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Resumo

Esta tese consiste em duas partes distintas, cada uma estudando um problema diferente na teoria
dos corpos convexos. A primeira parte trata das medidas isotropicas, mais especificamente, do
problema de descrever explicitamente os pesos na decomposi¢ao da identidade para um corpo
convexo na posicao de John. Fazemos isso para a posicao de John, ou seja, quando a bola
Euclidiana unitaria n-dimensional B™, é o elipséide com volume maximo dentro de K, e para
a posicao positiva de John em relagao ao corpo convexo L, ou seja, quando L C K e L tem
volume méximo dentre todas as imagens TL em K, onde T é uma matriz definida-positiva.
Também fazemos isso para elipsoides funcionais no sentido definido por Ivanov e Naszodi [30].
Consideramos fungoes log-concavas proprias h : R™ — R (fungdes log-concavas e semicontinuas
superiores que possuem integral positiva finita). Por [30], para cada s > 0 existe (e é tnica no
conjunto de fungoes log-concavas proprias) uma fungao log-concava com a maior integral sob a
condi¢io de que esta seja pontualmente menor ou igual a h'/. Essa funcio ¢ chamada s-funcéo
de John de h. Novamente, por [30], existe uma caracterizagao dessa fungao semelhante aquela

dada por John em seu teorema fundamental.

A segunda parte estuda o problema de caracterizagdo de valuagbes semicontinuas superiores.
Denote por Convpac(R;R) o espaco de fungdes convexas de valor finito em R que sdo afins por
partes fora de uma conjunto compacto. Um funcional Z : Convpac(R;R) — R é chamado uma

valuagao se
ZuVo)+ ZuAv)=Z(u)+ Z(v)

para todo u,v € Convpac(R;R) tal que u Vv, u A v € Convpac(R;R). Aqui, u Vv euAw
denotam as fungdes maximo e minimo pontuais de u, v € Convp,(R; R), respectivamente. Uma
classificagao de valuagoes semicontinuas superiores, invariantes por translacao e inalterada por

adicao de fungoes afins por partes no espaco Convpac(R; R) é estabelecida.

Palavras-chave: corpo convexo; posicao de John; posicao de Loéwner; decomposicao da
identidade; medidas isotrépicas; fungoes log-concava; elipsoides funcionais; valuagdes no espaco

de funcoes convexas.



Abstract

This thesis consists in two separate parts, each studying a different problem in the theory of
convex bodies. The first part deals with isotropic measures, more specifically, the problem of
describing explicitly the weights in the decomposition of the identity for a convex body in John
position. We do this for the John position, that is, when the n-dimensional unit Euclidean ball
B™, is the ellipsoid with maximum volume inside K, and for the positive John position with
respect to the convex body L, that is, when L C K and L has maximal volume among all images
TL in K, where T is a positive-definite matrix. We also do this for functional ellipsoids in the
sense defined by Ivanov and Naszodi [30]. We consider proper log-concave functions h : R” — R
(log-concave and upper semicontinuous functions that has finite positive integral). By [30], for
every s > 0 there is (and is unique in the set of proper log-concave functions) one log-concave
function with the largest integral under the condition that it is pointwise less than or equal to
h'/#. This function is called John s-function of h. Again, by [30] there exists a characterization

of this function similar to the one given by John in his fundamental theorem.

The second part studies the problem of characterizing upper semicontinuous valuations. Denote
by Convpac(R;R) the space of finite-valued, convex functions on R that are piecewise affine

outside of a compact set. A functional Z : Convpac(R;R) — R is called a valuation if
Z(uVov)+Zuhv)=Z(u)+ Z(v)

for all u,v € Convpac(R;R) such that u Vv, u Av € Convpac(R;R). Here, u Vv and u A v denote
the pointwise maximum and minimum of u,v € Convpac(R;R), respectively. A classification
of upper semicontinuous, translation invariant valuations and unchanged by the addition of

piecewise affine functions on the space Convpac(R;R) is established.

Keywords: convex body; John position; Lowner position; decomposition of the identity;
isotropic measures; log-concave functions; functional ellipsoids; valuations on the space of convex

functions.
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Introduction

In 1948 F. John showed that if K is a convex body then there exists a unique ellipsoid £; C K of
maximal volume inside K, know today as John’s Ellipsoid. When the unit Euclidean ball B™ is
the John ellipsoid we say that K is in John position. A construction that is dual to John ellipsoid
is the Lowner ellipsoid &7, O K which is the unique ellipsoid of minimal volume containing K.
The set K is in Lowner position if £ = B™. F. John also showed a set of necessary conditions

for £; to be the unit Euclidean ball B™. John’s theorem can be stated as follows.

Theorem 0.1 ([32], Application 4, pag. 199 - 200). Assume K is in John position, then there
exists a finite set of points {&1,...,&m} C S" LN OK, positive numbers {c1,...,cm} and X # 0,
for which

m

D i @& =A1d and icifi =0. (1)

=1 =1
Here v ® w is the rank-one matriz (v ® w); j = viw;,1 < i,5 < n.

The Theorem 0.1 guarantees that the atomic measure pg = Y ;- ¢;d, is centered and isotropic,
but the existence of the measure pg is often show in a non-constructive way. Later Ball |11]
proved that the existence of a non-negative centered isotropic measure ug in the set of contact
points, guarantees that K is in John position if B™ C K, or in Lowner position if K C B™. The
literature around the John/Lowner position and its relation to isotropic measures, is vast. The
relation between extremal position and isotropic measures was studied extensively in [23, 24, 25].
Extensions to related minimization problems were studied in [13, 14, 26, 34, 39]. Isotropic
measures can also be used in combination with the Brascamp-Lieb inequality to find reverse

isoperimetric inequalities, see |11, 9, 10, 40].

Artstein and Katzin showed that ux can be constructed as a weak approximation of uniform
measures on subsets of S”~!. Moreover, they introduced a new one-parameter family of positions:
A convex body K is said to be in mazimal intersection position of radius r if rB™ is the ellipsoid
maximizing vol, (r B"NK) among all ellipsoids of same volume as r B™. It is also shown that every
centrally symmetric convex body K admits at least one of such position T, K with T, € SL,,(R),
and in this case the uniform measure in S"~'Nr~17,. K is isotropic. The theorem due to Artstein

and Katzin is the following.

Theorem 0.2 (|6], Theorem 1.5). Let K C R™ be a centrally symmetric convex body in John
position such that vol,_1(0K NOE) = 0 for all but finitely many ellipsoids E. For every r > 1,
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denote by v, the uniform probability measure on S ' N r~ T, K, where T,K is in mazimal
intersection position of radius r. Then there exists a sequence r; 1 such that the sequence of

measures vy, weakly converges to an isotropic measure whose support is contained in 0K N sn—1.

However it is worth mentioning that in practice there is a large body of computations to make.
First we need to find the matrix T,., for r close to 1, such that 7T.K is in maximal intersection
position of radius r. Later we need to take the limit of some subsequence of the measures v,

which is obtained from the matrices 7.

Our first aim is to present a simple finite dimensional minimization problem whose solution

(when it exists) can be used to construct a non-negative centered isotropic measure as above.

The next step is to consider two convex bodies both different from the unit Euclidean ball. Let
K, L be convex bodies. We say that L is in mazimal volume position inside K if L is its own
maximal volume image inside K. A simple compactness argument shows that for every pair of
convex bodies K and L there exists an affine image L; of L which is of maximal volume in K,
but in this case the maximal volume position of L inside K is not necessarily unique. There is
a generalization of classical John’s Theorem 0.1 for the case where L is not the unit Euclidean

ball. Giannopoulos, Perissinaki and Tsolomitis proved the following theorem.

Theorem 0.3 (|25, Theorem 2.5). Let K, L be smooth convex bodies in R"™, such that L is of

maximal volume in K. If z € int L, we can find contact points vi,...,vm of K —z and L — z,
contact points ui, ..., Uy, of the polar bodies (K — z)° and (L — 2)°, and positive reals c1, . .., Cm
such that . .
(ug,vi) =1, Z ciu; @ v; = 1d, Z ciu; = 0.
i=1 i=1

As mentioned before, Ball proved that for the classical John’s theorem the existence of an
isotropic measure supported on contact points is not only implied by, but also implies that
K is in John position. For the setting in which both bodies are not the unit Euclidean ball, this
characterization is not valid, since we do not have uniqueness of the maximal volume position.
However, one does obtain an “if and only if” characterization of the position by the existence of a
decomposition of the identity when considering a modification of the above position, namely the
positive John position: Let K, L be convex bodies with non-empty interior. A positive image of
L in K is a set of the form PL 4 v contained in K, with v € R™ and P a positive-definite matrix.
We say that K is in positive John position with respect to L if L C K and L has maximal
volume among all positive images of L in K. The positive John position was defined by Artstein
and Putterman in [7], see also [13]. The advantage of working with the positive John position is

due to the following result.

Proposition 0.1 (|7], Proposition 3.1). Let K, L be convex bodies with the origin in the interior
of K, and consider the set of positive images of L inside K,

Ak, = {PL+v: P is defined positive,v € R" and PL+v C K}.

Then there is a unique element in Ay 1, of mazimal volume.
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From this result Artstein and Putterman presented a proof for the following theorem that has

been proven by different methods in [13, 26].

Theorem 0.4 (|7], Theorem 1.2). Let K, L be convex bodies with the origin in the interior of
K. Then K is in positive John position with respect to L if and only if L C K and there exist
contact points x1,...,xm of K and L, contact points yi,...,ym of the polar bodies K° and L°
and c1,...,cm > 0 such that

m m
(@oy) =1, Y c@@u+ypos) =1d Y cy=0.
=1 =1

We give an explicit representation for a centered and isotropic measure, supported on contact

points between K and L, given that K is in positive John position in L.

In this way, we end our interest in constructing a centered and isotropic measure in the geometric
version. Our next step is to look for definitions for functional ellipsoids in order to find out if
there is a functional version of the decomposition of the identity like the one given in Theorem
0.1.

In 2018, Alonso-Gutiérrez, Gonzales Merino, Jiménez and Villa |[1] extended the geometric notion
of the John ellipsoid to the setting of log-concave functions. Their idea was as follows: Fixed an
integrable log-concave function h on R™, first they take any constant 5 € (0, ||h||), where ||h|| is
the Lo, norm of h, and consider the superlevel set {z € R" : h(z) > 5} of h, which is a bounded
convex set with non-empty interior. Then they show that there is a unique height gy € [0, ||h||]
for which Sy vol,(€) is maximal, where £ is maximal volume ellipsoid inside the level set. Then
they define the John ellipsoid of h as the function £5%0(x) = Bylg(z) obtained for this fy.

Recently, in 2021, Ivanov and Naszodi [30] also extended the notion of the John ellipsoid to
the setting of logarithmically concave functions. Unlike the first ones, they defined a class of
functions on R"™ indexed by s > 0. First they fix a proper log-concave function (log-concave and
upper semicotinuous function that has finite positive integral) h : R™ — [0, 00) and s > 0. Later
they prove that there is (and is unique in the set of proper log-concave functions) one function
log-concave with the largest integral under the condition that it is pointwise less than or equal to
h'/$. They call it the John s-function of h. In [30, Theorem 6.1] it is shown that as s — 0, the
John s-functions converge to characteristic functions of ellipsoids, that is, there is a relationship
between the first [1] and second approach [30]. Furthermore, they study the John s-functions as
s tends to infinity. It is shown that the limit may only be a Gaussian density (is not necessarily

unique).

Denote by |z|2 the Euclidean norm of z € R™. The height function of the unit ball B™ is given by
fign+1(z) = /1 — |z|3 if € B™ and 0 otherwise. Moreover, this function is proper log-concave.
An interesting fact about the second approach is that they give a characterization of the John

s-function of A similar to the one given by F. John in his fundamental theorem. Namely,

Theorem 0.5 ([30], Theorem 5.2). Let h be a proper log-concave function on R™, s > 0. Assume
hng1 < h, where higni1 is the height function of the unit Euclidean ball Bt Then the following

are equivalent.
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(1) The function hi,.. is the John s-function of h;

(2) There are points uq,...,ur € B™ CR™ and positive weights c1, ..., cx such that

For this reason we will adopt this definition of ellipsoid, in order to obtain a “centered and

isotropic measure” supported at the points of B™ where h'/* and its John s-function coincide.

In the second part of this thesis we study about valuations. A functional Z : K™ — A is called
a valuation if
Z(K)+Z(L)=Z(KNL)+ Z(KUL)

for all K,L,K UL € K", where K™ is the set of convex bodies in R™ and A is an abelian
semigroup. Valuations play an important role in the geometry of convex bodies. For example,
the intrinsic volumes Vy(K), Vi(K),...,V,(K) are valuations on K™ (see [28]). In particular,
Vo(K) is the Euler characteristic, V,,(K) is the Lebesgue volume and 2V,,_1(K) is the surface
area of K. Another important valuation on K" is the support function hg (). On the space
K¢ of convex bodies with 0 as interior point, the function which associates each convex body
K € Kf with the polar body K° € Kf is a valuation on K.

The interest in classifying valuations on K" began with Hadwiger. Probably the most famous
result on valuations is the Hadwiger’s theorem. It classifies all continuous and rigid motion
invariant valuations on the space K™ equipped with the Hausdorff distance (see [28]). Ludwig
and Reitzner established an affine version of Hadwiger’s theorem, proving a classification of upper

semicontinuous valuations which are invariant under volume preserving maps (see [30]).

Currently, the notion of valuations has been extended to families of functions. We denote by
Conv(R™;R) the space of finite-valued, convex functions on R"™. We define valuations on the

space Conv(R™;R) and its subspaces taking values in an abelian semigroup as
Z(u)+ Z() =ZuNAv)+ Z(u V)

for every u,v € Conv(R™;R) such that also their pointwise maximum u V v and pointwise

minimum u A v belong to Conv(R™;R).

In 2000, Ludwig characterized the rigid motion invariant and upper semicontinuous valuations
defined on XC?. Consider the set

W = {C: [0,4+00) — [0,00) : ( is concave, 1%i_]r}(l)((t) =0, and tl}grnooé”(t)/t = 0}.

Her theorem can be stated as follows.

Theorem 0.6 ([37]). Let p: K2 — R be an upper semicontinuous and rigid motion invariant
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valuation. Then there are constants cg,c1,co € R and a function ¢ € W such that
p(K) = cox(K) + 1 L(K) + 2 A(K) + . C(p(K,u))dH (u) (2)

for every K € K2.

Here L(K) and A(K) are the length and area of K, respectively, and p(K,u) is the curvature
radius of the boundary of K at the point with normal u € S*.

Our goal is to prove a functional version of Theorem 0.6 for n = 1.

This work is structured as follows. In Chapter 1, we give a very short introduction to basic
convexity, we speak about the gauge and support functions. Later we present results already

known in the literature that are necessary to prove our results.

In Chapter 2, we present in details the problem of explicit representations of centered and
isotropic measures in John and Léwner positions as a simple finite dimensional minimization
problem whose solution (when it exists) can be used to construct a non-negative centered
isotropic measure. These results are published in the International Mathematics Research Notices
https://doi.org/10.1093/imrn/rnac269. Later, we present the construction of centered and
isotropic measures in positive John and positive Lowner positions. The results are not for

publication due to similarity with the previous case.

In Chapter 3, we study the theory of the functional John ellipsoid due to Ivanov and Naszodi [30].
Next, we introduce some news concepts related to this theory in order to construct explicitly, as

in the geometric case, a decomposition of the identity.

In Chapter 4, we give a introduction to valuations on convex bodies and on convex functions
and we obtain a classification of upper semicontinuous and translation invariant valuations on

the space of convex functions which is a piecewise linear function outside of a compact set of R.



Chapter 1

Preliminaries

In this chapter, we briefly review basic definitions, clarify the main notations and collect some

results that will be used in this work.

1.1 Basic convexity

We work in the space R% equipped with the standard inner product
() :RExRY S R

defined as

<($17 o 7xn)7 (y17 o 7yn)> =I11 + - +wnyn7

and denote the canonical basis vectors by ej,...,eq. Here, | - |2 = /(-,-) denotes the usual
Euclidean norm in R?. The unit Euclidean ball in the normed space (RZ |- |3) is the set
B? = {z ¢ RY: |z|]y < 1}, and its boundary S9! = {z € R?: ||y = 1} is the unit sphere.

A subset A C R? is called convez if for any 2,y € A and X € [0,1] it holds (1 — Az + \y € A.

In others words, a subset A is convex when it contains any segment [z, y|, where z,y € A.

A function f :R? — (—o0, +00] is said to be convex if

S =Nz +y) < (L =A)f(z) +Af(y) (1.1)

for any z,y € R and X € [0,1]. A function f : R? — [0,00) is log-concave if f = e™¥ for some

—00

convex function ¢ : R? — (—o0, 00]. We make the convention that e~ = 0. The name justifies

because a function g : RY — [—o0, 00) is said to be concave if -g is convex. A direct computation

using (1.1) give us the following result.

Lemma 1.1. A function f : R? — [0, 00) is log-concave if and only if

FOz+ (1= Ny) > f(@) fly)' ™,

for any x,y € R? and every A € (0,1).
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For every convex function f : R? — R and for any t € (—o0, +-00] we can consider the sublevel

sets

{f<th={zeR': f(a) <t}, {f<t}={zeR’: f(z)<t},

which are convex sets. Then, the (effective) domain of f is defined as the set
dom f := {f < 4+o0}.
The epigraph of f is the set

epi(f) = {(z,) € R™*: f(a) <1},
and f : RY — (=00, +00] is convex if and only if epi(f) is a convex subset of R¥1. We write
int A for the interior of A. The topological boundary of A will be denoted by 0A.

We say that a function f: V — R defined in a vector subspace V C R¢ is coercive if

lim f(z) = +o0.

|z|2—+00

Theorem 1.1 ([46], Theorem 1.5.3). Ewvery conver function f : R? — (—o0,00] is continuous

on intdom f and Lipschitzian on any compact subset of int dom f.

Proposition 1.1 ([16], Corollary 1.5.11). If I C R is an interval and f : I — R is twice
differentiable, then f is convex if and only if f” > 0.

In the general case, when f : R? — (—o00, 4-00] is neither smooth nor strictly convex, the gradient
of f, denoted by Vf, exists almost everywhere in int dom f by Rademacher’s theorem (see, for
example, [15]), and a theorem of Alexandrov [I| and Busemann and Feller [17] guarantees the

existence of the Hessian, denoted by V2 £, almost everywhere in int dom f.

Theorem 1.2 (14|, Theorem 2.14). Let f : U — R be twice differentiable on an open convex
set U C R, Then f is convex on U if and only if V2 f(x) is positive-semidefinite for all x € U.

For A C R%, the set of all convex combinations

conv(A) = Z)\jxj:xj € Aand \j >0 forany j =1,...,m, and Z)\jzl
j=1 j=1

is called the convexr hull of A.
The convex hull of a finite set of points is called a polytope.

Theorem 1.3 ([46], Theorem 1.1.2). If A C R% is convez, then conv(A) = A. For an arbitrary

set A CRY, conv(A) is the intersection of all convex subsets of R containing A.
We end this section with a definition of the central notion of this work.

Definition 1.1. A convez body is a set K C R% which is convex, compact and has non-empty

interior.
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We define the Minkowski sum of sets A, B C R? as
A+B={a+b:a€ Aand bec B}

which can be (geometrically) interpreted as the union of all translates of B by the points of A
(and vice-versa). Moreover, the scalar multiplication is defined for a given set A C R? and for
some A € R as

A ={Xa:a€ A}.

Figure 1.1: The Minkowski sum of a square and a ball.

Source: Compiled by the author.

Throughout the text, the set of convex bodies in R¢ will be denoted by K%, and the set of convex
bodies which contain the origin as an interior point will be denoted by ng. Regarding the space
K% as a metric space is one of the most powerful techniques in convex geometry. For example, it
often allows us to solve problems by approximating arbitrary bodies by “well-behaved” bodies,
such as polytopes or smooth bodies. There is also a notion of distance between sets in R? given
by

d(A,B) =inf{a —b:a € A and b € B},

for any given A, B C R%. However, this is not completely satisfactory, since this does not define
a metric. For example, d(A4, B) = 0 whenever AN B # ().

We define the Hausdorff distance between two sets K, L € K¢ by
dy(K,L) :=inf{A\>0:L C K+ AB% and K C L + AB%}.

It follows immediately from compactness that the minimum exists and is finite. Hence the spaces
K¢ naturally become metric spaces with the Hausdorff metric dy;. The space K¢ of convex bodies
of R? is a subset of the space of non-empty compact sets, and we can define a metric in this more

general family.

It is sometimes convenient to have a description of the convergence of convex bodies in terms of

convergent sequences of points.

Theorem 1.4 ([16], Theorem 1.8.8). The convergence lim;_, o K; = K in K¢ is equivalent to

the following conditions taken together:

1. Each point in K is the limit of a sequence (x;); with x; € K; for i € N;
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2. The limit of any convergent sequence (z;,); with z;, € K;; for each i,j € N belongs to K.

1.2 Gauge and support functions

Let A C R? a non-empty set. The support function hy of A is defined by

ha(u) = sup{(z,u) : z € A} for u € R%.

Observe that h, enjoys the property ha(Au) = Aha(u) for any u € R? and every A > 0, that
is, h4 is positively homogeneous. A function f: R% — (—oo, +00] is lower semicontinuous if its
epigraph is a closed set of R?. The support function hy : R? — (—00, +00] of a non-empty set
A C R? is convex and lower semicontinuous. Moreover, for a non-empty set A C R¢ it holds

ha(u) < +oo for every u € R? if and only if A is bounded.

Let A C R¢ a non-empty set. The polar set of A is the set

A°={zcR: (z,2) <1,Vz€ A} = {x € R?: ha(x) < 1}.

Figure 1.2: The convex body K = [—1,1]? and its polar set K° = conv{=£(1,0),4(0,1)}.

N
N

Source: Compiled by the author.

Theorem 1.5 ([16], Theorem 1.6.1). If K € K&, then K° € K¢. The converse is also true.

We define the gauge function of a set K € K? to be the function || - || : R? — R such that

l|z||x = inf{\ > 0:2 € AK}. (1.2)

The next results can be found in |16, Section 1.7].

Proposition 1.2. Let K be a convex body containing the origin as an interior point. Then the

gauge function || - ||k is a non-negative and finite-valued function satisfying:
1. ||z||x > 0 for all x € R?, with equality if and only if x = 0;
2. || \x||x = A|z||x for every X > 0;

3. Mo+ yllx < ll=llx + llyllx for any z,y € RY.
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Remark 1.1. Notice that, in particular, the gauge function of a convex body K € K¢ is sublinear.

Also, it only fails to be a norm because it is not homogeneous, but only positively homogeneous.

Corollary 1.1. Let K € ICg. Then K is centered at the origin if and only if its gauge function

is a norm. In this case, the unit ball is K.

Proposition 1.3. Let K € K&. Then || - ||i is differentiable almost everywhere. We have that
|| - ||k is differentiable at x € OK if and only if it is differentiable at tx for any t > 0. In this
case, we have the equality

Viltz|lx = Vilz|lx.

Moreover, if || - ||k is differentiable at x € 0K, then K has a unique unit outer normal vector

n®(z) at x, and

n(z)
\Y% = —F. 1.3
lellx = 7ot (13
Consequently, V||x||x is non-zero and
Vil = e (1.4
T i (nF (@) |

whenever || - ||k is differentiable at © € K.

We say that a convex body K is C* or that it has a C*-smooth boundary if ||z||x is a C*
function in R? \ {0}. A boundary point = of K is said to be a smooth point if K has a unique
unit outer normal vector at . As a consequence of the previous proposition, for any K € ng a

point x € K is a smooth point of 0K if and only if || - || x is differentiable at .

1.3 Measure

In what follows, we recall that
voly(A) = / La(a)da,
Rd

for every Borel measurable set A C R, where volg(-) denotes the usual Lebesgue measure and
dz stands for the integration with respect to that measure. We also will denote by H* the

k-dimensional Hausdorfl measure for 0 < k < d.

Let K C R% be a convex body. Since K is compact and has non-empty interior, then
0 < voly(K) < +00.

It is worth mentioning that voly(K) is the same as the d-dimensional Hausdorff measure H¢(K).
The surface area of K is defined to be the (d — 1)-dimensional Hausdorff measure H%~1(0K) of
its boundary. It is very common to denote the (d — 1)-Hausdorff measure on R¢ by voly_; (K),

and sometimes we will adopt this notation.

Theorem 1.6 ([11], Theorem 8.5). If A C R? is a Borel set and T : R — RY is a linear map,
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then T(A) is a Borel set and

voly(T(A)) = | det(T)| voly(A).

The co-area formula gives the integral (with respect to the Lebesgue measure) of an integrable
function over an open subset of R% in terms of integrals of this function over the level sets of a

given Lipschitz function.

Theorem 1.7 ([41], Theorem 18.1). (Co-area formula) Let U C R? be an open set and v : U — R
be a Lipschitz function. For any integrable function f: U — R we have

x)|Vu(x)|de = dHet dt.
| r@ivu) /R(/ul({t})ﬂy) <y>) :

For us, the most important consequence of the co-area formula is the formula for integration by

polar coordinates.

Theorem 1.8. (Integration by polar coordinates) Let f : R — R be an integrable function.
Then

flz)dzr = / FEO AT (€)at.
R¢ 0 Jgd-1
An other consequence of the co-area formula is that one can derive a similar formula where the

unit sphere S%! is replaced by a convex body having the origin as interior point.

Proposition 1.4. Let K C R? be a convex body which has the origin as interior point. Then
o
Fa)da = / FE) e (nF (2)) A () dt
Rd o Jok

for any integrable function f : R — R.

We define the support of a function f : R — (—oo, +00] to be the set

supp(f) = {z € R?: f(x) # 0}.

Let Q C R? be an open set on RY. We say that a Borel measure u is a Radon measure if
u(C) < +oo for every compact set C' C ). Consider pjp a sequence of Radon measures in

Q C R We say that uy, converges weakly to a Radon measure y in  if

lim /Q B(@)dux () = /Q B(x)du(z) (1.5)

k——+o0
for every function 8 which is continuous with compact support on €.

Theorem 1.9 ([11], Proposition 4.26 ). If {ux}ren and pu are Radon measures on R? | then the

following three statements are equivalent.

(i) . weakly converges to pu;
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(ii) If K is compact and A is open, then

(K > limsup pg(K)

k—+o00

1(A) > lim inf u,(A);

k—4o00

Theorem 1.10 ([12]|, Fatou’s Lemma 4.8). Let (X,Xx,p) be a measure space and (fn)n be a

sequence of non-negative measurable functions. Then

/ liminf f,dp < liminf/ fndi,
X X

n—oo n—oo

where liminf, . f, denotes the function which associates each x € X to the inferior limit of

the sequence (fn(x))n.

Theorem 1.11 ([12], Lebesgue dominated convergence theorem 5.6). Let (X,Xx,u) be a
measure space, and let g : X — [0,+00) be a non-negative integrable function. Let {fm}m

be a sequence of real functions satisfying:
1. |fm(z)| < g(x) for any m € N and every x € X, and
2. for p-almost every x € X the sequence (fm(x))m converges in R.

Then the function f: X — R defined as

f(x)= lim fp,(x)

m—ro0

for each x € X is integrable and

fdu = lim/fmd,u.
/)( m— 00 X

Proposition 1.5 (|12], Corollary 4.9). Let (X,YXx,u) be a measure space and let g : X — [0, 00]

be an X x-measurable function. Then,
V:Yx —[0,00], A+—>/gd,u
A

1S an outer measure.

Theorem 1.12 ([15], Theorem 3.3). (Jensen’s inequality) Consider (X,YXx,u) a probability
space. Let D C R be an open interval, and let ¢ : D — R a convex function. If X is a topological

space with a Borel probability measure and f : X — D is an integrable function, then

90( /X fdu> < /X oo fap. (1.6)

Let A, o be positive measures on a o-algebra F. We say that A is absolutely continuous with
respect to u, and write A < p if A\(E) = 0 for every E' € F for which u(E) = 0. If there exists a

pair of disjoint sets A and B such that A is concentrated on A and p is concentrated on B, then
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we say that A and p are mutually singular, and write A L p.

Theorem 1.13 ([15]|, Theorem of Lebesgue-Radon-Nikodym 6.10). Let p be a positive o-finite
measure on a o-algebra Xx in a set X, and let X\ be a positive measure on Xx. Then A has
a unique decomposition as A1 + A , where A1 and Ao are positive measures on Xx such that
Al <L Ao Lo

Theorem 1.14 ([15], Theorem 21.4). (Lusin’s Theorem) Let (X,¥x,p) be a Radon measure
space and Y be a second-countable topological space equipped with a Borel algebra, and let
f X = Y be a measurable function. Given ¢ > 0, for every A € Y x of finite measure
there is a closed set E with u(A\ E) < € such that f restricted to E is continuous.

1.4 Linear Algebra

We denote by M;(R) the collection of all matrices M of order d x d with entries in R and we

consider this space equipped with the Frobenius inner product given by

(A,B)p =tr(ATB) = > A;;Bi; (1.7)
i,

where A = (A;;), B = (B;;) and tr is the trace function defined in M4(R). The d x d identity
matrix will be denoted by Id. Note that the trace of a matrix M can be simply described as the
Frobenius inner product of M with Id.

The subgroup of Mg(R) which consists the invertible matrices will be denoted by GL4(R). The
subgroup of GLg4(R) consisting of all matrices whose determinant equals 1 will be denoted by
SL4(R) and the subgroup consisting of the orthogonal matrices will be denoted by O4(R). By
Theorem 1.6 the matrices in SLy(R) preserve Lebesgue volume, that is, if A C R? is a Borel set
and T' € SLg(R), then vol;y(A) = volg(T'A).

The space My(R) with the operator norm
|T||op = max{|Tz|s : z € BY}

is a normed space with dimension d?. The general linear group GL4(R) is an open subset of
Mg(R) since GLg(R) = det (R \ {0}) and the determinant is a continuous function of My(R).
Since SLg(R) = det™!({1}), we get that the special linear group is a closed group of Mg(R).

Observe that the topology defined on My(R) by the Frobenius inner product is the same topology
induced by the operator norm, since all norms in a finite-dimensional vector space give rise to

the same topology.

The next result is a classic result that can be found in most undergraduate linear algebra books

(see, for example, |11, page 78|).

Lemma 1.2. (Polar Decomposition) For every T € GLg(R) there exist U, P € GL4(R) where U
1s orthogonal and P is symmetric and positive-definite such that T = PU.

We will use the notation Symg(R) for the subgroup of Mg(R) of symmetric matrices and
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Symg, + (R) for the subgroup of symmetric and positive-definite matrices. Also define Sym, ,(R) =
{A € Symy(R) : tr(A) = a} C My(R) for a € R. Since we can “choose” 3d(d + 1) entries for a

symmetric matrix, it follows that
: 1
dim(Symy,(R)) = §d(d +1).

Notice that if T' € SLg(R) and T'= UP for U € O4(R) and P € Sym, , (R), then we have that
P € SLy(R).

We denote by v ® w the rank-one matrix (v ® w); ; = v;w;. Under the canonical isomorphism
between the linear map and its matrix representation in the canonical basis of R¢, the matrix

v@w =v-w! is identified with the map (v ® w)(z) = (x, w)v.

Lemma 1.3. Let u,v € R? and T € My(R). Then
(Tu,v)y = (T,v @ u)p.

Proof. Since both sides in the equality are linear in u and v (and also in T), it is sufficient to
consider the case where u = ¢; and v = ¢, for some i,k =1,...,d. If T' = (ti,j)?,j:p then
<Tu, ?)> = <(t1i, “e ,tdi), €k> = tki-

On the other hand, a direct computation shows that the matrix ey, - eZT which represents v ® u
has 0 in all entries, except for the entry in the position ki, which is 1. Hence, by the definition

of matrix inner product, we have
(T,v@u)p =ty = (Tu,v),
as we wanted to prove. O
We consider the space Mg(R) x R!, where [ € N, equipped with the inner product
((4,0), (B,w)) = (A, B)r + (v, w)q,
and for simplicity we will denote only

((A,v),(B,w)) = (A, B) + (v, w). (1.8)

For (A,v) € My(R) x R, we use [|(4,v)|| = y/||A||% + |v|3 which is the norm induced by the
inner product (1.8).

Lemma 1.4 ([5], Lemma 2.1.5). Let A, B € GL4(R) be symmetric and positive-definite linear
matrices, and let A € (0,1). Then

det((1 — M)A + AB) > det(A) "> det(B)?, (1.9)

and equality holds if and only if A = B.
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The set Sym, , (R) is an open convex cone in Sym,(R) with apex at the origin. The inequality
(1.9) shows that the set

D ={T € Symg _ (R) : det(T) > 1} (1.10)
is a convex set. The following numerical inequality, which is a particular case of Theorem 1.12

(Jensen’s inequality) is known as the arithmetic-geometric inequality.

Lemma 1.5 ([15], page 63). Let a,b >0 and let A € (0,1). Then
Aa+ (1= A)b>a bt

Equality holds if and only if a = b.

Theorem 1.15 (|29], Theorem 9). (Spectral theorem) Let T € My(R) be symmetric. There exists
an orthonormal basis {v1,...,vq4} of R? and numbers A1, ..., \q € R, such that Tv; = \jvj for

each j =1,...,d. In others words, R has an orthogonal basis of eigenvectors of T and
T = Uldiag(\1, ..., A\)]U

where U is the orthogonal matriz whose columns are v1,...,vq and, in particular det(T) =
A1+ Ag. Moreover, if T is also positive-definite, then A1, ..., g > 0.

Here diag(A1,...,Aq) is the matrix whose entry z; ; is zero for i # j and it is A; for i = j, for

each 7,7 =1,...,d.

1.5 Additional results

The technique of Lagrange multipliers allows us to maximize /minimize a function, subject to an
implicit constraint. Let f : R? — R™ be a C! function, C € R" and M = {f = C} C R%. Now
suppose we are given a function h : R* — R, and we want to find the local extremum of h on

M. That is, we want to minimize or maximize h subject to the constraint f = C.

Theorem 1.16 ([44], Theorem 6.12). (Lagrange multipliers) Let h : R? — R, f : RY — R" be
C*' functions, C € R™ and M = {f = C} C R%. Assume that for all x € M, rank(f'(x)) = n.
If h attains a constrained local extremum at a, subject to the constraint f = C, then there exist
Ay .oy An € R such that

Vh(a) = AiVfi(a).
i=1

Theorem 1.17 ([44], Theorem 9.60). (Rademacher) Let U C R? be an open set and f : U C
R? — R a Lipschitz function. Then f is differentiable almost everywhere.

Theorem 1.18 ([18], Theorem 5.21). (Taylor expansion) A function f : R? — R of class C?

around xg admits at xo the following Taylor expansion of order two

£(2) = Flwo) + 9 f(z0) - (2 = 0) + 3 & — z0) - Hf (w0 — z0) +oll — 0[3)
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2
where x — xo, limg_sz, O(‘lxz_i;?ll%?) =0 and H f(xg) is the Hessian matriz of f at xy.

Lemma 1.6 (22, Lemma A.1). Let A, B € My(R), and assume that A is invertible. Then,

4 det(A +eB) = det(A)(A™!, B).
de |,

Theorem 1.19 ([33], Proposition 3.1). Let U C R? be open and f : U C R — R¥=™ of class
Ck k> 1. Ifc € RT™ is a regular value of f, then f~1(c) is either empty or an m-dimensional
surface. For very p € f=1(c), T,(f~1(c)) is the Kernel of f'(p) : R — R4—™.



Chapter 2

On Explicit representations of Isotropic

Measures in some positions

This chapter is based in the work “On Explicit Representations of Isotropic Measures in
John and Lowner Positions”, published in the International Mathematics Research Notices,
https://doi.org/10.1093/imrn/rnac269. We construct a non-negative centered isotropic
measure from the convex body K, which is in John position, whose existence is guaranteed
by John’s Theorem 2.3. The method we propose requires the minimization of a convex function
defined in a w—dimensional vector space. Furthermore, we find a geometric interpretation of

the minimizer of this convex function.

2.1 Existence of isotropic measures in John and Lowner positions

The main objective in this section is to present the so-called John’s theorem, characterizing the

John ellipsoid of a convex body.

An invertible affine transformation A is a linear function composed with a translation, that is,
A(-) =T(-) + vo where T € GL,(R) and vyg € R™. The image of a set U C R™ under an affine
transformation is called an affine image of U. An affine image of a convex body K C R" is called

a position of K. An affine image of the unit Euclidean ball B" is called an ellipsoid.

By Polar Decomposition 1.2, each operator A € GL,,(R) can be written as A = PU where P is
symmetric and positive-definite, and U is an orthogonal map. Then to obtain the ellipsoids of
R™ it need not to consider all matrices in M, (R), but only the symmetric and positive-definite
ones. The advantage of working in the space Sym,, | (R) is that by the Spectral Theorem 1.15

each matrix P € Sym,, | (R) is diagonalizable with an orthogonal basis of vectors.

The first result of this section states that any convex body K C R" contains a unique ellipsoid

of maximal volume.

Theorem 2.1 ([5], Proposition 2.1.6). If K is a convex body in R™, then there exists a unique
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ellipsoid Sf C K such that
vol, (EX) = sup{vol,(€) : £ C K and & is an ellipsoid}.

We call 55{ the John ellipsoid of K.

A construction that is dual to John ellipsoid is the Lowner ellipsoid which is the unique ellipsoid

of minimal volume containing the convex body K.

Theorem 2.2 (|5, Proposition 2.1.7). Let K be a convex body. There exists a unique ellipsoid
Sf( D K such that

vol, (EF) = inf{vol,(§) : K C & and £ is an ellipsoid}.

We call E}f the Lowner ellipsoid of K.

We say that a convex body is in John position if 55( = B™, and in Léwner position if 55 = B".
Notice that these definitions make sense, because an affine transformation preserves inclusion,
transforms ellipsoids in ellipsoids and by Theorem 1.6 multiply every volume by the same
constant. In other words, if €5 = T(B") + vy is the John ellipsoid of K, then we have

B" =T N(€) - T~ (w) € TN (K) — T (w0)

and B" is the John ellipsoid of the position 771 (K) — T~!(vg) of K. Moreover, if K is in John
position, then T'(K) + wy is in John position if and only if wy = 0 and T' € O, (R), that is, the
John position of a convex body is unique up to orthogonal transformations. The same holds for

the Lowner position.

Figure 2.1: K is in John position and K> is in Léwner position.

. <D
NNV

Source: Compiled by the author.

Let K,L C R" be convex bodies. A point x € 0K N JL with the property that K and L are
supported by a common hyperplane at x is called a contact point of K, L. When L C K, then
any point x € K N JL is a contact point between K and L, because any hyperplane which

supports K at x also supports L at x.

Notice that if K is a convex body in John (Léwner) position, then the intersection S™~' N oK
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must be non-empty, otherwise we would have that o := dist(S"~, dK) > 0 from where
(1 n %) B"C K,

and this would contradict the fact that B™ is the ellipsoid of maximum volume contained in K.

In what follows we introduce a theorem due to Fritz John which characterizes how the contact

points of a convex body in John position and its John ellipsoid are distributed.

Theorem 2.3 ([32], Application 4, pag. 199-200). Assume K € K" is in John (resp. Léwner)
position, then there exists a finite set of points {&1,...,&m} C S" 1N OK, positive numbers
{c1,...,em} CR and X\ # 0, for which

m

D c&i®&=Md and Em:% = 0. (2.1)

i=1 i=1

The equality in (2.1) is called a decomposition of the identity. Note that taking traces in the first
equality of (2.1) we obtain )", ¢; = n, since tr(§ ® &) = |&]2 = 1. This determines the value
of A.

Recalling that integration of R™ and M,,(R)-valued functions is understood to be coordinatewise,

we have the following definition.

Definition 2.1. A measure i on the sphere S™~! is said to be isotropic if for some \ # 0 holds

/S (€@ &du=21d (2.2)

and centered if

/ &dp = 0. (2.3)
Sn—1

Then one can see that equation (2.1) can be expressed as the fact that the atomic measure

pLr = Y.ty cidg, is centered and isotropic.

Later Ball [11] proved the sufficiency part, that is, that the existence of a non-negative centered
isotropic measure pug in the set of contact points, guarantees that K is in John position if
B™ C K, or in Lowner position if K C B".

The existence of the measure pg in Theorem 2.3 is often shown in a non-constructive way. The
first proof is due to Fritz John. In [32] he proves the necessity part of the theorem using the
following result, which is an extension of the method of Lagrange multipliers to the case where

the number of constraints may be infinite.

Theorem 2.4 (|32], Necessary conditions for a minimum, pag. 198-200). Let V' be a real vector
space of dimension n and U an open neighborhood in V,F : U — R a C' function, S a compact
metric space and G : U x S — R a continuous function such that V,G(u,s) exists for every

u€Us €S and V,G is continuous on S. (In optimization terms, F is the objective function
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and G represents the set of constraints.) Let A = {u € U : G(u,s) <0, Vs € S} (the feasible
set) and ugp € A such that F(ug) = maxyea F(u). Then either V,F(ug) = 0, or there exist
81y, 8m € S,m <n and A1, ..., A\ € RT such that G(ug,s;) =0 for alli=1,...,m and

VuF (uw) = Z AiVuG(ug, s;i).

i=1

Other authors usually prove first that it is impossible to separate (%, 0) € M, (R) x R™ from the

set
{(€®E€) eM(R) xR : £ € §" ' NOK}

with linear functionals. The same approach can be found in [5, Section 2.1.3] and in [23, 27].

2.2 Maximal intersection position of radius r

Artstein and Katzin recently defined in [6] a one parameter family of positions of a convex body:
the so-called maximum intersection position of radius . They show that such positions induces
an isotropic measure on the sphere when there are some good conditions in K. From that they
give an interpretation of John’s theorem as a limit case of the measures induced from the maximal
intersection positions. The one-parametric family of extremal positions defined by them is the

following.

Definition 2.2 ([6], Definition 1.2). For a centrally symmetric convex body K C R", the

ellipsoid &, of volume 7" vol,,(B"™) is a mazimum intersection ellipsoid of radius r, if
vol, (K NE&) > vol,(KNE)

for all ellipsoids € of same volume 7" vol,,(B™). We say that K is in mazimal intersection position

of radius r if rB™ is a maximum intersection ellipsoid of radius 7.

Recalling that 85( and Si( denote the John ellipsoid and the Lowner ellipsoid of K, respectively,
if r; is a positive number satisfying vol,,(£X) = r%vol,(B™) and ry, is such that vol,(EX) =
r} vol,(B™), then K is in maximal intersection position of radius r; if and only if r;lK is in
John position, and the same holds for the Lowner position, that is, up to a scaling, the maximal
intersection position of radius r; is the John position, and the maximal intersection position of

radius rp, is the Lowner position.
Their first result in [6] is the following.

Theorem 2.5 (|6], Theorem 1.3). Let K C R"™ be a centrally symmetric conver body such
that vol,,(OK N OE) = 0 for all but finitely many ellipsoids &, vol,_1 (0K NrS"1) = 0, and
vol,_1 (K NrS™ 1) > 0. If K is in maximal intersection position of radius r, then the restriction

of the surface area measure on the sphere to S" ™' Nr~'K is an isotropic measure.

When K is in John position we have » = r; = 1 and S"! C K. Hence the theorem does not
include this case, since it is already known to everyone that the surface area measure on the

sphere is isotropic. Other result obtained in [0] is that if K is a convex body in John position
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and centrally symmetric, the measure given in Theorem 2.3 may be constructed as a limit of the

isotropic measures from Theorem 2.5.

Theorem 2.6 (|0], Theorem 1.5). Let K C R™ be a centrally symmetric convex body in John
position such that vol,_1(OK NOE) = 0 for all but finitely many ellipsoids E. For every r > 1,
denote by p, the uniform probability measure on S™~ '\ r~'T.K, where T,K is in mazimal
intersection position of radius r. Then there exists a sequence rj 1 such that the sequence of

measures p; weakly converges to an isotropic measure whose support is contained in 9K N Sl

For Lowner position, we take » < 1 and p, as the uniform probability measure on the
set S"1 Ny~ !T.K. It is shown, similarly the John position, that under the hypothesis
vol,—1 (0K N 0E) = 0 for all but finitely many ellipsoids &, there exists a sequence r; 1
such that the sequence of measures i, weakly converges to an isotropic measure whose support
is contained in 9K N S™~ 1,

About the maximum intersection position of radius r it is also worth mentioning that Artstein
and Katzin proved that such a position exists, but it is not yet known about the uniqueness of
this position for r; < r < r;. What is already known, of course, is that if 0 <7 < rjor r > rp,
then the maximum intersection ellipsoid &, of radius r is not unique and by John’s theorem if
r = ryorr = ry then & is unique. However, the case r; < r < rp is a consequence of a

well-known conjecture:

Conjecture 2.1. For a convex body K C R™ and a diagonal n X n matrix A, the function
o(t) = vol, (" K N B™)
is log-concave in t, i.e.,
LA n 2 tA n n
vol, (62 KNB ) > vol, (e K N B™)vol, (K N B")
for all t € R and all diagonal matrix A. Furthermore, equality is attained if and only if one of

the following hold: K C B™, B™ C K, or A = A1d for some A € R.

Proposition 2.1 (|6], Proposition 4.2). Assuming Conjecture 2.1 is true, if K is a centrally

symmetric convex body, the mazimum intersection ellipsoid of radius r is unique forry <r <rp.

To conclude this section, it is important to make it clear that the isotropic measure is thus
constructed (in the symmetric case), but one can argue that in practice there is a large body
of computations to make. First of all, one has to solve a one-parameter family of minimization
problems (find the matrix 7, for r close to 1), and then take the limit of (some subsequence of)

all these measures .

2.3 Explicit representations of Isotropic Measures in John and

Lowner positions

In this section we will construct a non-negative centered isotropic measure from the convex

body K, which is in John position, whose existence is guaranteed by John’s Theorem 2.3. A
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natural question about the existence of an isotropic measure would be about its usefulness.
And the answer is that we can often determine if a body is in John position just observing the

distribution of its contact points.

Throughout the text we will consider the following family of functions: for any r € (1/2,1) and

w(s) =7 G:i)

Let f,g: R — R be two measurable functions. We define the functional L, : M,,(R) x R — R
by

any function 7 : R — R define

1
L) = 7= [ 1A+ oll)gn(lal2)da,

and the functional I, : B, x R” C Sym,,(R) x R” — R by

1

IT’(M7w) = 1_r

/Rn Fe(ll2ll)gr (1(0d + (1 = r)M) "}z = (1 = r)w)|2)dz,

where the domain B, is the set of matrices M such that Id + (1 — r)M is invertible, and in

particular it contains the ball B(0, (1 —r)~!) in the operator norm.

Observe that if (A,v) € SL,(R) x R™ C M, (R) x R™, then

A-1d 1
L.( — 712) =- _/ 52l )9 (1A (@ = 0)]2)de
1

=1 | felAz+vllk)gr(alo)de
RTL
— L. (Av). (2.4)

Let O be an orthogonal matrix. Since

1
L40.0) = 7= [ 1140z + vl g (fal2)dz
1 _
— 5 [ £lAs 4 oll)gr (07 ala)do
— T Jrn

1
- /R £.(|Az + v/ 1) g, (J2]2) d

= L(A,v),

then by Polar Decomposition 1.2, it suffices to know the behaviour of L, restricted to
Sym,, . (R) x R". In particular, a global minimum of the restriction of L, to Sym,, | (R) x R™ is

also a global minimum in M, (R) x R™.

The reason why we define these functionals is because it is known that isotropic measures often
show up if some suitable functional is maximized or minimized over all positions of a convex

body. Therefore, our objective is to construct such a measure from the functionals L, and I,
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which, as we have seen, are related to (A4,v) € SL,(R) x R™. The idea appear from the following

lemma.

Lemma 2.1. Assume that the functional L, is smooth. Let (A, v,) be a global minimum of the
restriction of L to (Sym,, (R) NSL,(R)) x R™. Then there exists A\, # 0 such that

1
1—r

An(f/)f(’|$|‘K)gT(|Arl(x = v)2)V|z|lx ® zdr = (1 —r)A.1d

1
1—r

L el (147 @ = )V el e =

Note that if (A, v,) is a global minimum of the restriction of L, to (Sym,, ,(R) NSL,(R)) x R",
then by Lemma 1.2, it is a global minimum of the restriction of L, to the smooth hypersurface
SL,(R) x R C M, (R) x R™. Moreover, if x € S" ! N JK then V||z||x = z.

Hence
[ Ol (A @ = 0l Vel @
T Jsn-1noK
S L Onlellos A @ o) S ade (2
T Jsn—-1noK
and
L il 147 = en)a) Vel
T Jsn—-1noK
1 ! _
i L O lellg (A o = wndede. (26)

What we are going to do is assume some properties about f, g that will give us good properties

on the functionals L,, I, and allow us to show that the measure

1
1—7r

(el )gr (14T @ = vr)[2)d (2.7)

concentrates near S" ' NAOK as r — 1~ and converges for some sequence r;, — 1~ to a centered

isotropic measure, as in Theorem 2.6.

Proof of Lemma 2.1. Let ¢ : M,(R) x R — R be the function defined by (A, v) = det(A).
We know that SL,(R) = det ™' ({1}), where ¢ = 1 is a regular value of the differentiable map 1).
Since (Ay,v,) € SL,(R) x R™ = 1~ 1({1}) is a singular point of L, restricted to SL,(R) x R™,
then by Theorem 1.16 there exists A, # 0 such that

VL.-(Ar,v) = NVU(A,v,), (2.8)

where the gradients are taken with respect to the whole space M,,(R) x R"™. By Lemma 1.6, for
(V,w) € T 4, 0,)(SLn(R) x R"™) we have

(A v [Vyw] = det(A,)(A; T, V) = (4,7, V).
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Therefore,
V(A o) = (A.7,0). (2.9)
On the other hand, if (V,w) € T4, »,)(SLx(R) x R"), we have

1
Ly(M,o)[V,w] = +— r/ UMz + ol )(VIIMz + vllx, Va + w)gr(|z]2)dz
7 Jan

1
= H/]R HIMz + ol )(VI[Ma + ][, V) + (V|[Mz + ||k, w))gr(|x]2)da
By Lemma 1.3, we get

L) V.] = 1= [ 1M+ ol + vl 2,10 + 0] ). (Vi) g (olo)da

Since

po=5t(35) =0 (350) = 1 e

1
then making C, = —, we arrive at

L=
LL(M,v)[V,w] =

<cr / <f’>r<||Mx+vr|K>gr<|x|2><V||Mx+v||K®x,vnMx+v||K>dx,<v,w>>.
RTL

Therefore,

VL (Ar,vr) = C/ r([[Arz + vrl| ) gr (J2]2) (V[ Az + ||k @ 2, V|| Arz + vr ||k ) da
(2.10)

Substituting equalities (2.9) and (2.10) in equality (2.8), we get
A (A;T,0) = C, 1A+ orll)g: (1212) (VIIAre 4 vl © @, V]| Are + el 1) do
=G / (e (l2llx)gr (| AT (@ = ve)2) (V]| ® ATz = vr), V||| x)do
=G / r(l2]x)gr (|47 (2 = vr)2)(Vl|z]|x ® @ = V|z|lx ® v,) AT, Vel k)de
Note that in the last equality above we used the property
T Ay = (z@y)AT,
which is easily proved by noting that for any z € R” it holds

@ Ay(z) = (2, Ay)r = (AT 2, 9)x = 2 @ y(AT2) = 2 @ yAT (2).
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By vector equality, we have

i L O lellisn 147 e = o)) (Tl .2 = el © 0)de = . 1a
e [ ellan 147 o = o)) el = .
Since
0= [ (1 (lalldan(14; @ = 0)]o) Vel i v
= [ il (147 @ = o)) Vil © erda,
we conclude the proof. O

2.3.1 Basic Results

In order to construct the measure (2.7), we will assume the following properties for f and g¢:

f1 f is locally Lipschitz; gl g is locally Lipschitz;

f2 f is convex; g2 g is non-increasing;

f3 f(z) =0 for z < —1; g3 g(x) =1 for x < —1;

f4 f is strictly increasing in [—1, 00). g4 g(x) >0 for x € (—1,1);

g5 g(x) =0 for x > 1.

Two functions satisfying f1 to gb are

1, ifz<-—1
0, ifx<-—1
f(x) = ) glx) =4 5%, ifx e (-1,1)

rz+1, ifz>-—1
0, ifzx>1

see Figures 2.2 and 2.3.

Figure 2.2: Functions f(green) and g(red).

-3 -2 -1 0 1 2 3

Source: Compiled by the author.
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Figure 2.3: Functions f,(green) and g, (red).

i
2

‘ r 1 2

Source: Compiled by the author.

These conditions (specially £2) will guarantee that the functional L, has a unique global minimum
(Ar,vp) € (Sym,,  (R) N SL,(R)) x R™ for r € (1/2,1).

Throughout this section we will fix a convex body K C R™ in John position. Since B" C K,

then 0 is an interior point of K.

We start by establishing basic properties of functionals L, and I, that will be useful in proving
the main results. In order to justify the hypotheses requested about f and g, in each proposition

we detail the properties of f, g that are necessary.

Proposition 2.2. Assume f1,g1,g5 are satisfied, then L,, I, are C* for r € (1/2,1).

Proof. By Rademacher’s Theorem 1.17, since f,g,|| - ||k, |- |2 are locally Lipschitz, then f, g, || -
|| %, |- |2 are differentiable almost everywhere. In particular, f(||Mz+v||k)g(|x|2) is differentiable

almost everywhere, where (A,v) € M, (R)xR™ and f,.(||z||x)gr(|(Id+(1—7) M)~ (z—(1—r)w)|2)

is differentiable almost everywhere in B, x R". O

Definition 2.3. We say that a function f : U C R? — R is coercive if lim f(z) = +oo.

|z|2—00

A one-parameter family of functions f. : U C R* — R is said to be coercive uniformly in r if

fr(z) > f(x) for every |z|a > C for some C' > 0 and some coercive function f.
For a function f : R — R we say that f is coercive to the right if li_>rn f(x) = +oo.
€T oo

Observe that a coercive and convex function defined in a convex set must have points of minimum,

and that if the convexity of the function is strict the minimum is unique.

Lemma 2.2 ([3], Lemma 12). A convex function ¢ : R* — R with an isolated local minimum

must be coercive.

Recall that by (1.10), the set
D = {T € Sym,, . (R) : det(T) > 1}

is a convex set.
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Proposition 2.3. Assume 2,13,f4,g3, then the family of functionals L, restricted to D x R™

is coercive, uniformly for r € (1/2,1).

Proof. Let (A,v) € D x R™ be arbitrarily given. Since A is symmetric and positive-definite,
there exists w an eigenvector of A of eigenvalue ||A[|,p, = max{\ : A is an eigenvalue of A}, with

Euclidean norm 3||A[|o, and such that (v, w) > 0. Consider the half-space
S={zeR": (z,v+w) > (v+w,v+w)}

where clearly v +w € 9S. Let S = A~!(S — v) be a half-space. Since

1 1 w

Tw+w)—v)=A"Yw) = w= -
AT =) = A = T, = 2y

then 1% € 9S. Applying the inverse of the affine transformation,

2 w2
1 n 1 n Q
vol, §AB +v ] NS ) =det(A4)vol, §B ns|.
Since the volume of the intersection of %B" with a half-space (not containing the origin) is a

decreasing function of the distance of this half-space to the origin, and since

1
Yl =12,
2

d(0,9) < ’

2wl

we have vol,, (%B" N S) > C,, where C), > 0 is a dimensional constant. Also, (v,w) > 0 implies

|zl2 = o+ wlz 2 \/]]3 + w3

for every x € S.

Since the convex body K is contained in the unit Euclidean ball, there exists a constant C' > 0
such that
||Az + v||x > C|Az + v|2
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for all (A,v) € D x R™. Using g3, that f, g are non-negative, and that f is non-decreasing,

1
LiA0) = 7= [ 5o +oll)g(olo)da
1
> [ nle s vllde
- T rBn

> 2.det(A) ! /(lABn+ g (Clla)is

> 2det(A) "t vol, <<;AB” + v> N S) fr <C’ lv]3 + ]w|§>

1 1
> 2det(A) "t vol, <<2ABn + U> N S) fr (C |v]3 + 4|A||?)p>

o/l + 11413, - 1
> 20, f

1—17r

For Cy/|v|3 + i[|A| 2, > 1, we obtain
L.(Av) >C 2+ 1 Alz, -1
T( 77}) = nf ‘U‘Q 4H Hop ’

and since by f2 and f4 we have that f is coercive to the right, it follows that L, is coercive to
the right as well. O

Proposition 2.4. Let r € (1/2,1) and assume g3,g4,£2 £3,f4. The function L, restricted to

D x R" is positive and conver.

Proof. Positive: Take (A,v) € D x R™ and assume L,(A,v) = 0. Since the functions f,, g, are
non-negative, we have that if g,(|z|2) > 0 then f,(||Az + v||x) = 0. In other words,

x€(2—r)B"= Az +verk.

Hence, (2 —7)AB" +v C rK. Since K is in John position, det ( TA) <1 from where

r

r n
<
det(A) < <2 — 7"> <1,

which contradicts the fact that A € D.

Convez: Let (A,v),(B,w) € D x R", and A € [0,1]. By £3,f4, f is non-decreasing. Using this
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fact, the convexity of the gauge function of K and f2,

LA o)+ (1= N (Bw) = 7= [ S04+ (1= DB+ (o (1= Ajw)ll)ar (al2)da
1_T/ SN AT +0) + (1= (B2 + )9 () d
< [ RO il (- VBl el 211)
T Jrn

[ OB+ ol + (= NA([Be + wll)gn(fal2)da
]Rn

= )\LT‘(A7U) + (1 - A)Lr(va)a

IN

and this is the desired inequality. O

Proposition 2.5. Assume g5,f3, then for r € (1/2,1) we have L,(Id,0) < C where C is a

constant depending only on f and n.

Proof. By g5 and polar coordinates, we get
1
Ly(1d,0) = 7— | frlllzllx)gr(j2]2)dz
— T Jrn

1
<775 o el
1 2—r
= L[ el @),

Since K is in John position, then S"~! C K. From where it follows ||¢||x < 1 for all £ € S"~L.

Furthermore, since f, is non-decreasing

_T/Sn 1/2 " Lf, (s)dsdH" 1 (€).

Making the substitution s = 1 + (1 — r)t, recalling that f.(s) = f(¢) and using f3 we arrive at

L,(1d,0) <

Lr(1d,0) < /Snl /l : (14 (1= r)t)" f()dtdH" 1 (€)

/Sn 1/ (1+( Y LE () dtdHT(€)

< 2" 1yol,_1(S" 1) / f(t)ydt < C.
-1

O

Lemma 2.3. Let n > 2, A, B € GL,(R) and v,w € R™ be such that Ax + v is a multiple of
Bx + w for every x in an open set U C R™. Then there exists a # 0 for which A = aB and

V= aw.

Proof. First, we can assume that Az + v # 0 for every x € U, because if it does not we consider
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the open set U\ {—A~!v}. The same we can assume for (B, w), that is, Bx+w # 0 for all x € U.
Now since Az + v is a multiple of Bx + w for every x, then there is a function ¢ : U C R" — R
such that

Az +v = a(z)(Bzr + w). (2.12)

For any z¢ € U, choose a coordinate ¢ for which (Bzg 4+ w); # 0. Thus,

‘)= Ba v ),

guarantees that a(x) is a C* function near x.

Taking the directional derivative of equation (2.12) with respect to x, in the direction of a vector

1, we arrive at
Az = (Va(z),z1)(Bx + w) + a(x)Bx;. (2.13)
Now taking in (2.13), the directional derivative with respect to x, in the direction of x, at x = x
0 = (2T Ha(zg)z2)(Bxo + w) + (Va(xg), 1) Bxa + (Va(zg), x2) Bxy.

We claim that Va(zo) = 0. Indeed, if Va(zg) # 0 and BVa(zy) is parallel to Bxg 4+ w it is

enough for us to take z; = Va(xg) and x2 orthogonal to Va(zg) to obtain
0 = (Va(xo)" Ha(wo)w2)(Bxo + w) + (Va(zg), Va(x)) Bra,

which implies BVa(zg) = 0 because Bxs is not parallel to BVa(zg). This contradicts the fact
that B is invertible.

If BVa(zg) is not parallel to Bxg + w we take 1 = x9 = Va(zp) to get
0= (Va(:ro)THa(:):o)Va(:ro))(on + w) + 2(Va(xo), Va(zg))BVa(xy),

which implies BVa(z¢) = 0 and we conclude that Va(zg) = 0.

For x = xg, by (2.13)

Azy = (Va(zg), 1) (Bzo + w) + a(xo) Bxy
= ((Bxo +w) ® Va(xg))z1 + a(zo) By

and the equality for every z; implies

A = (Bxg +w) ® Va(zg) + a(xo)B. (2.14)

By (2.14) becomes A = a(xo)B, and by (2.12) for z = z we get

a(zp)Bxog + v = a(zg)(Bxo + w)
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which implies v = a(zg)w.

Finally A € GL,(R) implies a = a(xg) # 0. The proof is complete. O

2.3.2 Main Results in the geometric setting

Our first result is an immediate consequence of the Lagrange multipliers and explicitly gives us

a centered and isotropic measure from a function F' satisfying some conditions. Consider the set

F={F:R—[0,00): F is non-decreasing, convex, strictly convex in [0, 0), and F’(0) > 0}.
(2.15)

Theorem 2.7. Let K be a convex body in John position. Choose any finite positive and non-zero
measure v in SV with support inside S""' NOK, and any C' function F € F. Consider the
convex functional I, : Sym, (R) x R™ — R defined by

Iu(Maw) = ot F(<£> Mf + w>)dy(§)

If the restriction of I,, to Sym,, o(R) x R™ is coercive then for any global minimum (Mo, wo), the

measure

F'((€, Mo& + wo))dv ()
s nom-negative, non-zero, centered and isotropic.

By Lemma 2.2, if I, has an isolated local minimum, then it must be coercive so the coercivity

can be established locally once a minimum is found.

Let us consider the situation where S"~!' N 9K is finite. In this case, a natural choice of v is the

counting measure c.

Corollary 2.1. Let K be a convex body in John position and assume
S"INOK = {&,...,&m}

Choose any C* function F € F. Consider the convex functional I. : Sym,,(R) x R — R defined
by

m

I(M,w) =Y F({&, M& +w)).

i=1
If the restriction of I. to Sym,, o(R) x R™ is coercive then for any global minimum (Mo, wo), the

numbers
C;i = F,(<§ZaMO§Z + U]0>),’L' — ]-a e, M,

together with the vectors &,i = 1,...,m, satisfy equation (2.1).

For a convex body L, the 0-th curvature measure Cy(L,-) is a measure in 0L that generalizes

the Gauss-Kronecker curvature x(x) of L, for sets with non-smooth boundary (see, |10, Section
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4 and formula (4.10)]). By [16, (4.25)], if L is C?-smooth, and A C 9L , we have

Co(L, A) = /A () dHm (). (2.16)

We shall need the following property.

Proposition 2.6 ([10], Theorem 4.5.1). The support of the measure Co(conv A,-) is ezxactly A,
where A CR" is any set.

For the convex body K there is a canonical choice of measure v given by
v = Co(conv(S" 1 NOK),-),

and will play a special role in Theorem 2.9 below. Depending on the set S"~! N 9K and the
measure v, the function I, might or might not have a minimum. This can be a consequence of
a “bad choice” of v, or of the fact that S"~! N JK is degenerate in some sense. To make this
precise we recall the following properties about John position. A proof can be found for the
symmetric case in |5, proof of Theorem 2.1.10 and Lemma 2.1.13]. In the general case, the proof

is analogue.
Theorem 2.8. Let L be any convex body. The following statements are equivalent
(i) L is in John position;

(it) B" C L and for every (M, w) € (Sym,, o(R) x R™)\ {(0,0)} there exists £ € S" ' NOL for
which (£, M& + w) > 0;

(iii) B" C L and (11d,0) € conv({(£ ® &, &) : £ € S NALY).
Theorem 2.9. The following statements are equivalent
(i) The restriction of I, to Sym,, o(R) x R" is coercive;

(ii) For every (M,w) € (Sym,, o(R) x R™) \ {(0,0)}
v({€ € S"INOK - (€, ME +w) > 0}) > 0;

If v=vg orif S""'NOK is finite and v = c, the statements above are also equivalent to

the following:
(iii) (£1d,0) lies in the interior of conv({(£®&,€) : £ € S"INIK}) C Sym,, 1 (R) x R", where

the interior is taken with respect to Sym,, 1 (R) x R™.

Proof. We start by proving that (i) = (i7). Assume by contradiction that for some (M, w) €
(Sym,, o(R) x R™) \ {(0,0)} it holds (£, M& + w) < 0 for v-almost every §. For A > 1, since F is
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non-decreasing,

1, (A(M, w))

/ F(\¢&, ME + w))dv
Sn=1NoK

IN

F({§, M¢ + w))dv
Sn—1noK

I,(M,w),

which contradicts the coercivity of I,,.

Now suppose that it holds (i7). Denote by z; = max{x,0} the positive part of = and consider

the function

E(M,w) = /S & MEtw) v,

By hypothesis, E is positive in Sym,, o(R) x R™\ {(0,0)}. By Dominated Convergence Theorem
1.11, the function E is continuous, and there is ¢ > 0 such that E(M,w) > e for every
(M,w) € Sym,, o(R) x R" with ||(M,w)|| = 1. Using the comparison F(x) > F'(0)z4 and
writing (M, w) = ||(M,w)||~*(M,w), we deduce that

L) = [ PO ME )y

>l [ FO)E N+ 0) v

> ||(M, w)||[E'(0)e,

which implies the coercivity of I,,.

So far we have shown that (i) < (ii). Now we assume (iii) for v = vg and show that it holds
(#). Let (M,w) € Sym, o(R) x R™\ {(0,0)}. First we show that there exists & € S"~' NIOK
such that (o, M&y + w) > 0. Indeed, (%,0) belongs to the boundary of the half-space
F = {(N,u) € Sym,, ;(R) x R" : {((N,u), (M, w)) < 0}, so by the hypothesis, we cannot have
conv({¢®¢:¢€ S NIKY) CF.

Now we may find € > 0 such that |{ — &2 < € implies (§, M{ + w) > 0 as well. Since & is in
the support of vg, by Proposition 2.6 we have vi(B(&p,¢)) > 0. This implies that

vi({€ € "I NOK : (&, ME+w) > 0}) > 0.

The implication (ii) = (i4i) for v = v follows because v({¢ € S"1NOK : (¢, ME+w) > 0}) > 0
implies {¢ € S" ' NOK : (¢, M& +w) > 0} is non-empty.

To finish, if S"~' N QK is finite and v = ¢ then conv(S"~! N JK) is a polytope and v is an
atomic measure supported in S""'NAK, by Proposition 2.6 again. The equivalence then follows

from the case v = vi. O

Notice that these conditions do not depend on the choice of F' but only on the measure v.
Theorem 2.9 shows that the condition of coercivity in Theorem 2.7 corresponds to a generic

situation.
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Example 2.1. Consider K the Octagon that is in John position. The set of contact points
between K and B? is given by

S'MOK = {£(1,0),£(0,1),+(1,1), (1, —-1)}.

Figure 2.4: Contact points between K and B2.

oS
&
=

Source: Compiled by the author.

b

For each matrix M = Z € Symy(R) and vector w = (c,d) € R?, we can show that
—a

for some 7 = 1,...,8, it holds

Here a,b, c,d € R are such that at least one of them is non-zero. Therefore, by Theorem 2.9, the
functional
I(M,w) = eleoMatw),
i=1

given in Corollary 2.1, is coercive.

Proof of Theorem 2.7. By Theorem 1.19, the set Sym,, ((R) x R™ is the orthogonal complement
of (Id,0) in Sym, (R) x R™. Now we compute the derivative of I, in the direction of (V,w), at
the point (M, v) and we use the Lemma 1.3

(VL0 (Vo)) = [ P& ME+ o) (6 ME +0)), (Vo))

/S P({ M+ 0))E VE +w)dy
:/S FI((€, ME+0))(E@E V) + (€, w))dv
_ /S P ME+0)((ES€,6), (Vow))dv

([ PleMe+)Eo €O Vi),
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We deduce that
VL) = [ P M+ )€€
since this expression already in Sym,,(R) x R".
The gradient of the function (M,v) = tr(M) is V¢(M,v) = (Id,0). Since ~1({0}) =

Sym,, o(R) x R™, (Mp, wo) € Sym,,(R) x R™ is a singular point of I, and 0 is a regular value of
1, then by Theorem 1.16 there exists A > 0 such that

V1,(My, wy) = AV(My,wy),

that is,
/Sn1 F'((€, Mo€ + wo)) (€ ® &,€)dv = A(Id, 0).

Equivalently,

| FE Mg o)) (€ @ v = AT (2.17)

. F'((&, Mo& + wo))&dv = 0.

Since F' is non-decreasing, F'((£, Mo 4+ wg)) > 0. Taking traces in equation (2.17) we get

1

A= - /Sn1 F'((&, Mo& + wo))dv.

By Theorem 2.9, we know that (£, Mo +wp) > 0 for a set of positive v-measure. Since F'(z) > 0
for every x and F'(x) > 0 for x > 0, we deduce that A\ > 0 and the proof is complete. O

Theorem 2.10. Let K be a convex body in John position and let f,qg satisfy all the properties
f1 to g5, then for every v € (1/2,1) the restriction of Ly to (Sym,, 4 (R) N SL,(R)) x R™ has a
unique minimum (Ay,vy) with lim (A,,v,) = (Id,0). Likewise, the restriction of the I, to
r—1-
s, — <(Symn7+(R)1ﬂ SL,(R)) — Id) < R
—r

A—1d M,
has the unique minimum (M,,v,) = < , Ur > with tr< a ) —0asr—1".
1—r'1-—7 || M| F

Remark 2.1. The fact that (A,,v,) — (Id,0) is saying that the position of K that minimizes L,.,

Y

converges to the John position as r — 17. The functional I, is a “blowup” of L,, by a change
of coordinates that concentrates near (Id,0) and stretches the distances by a factor of ﬁ The
restriction of L, to the smooth surface (Sym,, | (R) NSL,(R)) x R™ takes the same values as the
restriction of I to S,.. Now notice that in a neighborhood of the origin, as » — 17, the surface S,
approaches the tangent space to (Sym,, ; (R) NSL,(R)) x R™ at (Id, 0), which is Sym,, ((R) x R™.

At the same time, -(M,, w,) is the incremental quotient of (A4,,v,) at » = 1. The statement that
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tr (Wﬁ) — 0 means that the line going through Id and M, gets more and more parallel to
Symn,O (R)

Proof of Theorem 2.10. First we show that for r € (1/2,1), the restriction of L, to D x R™ has

exactly one global minimum (A, v,).

Since by Proposition 2.3 L, is coercive, by Proposition 2.4 it is convex and D x R" is closed
and convex, then L, admits at least one minimum. Assume the minimum is attained in two
different points (A,v) and (B, w). Since by Proposition 2.4 L, is convex, then there is equality
in equation (2.11) for every A € [0,1] and since f, is strictly increasing in [r, +00), Az + v and
Bx + w are multiples for every = € (2 —r)B"™ such that ||Az + v||x > r or ||Bx +w||x > r. We
claim that ((2 —r)AB™ 4+ v) \ 7K has non-empty interior. Indeed, since (2 —r)AB" +v and rK
are convex bodies, then to say that ((2 — r)AB™ 4+ v) \ rK has empty interior is the same as to
say that ((2—r)AB™+v) C rK, that is, (Q—fAB” +v) C K. And since K is in John position,
then det (%A) < 1, meaning

det(A) < <2ir>n <1

which contradicts the fact that A € D. Thus, by Lemma 2.3 there exists a > 0 such that
A=aB,v = aw.

If a =1 we are done. Assume without loss of generality that a > 1. Since (AB™ 4+ v) \ 7K has
non-empty interior (because K is in John position and det(A) = adet(B) > 1) then there exists
x € B™ (where g, is non-zero) such that Az +v € (rK)¢ (where f, is strictly increasing). From
where it follows that

L,.(B,w) < Ly(A,v),

which is absurd.

Now we show that A, € SL,(R). If det(A,) > 1 then again (A, B™ + v,) \ 7K has non-empty

interior and

1

Lo (@et(A0) (A 0r)) = 7 [l det(A) ™ (A + )l

1
<y [ AA + g (fel2)ds
— T Jrn

= L’!’(AT‘7 Ur)-

This last inequality contradicts the minimality of (A,,v,). We conclude then that A, € 9D =
SLn(R) N Sym,, , (R).

A, —1d
Denote M, = 17" S Wy = 1% . Since A, € SL,(R), then by equation (2.4) we have
—r —7r
I.(M,,w,) = L.(A,,v,) and (M,,w,) is the unique global minimum of the restriction of I,

to

<(Symn,+(R) NSL,(R)) — Id> x R"
1—7r ‘
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Now let us prove that (A,,v,) — (Id,0). Assume that (A,,v,) does not converge to (Id,0).
By Propositions 2.3 and 2.5, the sequence {(A,,v,)}, is bounded. Then there is a sequence
rx — 17such that {(A,, v, )}r converges. Assume that (4, v ) — (A*,v*) € (Sym, ,(R) N
SL,(R)) x R™, with (A*,v*) # (Id,0). Since the John position is unique up to orthogonal
transformations and A* € Sym,, | (R), the set (A*B" + v*) \ K has positive Lebesgue measure.
Take p < 1 such that pA*B™ + v* \ K has positive Lebesgue measure. For large k, we have
pA*B" +v* C A, B" 4+ v,,. By Fatou’s Lemma 1.10,

o o 1 _
hmmerk(Am,vrk)Z/\ lim inf -—— 7nkfrk(IIﬂffHK)gm(IAr,f(ﬂﬁ—vr)lz)dﬂf
Rn -

k—o0 pn k—oo

o 1
> / lim inf —— f,, (||z]|k)g(0)dx
pA* Br4o\ K k—oo 1—1p
= +OO7
which is absurd because by minimality of (4,,,v,,) and Proposition 2.5,

Ly (Ap vp,) < Ly, (14,0) < C.

Note that we used for large k
9 (145} (@ = vp,)|2) > g(0)

in pA*B"™ 4+ v* \ K, because if x = pA*% 4+ v*, where € B",||z||x > 1, we have
x € pA*B" + v\ K = AN (AT + 0" — v, ) € AN (A B") = B" = |4 (z — vy, )2 < 1

and by g2 it follows that

—1 X — Up —
grk(’Aanl(l’—Ur)\Q):g<|Ark( )’2 1> Zg(()).

|| M| 7
Id € M, (R) and by Taylor 1.18,

It remains to show that tr< ) — 0. Recall that the trace is the differential of det at

det(Id+V) = 1+ tr(V) + o(||V||r)

o(e)

where —~ — 0 as e — 0.
€

Taking V = (1 — r)M,, we get

1 =det(A4,)
= det(Id +(1 — r)M,)
=1+ (1= r)te(M;) + o((1 = r)|[M; ][ p)-
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Therefore,
N < M, ) _ (M) o((L=n)IMlle)
[|M:||F || M || F (1 =) M:||F
asr — 1. O

The functional I, captures the asymptotic behaviour of the minimizers (A,,v,) when r — 17,

as following theorem explains.

Theorem 2.11. Assume K has a C'-smooth boundary and all the properties f1 to gb are

satisfied. The functional I.(M,w) is extends continuously tor =1 as

BOMw) = [ P ME+ u)dr e,
Sn—1NaK
where F is the convolution F(z) = f*g(x),g(x) = g(—x) and satisfies the conditions of Theorem
2.7. Moreover, I, — I as r — 17, uniformly in compact sets.
Thus we obtain I; = In-1, where H" ! is the (n — 1)-dimensional Hausdorff measure restricted

to S" 1N oK.

Proof. By Proposition 1.4, we have

L0Lw) = 7 [ flllellidar (0440 =137 (@ = (1= r)w)la)da

L T gt —r sz —(1=r)w
= [ s (0 = a0 sz = (= ru)l)

X hg (n®(2))dsdH"1(2).

By Taylor expansion we obtain for any x,w € R"”,

|+ wlp = |afs + <’;|2,w>+0(|w\2). (2.18)
We will denote by o((1 —r)®)(resp. o(1)) any function of the involved parameters M, w,r, s, t, z,

satisfying
lim olt=1)") = (resp. lim o(1) = 0) ,

r—1- (1 - T)a r—1-
where the limits are uniform in compact sets with respect to the parameters. Likewise, O(1) will
denote any bounded function. For any z,w € R",s > r > 0,M € B, C M, (R) (recall that B, is

the domain of functional I,.),

Id+1 —r)M) sz — (1 —r)w) = (s2 — (1 = r)w) — (1 = )M (sz — (1 — r)w) + o(1 — 1)
=sz—(1—r)(sMz+w)+o(l —r). (2.19)
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Using (2.19) and (2.18),

|(Id+(1 —r)M) sz — (1 = r)w)|s = sz — (1 =) (sMz + w) + o(1 — )2

=S

z=(1-r) (M2+2w)+0(1—7’)2

. <|z|2 (-7 <‘2Z’2Mz + iw>> +o(l—r).

Putting all together and making the substitution s = 1 + (1 — r)t, we get

L) = [ [T 0000 = ) s = (= o
x hi(n ( ))dsdH" ' (z)

=)t f ()i (n" (2))
oK

(\“Hl—% (ko0 { Zore s 1)) ot 0)
:/[)K /_1(1—1—(1—r)t)”_lf(t)hK(nK(z))

x g (’Z‘Q__rl + (]2l + o(1)) — <, o Ma ot o(l)> + o(1>> ddH" ™ (2).

) dtdH"(2)

2

1
Notice that |z]s = 1 for 2 € S ' NIK, |z]2 > 1 for 2 € OK \ S"! and that nf(2) =
2, hi(nf(2)) = hi(2) = 1 for every z € S"~1 N OK. Moreover,

-1
lim 7|Z|2 — 00
r—1—- 1—r7r

in 0K \ s"~ L.

Also, by £3 the integrand is 0 for ¢t < —1, then

= - — )t n(z
notw = [ [ =g O )
x g (—(& ME&+w+0(1)) + (1 + o(1)) + o(1)) dtdH"*(€)

+ / / 001 (14 1 =)t f () h (0" (2))
K \Sn—1

X g <|Z|2 1, t(|zl2 +0o(1)) + O(1) + 0(1)> dtdH" ! (2).

To prove the uniform convergence in compact sets, consider a convergent sequence (M, wy) —
(M,w) as rp — 17. By property g5, the function in the second integral is zero for ¢ > C where
C is independent of k. The functions f, g are thus uniformly bounded in the support of both
integrals, and we may apply the Dominated Convergence Theorem 1.11 to obtain (thanks to

property g5)
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lim I, (My, wy) = / / F()g(—(€, ME + w) + £)dtdH"™(€).
k—o0 Sn— 108}(

Finally, we must show that F' satisfies the properties of Theorem 2.7. First, F' is non-negative
because f(t)g(t —x) > 0, for all (z,t) € R™ x R. Second F' is non-decreasing because since g is

non-increasing then g is non-decreasing and

/f 't — z)dt = / flz —t)g (—t)dt = / flz — )7 (t)dt > 0.

By f1,g1, f and g are locally Lipschitz and hence absolutely continuous and differentiable a.e.,
then F is twice differentiable a.e. and by f4, g3, g4, g5

F'(x / 'z —t)g (t)dt > 0,

showing that F' is convex. To see the strict convexity in [0,00) take any x > 0. If F”(z) = 0,
since g'(t) > 0 in (—1,1), the last inequality implies that f* = 0 in a set of positive measure
inside (x — 1,z + 1), and this contradicts f4. O

As in the last remark made at the end of Section 2.2 with respect to the measure v, to obtain
the measure (2.7) one requires the computation of (4, v,) for every r close to 1. The reason why
Theorem 2.7 follows directly, is that the information of the curve (4,,v,) that is necessary to

compute the isotropic measure, is contained in (My, wp). That is the content of the last theorem.

Theorem 2.12. Assume all the properties f1 to g5 are satisfied and the function I restricted to
0(Ay,vy)

Sym,, o(R) x R™ has a unique global minimum (Mg, wy), then 3
7 r r=1

o —(M(), wo).

exists and is equal

In this case, if (A, v,) is any curve in Sym,, ; (R) x R™ of the form
(Arall_)T) = (Idv 0) + (]‘ - T)(M()a/wO) + 0(1 - 7"),

the measure

1

—— eIl gr (14 @ = ) |a)de

converges weakly to centered and isotropic measure F'({£, Mo& + wo))dH™1(€).
In particular this is true for its linear part (Ay,v,) = (Id+(1 — 7)Mo, (1 — r)wg) and for
(A, 0.) = (Ar,vp) as well .

Proof. First we prove that if I; has a unique global minimum (M, wy), then (M, w,) converges
o (Mp,wp). By Lemma 2.2, I is coercive. Then there exists R > 0 such that (M,w) €
Symnyo(R) x R™ ||(M,w)|| > R implies

Il(M,w) Z C+2,
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where C' given in Proposition 2.5 is such that L,(Id,0) < C.

Let Bp = {(M,w) € Sym,,(R) x R : ||(M,w)|| < R}. Since I is continuous in the compact set
Bp, there is € > 0 such that
Il(M, w) >C+1

for every (M,w) € Bg with |[tr(M)| < e. By Theorem 2.11, there is 79 € (1/2,1) such that for
every r € (rg,1) and (M,w) € Bp,

I, (M, w) — I (M, w)| < 1/2.

Increasing o if necessary, we may assume that for every r € (rg,1) and A € [0, 1],

C+1/2 1
det(AA, + (1 —A)1d) < =1
A+ A =N s mmg 7 =1 5o
M, € . .
and that |tr (HM T )‘ < & (last part of Theorem 2.10). First we claim that (M,,w,) € Bgr
r||F
for r € (rp,1). Assume by contraction that (M,,w,) ¢ Bpr for some r € (rg,1), and consider
M,
A < 1 such that [|A(M,, w,)|| = R, then since |tr(AM,)| < Ws <e,
1 1 1
I (A My, wy)) > Li(A(My,wy)) — 3 >C+1- 5= C+ 7

By the convexity of D,
(1d,0) + (1 = 1AMy, w,) = A(Ay, 0,) + (1 7)(1d,0) € D
from where it follows that

Lo (MAr,v,) + (1 = M\)(Id,0)) = det(AA, + (1 — N Id) 1L, (A(M,, w,))

-1
> <m> (C+1/2)

—C+1/4
> L.(Id,0) + 1/4
> Lo(A,,v0) + 1/4.

We obtain the inequalities
L,(MAy,v)+ (1 —=X)(1d,0)) > L-(1d,0) > L.(A,,v,)

contradicting the convexity of L,, that is, (M,,w,) € Br for r € (r9,1) and the claim is proved.

For any matrix M € Sym,, o(R) consider

) det(Id+(1 —r)M)~/"(Id+(1 —r)M) —Id
N 1—r

M
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(SLn(R) N Sym,,_, (R)) — Id

Il for 7 close to 1. We also have
-7

and notice that it belongs to

_ =1/n _

r—1- r—1- 1—r

= g (det(Id +tM) "/ 1d) + M
t=0

1
= ——tr(=M)1d +M
n

Id + det(Id +(1 — r) M)~/ M

=M.

Now that {(M,,v,)}, is bounded, for every convergent sequence (M,, ,wy,) — (Mo, wy) with
7 — 17, and for every (M,w) € Sym,, ((R) x R"

I (Mo, wo) Iy (M, wp) < I, (MT) w) — I (M, w)

so that (Mp, wp) is the (unique) minimum of I;, and we deduce (M, w,) — (My,wp) as desired.

Finally, we write

0(Ay,vy) ~ lim (Ar,vy) — (1d, 0)
or |,y ro1- r—1
= lim (—M,, —w,)
r—1-
— (Mo, wo).

For the second part of the theorem take d any continuous function with compact support and

write, as in the proof of Theorem 2.11,

1
1-—

[ (el (17 o = oo
/ [+ (L= 0O (a6 Mok + w0+ 0(1)) + £(1+ 0(1)) + 0(1)
Sn—1NoK
L (1= 1) (0 (€)= (€)
/ [ s = rmar (S o)+l + o)
aK\Sn 1 1—r
(1= )t i (0 () ddH = (€)

hence by the Dominated Convergence Theorem 1.11,

1
1—r

An(f’)r(llxl\K)gr(lAfl(x = Ur)|2)dx — S(€)F'((§, Mo& + wo)dH" 1 (€) (2:20)

Sn—1NoK
asr — 17.

Since (A, v,) minimizes the functional L,, then Lemma 2.1 guarantees the existence of A, > 0
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such that

1
1—r

An(f')r(llml\K)gr(\Arl(x — or)|2)Vl[zl[x @ zdz = (1 —7)A, 1d

1
1—r

L el (147 @ = )V el =

Moreover, by equations (2.5) and (2.6) we obtain

1
1—r

/Rn(f')r(HxHK)gr(\ATl(x = vp)[2)lgn-1pok ()2 @ zdr = (1 —7)A. 1d

1
1—r

L nllellidgn 147 @ = o)1 soarc(hade =0,

(e ll2ll)gn (A7 (@ — v2) 2)d is a measure. By (2.20)
we conclude that this measure weakly converges to F'({¢, Mo& + wo)dH"1(€) and by Theorem

1
By Proposition 1.5, the function 1

2.7 this last measure is centered and isotropic. The proof is complete. O
Remark 2.2. This type of construction is also valid for the Léwner position. To do so, it is
enough to consider the following functionals

~ 1
L.(A,v) = T

/Rn fr(|Az 4 v]2) g, (||| & )dx

and

L) [ ekl (104 +0 = r)M) 7 = (1= ).

The results follow in a similar way, and in most cases it is enough to switch roles K for B™.

Here, we consider f and g as before. This construction is described in [8].

2.3.3 Geometric Interpretation of the minimizer

Consider the functions f =1/_1 ;o), 9 = 1(_c0,0)- We have

1, if Ax+ve&rK 1, if x € B™
fr(|Az +vl[x) = 7 gr(lzl2) =
0, if Av+verK 0, if x ¢ B"

Then for (A4,v) € SL,(R) x R"
fr(”AJ; + U||K)gr(|$|2) = 1AB"+’U\TK(:U)

and, hence

Li(A,v) = - L ol (AB™ + v\ K).

—r
This meaning that a minimum (A,,v;,) of the restriction of L, to (Sym,, . (R) N SL,(R)) x R"

induces a maximal intersection position of radius r.

Unfortunately, this choice of f and g do not give L, the desirable properties to work with critical

point theory. For instance, it is not known in general if the maximal intersection position of
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radius r is unique, because L, is not convex.

As we know, assuming Conjecture 2.1 is true, we have that Proposition 2.1 holds. So a possible
way to proceed with this work would be to assume uniqueness of the maximal intersection
position of radius r and check if there is a possibility of weakening the hypothesis about f and g
requested in the previous section. However, we chose to continue studying others things, as we

will see.

Another geometric interpretation that we have seen (Theorem 2.12) for the minimizer (A,,v,)
of the functional L, is that the derivative of (A4,,v,) for r = 1 equals to minus the minimizer of
the functional 7, which is the limit of the functionals I, for r € (1/2,1).

2.4 Explicit representations of Isotropic Measures in positive

John and positive Lowner positions

One of the questions raised was if instead of considering a convex body and the unit Euclidean
ball, we consider two convex bodies both different from the unit ball, and looking at the position
of one of these bodies contained in the other, is it possible to construct a centered and isotropic
measure supported at the points of contact of these bodies? We will see what it was possible to

observe in this Section.

Let K,L C R"™ be convex bodies containing the origin as an interior point. Replacing the
Euclidean ball by L we can consider the affine image of L contained in K and ask us if there
is a position with maximal volume among all such images. The answer is affirmative and this
position was studied by many authors, including Giannopoulos, Perissinaki and Tsolomitis [27],

Bastero and Romance [13], Gordon, Litvak, Meyer and Pajor [26] and Gruber and Schuster [27].

We say that L € K™ is in mazimal volume position inside in K € K™ if L is its own maximal
volume image inside K. Note that the maximal volume position of L inside K is not unique, as

it can be seen by the example of a triangle inside the cube:

Figure 2.5: L and Ly are in maximum volume position inside in K.

L,

Source: Compiled by the author.

In this case, triangles L1 and Lo have the same volume and one is an affine position to the other.

There is a generalization of the classical John’s Theorem 2.3 for the case where L is not the unit

Euclidean ball. Giannopoulos, Perissinaki and Tsolomitis [25] proved the following theorem.
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Theorem 2.13 ([25], Theorem 2.5). Let K, L be smooth enough convex bodies in R™, such that

L is of maximal volume in K. If z € int L, we can find contact points vi,...,vym of K —z and
L — z, contact points uy,...,un, of the polar bodies (K — 2)° and (L — 2)°, and positive real
numbers ci, ...,y such that
m m
<ui, Ui> = 1, Z CiUjg ® (e Id, Z C;U; — 0.
i=1 i=1

When we finished the study presented in Section 2.3.2, our question was: Are we able to construct
a centered and isotropic measure, supported at the points of contact between K and L, given
that L is contained in K and has maximum volume among all its positions? Unfortunately the
answer is not entirely straightforward. In fact, the method used by us does not fit into this
setting (namely, Theorem 2.10), since the position of L in K of maximum volume is not unique
and then the functionals L, and I, would not necessarily have a single minimizer. Furthermore,
if we take a family that minimizes L,, say {(4,,v,)}r, we would not be able to guarantee the
convergence (A,,v,) — (Id,0). And an important consequence of uniqueness that was heavily
used in Theorem 2.10 is that the set ((2 — r)AL 4+ v) \ 7K has non-empty interior. For these

reasons, we do not treat the general problem.

As mentioned before, Ball proved that for the classical John’s theorem the existence of an
isotropic measure supported on contact points is not only implied by, but also implies that
K is in John position. For the setting in which both bodies are not the unit Euclidean ball, this
characterization is not valid, since we do not have uniqueness of the maximal volume position.
Note that this differs from the classic case, because the rotation of the Euclidean ball is the same
ball, different from the general case. However, one does obtain an “if and only if” characterization
of the position by the existence of a decomposition of the identity when considering a modification

of the above position, namely the positive John position.

Definition 2.4. Let K, L be convex bodies with non-empty interior. We define a positive image
of L in K to be a set of the form PL + v contained in K, with v € R"™ and P a positive-definite
matrix. We say that K is in positive John position with respect to L if L C K and L has

maximal volume among all positive images of L in K.

The positive John position was defined by Artstein-Avidan and Putterman in [7], see also [13].

The advantage of working with the positive John position is due to the following proposition.

Proposition 2.7 ([7], Proposition 3.1). Let K, L be convex bodies with the origin in the interior
of K, and consider the set of positive images of L inside K,

Ak, = {PL+v: P is defined positive,v € R" and PL+v C K}.

Then there is a unique element in Ak 1, of mazimal volume.

From this result we are able to use our tools to construct an isotropic and centered measure,
supported on contact points between K and L, given that K is in positive maximal volume in L.

And we can exactly because in this case we are going to have the “good properties” of Theorem
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2.10 that are missing in the general case mentioned earlier.

Following Artstein and Putterman, instead of using the term “position of maximal volume among
positive images” we call the image of L with maximal volume in K guaranteed by the above

proposition, the positive John image of L in K.

A subtlety observed by Artstein and Putterman in [7] is that the positive-definite matrices do
not form a group, that is, for a given image Iy = PL + v of L, the family of positive images of
Ly, namely {M Ly +w : M € Sym,, , (R),w € R"}, does not coincide with the family of positive
images of L, while in the case of the usual position of maximal volume between the bodies K and
L it holds that Ly = ML+ z, where (M, z) € M, (R) x R", is the affine image of L of maximal
volume of L contained in K if and only if L; is itself in maximal volume position in K. And due

to this observation, they obtained the following characterization.

Proposition 2.8 (|7], Proposition 3.2). For any two convez bodies K, L with non-empty interior,
v € R™ and a positive-definite matriz P, the body L1 = PL + v is the positive John image of L
i K if and only if P3L+ P 3v is in positive John position inside PK.

Throughout the text the symmetric part of the matrix 2 ®y will be denoted by (x@y)sym = (z®
y—y®x). Following [13], we say that (x,y) is a contact pair of K, Lifx € 0KNOL,y € 0K°NJL®,
and (x,y) = 1. In other words, x is a common boundary point of K, L and y defines a supporting

hyperplane to K and L at x.

The next theorem characterizes John positive position of K with respect to L in terms of contact
points. It was first given in |13, Theorem 4], and reproven by different methods as [26, Corollary
4.4].

Theorem 2.14 ([7], Theorem 1.2). Let K € Kij,L € K™. Then K is in positive John position
with respect to L if and only if L C K and there are contact pairs (x1,y1), -, (Tm,Ym) of K, L
and ci,...,cyn > 0 such that

m m
Z ci(zi ® Yi)sym = 1d, Z cy; = 0. (2.21)
i=1 i=1

For this position we can construct a centered and isotropic measure in the contact pairs. Our

next step is to understand how to do this.

As before, consider f,g : R — R functions satisfying the conditions f1 to gb. We define the
functional L, : M, (R) x R” — R by

~ 1
Lr(A,0) = 1/ fr({1Az + vl ) gr ([ ] ) da,
— T Jrn
and the functional I, : B, x R" C Sym,,(R) x R"” — R by

0w = 7= [ i (104+0 = M)~ @ = (1= rw)l)de,

where again B, is the set of matrices M such that Id+(1 — r)M is invertible. Note that
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the difference between these operators and the operators in Section 2.3 is that we replace the

Euclidean norm with the gauge function of L.
By construction, if (4,v) € SL,(R) x R™ we have

Lo(A,v) = (A_Id ”> .

1—r’'1—1r

Unlike the classical case, L, is not invariant by orthogonal transformations. But that is not a

problem, since we are considering the positive John position.

Again, consider (A,,v,) a global minimum of the restriction of L, to the space (Sym,, +(R) N
SL,(R)) x R™. Arguing similarly to that made in the classical case and following the same

notation, we arrive at the following equations due to the Lagrange multipliers:

/\r(A;Tvo) = )gr(|2]|2) (V]| Arz + or| [k @ 2, V[ Arz + v, | 1) de
2/n IxHK g (147 (@ = o)) (V2| & ® A7 (@ = vp), V|2l i) dw
2/n )r (2l )gr (1A (@ = o)) (VIallx ® @ = Vel ® v) AT, V||| )de

which implies

/ r(l12]15)gr (I1ATH (2 = vr)l[2) (V2] |k @ 2)dz = (1 - ). 1d

= [ Orlellilar (147 @ = 0)l1) Vel =0,

1
We will show that the measure 1 (2| ) gr (|| A7 Y (2 —vy) || L )d2 concentrates near K NOL
—r

as 7 — 17 and converges for some sequence rp; — 1~ to a centered isotropic measure, as in
Theorem 2.14. This is because if © € 0K NIL, then V||z||x € 0K°NIL° and (V||z||x,z) = 1.

Since the gauge function has the property of being convex as the Euclidean norm (which in
particular is a gauge function) and as we are going to assume the same properties for f and g,
then the functionals L,, I, have the same good properties as the functionals L,, I,, respectively,
and therefore the proofs of the results in this setting of positive John position follow very similarly.

In this way, in order to avoid repetition, we will only mention the main points.
The following result, for example, follows as in Proposition 2.2.

Proposition 2.9. Assume f1,gl, g5 are satisfied and K has a Ct-smooth boundary, then L,, I,
are C* forr € (1/2,1).

Throughout this section we assume that K, L C Kf are fixed convex bodies and K is in positive

John position with respect to L.

Proposition 2.10. Assume £2,£3,f4, g3, then the family of functionals L, restricted to D x R™

is coercive, uniformly for r € (1/2,1).
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Proof. Take any (A,v) € D x R™. Since L is a convex body containing the origin, there exists
some centered ball B such that B C %L. The rest of the proof follows as in Proposition 2.3. O

Proposition 2.11. Let r € (1/2,1) and assume g3,g4,12,£3,f4. The function L, restrict to

D x R" s positive and convez.
Proof. We proceed similar to Proposition 2.4. O

Proposition 2.12. Assume g5, 3, then for r € (1/2,1) we have L,(Id,0) < C, where C is a

constant depending only on f, K and n.

Proof. The proof follows as in Proposition 2.5. O

2.4.1 Main Results

Theorem 2.15. Let K,L be convex bodies in R™, where K has Cl-smooth boundary and is
in positive John position in L. Choose any finite positive and non-zero measure v in 0K with
support inside 0K NOL, and any C* function F € F (see (2.15)). Consider the conver functional
I, : Sym, (R) x R" — R defined by

1 (M, w) :/ L PVl ke, M2 + w))di(2).

or [VIzllxl2

If the restriction of I,, to Sym,, o(R) x R" is coercive, then for any global minimum (Mo, wo), the

measure
1

IVI[21lx |2

s mon-negative, non-zero, centered and isotropic.

F'((V||2||k, Moz + wp))dv(z)

Corollary 2.2. Let K be in positive John position in L and assume
OK NOL ={z1,...,2m}.
Choose any C1 function F € F. Consider the convex functional I. : Sym,, (R) — R defined by

- 1
B NEIS il M .
( w) ; ‘VH:CZHK‘Q “va HK T _|_w>)

If the restriction of I. to Sym,, o(R) x R™ is coercive then for any global minimum (Mo,wo) the

numbers )
¢ = ————F' ((V||zil|x, Moz +wp)),i=1,...,m,
together with the vectors xz;,V||z;||k,i = 1,...,m, are a decomposition of the identity as in
(2.21).
Consider v = vg, = Cpy(conv(0K N OL),-), where Cp is the 0-th curvature measure of

conv(OK NOL) given by (2.16). Similar to Theorem 2.9, we have the following result.

Theorem 2.16. Under the assumptions of Theorem 2.15 the following statements are equivalent.
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1. The restriction of I, to Sym,, o(R) x R™ is coercive;

2. For every (M,w) € (Sym,, o(R) x R™)\ {(0,0)}

v({z € OKNOL: (V||z||g, Mz +w) > 0}) > 0;

If v = vk, orif OK NOL is finite and v = ¢, the statements above are also equivalent to

the following:

3. (11d,0) les in the interior of conv({((z ® y)sym,y) : (x,y) is a contact pair of K, L}) C
Sym,, 1 (R) x R™, where the interior is taken with respect to Sym,, ;(R) x R™.

Proof. The proof is similar to the proof of Theorem 2.9, replacing B™ by L and applying the
Proposition 2.6 with the set A = 0K NJL. O

Proof of Theorem 2.15. We compute the derivative of I, in the direction of (M, o) € Sym,,(R) x
R™, at the point (M, v)

1

————F'((V||2]|x, M2z +w))(V||z||x, Mz + 0)dv
i [VI[zllx 2

(VI,(M, v), (3, )) = /a

- / L PVl Mz + w) (V]2 © 2z 5T) + (V] |2k, 8))dv
NET

1 , Vi
([ e PSRl M+ )Tl © el (07,))

As we are working in the ambient space which is Sym,, (R) x R", the gradient of I, in the first

variable is the symmetric part of this matrix, that is,

VI, (M,v) = / : F'((Vl2llre, Mz + w))(VlI2][L ® 2)sym, VI|z[| ) dv.

or [VIzllxl2

We already known that Sym,, ;(R) x R™ is the orthogonal complement of (Id, 0) in Sym,,(R) x R"™
and that the gradient of the function T'(M,v) = tr(M) is VI'(M,v) = (Id,0). Then by Lagrange

multipliers 1.16, we have the equality at a minimum (M, wg) given by

1
/ oo F (V2] Moz + wo)) (V2] @ 2)sym, V2| x)dv = A(Id, 0).
ok [Vlzlx]2

This clearly implies that

1
/ o (V2K Moz +wo)) (V| 2|k © 2)symdv = A1d (2.22)
ok [VI|zll k|2
1
[ o P s, Moz + o)Vl = 0
ok |Vl|zl[ k|2

Since F' is non-decreasing, F'((V||z||x, Moz + wp)) > 0. Taking traces in equation (2.22) we get

1 1
/\:/ —  F'((V||2]|x, Moz + wo))dv.
o o O (V1[2l] )
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By Theorem 2.16, we know that (V||z||x, Moz + wo) > 0 for a set of positive v-measure. To
finish we use the same argument made in Theorem 2.7, that is, since F'(z) > 0 for every x and
F'(x) > 0 for x > 0, then A > 0 and the proof is complete. O

Theorem 2.17. Let K be a conver body in positive John position in the convex body L and
f,g satisfy all the properties f1 to g5, then for every r € (1/2,1) the restriction of L, to
(Sym,,  (R) N SL,(R)) x R™ has a unique minimum (A;,v.) with lim,_,;- (A, v.) = (Id,0).

Likewise, the restriction of I, to

((Symn,+<R> NSLa(R)) - Id) <R
1—r

. . A, —1d v, , M,
has th M, = —_— th t
as the unique minimum (M,,v,) < T 1—r> wi r<||MrHF

) —0asr—17.
Proof. The proof that there is a unique minimum of L, in (Sym,, +(R)NSL,(R)) x R™ follows as
in Theorem 2.10, replacing B™ by L and use the results obtained previously. For the convergence
of (A, v,) to (Id,0) as 7 — 1~ we need to notice that if (A, , vy, ) is the unique minimum of L,
in (Sym,, ; (R) N SL,(R)) x R™ and it is such that (A, v, ) — (A%, v*) with (A*,v*) # (Id,0),
then A* € Sym,, , (R)NSL,(R). Furthermore, since by Proposition 2.7 the positive John position
is unique, then A*L +v*\ K has positive Lebesgue measure. But A* € Sym,, | (R)NSL,(R) and
A* # 1d which is a contradiction with the minimality given by Proposition 2.7.

To finish the proof we simply proceed as in Theorem 2.10, replacing B™ by L and use the results

obtained in this section. O

Theorem 2.18. Assume L has a C'-smooth boundary and all the properties of f and g are

satisfied. The functional I, is extended continuously to r =1 as

- 1
(M, v) = / PVl M+ w))dH (2),
oxnor |V||2ll k|2

where F is the convolution F(x) = f*g(z),g(z) = g(—x) and satisfies the conditions of Theorem
2.15. Moreover, I, — I asr — 17, uniformly in compact sets.

Proof. By Proposition 1.4, we have

I (M,v) = (l2llx)gr ([ +(1 =) M)~z — (1 = r)w)||r)de

= s"1 z sl|z
—1_T/BK/ (5 (2)) o (51121
X gr(||(Id4+(1 = r)M) Y (sz — (1 — r)w)||)dsdH" ().
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Since L is smooth, by Taylor 1.18 and formula (1.3), we obtain for any z,v € R"

|z + |l = |||l + (Vl[z]|L,v) + o|v]2)

= ||z||L + <hL|(’§‘L|(Lx))nL(x),v> + o(|vl2). (2.23)

By formulas (2.19) and (2.23), we arrived at

0041 = a0 oz = (= Dl =s (el = @ =) (ol snbe), 00+ Sw))

+o(l—r).

Using this equality in the last integral and making the substitution s = 1+ (1 — r)t, we get

R /aK /Ooo " hae (0(2)) fo(s)
xgr szl —(1—1) %nL(z),Mz + lw +o(1 —7) | dsdH" ()
" (nL(2), 2) s
_ / N /a (0 (1= i (R (@) L)

X g ('Zl”f; o <<n!2’i )Mz b 0(1)> +t(]]z]]z + o(1)) + 0(1)> dtdH" ! (2).

Note that ||z||z =1 for z € OK NOL, ||z|]|r > 1 for z € 0K \ OL and that for all z € K N IL,
n*(z) = V|2l hi (" (2)).

IE ||L 1

We have lim,_,;- — o0 in @K \ AL and since 0 is in the interior of L, (n”(2), z) and ||z||L

are bounded from below. Also, by f3 the integrand is 0 for ¢t < —1, then

w) n-l z
)= [ [ =0 O ()
g (= (V||zl|lx, Mz +w + o(1)) + t(1 4 o(1)) + o(1)) dtdH" ' (2)

/ / (14 (1= 0™ f (g (05 (2))
OK\OL
X g (h”i; Lo <<n!2’)]: 2 nf(z), Mz +w + 0(1)> +t(||z||r +o(1)) + 0(1)) dtdH"1(2).

The proof of uniform convergence on compact sets similarly follows from Theorem 2.11 and
that F' satisfies the assumptions of Theorem 2.15 also follows from Theorem 2.11 already F' in

Theorem 2.15 and in Theorem 2.7 have the same properties. O

Theorem 2.19. Assume all the properties f1 to gb are satisfied and the function I restricted to
d(Ar,vr)

Sym,, o(R) x R™ has a unique global minimum (Mg, wy), then 3
7 r r=1

o -(My,wp).

exists and is equal
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In this case, if (A, v,) is any curve in Sym,, | (R) x R™ of the form
(A, 5,) = (Id,0) + (1 — r) (Mo, wp) + o(1 — 1),

the measure )

T (I lall)gr (14 (@ = o)1) da

converges weakly to F'((V||2||x, Moz + wo))dH" 1 (2).

o
MIEe

Proof. Note that all properties needed to prove the first part of Theorem 2.12, that is,
8(Arvvr)

or _

omit the proof of this part. For the second part of the theorem, take § any continuous function

exists and is equal to -(My,wp) are also valid for this case. Therefore we will

with compact support and write, as in the proof of Theorem 2.18,

1
s

/( eIl z)gr (1A (@ = o) |2)dx

/ / 5((1+ (1= 1)0)2) F(Og(—(V]]2]lies Moz + wo + (1)) + £(1 + o(1)) + o(1))
OKNOL

= r)t)" " he (0™ (2))dtd " (2)

/ / o((1-+ 1 =0 (1 4 o)+ (e + o) )
OK\OL r
X (14 (1 —r)t)" thg(n’(2))dtdH"(z)

hence by the Dominated Convergence Theorem 1.11,

[ SO lellge (147 @ - o))
— 5(2)—— F'((V||2] 5, Moz + wo)dH"(2).
oxror V2l

O

Remark 2.3. We could have done all this construction for positive Léwner position instead of

positive John position. It was enough to change the roles of K and L, that is, define the operators:

Eo(A0) = / Fo(llAz + ol ) gr (2] 1) dz
(M w) = /R Flllall)gn (10 +(1 = DA (o — (1= rw)llx)da

In this way, we finish the construction of centered and isotropic measures for sets. Our next step
is to look for definitions of functional ellipsoids in order to find out if there is a functional version

of the decomposition of the identity like the one given in Theorem 2.3.



Chapter 3
Functional John Ellipsoids

In this chapter we study a recent theory about functional John ellipsoids by G. Ivanov and M.
Naszodi in [30]. They showed, non-constructively, a “decomposition of the identity” as given in
Theorem 2.3. We will introduce some new concepts and explicitly construct, as in the geometric

case, a decomposition of the identity.

3.1 Notation and preliminary results

In this section we will discuss the ideas introduced by G. Ivanov and M. Naszodi in [30]. Some
of these concepts will not be necessary in practice for our main results, but we will still mention

them in order to contextualize John’s functional theory in the approach given by them.

We identify the hyperplane in R"! spanned by the first n standard basis vectors with R™. We
say that a set C C R""! is n-symmetric if (z,¢) € C implies (z,—t) € C. Throughout this
chapter det denotes the determinant function defined in M, (R) and the determinant function
defined in M,,11(R) will be denoted by det, 1. The trace function in either matrix space M, (R)
or M, 4+1(R) will be denoted only by tr.

For A € M,,(R) and a scalar & € R, we denote by A @ « the (n + 1) x (n+ 1) matrix

A@a:(A 0).
0 «o

Notice that det,,1+1(A @ o) = adet(A) and tr(A @ o) = a + tr(A).

We will say that a function f : R™ — R is below a function g : R” — R if f(x) < g(x) for all
z € R".

To improve readability, we will denote sets with a bar over it for subsets of R**!. The same

holds for matrices of order (n+ 1) x (n+ 1).

Let s > 0. For every € R", we denote the line in R®*! perpendicular to R™ at x by I, and the

one-dimensional Lebesgue measure in [, by .

Definition 3.1 ([30], Section 2.2). Let C' C R"*! be a n-symmetric Borel set. The s-volume of



3.1. NOTATION AND PRELIMINARY RESULTS 64

C is defined by

) (C) = /n [H(C‘m lx)rdm. (3.1)

Note that (*)4(-) is not a measure on R"*1,

Definition 3.2 ([30], Section 2.2). For any n-symmetric Borel set C' in R"*!, the s-marginal of
C on R" is defined for any Borel set B in R™ by

() marginal(C)(B) = /

: [1Z(C N lw)] ) de. (3.2)

2

Namely, in this case, the s-marginal is a measure on R".

Note that for any matrix A = A @ «, where A € M, (R) and o € R, any n-symmetric set C' in
R"*! and any Borel set B in R", we have

*Ymarginal(4 C)(AB) = / 2

[11(A cn zx)] do
AB

:|detn(A)]/B[;l(A Crila)| de

_ |detn(A)]/B Bl((Id @a)@ﬂlx)]sdaz

BZ(C_' Nly)| dx

~ ldet, (A)]laf* [

B
= |dety, (A)]|e|*® marginal(C)(B)

and therefore

(A C) = [det(A)[a* D p(C). (33)

Definition 3.3 ([30], Section 2.3). Let h: R™ — [0, +00) be a function and s > 0. The s-lifting

of h is a n-symmetric set in R"*! defined by

Oh = {(2,6) e R"*" : €] < h(a)'/*}. (3-4)
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Figure 3.1: h and its s-lifting.

|

Source: Compiled by the author.

Note that for any Borel set B in R”,
OhN (B xRY) = {(z,6) e R"*! : |¢] < h(z)"/* and 2 € B}.

Since (¥ is a n-symmetric set in R**1, then [((9hN1,) = 2h(z)'/* for all z € R™. Hence,
)y (<5>B N (B x ]R)) —/

:/B [;l((s)ﬁﬂlx)rd:c
:/B [;2h(:v)l/srdx
= /B h(z)dz,

that is, (Y marginal ((S)E) is the measure on R™ with density h.

[;z(@h N(B xR)N zx)] ) dx

While Alonso-Gutiérrez, Gonzales Merino, Jiménez and Villa in [1] determine an ellipsoid defined
by A(B™) 4+ a where A € M,,(R) is a positive-definite matrix and a € R"™, in [30] they consider
n-symmetric ellipsoids in R”*!. To describe them, it is necessary to introduce the er)zw +n

dimensional vector space

M={(A,a): A€ Sym,(R),a € R"}, (3.5)
the subspace
E={(A®a,a) e M: AecSym,(R),a >0}, (3.6)
and the convex cone
E+ ={(A® a,a) € £: A is positive-definite, a > 0}. (3.7)

Recall that the set of positive-definite matrices in M, (R) is a convex cone.

We equip M with the inner product defined by (1.8). Thus, we may use the topology of M on
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the set & of ellipsoids in R"*!. Every n-symmetric ellipsoid in R™*! is represented by
(A® a)B"™ +aq,

in a unique way, where A € GL,(R), since by Polar Decomposition every element of £; uniquely
determines each n-symmetric ellipsoid of R"*!. Here ¥+ a, where © € R"*! and a € R", denotes
v+ (a,0).

By (3.3), the s-volume of a n-symmetric ellipsoid can be expressed as
G u((A® a)B™ +a) = O (B Hasdet, (A), (3.8)
for any (A @ a,a) € €. In [30] the authors show that

lim ) p(B"*1) = vol,(B™).

s—0t

In this chapter h : R™ — [0,+00) is a log-concave and upper semicontinuous function and has
finite positive integral. In this case we say that h is a proper log-concave function. Note that if

h = e~?, then 1 has the properties:
e lim|,), o0 ¥() = +00 (otherwise, the integral of e ¥(®) equals +00);
e dom 1 has positive measure (otherwise, the integral of e %) equals 7€ero).

Fix s > 0 and let

z(h,s) = sup{®u(E) : E is a n-symmetric ellipsoid in R"*! with £ C *)h}.

In [30] it is shown that this supremum is attained on a unique ellipsoid [30, Theorem 4.1]|. This
ellipsoid in R™*! is called the John s-ellipsoid of h and is denoted by E(h,s). Moreover, they
call the s-marginal of E(h,s) the John s-function of h, and denote its density by

(®)J,, = the density of )marginal(E(h, s)).

Figure 3.2: The John s-ellipsoid of h.

Source: Compiled by the author.

Let (A @ a,a) € £&. We say that « is the height of the ellipsoid £ = (A @ o)B""! + a and the
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height function of E is defined as

ay/1—(A(z —a),A X(xz —a)), ifzeAB"+a
hg(z) = ' .
0, otherwise

Lemma 3.1. Let E = (A® o)B""! 4 a be a n-symmetric ellipsoid in R™. Then E C )k holds
if and only if

hip(z +a) < hz 4 a)'/?, (3.9)
for all x € AB™.
Proof. We have

(AD@)B™ +a=BCOh={(2,6) € R™ : ¢ < h(z)"/*}
& ol < h(z +a)'/®, Ve € AB®
& hp(r+a)=ay/1— (A (z—a), A (z —a)) < a < h(z+a)'/?,

for all x € AB™. O

Lemma 3.2. The height function of a n-symmetric ellipsoid E = (A @ o)B"! + a is a log-

concave function.

Proof. First consider the case E = B"t!. Note that hgni1(z) = e ¥(®), where

—Iny/1—|z3 , if z €int B"

400 , otherwise

(z) =

Since det D? ¢(x) = (1— |:U]%)_TLT+2 > 0 for all € int B", by Theorem 1.2, 1 is a convex function

on R™. Hence, by definition, Agn+1 is a log-concave function. Now consider the case where

E = (A® a)B"! 4 a is any n-symmetric ellipsoid. Since
hp(z) = ahgni (A~ Yz — a))
for every z,y € R™ and A € (0,1), then by Lemma 1.1 we obtain

hip(Az 4+ (1= N)y) = ahgrn (A Az + (1 — Ny — a))

alignit (A2 —a) + (1 = NA Hy — a))
alignt (A7 (@ — a) Mg (A7 (y — 0))

= (ahigun (A (2 = )))” (afipur (A7 (y — a))
= hip() hp(y)

v

1-X

and, again by Lemma 1.1, we conclude that Az is a log-concave function. O
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For the geometric version, we consider the positions of the unit Euclidean ball B™ contained
in a given convex body K. The John ellipsoid is the (unique) largest volume element of this
family. In order to pose this problem less geometric, more analytical language, the classical John
ellipsoid can be introduced as follows. The John s-function of a proper log-concave function h
on R™ is the (unique) solution to the problem

max Ve,
h R™

where the maximum is taken over all positions (s) = afign+1(A™1(x — a)), where a € R", A €
GL,(R),a > 0, and

Vi—|z%, ifzeB"

Fignii (z) = (3.10)

0, otherwise

In others words, 9 runs over all positions of the unit ball, under h.

3.2 Interpolation between ellipsoids

In the classical theory of the John ellipsoid, that is, where K is a convex body, the uniqueness of
the largest volume ellipsoid contained in K C R" follows from the convexity of K. In the setting
given in [30], the set is not convex. Then, it is shown that if two ellipsoids in R"*! of the same
s-volume are contained in the s-lifting of a log-concave function h, there exists a third ellipsoid
“between” the two ellipsoids which is of larger s-volume. This intermediate ellipsoid is obtained

as a non-linear combination of the parameters determining the two ellipsoids.

The main tools used are the following two lemmas, that allow us to interpolate between two

ellipsoids. Before stating them, we need the following definition.

Definition 3.4. We define the Asplund sum of two log-concave functions hy and ho on R™ by

(h1 % h2)(x) = sup hi(x1)ha(z2),

r1+xTo=x
and the epi-product of a log-concave function h in R™ with a scalar A > 0 by

x

A+ h)(z) = h (X)A.

Lemma 3.3 ([30], Lemma 4.1). (Containment of the interpolated ellipsoid) Fix s1, s2, B1, 82 > 0
with B1 + B2 = 1. Let hy and ho be two proper log-concave functions on R™, and E1, FEy be two
n-symmetric ellipsoids represented by (A1 @ ay,a1), (A2 @ ag, az) € &, respectively, such that

El C (Sl)h_l and EQ C (82)h_2.

Define
h = (81 * h1) * (B2 * he) and s = Bi1s1 + Basa.
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Set
(A®a,a) = ((/81141 + f2A2) @ (af181a§252)1/87 Brai + 52(12) and E = (A® a)B"™! +a.

Then,
Ec ®h,

Lemma 3.4 ([30], Lemma 4.2). (Volume of the interpolated ellipsoid) Under the conditions of
Lemma 3.3 with s = s1 = sa, the following inequality holds

G u(E) > (W p(E) (D u(EB))>,

with equality if and only if Ay = As.
This lemma is an immediate consequence of formula (3.8) and Lemma 1.4.

Theorem 3.1 (|30], Theorem 4.1). (Ezistence and uniqueness of the John s-ellipsoid) Let s > 0

and h be a proper log-concave function on R™. Then, there exists a unique John s-ellipsoid of h.

To prove Theorem 3.1 it would be necessary to state additional results. For this reason we chose
not to do so, because this is not the objective of this work. Lemmas 3.3 and 3.4 are stated here
with the objective to convince the reader that if there are two ellipsoids of maximal s-volume in
(5)h, it is possible to obtain a third ellipsoid still contained in 9k with larger s-volume than the

others.

In [30], they proof the following theorem which is a extension of John’s theorem for closed

n-symmetric set, since in this case K does not need to be convex.

Theorem 3.2 ([30], Theorem 5.1). Let K be a closed n-symmetric set in R"™ and let s > 0.
Assume that B"1 C K. Then the following hold.

1. Assume that B"' is a locally mazimal s-volume ellipsoid contained in K, that is, in some
neighborhood of B"t1, no ellipsoid contained in K is of larger s-volume. Then there are contact

points Uy, ..., ur € O(B") NO(K) and positive weights c1,. .., ¢ such that

k k

Z ct; @ u; =IdDs and Z cu; =0, (3.11)
i=1 i=1

where u; is the orthogonal projection of u; onto R™. Moreover, the number of points k satisfies

n+1<k< @HEE) g g,

2. Assume that K = ®)h for a proper log-concave function h, and that there are contact points
and positive weights satisfying (3.11). Then B! is the unique ellipsoid of (globally) mazimal

s-volume among all n-symmetric ellipsoids contained in K.

To end this introduction to the theory of functional John ellipsoids, Theorem 3.2 can be rephrased

as follows.

Theorem 3.3 ([30], Theorem 5.2). Let h be a proper log-concave function on R, s > 0. Assume
i1 < h. Then the following are equivalent.
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(1) The function hi,.. is the John s-function of h;

(2) There are points uq,...,ur € B™ CR™ and positive weights c1, ..., cx such that

Definition 3.5. A measure ; on the unit Euclidean ball B" is said to be s-isotropic if for some

A > 0 it holds
/ (@ u (1 — [u2))dp = AId ®s)

/ udp = 0.

Our goal in this chapter is to construct a measure that satisfies the items of condition (2) of

and it is called centered if

Theorem 3.3, that is, we will fix a proper log-concave function h on R™ such that 3, is its
John s-function and we will prove that there exists a centered and s-isotropic measure supported

in the set {h = ﬁ%n+1}. In order to do this, we need to introduce new concepts.

Consider the (n+ 1) x (n + 1) matrix M @ 3, where M € M, (R) and g € (0,+00). We define
the s-determinant of M & 3 by

) det,,, 1 (M @ 8) = 5° det(M), (3.12)
and the s-trace of M & 8 by

Str(M @ ) = s8 + tr(M). (3.13)

Based on these definitions, it makes sense to define the sets
() SL 41 (R) = {M @B € M1 (R) : Odetyr (M @ §) = 1} ,

) Sym,, 1 o(R) = {M @ B € Sym,, 1 (R) : @tr(M @ ) = 0},

and
e, = {(A®a,a) € M: A€ Sym,  (R),a>0,a € R" and det,1(A® a) > 1}.

Note that (5)8+ C M is a convex set. Indeed, take A ® a,B® [ € (s)5+ and A € [0,1]. By
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Lemmas 1.4 and 1.5, we have

©dety11(AA® ) + (1= A)(B @ B)) = “detyi1 (A + (1= N)B) & Ao+ (1 - \)B))

= (a+ (1= N)B)* det(AA + (1 — \)B)

> (a*B172)* det(A)* det(B) > (3.14)
= (a® det(A))*(B° det(B))"'

> 1. (3.15)

The set ®) SL,, 11 (R) is important due (3.8), because we want to consider the ellipsoids contained
in the s-lifting of h with same s-volume that the unit Euclidean ball B"*!, since we are assuming
that figns1 is the John s-function of the log-concave function h and the set ®) Sym,, +10(R) is
important because it is the orthogonal complement of (Id ®s,0) in £ and in the proof of Theorem

3.4 we will use this fact.

Recall that r € (1/2,1),v,:(s) = v (S

7 > and f, g are functions that satisfy the conditions f1

to g5.

We define the functional L, : M, (R) @ (0, +o0) x R® — R by

2[5 +y* — 1
L.(A® a,v) —7“/n/ fr< Aﬂ:+v)l/3> r< 2h(z)2 1) dydzx, (3.16)

where M,,(R) @ (0, +00) denotes the set of matrices A ® a € M,,4+1(R).

And for A, =Id+(1 — )M, &, = 1+ (1 —r)B3 we define the functional I, : B, x R® C £ — R by

_ as-1 At @ — (= rw)+ (6 'y)? — 1
L(M®f,w) =17 // < 1/s> o ( (A (e — (L) 1) v

where B, = {M @® 8 € £ : M € Sym,,(R) is such that (Id+(1 — r)M) is invertible}.

Observe that if (A @® o, w) € ) SL,,1(R) x R”, then

_(A®a—-1d w A7z — w)|3 + (o™ 1y)?
I, ) = r 1
( 1—r 1—r> 1—7“/n/ 4 ( h(zx) 1/8> ( 2h(A~1(z — w))?/s +1)dyde
a’det(A lz)2 4+ 9% — 1
= p | ———— + 1) dyd
S 1—r /n/ (h A:E—i—w)l/s)g ( 2h(z)2/s * yar

= T(A@aﬂu), (317)

The idea is to minimize the functional L, over all positions of the unit Euclidean ball B"*! and
thus obtain a sequence of measures that weakly converges to a centered and s-isotropic measure.

Consider the following lemma.

Lemma 3.5. Let (A, @a,, v.) be a global minimum of the restriction of L, to 8+ﬂ((s) SLy11(R) x
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R™). Then there exists A\, # 0 such that

(I =r)A-(Id®s)

o (i) o (e e )

(—Vh(x)l/sh(x)l/s QR ® h(m)l/sh(x)l/s) dydz  (3.18)

n

<

=15 T (i ) (A )

X (—Vh(:c)l/sh(x)l/s) dydz. (3.19)

and

As we know, the height function of the unit Euclidean ball B"! is given by fignii(x) =
/1 —|z]3, for all z € B". Thus, if = € int B",

xT _ x
A1 — ’m@ ﬁBn-ﬁ—l(fE)‘

In particular, if z € int B” is such that h(x) = h},.41(7), we have that

vﬁBn+1 (.'1:) = —

—Vh(z)"*h(z)Y* = .

Now consider the set A = {x € B" : h(x) = h},41(2)} and the measure p, : R™ — [0, +-00] given

by
/ 1—r < 1/5> gr <|A_1(22(—Avr)(!it (:)_)125/22 ~1 + 1) ) dydz.

(3.20)

Then it holds that

/A (—Vh(x)l/sh(gc)us DD h(l‘)l/sh(l‘)l/s> Ao () = /

A (m R ® h(:c)l/Sh(:c)l/S) dp ()

and

/A<—Vh(x)1/8h(m)1/s) du(x) :/:pdm(a:).

A

We will show that the measure p,(B) concentrates near A as r — 1~ and converges weakly to a

centered and s-isotropic measure.

Proof of Lemma 3.5. Let ¢ : M,(R) @ (0, +00) — R be the function defined by

WM @ B,w) = Odet,y1 (M @ B).

We know that (¥) SL,,; 1 (R) x R® = ¢~ 1({1}), where ¢ = 1 is a regular value of the differentiable
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map 1, then by Theorem 1.16 there exists A, # 0 such that
VL(Ar @ ap,v) = \VY(A © o, v,), (3.21)

where the gradients are taken with respect to the whole space M, (R) @ (0, +00).

Let (V @ a,w) € T4, @a,0,)(E+ N () SL,,+1(R) x R™)). We have

V(M@ B,v) [V & a,w] = BV det(M) -V + 535 tadet(M)
= (B5V det(M) @ B35 det(M),0) [V & a,w)]. (3.22)

Thus, since V det(M) = det(M)M T at the point (A, @ oy, v,.), we arrived at

Vip(Ar @ ap,vy) = (af det(Ar) AT @ sas™! det(A,),0)
= o det(4A,) <A;T o, 0)
(079

= ((Id s) (ATT @ ;) ,0)

- ((Id ®s) (A, @ ay) "7, 0) . (3.23)

Y
h(Mz +v)'/s
in the direction of the vector (V @ a, w) and using Lemma 1.3, we have

| = 1ir/n/000fé(so(M,5,v))gr (%H)
><<V (J\Mﬁ—yﬂl/> V& a)(z,1) + >dydx
1_r/n/ o080 g (PEEL L1 1) (90 (0.6, (V @ ) 1)+ 10,0)) dud

= /n /0 [ (0(M, B,v)) g, (% + 1> (Ve (M, B,0) ® (z,1), (V & a))
+ (Ve (M, B,v) , (w,0)))dydz.

Denote the function by @(M, o, v). Deriving the function L, at the point (M @3, v)

L(MaB,v)[Veaw

Once

_ By _ ( —ByVh(Mz +v)'/* y
Vo(M,B,v) =V (h(m—i—v)l/s> = ( WMz +v)2/s h(Mx—l—v)l/s) ;



3.2. INTERPOLATION BETWEEN ELLIPSOIDS 74

then

e oo = [ 7 onsme (ML)

_ 1/s
<< 7). v )

-1
—5Z/Vh(M:E+U)1/S y —ByVh(Mz + v)\/*
><<( h(Mx + v)?/s ®x@h(M1:+v)1/37 h(Mz 1 )27 , (V& a,w) ) dydx.
Thus,

23 +¢* -1
VL(Ar ® ar,v,) = r\ e T L
(A & ar,v 1—r/n/ ( h(A w+v7«)1/5)g < 2h(z)2/s *

—a,yVh(Ayz + v,)/* Yy —a,yVh(Ayz +v,)/*
dydzx. 3.24
" (( h(Ayx + UT>2/S e h(Arx + Ur)l/s, h(Arz + UT)2/S v ( )

Substituting equalities (3.23) and (3.24) in equality (3.21) and using that » ® Ay = (z ®@ y) AT,

we get
2 2_1
// O [zl +y 1
T 1—71 Jan AiL'—i—an)l/s 2h(z)2/s

—a,;yVh(A, rl/s —a,yVh(A, N 1/s
x(( a,yVh(Arx + vy) ®$>@h( Yy a,yVh(Arz + vy) dydz

)\r ((Id @3) (Ar 57 ar) 7

(A + vp)2/ Arg +o)s7 B A+ o)/
=1, // < 1/S> ” <|A_ (Qh(Avr)gjﬁ—(ij)_;?ﬁz —+ 1>

X ((W ® Az~ m) ® arh(l;)l/sv _ylzh)(;ll/s> a delt(Ar)dydx
=i L Gl ) (P e )

X ((W ® (z — m) AT h(a:%l/s .t _ylzh)(f/) ) ay” tdyda
b L G (St e )

—yVh(z)/s 7 —yVh(@)Y*\
X ((yh(x)g/)s X (ZL‘—’UT) S h('xy)l/s) (Ar@ar) T?yh(x)(Q/)s) Q. ldydl'

1
1—r

(1= A (d@s) = 27— / / ( 1/5> 9 <’A_ (;;L(_AUT)(EJZZQ)_;Z%T i 1)

h(g:)3/ ( Vh(x )1/sh( )1/8®x69h(:c)1/5h(x)1/8) dyd

By vector equality, and using that f/(s) = (f)r(s), we obtain
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and

Y

X (—Vh(x)l/sh(x)l/s) dydz.

3.3 Basic Results

[ () (P )

)3/5

Throughout this section we fix a proper log-concave function h : R™ — [0, +00) such that fign+1

is its John s-function. Due to the good properties of the functions f and g we keep having good

properties for the functionals L, and I,. The only difference between the properties of L, and

L, will be that while L, is convex, L, will have another property that we will call convex*.

It

is worth mentioning that the convexity of the functional L, was necessary to conclude that it

admitted a unique minimum (see Theorem 2.10).

Proposition 3.1. Assume f1,g1,g5 are satisfied, then L,, I, are C* for r € (1/2,1).

The proof of this proposition is similar to that given in Proposition 2.2, and so it will be omitted.

Proposition 3.2. Assume £2,3,f4, g3, then the family of functionals L, restricted to (9, x R™

is coercive, uniformly for r € (1/2,1).
Proof. Let (x,y) € B"*1,y > 0. Then

23 +y* — 1

1<1
on(x)2s TS

and by g2 it holds

o 2
o (FZEt 1) 2 0) = 900

Using g4, that f, g are non-negative and r > 1/2, we obtain

T G s
>2/n/ - MQ (M;‘fv)l/) (0)dyd.

Since h is a log-concave function, there exists a convex function ¥ such that

L.(A®a,v) >

h(ASU + U)l/s _ 6—¢(A:c+v)/s.
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Then

Y(Az+v)/s _ 1
N w(Aztv)/s) _ ¢ [ QY€
fr <h(Ax—i—v)1/5> fr <aye ) ! ( 1—r )

and for aye?(Aztv)/s >

VIR qyed(Anto)/s _q
L(A®a0)>2 / / f — 9(0)dydz
n 0 -

> 2/ /0 ’ f (oz,yew(’%”)/‘S — 1) 9(0)dydz.

By f2 and f4, the function f is coercive to the right and by assumption 1 is a coercive function,

hence

- 1 |95‘2
lim L,(A® a,v) > lim / / ayew(’%ﬂ)/s — 1) 9(0)dydx
[[(ABa,v)|[—+o0 [|[(ADa,v)||—+o0 n

= +o00.
O

Proposition 3.3. Let r € (1/2,1) and assume g3, g4, f2,f3,f4. The functional L, restricted to
(5)€ is positive.

Proof. First notice that since g,(s) = 0 always that s > 2 —r, where r € (1/2,1), then 2 —7 > 1

)3 +y* -1 2+ 92 — 1
PV — " 19)=0 & 2279 — 4959
o < oh(z)ls oh(z)ls T

Since for (z,y) € B"*1, y > 0, it holds that

and

2[5 +9* —1
PRTY — <,
oh(z)?s TS
=[5 +9* -1 -
thengr<2h($)2/s+1 > 0 for all (z,y) € B",y > 0.
() i . 23 + 9% — 1
Now take (A @ a,v) € ¥E, and assume L,(A @ a,v) = 0. Since g, Toh@ +1) >0
€T S

ay

Y )~ 0 forall (z,9) €
h(Az +v)l/s or all (z,y)

for all (z,y) € B""ly > 0, then we must have fr<

BN (R™ x [0, 00)), which is equivalent to

ay

ay 1/s
— < & 2 < h(A .
h(Ax +v)l/s = " r = (Az +v)

Hence,
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for all (z,y) € B", 5y >0, that is,

(A @ %) B™! 4y c Oh,

By Lemma 3.1 and using that fign+1 is the John s-function of h, we have that

Ou((40%) B 4 o) = (£) det(a) Du(BHY) < OB,

r
Therefore,
o S
(f) det(A) < 1,
r
that is,
a’det(A) <r® <1,
which is a contradiction since A @ a € &, O

Proposition 3.4. Let r € (1/2,1) and assume g3,g4,£2,£3,f4. Take (A ® a,v), (B ® B,w) €
(5)5+. The functional L, satisfies the property

L(AA+(1=MNB) @8 o+ (1 = Nw) < AL(A® a,v) + (1 = N\ L.(B® B, w)

for all X € [0,1].

We will call this property convex™.
Proof. First since h is log-concave, for all A € [0, 1],
h(A(Az +v) + (1 = \)(Bz +w)) > h(Az + v)*h(Bx + w)' .
Since s > 0, we have
h(M(Az 4 v) 4 (1 = N)(Bz 4 w))Y* > h(Az + v)M*h(Bz + w)1=N/3,

from where it follows that

1 1
< .
h(A(Az +v) + (1 = N\)(Bz +w))Y/* = h(Az 4 v)Nsh(Bz + w)(1-N/s

Now since f is non-decreasing, by Lemma 1.5 and using that f is convex, we arrive at

a)xﬁl—/\y B ay A ﬁy 1-A
fr (h(A:E +v)Msh(Bx + w)(l_)‘)/5> =Jr <h(Aa: + U)l/s> <h(Bx + w)l/s)
ay By
< Jr <)\h(Aa: +v)l/s - A)h(Bx + w)l/s)

From these inequalities and recalling that by inequalities (3.14) and (3.15) it holds that
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(M4 1 =XNB)® a8 v+ (1 — Mw) € ®E,, we obtain

L, (()\A +(1=NB)@ a3 A+ (11— Nw)

Ciev /" / g < h(A(Az +v) + A(ﬁHAy)(Bsc + w))l/s) o (|$|2%h—|(—$y;/: -+ 1> dydz

< oy O Gte) + 0% (g )
+

=3 +y* — 1
T 2h(x )2/5

= AL (A® a,v)+ (1 =N L.(B& B,w),

1) dydx

as we wanted to prove. O

Proposition 3.5. Assume g5,f3, then for r € (1/2,1) we have L.(Id,0) < C where C is a
constant depending on f,h,n and s.

Proof. We know that
0<gr(s)<1 & s<2-—r,

for all r € (1/2,1) and 1 —r < . Since

3 +9y% -1 2+ 42 — 1
2o T4 1<2—r & 2o T <1
2h(x)2/s Thesm 2h(xpls =
and ) ) )
zl3 +y <1 N 2|5 + y?—1 1’
2h(x)2/s = 2 2h(x)2/5 2

2., .2
then if C = < (z,y) € R x [0, 00) : m <1, we have
h(m.)Q/s

+(Id, 0)

§ ( 1/5> lo(z, y)dyde.

Now notice that (z,y) € C implies

L

0< ———+

Making the substitution

Y
h() =1+ (1—r)t, we get

+(1d,0) < lr/n/ ( 1/5) la(z, y)dydx

F(14+ (1 =r)t)la(z, (1+ (1 - r)t)h(:z)l/s)h(x)l/s(l + (1 —r)t)dtde

n

/n / (1+ (1 = r))h()/*)h(@) 5 (1 + (1 — r)t)dtda.
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Observe that

212 V2R 212
to(o, (L+(1-r)Oh(e)'*) =1 & BEEELEIRE— <1 o L8 <11t
Set
C—{( t) € R" x [-1,0] : 215 <1—(1+(1—)t)2}
1= xT, s . h(x)z/s ~ T
and

2
Cy = ,teR”+1:|x’2<1}:{ 1) e R, ]2 <1}.
2 {(ﬂf ) h(ﬂj)2/s — (l' ) h(ﬂj‘)l/s —=

Since Cy C Cy,r € (1/2,1) and f(t) = 0if t < —1, then

0
Ly(Id,0) < 2 / / FO)1e, (2, (1+ (1 = r)t)h(z)*)h(z) " dtda.
nJ-1
Since h is a proper log-concave function, there exists a constant C' such that h(x)l/ s < C for all
x € R™. Then,
(z,(14+ (L —=r))h(x)/*) e Cy = |zs <h(z)/* <C.

Therefore,
Ly(Id,0) < 2/ /0 F)1e, (2, (1+ (1 —r)t)h(z) ) h(z) dtda
nJ_-1

< 2/@371 /_01 Cf(t)dtdx

0
_ Cm-{—lv " n
26"+ vol, (B )/_1f(t)dt

<C.

3.4 Main results in the functional setting

In this section we will present the results obtained for the functional setting in order to construct
a centered and s-isotropic measure. Our goal is to make the results as similar as possible to the

geometric version. Consider again the set

F={F:R—[0,00): F is non-decreasing, convex, strictly convex in [0, 0), and F’'(0) > 0}.

Theorem 3.4. Let h : R® — R be a proper log-concave function and hgn+1 its John s-

unction. Choose any finite positive and non-zero measure v in B™ with support inside the
Y p pp
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subset A = {x € B" : h(x)"* = hignt1(2)}, and any C* function F € F. Consider the convex
functional I, : £ — R defined by

(x, Mx 4+ w)

L,(M & B,w) —/ OEL

h(z)*F ( + ﬁ) dv(z).

n

If the restriction of I, to (¥ Sym,, 11 0(R) x R™ is coercive then for any global minimum
(Mo @ Bo,wy), the measure

1 , ( {z, Mox + wp)
e (S ) vt

s nom-negative, non-zero, centered and s-isotropic.

Assume that {z € B™ : h(x)"/* = hgnt1(z)} is finite and that v is the counting measure c. As a

consequence of the previous theorem we get the following result.

Corollary 3.1. Let h : R™ — R be a proper log-concave function and hgn+1 its John s-function.
Assume
{x € B": h(x)"* = hgns1(2)} = {x1, ..., 2m}.

Choose any C function F € F. Consider the convex functional I. : € — R defined by

- NS s (T Mai+ w)
IC(M @va) - ;h(%z)l F< h(l‘z)Q/s +B) '

If the restriction of I, to ) Sym,, ;1 o(R) x R™ is coercive then for any global minimum
(Mo @ By, wy), the numbers

o F1<<$z’7M01'i+w0>

p=1,...
CARE AL +ﬁo> yi=1,...,m,

together with the vectors x;,i = 1,...,m, satisfy the conditions of item (2) of Theorem 3.5.

Theorem 3.5. Let h: R™ — R be a proper log-concave function and hgn+1 its John s-function.

Consider I as in Theorem 3.4. The following statements are equivalent.
(a) The restriction of I, to () Sym,, 1 o(R) x R™ is coercive;

(b) For every (M @ B,w) € () Sym,, ;1 o(R) x R")\ {(0,0)}

v ({x € B" : h(z)"* = hgns1(z) and (W +/3> > o}) > 0.

Proof. The proof follows as in Theorem 2.9. O

Proof of Theorem 3.4. First we will calculate the derivative of I, at the point (M @ B,w) € &,
in the direction of (V @ a,v) € T(jyep,w)€- By Lemma 1.3 and the inner product given by (1.8),
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we obtain
I s o/ M vV
st [ AT, M:c+w TR x h(x)l/sh(x)l/sa
- o)/ F ( )2/ ) <<< )2/’ )2/s> ,(V,v)> + L dv(z)
M h Vsh(z)L/s

_ 2)oF (z, 2 :c;/rsw <<m QI d 2/8 (2) 7 h(xa;z/s> e a’v)> d(z)

x, Mz + w) 1/3 e

1/s ( h()? +6) <<x®x€9h B(@)'/%,2) (V@ a,0)) du(x).

Since (z ® x @ h(z)/*h(x)'/* x) € £, then we conclude that

_ 1 ., Mx +w
VIV(MG9B,w):/nh( - /<<7 +w)

1/s 1/s
) h(2)2/s + 5) (z @z @ h(z)*h(x)Y*, z)dv().
The gradient of the function ¥ (V @ a,v) = Otr (V@ a) is Vi (V@ a,v) = (Id®s,0). By
Theorem 1.19 we have that (*) Sym,, 11 o(R) x R" is the orthogonal complement of (Id ®s,0) in
£. And since (My @® o, wo) € ) Sym,, 1 o(R) x R™ is a singular point of I, and 0 is a regular
value of ¢, then by Theorem 1.16 there exists A € R such that

ny(Mo D ,807 w(]) == /\Vlb(Mo @ BO? U}(]),

that is,

1 , [ {x, Moz + w . .
/n h(x)l/sF << h(Ox)Z/s 0) —|—B()> (a:®:c69h(g;)1/ h(a:)l/ ,z)dv(z) = A(Id @s,0).

Equivalently,

1 , ( {x, Mox + w ) .
i B(2)1/5 << h((;);/: o), ﬂo> (z @z @ h(z)*h(z)*)dv(z) = NId®s)  (3.25)
1 y <<ZC, Moz + wp)

B h(z)s h(w)?/s

+ 50> wdv(z) = 0.

Finally, we only need to show that A is positive and to do it we following as in the proof of
(x, Moz + wo) .

—_—+ > 0. Taking the trace

function in equation (3.25) and recalling that the support of measure v is a subset of points of

B™ where h(x)'/* = hgni1(2) = /1 — |2[3, we arrive at

1 1 / < 7M + >
A= /Bn h( vl ( : h((;f';Q/swo "‘50) (|z]3 + 1 — |z]3)dv(z)

Theorem 2.7. Since F' is non-decreasing, then F’ <

n—+s x)
1 1 , [ {z, Moz + wo)
_ nH/Bn e ( Ao +ﬂo> dv ().
<$7MO$+’UJ0>

By Theorem 3.5, we know that + Bo > 0 for a set of positive v-measure. Since

h(l‘)Q/S
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F'(x) > 0 for every z and F'(x) > 0 for x > 0, we deduce that A\ > 0 and the proof is
complete. O

Lemma 3.6. If (A, ® ay,v,) € ()&, minimizes Ly, then (%) detp+1(Ar ® o) = 1.

Proof. We already know that
(S)detm_l(Ar ®ay) > 1.
- 1
Assume that (s)deth(Ar @a,) > 1, that is, af det(A,) > 1. Take A, = A, & —————. Then,
det(A,)V/s
(A, v) € W& N () SL,41(R) x R?). Notice that since B! is the John s-ellipsoid of h and

c (s
(*)det, ;1 (A) > 1, then
A, B" o, \ ()5,

must have non-empty interior. In fact, to say that A, B"T! 4+ v, \ (5)rsh has empty interior is the
same as to say that (Id ®r)®h D A, B"*! 4+ v,. But

_ 1 1
(s) -1 —( R R
Sdetna ((Id o) AT) = detny (Ar @ Tdet(Ar)l/s) s > 1
and this is a contradiction with the fact that B"*! is the John s-ellipsoid of h. Since
A.B" v\ (8)5h has non-empty interior, then there exists a subset C' of B"*! such that
vol,+1(C) > 0 and (z,y) € C implies the following inequality

h AT’ . 1/5<$
r ( 33‘“'[)) det(Ar)l/s

and hence implies that f, ( is positive. Moreover, in this set C it

det(A,)1/sh(A x—i—vT)l/S)
|z |2 y? -1
2h(x)?/s

L (A > y 3 + 3% — 1
Ly (Ar, T r r 1) dyd
( (% ]__T/R /(; f (det 1/sh(A $+Ur)1/5)g ( 2h($)2/8 + yaxr

o rY ‘$|2+y2_1
§ . 1) dyd
1—r//o f( Am+vr>1/s>g< on)es )W

= Lr(Ar @ ar, Ur),

|3 + 3% —

holds g, ( )2 + 1) is positive since < 0. Thus,

which contradicts the minimality of (A, @® a,., v,). Therefore (s)deth(Ar Do) =1 O

Theorem 3.6. Let h: R™ — R be a proper log-concave function and hgn+1 its John s-function.
Consider f,g functions that satisfy all the properties f1 to g5. Then for every r € (1/2,1)
the restriction of L, to &, N () SL,41(R) x R™) has a unique minimum (A, ® a,,v,), up to

horizontal translation, with lim,_,;— (A, ® oy, v,) = (Id,0). Likewise, the restriction of I, to

)g, N () SL,,4 1 (R) x R?) —Id x R®
1—r




3.4. MAIN RESULTS IN THE FUNCTIONAL SETTING 83

A ®a, —1d
1—r

has the unique minimum (M, ® B, w,) = (

Mr@ﬁr
HMT @/BTHF

v
1 ! >, up to horizontal translation,
—r

with (S)tr< > —0asr—1".

Proof. The existence of one minimum of the functional L, follows of the fact that it is coercive
in )&, and that this set is a closed convex set. Now we assume that there are two distinct
minimum of L, in ®)&,, say (A® a,v) and (B ® ,w). Then, by Proposition 3.4, it holds that

L( DA+ (1 =MB) @M o+ (1= Nw) = AL (A® a,v) + (1 = \)L.(B® B, w),

that is, (M + (1 —X)B)® a8, A+ (1 - Nw) € ®)&, also minimizes the functional L, and,
by Lemma 3.6,
Gdet,y1 (M + (1= NB) @ g = 1.

By (1.9), we have

= Odet, 11 (M + (1 = N)B) @ B = ()N (8°) " det(AA + (1 — M) B)
a®)M(B%) " det(A)> det(B)H

o* det(A4))(8° det(B))'

Y

(
(
=
1.

This last equality implies that det(AA + (1 — A\)B) = det(A)*det(B)'~* and hence we have
A = B. Since

B°det(B) = 1= a’det(A),

it follows that & = . Then, up to horizontal translation, the minimizers (A®a, v) and (B® 5, w)

coincide.

AT‘ T Ia s .
Denote M, @ 3, = %, wy = 11}_ ~ Since (A, ® ay,v,) € BE,. N () L, 1 (R) x R?),
we have

IA“(AT © ar,vr) = aws"_II_T(MT @ B, wr),

and (M, @ B,,w,) is, up to horizontal translation, the unique global minimum of the restriction
of I, to ~
)&, N () SLy41(R) x R?) —Id x R
1—7r )

Our next step is to prove that (A, @® a,,v,) — (Id,0). Assume that (A, ® o, v,) does
not converge to (Id,0). Since by Propositions 3.2 and 3.5 the sequence {(A, ® a;,v,)}, is
bounded, then there is a sequence 7, — 17 such that {(A,, ® a;,, vy, )}, converges. Assume that
(A, @ apy,vp) = (A" @ o, 0%) € &, N (¥ SL, 11 (R) x R?) with (A* @ o, v*) # (1d,0).

Again, because B"! is the John s-ellipsoid of h and ()det, 1(A* @ a*) = 1, then the
set (A* @ o*)B"! + v* \ ) has positive Lebesgue measure. Take p < 1 such that
the set p(A* @ o*)B"! 4 v* \ (] has positive Lebesgue measure. For large k, we have
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p(A* @ a*)B" L +v* C (A, ® )BT + v, By Fatou’s lemma,
l}iglinf er (Ar, ® oy, vry)
1 > Y 23 + ¢ -1
=1 f [k 222 1) dyd
koo 1— 1y /n/ I < h(A. x+ vrk)1/5> I ( 2h(xz)2/s * yar

A—l — v, 2 4 —-1,\2 __ 1
> lim ll’lf / / < 1 ) G | Tk ({E 'lif)b (ark y) +1 dyd.’B
k——+o0 1 — Tk n\()h /s 2h(AT’k (‘/E - vrk))Z/s

Notice that if (Z,7) € B" and (x,y) = p(A* ® a*)(Z,§) + v*, then

(A7) ® o) (p(A™ @ a”)(2,9) + v* = vp,) € (Ap, ® o)~ (Apy, ® 0, ) B = B"

from where |[A Y (z — vy,)[3 + (0;,'y)? < 1. And by g2 it follows that

A @ — v )I3 + (ap,y)? 1 )
Iry, ( Qh(AT—kl (z —vy,)) + 1) > gr. (1) = ¢(0).

Thus,
Ocsil 0o y
liminf L,, (A,, @® oy, ,v >hm1nf/ / —_— 0)dydz
[Rires rie (Ary, T Ury,) hstoo 1 — 1, (p(A=Gar) B 14w N &R Jo i h(x)l/s 9(0)dy
= —'— OO’
which contradicts the bounded of the minimizer (A, ® «,,v,), since by Proposition 3.5

Ly (Ar, & apyyvp,) < L,(Id,0) < C.

M, ﬁr
) 1M, @ [|r
the differential of (*)det,, 41 at Id € My, (R).

To finish we need to prove that (9tr < ) — 0. A simple calculation shows that ()tr is

By Taylor,
Gdety41(Id + V) = 1+ (Id@s, V) + o(||V][r) = 1+ Ptx(V) + o(||[V]|r)
where O(E) — 0 ase— 0. Taking V = (1 — r)(M, © 3,) we get

1= ®detpy1(Ar ® o)
= O dety (Id + (1 — ) (M, & B,))
=1+ (1 —7r) 9t (M, & B,) + o((1 — 7)|| M & Br|| ).

Therefore,

()¢ ( M, & B, >:(s)tr(Mr@ﬁr)_ o((1 —7)|| M, & B,||r)

=— —0
1M & Br||F 1M @ Br[| (1 =n)[|M; & B[

asr — 17. ]



3.4. MAIN RESULTS IN THE FUNCTIONAL SETTING 85

Theorem 3.7. Assume all the properties f1 to g5 are satisfied and that h is continuous. The
functional I.(M @ 3,w) is extended continuously to r =1 as

h(MeBﬁ,w)z/Ah(f”)l/sF (W ﬁ>

where A = {x € B™ : h(z)'/* = hgn+1(z)} and F is the convolution F(x) = f*g(z),§(z) = g(—z)
and satisfies the conditions of Theorem 3.4. Moreover, I, — I} asr — 17, uniformly in compact

sets.

Proof. As before, we denote by o((1 — r)%) (resp.o(1)) any function of the involved parameters

M, B, w,r,s,t, z, satisfying

i 2= (resp. lim o(1) — o) ,

r—1- (1 — 7’) r—1-

where the limits are uniform in compact sets with respect to the parameters. Likewise, O(1)

denote any bounded function.

By Taylor expansion it holds that for all z,w € R and M @ 8 € B, (B, is the domain of the

functional I,.)

(Id+(1 — r)M)_l(x —l=-rw)=@-1-rw)—1-=r)M(x—(1—-r)w)+o(l —7)
=r—(1—-r)(Mz+w)+o(l—r)

and
(Id+(1—r)M) Yz -1 -rw)|s=|z— 1 —7)(Mz+w)+o(l —r)

=lzly — (1 — )<| o M:E—i—w>—|—o(1—r).
By simplicity, denote

Y(M; B;w; (2,t))
_ @+ =) M) e~ (L= rw)+ (L 4+ (1 =r)8) (L + (1= r)t)h(z)'/5)? —1

2h((Id +(1 — r)M) =tz — (1 — r)w))?/s + 1.

Since

L(M ® B,w) 1_r/n/ <h(x 1/5>

x < (1A +(1 = r)M) (& — (1 = rw)l5+ (L + (1 =r)B)'y)* ~ 1
o 2h((Ad +(1 — r)M) =Y (z — (1 — r)w))?/s

+ 1) dydz,

making the substitution 4= =1+ (1 —7)t, we get

h(z)

L(M & B,w o)1+ (1= r)t) fr (L4 (1= 1)t) gr (Y(M; By w; (2, 1)) dtda.
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To calculate ¢(M; 5; w; (z,t)), note that

o 1+ = M) o (= D= [eff (1= (2 Mx+w>

—2|x\2(1—7")<’x‘,M:L‘+w>—|—0(1—7“ +20(1 =) <|x\2— (1—r) < Mx+w>>;
Z|2

_ . h(x)?/5(142(1 —r)t + (1 — 2t2
o (1+1=m)B)  h@)/*(1+ (1 -r)t)* = I+ (1=r)3)?

o 2h((Id+(1 —7r)M) (z— (1 —r)w)?* =2h(z — (1 — r)(Mz +w) + o(1 — 1))?/.

7

Then,
(|23 + h(z)** — 1)(2B(|2]3 — 1)(1 1)
21+ (1 —7)B)2h(x — (1 —r)(Mz +w) +o(1 —7))2/s(1 —r)
(1—r)<‘ o Mx—l—w> 2(z, Mz + w)
2h(z — (1 —7r)(Mz +w) + o(1 —r))?/s

2h(x)2/st +(1- 7")h(:1:)2/‘(”t2 +(1—=7)B%(|z]3 - 1)
201+ (1 —7)B)2h(x — (1 —r)(Mz +w) + o(1 — r))?/s

+ [Oq::)Q + 201(1__:) <|1:]2 (-7 < M +w>)]

1
8 2h(z — (1 —r)(Mx + w) + o(1 —1))2/s’

Y(M; By w; (x,t)) =

Consider the following sets:

A={zeR": |22+ n(x)?*—1<0}
A= {z e R": |z]3 + h(z)¥* —1 > 0}.

Notice that

(1) If z € A€, since h is bounded and (1 + (1 —7)5) < (14 /), we have

o3+ ()" 1
2(1+ (1 —=7)B)2h(z — (1 —r)(Mx +w) +o(1 —7r))2/5(1 —r)

— +00

as r — 17. Then by g5 it holds ¢ |ACT_>—1;O;

(i) If © € A, then |z|3 4+ h(x)** = 1. Indeed,
|2 + h(2)?® <1 e /|22 + h(x)?s <1 e (z,h(z)"*) € int(B™) C int((#R).

But, as we know (z, h(z)"/*) € 9®)h, for all z € R™. Hence,

A={zeR": |zl +h@)¥* —1<0}={zeR": |22 +h(x)**—1=0};
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(i33) h(x — (1 —r)(Mz +w) 4+ o(1 — 1))/ =N h(z)%* since h is continuous.

By 3, the integrand is 0 for ¢ < —1 and by (ii), we obtain
(010w = [T H@ (= 00 (60 Brws o, 0) dedo
/ [ @Y (00 (60 5w o) ded
[ RS (0= 00 B s (0,1) dida

=[] m@ras =g

2|2 4 h(x)?/* =1+ (1 —r)O(1) + (1 — r)t(2h(z)¥* + 0(1)) + o(1) it
2(1+ (1 =7)B)2h(z — (1 —7)(Mx +w) + o(1 —7))2/5(1 —r)

[ [T nar s a-nnse

w —2B(1 — |z|3 + 0(1)) — 2(x, Mz + w + o(1)) + t(2h(z)?/* + o(1)) + o(1) i
2(1+ (1 —7)B)2h(x — (1 — r)(Mx + w) + o(1 — r))2/s ’

(3.26)

To prove that I, converges to I, when r — 17, in compact sets, consider a convergent sequence
(My, @ B, w) = (M @ B,w) and rp, — 1. By (i) and g5, the function g in the first integral is
zero for t > C' where C' is independent of k. Since the functions f, g are thus uniformly bounded
in the support of both integrals and it holds (#i7), we may apply the Dominated Convergence
Theorem 1.11 in (3.26), to obtain

_ —|xl2 M
Jlim L, (M © B, wy) / / z)of(t)g (t (;(x);fl?) - <$’h (;)’;sw) dtdz

l/s _ <$7M$+w> _
= [ s (1= S ) v
Vs (x, Mz 4+ w)
/ / f(t) < h(z )2/5 — () dtdz.
Let g(z) = g(—=z) and let % be the convolution function. Define the function F(z) = f * g(x)

and
L(M & B,w) = /Ah(x)l/SF <W +ﬁ> de.

Finally, we must show that F' satisfies the properties of Theorem 3.4, but it follows from Theorem
2.11. O

Theorem 3.8. Assume all the properties f1 to g5 are satisfied and the function I, restricted to
ENG) Sym,, 1 o(R) X R™ has a unique global minimum (Mo ® Bo,wo), then W - exists
and is equal to -(My @ Lo, wp).
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In this case, if (A, & &, 0,) is any curve in . of the form

(A, ® Gy, 5,) = (Id,0) + (1 — r)(Mo ® Bo, wo) + o(1 — 1),

the measure

a=to[eo, y A (@ — o) 3+ (6, 1y)* — 1 y
L—r /0 o <h(x)1/5> ” ( WA @) 1) n(a)3s W

converges weakly to the centered and s-isotropic measure

1 , <<x, Moz + wp)

et (S )

In particular, this is true for (A, ® &y, ) = (Ar @ oy, v,), and for its linear part (A, ® ay, 0y) =
(Id + (1 — ) (Mo @ Bo), (1 — r)wo).

In order to prove Theorem 3.8, we before need to prove that the family of minimizers of the

functionals I, admits a convergent subsequence.
Lemma 3.7. For every r € (1/2,1), let (M, ® B,,w,) be a minimizer of the functional I, given
by Theorem 3.6. The sequence {(M, & By, wy)}r is bounded.

Proof. By Lemma 2.2, the functional I; is coercive. Thus there exists R > 0 such that if
(M & B,w) € &) Sym,,; o(R) x R" and ||(M & B, w)|| > R, then

L(M @ B,w)>C+2

where C' > L,(Id,0) is given by Proposition 3.5.

Let Bogp = {(M & B,w) € Sym,,,,(R) x R" : ||(M & B,w)|| < 2R}. By Theorem 3.7, there is
ro € (1/2,1), such that for every r € (ro,1) and (M @ 8, w) € Bag,

IL(M & B,w) — (M & B,w)| < 1/2.

We will show that (M, @ B,,w,) € Bar for r € (rg,1). Assume by contradiction that
(M, ® Br,w,) € Bar for some r € (rg, 1), and consider A < 1 such that [|A\(M, & B,,w,)|| = 2R.

%(1 + t6,)* = AB, and by (1.5) holds (1+t43,)* < 1+tAB, for t > 0, then for r — 17,
t=0

we have

Since

1+ —r)p)* -1
1—r

Rg,ozH(AMr@< )Aw)H <IN, @ By w))]| = 2R.

Since I; is continuous in the compact set Bog, there is € > 0 such that

L(MoB,w)>C+1
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for every (M @ 8, w) € 0B, = {(M & f,w) € Sym,, 1 (R) xR" : [[(M & B, w)|| = p, R < p < 2R}
with tr(M @ ) < e.

By Theorem 3.6, it holds A, @ o, — Id as 7 — 17, then increasing r( if necessary, we may

assume for every r € (rg,1) and X € [0,1]

_ C+1/2 1
_ < =
detn 1 (A(Ar @ ap) + (1= M) < Gy = 1 g5y

and again by Theorem 3.6 we have that )(S)tr (%) ‘ <5
Moreover,
_ A
($)gr ()‘M’r @ ((1 +( : r)Br) 1))' < |(3)tr()\(MT & B,))| < H)‘(Mr22ﬁr)”F€ <e
—r

then we obtain

I (AMT@ <(1+ (1—r)Br)* — 1> 7/\wr> > T <)\Mr@ <(1+(1 —1)Br)* — 1> 7Awr> 172

1—r 1—r
>C+1-1/2
=C+1/2.
Ar r_fd T .
Using that (M, & B, w,) = ( E?a ,1U >, it holds
-7 —r

(1 =AM, +1d) @ 1+ (1 =73 (1 —r)Aw,) = (M, + (1 =N 1d) @ ), \v,)
and since AA, + (1 — A\)Id € Sym,, , (R) for r — 1~ we obtain

G dety, 1 (A + (1= A1) @ o) = (o) det(AA, + (1 — A)1d)
> (o)) det(A,)* det(Id) 2
) dety,1 (A, & )N det,, 1 (Id)

1.

v
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Hence (A, + (1 — N 1Id) @ o}, Mv,) € B, We have

L(()\A +(1=N1d) @ o, Avy)

ary 23 +¢* -1
r o p | —2—2—— + 1| dyd
1 — /n/ f < )\A + (1 - )\) Id)$+)\vr)1/s) g ( 2h($)2/s + > yaxr

Y
1—7“/n/ a) det(\A, —|—(1—)\)Id) <h:c1/5>

)
(A4, 4 (1= N Id) " Ha — M) |3+ (o y)? —
” < h((AA, + (1 /\) Id)-! (xQ_ Aoy )2/ 1> dydzx

y
l—r/n/ a det(AA, +(1—)\)Id)f h(x)1/8>
|(Id +(1 — )AM,) "Nz — (1 — )Aw,) 3+ (1 + (1 —)B)") " 1y)? —
< ( ({41 =AM, @ — (1= )2 * 1) dydz

A simple calculation using Lemma 1.5 shows the inequality

o} det(AA, + (1 = A\ 1d) < det, 1 (A(Ar @ a,) + (1 — N)Id).

From where it follows that

_ 1 y
Le((MA, 4+ (1= N Id) @ ), Avy) > _r/n/ dety 1 MA@ an) 1 (1 A)I—d)fr <h($)1/3>
|(Td +(1 = m)AM,) (@ — (1 —r)Aw,) |3+ (1 + (1 —7)B)N) y)?
X9T< 2h((Id +(1 — PAM,) L (z : (L= )awy))e * )dyd“

= 1+ -rp)* -1

(e (LU )
detn+1(/\(A ® o) + (1 —A)Id)

- (28) e

> L.(Id,0) + 1/4.

Since L,(Id,0) > L,(A, ® a;,v,), we obtain the inequalities
Le((MA, + (1 =N Id) @ a), \vy) > Le(Ar @ ay, vp)

and
L(QA, +(1-N1d) e a ,Av) > L,(Id, 0),

which contradicts the fact that L, is convex™ (see Proposition 3.4). Therefore, (M, ® B,,w,) €
Bap, for all r € (rg,1) and we conclude the proof. O

Lemma 3.8. If (Mo ® By, wo) is the unique global minimum of I, then (M, @ By, w,) converges
to (MO &) 50, wo).
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Proof. Take M @ 3 € (®) Sym,, ;1 0(R) and define

W detyp1(Id+ (1= r)(M & §)) "V (Id + (1 —r)(M & B)) — Id
1—r

(8)(M ® 5)(?‘)

Notice that (®)(M @ 8)("), w) belongs to

)€, N () SL,4 1 (R) x R") — Id x R”
1—r

for r close to 1. We also have

lim (M @ 8)") = lim

r—1- r—1-

[( et (Id+ (1 —r)(M & 8)) "1+ —1
1—r

+ &) det (Id+ (1 =) (M @ B)) V) M @ B

o
= (dety,q1(Id 4+ (1 —r)(M & 8)) YO+ + M @ 3
t=0
-1 _
= Ogp(-M e p)Id+ M
s m(=Mepf)ld+ Mep
= Ma&§8.

By Lemma 3.7, the sequence (M, @ (,,w,) is bounded, then for every convergent sequence
(M, ® By, wr,,) — (Mo® fo, wo) with 7, — 17, and for every (M @ 8, w) € () Sym,, ;1 o(R) xR™,
we have

Ly (Myy, ® Bry wry,) = Ti(Mo @ o, wo)

and

Iy (M, @ Bryywr) < I (M @ 8)™) w) — [ (M @ B, w),

so that (My® By, wp) is the (unique) minimum of I, and we deduce (M, ®S3;, w,) — (Mo® Bo, wo)

as desired. O

Proof of Theorem 3.8. By Lemma 3.8, we have

a(Ar @ ar, Ur)
or

AT ryUr) — I_7 .
= lim (4r ® ar,vr) — (1d,0) = lim (—M, & B, —w,) = — (Mo & Bo, wp).

r—1— r—1 r—1-

r=1

Now take ¢ any continuous function with compact support and, as in the proof of Theorem 3.7,

consider the sets A® = {x € R : [z|3 + h(2)¥* > 1},A = {z € R" : |23 + h(z)'/* = 1}. We have
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A (@ =03+ (&7 'y)* — 1 Y s
i L s () o ( W e ) et
2
2

A1 T —0 A1 — 7 T 1/s\2 _
-] 6<x><f’>r<1+<1—r>t>gr('Ar (2 = 05 + (@11 + (1 = ) h() ) 1“)
AcJ—1 - — B

h(A (x —5,))2/
—r x)l/s
SPPROACE: <1h( )lt/)sh( ) ety
A (@ = 513 + (6 (14 (1= r)t)h(x)/5)> =1
v f [ e e ( WA (x5 " 1)
— )t h(z)Y/s
/ / 5(a <|x|2 + h(z)?* =14 (1 —r)O(1) 4+ (1 — r)t(2h(x)?/* + o(1)) + 0(1))
2(1+ (1 =7)B)%h(z — (1 —r)(Mz +w) +o(1 —1))2/5(1 —r)
/ / 5(a —2B8(1 — |z|3 + 0(1)) — 2{z, Mz + w + o(1)) + t(2h(x)%/* + o(1)) + o(1)
2(1+ (1 —7)B)2h(z — (1 —r)(Mx + w) + o(1 — 1))2/s
8 h((;)l/: Mgty

hence by the Dominated Convergence Theorem 1.11,

A7 @ — w3+ (6, Hy)? - 1 y o,
1—T/n/ oa ( 1/8)‘%( h(/Nl 1(;7{) )2/ +1> h(x)3/sar Ydyda

_>/ 1/5 ( = J;f(mj;sww +Bo> da (3.27)

asr — 17.

For us to finish, since (A, @ ., v,) minimizes the functional L,, then by Lemma 3.5 there exists
Ar > 0 such that

A (@ — vl + (6, )y)* — 1 -
1—7r /n/ ( l/s) 9r ( h(flr_l(; —5,))2/s + 1) h(a;)?)/sa?” !

X (—Vh(:r:)l/sh(:n)l/s Rz @ h(x)l/sh(x)l/s> dydz = A\ (1d @s, 0)

and

A @ — o5+ (@ )y)* — 1 Y .
1—r / / < 1/S> o ( h(fl;l(j: — §,))2/s * 1) h(z)3s T 1
X (—Vh(az)l/sh(a:)l/s) dydz = 0.

And by (3.27) we conclude the wished. O
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3.5 Functional Lowner Ellipsoids

In 2019, Li, Schiitt and Werner [35] extended a notion of Léwner ellipsoids for functional setting.
We say that a function is non-degenerate if int supp(h) # 0. They showed that if h : R” — R is
a non-degenerate integrable log-concave function then there exists a unique pair (Ag, tg), where

Ay is an invertible affine transformation and ¢y € R such that

/ e~ 140zl Ht0 g0 — in {/ el Azlatt g, . o—|AT]2+t > h(x)} )

The uniqueness of Ay is up to left multiplication by orthogonal transformations. They call
e~ lAozl2tto the Lowner function of h and denote it by

L(h)(z) = e~ [Aozlztto,
For a convex body K C R" denote its characteristic function by 1x(x). In [35] it is shown that

the super-level set {L(1x(x)) > 1} is exactly the Léwner ellipsoid of K.

As in the setting of convex sets, the connection between these two optimization problems is via
polar duality. Let h = ™% : R® — [0, +-00], then its log-conjugate (or polar) function is defined
by

e*(x,y)

h°(y) = inf )

W= 55
Note that the log-conjugate function of any function is log-concave. It is easy to show that the
log-conjugate function of a proper log-concave function containing the origin in the interior of

the support is a proper log-concave function. Also, if f and g are log-concave functions, then

The polar function of the characteristic function of the unit Euclidean ball is e~1#2. Therefore,
the class of functions considered in 1] and [35] consists of translates of functions that are polar

to each other.

Combining ideas of [35] and [30], Ivanov and Tsiutsiurupa consider the “dual” problem and define
the Lowner s-function below [31]. For a function ¢ : [0, +00) — (—00, +00], they consider the

following class of functions
EMy) = {ae—w(lA(a&—a)b) : A€ GL,(R),a > 0,a € Rn} _

One may consider the functional class £"[¢)] as the class of “affine” positions of the function
z — e ?2l2) 2 e R™. Now we can say that the classes of “affine” positions of the characteristic
function of the unit ball and the function = + e~1#I2 2 € R", were considered in [4] and [37],

respectively.

They require for functions of £™[1)] to be reasonably good log-concave functions. We say that

Y : [0, 4+00) = (—o0, +00] is an admissible function if the function t — e~¥(*) ¢ € R, is an upper
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semicontinuous log-concave function of finite positive integral.

For an admissible function 9 : [0, +00) — (—00, +00] and an upper semicontinuous log-concave

function h : R™ — [0,+00) of finite positive integral, they study the following optimization

problem:
min / [ subject to h <. (3.28)
leEnfy] Jrn
They study the dual problem to that considered in [30]. For any s € [0,+oc], they define
s : [0, 400) — [0, +00) by
t, s=0
14 4/1+4 (L)
Us(t) =15 [\ /1+4(L)? —n 5 ) —1|, se(0,400)-
t2, s = 400

This function is an admissible function for any fixed s € [0,400]. One sees that £"[¢,] with
s = 0 coincides with the class of functions considered in [35], and that the Léwner function in
the sense of [35] is a solution to problem (3.28) with ¢ = 1. The class £"[t)1n0] consists of
Gaussian densities. The cumbersome definition of ¢4 in the case s € (0, +00) is caused by polar
duality, since the problem (3.28) with 1) = 15 and s € (0,4+00) is dual to the problem of finding

the John s-function considered in [30].
They proved the following theorem.

Theorem 3.9 (|31], Theorem 1.2). Fiz s € [0,4+00) and let h : R" — [0,+00) be an upper
semicontinuous log-concave function of finite positive integral. Then, there exists a unique

solution to problem

min [ subject to h <. (3.29)
legnys] Jrn

The solution to problem (3.29) for a fixed s € [0,+00) is called Lowner s-function of f, and
denoted by ()L 7 Note that the Léwner function in the sense of [35] is precisely O f- And as
in the case of John s-functions, they showed that ()L P O 7 as s — 0, uniformly on R" (see
[31, Theorem 1.3]).

Probably, the most striking difference between the John s-function and the Léwner s-function
appears in the case s = +o00. This is because in [31] it is shown that as s — +oo the limit
may only be a Gaussian density and it is necessarily unique, while in [30] it was shown that the
Gaussian density of maximal integral below a given upper semicontinuous log-concave function

of positive integral is not necessarily unique.

We say that the functions of £™[¢)] are -ellipsoidal functions. If ¢ is an admissible function,
then all the functions of £"[¢)] are proper log-concave functions. We use [,, p to denote the 1-

ellipsoidal function represented by £ = (A ® a,a) € £;. The reason they define the classes of
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s-ellipsoidal functions is the following result.

Lemma 3.9 (|31], Lemma 6.1). Let E = (A® a,0) € £y and s € [0, +00]. Then
((S)hE)O — O and (<s>lE>o — ),

where D hg = a~ TR



Chapter 4

Upper semicontinuous valuations on

the space of functions

In this chapter, a classification of upper semicontinuous and translation invariant valuations
which is unchanged by the addition of piecewise affine functions on the space of convex functions
which is a piecewise affine function outside of a compact set of R, is established in Theorem 4.6.

This is a joint work with Monika Ludwig.

Following the standard notations in valuation theory, in this chapter we will adopt the notation
K™ for the set of all non-empty, compact, convex subsets of R™ and V,, for n-dimensional volume

on R"™.

4.1 Preliminaries

A functional Z : K™ — R is called a valuation if
Z(IKUL)+Z(KNL)=Z(K)+ Z(L)

whenever K, L, K UL € K™.

We say that Z is translation invariant if Z(K + z) = Z(K) for every vector z, and Z is rotation
invariant if Z(¢K) = Z(K) for every rotation ¢ : R — R™. We consider continuous and upper
semicontinuous valuations, where X" and its subspaces are equipped with the topology induced
by the Hausdorff metric. We say that a valuation Z : K" — R is upper semicontinuous if for

every K,, € K" converging to K € K™,

limsup Z(K,,) < Z(K).

m——+o00

The n-dimensional volume V,, : K™ — [0, +00) is an example of continuous valuation, since if
K, L, K UL are convex bodies then

Va(KUL)+ Vo (KNL) = Vo (K) + Vi (L).
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Other examples of valuations on K™ are the intrinsic volumes Vjp, ..., V,_1 (see [16]). They are
fundamental in convex geometry since they carry important geometric information. For example,
Vo is the Euler characteristic, that is, Vo(K) = 1 for K € K", and 2V,,_;(K) is the surface area
of K. Furthermore, V;(K) is the j-dimensional volume of K if K is contained in a j-dimensional
plane, and V; is j-homogeneous, that is, V;(tK) = t/V;(K) for t > 0 and K € K™.

There are many results that characterize the valuations defined on K. For example, Mc Mullen

showed a fundamental result in the theory of translation invariant valuations on convex bodies.

Theorem 4.1 ([12]). If Z : K™ — R is continuous, translation invariant valuation, then there
exist Z; : K™ — R that is a continuous, translation invariant and j-homogeneous valuation, for
j=1,...,n, such that

4 =1Zy+ -+ Zy.

Hadwiger showed this result under the additional assumption that Z is simple, that is, Z(P) = 0
for all polytopes that are not full-dimensional. Probably the most famous result on valuations,

and one of the most important results in this field is Hadwiger’s characterization theorem.

Theorem 4.2 (|23], Section 6.1.10). A functional Z : K™ — R is a continuous, translation and

rotation tnvariant valuation if and only if there are constants cg,...,c, € R such that
Z(K) = coVo(K) + - + caVa(K)

for every K € K.

Note that the planar case of Theorem 4.2 states that every continuous and rigid motion invariant
valuation Z : K? — R can be written as a linear combination of the Euler characteristic Vp = ,
the length Vi3 = L and the area V5 = A of the convex body, i.e., there are constants cg, ¢1,co € R
such that

Z(K) = cox(K) + a1 L(K) 4+ 2 A(K) (4.1)

for every K € K2.

The next result is due to M. Ludwig [37] and characterizes the rigid motion invariant and upper

semicontinuous valuations defined on K2. Consider the set

W= {C :[0,400) — [0,00) : ( is concave, }i_r)%C(t) =0, and tEerooC(t)/t = O}. (4.2)

Theorem 4.3 ([37]). Let p: K2 — R be an upper semicontinuous and rigid motion invariant

valuation. Then there are constants cg,c1,co € R and a function € W such that
WEK) = cox(K) + el L(K) + 2 A(K) + | C(p(K, w))dH' (u) (4.3)
S

for every K € K2.

Here p(K,u) is the curvature radius of the boundary of K at the point with normal u € S*.
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Currently, the notion of valuations has been extended to families of functions due to their intimate

relation to valuations on convex bodies. We denote by
Conv(R") :={u : R" — (—00,400] : u is L.s.c and convex, u # +oo}

the space of lower semicontinuous, convex, proper functions defined on R™, by Conv(R";R)
the space of finite-valued, convex functions on R™ and by Convji, (R™;R) the space of Lipschitz
functions. Note that Convy,(R™;R) C Conv(R™;R) C Conv(R™).

We define valuations on the space Conv(R"™) and its subspaces as follows. We say that
Z : Conv(R™) — R is a valuation if

Z(u)+ Z() =ZuAv)+ Z(u Vo)
for every u,v € Conv(R™) such that also u A v,u Vv € Conv(R"). Here, u Vv and u A v denote

the pointwise maximum and minimum of u,v € Conv(R"™), respectively.

We say that Z is translation invariant if

for every u € Conv(R™) and translation 7 on R", and it is SL,,(R) invariant if
Z(uo oY) = Z(u)

for every u € Conv(R") and ¢ € SL,(R). We say that Z : Conv(R") — R is epi-translation

invariant if it is invariant under translations of the epigraph of w in R™*!, that is, if
Z(wor 4 ¢) = Z(u)

for every u € Conv(R"), translation 7 on R" and ¢ € R.

Let Convs.(R™) denotes the set of super-coercive functions,

Convg.(R") = {u ‘R — (—o00,400] :  lim ulw) = —|—oo} :

|z|2—+00 ]x\

Observe that the property

— = +o0
jela—+o0 22

implies that also
lim |Vu(z)| = +o0.
|z|2—+o00
We say that a sequence ug € Conv(R"™) epi-converges to u € Conv(R"™) if for all x € R™ the

following conditions hold:



4.1. PRELIMINARIES 99

1. For every sequence xj, that converges to x

u(z) < liminf ug(xg); (4.4)
k—+o0

2. There exists a sequence xj that converges to x such that

u(z) = lim wug(zk). (4.5)

k—+oc0
For a convex function u on R™ the function

u*(x) = yseulgb(@, y) —uly)), z € R, (4.6)

denotes the Legendre transform or convex conjugate of u. By standard properties of the Legendre

transform, we have the following result
{u* : u € Convg(R")} = Conv(R"; R). (4.7)

This relation allows us to translate results for valuations on Convg(R"™) easily to results on

Conv(R"™;R) and vice versa.
The following result is a consequence of Theorem 12.2 and Corollary 12.2.1 in [13].
Proposition 4.1. If u € Conv(R"), then v* € Conv(R") and (u*)* = u.

Proposition 4.2 (|11], Theorem 11.34). A sequence uy, of functions in Conv(R"™) epi-converges

to u € Conv(R"™) if and only if uj, epi-converges to u*.

For v € Conv(R™; R), the subdifferential of v at € R™ is defined by
ov(z) ={y e R":v(z) >v(z) + (y,z — x) for all z € R"}.

Each vector of Ov(x) is said to be a subgradient of v at x. For a convex function v € Conv(R"; R),
differentiability at a point x € R™ is equivalent to both epi(v) having a unique supporting
hyperplane at (x,v(x)) and the subdifferential of v at z being a singleton. Also, we can establish
a relation between the subdifferential at any non-minimizer point of v with the outer normal
vectors of the corresponding sublevel set at this point. Given a subset A C R™, the image of A
through the subdifferential of v is defined as

ov(A) = | ] ov().

T€EA

A well-known Radon measure defined on the set of finite convex functions is the Monge-Ampére
measure. This measure is the content of the following result, which is due to Alexandrov |2]. Let
B(2) be the class of Borel sets in @ C R".

Lemma 4.1 (|22], Theorem 2.3). Let Q@ C R" be an open set and v : @ C R™ — R a convex
function. If B € B(Q2), then the set Ov(B) is measurable. Moreover, MA(v;-) : B(2) — [0, 0],
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defined by
MA(v; B) := V,,(0v(B)),

is a Radon measure on ) C R".
The measure MA(v;-) is called the Monge-Ampere measure of v.

The following result is very important for us because it guarantees that det(D? u(-)) is measurable
and it will help us to prove Theorem 4.7. Items (i) and (i) are due to Aleksandrov [2] (or see
[22, Proposition 2.6 and Theorem A.31]).

Theorem 4.4. The following properties hold.
(i) If v € Conv(R™;R) and v € C*(V) on an open set V.C R™, then MA(v;-) is absolutely
continuous on V. with respect to n-dimensional Lebesque measure and

dMA (v; ) = det(D?*v(z))dz (4.8)

forz eV,

(11) Ifvj is a sequence in Conv(R™;R) that epi-converges to v € Conv(R™;R), then the sequence
of measures MA(vj;-) converges weakly to MA(v;-).

By [20, Theorem 4.3(a)| there exists the following Steiner formula for the Monge-Ampére measure
n n '
MA (v +rhpn;-) = Z ( ) I MA; (v; -) (4.9)
i=0 \/
for v € Conv(R"™;R) and r > 0. Using the relation (4.7), in [20] the authors define the conjugate
Monge-Ampére measure of a function u € Convg.(R™) by
MA*(u;-) :== MA(u*;-),
and the Conjugate Mixed Monge—Ampére Measures is given by
MA;(U; ) =MA;(u";-)

for 0 < j <mn (see [20]).

Let C.([0,00)) denotes the set of continuous functions with compact support on [0,00). A
functional version of Hadwiger’s Theorem 4.2 is the following. Continuity is understood with

respect to epi-convergence.

Theorem 4.5 (|20], Theorem 1.7). A functional Z : Conve(R™) — R is a continuous, epi-

translation and rotation invariant valuation if and only if there are functions ag,...,0, €
C.([0,00)) such that

20 =3 [ sl n; ui)

for every u € Convg.(R™).
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Similarly to Theorem 4.5, our goal here is to prove a functional version of Theorem 4.3 for n = 1.

4.2 Functional setting and statement of the main result

A function u € Conv(R™;R) is called piecewise affine if there exist finitely many affine functions
Wi, ..., Wy : R® = R such that

m
i=1

We denote by Convy, ,(R™;R) the set of piecewise affine functions. Furthermore, we say that
u € Conv(R™;R) is piecewise affine outside of a set C C R™ if there are finitely many affine
functions wy, ..., wm, on R™ such that u = /", w; for all x € R™\ C. Let Convpac(R™;R) be
the following subset of Convyi, (R"; R):

Convpac(R™;R) := {u € Convy, (R™;R) @ u is piecewise affine outside of a compact set}.
We will denote by dom, u the smallest closed convex subset of R™, such that w is piecewise affine

outside of dom, u.

Unlike Theorem 4.5, we do not use just epi-convergence. We equip Convp,c(R";R) with the
topology induced by the following convergence. We say that v; € Convpa.(R™;R) converges to
v € Convpac(R™;R) if the following conditions hold:

1. v; epi-converges to v;
2. There exists a compact set C' C R" such that dom.v;,dom.v C C.
Note that the first condition implies that the convergence is locally uniform.

We say that Z : Convpac(R™; R) — R is an upper semicontinuous valuation if for every sequence
uy, converging to u,
Z(u) > limsup Z(ug),

k—+o0

and it is unchanged by the addition of piecewise affine functions if Z(u 4+ w) = Z(u) for every

u € Convpae(R™;R) and each piecewise affine function w € Convp o (R™; R).
Our goal here is to prove the following theorem.

Theorem 4.6. A functional Z : Convpac(R; R) — R is an upper semicontinuous and translation
mwvariant valuation which is unchanged by the addition of piecewise affine functions if and only
if there is a constant cg € R and a function { € W such that

Z(u) =co + /RC(UH(LB))dLE (4.10)

for every u € Convpac(R;R).

Recall that W is given in (4.2). Here we are assuming u”(x) = 0 whenever u is not twice

differentiable at x. See, for example, |17, 15].
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As a consequence of this theorem we have the following result, where continuity is considered

with the convergence defined in this section.

Corollary 4.1. Let Z : Convpae(R;R) — R be a continuous and translation invariant valuation

which is unchanged by the addition of piecewise affine functions. Then
Z(u)=c

for some constant c.
The following lemma is a simple result that allows us to obtain new valuations from a given one.

Lemma 4.2. Let Z : Convpac(R;R) = R be a valuation. If w € Convpac(R;R) and
Zw(u) == Z(u+w),
for u € Convpac(R;R), then Zy, is a valuation on Convpac(R;R).

Proof. Let w,u,v be convex functions in Convpac(R;R) such that u A v,u Vv € Convpac(R;R)

as well. It is easy to see that

uANv+w=(u+w)A(v+w)
uVo+w=(u+w)V(v+w).

Applying Z in the equations above and using that Z is a valuation, we get

Zw(uAv)+ Zy(uVo)=ZuAv+w)+ Z(uVo+w)
Z((w+w) A (v +w) + Z((u+w) V (0 +w))
Z(u+w)+ Z(v+w)

Zw(u) + Zy(v).

Therefore Z,, is a valuation. O

The rest of the chapter is devoted to the proof of our main theorem. This proof is organized
as follows. First we prove that if Z is given by (4.10), then Z is an upper semicontinuous and
translation invariant valuation which is unchanged by the addition of piecewise affine functions.
In order to prove that the integral in (4.10) is upper semicontinous we will introduce the Monge-
Ampére measure. Later, we will show that for each functional Z which is unchanged by the
addition of piecewise affine functions and is an upper semicontinuous and translation invariant
valuation, there is a constant ¢y and ¢ € W such that Z can be written as a combination as in
(4.10).
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4.3 Proof of Theorem 4.6

4.3.1 Sufficiency part

In this subsection we want to show that the functional defined in (4.10) is an upper
semicontinuous and translation invariant valuation and it is unchanged by the addition of

piecewise affine functions.

Lemma 4.3. For ( € W, the function Z : Convpac(R;R) — [0, 00) defined by

() = /R ¢ (x))da

1s translation invariant valuation and unchanged by the addition of piecewise affine functions.

Proof. We have

/g " dx—l—/C "
_ /M} (" (@) do + /{} (" (@) d + /{ R /{M (" (@))da
:/{uzv} C((u\/v)”(x))dx-l—/ C((u V) (z))dx

{v>u}

+ /{u<v} C((uAv)'(x))dx + /{U<u} C((uAv)(x))dx

/C ((u V) (z da:+/§ ((u Av)"(z

= Z(uAv)+ Z(u V),

whenever u,v,u Av,u Vv € Convpac(R; R). Thus, Z is a valuation.

Now let 7,(x) = = + y, where y € R. Then

/R (o, YY'(@))de = /R ¢ (z — y))do = /R ¢ (x))da

and for a piecewise affine function w, we have

/R C((u+w)" (@) do = /R ¢ (x))da

as we wanted to prove. O

It remains to show that the valuation

_ /R (@) da

depends upper semicontinuously on u. That is the content of the following theorem.
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Theorem 4.7. Let ( € W. Then

Z(u) :/Rg“(u”(x))dx (4.11)

is finite for every u € Convpac(R;R) and depends upper semicontinuously on u.
The proof of this result is similar to the proof of the following theorem due to M. Ludwig [38].

Theorem 4.8 ([33]|, Theorem 2). Let f € W. Then for j=1,...,n—1

W) = [ AR )

1s finite for every K € K™ and depends upper semicontinuously on f.

Here P;j(K,y) is the j-th elementary symmetric function of the principal radii of curvature at
y € S"1. The strategy of the proof of Theorem 4.8 is to decompose the j-th area measure
of the convex body K, namely S;(kK,-), into measures absolutely continuous and singular with
respect to the (n — 1)-dimensional Hausdorff measure on the sphere and use that the absolutely

continuous part is given by

S0, w) = / Py (K, y)dH™ " (3).

w

In our approach, we will use the Monge-Ampére measure and decompose it into measures
absolutely continuous and singular with respect to the Lebesgue measure on R"™. Its absolutely

continuous part is given by

MA*(v;U) = / det(D?v(z))dz,
U
where v € Conv(R™; R).

By Theorem 4.4 we have that MA(v;;-) converges weakly to MA(v;-) whenever v; €
Convpae(R™;R) converges to v € Convpac(R™;R) and the absolute part of the Monge-Ampére
measure vanishes on piecewise affine function. Using this and Lemma 4.1, we have the following

result.
Theorem 4.9. Let u € Convpae(R™;R). Then MA(u; R™) < +o0.

Let v € Convpac(R;R). By Theorem 1.13 the measure MA(v; -) can be decomposed into measures

absolutely continuous and singular with respect to the Lebesgue measure , say,
MA(v; ) = MA(v;-) + MA* (03 ),

respectively. For the absolutely continuous part, we have

MA%(v; ) :/60"(x)dx, (4.12)

while for the singular part we only need to remember that it is concentrated on a null set, i.e.,



4.3. PROOF OF THEOREM 4.6 105

there is a set By C R such that Vi(5p) = 0 and
MA®(u: 8\ fo) = 0 (4.13)

for every Borel set 5 C R.

Let ug € Convpac(R;R) be a sequence of functions that converges to u € Convpac(R;R) and

C C R be a compact set.

By Theorem 4.4 and Theorem 1.9 we have that

lim sup MA (ug; 8) < MA(u; f), (4.14)

k——+o0
for every closed set 5 C C.

By A. D. Alexandrov [2] if v € Convpac(R; R) then v”(x) exist almost everywhere (a.e) on R and

by (4.12) the function v” is Lebesgue-measurable.

Now we can start the proof of Theorem 4.7. Recall that we will use the same arguments utilized
by M. Ludwig in [35].

4.3.2 Proof of Theorem 4.7

First since ¢ € W then ( is concave and lim;_,o ((¢) = 0. This implies that ¢ is a continuous
function and ¢(0) = 0. Moreover, since ¢ is concave and non-negative on [0, 4+00), ¢ is non-

decreasing. Using that we get for every ¢t > 0and 0 < A < 1
C(AE 4 (1 = A)0) = A¢(t) + (1 = A)¢(0).

In particular, if we take s = At < t we obtain

¢(s) o <)

2> 2
s — t

and this means that @ is non-increasing.

Let u € Convpae(R;R) be such that Vi(dome w) > 0. Since -( is convex, by the Jensen inequality,

Theorem 1.12, we obtain

o) o @ = ¢ (o [ ).

Using that ¢ is non-decreasing, ((0) = 0, MA(u;dom.u) < +oo for Lipschitz functions and
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(4.12), we arrive at
Z)= [ cula)is

1
< Vi(dom u)¢ (Vl(domcu)/d u"(m)d:n)

< Vi(dome u)¢ ( !

———— MA(u;dom, .
V1 (dome ) (u; dom u))

We conclude that the valuation (4.11) is finite for every u € Convpac(R;R). The next step is to

show that Z depends upper semicontinuously on u.

Let € > 0 be chosen, C' C R be a compact set and u € Convpac(R;R). Let By be the set where
the singular part of MA(u;-) is concentrated. Since Vi(5p) = 0 and by (4.12) the function u”
is measurable a.e on C, we can choose by Lusin’s Theorem 1.14 a closed set 8 C C where u” is

continuous as a function restricted to 3, such that

BNBy=10 (4.15)
and

Vi(C\ B) < e. (4.16)

Let uy be a sequence in Convp,(R;R) converging to u € Convpac(R;R). First, we show that

limsup/ﬂg‘(u'k’(x))dx < /ﬁg‘(u"(:c))d:c (4.17)

k——+o0
holds for g C C, where 3 is the set satisfying (4.15) and (4.16).

Set

a =inf{¢(u"(x)) : x € B}
b =sup{¢(u”(x)) : = € B}.

Note that b < +oo because u” is continuous on 3 and 3 is compact. Therefore, ¢ is uniformly

continuous on [a, b]. Let n > 0 be arbitrarily given. Then, there exists a number § > 0 such that

[C(s) = ¢ < (4.18)

whenever s,t € [a,b] are such that |s — t| <.

Consider a subdivision a = t; < tg < -+ < tp41 = b of [a, b], such that
max {ti+1 - ti} < ) (419)
i=1,....,m

and such that
Vi{r e B:u"(z) =t}) =0
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for i« = 2,...,m. This last condition is possible since V1 ({z € 8 : u”(x) =t;}) > 0 holds only for

countably many t.

Now consider the subsets of 8 given by
Bi={repf:t; <u'(x) <tia},

fori=1,...,m.
By linearity of the integral and since ( is non-decreasing, we have that

m

/ﬁ @i =3 [ (@))d

17Bi

NE

>

C(t)Vi(Bi), (4.20)

1

<.
I

and by (4.12)
/ uy (z)dr < MA (ug; B;)-
Bi

Consider J C {1,...,m} such that Vi(f;) = 0 whenever j ¢ J. By the Jensen inequality,
Theorem 1.12, the following inequality

i, ctens < (v / | ()i

holds for each 7 € J.

Using these inequalities and the monotonicity of (, we obtain

ul(z))dz Y ) (z))dx
/Ba (e <3 [ cti@)

=Y [ C(uj(x))da

icg /Pi

1
< ZC (Vl(ﬁz) MA(W:Q@‘)) Vi(Bi).

ieJ

Since u” is continuous on 3 and § is closed, the sets 3; are closed for i = 1,...,m. This implies
by (4.14) that
lim sup MA (ug; 8;) < MA(u; 53;).

k—+o0

By continuity and monotonicity of

. " 1 . . .
imaup | Cooir < 3¢ (g5 MAG)) V(3 (@21

By (4.15) and (4.13),
MA((u; ;) = MA%(u; B;)
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and by (4.12) and the definition of j3;,

MA®(u; 8;) < tix1Vi(Bi).

Hence,
limsup/ C(uf(z))dx < ZC <1 MA (u; 5@)) Vi(Bi)
ko0 JB — & \(B)
< Gt Vi(Bi).
i=1

Now using (4.20), (4.19) and (4.18), we conclude that

lim sup /ﬁ Cu(a))dar < /ﬁ ¢ (2))dw + Vi (8).

k—+o00
Since i > 0 is arbitrary, this proves (4.17).

The second step is to show that

lim sup/ C(uf(x))dx < / C(u"(x))dx. (4.22)
k—+oco JC C
Since ( is non-decreasing and ((¢)/t is non-increasing, using (4.12) we see that for every ¢t > 0,
o = [ o+ [ ()
C\B {zeC\B: u}/(z)<t} {zeC\B: u}(z)>t}
t
< e\ 8) + P a0,

This implies, combined with (4.17), (4.16) and (4.14) that

limsup/ C(up(x))dr = limsup/C(u'k’(x))dx—i—limsup C(uf(x))dx
k—+oco JC k—+oco JB k—+o00 JC\B

, C) o x
< /C (@) + ¢ + P MA@ ),

for every t > 0. Since € > 0 is arbitrary and since ¢ does not depend on ¢, it follows that for

every t > 0

. ” " ¢(t) .
lim sup /C C(ul!(@))dz < /C (' (@)de+ MA@ 0). (4.23)

k—+o0

Using the fact that ((¢)/¢ is continuous and that lim; 4 ((¢)/t = 0, we now can make ((t)/t
arbitrarily small by choosing ¢ suitably large. Therefore (4.23) proves (4.22).

To finish, recall that ¢(0) = 0 and since uy, converges to u as k — +o0o, then there is a compact
set K C R such that dom. ug,dom.u C K. Hence

| tianae = [ it
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and

/R ¢ (w))da = /K ¢ () d,

and this concludes the proof.

4.3.3 Necessity part

In this subsection we want to show that if Z : Convpac(R;R) — R is an upper semicontinuous and
translation invariant valuation which is unchanged by the addition of piecewise affine functions,

then there is a constant ¢y € R and ( € W such that
Z(u) = o + / C(u ())dz
R
for every u € Convpac(R; R). We will first prove the following particular case where the valuation

is simple, i.e., when Z(w) = 0 whenever Vi (dom.w) = 0.

Proposition 4.3. Let Z : Convpac(R;R) — R be a simple, upper semicontinuous and translation
mwvariant valuation which is unchanged by the addition of piecewise affine functions. Then there
s a function ¢ € W such that

Z(u) —/Rg“(u”(:c))dx (4.24)

for every u € Convpac(R;R).

Throughout this section m > 0 is fixed and Z : Convpac(R; R) — R has the same properties as in
Proposition 4.3. Since every function in Convp,.(R;R) can be approximate by piecewise affine

functions and Z is upper semicontinuous, we have
Z(u) >0 (4.25)

for every u € Convpac(R;R).

Let f € Conv(R;R) and consider the closed interval J = [a,b] C R. Define f + L; by

fi(a)z + (f(a) — fi(a)a), if r<a
(f+Lj)(z) =1 f(=), it reJ, (4.26)
fL@)x + (f(b) — fL(b)b), if x>0

where f! (z) and f’(z) denote the one-sided derivatives of f in z. Note that f + L; €
Convpac(R; R) whenever f € Convpac(R; R).

Given a > 0 define the function ¢ : [0, +00) — R by

1
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where f(z) = %2?. Also define the function g, : [0, +00) — R by
Z(f +Lj) = ga(Vi(J)), (4.28)

where J C R is a closed interval. Note that in this case the function g, depends on @ and it is
well-defined, since Z is simple and unchanged by the addition of piecewise affine functions. By

Lemma 4.2 and once that Z is simple, we have that

9a(51 + 52) = ga(51) + ga(s2),

whenever s1,s9 > 0. Since Z is upper semicontinuous, so is g,. Therefore g, is a solution of

Cauchy’s functional equation and there is a constant p = p(a) such that

9a(s) = ps.

For J = [—m,m], we have
Z(f+Ly)=pVi(J)

which shows that

; Z(f + L[fm,m])
Z(f + Lizy ) = ga(@2 — 1) = p(@2 — 71) = 57 (w2 —21) (4.29)
= ((a)(z2 — z1). (4.30)
Lemma 4.4. { is a non-negative function.
Proof. This is a consequence of (4.25). O

Proposition 4.3 is a consequence of the two next results.

Lemma 4.5. ( € W.

Proof. Consider the following sequence of functions

1
ug(z) = %:132.
Note that up + Li_p,m] € Convpac(R;R) converges to the function I = 0 as k — +o0. Since by
Lemma 4.4 ¢ is non-negative, then

limsup (a) = limsup =Z()=0.
a—0+ k—+o00 2m

To prove that ¢ is concave we will use a geometric construction. Let 0 < r < a < s and consider

(5):
pi=—m+ (== )i,
n

where i = 0,...,n. Note that po = —m, p, = m and p; € (—m,m) for every i =1,...,n— 1.

the points
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Consider the functions

gi(z) = ra? + (2a — 2r) <—m + <27T> z) x—(a—r) (—m + <2;Ln> i>2

=7z + (2a — 2r)pix — (a — 7)p?

7

fori=0,...,n — 1. We have that

9i(pi) = f(pi), gi(pi) = f'(pi) and  epi(f 4 Li_pym)) C epi(gi + Li—pm))s
for every ¢ =0,...,n — 1. Recall that m is fixed.

Figure 4.1: f 4Ly, and g;.

R

Source: Compiled by the author.

Now we want to find for every i = 1,...,n, the function
hi(x) = sz + bz + ¢
such that

hi(zi) = gi—1(x;)

(4.31)
h;(ﬁz) = gz,'_l(xi)
for some x; € (pi—1,p;) and epi (h; + Li_p, ) C epi(gi—1 + Li_y ), and
hi(yi) = 9i(yi
(i) = 9i(w) (4.32)

h;(yi) = gé(yi)

for some y; € (25,p;) and epi (h; + Li_pmm)) C epi(gi + Li—mm))-
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By second equations in (4.31) and (4.32) we have, respectively,

a—r b;
= i1 — 4.33
i <s—r>p2 195 —or ( )
a—r b;
;= ; — . 4.34
Yi <s—r)pZ 25 —2r ( )
Thus
a—r71Y\ 2m
Yi — Ti = ( ) —, (4.35)
s—r) n
for every i = 1,...,n, that is, (y; — ;) is a constant that does not depend on i. Moreover
b; bit1
Lit+l — Yi

T 2s—2r 2s—2r
By first equation in (4.31) and (4.33), we must have
(bi — (2a — 2r)pi_1)? — 4(s — ) (ci+ (a—7)pi_y) =0 (4.36)
and by first equation in (4.32) and (4.34), we get
(bi — (2a — 2r)p;)* — 4(s — 1) (ci + (a — r)p?) = 0. (4.37)

Using (4.36) and (4.37) we obtain that

4m

bi —biy1 = —=((s —7) = (a—1))

and therefore

1 4m
i == gty | (s =) = (= )]
) _
_om (1 _ <“ T)) , (4.38)
n s—r
for every i = 1,...,n — 1. This means that (z;+1; — y;) also does not depend on i.

Note that if ¢(n) = 22, then (y; — z;) + (zit1 — ¥i) = »(n).
We approximate the function f + Li_,,, by a convex function u, € Convpac(R;R) constructed

in the following way

Up = (90 + L[fm,xl]) v (hl + L[xl,yl]) \ (91 + L[yl,:vg]) v (h2 + L[ZQ,yQ]) VeV (gn + L[yn,m})
(4.39)
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Figure 4.2: Functions f (red) and u, (black).

]
1
[}
[}
[}
[}
[]
[}
[}

Source: Compiled by the author.

Since (y; —x;) and (241 —y;) do not depend on 7 and since Z is a simple valuation and unchanged
by the addition of piecewise affine functions, we have

n—1
= Z(g0 + L[fm,xl]) + Z(gn + L[yn,m}) + Z Z(gi + L[yi:xi+1]) + Z Z(hi + L[Ii,yi])

n
=1

Z(un) = Z((go + Lizm,z1]) V (71 + Liz, 417) V (91 + Liyy 20) V (h2 + Ligg0) V- V (g0 + Ly, m))

=nZ(h1+ Lz, 1) + 1291 + Liy, 20))

i=1
and by (4.29), (4.35) and (4.38), we get

Z(h1 + L
Z(un) = iy — ay) 20T Homm)

2m

Zgl"i—Lfmm
ey — ) 20T iomom)

2m

n (fa—r)\ 2m . n a—r 2m .

= % (3—7“) TZ(hl ‘I’L[fm,m]) +% (1 — (S—T)) 72(91+L[,m7m])
a—r . a—r .

= Z L 1-— VA 1, )
<S_r> (b1 + [—m,m})+( <S_r>) (91 + Li—m,m))

(4.40)
Note that Z(u,) does not depend on n. To finish the proof that { is concave we use that uy,
converges to f + Li_m,m) as n — 400, that Z is upper semicontinuous and use equation (4.40)
such that

2m((2a) = Z(f + Li—mm])

> lim sup Z(uy,)

n—-+o0o

. a—r . T .
Zlylgig(l)) <S_T> Z(hy + L)) + ( S_r) Z(g1 + Li—m,m))
:2m(<a—r> ¢(2s) + <1— a-r
S—7T

=) ).
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Setting A = 2=% since 0 < r < a < s, we have that 0 < A < 1 and

C(A2s + (1 = N)2r) > A((2s) + (1 — N\)¢(2r).
Once that r and s were arbitrarily taken, we arrive at
C(As 4 (1 = AN)r) > A¢(s) + (1 = A)¢(r)

for every A € (0,1).

The last property needed to conclude that ¢ € W is

lim @ =0.

a—+00 @

Consider the family of functions fi(x) = kx?, k € N. We have

-2z — 1, if z< —%
(FHLL0) @ = ka?, it we[-11]
2r — %, if x> %

Note that fj + L[i 1] converges to [ = |2z|. Since Z is upper semicontinuous and simple, we
'k

==

obtain
limsupZ(fk—i—L[fl ;]) = 0. (4.41)
k—+o00 kok
By (4.30), we have that
im <@ _ g
a—+o0
O

The second result necessary to prove Proposition 4.3 is the following.

Proposition 4.4. For a given ( € W, there is a unique Z : Convpac(R;R) — R with the

following properties:
(i) Z is upper semicontinuous;

(i) Z is a simple and translation invariant valuation, unchanged by the addition of piecewise

affine functions;
(iii) Z(f + Li_mm)) = 2m((a), where f(x) = $a°.

A function v € Convpac(R;R) is called piecewise linear-quadratic if domgv can be expressed
as the union of finitely many intervals J;,7 = 1,...,[, such that the restriction of v to J; is a
quadratic or affine function. The set of piecewise linear-quadratic functions will be denoted by
P14(R). Note that piecewise linear functions belong to P 4(R) and since P 4(R) is dense in
Convpac(R; R), one can approximate every u € Convpac(R; R) by elements of P14(R). The upper



4.3. PROOF OF THEOREM 4.6 115

semicontinuity of Z implies that for every sequence uy € P 4(R) such that u, — u

Z(u) > limsup Z(ug). (4.42)

k——+o0
We will prove that for every u € Convp..(R;R) there is a sequence u, € Pj4(R) such that
equality holds in (4.42), that is,

Z(u) = sup {lim sup Z(uy) : u € P1q(R),up — u} . (4.43)

k——+o0

Proving this result we have that Z is uniquely determined by ¢ and therefore proves Proposition
4.4.

Figure 4.3: Function u (red) and a piecewise linear-quadratic function wuy, (black).

Source: Compiled by the author.

We call a closed triangle T' = T'(z,y) a support triangle of a convex function u with endpoints
(z,u(x)) and (y,u(y)) if x,y € domwu and 7" is bounded by support lines (that is, 1-dimensional
support hyperplanes) to u at x and y and the chord connecting (z,u(x)) and (y,u(y)). Using
suitable support triangles of u € Convpac(R;R) we will construct an v € P 4(R) such that

Z(u) < Z(v) + pVi(dom u), (4.44)

where p > 0 is given.

One of the most useful tools of geometric measure theory is the Vitali covering theorem. Given
a ‘sufficiently large’ collection of sets that cover some set .S, the Vitali theorem selects a disjoint
subcollection that covers almost all of S. A collection of sets C is called a Vitali class for S if for
each z € S and § > 0 there exists U € C with z € U and 0 < V,,(U) < 6.

Theorem 4.10 (|21, Theorem 1.10). (Vitali covering theorem)

1. Let S be an H™-measurable subset of R™ and let C be a Vitali class of closed sets for S.
Then we may select a (finite or countable) disjoint sequence {U;}; of C such that either
i Va(U) = 400 or H'(S \ UU;) = 0;
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2. If H™(S) < o0, then given € > 0, we may also require that

H'(S) <) Vo) +e. (4.45)

What we will do is to show that for the set
S = {x € dom. u; u"(x) is well-defined}

there is a suitable Vitali class defined with the help of support triangles of u. Since Z is a
translation invariant valuation, we can consider without loss of generality that u € Convpac(R; R)

is such that dom.u = [—m, m].

Lemma 4.6. Let zg € S such that in a neighborhood of xo the function w is not linear. For
every p, T > 0 there is a support triangle T = T(x,y) of u, a convex body Ar C R? and a function
vp € P14(R) such that:

(i) (zo,u(xp)) €T and 0 <y —x < 75
(ii) Ap C T and Ar is a support triangle of vp;
(1) Z(u+ Lizy) < Z(vr) + Sy —x).

Proof. First since u is a convex function in particular v is twice differentiable almost everywhere.

Then, by Taylor expansion 1.18, w can be represented locally around xg by

u(x) = u(xo) +u'(w0) (2 — x0) + %u"(wo)(az —20)® + o((z — z0)?). (4.46)

To prove this lemma we will consider two cases. The first case is when u”(zg) > 0. Take
P. = (x0 — e,u(xg —¢)) and Q. = (w0 + €,u(zo + €)) points on the graph of u and let
T. = T-.(xp — &,29 + €) be the support triangle of u with endpoints P. and Q.. By (4.46),
we have

Q: — P. = (25, 25u'($0)) .

Hence for ¢ sufficiently small we have that 0 < 2¢ < 7 and (¢) happens. To prove (ii), consider
H(P.) and H(Q:) the support lines of u at zo —e and xg + ¢, respectively, and let W, = (w1, ws)
be the point where H(FP:) and H((Q.) intersect. Without loss of generality, assume that

(xo+e) —w; <wy — (zg — ¢).

Consider Q5 = (¢i, hj) as the point on H(Q.) such that ¢i — w13 = w; — (xg — €). Note that
Qe € [We, Q5], where [We, Q5] is the closed line segment with endpoints W, and Q5. Thus, there

exists a quadratic function
fo(x) = az® + bx + ¢ = a(e)z? + b(e)x + c(e)

such that H(P.) is tangent to f at P. and H(Q.) is tangent to f at @ (see Lemma 5.1 in
Appendix and Figure 4.4). Note that h{ = fe(q5).
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A simple calculation using (4.46) shows that as ¢ — 0

2

W0) 12 4 () — o () + (o) — o (20) + D (20)) = frnle).  (447)

2

fe(x) =

Since f. is a convex function, . does not lie in the interior of epi(f:) and [Q., Q] is tangent
to fo. Let Q5 = (¢5, f-(¢5)) be the second point on boundary of epi(f.) such that [Q5, Q] is
tangent to f., and let

Ti = conv{ P, W,,Q7} and T5 = conv{P., W, Q5}.

See Figure 4.4.

Figure 4.4: Case u”(xg) > 0.

8
S

We

Source: Compiled by the author.

Now it is sufficient to define
A7 = (epi(fe) NT3) U conv{ P, Q3, Qc}
and
v = (fe + L[zo—a,qg]) V(w+ L[qg,qﬂ)a (4.48)

where w = I([Q5, Q:]) VI([Qe, Q5]) and I([Q5, Q:]) is the affine function that contains the segment
(@5, Qc] and I([Qe, Q5]) is the affine function that contains the segment [Q., Q5] .

Therefore, A% C T, A% is a support triangle of v, and v} € P 4(R).

It remains to show the item (éi7). Using that [Q5, Q<] and that [Q., Q3] are tangent to f., we
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obtain

¢ = (zg+e)— \/(a:o +e)2 —aHNu(zog+e) —blzg+¢e) —c)
45 = (zo +¢) + V(w0 + )2 —a(u(zog+¢) — b(zg + ) — ¢)

and since u(zg + €) = fr,(x0) as € — 0, we get

V(zo+¢)2 —a(u(wg +¢) — bz +¢) —c)

0=1lim2
e—0 q] +€—xo
€ 19
= lim 4GB
e=0 ¢ +¢€—x9
lxg+e—q5

By (4.48), and using that Z vanishes on piecewise affine functions, we have

Z(”%) = Z(fE + L[xofs,qg])'

Therefore, by (4.30)

Z5) =20 7 p L)

2m
i +e—xo . 4 — ¢ :
=— |7 L -7 L .
m < (fa + Pm,m}) (ﬁ Te— o (fE + [fm,m])

Then, for every nn > 0 and for e sufficiently small

q‘f—ka—:cg

o (Zfe F Limmm) — 1) < Z(v7). (4.49)

Now observe that the triangle 77 is a support triangle of the function

('LL + L[x07€7x0+g]) \/ (l([QE7 Qi]) + L[IO+€7qﬂ)

which is a function in Convp,c(R; R) and 77 is also a support triangle of the quadratic function

f-(x) = ax? + bx + c. Thus there are translations 7,,, ..., 7, with

n

2m
\yi\zqf+€—;ro and n<—<n+1
qi—l—s—xo

such that T; = T'(7, ' (z0 — €), 7, (¢f)) is a support triangle of f.(x) = az® + bx + ¢ for every

i=1,...,n, and Ts have pairwise disjoint interiors (see Lemma 5.2 in Appendix).
Define
Ve = \/((U + L[:rofz-:,moJrs]) \ (l([Qaa Qﬂ) + L[xOJrs,qf])) o Ty:1 \ (fE + L[fm,m]\f)v (4'50)
i=1

where I = (J;"; 7, ([zo — €,¢§]). Note that [—m,m]\ I is not necessarily an interval, it can be
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union of intervals, and we used an abuse of notation.

By construction, v, is a convex function in Convpac(R;R) and since Z is a non-negative, simple

and translation invariant valuation,
Z(”E) > nZ(u + L[zg—a,xo—i—a])

and by (4.47), ve converges to fu, 4 Li_p, m) as € — 0.

By upper semicontinuity of Z, we obtain

Z(fzo + L[—m,m]) > limsup Z(UE)

e—0
2m .
>limsup ———Z(u+ Ly, _ .
= e ( (ro=ezort<])

Since the function ((2a) = 5= Z(az? + Li—m,m)(x)) is contained in W, in particular, it is

continuous and by (4.47), we get for every n > 0

. qE +&— o .
Z(u+ L[xofs,xoﬂ:‘]) < IT (Z(fe + L[fm,m]) + 77) (4.51)
for e sufficiently small. Furthermore,
g __ _ g __
¢ — (xo+e) < L7075 (20 ) oA te) (‘;0 o),

These last inequalities and (4.49) now imply that

qf—ke—xo

Z(u + L[xo—a,:rfo—i-a]) < Z(”%) + om 2n
< Z(05) + 2¢e + \/(l‘[) +e)2 —a Y u(zog+¢e) —blzg+e)— 0)277
2m
4e
< Z(v§ —2
< Z(vy) + om "

for e sufficiently small. In the last inequality we used the simple estimate

V(o +€)2 —at(u(zo+¢) — blzg+¢) — ¢) < 2.

Setting n = Z* now shows that (4ii) holds for ¢ > 0 sufficiently small.

Now let u”(x9) = 0. Let T. be the support triangle of u with endpoints P = (xg,u(zp)) and
Qe = (o + &, u(xg + €)) and A% = T.. Then (i) holds for e sufficiently small. For every a > 0
the quadratic function

f(x) = az® — 2azxoz + (u(zo) + axd)

is such that P is a point of the graph of f and whose epigraph is locally contained in epi(u).
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Since Z is an upper semicontinuous, non-negative and simple valuation, we obtain

limsup Z(f + Lj_p,m)) = 0.

a—0
Therefore, for a sufficiently small

pm

2] + V) < O (4.52)

Let W, be the point on the support line to uw at xy such that the first coordinate is xg + ¢ and
let Q5 = (¢f, f(¢5)) be the point on graphic of f such that [We, Q5] is tangent to f.

Figure 4.5: Case u”(x¢) = 0.

xo xo+ € a,

Source: Compiled by the author.

Then the triangle
Ty = conv{P, W, Q5}

is a support triangle of f. Since epi(f) is locally contained in epi(u) the support line of u at Q.

does not intersect f for ¢ > 0 sufficiently small. Therefore

(u + L[$0,$0+€]) 4 (w \ l([QEa Qﬂ))a

where w is the tangente line to u at @, is a convex function in Convpac(R;R) and 77 is also a

support triangle of this function. Using the same idea of (4.50), define v. by

n

Ve = \/((u + L[a:g,mo-i—&]) v (w \ l([QEa Qﬂ))) ° Ty_,-l \ (fe + L[—m,m]\[)a
=1

2m
qi—To

where I = ;| 7y, ([%0, ¢5]) and n < < n+ 1. Then v converges to f + Li_y, ;) as € — 0

and

Z(UE) Z nZ(u + L[{EQ,IQ—l-E])‘
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Since Z is upper semicontinuous, we have for every n > 0

2m

qi — To

Z(u+ Ligg zo4e) < Z(f + Limmm)) +1 (4.53)

for e sufficiently small.

Since W, belongs to a support line to f that contains P and the support line that contains @5,
we have that ¢i = xo + 2e. Thus, replacing ¢j in the inequality (4.53) we obtain

2e

. 2e ;
Z(u + L[xo,:co-l-a]) < %T’ + %Z(f + L[—m,m])

By (4.52), it follows that

. no,p
Z(u + L[l‘oﬂfo-i-&]) S (3 (E + Z) .

Taking n = %, we obtain

) < Ze.

Z(ut 1 £

0,T0+€]

Thus, since
U’% = (u + L[CE(),:L‘()-{—&]) \% l([Pa Qe])

is a piecewise affine function, (i7) and (¢¢) hold. O

Since Z is a simple valuation, we have the immediately result.

Lemma 4.7. Let J C dom.u be a closed interval such that u|; is a piecewise affine function.
Then for every p > 0 it holds

Z(u+Ly) < gvl(J). (4.54)

Lemma 4.8. There is a constant cp; such that
Z(u+Ly) <epyVi(J)
for every closed interval J C dom, u, where M is the Lipschitz constant of u.
Proof. Since M is the Lipschitz constant of u, then there exists a quadratic function
Jao(x) = Mz? + b(xo)z + c(z0)

such that fgo(z0) = wu(xo) and f; (vo) = v/, (xo) and this means that epi(fsy,) is locally
contained in epi(u). Let T¢ be the support triangle of u with endpoints P = (xq,u(zp)) and
Qe(zo+€,u(zg+e)) for e > 0 sufficiently small. As in Lemma 4.6, for the case where u”(x¢) = 0,
define

n

ve = \/ ((t F Ligy gy ie) V (w0 VU([Qe, Q1)) 075,V (fro + Lizm 1),
i=1
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where I = |J;Z; 7, ([z0, ¢{]). Then v, converges to fu, + Li_p,m) as € = 0 and for n =1

ﬂu+%mmﬂp3<%(f° [ ’“)e (4.55)

m m

for e sufficiently small. Note that Z(fsz, + Li_m,m]) just depends on M, since Z is invariant
by affine functions. We can therefore dissect J into finitely many intervals for which (4.55)
holds. O

Proposition 4.5. If Z : Convpac(R;R) is a simple, upper semicontinuous and translation

mwvariant valuation which is unchanged by the addition of piecewise affine functions, then

Z(u) = sup {limsup Z(vyp) :vp € P1g(R), v, — u} )

n—-+o0o

Proof. Since u € Convpac(R;R), the set S C dom, u of points where u is twice differentiable is
such that
Vi(S) = Vi(dom, u).

By Lemmas 4.6 and 4.7 the sets
{z € dom¢u : (z,u(x)) € T} and cl({z € dom.u : u is linear in a neighborhood J of x})

are a Vitali class for S and this remains true if we only take 7" and J with Vi (P.,T), V1 (J) < ¢ for
0 > 0, where P, T denotes the projection of the set T" over the space generated by the canonical
vector e; € R?. Take n > 0 such that 7 < § and n < 52~V (dom, u).

M

Then we can choose by Vitali’s Theorem 4.10 support triangles T7,...,7T;,, and closed intervals
J1,...,J; such that

n l
Vi(domeu) = Vi($) < Y Vi(Pe, i) + ) Va(Jj) + 1
i=1 j=1

and such that the intervals P, Th,..., Pe,1y, J1, ..., J; are pairwise disjoint.

We choose closed intervals K, ..., Ky such that P, 1T1,..., P, 1y, J1,...,J;, K1,..., K, have

pairwise disjoint interiors and such that dom.w can be decomposed as

P ThU---UFPT,UJjU---UJJUK;U--- UK.

Define
vp=vp, V---Vop, V(u+Ly)V---V(u+Ly) V(i +Lg)V--- V(I +Lk,),

where [; are piecewise affine functions such that vy is a convex function in Convp..(R;R), vp
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coincides with v in R \ dom, u, and

Z(vr) = Z Z(vr,).

Therefore, since Z is a simple valuation and by Lemmas 4.6, 4.7 and 4.8 we conclude that for

every p >0

Z(u)=Z((u+Lp, ) V---V(utLlp 1,)V(t+Ly)V---V(ut+Ly)V(utLg)V--V(utLg,))
n l k
=Y Zu+Lp,n)+ Y Zw+Ly)+ Y Z(utLg,)
i=1 j=1 s—1
n l

k
<> (2(or) + gvl(PelTi)) + 3 PVil) + ear Y Vildomu 1K)

i=1 j=1 s=1

<z Zvl P..T;) +ZV1 + eum
=1

<z g Z (P, T}) + Z i) | + ng(domc w)
i=1 j=1

= Z(vr) + pVi(dom u).
Since p is arbitrary we conclude the proof of this proposition. O

Proof of Proposition 4.4. Let Z : Convpac(R;R) — [0,400) be a valuation that satisfies the
conditions (i) — (i74). By Lemma 4.5, ( € W. Since Z is simple and by (4.27) determined by
¢ on piecewise linear-quadratic functions, then Z(u) is determined by ¢ for every u € P14(R).

And by Proposition 4.5 we conclude that Z is uniquely determined by (. O

Proof of Proposition 4.3. Let ( € W be given by (4.27). By Lemma 4.3 and by Theorem 4.7,
the functional Z; : Convpac(R; R) — [0, 400) defined by

_ /R (@) dx

is a simple, upper semicontinuous and translation invariant valuation, unchanged by the addition

of piecewise affine functions and for f(x) = %xQ + Li—m,m) satisfies
ZC(f + L[—m,m]) - QmC(a)
Therefore by Proposition 4.4 we conclude the proof. O

Proof of Theorem 4.6. Let w be a piecewise affine function on R. Since Z is unchanged by the

addition of piecewise affine functions, we have Z(w) = ¢( for some constant that does not depend
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on w. Define
Zo(u) = Z(u) — cp.

Then Z; is a simple, upper semicontinuous, translation invariant valuation and unchanged by
the addition of piecewise affine functions. The proof now follows from Proposition 4.3 that

guarantees the existence of a function ¢ € W such that

Zo(u) = /R (" (2))dx

for every u € Convpac(R; R). O



Chapter 5

Conclusion and further research

This thesis compiles works on convex geometry in different themes. We use this last chapter to

reinforce some conclusions and pose some questions that we encountered during this study.

In Chapter 2 we gave a constructive proof for the existence of isotropic measures for the John
and positive John positions. It would be nice to know if there is a possibility of weakening the
hypothesis about f and g requested in this chapter. Other question is about the uniqueness
of the position. For example, for two different convex bodies, is it possible to give on explicit
representation of an isotropic measure? Recall that we answered just for the positive John

position because for this position there is uniqueness.

In Chapter 3 we gave a constructive proof for s-isotropic measures in s- John position. One
question about the functional Léwner ellipsoids is if it is possible to give an explicit representation

of the “John decomposition” using the approach in [31].

Finally, regarding the Chapter 4, we would like to generalize the Theorem 4.6 for n € N, i.e., to

resolve the following problem.

Problem: Let Z : Convpac(R";R) — R be an upper semicontinuous, SL,(R), translation
invariant valuation and unchanged by the addition of piecewise affine functions. Then there is a
constant ¢y € R and a function ¢ € W such that

Z(u) =co+ ¢(det D? u(z))dx
R

for every u € Convpac(R™;R).
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Appendix

The objective of this appendix is to prove two simple results that were used in Chapter 4, more

specifically in Lemma 4.6.

Let g,h : R — R be two affine functions given by

g(x) =lhz+ls

h(z) = mix + ma,

respectively, where l1,l2,m1,m2 € R and I3 # my. Assume that g(pg) = h(pg) for some py € R

and take xg < pg. We want to find a quadratic function
f(z) =az? +bx+c
such that

f(xo) = g(z0)
f'(xo) = g'(z0)

and

f(po+ (po —z0)) = g(po+ (o — 70)) .
f'(po + (po — z0)) = g'(po+ (po — 20))

First note that g(po) = h(po) implies that

mg—lg

Po =
mi1 — 1

and by second equations in (5.1) and (5.2), respectively, we get

2axg +b=1
2a(2py — xo) + b =m;.

1 —1 —1
a=- (m1 1) and b= (ll_m<m1 L
4 \ po— o 2 \po— 7o

Hence,

(5.2)
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Now using the first equation in (5.1) we obtain

From this we obtain the following result.

Lemma 5.1. Consider the affine functions g,h : R — R given by

g(x) = l1$ + l2

h(z) = mix + ma,

respectively, where l1,la, m1, ms € R, 11 £ mq and let pg be a point at which the functions coincide.

If ©o < po, then the quadratic function

1 —1 —1 2 —1
f(m>:<m11> x2+<ll_fvo<m1 1>)x+l2+$o<ml1>
4 \ po — xo 2 \po— 7o 4 \ po— xo

1s such that

f(x0) = g(x0), f'(x0) =g (x0) and f(2po—x0) = g(2po — x0), f'(2po — x0) = ¢'(2po — x0)-

Lemma 5.2. If T = T(x1,2) is a support triangle of f(x) = ax?+bx+c, where a > 0,b,c € R,
then there exists a rotation ¢ : R? — R? such that ¢(T) is a support triangle of f as well.
Moreover if ¢(x) = (¢1(x), ¢a(x)), then

o(T) =T(p1(x1), p1(z2))-

Proof. Define the function ¢ : R x R — R? by

(3} _ To — T n 1 0 x
’ Yy a(ze — 21)? + b(zy — 1) 2a(xg — 1) 1 y/]
Observe that
T _ T2 — 1 n 1 0 x
4 f(z) a(ze — 21)% + b(wy — 1) 2a(xe — 1) 1 ax® +br +c

B x+ (x2 — x1)

a (a(w + (w2 — 1)) + b(w2 — 1) + c)

B x4 (z2 — 1)

B (f(w + (w2 — iBl))) '
Since ¢ is a C' function, then o(T(x1,72)) is also a support triangle of f. Moreover, if
p(x) = (p1(2), p2(x)), then v1(z) =  + (z2 — 1) and

(T (z1,22)) = T(22, 22 + (72 — 1)) = T(P1(71), 1(22)).



Appendix 132

»(T)

/

1 L2 Ty + T2

Source: Compiled by the author.



