHn−1À,

where F is the convolution F (x) = f ∗ ḡ(x), ḡ(x) = g(−x) and satisfies the conditions of Theorem

2.7. Moreover, Ir → I1 as r → 1−, uniformly in compact sets.

Thus we obtain I1 = IHn−1 , where Hn−1 is the (n− 1)-dimensional Hausdorff measure restricted

to Sn−1 ∩ ∂K.

Proof. By Proposition 1.4, we have

Ir(M,w) =
1

1− r

∫

Rn

fr(||x||K)gr(|(Id+(1− r)M)−1(x− (1− r)w)|2)dx

=
1

1− r

∫

∂K

∫ ∞

0
sn−1fr(s||z||K)gr(|(Id+(1− r)M)−1(sz − (1− r)w)|2)

× hK(nK(z))dsdHn−1(z).

By Taylor expansion we obtain for any x,w ∈ R
n,

|x+ w|2 = |x|2 +
〈

x

|x|2
, w

〉

+ o(|w|2). (2.18)

We will denote by o((1− r)a)(resp. o(1)) any function of the involved parameters M,w, r, s, t, z,

satisfying

lim
r→1−

o((1− r)a)
(1− r)a = 0

(

resp. lim
r→1−

o(1) = 0

)

,

where the limits are uniform in compact sets with respect to the parameters. Likewise, O(1) will

denote any bounded function. For any z, w ∈ R
n, s g r > 0,M ∈ Br ¦ Mn(R) (recall that Br is

the domain of functional Ir),

(Id+(1− r)M)−1(sz − (1− r)w) = (sz − (1− r)w)− (1− r)M(sz − (1− r)w) + o(1− r)
= sz − (1− r)(sMz + w) + o(1− r). (2.19)
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Using (2.19) and (2.18),

|(Id+(1− r)M)−1(sz − (1− r)w)|2 = |sz − (1− r)(sMz + w) + o(1− r)|2

= s

∣

∣

∣

∣

z − (1− r)
(

Mz +
1

s
w

)

+ o(1− r)
∣

∣

∣

∣

2

= s

(

|z|2 − (1− r)
〈

z

|z|2
,Mz +

1

s
w

〉)

+ o(1− r).

Putting all together and making the substitution s = 1 + (1− r)t, we get

Ir(M,w) =
1

1− r

∫

∂K

∫ ∞

0
sn−1fr(s)gr(|(Id+(1− r)M)−1(sz − (1− r)v)|2)

× hK(nK(z))dsdHn−1(z)

=

∫

∂K

∫ ∞

− 1
1−r

(1 + (1− r)t)n−1f(t)hK(nK(z))

× gr
(
∣

∣

∣

∣

(1 + (1− r)t)
((

|z|2 − (1− r)
〈

z

|z|2
,Mz +

1

s
w

〉)

+ o(1− r)
)
∣

∣

∣

∣

2

)

dtdHn−1(z)

=

∫

∂K

∫ ∞

− 1
1−r

(1 + (1− r)t)n−1f(t)hK(nK(z))

× g
( |z|2 − 1

1− r + t(|z|2 + o(1))−
〈

z

|z|2
,Mz + v + o(1)

〉

+ o(1)

)

dtdHn−1(z).

Notice that |z|2 = 1 for z ∈ Sn−1 ∩ ∂K, |z|2 > 1 for z ∈ ∂K \ Sn−1 and that nK(z) =

z, hK(nK(z)) = hK(z) = 1 for every z ∈ Sn−1 ∩ ∂K. Moreover,

lim
r→1−

|z|2 − 1

1− r →∞

in ∂K \ Sn−1.

Also, by f3 the integrand is 0 for t < −1, then

Ir(M,w) =

∫

Sn−1∩∂K

∫ ∞

−1
(1 + (1− r)t)n−1f(t)hK(nK(z))

× g (−ïÀ,MÀ + w + o(1)ð+ t(1 + o(1)) + o(1)) dtdHn−1(À)

+

∫

∂K\Sn−1

∫ ∞

− 1
1−r

(1 + (1− r)t)n−1f(t)hK(nK(z))

× g
( |z|2 − 1

1− r + t(|z|2 + o(1)) +O(1) + o(1)

)

dtdHn−1(z).

To prove the uniform convergence in compact sets, consider a convergent sequence (Mk, wk) →
(M,w) as rk → 1−. By property g5, the function in the second integral is zero for t g C where

C is independent of k. The functions f, g are thus uniformly bounded in the support of both

integrals, and we may apply the Dominated Convergence Theorem 1.11 to obtain (thanks to

property g5)
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lim
k→∞

Irk(Mk, wk) =

∫

Sn−1∩∂K

∫ ∞

−∞
f(t)g(−ïÀ,MÀ + wð+ t)dtdHn−1(À).

Finally, we must show that F satisfies the properties of Theorem 2.7. First, F is non-negative

because f(t)g(t− x) g 0, for all (x, t) ∈ R
n × R. Second F is non-decreasing because since g is

non-increasing then ḡ is non-decreasing and

F ′(x) = −
∫ ∞

−∞
f(t)g′(t− x)dt =

∫ ∞

−∞
f(x− t)g′(−t)dt =

∫ ∞

−∞
f(x− t)ḡ′(t)dt g 0.

By f1,g1, f and g are locally Lipschitz and hence absolutely continuous and differentiable a.e.,

then F is twice differentiable a.e. and by f4,g3,g4,g5

F ′′(x) =

∫ 1

−1
f ′(x− t)ḡ′(t)dt g 0,

showing that F is convex. To see the strict convexity in [0,∞) take any x > 0. If F ′′(x) = 0,

since ḡ′(t) > 0 in (−1, 1), the last inequality implies that f ′ = 0 in a set of positive measure

inside (x− 1, x+ 1), and this contradicts f4.

As in the last remark made at the end of Section 2.2 with respect to the measure ¿r, to obtain

the measure (2.7) one requires the computation of (Ar, vr) for every r close to 1. The reason why

Theorem 2.7 follows directly, is that the information of the curve (Ar, vr) that is necessary to

compute the isotropic measure, is contained in (M0, w0). That is the content of the last theorem.

Theorem 2.12. Assume all the properties f1 to g5 are satisfied and the function I1 restricted to

Symn,0(R) × R
n has a unique global minimum (M0, w0), then

∂(Ar, vr)

∂r

∣

∣

∣

∣

r=1

exists and is equal

to -(M0, w0).

In this case, if (Ār, v̄r) is any curve in Symn,+(R)× R
n of the form

(Ār, v̄r) = (Id, 0) + (1− r)(M0, w0) + o(1− r),

the measure

1

1− r (f
′)r(||x||K)gr(|Ā−1

r (x− v̄r)|2)dx

converges weakly to centered and isotropic measure F ′(ïÀ,M0À + w0ð)dHn−1(À).

In particular this is true for its linear part (Ār, v̄r) = (Id+(1 − r)M0, (1 − r)w0) and for

(Ār, v̄r) = (Ar, vr) as well .

Proof. First we prove that if I1 has a unique global minimum (M0, w0), then (Mr, wr) converges

to (M0, w0). By Lemma 2.2, I1 is coercive. Then there exists R > 0 such that (M,w) ∈
Symn,0(R)× R

n, ||(M,w)|| g R implies

I1(M,w) g C + 2,
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where C given in Proposition 2.5 is such that Lr(Id, 0) f C.

Let BR = {(M,w) ∈ Symn(R)×R
n : ||(M,w)|| f R}. Since I1 is continuous in the compact set

BR, there is ε > 0 such that

I1(M,w) g C + 1

for every (M,w) ∈ BR with |tr(M)| < ε. By Theorem 2.11, there is r0 ∈ (1/2, 1) such that for

every r ∈ (r0, 1) and (M,w) ∈ BR,

|Ir(M,w)− I1(M,w)| f 1/2.

Increasing r0 if necessary, we may assume that for every r ∈ (r0, 1) and ¼ ∈ [0, 1],

det(¼Ar + (1− ¼) Id) f C + 1/2

C + 1/4
= 1 +

1

4C + 1

and that

∣

∣

∣

∣

tr

(

Mr

||Mr||F

)∣

∣

∣

∣

f ε

R
(last part of Theorem 2.10). First we claim that (Mr, wr) ∈ BR

for r ∈ (r0, 1). Assume by contraction that (Mr, wr) ̸∈ BR for some r ∈ (r0, 1), and consider

¼ < 1 such that ||¼(Mr, wr)|| = R, then since |tr(¼Mr)| f
||¼Mr||F

R
ε f ε,

Ir(¼(Mr, wr)) g I1(¼(Mr, wr))−
1

2
g C + 1− 1

2
= C +

1

2
.

By the convexity of D,

(Id, 0) + (1− r)¼(Mr, wr) = ¼(Ar, vr) + (1− r)(Id, 0) ∈ D

from where it follows that

Lr(¼(Ar, vr) + (1− ¼)(Id, 0)) = det(¼Ar + (1− ¼) Id)−1Ir(¼(Mr, wr))

g
(

C + 1/2

C + 1/4

)−1

(C + 1/2)

= C + 1/4

g Lr(Id, 0) + 1/4

g Lr(Ar, vr) + 1/4.

We obtain the inequalities

Lr(¼(Ar, vr) + (1− ¼)(Id, 0)) > Lr(Id, 0) g Lr(Ar, vr)

contradicting the convexity of Lr, that is, (Mr, wr) ∈ BR for r ∈ (r0, 1) and the claim is proved.

For any matrix M ∈ Symn,0(R) consider

M (r) =
det(Id+(1− r)M)−1/n(Id+(1− r)M)− Id

1− r
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and notice that it belongs to
(SLn(R) ∩ Symn,+(R))− Id

1− r for r close to 1. We also have

lim
r→1−

M (r) = lim
r→1−

det(Id+(1− r)M)−1/n − 1

1− r Id+det(Id+(1− r)M)−1/nM

=
∂

∂t

∣

∣

∣

∣

t=0

(det(Id+tM)−1/n Id) +M

= − 1

n
tr(−M) Id+M

=M.

Now that {(Mr, vr)}r is bounded, for every convergent sequence (Mrk , wrk) → (M0, w0) with

rk → 1−, and for every (M,w) ∈ Symn,0(R)× R
n

I1(M0, w0)← Irk(Mrk , wrk) f Irk(M (rk), w)→ I1(M,w)

so that (M0, w0) is the (unique) minimum of I1, and we deduce (Mr, wr)→ (M0, w0) as desired.

Finally, we write

∂(Ar, vr)

∂r

∣

∣

∣

∣

r=1

= lim
r→1−

(Ar, vr)− (Id, 0)

r − 1

= lim
r→1−

(−Mr,−wr)

= −(M0, w0).

For the second part of the theorem take ¶ any continuous function with compact support and

write, as in the proof of Theorem 2.11,

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|Ā−1
r (x− v̄r)|2)dx

=

∫

Sn−1∩∂K

∫ ∞

−1
¶((1 + (1− r)t)À)f ′(t)g(−ïÀ,M0À + w0 + o(1)ð+ t(1 + o(1)) + o(1))

× (1 + (1− r)t)n−1hK(nK(À))dtdHn−1(À)

+

∫

∂K\Sn−1

∫ ∞

−1
¶((1 + (1− r)t)z)f ′(t)g

( |z|2 − 1

1− r +O(1) + t(|z|2 + o(1))

)

× (1 + (1− r)t)n−1hK(nK(À))dtdHn−1(À)

hence by the Dominated Convergence Theorem 1.11,

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|Ā−1
r (x− v̄r)|2)dx→

∫

Sn−1∩∂K
¶(À)F ′(ïÀ,M0À + w0ðdHn−1(À) (2.20)

as r → 1−.

Since (Ar, vr) minimizes the functional Lr, then Lemma 2.1 guarantees the existence of ¼r > 0



2.3. EXPLICIT REPRESENTATIONS OF ISOTROPIC MEASURES IN JOHN AND

LÖWNER POSITIONS 53

such that

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|A−1
r (x− vr)|2)∇||x||K ¹ xdx = (1− r)¼r Id

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|A−1
r (x− vr)|2)∇||x||Kdx = 0.

Moreover, by equations (2.5) and (2.6) we obtain

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|A−1
r (x− vr)|2)1Sn−1∩∂K(x)x¹ xdx = (1− r)¼r Id

1

1− r

∫

Rn

(f ′)r(||x||K)gr(|A−1
r (x− vr)|2)1Sn−1∩∂K(x)xdx = 0.

By Proposition 1.5, the function
1

1− r (f
′)r(||x||K)gr(|A−1

r (x− vr)|2)dx is a measure. By (2.20)

we conclude that this measure weakly converges to F ′(ïÀ,M0À + w0ðdHn−1(À) and by Theorem

2.7 this last measure is centered and isotropic. The proof is complete.

Remark 2.2. This type of construction is also valid for the Löwner position. To do so, it is

enough to consider the following functionals

L̃r(A, v) =
1

1− r

∫

Rn

fr(|Ax+ v|2)gr(||x||K)dx

and

Ĩr(M,w)
1

1− r

∫

Rn

fr(|x|2)gr(||(Id+(1− r)M)−1(x− (1− r)w)||K).

The results follow in a similar way, and in most cases it is enough to switch roles K for Bn.

Here, we consider f and g as before. This construction is described in [8].

2.3.3 Geometric Interpretation of the minimizer

Consider the functions f = 1[−1,+∞), g = 1(−∞,0]. We have

fr(||Ax+ v||K) =











1, if Ax+ v ̸∈ rK

0, if Ax+ v ∈ rK
, gr(|x|2) =











1, if x ∈ Bn

0, if x ̸∈ Bn
.

Then for (A, v) ∈ SLn(R)× R
n

fr(||Ax+ v||K)gr(|x|2) = 1ABn+v\rK(x)

and, hence

Lr(A, v) =
1

1− r voln(AB
n + v \ rK).

This meaning that a minimum (Ar, vr) of the restriction of Lr to (Symn,+(R) ∩ SLn(R)) × R
n

induces a maximal intersection position of radius r.

Unfortunately, this choice of f and g do not give Lr the desirable properties to work with critical

point theory. For instance, it is not known in general if the maximal intersection position of
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radius r is unique, because Lr is not convex.

As we know, assuming Conjecture 2.1 is true, we have that Proposition 2.1 holds. So a possible

way to proceed with this work would be to assume uniqueness of the maximal intersection

position of radius r and check if there is a possibility of weakening the hypothesis about f and g

requested in the previous section. However, we chose to continue studying others things, as we

will see.

Another geometric interpretation that we have seen (Theorem 2.12) for the minimizer (Ar, vr)

of the functional Lr is that the derivative of (Ar, vr) for r = 1 equals to minus the minimizer of

the functional I1, which is the limit of the functionals Ir for r ∈ (1/2, 1).

2.4 Explicit representations of Isotropic Measures in positive

John and positive Löwner positions

One of the questions raised was if instead of considering a convex body and the unit Euclidean

ball, we consider two convex bodies both different from the unit ball, and looking at the position

of one of these bodies contained in the other, is it possible to construct a centered and isotropic

measure supported at the points of contact of these bodies? We will see what it was possible to

observe in this Section.

Let K,L ¢ R
n be convex bodies containing the origin as an interior point. Replacing the

Euclidean ball by L we can consider the affine image of L contained in K and ask us if there

is a position with maximal volume among all such images. The answer is affirmative and this

position was studied by many authors, including Giannopoulos, Perissinaki and Tsolomitis [25],

Bastero and Romance [13], Gordon, Litvak, Meyer and Pajor [26] and Gruber and Schuster [27].

We say that L ∈ Kn is in maximal volume position inside in K ∈ Kn if L is its own maximal

volume image inside K. Note that the maximal volume position of L inside K is not unique, as

it can be seen by the example of a triangle inside the cube:

Figure 2.5: L1 and L2 are in maximum volume position inside in K.

Source: Compiled by the author.

In this case, triangles L1 and L2 have the same volume and one is an affine position to the other.

There is a generalization of the classical John’s Theorem 2.3 for the case where L is not the unit

Euclidean ball. Giannopoulos, Perissinaki and Tsolomitis [25] proved the following theorem.
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Theorem 2.13 ([25], Theorem 2.5). Let K,L be smooth enough convex bodies in R
n, such that

L is of maximal volume in K. If z ∈ intL, we can find contact points v1, . . . , vm of K − z and

L − z, contact points u1, . . . , um of the polar bodies (K − z)◦ and (L − z)◦, and positive real

numbers c1, . . . , cm such that

ïui, við = 1,

m
∑

i=1

ciui ¹ vi = Id,

m
∑

i=1

ciui = 0.

When we finished the study presented in Section 2.3.2, our question was: Are we able to construct

a centered and isotropic measure, supported at the points of contact between K and L, given

that L is contained in K and has maximum volume among all its positions? Unfortunately the

answer is not entirely straightforward. In fact, the method used by us does not fit into this

setting (namely, Theorem 2.10), since the position of L in K of maximum volume is not unique

and then the functionals Lr and Ir would not necessarily have a single minimizer. Furthermore,

if we take a family that minimizes Lr, say {(Ar, vr)}r, we would not be able to guarantee the

convergence (Ar, vr) → (Id, 0). And an important consequence of uniqueness that was heavily

used in Theorem 2.10 is that the set ((2 − r)AL + v) \ rK has non-empty interior. For these

reasons, we do not treat the general problem.

As mentioned before, Ball proved that for the classical John’s theorem the existence of an

isotropic measure supported on contact points is not only implied by, but also implies that

K is in John position. For the setting in which both bodies are not the unit Euclidean ball, this

characterization is not valid, since we do not have uniqueness of the maximal volume position.

Note that this differs from the classic case, because the rotation of the Euclidean ball is the same

ball, different from the general case. However, one does obtain an “if and only if” characterization

of the position by the existence of a decomposition of the identity when considering a modification

of the above position, namely the positive John position.

Definition 2.4. Let K,L be convex bodies with non-empty interior. We define a positive image

of L in K to be a set of the form PL+ v contained in K, with v ∈ R
n and P a positive-definite

matrix. We say that K is in positive John position with respect to L if L ¦ K and L has

maximal volume among all positive images of L in K.

The positive John position was defined by Artstein-Avidan and Putterman in [7], see also [13].

The advantage of working with the positive John position is due to the following proposition.

Proposition 2.7 ([7], Proposition 3.1). Let K,L be convex bodies with the origin in the interior

of K, and consider the set of positive images of L inside K,

AK,L = {PL+ v : P is defined positive, v ∈ R
n and PL+ v ¦ K}.

Then there is a unique element in AK,L of maximal volume.

From this result we are able to use our tools to construct an isotropic and centered measure,

supported on contact points between K and L, given that K is in positive maximal volume in L.

And we can exactly because in this case we are going to have the “good properties” of Theorem
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2.10 that are missing in the general case mentioned earlier.

Following Artstein and Putterman, instead of using the term “position of maximal volume among

positive images” we call the image of L with maximal volume in K guaranteed by the above

proposition, the positive John image of L in K.

A subtlety observed by Artstein and Putterman in [7] is that the positive-definite matrices do

not form a group, that is, for a given image L1 = PL+ v of L, the family of positive images of

L1, namely {ML1 +w :M ∈ Symn,+(R), w ∈ R
n}, does not coincide with the family of positive

images of L, while in the case of the usual position of maximal volume between the bodies K and

L it holds that L1 = ML+ z, where (M, z) ∈ Mn(R)× R
n, is the affine image of L of maximal

volume of L contained in K if and only if L1 is itself in maximal volume position in K. And due

to this observation, they obtained the following characterization.

Proposition 2.8 ([7], Proposition 3.2). For any two convex bodies K,L with non-empty interior,

v ∈ R
n and a positive-definite matrix P , the body L1 = PL + v is the positive John image of L

in K if and only if P
1
2L+ P− 1

2 v is in positive John position inside P− 1
2K.

Throughout the text the symmetric part of the matrix x¹y will be denoted by (x¹y)sym := (x¹
y−y¹x). Following [13], we say that (x, y) is a contact pair ofK,L if x ∈ ∂K∩∂L, y ∈ ∂K◦∩∂L◦,

and ïx, yð = 1. In other words, x is a common boundary point of K,L and y defines a supporting

hyperplane to K and L at x.

The next theorem characterizes John positive position of K with respect to L in terms of contact

points. It was first given in [13, Theorem 4], and reproven by different methods as [26, Corollary

4.4].

Theorem 2.14 ([7], Theorem 1.2). Let K ∈ Kn0 , L ∈ Kn. Then K is in positive John position

with respect to L if and only if L ¦ K and there are contact pairs (x1, y1), . . . , (xm, ym) of K,L

and c1, . . . , cm > 0 such that

m
∑

i=1

ci(xi ¹ yi)sym = Id,
m
∑

i=1

ciyi = 0. (2.21)

For this position we can construct a centered and isotropic measure in the contact pairs. Our

next step is to understand how to do this.

As before, consider f, g : R → R functions satisfying the conditions f1 to g5. We define the

functional L̃r : Mn(R)× R
n → R by

L̃r(A, v) =
1

1− r

∫

Rn

fr(||Ax+ v||K)gr(||x||L)dx,

and the functional Ĩr : Br × R
n ¦ Symn(R)× R

n → R by

Ĩr(M,w) =
1

1− r

∫

Rn

fr(||x||K)gr(||(Id+(1− r)M)−1(x− (1− r)w)||L)dx,

where again Br is the set of matrices M such that Id+(1 − r)M is invertible. Note that
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the difference between these operators and the operators in Section 2.3 is that we replace the

Euclidean norm with the gauge function of L.

By construction, if (A, v) ∈ SLn(R)× R
n we have

L̃r(A, v) = Ĩr

(

A− Id

1− r ,
v

1− r

)

.

Unlike the classical case, L̃r is not invariant by orthogonal transformations. But that is not a

problem, since we are considering the positive John position.

Again, consider (Ar, vr) a global minimum of the restriction of L̃r to the space (Symn,+(R) ∩
SLn(R)) × R

n. Arguing similarly to that made in the classical case and following the same

notation, we arrive at the following equations due to the Lagrange multipliers:

¼r(A
−T
r , 0) =

1

1− r

∫

Rn

f ′r(||Arx+ vr||K)gr(||x||L)(∇||Arx+ vr||K ¹ x,∇||Arx+ vr||K)dx

=
1

(1− r)2
∫

Rn

(f ′)r(||x||K)gr(||A−1
r (x− vr)||L)(∇||x||K ¹A−1

r (x− vr),∇||x||K)dx

=
1

(1− r)2
∫

Rn

(f ′)r(||x||K)gr(||A−1
r (x− vr)||L)((∇||x||K ¹ x−∇||x||K ¹ vr)A−T

r ,∇||x||K)dx

which implies

1

1− r

∫

Rn

(f ′)r(||x||K)gr(||A−1
r (x− vr)||L)(∇||x||K ¹ x)dx = (1− r)¼r Id

1

1− r

∫

Rn

(f ′)r(||x||K)gr(||A−1
r (x− vr)||L)∇||x||Kdx = 0.

We will show that the measure
1

1− r (f
′)r(||x||K)gr(||A−1

r (x−vr)||L)dx concentrates near ∂K∩∂L
as r → 1− and converges for some sequence rk → 1− to a centered isotropic measure, as in

Theorem 2.14. This is because if x ∈ ∂K ∩ ∂L, then ∇||x||K ∈ ∂K◦ ∩ ∂L◦ and ï∇||x||K , xð = 1.

Since the gauge function has the property of being convex as the Euclidean norm (which in

particular is a gauge function) and as we are going to assume the same properties for f and g,

then the functionals L̃r, Ĩr have the same good properties as the functionals Lr, Ir, respectively,

and therefore the proofs of the results in this setting of positive John position follow very similarly.

In this way, in order to avoid repetition, we will only mention the main points.

The following result, for example, follows as in Proposition 2.2.

Proposition 2.9. Assume f1,g1,g5 are satisfied and K has a C1-smooth boundary, then L̃r, Ĩr

are C1 for r ∈ (1/2, 1).

Throughout this section we assume that K,L ¦ Kn0 are fixed convex bodies and K is in positive

John position with respect to L.

Proposition 2.10. Assume f2, f3, f4,g3, then the family of functionals L̃r restricted to D×R
n

is coercive, uniformly for r ∈ (1/2, 1).
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Proof. Take any (A, v) ∈ D × R
n. Since L is a convex body containing the origin, there exists

some centered ball B such that B ¢ 1
2L. The rest of the proof follows as in Proposition 2.3.

Proposition 2.11. Let r ∈ (1/2, 1) and assume g3,g4, f2, f3, f4. The function L̃r restrict to

D × R
n is positive and convex.

Proof. We proceed similar to Proposition 2.4.

Proposition 2.12. Assume g5, f3, then for r ∈ (1/2, 1) we have L̃r(Id, 0) f C, where C is a

constant depending only on f,K and n.

Proof. The proof follows as in Proposition 2.5.

2.4.1 Main Results

Theorem 2.15. Let K,L be convex bodies in R
n, where K has C1-smooth boundary and is

in positive John position in L. Choose any finite positive and non-zero measure ¿ in ∂K with

support inside ∂K∩∂L, and any C1 function F ∈ F (see (2.15)). Consider the convex functional

I¿ : Symn(R)× R
n → R defined by

I¿(M,w) =

∫

∂K

1

|∇||z||K |2
F (ï∇||z||K ,Mz + wð)d¿(z).

If the restriction of I¿ to Symn,0(R)×R
n is coercive, then for any global minimum (M0, w0), the

measure
1

|∇||z||K |2
F ′(ï∇||z||K ,M0z + w0ð)d¿(z)

is non-negative, non-zero, centered and isotropic.

Corollary 2.2. Let K be in positive John position in L and assume

∂K ∩ ∂L = {x1, . . . , xm}.

Choose any C1 function F ∈ F . Consider the convex functional Ic : Symn(R)→ R defined by

Ic(M,w) =
m
∑

i=1

1

|∇||xi||K |2
F (ï∇||xi||K ,Mxi + wð).

If the restriction of Ic to Symn,0(R)× R
n is coercive then for any global minimum (M0, w0) the

numbers

ci =
1

|∇||xi||K |2
F ′(ï∇||xi||K ,M0z + w0ð), i = 1, . . . ,m,

together with the vectors xi,∇||xi||K , i = 1, . . . ,m, are a decomposition of the identity as in

(2.21).

Consider ¿ = ¿KL
= C0(conv(∂K ∩ ∂L), ·), where C0 is the 0-th curvature measure of

conv(∂K ∩ ∂L) given by (2.16). Similar to Theorem 2.9, we have the following result.

Theorem 2.16. Under the assumptions of Theorem 2.15 the following statements are equivalent.
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1. The restriction of I¿ to Symn,0(R)× R
n is coercive;

2. For every (M,w) ∈ (Symn,0(R)× R
n) \ {(0, 0)}

¿({z ∈ ∂K ∩ ∂L : ï∇||z||K ,Mz + wð > 0}) > 0;

If ¿ = ¿KL
or if ∂K ∩ ∂L is finite and ¿ = c, the statements above are also equivalent to

the following:

3.
(

1
n Id, 0

)

lies in the interior of conv({((x¹ y)sym, y) : (x, y) is a contact pair of K, L}) ¦
Symn,1(R)× R

n, where the interior is taken with respect to Symn,1(R)× R
n.

Proof. The proof is similar to the proof of Theorem 2.9, replacing Bn by L and applying the

Proposition 2.6 with the set A = ∂K ∩ ∂L.

Proof of Theorem 2.15. We compute the derivative of I¿ in the direction of (M̄, v̄) ∈ Symn(R)×
R
n, at the point (M, v)

ï∇I¿(M, v), (M̄, v̄)ð =
∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||K ,Mz + wð)ï∇||z||K , M̄z + v̄ðd¿

=

∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||K ,Mz + wð)(ï∇||z||K ¹ z, M̄ð+ ï∇||z||K , v̄ð)d¿

=

〈
∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||K ,Mz + wð)(∇||z||K ¹ z,∇||z||K)d¿, (M̄, v̄)

〉

.

As we are working in the ambient space which is Symn(R) × R
n, the gradient of I¿ in the first

variable is the symmetric part of this matrix, that is,

∇I¿(M, v) =

∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||K ,Mz + wð)((∇||z||L ¹ z)sym,∇||z||K)d¿.

We already known that Symn,0(R)×R
n is the orthogonal complement of (Id, 0) in Symn(R)×R

n

and that the gradient of the function T (M, v) = tr(M) is ∇T (M, v) = (Id, 0). Then by Lagrange

multipliers 1.16, we have the equality at a minimum (M0, w0) given by

∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||K ,M0z + w0ð)((∇||z||K ¹ z)sym,∇||z||K)d¿ = ¼(Id, 0).

This clearly implies that

∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||K ,M0z + w0ð)(∇||z||K ¹ z)symd¿ = ¼ Id (2.22)

∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||L,M0z + w0ð)∇||z||Kd¿ = 0.

Since F is non-decreasing, F ′(ï∇||z||K ,M0z+w0ð) g 0. Taking traces in equation (2.22) we get

¼ =
1

n

∫

∂K

1

|∇||z||K |2
F ′(ï∇||z||K ,M0z + w0ð)d¿.
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By Theorem 2.16, we know that ï∇||z||K ,M0z + w0ð > 0 for a set of positive ¿-measure. To

finish we use the same argument made in Theorem 2.7, that is, since F ′(x) g 0 for every x and

F ′(x) > 0 for x g 0, then ¼ > 0 and the proof is complete.

Theorem 2.17. Let K be a convex body in positive John position in the convex body L and

f, g satisfy all the properties f1 to g5, then for every r ∈ (1/2, 1) the restriction of L̃r to

(Symn,+(R) ∩ SLn(R)) × R
n has a unique minimum (Ar, vr) with limr→1−(Ar, vr) = (Id, 0).

Likewise, the restriction of Ĩr to

(

(Symn,+(R) ∩ SLn(R))− Id

1− r

)

× R
n

has the unique minimum (Mr, vr) =

(

Ar − Id

1− r ,
vr

1− r

)

with tr

(

Mr

||Mr||F

)

→ 0 as r → 1−.

Proof. The proof that there is a unique minimum of L̃r in (Symn,+(R)∩SLn(R))×R
n follows as

in Theorem 2.10, replacing Bn by L and use the results obtained previously. For the convergence

of (Ar, vr) to (Id, 0) as r → 1− we need to notice that if (Ark , vrk) is the unique minimum of L̃rk
in (Symn,+(R) ∩ SLn(R))× R

n and it is such that (Ark , vrk) → (A∗, v∗) with (A∗, v∗) ̸= (Id, 0),

then A∗ ∈ Symn,+(R)∩SLn(R). Furthermore, since by Proposition 2.7 the positive John position

is unique, then A∗L+v∗ \K has positive Lebesgue measure. But A∗ ∈ Symn,+(R)∩SLn(R) and

A∗ ̸= Id which is a contradiction with the minimality given by Proposition 2.7.

To finish the proof we simply proceed as in Theorem 2.10, replacing Bn by L and use the results

obtained in this section.

Theorem 2.18. Assume L has a C1-smooth boundary and all the properties of f and g are

satisfied. The functional Ĩr is extended continuously to r = 1 as

Ĩ1(M, v) =

∫

∂K∩∂L

1

|∇||z||K |2
F (ï∇||z||K ,Mz + wð)dHn−1(z),

where F is the convolution F (x) = f ∗ ḡ(x), ḡ(x) = g(−x) and satisfies the conditions of Theorem

2.15. Moreover, Ĩr → Ĩ1 as r → 1−, uniformly in compact sets.

Proof. By Proposition 1.4, we have

Ĩr(M, v) =
1

1− r

∫

Rn

fr(||x||K)gr(||(Id+(1− r)M)−1(x− (1− r)w)||L)dx

=
1

1− r

∫

∂K

∫ ∞

0
sn−1hK(nK(z))fr(s||z||K)

× gr(||(Id+(1− r)M)−1(sz − (1− r)w)||L)dsdHn−1(z).
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Since L is smooth, by Taylor 1.18 and formula (1.3), we obtain for any x, v ∈ R
n

||x+ v||L = ||x||L + ï∇||x||L, vð+ o(|v|2)

= ||x||L +

〈 ||x||L
hL(nL(x))

nL(x), v

〉

+ o(|v|2). (2.23)

By formulas (2.19) and (2.23), we arrived at

||(Id+(1− r)M)−1(sz − (1− r)w)||L = s

(

||z||L − (1− r)
〈 ||z||L
ïnL(z), zðn

L(z),Mz +
1

s
w

〉)

+ o(1− r).

Using this equality in the last integral and making the substitution s = 1 + (1− r)t, we get

Ĩr(M,w) =
1

1− r

∫

∂K

∫ ∞

0
sn−1hK(nK(z))fr(s)

× gr
(

s

(

||z||L − (1− r)
〈 ||z||L
ïnL(z), zðn

L(z),Mz +
1

s
w

〉)

+ o(1− r)
)

dsdHn−1(z)

=

∫ ∞

− 1
1−r

∫

∂K
(1 + (1− r)t)n−1hK(nK(z))f(t||z||K)

× g
( ||z||L − 1

1− r −
〈 ||z||L
ïnL(z), zðn

L(z),Mz + w + o(1)

〉

+ t(||z||L + o(1)) + o(1)

)

dtdHn−1(z).

Note that ||z||L = 1 for z ∈ ∂K ∩ ∂L, ||z||L > 1 for z ∈ ∂K \ ∂L and that for all z ∈ ∂K ∩ ∂L,

nL(z) = ∇||z||KhK(nK(z)).

We have limr→1−
||z||L−1
1−r →∞ in ∂K \∂L and since 0 is in the interior of L, ïnL(z), zð and ||z||L

are bounded from below. Also, by f3 the integrand is 0 for t < −1, then

Ir(M,w) =

∫

∂K∩∂L

∫ ∞

−1
(1 + (1− r)t)n−1f(t)hK(nK(z))

× g (−ï∇||z||K ,Mz + w + o(1)ð+ t(1 + o(1)) + o(1)) dtdHn−1(z)

+

∫

∂K\∂L

∫ ∞

−1
(1 + (1− r)t)n−1f(t)hK(nK(z))

× g
( ||z||L − 1

1− r −
〈 ||z||L
ïnL(z), zðn

L(z),Mz + w + o(1)

〉

+ t(||z||L + o(1)) + o(1)

)

dtdHn−1(z).

The proof of uniform convergence on compact sets similarly follows from Theorem 2.11 and

that F satisfies the assumptions of Theorem 2.15 also follows from Theorem 2.11 already F in

Theorem 2.15 and in Theorem 2.7 have the same properties.

Theorem 2.19. Assume all the properties f1 to g5 are satisfied and the function Ĩ1 restricted to

Symn,0(R) × R
n has a unique global minimum (M0, w0), then

∂(Ar, vr)

∂r

∣

∣

∣

∣

r=1

exists and is equal

to -(M0, w0).
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In this case, if (Ār, v̄r) is any curve in Symn,+(R)× R
n of the form

(Ār, v̄r) = (Id, 0) + (1− r)(M0, w0) + o(1− r),

the measure
1

1− r (f
′)r(||x||K)gr(||A−1

r (x− vr)||L)dx

converges weakly to
1

|∇||z||K |2
F ′(ï∇||z||K ,M0z + w0ð)dHn−1(z).

Proof. Note that all properties needed to prove the first part of Theorem 2.12, that is,
∂(Ar, vr)

∂r

∣

∣

∣

∣

r=1

exists and is equal to -(M0, w0) are also valid for this case. Therefore we will

omit the proof of this part. For the second part of the theorem, take ¶ any continuous function

with compact support and write, as in the proof of Theorem 2.18,

1

1− r

∫

Rn

(f ′)r(||x||K)gr(||Ā−1
r (x− v̄r)||L)dx

=

∫

∂K∩∂L

∫ ∞

−1
¶((1 + (1− r)t)z)f ′(t)g(−ï∇||z||K ,M0z + w0 + o(1)ð+ t(1 + o(1)) + o(1))

× (1 + (1− r)t)n−1hK(nK(z))dtdHn−1(z)

+

∫

∂K\∂L

∫ ∞

−1
¶((1 + (1− r)t)z)f ′(t)g

( ||z||L − 1

1− r +O(1) + t(||z||L + o(1))

)

× (1 + (1− r)t)n−1hK(nK(z))dtdHn−1(z)

hence by the Dominated Convergence Theorem 1.11,

1

1− r

∫

Rn

¶(z)(f ′)r(||x||K)gr(||Ā−1
r (x− v̄r)||L)dx

−→
∫

∂K∩∂L
¶(z)

1

|∇||z||K |2
F ′(ï∇||z||K ,M0z + w0ðdHn−1(z).

Remark 2.3. We could have done all this construction for positive Löwner position instead of

positive John position. It was enough to change the roles ofK and L, that is, define the operators:

L̃r(A, v) =
1

1− r

∫

Rn

fr(||Ax+ v||L)gr(||x||K)dx

Ĩr(M,w) =
1

1− r

∫

Rn

fr(||x||L)gr(||(Id+(1− r)M)−1(x− (1− r)w)||K)dx.

In this way, we finish the construction of centered and isotropic measures for sets. Our next step

is to look for definitions of functional ellipsoids in order to find out if there is a functional version

of the decomposition of the identity like the one given in Theorem 2.3.



Chapter 3

Functional John Ellipsoids

In this chapter we study a recent theory about functional John ellipsoids by G. Ivanov and M.

Naszódi in [30]. They showed, non-constructively, a “decomposition of the identity” as given in

Theorem 2.3. We will introduce some new concepts and explicitly construct, as in the geometric

case, a decomposition of the identity.

3.1 Notation and preliminary results

In this section we will discuss the ideas introduced by G. Ivanov and M. Naszódi in [30]. Some

of these concepts will not be necessary in practice for our main results, but we will still mention

them in order to contextualize John’s functional theory in the approach given by them.

We identify the hyperplane in R
n+1 spanned by the first n standard basis vectors with R

n. We

say that a set C̄ ¢ R
n+1 is n-symmetric if (x, t) ∈ C̄ implies (x,−t) ∈ C̄. Throughout this

chapter det denotes the determinant function defined in Mn(R) and the determinant function

defined in Mn+1(R) will be denoted by detn+1. The trace function in either matrix space Mn(R)

or Mn+1(R) will be denoted only by tr.

For A ∈ Mn(R) and a scalar ³ ∈ R, we denote by A· ³ the (n+ 1)× (n+ 1) matrix

A· ³ =

(

A 0

0 ³

)

.

Notice that detn+1(A· ³) = ³ det(A) and tr(A· ³) = ³+ tr(A).

We will say that a function f : Rn → R is below a function g : Rn → R if f(x) f g(x) for all

x ∈ R
n.

To improve readability, we will denote sets with a bar over it for subsets of R
n+1. The same

holds for matrices of order (n+ 1)× (n+ 1).

Let s > 0. For every x ∈ R
n, we denote the line in R

n+1 perpendicular to R
n at x by lx and the

one-dimensional Lebesgue measure in lx by l.

Definition 3.1 ([30], Section 2.2). Let C̄ ¢ R
n+1 be a n-symmetric Borel set. The s-volume of
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C̄ is defined by

(s)µ(C̄) =

∫

Rn

[

1

2
l(C̄ ∩ lx)

]s

dx. (3.1)

Note that (s)µ(·) is not a measure on R
n+1.

Definition 3.2 ([30], Section 2.2). For any n-symmetric Borel set C̄ in R
n+1, the s-marginal of

C̄ on R
n is defined for any Borel set B in R

n by

(s)marginal(C̄)(B) =

∫

B

[

1

2
l(C̄ ∩ lx)

]s

dx. (3.2)

Namely, in this case, the s-marginal is a measure on R
n.

Note that for any matrix Ā = A · ³, where A ∈ Mn(R) and ³ ∈ R, any n-symmetric set C̄ in

R
n+1 and any Borel set B in R

n, we have

(s)marginal(Ā C̄)(AB) =

∫

AB

[

1

2
l(Ā C̄ ∩ lx)

]s

dx

= |detn(A)|
∫

B

[

1

2
l(Ā C̄ ∩ lAx)

]s

dx

= |detn(A)|
∫

B

[

1

2
l((Id·³)C̄ ∩ lx)

]s

dx

= |detn(A)||³|s
∫

B

[

1

2
l(C̄ ∩ lx)

]s

dx

= |detn(A)||³|s(s)marginal(C̄)(B)

and therefore

(s)µ(Ā C̄) = |detn(A)||³|s(s)µ(C̄). (3.3)

Definition 3.3 ([30], Section 2.3). Let h : Rn → [0,+∞) be a function and s > 0. The s-lifting

of h is a n-symmetric set in R
n+1 defined by

(s)h̄ = {(x, À) ∈ R
n+1 : |À| f h(x)1/s}. (3.4)
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Figure 3.1: h and its s-lifting.

Source: Compiled by the author.

Note that for any Borel set B in R
n,

(s)h̄ ∩ (B × R
n) = {(x, À) ∈ R

n+1 : |À| f h(x)1/s and x ∈ B}.

Since (s)h̄ is a n-symmetric set in R
n+1, then l((s)h̄ ∩ lx) = 2h(x)1/s for all x ∈ R

n. Hence,

(s)µ
(

(s)h̄ ∩ (B × R)
)

=

∫

Rn

[

1

2
l((s)h̄ ∩ (B × R) ∩ lx)

]s

dx

=

∫

B

[

1

2
l((s)h̄ ∩ lx)

]s

dx

=

∫

B

[

1

2
2h(x)1/s

]s

dx

=

∫

B
h(x)dx,

that is, (s)marginal
(

(s)h̄
)

is the measure on R
n with density h.

While Alonso-Gutiérrez, Gonzales Merino, Jiménez and Villa in [4] determine an ellipsoid defined

by A(Bn) + a where A ∈ Mn(R) is a positive-definite matrix and a ∈ R
n, in [30] they consider

n-symmetric ellipsoids in R
n+1. To describe them, it is necessary to introduce the (n+1)(n+2)

2 +n

dimensional vector space

M = {(Ā, a) : Ā ∈ Symn+1(R), a ∈ R
n}, (3.5)

the subspace

E = {(A· ³, a) ∈M : A ∈ Symn(R), ³ > 0}, (3.6)

and the convex cone

E+ = {(A· ³, a) ∈ E : A is positive-definite, ³ > 0}. (3.7)

Recall that the set of positive-definite matrices in Mn(R) is a convex cone.

We equip M with the inner product defined by (1.8). Thus, we may use the topology of M on
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the set E of ellipsoids in R
n+1. Every n-symmetric ellipsoid in R

n+1 is represented by

(A· ³)Bn+1 + a,

in a unique way, where A ∈ GLn(R), since by Polar Decomposition every element of E+ uniquely

determines each n-symmetric ellipsoid of Rn+1. Here v̄+a, where v̄ ∈ R
n+1 and a ∈ R

n, denotes

v̄ + (a, 0).

By (3.3), the s-volume of a n-symmetric ellipsoid can be expressed as

(s)µ((A· ³)Bn+1 + a) = (s)µ(Bn+1)³sdetn(A), (3.8)

for any (A· ³, a) ∈ E . In [30] the authors show that

lim
s→0+

(s)µ(Bn+1) = voln(B
n).

In this chapter h : Rn → [0,+∞) is a log-concave and upper semicontinuous function and has

finite positive integral. In this case we say that h is a proper log-concave function. Note that if

h = e−È, then È has the properties:

• lim|x|2→∞ È(x) = +∞ (otherwise, the integral of e−È(x) equals +∞);

• domÈ has positive measure (otherwise, the integral of e−È(x) equals zero).

Fix s > 0 and let

z(h, s) = sup{(s)µ(Ē) : Ē is a n-symmetric ellipsoid in R
n+1 with Ē ¦ (s)h̄}.

In [30] it is shown that this supremum is attained on a unique ellipsoid [30, Theorem 4.1]. This

ellipsoid in R
n+1 is called the John s-ellipsoid of h and is denoted by Ē(h, s). Moreover, they

call the s-marginal of Ē(h, s) the John s-function of h, and denote its density by

(s)Jh = the density of (s)marginal(Ē(h, s)).

Figure 3.2: The John s-ellipsoid of h.

Source: Compiled by the author.

Let (A · ³, a) ∈ E . We say that ³ is the height of the ellipsoid Ē = (A · ³)Bn+1 + a and the
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height function of Ē is defined as

ℏĒ(x) =







³
√

1− ïA−1(x− a), A−1(x− a)ð, if x ∈ ABn + a

0, otherwise
.

Lemma 3.1. Let Ē = (A· ³)Bn+1 + a be a n-symmetric ellipsoid in R
n. Then Ē ¢ (s)h̄ holds

if and only if

ℏĒ(x+ a) f h(x+ a)1/s, (3.9)

for all x ∈ ABn.

Proof. We have

(A· ³)Bn+1 + a = Ē ¢ (s)h̄ = {(x, À) ∈ R
n+1 : |À| f h(x)1/s}

ô |³| f h(x+ a)1/s, ∀x ∈ ABn

ô ℏĒ(x+ a) = ³
√

1− ïA−1(x− a), A−1(x− a)ð f ³ f h(x+ a)1/s,

for all x ∈ ABn.

Lemma 3.2. The height function of a n-symmetric ellipsoid Ē = (A · ³)Bn+1 + a is a log-

concave function.

Proof. First consider the case Ē = Bn+1. Note that ℏBn+1(x) = e−È(x), where

È(x) =







− ln
√

1− |x|22 , if x ∈ intBn

+∞ , otherwise
.

Since detD2 È(x) = (1−|x|22)−
n+2
2 > 0 for all x ∈ intBn, by Theorem 1.2, È is a convex function

on R
n. Hence, by definition, ℏBn+1 is a log-concave function. Now consider the case where

Ē = (A· ³)Bn+1 + a is any n-symmetric ellipsoid. Since

ℏĒ(x) = ³ℏBn+1(A−1(x− a))

for every x, y ∈ R
n and ¼ ∈ (0, 1), then by Lemma 1.1 we obtain

ℏĒ(¼x+ (1− ¼)y) = ³ℏBn+1(A−1(¼x+ (1− ¼)y − a))
= ³ℏBn+1(¼A−1(x− a) + (1− ¼)A−1(y − a))
g ³ℏBn+1(A−1(x− a))¼ℏBn+1(A−1(y − a))1−¼

=
(

³ℏBn+1(A−1(x− a))
)¼ (

³ℏBn+1(A−1(y − a))
)1−¼

= ℏĒ(x)
¼
ℏĒ(y)

1−¼,

and, again by Lemma 1.1, we conclude that ℏĒ is a log-concave function.
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For the geometric version, we consider the positions of the unit Euclidean ball Bn contained

in a given convex body K. The John ellipsoid is the (unique) largest volume element of this

family. In order to pose this problem less geometric, more analytical language, the classical John

ellipsoid can be introduced as follows. The John s-function of a proper log-concave function h

on R
n is the (unique) solution to the problem

max
h

∫

Rn

Ès,

where the maximum is taken over all positions È(s) = ³ℏBn+1(A−1(x− a)), where a ∈ R
n, A ∈

GLn(R), ³ > 0, and

ℏBn+1(x) =







√

1− |x|22, if x ∈ Bn

0, otherwise
. (3.10)

In others words, È runs over all positions of the unit ball, under h.

3.2 Interpolation between ellipsoids

In the classical theory of the John ellipsoid, that is, where K is a convex body, the uniqueness of

the largest volume ellipsoid contained in K ¢ R
n follows from the convexity of K. In the setting

given in [30], the set is not convex. Then, it is shown that if two ellipsoids in R
n+1 of the same

s-volume are contained in the s-lifting of a log-concave function h, there exists a third ellipsoid

“between” the two ellipsoids which is of larger s-volume. This intermediate ellipsoid is obtained

as a non-linear combination of the parameters determining the two ellipsoids.

The main tools used are the following two lemmas, that allow us to interpolate between two

ellipsoids. Before stating them, we need the following definition.

Definition 3.4. We define the Asplund sum of two log-concave functions h1 and h2 on R
n by

(h1 ⋆ h2)(x) = sup
x1+x2=x

h1(x1)h2(x2),

and the epi-product of a log-concave function h in R
n with a scalar ¼ > 0 by

(¼ ∗ h)(x) = h
(x

¼

)¼
.

Lemma 3.3 ([30], Lemma 4.1). (Containment of the interpolated ellipsoid) Fix s1, s2, ´1, ´2 > 0

with ´1 + ´2 = 1. Let h1 and h2 be two proper log-concave functions on R
n, and Ē1, Ē2 be two

n-symmetric ellipsoids represented by (A1 · ³1, a1), (A2 · ³2, a2) ∈ E, respectively, such that

Ē1 ¢ (s1)h̄1 and Ē2 ¢ (s2)h̄2.

Define

h = (´1 ∗ h1) ⋆ (´2 ∗ h2) and s = ´1s1 + ´2s2.
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Set

(A· ³, a) =
(

(´1A1 + ´2A2)· (³´1s11 ³´2s22 )1/s, ´1a1 + ´2a2

)

and Ē = (A· ³)Bn+1 + a.

Then,

Ē ¢ (s)h̄.

Lemma 3.4 ([30], Lemma 4.2). (Volume of the interpolated ellipsoid) Under the conditions of

Lemma 3.3 with s = s1 = s2, the following inequality holds

(s)µ(Ē) g ((s)µ(Ē1))
´1((s)µ(Ē2))

´2 ,

with equality if and only if A1 = A2.

This lemma is an immediate consequence of formula (3.8) and Lemma 1.4.

Theorem 3.1 ([30], Theorem 4.1). (Existence and uniqueness of the John s-ellipsoid) Let s > 0

and h be a proper log-concave function on R
n. Then, there exists a unique John s-ellipsoid of h.

To prove Theorem 3.1 it would be necessary to state additional results. For this reason we chose

not to do so, because this is not the objective of this work. Lemmas 3.3 and 3.4 are stated here

with the objective to convince the reader that if there are two ellipsoids of maximal s-volume in
(s)h̄, it is possible to obtain a third ellipsoid still contained in (s)h̄ with larger s-volume than the

others.

In [30], they proof the following theorem which is a extension of John’s theorem for closed

n-symmetric set, since in this case K̄ does not need to be convex.

Theorem 3.2 ([30], Theorem 5.1). Let K̄ be a closed n-symmetric set in R
n+1, and let s > 0.

Assume that Bn+1 ¦ K̄. Then the following hold.

1. Assume that Bn+1 is a locally maximal s-volume ellipsoid contained in K̄, that is, in some

neighborhood of Bn+1, no ellipsoid contained in K̄ is of larger s-volume. Then there are contact

points ū1, . . . , ūk ∈ ∂(Bn+1) ∩ ∂(K̄) and positive weights c1, . . . , ck such that

k
∑

i=1

ciūi ¹ ūi = Id·s and
k
∑

i=1

ciui = 0, (3.11)

where ui is the orthogonal projection of ūi onto R
n. Moreover, the number of points k satisfies

n+ 1 f k f (n+1)(n+2)
2 + n+ 1;

2. Assume that K̄ = (s)h̄ for a proper log-concave function h, and that there are contact points

and positive weights satisfying (3.11). Then Bn+1 is the unique ellipsoid of (globally) maximal

s-volume among all n-symmetric ellipsoids contained in K̄.

To end this introduction to the theory of functional John ellipsoids, Theorem 3.2 can be rephrased

as follows.

Theorem 3.3 ([30], Theorem 5.2). Let h be a proper log-concave function on R
n, s > 0. Assume

ℏ
s
Bn+1 f h. Then the following are equivalent.
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(1) The function ℏ
s
Bn+1 is the John s-function of h;

(2) There are points u1, . . . , uk ∈ Bn ¢ R
n and positive weights c1, . . . , ck such that

(a) h(ui) = ℏ
s
Bn+1(ui) for all i = 1, . . . , k;

(b)
∑k

i=1 ciui ¹ ui = Id;

(c)
∑k

i=1 cih(ui)
1/sh(ui)

1/s = s;

(d)
∑k

i=1 ciui = 0.

Definition 3.5. A measure µ on the unit Euclidean ball Bn is said to be s-isotropic if for some

¼ > 0 it holds
∫

Bn

(u¹ u· (1− |u|22))dµ = ¼(Id·s)

and it is called centered if
∫

Bn

udµ = 0.

Our goal in this chapter is to construct a measure that satisfies the items of condition (2) of

Theorem 3.3, that is, we will fix a proper log-concave function h on R
n such that ℏ

s
Bn+1 is its

John s-function and we will prove that there exists a centered and s-isotropic measure supported

in the set {h = ℏ
s
Bn+1}. In order to do this, we need to introduce new concepts.

Consider the (n + 1) × (n + 1) matrix M · ´, where M ∈ Mn(R) and ´ ∈ (0,+∞). We define

the s-determinant of M · ´ by

(s)detn+1(M · ´) = ´s det(M), (3.12)

and the s-trace of M · ´ by

(s)tr(M · ´) = s´ + tr(M). (3.13)

Based on these definitions, it makes sense to define the sets

(s) SLn+1(R) =
{

M · ´ ∈ Mn+1(R) :
(s)detn+1(M · ´) = 1

}

,

(s) Symn+1,0(R) = {M · ´ ∈ Symn+1(R) :
(s)tr(M · ´) = 0},

and

(s)E+ = {(A· ³, a) ∈M : A ∈ Symn,+(R), ³ > 0, a ∈ R
n and (s)detn+1(A· ³) g 1}.

Note that (s)E+ ¢ M is a convex set. Indeed, take A · ³,B · ´ ∈ (s)E+ and ¼ ∈ [0, 1]. By



3.2. INTERPOLATION BETWEEN ELLIPSOIDS 71

Lemmas 1.4 and 1.5, we have

(s)detn+1(¼(A· ³) + (1− ¼)(B · ´)) = (s)detn+1((¼A+ (1− ¼)B)· (¼³+ (1− ¼)´))
= (¼³+ (1− ¼)´)s det(¼A+ (1− ¼)B)

g (³¼´1−¼)s det(A)¼ det(B)1−¼ (3.14)

= (³s det(A))¼(´s det(B))1−¼

g 1. (3.15)

The set (s) SLn+1(R) is important due (3.8), because we want to consider the ellipsoids contained

in the s-lifting of h with same s-volume that the unit Euclidean ball Bn+1, since we are assuming

that ℏBn+1 is the John s-function of the log-concave function h and the set (s) Symn+1,0(R) is

important because it is the orthogonal complement of (Id·s, 0) in E and in the proof of Theorem

3.4 we will use this fact.

Recall that r ∈ (1/2, 1), µr(s) = µ

(

s− 1

1− r

)

and f, g are functions that satisfy the conditions f1

to g5.

We define the functional L̄r : Mn(R)· (0,+∞)× R
n → R by

L̄r(A· ³, v) =
1

1− r

∫

Rn

∫ ∞

0
fr

(

³y

h(Ax+ v)1/s

)

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx, (3.16)

where Mn(R)· (0,+∞) denotes the set of matrices A· ³ ∈ Mn+1(R).

And for Ãr = Id+(1− r)M, ³̃r = 1+ (1− r)´ we define the functional Īr : B̄r ×R
n ¦ E → R by

Īr(M · ´,w) =
³̃s−1
r

1− r

∫

Rn

∫ ∞

0
fr

(

y

h(x)1/s

)

gr

(

|Ã−1
r (x− (1− r)w)|22 + (³̃−1

r y)2 − 1

2h(Ã−1
r (x− (1− r)w))2/s

+ 1

)

dydx,

where B̄r = {M · ´ ∈ E :M ∈ Symn(R) is such that (Id+(1− r)M) is invertible}.

Observe that if (A· ³,w) ∈ (s) SLn+1(R)× R
n, then

Īr

(

A· ³− Īd

1− r ,
w

1− r

)

=
³s−1

1− r

∫

Rn

∫ ∞

0
fr

(

y

h(x)1/s

)

gr

( |A−1(x− w)|22 + (³−1y)2

2h(A−1(x− w))2/s + 1

)

dydx

=
³s det(A)

1− r

∫

Rn

∫ ∞

0
fr

(

³y

h(Ax+ w)1/s

)

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx

= L̄r(A· ³,w). (3.17)

The idea is to minimize the functional L̄r over all positions of the unit Euclidean ball Bn+1 and

thus obtain a sequence of measures that weakly converges to a centered and s-isotropic measure.

Consider the following lemma.

Lemma 3.5. Let (Ar·³r, vr) be a global minimum of the restriction of L̄r to E+∩((s) SLn+1(R)×
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R
n). Then there exists ¼r ̸= 0 such that

(1− r)¼r(Id·s) =
³s−1
r

1− r

∫

Rn

∫ ∞

0
(f ′)r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

× y

h(x)3/s

(

−∇h(x)1/sh(x)1/s ¹ x· h(x)1/sh(x)1/s
)

dydx (3.18)

and

0 =
³s−1
r

1− r

∫

Rn

∫ ∞

0
(f ′)r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

y

h(x)3/s

×
(

−∇h(x)1/sh(x)1/s
)

dydx. (3.19)

As we know, the height function of the unit Euclidean ball Bn+1 is given by ℏBn+1(x) =
√

1− |x|22, for all x ∈ Bn. Thus, if x ∈ intBn,

∇ℏBn+1(x) = − x
√

1− |x|22
= − x

ℏBn+1(x)
.

In particular, if x ∈ intBn is such that h(x) = ℏ
s
Bn+1(x), we have that

−∇h(x)1/sh(x)1/s = x.

Now consider the set Λ = {x ∈ Bn : h(x) = ℏ
s
Bn+1(x)} and the measure µr : R

n → [0,+∞] given

by

µr(B) =

∫

B

³s−1
r

1− r

∫ ∞

0
f ′r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

y

h(x)3/s
dydx.

(3.20)

Then it holds that

∫

Λ

(

−∇h(x)1/sh(x)1/s ¹ x· h(x)1/sh(x)1/s
)

dµr(x) =

∫

Λ

(

x¹ x· h(x)1/sh(x)1/s
)

dµr(x)

and

∫

Λ

(

−∇h(x)1/sh(x)1/s
)

dµ(x) =

∫

Λ
xdµr(x).

We will show that the measure µr(B) concentrates near Λ as r → 1− and converges weakly to a

centered and s-isotropic measure.

Proof of Lemma 3.5. Let È : Mn(R)· (0,+∞)→ R be the function defined by

È(M · ´,w) = (s)detn+1 (M · ´) .

We know that (s) SLn+1(R)×R
n = È−1({1}), where c = 1 is a regular value of the differentiable
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map È, then by Theorem 1.16 there exists ¼r ̸= 0 such that

∇L̄r(Ar · ³r, vr) = ¼r∇È(Ar · ³r, vr), (3.21)

where the gradients are taken with respect to the whole space Mn(R)· (0,+∞).

Let (V · ³,w) ∈ T(Ar·³r,vr)(E+ ∩ ((s) SLn+1(R)× R
n)). We have

È′(M · ´, v) [V · ³,w] = ´s∇ det(M) · V + s´s−1³ det(M)

= (´s∇ det(M)· s´s−1 det(M), 0) [V · ³,w] . (3.22)

Thus, since ∇ det(M) = det(M)M−T , at the point (Ar · ³r, vr), we arrived at

∇È(Ar · ³r, vr) =
(

³sr det(Ar)A
−T
r · s³s−1

r det(Ar), 0
)

= ³sr det(Ar)

(

A−T
r · s

³r
, 0

)

=

(

(Id·s)
(

A−T
r · 1

³r

)

, 0

)

=
(

(Id·s) (Ar · ³r)−T , 0
)

. (3.23)

Denote the function
³y

h(Mx+ v)1/s
by φ(M,³, v). Deriving the function L̄r at the point (M·´, v)

in the direction of the vector (V · ³,w) and using Lemma 1.3, we have

L̄′
r(M · ´, v) [V · ³,w] =

1

1− r

∫

Rn

∫ ∞

0
f ′r (φ(M,´, v)) gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

×
〈

∇
(

´y

h(Mx+ v)1/s

)

, (V · ³)(x, 1) + w

〉

dydx

=
1

1− r

∫

Rn

∫ ∞

0
f ′r (φ(M,´, v)) gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

ï∇φ (M,´, v) , (V · ³)(x, 1) + (w, 0)ð dydx

=
1

1− r

∫

Rn

∫ ∞

0
f ′r (φ(M,´, v)) gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

(ï∇φ (M,´, v)¹ (x, 1), (V · ³)ð

+ ï∇φ (M,´, v) , (w, 0)ð)dydx.

Once

∇φ(M,´, v) = ∇
(

´y

h(Mx+ v)1/s

)

=

(

−´y∇h(Mx+ v)1/s

h(Mx+ v)2/s
,

y

h(Mx+ v)1/s

)

,
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then

L̄′
r(M · ´, v) [V · ³,w] =

1

1− r

∫

Rn

∫ ∞

0
f ′r (φ(M,´, v)) gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

×
〈(

∇φ(M,´, v)¹ (x, 1),
−´y∇h(Mx+ v)1/s

h(Mx+ v)2/s

)

, (V · ³,w)
〉

dydx

=
1

1− r

∫

Rn

∫ ∞

0
f ′r (φ(M,´, v)) gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

×
〈(

−´y∇h(Mx+ v)1/s

h(Mx+ v)2/s
¹ x· y

h(Mx+ v)1/s
,
−´y∇h(Mx+ v)1/s

h(Mx+ v)2/s

)

, (V · ³,w)
〉

dydx.

Thus,

∇L̄r(Ar · ³r, vr) =
1

1− r

∫

Rn

∫ ∞

0
f ′r

(

³ry

h(Arx+ vr)1/s

)

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

×
((

−³ry∇h(Arx+ vr)
1/s

h(Arx+ vr)2/s
¹ x
)

· y

h(Arx+ vr)1/s
,
−³ry∇h(Arx+ vr)

1/s

h(Arx+ vr)2/s

)

dydx. (3.24)

Substituting equalities (3.23) and (3.24) in equality (3.21) and using that x¹ Ay = (x¹ y)AT ,

we get

¼r

(

(Id·s) (Ar · ³r)−T , 0
)

=
1

1− r

∫

Rn

∫ ∞

0
f ′r

(

³ry

h(Arx+ vr)1/s

)

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

×
((

−³ry∇h(Arx+ vr)
1/s

h(Arx+ vr)2/s
¹ x
)

· y

h(Arx+ vr)1/s
,
−³ry∇h(Arx+ vr)

1/s

h(Arx+ vr)2/s

)

dydx

=
1

1− r

∫

Rn

∫ ∞

0
f ′r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

×
((

−y∇h(x)1/s
h(x)2/s

¹A−1
r (x− vr)

)

· y

³rh(x)1/s
,
−y∇h(x)1/s
h(x)2/s

)

1

³r det(Ar)
dydx

=
1

1− r

∫

Rn

∫ ∞

0
f ′r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

×
((

−y∇h(x)1/s
h(x)2/s

¹ (x− vr)
)

A−T
r · y

h(x)1/s
³−1
r ,
−y∇h(x)1/s
h(x)2/s

)

³s−1
r dydx

=
1

1− r

∫

Rn

∫ ∞

0
f ′r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

×
((

−y∇h(x)1/s
h(x)2/s

¹ (x− vr)·
y

h(x)1/s

)

(Ar · ³r)−T ,
−y∇h(x)1/s
h(x)2/s

)

³s−1
r dydx.

By vector equality, and using that f ′r(s) =
1

1− r (f
′)r(s), we obtain

(1− r)¼r(Id·s) =
³s−1
r

1− r

∫

Rn

∫ ∞

0
(f ′)r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

× y

h(x)3/s

(

−∇h(x)1/sh(x)1/s ¹ x· h(x)1/sh(x)1/s
)

dydx
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and

0 =
³s−1
r

1− r

∫

Rn

∫ ∞

0
(f ′)r

(

y

h(x)1/s

)

gr

( |A−1
r (x− vr)|22 + (³−1

r y)2 − 1

2h(A−1
r (x− vr))2/s

+ 1

)

y

h(x)3/s

×
(

−∇h(x)1/sh(x)1/s
)

dydx.

3.3 Basic Results

Throughout this section we fix a proper log-concave function h : Rn → [0,+∞) such that ℏBn+1

is its John s-function. Due to the good properties of the functions f and g we keep having good

properties for the functionals L̄r and Īr. The only difference between the properties of Lr and

L̄r will be that while Lr is convex, L̄r will have another property that we will call convex*. It

is worth mentioning that the convexity of the functional Lr was necessary to conclude that it

admitted a unique minimum (see Theorem 2.10).

Proposition 3.1. Assume f1,g1,g5 are satisfied, then L̄r, Īr are C1 for r ∈ (1/2, 1).

The proof of this proposition is similar to that given in Proposition 2.2, and so it will be omitted.

Proposition 3.2. Assume f2, f3, f4,g3, then the family of functionals L̄r restricted to (s)E+×Rn
is coercive, uniformly for r ∈ (1/2, 1).

Proof. Let (x, y) ∈ Bn+1, y g 0. Then

|x|22 + y2 − 1

2h(x)2/s
+ 1 f 1

and by g2 it holds

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

g gr(1) = g(0).

Using g4, that f, g are non-negative and r > 1/2, we obtain

L̄r(A· ³, v) g
1

1− r

∫

Bn

∫

√
1−|x|22

0
fr

(

³y

h(Ax+ v)1/s

)

g(0)dydx

g 2

∫

Bn

∫

√
1−|x|22

0
fr

(

³y

h(Ax+ v)1/s

)

g(0)dydx.

Since h is a log-concave function, there exists a convex function È such that

h(Ax+ v)1/s = e−È(Ax+v)/s.



3.3. BASIC RESULTS 76

Then

fr

(

³y

h(Ax+ v)1/s

)

= fr

(

³yeÈ(Ax+v)/s
)

= f

(

³yeÈ(Ax+v)/s − 1

1− r

)

and for ³yeÈ(Ax+v)/s g 1

L̄r(A· ³, v) g 2

∫

Bn

∫

√
1−|x|22

0
f

(

³yeÈ(Ax+v)/s − 1

1− r

)

g(0)dydx

g 2

∫

Bn

∫

√
1−|x|22

0
f
(

³yeÈ(Ax+v)/s − 1
)

g(0)dydx.

By f2 and f4, the function f is coercive to the right and by assumption È is a coercive function,

hence

lim
||(A·³,v)||→+∞

L̄r(A· ³, v) g lim
||(A·³,v)||→+∞

2

∫

Bn

∫

√
1−|x|22

0
f
(

³yeÈ(Ax+v)/s − 1
)

g(0)dydx

= +∞.

Proposition 3.3. Let r ∈ (1/2, 1) and assume g3,g4, f2, f3, f4. The functional L̄r restricted to
(s)E+ is positive.

Proof. First notice that since gr(s) = 0 always that s > 2− r, where r ∈ (1/2, 1), then 2− r > 1

and

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

= 0 ô |x|22 + y2 − 1

2h(x)2/s
+ 1 g 2− r.

Since for (x, y) ∈ Bn+1, y g 0, it holds that

|x|22 + y2 − 1

2h(x)2/s
+ 1 f 1,

then gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

> 0 for all (x, y) ∈ Bn+1, y g 0.

Now take (A · ³, v) ∈ (s)E+ and assume L̄r(A · ³, v) = 0. Since gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

> 0

for all (x, y) ∈ Bn+1, y g 0, then we must have fr

(

³y

h(Ax+ v)1/s

)

= 0 for all (x, y) ∈

Bn+1 ∩ (Rn × [0,∞)), which is equivalent to

³y

h(Ax+ v)1/s
f r ô ³y

r
f h(Ax+ v)1/s.

Hence,
(

Ax+ v,
³y

r

)

∈ (s)h̄
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for all (x, y) ∈ Bn+1, y g 0, that is,

(

A· ³

r

)

Bn+1 + v ¢ (s)h̄.

By Lemma 3.1 and using that ℏBn+1 is the John s-function of h, we have that

(s)µ
((

A· ³

r

)

Bn+1 + v
)

=
(³

r

)s
det(A) (s)µ(Bn+1) f (s)µ(Bn+1).

Therefore,
(³

r

)s
det(A) f 1,

that is,

³s det(A) f rs < 1,

which is a contradiction since A· ³ ∈ (s)E+.

Proposition 3.4. Let r ∈ (1/2, 1) and assume g3,g4, f2, f3, f4. Take (A · ³, v), (B · ´,w) ∈
(s)E+. The functional L̄r satisfies the property

L̄r((¼A+ (1− ¼)B)· ³¼´1−¼, ¼v + (1− ¼)w) f ¼L̄r(A· ³, v) + (1− ¼)L̄r(B · ´,w)

for all ¼ ∈ [0, 1].

We will call this property convex*.

Proof. First since h is log-concave, for all ¼ ∈ [0, 1],

h(¼(Ax+ v) + (1− ¼)(Bx+ w)) g h(Ax+ v)¼h(Bx+ w)1−¼.

Since s > 0, we have

h(¼(Ax+ v) + (1− ¼)(Bx+ w))1/s g h(Ax+ v)¼/sh(Bx+ w)(1−¼)/s,

from where it follows that

1

h(¼(Ax+ v) + (1− ¼)(Bx+ w))1/s
f 1

h(Ax+ v)¼/sh(Bx+ w)(1−¼)/s
.

Now since f is non-decreasing, by Lemma 1.5 and using that f is convex, we arrive at

fr

(

³¼´1−¼y

h(Ax+ v)¼/sh(Bx+ w)(1−¼)/s

)

= fr

(

(

³y

h(Ax+ v)1/s

)¼( ´y

h(Bx+ w)1/s

)1−¼
)

f fr
(

¼
³y

h(Ax+ v)1/s
+ (1− ¼) ´y

h(Bx+ w)1/s

)

f ¼fr
(

³y

h(Ax+ v)1/s

)

+ (1− ¼)fr
(

´y

h(Bx+ w)1/s

)

.

From these inequalities and recalling that by inequalities (3.14) and (3.15) it holds that
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((¼A+ (1− ¼)B)· ³¼´1−¼, ¼v + (1− ¼)w) ∈ (s)E+, we obtain

L̄r((¼A+ (1− ¼)B)· ³¼´1−¼, ¼v + (1− ¼)w)

=
1

1− r

∫

Rn

∫ ∞

0
fr

(

³¼´1−¼y

h(¼(Ax+ v) + (1− ¼)(Bx+ w))1/s

)

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx

f 1

1− r

∫

Rn

∫ ∞

0

(

¼fr

(

³y

h(Ax+ v)1/s

)

+ (1− ¼)fr
(

´y

h(Bx+ w)1/s

))

× gr
( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx

= ¼L̄r(A· ³, v) + (1− ¼)L̄r(B · ´,w),

as we wanted to prove.

Proposition 3.5. Assume g5, f3, then for r ∈ (1/2, 1) we have L̄r(Īd, 0) f C where C is a

constant depending on f, h, n and s.

Proof. We know that

0 < gr(s) f 1 ô s < 2− r,

for all r ∈ (1/2, 1) and 1− r f 1
2 . Since

|x|22 + y2 − 1

2h(x)2/s
+ 1 f 2− r ô |x|22 + y2 − 1

2h(x)2/s
f 1− r

and
|x|22 + y2

2h(x)2/s
f 1

2
⇒ |x|22 + y2 − 1

2h(x)2/s
f 1

2
,

then if C̄ =

{

(x, y) ∈ R
n × [0,∞) :

|x|22 + y2

h(x)2/s
f 1

}

, we have

L̄r(Īd, 0) f
1

1− r

∫

Rn

∫ ∞

0
fr

(

y

h(x)1/s

)

1C̄(x, y)dydx.

Now notice that (x, y) ∈ C̄ implies

0 f y

h(x)1/s
f 1.

Making the substitution
y

h(x)1/s
= 1 + (1− r)t, we get

L̄r(Īd, 0) f
1

1− r

∫

Rn

∫ ∞

0
fr

(

y

h(x)1/s

)

1C̄(x, y)dydx

f
∫

Rn

∫ 0

− 1
1−r

fr(1 + (1− r)t)1C̄(x, (1 + (1− r)t)h(x)1/s)h(x)1/s(1 + (1− r)t)dtdx

=

∫

Rn

∫ 0

− 1
1−r

f(t)1C̄(x, (1 + (1− r)t)h(x)1/s)h(x)1/s(1 + (1− r)t)dtdx.



3.4. MAIN RESULTS IN THE FUNCTIONAL SETTING 79

Observe that

1C̄(x, (1+(1−r)t)h(x)1/s) = 1ô |x|
2
2 + (1 + (1− r)t)2h(x)2/s

h(x)2/s
f 1ô |x|22

h(x)2/s
f 1−(1+(1−r)t)2.

Set

C̄1 =

{

(x, t) ∈ R
n × [−1, 0] : |x|22

h(x)2/s
f 1− (1 + (1− r)t)2

}

and

C̄2 =

{

(x, t) ∈ R
n+1 :

|x|22
h(x)2/s

f 1

}

=

{

(x, t) ∈ R
n+1 :

|x|2
h(x)1/s

f 1

}

.

Since C̄1 ¦ C̄2, r ∈ (1/2, 1) and f(t) = 0 if t < −1, then

L̄r(Īd, 0) f 2

∫

Rn

∫ 0

−1
f(t)1C̄2

(x, (1 + (1− r)t)h(x)1/s)h(x)1/sdtdx.

Since h is a proper log-concave function, there exists a constant C̃ such that h(x)1/s f C̃ for all

x ∈ R
n. Then,

(x, (1 + (1− r)t)h(x)1/s) ∈ C̄2 ⇒ |x|2 f h(x)1/s f C̃.

Therefore,

L̄r(Īd, 0) f 2

∫

Rn

∫ 0

−1
f(t)1C̄2

(x, (1 + (1− r)t)h(x)1/s)h(x)1/sdtdx

f 2

∫

C̃Bn

∫ 0

−1
C̃f(t)dtdx

= 2C̃n+1 voln(B
n)

∫ 0

−1
f(t)dt

f C.

3.4 Main results in the functional setting

In this section we will present the results obtained for the functional setting in order to construct

a centered and s-isotropic measure. Our goal is to make the results as similar as possible to the

geometric version. Consider again the set

F = {F : R→ [0,∞) : F is non-decreasing, convex, strictly convex in [0,∞), and F ′(0) > 0}.

Theorem 3.4. Let h : R
n → R be a proper log-concave function and ℏBn+1 its John s-

function. Choose any finite positive and non-zero measure ¿ in Bn with support inside the
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subset Λ = {x ∈ Bn : h(x)1/s = ℏBn+1(x)}, and any C1 function F ∈ F . Consider the convex

functional Ī¿ : E → R defined by

Ī¿(M · ´,w) =
∫

Bn

h(x)1/sF

(ïx,Mx+ wð
h(x)2/s

+ ´

)

d¿(x).

If the restriction of Ī¿ to (s) Symn+1,0(R) × R
n is coercive then for any global minimum

(M0 · ´0, w0), the measure

1

h(x)1/s
F ′

(ïx,M0x+ w0ð
h(x)2/s

+ ´0

)

d¿(x)

is non-negative, non-zero, centered and s-isotropic.

Assume that {x ∈ Bn : h(x)1/s = ℏBn+1(x)} is finite and that ¿ is the counting measure c. As a

consequence of the previous theorem we get the following result.

Corollary 3.1. Let h : Rn → R be a proper log-concave function and ℏBn+1 its John s-function.

Assume

{x ∈ Bn : h(x)1/s = ℏBn+1(x)} = {x1, . . . , xm}.

Choose any C1 function F ∈ F . Consider the convex functional Īc : E → R defined by

Īc(M · ´,w) =
m
∑

i=1

h(xi)
1/sF

(ïxi,Mxi + wð
h(xi)2/s

+ ´

)

.

If the restriction of Īc to (s) Symn+1,0(R) × R
n is coercive then for any global minimum

(M0 · ´0, w0), the numbers

ci =
1

h(xi)1/s
F ′

(ïxi,M0xi + w0ð
h(xi)2/s

+ ´0

)

, i = 1, . . . ,m,

together with the vectors xi, i = 1, . . . ,m, satisfy the conditions of item (2) of Theorem 3.3.

Theorem 3.5. Let h : Rn → R be a proper log-concave function and ℏBn+1 its John s-function.

Consider F as in Theorem 3.4. The following statements are equivalent.

(a) The restriction of Ī¿ to (s) Symn+1,0(R)× R
n is coercive;

(b) For every (M · ´,w) ∈ ((s) Symn+1,0(R)× R
n) \ {(0, 0)}

¿

({

x ∈ Bn : h(x)1/s = ℏBn+1(x) and

(ïx,Mx+ wð
h(x)2/s

+ ´

)

> 0

})

> 0.

Proof. The proof follows as in Theorem 2.9.

Proof of Theorem 3.4. First we will calculate the derivative of Ī¿ at the point (M · ´,w) ∈ E ,
in the direction of (V · ³, v) ∈ T(M·´,w)E . By Lemma 1.3 and the inner product given by (1.8),
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we obtain

Ī ′¿(M · ´,w)[V · ³, v] =
∫

Bn

h(x)1/sF ′

(ïx,Mx+ wð
h(x)2/s

+ ´

)(ïx, V x+ vð
h(x)2/s

+ ³

)

d¿(x)

=

∫

Bn

h(x)1/sF ′

(ïx,Mx+ wð
h(x)2/s

+ ´

)

(

〈(

x¹ x
h(x)2/s

,
x

h(x)2/s

)

, (V, v)

〉

+
h(x)1/sh(x)1/s³

h(x)2/s

)

d¿(x)

=

∫

Bn

h(x)1/sF ′

(ïx,Mx+ wð
h(x)2/s

+ ´

)

〈(

x¹ x· h(x)1/sh(x)1/s
h(x)2/s

,
x

h(x)2/s

)

, (V · ³, v)
〉

d¿(x)

=

∫

Bn

1

h(x)1/s
F ′

(ïx,Mx+ wð
h(x)2/s

+ ´

)

〈(

x¹ x· h(x)1/sh(x)1/s, x
)

, (V · ³, v)
〉

d¿(x).

Since (x¹ x· h(x)1/sh(x)1/s, x) ∈ E , then we conclude that

∇Ī¿(M · ´,w) =
∫

Bn

1

h(x)1/s
F ′

(ïx,Mx+ wð
h(x)2/s

+ ´

)

(x¹ x· h(x)1/sh(x)1/s, x)d¿(x).

The gradient of the function È (V · ³, v) = (s)tr (V · ³) is ∇È (V · ³, v) = (Id·s, 0). By

Theorem 1.19 we have that (s) Symn+1,0(R) × R
n is the orthogonal complement of (Id·s, 0) in

E . And since (M0 · ´0, w0) ∈ (s) Symn+1,0(R) × R
n is a singular point of Ī¿ and 0 is a regular

value of È, then by Theorem 1.16 there exists ¼ ∈ R such that

∇Ī¿(M0 · ´0, w0) = ¼∇È(M0 · ´0, w0),

that is,

∫

Bn

1

h(x)1/s
F ′

(ïx,M0x+ w0ð
h(x)2/s

+ ´0

)

(x¹ x· h(x)1/sh(x)1/s, x)d¿(x) = ¼(Id·s, 0).

Equivalently,

∫

Bn

1

h(x)1/s
F ′

(ïx,M0x+ w0ð
h(x)2/s

+ ´0

)

(x¹ x· h(x)1/sh(x)1/s)d¿(x) = ¼(Id·s) (3.25)

∫

Bn

1

h(x)1/s
F ′

(ïx,M0x+ w0ð
h(x)2/s

+ ´0

)

xd¿(x) = 0.

Finally, we only need to show that ¼ is positive and to do it we following as in the proof of

Theorem 2.7. Since F is non-decreasing, then F ′

(ïx,M0x+ w0ð
h(x)2/s

+ ´0

)

g 0. Taking the trace

function in equation (3.25) and recalling that the support of measure ¿ is a subset of points of

Bn where h(x)1/s = ℏBn+1(x) =
√

1− |x|22, we arrive at

¼ =
1

n+ s

∫

Bn

1

h(x)1/s
F ′

(ïx,M0x+ w0ð
h(x)2/s

+ ´0

)

(|x|22 + 1− |x|22)d¿(x)

=
1

n+ s

∫

Bn

1

h(x)1/s
F ′

(ïx,M0x+ w0ð
h(x)2/s

+ ´0

)

d¿(x).

By Theorem 3.5, we know that
ïx,M0x+ w0ð

h(x)2/s
+ ´0 > 0 for a set of positive ¿-measure. Since
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F ′(x) g 0 for every x and F ′(x) > 0 for x g 0, we deduce that ¼ > 0 and the proof is

complete.

Lemma 3.6. If (Ar · ³r, vr) ∈ (s)E+ minimizes L̄r, then (s) detn+1(Ar · ³r) = 1.

Proof. We already know that
(s)detn+1(Ar · ³r) g 1.

Assume that (s)detn+1(Ar·³r) > 1, that is, ³sr det(Ar) > 1. Take Ār = Ar·
1

det(Ar)1/s
. Then,

(Ār, vr) ∈ (s)E+ ∩ ((s) SLn+1(R) × R
n). Notice that since Bn+1 is the John s-ellipsoid of h and

(s)detn+1(Ā) g 1, then

ĀrB
n+1 + vr \ (s) ¯rsh

must have non-empty interior. In fact, to say that ĀrB
n+1+ vr \ (s) ¯rsh has empty interior is the

same as to say that (Id·r)(s)h̄ § ĀrBn+1 + vr. But

(s)detn+1

(

(Id·r)−1Ār
)

= (s)detn+1

(

Ar ·
1

r det(Ar)1/s

)

=
1

rs
> 1

and this is a contradiction with the fact that Bn+1 is the John s-ellipsoid of h. Since

ĀrB
n+1 + vr \ (s) ¯rsh has non-empty interior, then there exists a subset C̄ of Bn+1 such that

voln+1(C̄) > 0 and (x, y) ∈ C̄ implies the following inequality

rh (Arx+ vr)
1/s <

y

det(Ar)1/s

and hence implies that fr

(

y

det(Ar)1/sh(Arx+ vr)1/s

)

is positive. Moreover, in this set C̄ it

holds gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

is positive since
|x|22 + y2 − 1

2h(x)2/s
f 0. Thus,

L̄r(Ār, vr) =
1

1− r

∫

Rn

∫ ∞

0
fr

(

y

det(Ar)1/sh(Arx+ vr)1/s

)

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx

<
1

1− r

∫

Rn

∫ ∞

0
fr

(

³ry

h(Arx+ vr)1/s

)

gr

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx

= L̄r(Ar · ³r, vr),

which contradicts the minimality of (Ar · ³r, vr). Therefore (s)detn+1(Ar · ³r) = 1.

Theorem 3.6. Let h : Rn → R be a proper log-concave function and ℏBn+1 its John s-function.

Consider f, g functions that satisfy all the properties f1 to g5. Then for every r ∈ (1/2, 1)

the restriction of L̄r to (s)E+ ∩ ((s) SLn+1(R) × R
n) has a unique minimum (Ar · ³r, vr), up to

horizontal translation, with limr→1−(Ar · ³r, vr) = (Īd, 0). Likewise, the restriction of Īr to

(s)E+ ∩ ((s) SLn+1(R)× R
n)− Īd× R

n

1− r
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has the unique minimum (Mr · ´r, wr) =
(

Ar · ³r − Īd

1− r ,
vr

1− r

)

, up to horizontal translation,

with (s)tr

(

Mr · ´r
||Mr · ´r||F

)

→ 0 as r → 1−.

Proof. The existence of one minimum of the functional L̄r follows of the fact that it is coercive

in (s)E+ and that this set is a closed convex set. Now we assume that there are two distinct

minimum of L̄r in (s)E+, say (A· ³, v) and (B · ´,w). Then, by Proposition 3.4, it holds that

L̄r((¼A+ (1− ¼)B)· ³¼´1−¼, ¼v + (1− ¼)w) = ¼L̄r(A· ³, v) + (1− ¼)L̄r(B · ´,w),

that is, ((¼A+(1−¼)B)·³¼´1−¼, ¼v+(1−¼)w) ∈ (s)E+ also minimizes the functional L̄r and,

by Lemma 3.6,
(s)detn+1((¼A+ (1− ¼)B)· ³¼´1−¼) = 1.

By (1.9), we have

1 = (s)detn+1((¼A+ (1− ¼)B)· ³¼´1−¼) = (³s)¼(´s)1−¼ det(¼A+ (1− ¼)B)

g (³s)¼(´s)1−¼ det(A)¼ det(B)1−¼

= (³s det(A))¼(´s det(B))1−¼

= 1.

This last equality implies that det(¼A + (1 − ¼)B) = det(A)¼ det(B)1−¼ and hence we have

A = B. Since

´s det(B) = 1 = ³s det(A),

it follows that ³ = ´. Then, up to horizontal translation, the minimizers (A·³, v) and (B·´,w)
coincide.

Denote Mr · ´r =
Ar · ³r − Īd

1− r , wr =
vr

1− r . Since (Ar · ³r, vr) ∈ (s)E+ ∩ ((s) SLn+1(R)×R
n),

we have

L̄r(Ar · ³r, vr) = ³s−1
r Īr(Mr · ´r, wr),

and (Mr · ´r, wr) is, up to horizontal translation, the unique global minimum of the restriction

of Īr to
(s)E+ ∩ ((s) SLn+1(R)× R

n)− Īd× R
n

1− r .

Our next step is to prove that (Ar · ³r, vr) → (Īd, 0). Assume that (Ar · ³r, vr) does

not converge to (Īd, 0). Since by Propositions 3.2 and 3.5 the sequence {(Ar · ³r, vr)}r is

bounded, then there is a sequence rk → 1−such that {(Ark ·³rk , vrk)}k converges. Assume that

(Ark · ³rk , vrk)→ (A∗ · ³∗, v∗) ∈ (s)E+ ∩ ((s) SLn+1(R)× R
n) with (A∗ · ³∗, v∗) ̸= (Īd, 0).

Again, because Bn+1 is the John s-ellipsoid of h and (s)detn+1(A
∗ · ³∗) = 1, then the

set (A∗ · ³∗)Bn+1 + v∗ \ (s)h̄ has positive Lebesgue measure. Take Ä < 1 such that

the set Ä(A∗ · ³∗)Bn+1 + v∗ \ (s)h̄ has positive Lebesgue measure. For large k, we have
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Ä(A∗ · ³∗)Bn+1 + v∗ ¦ (Ark · ³rk)Bn+1 + vrk . By Fatou’s lemma,

lim inf
k→+∞

L̄rk(Ark · ³rk , vrk)

= lim inf
k→+∞

1

1− rk

∫

Rn

∫ ∞

0
frk

(

³rky

h(Arkx+ vrk)
1/s

)

grk

( |x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx

g lim inf
k→+∞

³s−1
rk

1− rk

∫

Rn\(s)h̄

∫ ∞

0
frk

(

y

h(x)1/s

)

grk

(

|A−1
rk

(x− vrk)|22 + (³−1
rk
y)2 − 1

2h(A−1
rk (x− vrk))2/s

+ 1

)

dydx.

Notice that if (x̃, ỹ) ∈ Bn+1 and (x, y) = Ä(A∗ · ³∗)(x̃, ỹ) + v∗, then

(A−1
rk
· ³−1

rk
)(Ä(A∗ · ³∗)(x̃, ỹ) + v∗ − vrk) ∈ (Ark · ³rk)−1(Ark · ³rk)Bn+1 = Bn+1,

from where |A−1
rk

(x− vrk)|22 + (³−1
rk
y)2 f 1. And by g2 it follows that

grk

(

|A−1
rk

(x− vrk)|22 + (³−1
rk
y)2 − 1

2h(A−1
rk (x− vrk))

+ 1

)

g grk(1) = g(0).

Thus,

lim inf
k→+∞

L̄rk(Ark · ³rk , vrk) g lim inf
k→+∞

³s−1
rk

1− rk

∫

(Ä(A∗·³∗)Bn+1+v∗)\(s)h̄

∫ ∞

0
frk

(

y

h(x)1/s

)

g(0)dydx

=+∞,

which contradicts the bounded of the minimizer (Ar · ³r, vr), since by Proposition 3.5

L̄rk(Ark · ³rk , vrk) f L̄r(Īd, 0) f C.

To finish we need to prove that (s)tr

(

Mr · ´r
||Mr · ||F

)

→ 0. A simple calculation shows that (s)tr is

the differential of (s)detn+1 at Īd ∈ Mn+1(R).

By Taylor,

(s)detn+1(Īd + V̄ ) = 1 + ïId·s, V̄ ð+ o(||V̄ ||F ) = 1 + (s)tr(V̄ ) + o(||V̄ ||F )

where o(ε)
ε → 0 as ε→ 0. Taking V̄ = (1− r)(Mr · ´r) we get

1 = (s)detn+1(Ar · ³r)
= (s)detn+1(Īd + (1− r)(Mr · ´r))
= 1 + (1− r)(s)tr(Mr · ´r) + o((1− r)||Mr · ´r||F ).

Therefore,

(s)tr

(

Mr · ´r
||Mr · ´r||F

)

=
(s)tr(Mr · ´r)
||Mr · ´r||F

= −o((1− r)||Mr · ´r||F )
(1− r)||Mr · ´r||F

→ 0

as r → 1−.
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Theorem 3.7. Assume all the properties f1 to g5 are satisfied and that h is continuous. The

functional Īr(M · ´,w) is extended continuously to r = 1 as

Ī1(M · ´,w) =
∫

Λ
h(x)1/sF̄

(

ïx,Mx+ wð

h(x)2/s
+ ´

)

dx,

where Λ = {x ∈ Bn : h(x)1/s = ℏBn+1(x)} and F is the convolution F (x) = f∗ḡ(x), ḡ(x) = g(−x)

and satisfies the conditions of Theorem 3.4. Moreover, Īr → Ī1 as r → 1−, uniformly in compact

sets.

Proof. As before, we denote by o((1 − r)a) (resp.o(1)) any function of the involved parameters

M,´,w, r, s, t, x, satisfying

lim
r→1−

o((1− r)a)

(1− r)a
= 0

(

resp. lim
r→1−

o(1) = 0

)

,

where the limits are uniform in compact sets with respect to the parameters. Likewise, O(1)

denote any bounded function.

By Taylor expansion it holds that for all x,w ∈ R
n and M · ´ ∈ B̄r (B̄r is the domain of the

functional Īr)

(Id+(1− r)M)−1(x− (1− r)w) = (x− (1− r)w)− (1− r)M(x− (1− r)w) + o(1− r)

= x− (1− r)(Mx+ w) + o(1− r)

and

|(Id+(1− r)M)−1(x− (1− r)w)|2 = |x− (1− r)(Mx+ w) + o(1− r)|2

= |x|2 − (1− r)

〈

x

|x|2
,Mx+ w

〉

+ o(1− r).

By simplicity, denote

È(M ;´;w; (x, t))

=
|(Id+(1− r)M)−1(x− (1− r)w)|22 + ((1 + (1− r)´)−1(1 + (1− r)t)h(x)1/s)2 − 1

2h((Id+(1− r)M)−1(x− (1− r)w))2/s
+ 1.

Since

Īr(M · ´,w) =
1

1− r

∫

Rn

∫ ∞

0
fr

(

y

h(x)1/s

)

× gr

(

|(Id+(1− r)M)−1(x− (1− r)w)|22 + ((1 + (1− r)´)−1y)2 − 1

2h((Id+(1− r)M)−1(x− (1− r)w))2/s
+ 1

)

dydx,

making the substitution y
h(x)1/s

= 1 + (1− r)t, we get

Īr(M · ´,w) =

∫

Rn

∫ ∞

− 1
1−r

h(x)1/s(1 + (1− r)t)fr (1 + (1− r)t) gr (È(M ;´;w; (x, t))) dtdx.
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To calculate È(M ;´;w; (x, t)), note that

• |(Id+(1− r)M)−1(x− (1− r)w)|22 = |x|22 + (1− r)2
〈

x

|x|2
,Mx+ w

〉2

− 2|x|2(1− r)

〈

x

|x|2
,Mx+ w

〉

+ o(1− r)2 + 2o(1− r)

(

|x|2 − (1− r)

〈

x

|x|2
,Mx+ w

〉)

;

• ((1 + (1− r)´)−1h(x)1/s(1 + (1− r)t))2 =
h(x)2/s(1 + 2(1− r)t+ (1− r)2t2)

(1 + (1− r)´)2
;

• 2h((Id+(1− r)M)−1(x− (1− r)w))2/s = 2h(x− (1− r)(Mx+ w) + o(1− r))2/s.

Then,

È(M ;´;w; (x, t)) =
(|x|22 + h(x)2/s − 1)(2´(|x|22 − 1)(1− r)

2(1 + (1− r)´)2h(x− (1− r)(Mx+ w) + o(1− r))2/s(1− r)

+

(1− r)

〈

x

|x|2
,Mx+ w

〉

− 2 ïx,Mx+ wð

2h(x− (1− r)(Mx+ w) + o(1− r))2/s

+
2h(x)2/st+ (1− r)h(x)2/st2 + (1− r)´2(|x|22 − 1)

2(1 + (1− r)´)2h(x− (1− r)(Mx+ w) + o(1− r))2/s

+

[

o(1− r)2

1− r
+

2o(1− r)

1− r

(

|x|2 − (1− r)

〈

x

|x|2
,Mx+ w

〉)]

×
1

2h(x− (1− r)(Mx+ w) + o(1− r))2/s
.

Consider the following sets:

Λ = {x ∈ R
n : |x|22 + h(x)2/s − 1 f 0}

Λc = {x ∈ R
n : |x|22 + h(x)2/s − 1 > 0}.

Notice that

(i) If x ∈ Λc, since h is bounded and (1 + (1− r)´) f (1 + ´), we have

|x|22 + h(x)2/s − 1

2(1 + (1− r)´)2h(x− (1− r)(Mx+ w) + o(1− r))2/s(1− r)
−→ +∞

as r → 1−. Then by g5 it holds g |Λc
r→1−
−→ 0;

(ii) If x ∈ Λ, then |x|22 + h(x)2/s = 1. Indeed,

|x|22 + h(x)2/s < 1 ô
√

|x|22 + h(x)2/s < 1 ô (x, h(x)1/s) ∈ int(Bn+1) ¢ int((s)h̄).

But, as we know (x, h(x)1/s) ∈ ∂(s)h̄, for all x ∈ R
n. Hence,

Λ = {x ∈ R
n : |x|22 + h(x)2/s − 1 f 0} = {x ∈ R

n : |x|22 + h(x)2/s − 1 = 0};
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(iii) h(x− (1− r)(Mx+ w) + o(1− r))2/s
r→1−
−→ h(x)2/s since h is continuous.

By f3, the integrand is 0 for t < −1 and by (ii), we obtain

Īr(M · ´,w) =

∫

Rn

∫ ∞

−1
h(x)1/s(1 + (1− r)t)f(t)g (È(M ;´;w; (x, t))) dtdx

=

∫

Λc

∫ ∞

−1
h(x)1/s(1 + (1− r)t)f(t)g (È(M ;´;w; (x, t))) dtdx

+

∫

Λ

∫ ∞

−1
h(x)1/s(1 + (1− r)t)f(t)g (È(M ;´;w; (x, t))) dtdx

=

∫

Λc

∫ ∞

−1
h(x)1/s(1 + (1− r)t)f(t)

× g

(

|x|22 + h(x)2/s − 1 + (1− r)O(1) + (1− r)t(2h(x)2/s + o(1)) + o(1)

2(1 + (1− r)´)2h(x− (1− r)(Mx+ w) + o(1− r))2/s(1− r)

)

dtdx

+

∫

Λ

∫ ∞

−1
h(x)1/s(1 + (1− r)t)f(t)

× g

(

−2´(1− |x|22 + o(1))− 2ïx,Mx+ w + o(1)ð+ t(2h(x)2/s + o(1)) + o(1)

2(1 + (1− r)´)2h(x− (1− r)(Mx+ w) + o(1− r))2/s

)

dtdx.

(3.26)

To prove that Īr converges to Ī1, when r → 1−, in compact sets, consider a convergent sequence

(Mk · ´k, wk) → (M · ´,w) and rk → 1−. By (i) and g5, the function g in the first integral is

zero for t > C where C is independent of k. Since the functions f, g are thus uniformly bounded

in the support of both integrals and it holds (iii), we may apply the Dominated Convergence

Theorem 1.11 in (3.26), to obtain

lim
k→∞

Īrk(Mk · ´k, wk) =

∫

Λ

∫ ∞

−1
h(x)1/sf(t)g

(

t−
´(1− |x|22)

h(x)2/s
−

ïx,Mx+ wð

h(x)2/s

)

dtdx

=

∫

Λ

∫ ∞

−1
h(x)1/sf(t)g

(

t−
ïx,Mx+ wð

h(x)2/s
− ´

)

dtdx

=

∫

Λ
h(x)1/s

∫ ∞

−1
f(t)g

(

t−
ïx,Mx+ wð

h(x)2/s
− ´

)

dtdx.

Let ḡ(x) = g(−x) and let ∗ be the convolution function. Define the function F (x) = f ∗ ḡ(x)

and

Ī1(M · ´,w) =

∫

Λ
h(x)1/sF

(

ïx,Mx+ wð

h(x)2/s
+ ´

)

dx.

Finally, we must show that F satisfies the properties of Theorem 3.4, but it follows from Theorem

2.11.

Theorem 3.8. Assume all the properties f1 to g5 are satisfied and the function Ī1 restricted to

E ∩ (s) Symn+1,0(R)×R
n has a unique global minimum (M0·´0, w0), then ∂(Ar·³r,vr)

∂r

∣

∣

∣

r=1
exists

and is equal to -(M0 · ´0, w0).
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In this case, if (Ãr · ³̃r, ṽr) is any curve in E+ of the form

(Ãr · ³̃r, ṽr) = (Īd, 0) + (1− r)(M0 · ´0, w0) + o(1− r),

the measure

³̃s−1
r

1− r

∫ ∞

0
(f ′)r

(

y

h(x)1/s

)

gr

(

|Ã−1
r (x− vr)|

2
2 + (³̃−1

r y)2 − 1

h(Ã−1
r (x− ṽr))2/s

+ 1

)

y

h(x)3/s
dydx

converges weakly to the centered and s-isotropic measure

1

h(x)1/s
F ′

(

ïx,M0x+ w0ð

h(x)1/s
+ ´0

)

dx.

In particular, this is true for (Ãr· ³̃r, ṽr) = (Ar·³r, vr), and for its linear part (Ãr· ³̃r, ṽr) =

(Īd + (1− r)(M0 · ´0), (1− r)w0).

In order to prove Theorem 3.8, we before need to prove that the family of minimizers of the

functionals Īr admits a convergent subsequence.

Lemma 3.7. For every r ∈ (1/2, 1), let (Mr · ´r, wr) be a minimizer of the functional Īr given

by Theorem 3.6. The sequence {(Mr · ´r, wr)}r is bounded.

Proof. By Lemma 2.2, the functional Ī1 is coercive. Thus there exists R > 0 such that if

(M · ´,w) ∈ (s) Symn+1,0(R)× R
n and ||(M · ´,w)|| g R, then

Ī1(M · ´,w) g C + 2

where C g L̄r(Īd, 0) is given by Proposition 3.5.

Let B̄2R = {(M · ´,w) ∈ Symn+1(R) × R
n : ||(M · ´,w)|| f 2R}. By Theorem 3.7, there is

r0 ∈ (1/2, 1), such that for every r ∈ (r0, 1) and (M · ´,w) ∈ B̄2R,

|Īr(M · ´,w)− Ī1(M · ´,w)| f 1/2.

We will show that (Mr · ´r, wr) ∈ B̄2R for r ∈ (r0, 1). Assume by contradiction that

(Mr · ´r, wr) ̸∈ B̄2R for some r ∈ (r0, 1), and consider ¼ < 1 such that ||¼(Mr · ´r, wr)|| = 2R.

Since
∂

∂t
(1 + t´r)

¼

∣

∣

∣

∣

t=0

= ¼´r and by (1.5) holds (1+ t´r)
¼ f 1+ t¼´r for t g 0, then for r → 1−,

we have

R f Ä =

∣

∣

∣

∣

∣

∣

∣

∣

(

¼Mr ·

(

(1 + (1− r)´r)
¼ − 1

1− r

)

, ¼wr

)∣

∣

∣

∣

∣

∣

∣

∣

f ||¼(Mr · ´r, wr)|| = 2R.

Since Ī1 is continuous in the compact set B̄2R, there is ε > 0 such that

Ī1(M · ´,w) g C + 1
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for every (M ·´,w) ∈ ∂B̄Ä = {(M ·´,w) ∈ Symn+1(R)×R
n : ||(M ·´,w)|| = Ä,R f Ä f 2R}

with (s)tr(M · ´) < ε.

By Theorem 3.6, it holds Ar · ³r → Īd as r → 1−, then increasing r0 if necessary, we may

assume for every r ∈ (r0, 1) and ¼ ∈ [0, 1]

detn+1(¼(Ar · ³r) + (1− ¼)Īd) f
C + 1/2

C + 1/4
= 1 +

1

4C + 1

and again by Theorem 3.6 we have that
∣

∣

∣

(s)tr
(

Mr·´r
||Mr·´r||F

)∣

∣

∣ f ε
2R .

Moreover,

∣

∣

∣

∣

(s)tr

(

¼Mr ·

(

(1 + (1− r)´r)
¼ − 1

1− r

))∣

∣

∣

∣

f |(s)tr(¼(Mr · ´r))| f
||¼(Mr · ´r)||F

2R
ε f ε,

then we obtain

Īr

(

¼Mr ·

(

(1 + (1− r)´r)
¼ − 1

1− r

)

, ¼wr

)

g Ī1

(

¼Mr ·

(

(1 + (1− r)´r)
¼ − 1

1− r

)

, ¼wr

)

− 1/2

g C + 1− 1/2

= C + 1/2.

Using that (Mr · ´r, wr) =

(

Ar · ³r − Īd

1− r
,
vr

1− r

)

, it holds

(((1− r)¼Mr + Id)· (1 + (1− r)´)¼, (1− r)¼wr) = ((¼Ar + (1− ¼) Id)· ³¼r , ¼vr)

and since ¼Ar + (1− ¼) Id ∈ Symn,+(R) for r → 1− we obtain

(s)detn+1((¼Ar + (1− ¼) Id)· ³¼r ) = (³sr)
¼ det(¼Ar + (1− ¼) Id)

g (³sr)
¼ det(Ar)

¼ det(Id)1−¼

= (s)detn+1(Ar · ³r)
¼(s)detn+1(Īd)

g 1.
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Hence ((¼Ar + (1− ¼) Id)· ³¼r , ¼vr) ∈
(s)E+. We have

L̄r((¼Ar + (1− ¼) Id)· ³¼r , ¼vr)

=
1

1− r

∫

Rn

∫ ∞

0
fr

(

³¼r y

h((¼Ar + (1− ¼) Id)x+ ¼vr)1/s

)

gr

(

|x|22 + y2 − 1

2h(x)2/s
+ 1

)

dydx

=
1

1− r

∫

Rn

∫ ∞

0

1

³¼r det(¼Ar + (1− ¼) Id)
fr

(

y

h(x)1/s

)

× gr

(

|(¼Ar + (1− ¼) Id)−1(x− ¼vr)|
2
2 + (³−¼

r y)2 − 1

2h((¼Ar + (1− ¼) Id)−1(x− ¼vr))2/s
+ 1

)

dydx

=
1

1− r

∫

Rn

∫ ∞

0

1

³¼r det(¼Ar + (1− ¼) Id)
fr

(

y

h(x)1/s

)

× gr

(

|(Id+(1− r)¼Mr)
−1(x− (1− r)¼wr)|

2
2 + ((1 + (1− r)´r)

¼)−1y)2 − 1

2h((Id+(1− r)¼Mr)−1(x− (1− r)¼wr))2/s
+ 1

)

dydx.

A simple calculation using Lemma 1.5 shows the inequality

³¼r det(¼Ar + (1− ¼) Id) f detn+1(¼(Ar · ³r) + (1− ¼)Īd).

From where it follows that

L̄r((¼Ar + (1− ¼) Id)· ³¼r , ¼vr) g
1

1− r

∫

Rn

∫ ∞

0

1

detn+1(¼(Ar · ³r) + (1− ¼)Īd)
fr

(

y

h(x)1/s

)

× gr

(

|(Id+(1− r)¼Mr)
−1(x− (1− r)¼wr)|

2
2 + ((1 + (1− r)´r)

¼)−1y)2 − 1

2h((Id+(1− r)¼Mr)−1(x− (1− r)¼wr))2/s
+ 1

)

dydx

=

Īr

(

¼Mr ·

(

(1 + (1− r)´r)
¼ − 1

1− r

)

, ¼wr

)

detn+1(¼(Ar · ³r) + (1− ¼)Īd)

g

(

C + 1/2

C + 1/4

)−1

(C + 1/2)

g L̄r(Īd, 0) + 1/4.

Since L̄r(Īd, 0) g L̄r(Ar · ³r, vr), we obtain the inequalities

L̄r((¼Ar + (1− ¼) Id)· ³¼r , ¼vr) > L̄r(Ar · ³r, vr)

and

L̄r((¼Ar + (1− ¼) Id)· ³¼r , ¼vr) > L̄r(Īd, 0),

which contradicts the fact that L̄r is convex∗ (see Proposition 3.4). Therefore, (Mr · ´r, wr) ∈

B̄2R for all r ∈ (r0, 1) and we conclude the proof.

Lemma 3.8. If (M0· ´0, w0) is the unique global minimum of Ī1, then (Mr · ´r, wr) converges

to (M0 · ´0, w0).
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Proof. Take M · ´ ∈ (s) Symn+1,0(R) and define

(s)(M · ´)(r) =
(s)detn+1(Īd + (1− r)(M · ´))−1/(n+s)(Īd + (1− r)(M · ´))− Īd

1− r
.

Notice that ((s)(M · ´)(r), w) belongs to

(s)E+ ∩ ((s) SLn+1(R)× R
n)− Īd× R

n

1− r

for r close to 1. We also have

lim
r→1−

(s)(M · ´)(r) = lim
r→1−

[

(s)detn+1(Īd + (1− r)(M · ´))−1/(n+s) − 1

1− r
Īd

+(s)detn+1(Īd + (1− r)(M · ´))−1/(n+s)M · ´
]

=
∂

∂t

∣

∣

∣

∣

t=0

((s)detn+1(Īd + t(1− r)(M · ´))−1/(n+s)Īd) +M · ´

=
−1

n+ s
(s)tr(−M · ´)Īd +M · ´

= M · ´.

By Lemma 3.7, the sequence (Mr · ´r, wr) is bounded, then for every convergent sequence

(Mrk·´rk , wrk) → (M0·´0, w0) with rk → 1−, and for every (M·´,w) ∈ (s) Symn+1,0(R)×R
n,

we have

Īrk(Mrk · ´rk , wrk) → Ī1(M0 · ´0, w0)

and

Īrk(Mrk · ´rk , wrk) f Īrk(
(s)(M · ´)(rk), w) → Ī1(M · ´,w),

so that (M0·´0, w0) is the (unique) minimum of Ī1, and we deduce (Mr·´r, wr) → (M0·´0, w0)

as desired.

Proof of Theorem 3.8. By Lemma 3.8, we have

∂(Ar · ³r, vr)

∂r

∣

∣

∣

∣

r=1

= lim
r→1−

(Ar · ³r, vr)− (Īd, 0)

r − 1
= lim

r→1−
(−Mr · ´r,−wr) = −(M0 · ´0, w0).

Now take ¶ any continuous function with compact support and, as in the proof of Theorem 3.7,

consider the sets Λc = {x ∈ R
n : |x|22+h(x)

2/s > 1},Λ = {x ∈ R
n : |x|22+h(x)

1/s = 1}. We have
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1

1− r

∫

Rn

∫ ∞

0
¶(x)(f ′)r

(

y

h(x)1/s

)

gr

(

|Ã−1
r (x− ṽr)|

2
2 + (³̃−1

r y)2 − 1

h(Ã−1
r (x− ṽr))2/s

+ 1

)

y

h(x)3/s
³̃s−1
r dydx

=

∫

Λc

∫ ∞

−1
¶(x)(f ′)r(1 + (1− r)t)gr

(

|Ã−1
r (x− ṽr)|

2
2 + (³̃−1

r (1 + (1− r)t)h(x)1/s)2 − 1

h(Ã−1
r (x− ṽr))2/s

+ 1

)

× h(x)1/s
(1 + (1− r)t)h(x)1/s

h(x)3/s
³̃s−1
r dydx

+

∫

Λ

∫ ∞

−1
¶(x)(f ′)r(1 + (1− r)t)gr

(

|Ã−1
r (x− ṽr)|

2
2 + (³̃−1

r (1 + (1− r)t)h(x)1/s)2 − 1

h(Ã−1
r (x− ṽr))2/s

+ 1

)

× h(x)1/s
(1 + (1− r)t)h(x)1/s

h(x)3/s
³̃s−1
r dydx

=

∫

Λc

∫ ∞

−1
¶(x)f ′(t)g

(

|x|22 + h(x)2/s − 1 + (1− r)O(1) + (1− r)t(2h(x)2/s + o(1)) + o(1)

2(1 + (1− r)´)2h(x− (1− r)(Mx+ w) + o(1− r))2/s(1− r)

)

×
(1 + (1− r)t)

h(x)1/s
³̃s−1
r dydx

+

∫

Λ

∫ ∞

−1
¶(x)f ′(t)g

(

−2´(1− |x|22 + o(1))− 2ïx,Mx+ w + o(1)ð+ t(2h(x)2/s + o(1)) + o(1)

2(1 + (1− r)´)2h(x− (1− r)(Mx+ w) + o(1− r))2/s

)

×
(1 + (1− r)t)

h(x)1/s
³̃s−1
r dydx

hence by the Dominated Convergence Theorem 1.11,

1

1− r

∫

Rn

∫ ∞

0
¶(x)(f ′)r

(

y

h(x)1/s

)

gr

(

|Ã−1
r (x− vr)|

2
2 + (³̃−1

r )y)2 − 1

h(Ã−1
r (x− ṽr))2/s

+ 1

)

y

h(x)3/s
³̃s−1
r dydx

−→

∫

Λ
¶(x)

1

h(x)1/s
F ′

(

ïx,M0x+ w0ð

h(x)2/s
+ ´0

)

dx (3.27)

as r → 1−.

For us to finish, since (Ar ·³r, vr) minimizes the functional L̄r, then by Lemma 3.5 there exists

¼r > 0 such that

1

1− r

∫

Rn

∫ ∞

0
(f ′)r

(

y

h(x)1/s

)

gr

(

|Ã−1
r (x− vr)|

2
2 + (³̃−1

r )y)2 − 1

h(Ã−1
r (x− ṽr))2/s

+ 1

)

y

h(x)3/s
³̃s−1
r

×
(

−∇h(x)1/sh(x)1/s ¹ x· h(x)1/sh(x)1/s
)

dydx = ¼r(Id·s, 0)

and

1

1− r

∫

Rn

∫ ∞

0
(f ′)r

(

y

h(x)1/s

)

gr

(

|Ã−1
r (x− vr)|

2
2 + (³̃−1

r )y)2 − 1

h(Ã−1
r (x− ṽr))2/s

+ 1

)

y

h(x)3/s
³̃s−1
r

×
(

−∇h(x)1/sh(x)1/s
)

dydx = 0.

And by (3.27) we conclude the wished.
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3.5 Functional Löwner Ellipsoids

In 2019, Li, Schütt and Werner [35] extended a notion of Löwner ellipsoids for functional setting.

We say that a function is non-degenerate if int supp(h) ̸= ∅. They showed that if h : Rn → R is

a non-degenerate integrable log-concave function then there exists a unique pair (A0, t0), where

A0 is an invertible affine transformation and t0 ∈ R such that

∫

Rn

e−|A0x|2+t0dx = min

{∫

Rn

e−|Ax|2+tdx : e−|Ax|2+t g h(x)

}

.

The uniqueness of A0 is up to left multiplication by orthogonal transformations. They call

e−|A0x|2+t0 the Löwner function of h and denote it by

L(h)(x) = e−|A0x|2+t0 .

For a convex body K ¢ R
n denote its characteristic function by 1K(x). In [35] it is shown that

the super-level set {L(1K(x)) g 1} is exactly the Löwner ellipsoid of K.

As in the setting of convex sets, the connection between these two optimization problems is via

polar duality. Let h = e−È : Rn → [0,+∞], then its log-conjugate (or polar) function is defined

by

h◦(y) = inf
x∈Rn

e−ïx,yð

h(x)
.

Note that the log-conjugate function of any function is log-concave. It is easy to show that the

log-conjugate function of a proper log-concave function containing the origin in the interior of

the support is a proper log-concave function. Also, if f and g are log-concave functions, then

f f g ô g◦ f f◦.

The polar function of the characteristic function of the unit Euclidean ball is e−|x|2 . Therefore,

the class of functions considered in [4] and [35] consists of translates of functions that are polar

to each other.

Combining ideas of [35] and [30], Ivanov and Tsiutsiurupa consider the “dual” problem and define

the Löwner s-function below [31]. For a function È : [0,+∞) → (−∞,+∞], they consider the

following class of functions

En[È] =
{

³e−È(|A(x−a)|2) : A ∈ GLn(R), ³ > 0, a ∈ R
n
}

.

One may consider the functional class En[È] as the class of “affine” positions of the function

x 7→ e−È(|x|2), x ∈ R
n. Now we can say that the classes of “affine” positions of the characteristic

function of the unit ball and the function x 7→ e−|x|2 , x ∈ R
n, were considered in [4] and [35],

respectively.

They require for functions of En[È] to be reasonably good log-concave functions. We say that

È : [0,+∞) → (−∞,+∞] is an admissible function if the function t 7→ e−È(|t|), t ∈ R, is an upper



3.5. FUNCTIONAL LÖWNER ELLIPSOIDS 94

semicontinuous log-concave function of finite positive integral.

For an admissible function È : [0,+∞) → (−∞,+∞] and an upper semicontinuous log-concave

function h : R
n → [0,+∞) of finite positive integral, they study the following optimization

problem:

min
l∈En[È]

∫

Rn

l subject to h f l. (3.28)

They study the dual problem to that considered in [30]. For any s ∈ [0,+∞], they define

Ès : [0,+∞) → [0,+∞) by

Ès(t) =































t, s = 0

s
2





√

1 + 4
(

t
s

)2
− ln





1 +
√

1 + 4
(

t
s

)2

2



− 1



 , s ∈ (0,+∞)

t2, s = +∞

.

This function is an admissible function for any fixed s ∈ [0,+∞]. One sees that En[Ès] with

s = 0 coincides with the class of functions considered in [35], and that the Löwner function in

the sense of [35] is a solution to problem (3.28) with È = È0. The class En[È+∞] consists of

Gaussian densities. The cumbersome definition of Ès in the case s ∈ (0,+∞) is caused by polar

duality, since the problem (3.28) with È = Ès and s ∈ (0,+∞) is dual to the problem of finding

the John s-function considered in [30].

They proved the following theorem.

Theorem 3.9 ([31], Theorem 1.2). Fix s ∈ [0,+∞) and let h : Rn → [0,+∞) be an upper

semicontinuous log-concave function of finite positive integral. Then, there exists a unique

solution to problem

min
l∈En[Ès]

∫

Rn

l subject to h f l. (3.29)

The solution to problem (3.29) for a fixed s ∈ [0,+∞) is called Löwner s-function of f , and

denoted by (s)Lf . Note that the Löwner function in the sense of [35] is precisely (0)Lf . And as

in the case of John s-functions, they showed that (s)Lf → (0)Lf as s→ 0, uniformly on R
n (see

[31, Theorem 1.3]).

Probably, the most striking difference between the John s-function and the Löwner s-function

appears in the case s = +∞. This is because in [31] it is shown that as s → +∞ the limit

may only be a Gaussian density and it is necessarily unique, while in [30] it was shown that the

Gaussian density of maximal integral below a given upper semicontinuous log-concave function

of positive integral is not necessarily unique.

We say that the functions of En[È] are È-ellipsoidal functions. If È is an admissible function,

then all the functions of En[È] are proper log-concave functions. We use lÈ,Ē to denote the È-

ellipsoidal function represented by Ē = (A · ³, a) ∈ E+. The reason they define the classes of
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s-ellipsoidal functions is the following result.

Lemma 3.9 ([31], Lemma 6.1). Let Ē = (A· ³, 0) ∈ E+ and s ∈ [0,+∞]. Then

(

(s)hĒ

)◦
= (s)lĒ and

(

(s)lĒ

)◦
= (s)hĒ ,

where (s)hĒ = ³−(s+1)
ℏ
s
Ē
.



Chapter 4

Upper semicontinuous valuations on

the space of functions

In this chapter, a classification of upper semicontinuous and translation invariant valuations

which is unchanged by the addition of piecewise affine functions on the space of convex functions

which is a piecewise affine function outside of a compact set of R, is established in Theorem 4.6.

This is a joint work with Monika Ludwig.

Following the standard notations in valuation theory, in this chapter we will adopt the notation

Kn for the set of all non-empty, compact, convex subsets of Rn and Vn for n-dimensional volume

on R
n.

4.1 Preliminaries

A functional Z : Kn → R is called a valuation if

Z(K ∪ L) + Z(K ∩ L) = Z(K) + Z(L)

whenever K,L,K ∪ L ∈ Kn.

We say that Z is translation invariant if Z(K + x) = Z(K) for every vector x, and Z is rotation

invariant if Z(ϕK) = Z(K) for every rotation ϕ : Rn → R
n. We consider continuous and upper

semicontinuous valuations, where Kn and its subspaces are equipped with the topology induced

by the Hausdorff metric. We say that a valuation Z : Kn → R is upper semicontinuous if for

every Km ∈ Kn converging to K ∈ Kn,

lim sup
m→+∞

Z(Km) f Z(K).

The n-dimensional volume Vn : Kn → [0,+∞) is an example of continuous valuation, since if

K,L,K ∪ L are convex bodies then

Vn(K ∪ L) + Vn(K ∩ L) = Vn(K) + Vn(L).
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Other examples of valuations on Kn are the intrinsic volumes V0, . . . , Vn−1 (see [46]). They are

fundamental in convex geometry since they carry important geometric information. For example,

V0 is the Euler characteristic, that is, V0(K) = 1 for K ∈ Kn, and 2Vn−1(K) is the surface area

of K. Furthermore, Vj(K) is the j-dimensional volume of K if K is contained in a j-dimensional

plane, and Vj is j-homogeneous, that is, Vj(tK) = tjVj(K) for t > 0 and K ∈ Kn.

There are many results that characterize the valuations defined on Kn. For example, Mc Mullen

showed a fundamental result in the theory of translation invariant valuations on convex bodies.

Theorem 4.1 ([42]). If Z : Kn → R is continuous, translation invariant valuation, then there

exist Zj : K
n → R that is a continuous, translation invariant and j-homogeneous valuation, for

j = 1, . . . , n, such that

Z = Z0 + · · ·+ Zn.

Hadwiger showed this result under the additional assumption that Z is simple, that is, Z(P ) = 0

for all polytopes that are not full-dimensional. Probably the most famous result on valuations,

and one of the most important results in this field is Hadwiger’s characterization theorem.

Theorem 4.2 ([28], Section 6.1.10). A functional Z : Kn → R is a continuous, translation and

rotation invariant valuation if and only if there are constants c0, . . . , cn ∈ R such that

Z(K) = c0V0(K) + · · ·+ cnVn(K)

for every K ∈ Kn.

Note that the planar case of Theorem 4.2 states that every continuous and rigid motion invariant

valuation Z : K2 → R can be written as a linear combination of the Euler characteristic V0 = Ç,

the length V1 = L and the area V2 = A of the convex body, i.e., there are constants c0, c1, c2 ∈ R

such that

Z(K) = c0Ç(K) + c1L(K) + c2A(K) (4.1)

for every K ∈ K2.

The next result is due to M. Ludwig [37] and characterizes the rigid motion invariant and upper

semicontinuous valuations defined on K2. Consider the set

W =

{

· : [0,+∞) → [0,∞) : · is concave, lim
t→0

·(t) = 0, and lim
t→+∞

·(t)/t = 0

}

. (4.2)

Theorem 4.3 ([37]). Let µ : K2 → R be an upper semicontinuous and rigid motion invariant

valuation. Then there are constants c0, c1, c2 ∈ R and a function · ∈ W such that

µ(K) = c0Ç(K) + c1L(K) + c2A(K) +

∫

S1

·(Ä(K,u))dH1(u) (4.3)

for every K ∈ K2.

Here Ä(K,u) is the curvature radius of the boundary of K at the point with normal u ∈ S1.
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Currently, the notion of valuations has been extended to families of functions due to their intimate

relation to valuations on convex bodies. We denote by

Conv(Rn) := {u : Rn → (−∞,+∞] : u is l.s.c and convex, u ̸≡ +∞}

the space of lower semicontinuous, convex, proper functions defined on R
n, by Conv(Rn;R)

the space of finite-valued, convex functions on R
n and by Convlip(R

n;R) the space of Lipschitz

functions. Note that Convlip(R
n;R) ¢ Conv(Rn;R) ¢ Conv(Rn).

We define valuations on the space Conv(Rn) and its subspaces as follows. We say that

Z : Conv(Rn) → R is a valuation if

Z(u) + Z(v) = Z(u ' v) + Z(u ( v)

for every u, v ∈ Conv(Rn) such that also u ' v, u ( v ∈ Conv(Rn). Here, u ( v and u ' v denote

the pointwise maximum and minimum of u, v ∈ Conv(Rn), respectively.

We say that Z is translation invariant if

Z(u ◦ Ä−1) = Z(u)

for every u ∈ Conv(Rn) and translation Ä on R
n, and it is SLn(R) invariant if

Z(u ◦ ϕ−1) = Z(u)

for every u ∈ Conv(Rn) and ϕ ∈ SLn(R). We say that Z : Conv(Rn) → R is epi-translation

invariant if it is invariant under translations of the epigraph of u in R
n+1, that is, if

Z(u ◦ Ä−1 + c) = Z(u)

for every u ∈ Conv(Rn), translation Ä on R
n and c ∈ R.

Let Convsc(R
n) denotes the set of super-coercive functions,

Convsc(R
n) =

{

u : R → (−∞,+∞] : lim
|x|2→+∞

u(x)

|x|
= +∞

}

.

Observe that the property

lim
|x|2→+∞

u(x)

|x|2
= +∞

implies that also

lim
|x|2→+∞

|∇u(x)| = +∞.

We say that a sequence uk ∈ Conv(Rn) epi-converges to u ∈ Conv(Rn) if for all x ∈ R
n the

following conditions hold:
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1. For every sequence xk that converges to x

u(x) f lim inf
k→+∞

uk(xk); (4.4)

2. There exists a sequence xk that converges to x such that

u(x) = lim
k→+∞

uk(xk). (4.5)

For a convex function u on R
n the function

u∗(x) = sup
y∈Rn

(ïx, yð − u(y)), x ∈ R
n, (4.6)

denotes the Legendre transform or convex conjugate of u. By standard properties of the Legendre

transform, we have the following result

{u∗ : u ∈ Convsc(R
n)} = Conv(Rn;R). (4.7)

This relation allows us to translate results for valuations on Convsc(R
n) easily to results on

Conv(Rn;R) and vice versa.

The following result is a consequence of Theorem 12.2 and Corollary 12.2.1 in [43].

Proposition 4.1. If u ∈ Conv(Rn), then u∗ ∈ Conv(Rn) and (u∗)∗ = u.

Proposition 4.2 ([44], Theorem 11.34). A sequence uk of functions in Conv(Rn) epi-converges

to u ∈ Conv(Rn) if and only if u∗k epi-converges to u∗.

For v ∈ Conv(Rn;R), the subdifferential of v at x ∈ R
n is defined by

∂v(x) = {y ∈ R
n : v(z) g v(x) + ïy, z − xð for all z ∈ R

n}.

Each vector of ∂v(x) is said to be a subgradient of v at x. For a convex function v ∈ Conv(Rn;R),

differentiability at a point x ∈ R
n is equivalent to both epi(v) having a unique supporting

hyperplane at (x, v(x)) and the subdifferential of v at x being a singleton. Also, we can establish

a relation between the subdifferential at any non-minimizer point of v with the outer normal

vectors of the corresponding sublevel set at this point. Given a subset A ¦ R
n, the image of A

through the subdifferential of v is defined as

∂v(A) =
⋃

x∈A

∂v(x).

A well-known Radon measure defined on the set of finite convex functions is the Monge-Ampère

measure. This measure is the content of the following result, which is due to Alexandrov [2]. Let

B(Ω) be the class of Borel sets in Ω ¦ R
n.

Lemma 4.1 ([22], Theorem 2.3). Let Ω ¦ R
n be an open set and v : Ω ¦ R

n → R a convex

function. If B ∈ B(Ω), then the set ∂v(B) is measurable. Moreover, MA(v; ·) : B(Ω) → [0,∞],
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defined by

MA(v;B) := Vn(∂v(B)),

is a Radon measure on Ω ¦ R
n.

The measure MA(v; ·) is called the Monge-Ampère measure of v.

The following result is very important for us because it guarantees that det(D2 u(·)) is measurable

and it will help us to prove Theorem 4.7. Items (i) and (ii) are due to Aleksandrov [2] (or see

[22, Proposition 2.6 and Theorem A.31]).

Theorem 4.4. The following properties hold.

(i) If v ∈ Conv(Rn;R) and v ∈ C2(V ) on an open set V ¢ R
n, then MA(v; ·) is absolutely

continuous on V with respect to n-dimensional Lebesgue measure and

dMA(v;x) = det(D2v(x))dx (4.8)

for x ∈ V ;

(ii) If vj is a sequence in Conv(Rn;R) that epi-converges to v ∈ Conv(Rn;R), then the sequence

of measures MA(vj ; ·) converges weakly to MA(v; ·).

By [20, Theorem 4.3(a)] there exists the following Steiner formula for the Monge-Ampère measure

MA(v + rhBn ; ·) =
n
∑

j=0

(

n

j

)

rn−j MAj(v; ·) (4.9)

for v ∈ Conv(Rn;R) and r g 0. Using the relation (4.7), in [20] the authors define the conjugate

Monge–Ampère measure of a function u ∈ Convsc(R
n) by

MA∗(u; ·) := MA(u∗; ·),

and the Conjugate Mixed Monge–Ampère Measures is given by

MA∗
j (u; ·) = MAj(u

∗; ·)

for 0 f j f n (see [20]).

Let Cc([0,∞)) denotes the set of continuous functions with compact support on [0,∞). A

functional version of Hadwiger’s Theorem 4.2 is the following. Continuity is understood with

respect to epi-convergence.

Theorem 4.5 ([20], Theorem 1.7). A functional Z : Convsc(R
n) → R is a continuous, epi-

translation and rotation invariant valuation if and only if there are functions ³0, . . . , ³n ∈

Cc([0,∞)) such that

Z(u) =
n
∑

j=0

∫

Rn

³j(|y|2)dMA∗
j (u; y)

for every u ∈ Convsc(R
n).
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Similarly to Theorem 4.5, our goal here is to prove a functional version of Theorem 4.3 for n = 1.

4.2 Functional setting and statement of the main result

A function u ∈ Conv(Rn;R) is called piecewise affine if there exist finitely many affine functions

w1, . . . , wm : Rn → R such that

u =

m
∨

i=1

wi.

We denote by Convp.a(R
n;R) the set of piecewise affine functions. Furthermore, we say that

u ∈ Conv(Rn;R) is piecewise affine outside of a set C ¢ R
n if there are finitely many affine

functions w1, . . . , wm on R
n such that u =

∨m
i=1wi for all x ∈ R

n \ C. Let Convpac(R
n;R) be

the following subset of Convlip(R
n;R):

Convpac(R
n;R) := {u ∈ Convlip(R

n;R) : u is piecewise affine outside of a compact set}.

We will denote by domc u the smallest closed convex subset of Rn, such that u is piecewise affine

outside of domc u.

Unlike Theorem 4.5, we do not use just epi-convergence. We equip Convpac(R
n;R) with the

topology induced by the following convergence. We say that vj ∈ Convpac(R
n;R) converges to

v ∈ Convpac(R
n;R) if the following conditions hold:

1. vj epi-converges to v;

2. There exists a compact set C ¢ R
n such that domc vj , domc v ¦ C.

Note that the first condition implies that the convergence is locally uniform.

We say that Z : Convpac(R
n;R) → R is an upper semicontinuous valuation if for every sequence

uk converging to u,

Z(u) g lim sup
k→+∞

Z(uk),

and it is unchanged by the addition of piecewise affine functions if Z(u + w) = Z(u) for every

u ∈ Convpac(R
n;R) and each piecewise affine function w ∈ Convp.a(R

n;R).

Our goal here is to prove the following theorem.

Theorem 4.6. A functional Z : Convpac(R;R) → R is an upper semicontinuous and translation

invariant valuation which is unchanged by the addition of piecewise affine functions if and only

if there is a constant c0 ∈ R and a function · ∈ W such that

Z(u) = c0 +

∫

R

·(u′′(x))dx (4.10)

for every u ∈ Convpac(R;R).

Recall that W is given in (4.2). Here we are assuming u′′(x) = 0 whenever u is not twice

differentiable at x. See, for example, [47, 48].
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As a consequence of this theorem we have the following result, where continuity is considered

with the convergence defined in this section.

Corollary 4.1. Let Z : Convpac(R;R) → R be a continuous and translation invariant valuation

which is unchanged by the addition of piecewise affine functions. Then

Z(u) = c

for some constant c.

The following lemma is a simple result that allows us to obtain new valuations from a given one.

Lemma 4.2. Let Z : Convpac(R;R) → R be a valuation. If w ∈ Convpac(R;R) and

Zw(u) := Z(u+ w),

for u ∈ Convpac(R;R), then Zw is a valuation on Convpac(R;R).

Proof. Let w, u, v be convex functions in Convpac(R;R) such that u ' v, u ( v ∈ Convpac(R;R)

as well. It is easy to see that

u ' v + w = (u+ w) ' (v + w)

u ( v + w = (u+ w) ( (v + w).

Applying Z in the equations above and using that Z is a valuation, we get

Zw(u ' v) + Zw(u ( v) = Z(u ' v + w) + Z(u ( v + w)

= Z((u+ w) ' (v + w)) + Z((u+ w) ( (v + w))

= Z(u+ w) + Z(v + w)

= Zw(u) + Zw(v).

Therefore Zw is a valuation.

The rest of the chapter is devoted to the proof of our main theorem. This proof is organized

as follows. First we prove that if Z is given by (4.10), then Z is an upper semicontinuous and

translation invariant valuation which is unchanged by the addition of piecewise affine functions.

In order to prove that the integral in (4.10) is upper semicontinous we will introduce the Monge-

Ampère measure. Later, we will show that for each functional Z which is unchanged by the

addition of piecewise affine functions and is an upper semicontinuous and translation invariant

valuation, there is a constant c0 and · ∈ W such that Z can be written as a combination as in

(4.10).
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4.3 Proof of Theorem 4.6

4.3.1 Sufficiency part

In this subsection we want to show that the functional defined in (4.10) is an upper

semicontinuous and translation invariant valuation and it is unchanged by the addition of

piecewise affine functions.

Lemma 4.3. For · ∈ W, the function Z̃ : Convpac(R;R) → [0,∞) defined by

Z̃(u) =

∫

R

·(u′′(x))dx,

is translation invariant valuation and unchanged by the addition of piecewise affine functions.

Proof. We have

Z̃(u) + Z̃(v) =

∫

R

·(u′′(x))dx+

∫

R

·(v′′(x))dx

=

∫

{ugv}
·(u′′(x))dx+

∫

{u<v}
·(u′′(x))dx+

∫

{v>u}
·(v′′(x))dx+

∫

{vfu}
·(v′′(x))dx

=

∫

{ugv}
·((u ( v)′′(x))dx+

∫

{v>u}
·((u ( v)′′(x))dx

+

∫

{u<v}
·((u ' v)′′(x))dx+

∫

{vfu}
·((u ' v)′′(x))dx

=

∫

R

·((u ( v)′′(x))dx+

∫

R

·((u ' v)′′(x))dx

= Z̃(u ' v) + Z̃(u ( v),

whenever u, v, u ' v, u ( v ∈ Convpac(R;R). Thus, Z̃ is a valuation.

Now let Äy(x) = x+ y, where y ∈ R. Then

∫

R

·((u ◦ Ä−1
y )′′(x))dx =

∫

R

·(u′′(x− y))dx =

∫

R

·(u′′(x))dx,

and for a piecewise affine function w, we have

∫

R

·((u+ w)′′(x))dx =

∫

R

·(u′′(x))dx,

as we wanted to prove.

It remains to show that the valuation

Z̃(u) =

∫

R

·(u′′(x))dx,

depends upper semicontinuously on u. That is the content of the following theorem.
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Theorem 4.7. Let · ∈ W. Then

Z(u) =

∫

R

·(u′′(x))dx (4.11)

is finite for every u ∈ Convpac(R;R) and depends upper semicontinuously on u.

The proof of this result is similar to the proof of the following theorem due to M. Ludwig [38].

Theorem 4.8 ([38], Theorem 2). Let f ∈ W. Then for j = 1, . . . , n− 1

µ(K) =

∫

Sn−1

f(Pj(K, y))dH
n−1(y)

is finite for every K ∈ Kn and depends upper semicontinuously on f .

Here Pj(K, y) is the j-th elementary symmetric function of the principal radii of curvature at

y ∈ Sn−1. The strategy of the proof of Theorem 4.8 is to decompose the j-th area measure

of the convex body K, namely Sj(K, ·), into measures absolutely continuous and singular with

respect to the (n− 1)-dimensional Hausdorff measure on the sphere and use that the absolutely

continuous part is given by

Saj (K,w) =

∫

w
Pj(K, y)dH

n−1(y).

In our approach, we will use the Monge-Ampère measure and decompose it into measures

absolutely continuous and singular with respect to the Lebesgue measure on R
n. Its absolutely

continuous part is given by

MAa(v;U) =

∫

U
det(D2 v(x))dx,

where v ∈ Conv(Rn;R).

By Theorem 4.4 we have that MA(vj ; ·) converges weakly to MA(v; ·) whenever vj ∈

Convpac(R
n;R) converges to v ∈ Convpac(R

n;R) and the absolute part of the Monge-Ampère

measure vanishes on piecewise affine function. Using this and Lemma 4.1, we have the following

result.

Theorem 4.9. Let u ∈ Convpac(R
n;R). Then MA(u;Rn) < +∞.

Let v ∈ Convpac(R;R). By Theorem 1.13 the measure MA(v; ·) can be decomposed into measures

absolutely continuous and singular with respect to the Lebesgue measure , say,

MA(v; ·) = MAa(v; ·) +MAs(v; ·),

respectively. For the absolutely continuous part, we have

MAa(v;´) =

∫

´
v′′(x)dx, (4.12)

while for the singular part we only need to remember that it is concentrated on a null set, i.e.,
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there is a set ´0 ¢ R such that V1(´0) = 0 and

MAs(v;´ \ ´0) = 0 (4.13)

for every Borel set ´ ¢ R.

Let uk ∈ Convpac(R;R) be a sequence of functions that converges to u ∈ Convpac(R;R) and

C ¢ R be a compact set.

By Theorem 4.4 and Theorem 1.9 we have that

lim sup
k→+∞

MA(uk;´) f MA(u;´), (4.14)

for every closed set ´ ¦ C.

By A. D. Alexandrov [2] if v ∈ Convpac(R;R) then v′′(x) exist almost everywhere (a.e) on R and

by (4.12) the function v′′ is Lebesgue-measurable.

Now we can start the proof of Theorem 4.7. Recall that we will use the same arguments utilized

by M. Ludwig in [38].

4.3.2 Proof of Theorem 4.7

First since · ∈ W then · is concave and limt→0 ·(t) = 0. This implies that · is a continuous

function and ·(0) = 0. Moreover, since · is concave and non-negative on [0,+∞), · is non-

decreasing. Using that we get for every t > 0 and 0 < ¼ < 1

·(¼t+ (1− ¼)0) g ¼·(t) + (1− ¼)·(0).

In particular, if we take s = ¼t < t we obtain

·(s)

s
g
·(t)

t
,

and this means that ·(t)
t is non-increasing.

Let u ∈ Convpac(R;R) be such that V1(domc u) > 0. Since -· is convex, by the Jensen inequality,

Theorem 1.12, we obtain

1

V1(domc u)

∫

domc u
·(u′′(x))dx f ·

(

1

V1(domc u)

∫

domc u
u′′(x)dx

)

.

Using that · is non-decreasing, ·(0) = 0,MA(u; domc u) < +∞ for Lipschitz functions and
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(4.12), we arrive at

Z(u) =

∫

domc u
·(u′′(x))dx

f V1(domc u)·

(

1

V1(domc u)

∫

domc u
u′′(x)dx

)

f V1(domc u)·

(

1

V1(domc u)
MA(u; domc u)

)

.

We conclude that the valuation (4.11) is finite for every u ∈ Convpac(R;R). The next step is to

show that Z depends upper semicontinuously on u.

Let ε > 0 be chosen, C ¢ R be a compact set and u ∈ Convpac(R;R). Let ´0 be the set where

the singular part of MA(u; ·) is concentrated. Since V1(´0) = 0 and by (4.12) the function u′′

is measurable a.e on C, we can choose by Lusin’s Theorem 1.14 a closed set ´ ¢ C where u′′ is

continuous as a function restricted to ´, such that

´ ∩ ´0 = ∅ (4.15)

and

V1(C \ ´) f ε. (4.16)

Let uk be a sequence in Convpac(R;R) converging to u ∈ Convpac(R;R). First, we show that

lim sup
k→+∞

∫

´
·(u′′k(x))dx f

∫

´
·(u′′(x))dx (4.17)

holds for ´ ¦ C, where ´ is the set satisfying (4.15) and (4.16).

Set

a = inf{·(u′′(x)) : x ∈ ´}

b =sup{·(u′′(x)) : x ∈ ´}.

Note that b < +∞ because u′′ is continuous on ´ and ´ is compact. Therefore, · is uniformly

continuous on [a, b]. Let ¸ > 0 be arbitrarily given. Then, there exists a number ¶ > 0 such that

|·(s)− ·(t)| f ¸ (4.18)

whenever s, t ∈ [a, b] are such that |s− t| f ¶.

Consider a subdivision a = t1 f t2 f · · · f tm+1 = b of [a, b], such that

max
i=1,...,m

{ti+1 − ti} f ¶ (4.19)

and such that

V1({x ∈ ´ : u′′(x) = ti}) = 0
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for i = 2, . . . ,m. This last condition is possible since V1({x ∈ ´ : u′′(x) = ti}) > 0 holds only for

countably many t.

Now consider the subsets of ´ given by

´i = {x ∈ ´ : ti f u′′(x) f ti+1},

for i = 1, . . . ,m.

By linearity of the integral and since · is non-decreasing, we have that

∫

´
·(u′′(x))dx =

m
∑

i=1

∫

´i

·(u′′(x))dx

g
m
∑

i=1

·(ti)V1(´i), (4.20)

and by (4.12)
∫

´i

u′′k(x)dx f MA(uk;´i).

Consider J ¦ {1, . . . ,m} such that V1(´j) = 0 whenever j ̸∈ J . By the Jensen inequality,

Theorem 1.12, the following inequality

1

V1(´i)

∫

´i

·(u′′k(x))dx f ·

(

1

V1(´i)

∫

´i

u′′k(x)dx

)

holds for each i ∈ J .

Using these inequalities and the monotonicity of ·, we obtain

∫

´
·(u′′k(x))dx f

m
∑

i=1

∫

´i

·(u′′k(x))dx

=
∑

i∈J

∫

´i

·(u′′k(x))dx

f
∑

i∈J

·

(

1

V1(´i)
MA(uk;´i)

)

V1(´i).

Since u′′ is continuous on ´ and ´ is closed, the sets ´i are closed for i = 1, . . . ,m. This implies

by (4.14) that

lim sup
k→+∞

MA(uk;´i) f MA(u;´i).

By continuity and monotonicity of ·

lim sup
k→+∞

∫

´
·(u′′k(x))dx f

∑

i∈J

·

(

1

V1(´i)
MA(u;´i)

)

V1(´i). (4.21)

By (4.15) and (4.13),

MA(u;´i) = MAa(u;´i)
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and by (4.12) and the definition of ´i,

MAa(u;´i) f ti+1V1(´i).

Hence,

lim sup
k→+∞

∫

´
·(u′′k(x))dx f

∑

i∈J

·

(

1

V1(´i)
MA(u;´i)

)

V1(´i)

f
m
∑

i=1

·(ti+1)V1(´i).

Now using (4.20), (4.19) and (4.18), we conclude that

lim sup
k→+∞

∫

´
·(u′′k(x))dx f

∫

´
·(u′′(x))dx+ ¸V1(´).

Since ¸ > 0 is arbitrary, this proves (4.17).

The second step is to show that

lim sup
k→+∞

∫

C
·(u′′k(x))dx f

∫

C
·(u′′(x))dx. (4.22)

Since · is non-decreasing and ·(t)/t is non-increasing, using (4.12) we see that for every t > 0,

∫

C\´
·(u′′k(x))dx =

∫

{x∈C\´: u′′k(x)ft}
·(u′′k(x))dx+

∫

{x∈C\´: u′′k(x)>t}
·(u′′k(x))dx

f ·(t)V1(C \ ´) +
·(t)

t
MA(uk;C).

This implies, combined with (4.17), (4.16) and (4.14) that

lim sup
k→+∞

∫

C
·(u′′k(x))dx = lim sup

k→+∞

∫

´
·(u′′k(x))dx+ lim sup

k→+∞

∫

C\´
·(u′′k(x))dx

f

∫

C
·(u′′(x))dx+ ·(t)ε+

·(t)

t
MA(u;C),

for every t > 0. Since ε > 0 is arbitrary and since t does not depend on ε, it follows that for

every t > 0

lim sup
k→+∞

∫

C
·(u′′k(x))dx f

∫

C
·(u′′(x))dx+

·(t)

t
MA(u;C). (4.23)

Using the fact that ·(t)/t is continuous and that limt→+∞ ·(t)/t = 0, we now can make ·(t)/t

arbitrarily small by choosing t suitably large. Therefore (4.23) proves (4.22).

To finish, recall that ·(0) = 0 and since uk converges to u as k → +∞, then there is a compact

set K ¢ R such that domc uk, domc u ¦ K. Hence

∫

R

·(u′′k(x))dx =

∫

K
·(u′′k(x))dx
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and
∫

R

·(u′′(x))dx =

∫

K
·(u′′(x))dx,

and this concludes the proof.

4.3.3 Necessity part

In this subsection we want to show that if Z : Convpac(R;R) → R is an upper semicontinuous and

translation invariant valuation which is unchanged by the addition of piecewise affine functions,

then there is a constant c0 ∈ R and · ∈ W such that

Z(u) = c0 +

∫

R

·(u′′(x))dx

for every u ∈ Convpac(R;R). We will first prove the following particular case where the valuation

is simple, i.e., when Z̃(w) = 0 whenever V1(domcw) = 0.

Proposition 4.3. Let Z : Convpac(R;R) → R be a simple, upper semicontinuous and translation

invariant valuation which is unchanged by the addition of piecewise affine functions. Then there

is a function · ∈ W such that

Z(u) =

∫

R

·(u′′(x))dx (4.24)

for every u ∈ Convpac(R;R).

Throughout this section m > 0 is fixed and Z : Convpac(R;R) → R has the same properties as in

Proposition 4.3. Since every function in Convpac(R;R) can be approximate by piecewise affine

functions and Z is upper semicontinuous, we have

Z(u) g 0 (4.25)

for every u ∈ Convpac(R;R).

Let f ∈ Conv(R;R) and consider the closed interval J = [a, b] ¢ R. Define f ∔ LJ by

(f ∔ LJ)(x) =



















f ′+(a)x+ (f(a)− f ′+(a)a), if x < a

f(x), if x ∈ J

f ′−(b)x+ (f(b)− f ′−(b)b), if x > b

, (4.26)

where f ′+(x) and f ′−(x) denote the one-sided derivatives of f in x. Note that f ∔ LJ ∈

Convpac(R;R) whenever f ∈ Convpac(R;R).

Given a > 0 define the function · : [0,+∞) → R by

·(a) =
1

2m
Z(f ∔ L[−m,m]), (4.27)
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where f(x) = a
2x

2. Also define the function ga : [0,+∞) → R by

Z(f ∔ LJ) = ga(V1(J)), (4.28)

where J ¢ R is a closed interval. Note that in this case the function ga depends on a and it is

well-defined, since Z is simple and unchanged by the addition of piecewise affine functions. By

Lemma 4.2 and once that Z is simple, we have that

ga(s1 + s2) = ga(s1) + ga(s2),

whenever s1, s2 g 0. Since Z is upper semicontinuous, so is ga. Therefore ga is a solution of

Cauchy’s functional equation and there is a constant p = p(a) such that

ga(s) = ps.

For J = [−m,m], we have

Z(f ∔ LJ) = pV1(J)

which shows that

Z(f ∔ L[x1,x2]) = ga(x2 − x1) = p(x2 − x1) =
Z(f ∔ L[−m,m])

2m
(x2 − x1) (4.29)

= ·(a)(x2 − x1). (4.30)

Lemma 4.4. · is a non-negative function.

Proof. This is a consequence of (4.25).

Proposition 4.3 is a consequence of the two next results.

Lemma 4.5. · ∈ W.

Proof. Consider the following sequence of functions

uk(x) =
1

k
x2.

Note that uk ∔ L[−m,m] ∈ Convpac(R;R) converges to the function l ≡ 0 as k → +∞. Since by

Lemma 4.4 · is non-negative, then

lim sup
a→0+

·(a) = lim sup
k→+∞

Z(uk ∔ L[−m,m])

2m
= Z(l) = 0.

To prove that · is concave we will use a geometric construction. Let 0 f r < a < s and consider

the points

pi = −m+

(

2m

n

)

i,

where i = 0, . . . , n. Note that p0 = −m, pn = m and pi ∈ (−m,m) for every i = 1, . . . , n− 1.
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Consider the functions

gi(x) = rx2 + (2a− 2r)

(

−m+

(

2m

n

)

i

)

x− (a− r)

(

−m+

(

2m

n

)

i

)2

= rx2 + (2a− 2r)pix− (a− r)p2i ,

for i = 0, . . . , n− 1. We have that

gi(pi) = f(pi), g′i(pi) = f ′(pi) and epi(f ∔ L[−m,m]) ¢ epi(gi ∔ L[−m,m]),

for every i = 0, . . . , n− 1. Recall that m is fixed.

Figure 4.1: f ∔ L[−m,m] and gi.

Source: Compiled by the author.

Now we want to find for every i = 1, . . . , n, the function

hi(x) = sx2 + bix+ ci

such that







hi(xi) = gi−1(xi)

h′i(xi) = g′i−1(xi)
(4.31)

for some xi ∈ (pi−1, pi) and epi (hi ∔ L[−m,m]) ¢ epi(gi−1 ∔ L[−m,m]), and







hi(yi) = gi(yi)

h′i(yi) = g′i(yi)
(4.32)

for some yi ∈ (xi, pi) and epi (hi ∔ L[−m,m]) ¢ epi(gi ∔ L[−m,m]).
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By second equations in (4.31) and (4.32) we have, respectively,

xi =

(

a− r

s− r

)

pi−1 −
bi

2s− 2r
(4.33)

yi =

(

a− r

s− r

)

pi −
bi

2s− 2r
. (4.34)

Thus

yi − xi =

(

a− r

s− r

)

2m

n
, (4.35)

for every i = 1, . . . , n, that is, (yi − xi) is a constant that does not depend on i. Moreover

xi+1 − yi =
bi

2s− 2r
−

bi+1

2s− 2r
.

By first equation in (4.31) and (4.33), we must have

(bi − (2a− 2r)pi−1)
2 − 4(s− r)

(

ci + (a− r)p2i−1

)

= 0 (4.36)

and by first equation in (4.32) and (4.34), we get

(bi − (2a− 2r)pi)
2 − 4(s− r)

(

ci + (a− r)p2i
)

= 0. (4.37)

Using (4.36) and (4.37) we obtain that

bi − bi+1 =
4m

n
((s− r)− (a− r))

and therefore

xi+1 − yi =
1

2s− 2r

[

4m

n
((s− r)− (a− r))

]

=
2m

n

(

1−

(

a− r

s− r

))

, (4.38)

for every i = 1, . . . , n− 1. This means that (xi+1 − yi) also does not depend on i.

Note that if φ(n) = 2m
n , then (yi − xi) + (xi+1 − yi) = φ(n).

We approximate the function f ∔ L[−m,m] by a convex function un ∈ Convpac(R;R) constructed

in the following way

un = (g0 ∔ L[−m,x1]) ( (h1 ∔ L[x1,y1]) ( (g1 ∔ L[y1,x2]) ( (h2 ∔ L[x2,y2]) ( · · · ( (gn ∔ L[yn,m]).

(4.39)
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Figure 4.2: Functions f (red) and un (black).

Source: Compiled by the author.

Since (yi−xi) and (xi+1−yi) do not depend on i and since Z is a simple valuation and unchanged

by the addition of piecewise affine functions, we have

Z(un) = Z((g0 ∔ L[−m,x1]) ( (h1 ∔ L[x1,y1]) ( (g1 ∔ L[y1,x2]) ( (h2 ∔ L[x2,y2]) ( · · · ( (gn ∔ L[yn,m]))

= Z(g0 ∔ L[−m,x1]) + Z(gn ∔ L[yn,m]) +

n−1
∑

i=1

Z(gi ∔ L[yi,xi+1]) +

n
∑

i=1

Z(hi ∔ L[xi,yi])

= nZ(h1 ∔ L[x1,y1]) + nZ(g1 ∔ L[y1,x2]),

and by (4.29), (4.35) and (4.38), we get

Z(un) = n(y1 − x1)
Z(h1 ∔ L[−m,m])

2m
+ n(x2 − y1)

Z(g1 ∔ L[−m,m])

2m

=
n

2m

(

a− r

s− r

)

2m

n
Z(h1 ∔ L[−m,m]) +

n

2m

(

1−

(

a− r

s− r

))

2m

n
Z(g1 ∔ L[−m,m])

=

(

a− r

s− r

)

Z(h1 ∔ L[−m,m]) +

(

1−

(

a− r

s− r

))

Z(g1 ∔ L[−m,m]). (4.40)

Note that Z(un) does not depend on n. To finish the proof that · is concave we use that un

converges to f ∔ L[−m,m] as n → +∞, that Z is upper semicontinuous and use equation (4.40)

such that

2m·(2a) = Z(f ∔ L[−m,m])

g lim sup
n→+∞

Z(un)

= lim sup
n→+∞

(

a− r

s− r

)

Z(h1 ∔ L[−m,m]) +

(

1−
a− r

s− r

)

Z(g1 ∔ L[−m,m])

= 2m

((

a− r

s− r

)

·(2s) +

(

1−
a− r

s− r

)

·(2r)

)

.
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Setting ¼ = a−r
s−r , since 0 f r < a < s, we have that 0 < ¼ < 1 and

·(¼2s+ (1− ¼)2r) g ¼·(2s) + (1− ¼)·(2r).

Once that r and s were arbitrarily taken, we arrive at

·(¼s+ (1− ¼)r) g ¼·(s) + (1− ¼)·(r)

for every ¼ ∈ (0, 1).

The last property needed to conclude that · ∈ W is

lim
a→+∞

·(a)

a
= 0.

Consider the family of functions fk(x) = kx2, k ∈ N. We have

(

fk ∔ L[− 1
k
, 1
k ]

)

(x) =



















−2x− 1
k , if x < − 1

k

kx2, if x ∈
[

− 1
k ,

1
k

]

2x− 1
k , if x > 1

k

.

Note that fk ∔ L[− 1
k
, 1
k ]

converges to l = |2x|. Since Z is upper semicontinuous and simple, we

obtain

lim sup
k→+∞

Z(fk ∔ L[− 1
k
, 1
k ]
) = 0. (4.41)

By (4.30), we have that

lim
a→+∞

·(a)

a
= 0.

The second result necessary to prove Proposition 4.3 is the following.

Proposition 4.4. For a given · ∈ W, there is a unique Z : Convpac(R;R) → R with the

following properties:

(i) Z is upper semicontinuous;

(ii) Z is a simple and translation invariant valuation, unchanged by the addition of piecewise

affine functions;

(iii) Z(f ∔ L[−m,m]) = 2m·(a), where f(x) = a
2x

2.

A function v ∈ Convpac(R;R) is called piecewise linear-quadratic if domc v can be expressed

as the union of finitely many intervals Ji, i = 1, . . . , l, such that the restriction of v to Ji is a

quadratic or affine function. The set of piecewise linear-quadratic functions will be denoted by

P l.q(R). Note that piecewise linear functions belong to P l.q(R) and since P l.q(R) is dense in

Convpac(R;R), one can approximate every u ∈ Convpac(R;R) by elements of P l.q(R). The upper
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semicontinuity of Z implies that for every sequence uk ∈ P l.q(R) such that uk → u

Z(u) g lim sup
k→+∞

Z(uk). (4.42)

We will prove that for every u ∈ Convpac(R;R) there is a sequence uk ∈ P l.q(R) such that

equality holds in (4.42), that is,

Z(u) = sup

{

lim sup
k→+∞

Z(uk) : uk ∈ P l.q(R), uk → u

}

. (4.43)

Proving this result we have that Z is uniquely determined by · and therefore proves Proposition

4.4.

Figure 4.3: Function u (red) and a piecewise linear-quadratic function uk (black).

Source: Compiled by the author.

We call a closed triangle T = T (x, y) a support triangle of a convex function u with endpoints

(x, u(x)) and (y, u(y)) if x, y ∈ domu and T is bounded by support lines (that is, 1-dimensional

support hyperplanes) to u at x and y and the chord connecting (x, u(x)) and (y, u(y)). Using

suitable support triangles of u ∈ Convpac(R;R) we will construct an v ∈ P l.q(R) such that

Z(u) f Z(v) + ÄV1(domc u), (4.44)

where Ä > 0 is given.

One of the most useful tools of geometric measure theory is the Vitali covering theorem. Given

a ‘sufficiently large’ collection of sets that cover some set S, the Vitali theorem selects a disjoint

subcollection that covers almost all of S. A collection of sets C is called a Vitali class for S if for

each x ∈ S and ¶ > 0 there exists U ∈ C with x ∈ U and 0 < Vn(U) f ¶.

Theorem 4.10 ([21], Theorem 1.10). (Vitali covering theorem)

1. Let S be an Hn-measurable subset of R
n and let C be a Vitali class of closed sets for S.

Then we may select a (finite or countable) disjoint sequence {Ui}i of C such that either
∑

i Vn(U) = +∞ or Hn(S \ ∪iUi) = 0;
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2. If Hn(S) < +∞, then given ε > 0, we may also require that

Hn(S) f
∑

i

Vn(U) + ε. (4.45)

What we will do is to show that for the set

S = {x ∈ domc u; u
′′(x) is well-defined}

there is a suitable Vitali class defined with the help of support triangles of u. Since Z is a

translation invariant valuation, we can consider without loss of generality that u ∈ Convpac(R;R)

is such that domc u = [−m,m].

Lemma 4.6. Let x0 ∈ S such that in a neighborhood of x0 the function u is not linear. For

every Ä, Ä > 0 there is a support triangle T = T (x, y) of u, a convex body AT ¢ R
2 and a function

vT ∈ P l.q(R) such that:

(i) (x0, u(x0)) ∈ T and 0 < y − x < Ä ;

(ii) AT ¢ T and AT is a support triangle of vT ;

(iii) Z(u∔ L[x,y]) f Z(vT ) +
Ä
2(y − x).

Proof. First since u is a convex function in particular u is twice differentiable almost everywhere.

Then, by Taylor expansion 1.18, u can be represented locally around x0 by

u(x) = u(x0) + u′(x0)(x− x0) +
1

2
u′′(x0)(x− x0)

2 + o((x− x0)
2). (4.46)

To prove this lemma we will consider two cases. The first case is when u′′(x0) > 0. Take

Pε = (x0 − ε, u(x0 − ε)) and Qε = (x0 + ε, u(x0 + ε)) points on the graph of u and let

Tε = Tε(x0 − ε, x0 + ε) be the support triangle of u with endpoints Pε and Qε. By (4.46),

we have

Qε − Pε =
(

2ε, 2εu′(x0)
)

.

Hence for ε sufficiently small we have that 0 < 2ε < Ä and (i) happens. To prove (ii), consider

H(Pε) and H(Qε) the support lines of u at x0−ε and x0+ε, respectively, and let Wε = (w1, w2)

be the point where H(Pε) and H(Qε) intersect. Without loss of generality, assume that

(x0 + ε)− w1 f w1 − (x0 − ε).

Consider Qε1 = (qε1, h
ε
1) as the point on H(Qε) such that qε1 − w1 = w1 − (x0 − ε). Note that

Qε ∈ [Wε, Q
ε
1], where [Wε, Q

ε
1] is the closed line segment with endpoints Wε and Qε1. Thus, there

exists a quadratic function

fε(x) = ax2 + bx+ c = a(ε)x2 + b(ε)x+ c(ε)

such that H(Pε) is tangent to f at Pε and H(Qε) is tangent to f at Qε1 (see Lemma 5.1 in

Appendix and Figure 4.4). Note that hϵ1 = fε(q
ε
1).
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A simple calculation using (4.46) shows that as ε→ 0

fε(x) →
u′′(x0)

2
x2 + (u′(x0)− x0u

′′(x0))x+ (u(x0)− x0u
′(x0) +

x20
2
u′′(x0)) = fx0(x). (4.47)

Since fε is a convex function, Qε does not lie in the interior of epi(fε) and [Qε, Q
ε
1] is tangent

to fε. Let Qε2 = (qε2, fε(q
ε
2)) be the second point on boundary of epi(fε) such that [Qε2, Qε] is

tangent to fε, and let

T ε1 = conv{Pε,Wε, Q
ε
1} and T ε2 = conv{Pε,Wε, Q

ε
2}.

See Figure 4.4.

Figure 4.4: Case u′′(x0) > 0.

Source: Compiled by the author.

Now it is sufficient to define

AεT = (epi(fε) ∩ T
ε
2 ) ∪ conv{Pε, Q

ε
2, Qε}

and

vεT = (fε ∔ L[x0−ε,qε2]
) ( (w ∔ L[qε2,q

ε
1]
), (4.48)

where w = l([Qε2, Qε])(l([Qε, Q
ε
1]) and l([Qε2, Qε]) is the affine function that contains the segment

[Qε2, Qε] and l([Qε, Q
ε
1]) is the affine function that contains the segment [Qε, Q

ε
1] .

Therefore, AεT ¢ Tε, A
ε
T is a support triangle of vεT and vεT ∈ P l.q(R).

It remains to show the item (iii). Using that [Qε2, Qε] and that [Qε, Q
ε
1] are tangent to fε, we
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obtain

qε2 = (x0 + ε)−
√

(x0 + ε)2 − a−1(u(x0 + ε)− b(x0 + ε)− c)

qε1 = (x0 + ε) +
√

(x0 + ε)2 − a−1(u(x0 + ε)− b(x0 + ε)− c)

and since u(x0 + ε) → fx0(x0) as ε→ 0, we get

0 = lim
ε→0

2

√

(x0 + ε)2 − a−1(u(x0 + ε)− b(x0 + ε)− c)

qε1 + ε− x0

= lim
ε→0

qε1 − qε2
qε1 + ε− x0

= lim
ε→0

1

2

x0 + ε− qε2
qε1 + ε− x0

.

By (4.48), and using that Z vanishes on piecewise affine functions, we have

Z(vεT ) = Z(fε ∔ L[x0−ε,qε2]
).

Therefore, by (4.30)

Z(vεT ) =
qε2 + ε− x0

2m
Z(fε ∔ L[−m,m])

=
qε1 + ε− x0

2m

(

Z(fε ∔ L[−m,m])−
qε1 − qε2

qε1 + ε− x0
Z(fε ∔ L[−m,m])

)

.

Then, for every ¸ > 0 and for ε sufficiently small

qε1 + ε− x0
2m

(

Z(fε ∔ L[−m,m])− ¸
)

f Z(vεT ). (4.49)

Now observe that the triangle T ε1 is a support triangle of the function

(u∔ L[x0−ε,x0+ε]) ( (l([Qε, Q
ε
1])∔ L[x0+ε,qε1]

)

which is a function in Convpac(R;R) and T ε1 is also a support triangle of the quadratic function

fε(x) = ax2 + bx+ c. Thus there are translations Äy1 , . . . , Äyn with

|yi| = qε1 + ε− x0 and n f
2m

qε1 + ε− x0
< n+ 1

such that Ti = T (Ä−1
yi (x0 − ε), Ä−1

yi (qε1)) is a support triangle of fε(x) = ax2 + bx + c for every

i = 1, . . . , n, and T ′
is have pairwise disjoint interiors (see Lemma 5.2 in Appendix).

Define

vε =
n
∨

i=1

((u∔ L[x0−ε,x0+ε]) ( (l([Qε, Q
ε
1])∔ L[x0+ε,qε1]

)) ◦ Ä−1
yi ( (fε ∔ L[−m,m]\I), (4.50)

where I =
⋃n
i=1 Äyi([x0 − ϵ, qϵ1]). Note that [−m,m] \ I is not necessarily an interval, it can be
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union of intervals, and we used an abuse of notation.

By construction, vε is a convex function in Convpac(R;R) and since Z is a non-negative, simple

and translation invariant valuation,

Z(vε) g nZ(u∔ L[x0−ε,x0+ε])

and by (4.47), vε converges to fx0 ∔ L[−m,m] as ε→ 0.

By upper semicontinuity of Z, we obtain

Z(fx0 ∔ L[−m,m]) g lim sup
ε→0

Z(vε)

g lim sup
ε→0

2m

qε1 + ε− x0
Z(u∔ L[x0−ε,x0+ε]).

Since the function ·(2a) = 1
2mZ(ax

2 ∔ L[−m,m](x)) is contained in W , in particular, it is

continuous and by (4.47), we get for every ¸ > 0

Z(u∔ L[x0−ε,x0+ε]) f
qε1 + ε− x0

2m

(

Z(fε ∔ L[−m,m]) + ¸
)

(4.51)

for ε sufficiently small. Furthermore,

qε1 − (x0 + ε) f
qε1 − (x0 − ε)

2
= ε+

qε1 − (x0 + ε)

2
.

These last inequalities and (4.49) now imply that

Z(u∔ L[x0−ε,x0+ε]) f Z(vεT ) +
qε1 + ε− x0

2m
2¸

f Z(vεT ) +
2ε+

√

(x0 + ε)2 − a−1(u(x0 + ε)− b(x0 + ε)− c)

2m
2¸

f Z(vεT ) +
4ε

2m
2¸

for ε sufficiently small. In the last inequality we used the simple estimate

√

(x0 + ε)2 − a−1(u(x0 + ε)− b(x0 + ε)− c) f 2ε.

Setting ¸ = Äm
4 now shows that (iii) holds for ε > 0 sufficiently small.

Now let u′′(x0) = 0. Let Tε be the support triangle of u with endpoints P = (x0, u(x0)) and

Qε = (x0 + ε, u(x0 + ε)) and AεT = Tε. Then (i) holds for ε sufficiently small. For every a > 0

the quadratic function

f(x) = ax2 − 2ax0x+ (u(x0) + ax20)

is such that P is a point of the graph of f and whose epigraph is locally contained in epi(u).
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Since Z is an upper semicontinuous, non-negative and simple valuation, we obtain

lim sup
a→0

Z(f ∔ L[−m,m]) = 0.

Therefore, for a sufficiently small

Z(f ∔ L[−m,m]) f
Äm

4
. (4.52)

Let Wε be the point on the support line to u at x0 such that the first coordinate is x0 + ε and

let Qε1 = (qε1, f(q
ε
1)) be the point on graphic of f such that [Wε, Q

ε
1] is tangent to f .

Figure 4.5: Case u′′(x0) = 0.

Source: Compiled by the author.

Then the triangle

T ε1 = conv{P,Wε, Q
ε
1}

is a support triangle of f . Since epi(f) is locally contained in epi(u) the support line of u at Qε

does not intersect f for ε > 0 sufficiently small. Therefore

(u∔ L[x0,x0+ε]) ( (w ( l([Qε, Q
ε
1])),

where w is the tangente line to u at Qϵ, is a convex function in Convpac(R;R) and T ε1 is also a

support triangle of this function. Using the same idea of (4.50), define vε by

vε =
n
∨

i=1

((u∔ L[x0,x0+ε]) ( (w ( l([Qε, Q
ε
1]))) ◦ Ä

−1
yi ( (fε ∔ L[−m,m]\I),

where I =
⋃n
i=1 Äyi([x0, q

ϵ
1]) and n f 2m

qε1−x0
< n+ 1. Then vε converges to f ∔ L[−m,m] as ε→ 0

and

Z(vε) g nZ(u∔ L[x0,x0+ε]).
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Since Z is upper semicontinuous, we have for every ¸ > 0

2m

qε1 − x0
Z(u∔ L[x0,x0+ε]) f Z(f ∔ L[−m,m]) + ¸ (4.53)

for ε sufficiently small.

Since Wε belongs to a support line to f that contains P and the support line that contains Qε1,

we have that qε1 = x0 + 2ε. Thus, replacing qε1 in the inequality (4.53) we obtain

Z(u∔ L[x0,x0+ε]) f
2ε

2m
¸ +

2ε

2m
Z(f ∔ L[−m,m]).

By (4.52), it follows that

Z(u∔ L[x0,x0+ε]) f ε
( ¸

m
+
Ä

4

)

.

Taking ¸ =
Äm

4
, we obtain

Z(u∔ L[x0,x0+ε]) f
Ä

2
ε.

Thus, since

vϵT = (u∔ L[x0,x0+ε]) ( l([P,Qϵ])

is a piecewise affine function, (ii) and (iii) hold.

Since Z is a simple valuation, we have the immediately result.

Lemma 4.7. Let J ¢ domc u be a closed interval such that u|J is a piecewise affine function.

Then for every Ä > 0 it holds

Z(u∔ LJ) f
Ä

2
V1(J). (4.54)

Lemma 4.8. There is a constant cM such that

Z(u∔ LJ) f cMV1(J)

for every closed interval J ¦ domc u, where M is the Lipschitz constant of u.

Proof. Since M is the Lipschitz constant of u, then there exists a quadratic function

fx0(x) =Mx2 + b(x0)x+ c(x0)

such that fx0(x0) = u(x0) and f ′x0(x0) = u′+(x0) and this means that epi(fx0) is locally

contained in epi(u). Let Tϵ be the support triangle of u with endpoints P = (x0, u(x0)) and

Qϵ(x0+ϵ, u(x0+ϵ)) for ε > 0 sufficiently small. As in Lemma 4.6, for the case where u′′(x0) = 0,

define

vε =

n
∨

i=1

((u∔ L[x0,x0+ε]) ( (w ( l([Qε, Q
ε
1]))) ◦ Ä

−1
yi ( (fx0 ∔ L[−m,m]\I),
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where I =
⋃n
i=1 Äyi([x0, q

ϵ
1]). Then vϵ converges to fx0 ∔ L[−m,m] as ϵ→ 0 and for ¸ = 1

Z(u∔ L[x0,x0+ϵ]) f

(

1

m
+
Z(fx0 ∔ L[−m,m])

m

)

ϵ (4.55)

for ϵ sufficiently small. Note that Z(fx0 ∔ L[−m,m]) just depends on M , since Z is invariant

by affine functions. We can therefore dissect J into finitely many intervals for which (4.55)

holds.

Proposition 4.5. If Z : Convpac(R;R) is a simple, upper semicontinuous and translation

invariant valuation which is unchanged by the addition of piecewise affine functions, then

Z(u) = sup

{

lim sup
n→+∞

Z(vn) : vn ∈ P l.q(R), vn → u

}

.

Proof. Since u ∈ Convpac(R;R), the set S ¦ domc u of points where u is twice differentiable is

such that

V1(S) = V1(domc u).

By Lemmas 4.6 and 4.7 the sets

{x ∈ domc u : (x, u(x)) ∈ T} and cl({x ∈ domc u : u is linear in a neighborhood J of x})

are a Vitali class for S and this remains true if we only take T and J with V1(Pe1T ), V1(J) f ¶ for

¶ > 0, where Pe1T denotes the projection of the set T over the space generated by the canonical

vector e1 ∈ R
2. Take ¸ > 0 such that ¸ f ¶ and ¸ f Ä

2cM
V1(domc u).

Then we can choose by Vitali’s Theorem 4.10 support triangles T1, . . . , Tn and closed intervals

J1, . . . , Jl such that

V1(domc u) = V1(S) f
n
∑

i=1

V1(Pe1Ti) +
l
∑

j=1

V1(Jj) + ¸

and such that the intervals Pe1T1, . . . , Pe1Tn, J1, . . . , Jl are pairwise disjoint.

We choose closed intervals K1, . . . ,Kk such that Pe1T1, . . . , Pe1Tn, J1, . . . , Jl,K1, . . . ,Kk, have

pairwise disjoint interiors and such that domc u can be decomposed as

Pe1T1 ∪ · · · ∪ Pe1Tn ∪ J1 ∪ · · · ∪ Jl ∪K1 ∪ · · · ∪Kk.

Define

vT = vT1 ( · · · ( vTn ( (u∔ LJ1) ( · · · ( (u∔ LJl) ( (l1 ∔ LK1) ( · · · ( (lk ∔ LKk
),

where li are piecewise affine functions such that vT is a convex function in Convpac(R;R), vT
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coincides with u in R \ domc u, and

Z(vT ) =

n
∑

i=1

Z(vTi).

Therefore, since Z is a simple valuation and by Lemmas 4.6, 4.7 and 4.8 we conclude that for

every Ä > 0

Z(u) = Z((u∔ LPe1T1
) ( · · · ( (u∔ LPe1Tn

) ( (u∔ LJ1) ( · · · ( (u∔ LJl) ( (u∔ LK1) ( · · · ( (u∔ LKk
))

=

n
∑

i=1

Z(u∔ LPe1Ti
) +

l
∑

j=1

Z(u∔ LJj ) +

k
∑

s=1

Z(u∔ LKs)

f
n
∑

i=1

(

Z(vTi) +
Ä

2
V1(Pe1Ti)

)

+
l
∑

j=1

Ä

2
V1(Jj) + cM

k
∑

s=1

V1(domu ∩Ks)

f Z(vT ) +
Ä

2





n
∑

i=1

V1(Pe1Ti) +
l
∑

j=1

V1(Jj)



+ cM¸

f Z(vT ) +
Ä

2





n
∑

i=1

V1(Pe1Ti) +
l
∑

j=1

V1(Jj)



+
Ä

2
V1(domc u)

= Z(vT ) + ÄV1(domc u).

Since Ä is arbitrary we conclude the proof of this proposition.

Proof of Proposition 4.4. Let Z : Convpac(R;R) → [0,+∞) be a valuation that satisfies the

conditions (i) − (iii). By Lemma 4.5, · ∈ W . Since Z is simple and by (4.27) determined by

· on piecewise linear-quadratic functions, then Z(u) is determined by · for every u ∈ P l.q(R).

And by Proposition 4.5 we conclude that Z is uniquely determined by ·.

Proof of Proposition 4.3. Let · ∈ W be given by (4.27). By Lemma 4.3 and by Theorem 4.7,

the functional Z· : Convpac(R;R) → [0,+∞) defined by

Z·(u) =

∫

R

·(u′′(x))dx

is a simple, upper semicontinuous and translation invariant valuation, unchanged by the addition

of piecewise affine functions and for f(x) = a
2x

2 ∔ L[−m,m] satisfies

Z·(f ∔ L[−m,m]) = 2m·(a).

Therefore by Proposition 4.4 we conclude the proof.

Proof of Theorem 4.6. Let w be a piecewise affine function on R. Since Z is unchanged by the

addition of piecewise affine functions, we have Z(w) = c0 for some constant that does not depend
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on w. Define

Z0(u) = Z(u)− c0.

Then Z0 is a simple, upper semicontinuous, translation invariant valuation and unchanged by

the addition of piecewise affine functions. The proof now follows from Proposition 4.3 that

guarantees the existence of a function · ∈ W such that

Z0(u) =

∫

R

·(u′′(x))dx

for every u ∈ Convpac(R;R).



Chapter 5

Conclusion and further research

This thesis compiles works on convex geometry in different themes. We use this last chapter to

reinforce some conclusions and pose some questions that we encountered during this study.

In Chapter 2 we gave a constructive proof for the existence of isotropic measures for the John

and positive John positions. It would be nice to know if there is a possibility of weakening the

hypothesis about f and g requested in this chapter. Other question is about the uniqueness

of the position. For example, for two different convex bodies, is it possible to give on explicit

representation of an isotropic measure? Recall that we answered just for the positive John

position because for this position there is uniqueness.

In Chapter 3 we gave a constructive proof for s-isotropic measures in s- John position. One

question about the functional Löwner ellipsoids is if it is possible to give an explicit representation

of the “John decomposition” using the approach in [31].

Finally, regarding the Chapter 4, we would like to generalize the Theorem 4.6 for n ∈ N, i.e., to

resolve the following problem.

Problem: Let Z : Convpac(R
n;R) → R be an upper semicontinuous, SLn(R), translation

invariant valuation and unchanged by the addition of piecewise affine functions. Then there is a

constant c0 ∈ R and a function · ∈ W such that

Z(u) = c0 +

∫

Rn

·(detD2 u(x))dx

for every u ∈ Convpac(R
n;R).



Bibliography

[1] A. D. Alexandroff, “Almost everywhere existence of the second differential of a convex

function and some properties of convex surfaces connected with it”. Leningrad State

University Annals [Uchenye Zapiski] (Russian) Mathematical Series 6 (1939): 3–35.

[2] A.D.Aleksandrov,Dirichlet’s problem for the equation det ||zij || = f(z1, . . . , zn, z, x1, . . . , xn)

I,(Russian) Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 13, 5–24 (1958). English

translation in: A. D. Aleksandrov, Selected Works Part I: Selected Scientific Papers, Classic

of Soviet Mathematics, 4, Gordon and Branch Publishers, Amsterdam, 1996.

[3] S. Alesker, “Valuations on convex functions and convex sets and Monge-Ampère operators”.

Adv. Geom. 19, 313–322, 2019.

[4] D. Alonso-Gutiérrez, B. G. Merino, C. H. Jiménez and R. Villa. “John’s ellipsoid

and the integral ratio of a log-concave function”. The Journal of Geometric Analysis,

28(2):1182–1201, 2018.

[5] S. Artstein-Avidan, A. A. Giannopoulos, and V. D. Milman. “Asymptotic geometric

analysis”. American Mathematical Soc., Part I, volume 202, 2015.

[6] S. Artstein-Avidan and D. Katzin. “Isotropic measures and maximizing ellipsoids: Between

John and Loewner”. Proceedings of the American Mathematical Society, 146(12):5379–5390,

2018.

[7] S. Artstein-Avidan and E. Putterman. “Some new positions of maximal volume of convex

bodies”. La Matematica 1, 765–808, 2022.

[8] F. M. Baêta and J. Haddad, “On explicit representations of isotropic measures in John and

Löwner positions”. International Mathematics Research Notices, 2022.

[9] K. Ball. “Volumes of sections of cubes and related problems”. In Geometric aspects of

functional analysis, pages 251–260. Springer, 1989.

[10] K. Ball. “Volume ratios and a reverse isoperimetric inequality”. Journal of the London

Mathematical Society, 2(2):351–359, 1991.

[11] K. Ball. “Ellipsoids of maximal volume in convex bodies”. Geometriae Dedicata,

41(2):241–250, 1992.



BIBLIOGRAPHY 127

[12] R. G. Bartle, “The Elements of Integration and Lebesgue Measure”, John Wiley & Sons,

Inc. 1966.

[13] J. Bastero and M. Romance. “John’s decomposition of the identity in the non-convex case”.

Positivity, 6(1):1–16, 2002.

[14] J. Bastero and M. Romance. “Positions of convex bodies associated to extremal problems

and isotropic measures”. Advances in Mathematics, 184(1):64–88, 2004.

[15] J. M. Borwein and J. D. Vanderwerff. “Convex Functions: Constructions, Characterizations

and Counterexamples”. Cambridge: Cambridge University Press, 2010.

[16] H. Brezis, “Functional Analysis, Sobolev Spaces and Partial Differential Equations”.

Springer, New York, 2010.

[17] H. Busemann and W. Feller. “Kruemmungseigenschaften konvexer Flachen”. Acta

Mathematica 66, no. 1 (1936): 1-47.

[18] C. Canuto and A. Tabacco, “Mathematical Analysis II”, Second Edition. Springer

International Publishing, 2015.

[19] A. Colesanti, M. Ludwig and F. Mussnig, “The Hadwiger theorem on convex functions, I”

(2020). arXiv:2009.03702.

[20] A. Colesanti, M. Ludwig and F. Mussnig, “The Hadwiger theorem on convex functions,

III: Steiner formulas and mixed Monge–Ampére measures”. Calc. Var. Partial Differential

Equations 61, 181 (2022).

[21] K. Falconer, “The Geometry of Fractal Sets”, Cambridge University Press, Cambridge, 1985.

[22] A. Figalli, “The Monge–Ampère Equation and its Applications”. Zürich Lectures in Advanced

Mathematics. European Mathematical Society (EMS), Zürich, 2017.

[23] A. A. Giannopoulos and V. D. Milman. “Extremal problems and isotropic positions of convex

bodies”. Israel Journal of Mathematics, 117(1):29–60, 2000.

[24] A. A. Giannopoulos and M. Papadimitrakis. “Isotropic surface area measures”. Mathematika,

46(1):1–13, 1999.

[25] A. A. Giannopoulos, I. Perissinaki, and A. Tsolomitis. “John’s theorem for an arbitrary pair

of convex bodies”. Geometriae Dedicata, 84(1):63–79, 2001.

[26] Y. Gordon, A. E. Litvak, M. Meyer, and A. Pajor. “John’s decomposition in the general

case and applications”. Journal of Differential Geometry, 68(1):99–119, 2004.

[27] P. M. Gruber and F. E. Schuster. “An arithmetic proof of John’s ellipsoid theorem”. Archiv

der Mathematik, 85(1):82–88, 2005.

[28] H. Hadwiger, “Vorlesungen über Inhalt, Oberfläche und Isoperimetrie”. Springer, Berlin,

1957.



BIBLIOGRAPHY 128

[29] K. Hoffman and R. Kunze. “Linear algebra”, second edition. Prentice-Hall, Inc. Englewood

Cliffs, New Jersey, 1971.

[30] G. Ivanov and M. Naszódi, “Functional John ellipsoids”, Journal of Functional Analysis,

Volume 282, Issue 11, 2022.

[31] G. Ivanov and I. Tsiutsiurupa, “Functional Löwner Ellipsoids”, The Journal of Geometric

Analysis, 31:11493-11528, 2021.

[32] F. John. “Extremum problems with inequalities as subsidiary conditions”, studies and essays

presented to R. Courant on his 60th birthday, january 8, 1948, 1948.

[33] D. W. Kahn, “Introduction to Global Analysis”, Academic Press, 1980.

[34] J. B. Lasserre. “A generalization of Löwner-John’s ellipsoid theorem”. Mathematical

Programming, 152(1):559–591, 2015.

[35] B. Li, C. Schütt, E. M. Werner, “The Löwner Function of a Log-Concave Function”. The

Journal of Geometric Analysis, 31:423–456, 2021.

[36] M. Ludwig and M. Reitzner. “A characterization of affine surface area”. Adv. Math. 147,

138–172, 1999.

[37] M. Ludwig, “Upper semicontinuous valuations on the space of convex discs”, Geom. Dedicata

80, 263–279, 2000.

[38] M. Ludwig, “On the semicontinuity of curvature integrals”, Math. Nachr. 227, 99-108, 2001.

[39] E. Lutwak, D. Yang, and G. Zhang. “John ellipsoids”. Proceedings of the London

Mathematical Society, 90(2):497–520, 2005.

[40] E. Lutwak, D. Yang, and G. Zhang. “Volume inequalities for isotropic measures”. American

journal of mathematics, 129(6):1711–1723, 2007.

[41] F. Maggi, “Sets of finite perimeter and geometric variational problems: An Introduction to

Geometric Measure Theory”. Cambridge University Press, Cambridge, 2012.

[42] P. McMullen, “Valuations and Euler-type relations on certain classes of convex polytopes”.

Proc. London Math. Soc. (3) 35, 113–135 (1977).

[43] T. Rockafellar, “Convex Analysis”, Princeton University Press, Princeton, 1970.

[44] R. T. Rockafellar and R. J.-B. Wets, “Variational Analysis”, 3rd ed., vol. 317 of Grundlehren

der mathematischen Wissenschaften. Springer-Verlag, Berlin, 2009.

[45] W. Rudin, “Real and Complex Analysis”, McGraw-Hill, 3rd edition, 1986.

[46] R. Schneider. “Convex bodies: the Brunn–Minkowski theory”. Number 151. Cambridge

university press, 2014.

[47] N. S. Trudinger and X.-J.Wang, “The Bernstein problem for affine maximal hypersurfaces”,

Invent. Math. 140, 399–422, 2000.



BIBLIOGRAPHY 129

[48] N. S. Trudinger and X.-J.Wang, “The affine Plateau problem”, J. Amer. Math. Soc. 18,

253–289, 2005.



Appendix

The objective of this appendix is to prove two simple results that were used in Chapter 4, more

specifically in Lemma 4.6.

Let g, h : R → R be two affine functions given by

g(x) = l1x+ l2

h(x) = m1x+m2,

respectively, where l1, l2,m1,m2 ∈ R and l1 ̸= m1. Assume that g(p0) = h(p0) for some p0 ∈ R

and take x0 < p0. We want to find a quadratic function

f(x) = ax2 + bx+ c

such that







f(x0) = g(x0)

f ′(x0) = g′(x0)
(5.1)

and







f(p0 + (p0 − x0)) = g(p0 + (p0 − x0))

f ′(p0 + (p0 − x0)) = g′(p0 + (p0 − x0))
. (5.2)

First note that g(p0) = h(p0) implies that

p0 = −
m2 − l2
m1 − l1

and by second equations in (5.1) and (5.2), respectively, we get

2ax0 + b = l1

2a(2p0 − x0) + b = m1.

Hence,

a =
1

4

(

m1 − l1
p0 − x0

)

and b =

(

l1 −
x0
2

(

m1 − l1
p0 − x0

))

.
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Now using the first equation in (5.1) we obtain

c = l2 +
x20
4

(

m1 − l1
p0 − x0

)

.

From this we obtain the following result.

Lemma 5.1. Consider the affine functions g, h : R → R given by

g(x) = l1x+ l2

h(x) = m1x+m2,

respectively, where l1, l2,m1,m2 ∈ R, l1 ̸= m1 and let p0 be a point at which the functions coincide.

If x0 < p0, then the quadratic function

f(x) =
1

4

(

m1 − l1
p0 − x0

)

x2 +

(

l1 −
x0
2

(

m1 − l1
p0 − x0

))

x+ l2 +
x20
4

(

m1 − l1
p0 − x0

)

is such that

f(x0) = g(x0), f
′(x0) = g′(x0) and f(2p0 − x0) = g(2p0 − x0), f

′(2p0 − x0) = g′(2p0 − x0).

Lemma 5.2. If T = T (x1, x2) is a support triangle of f(x) = ax2+bx+c, where a > 0, b, c ∈ R,

then there exists a rotation φ : R
2 → R

2 such that φ(T ) is a support triangle of f as well.

Moreover if φ(x) = (φ1(x), φ2(x)), then

φ(T ) = T (φ1(x1), φ1(x2)).

Proof. Define the function φ : R× R → R
2 by

φ

(

x

y

)

=

(

x2 − x1

a(x2 − x1)
2 + b(x2 − x1)

)

+

(

1 0

2a(x2 − x1) 1

)(

x

y

)

.

Observe that

φ

(

x

f(x)

)

=

(

x2 − x1

a(x2 − x1)
2 + b(x2 − x1)

)

+

(

1 0

2a(x2 − x1) 1

)(

x

ax2 + bx+ c

)

=

(

x+ (x2 − x1)

a(x+ (x2 − x1))
2 + b(x2 − x1) + c

)

=

(

x+ (x2 − x1)

f(x+ (x2 − x1))

)

.

Since φ is a C1 function, then φ(T (x1, x2)) is also a support triangle of f . Moreover, if

φ(x) = (φ1(x), φ2(x)), then φ1(x) = x+ (x2 − x1) and

φ(T (x1, x2)) = T (x2, x2 + (x2 − x1)) = T (φ1(x1), φ1(x2)).
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Source: Compiled by the author.


