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Resumo

O carregamento de energia dos dispositivos móveis utilizando transferência de energia
sem fio via indução de potência ganhou destaque nos últimos anos com a criação das
técnicas de formação de feixo utilizando sistemas com múltiplas entradas e múltiplas saí-
das. Todavia, os trabalhos voltados à otimização destas aplicações são, em geral, focados
na transmissão de potência, deixando de lado aspectos do processo de carregamento das
baterias e de consumo de energia por parte dos dispositivos. Neste trabalho propomos
dois novos problemas computacionais associados ao carregamento de dispositivos sem-fio
utilizando transferência de energia sem fio via indução magnética e possibilitando um car-
regamento ubíquo, onde o usuário não precisa saber como os dispositivos são carregados e
nem quando. O problema do carregamento MIMO em tempo mínimo consiste em encon-
trar séries temporais de tensão para cada dispositivo transmissor de forma a finalizar o
carregamento de todos os nós o mais rápido possível. O problema do carregamento MIMO
sem inanição, por sua vez, consiste em determinar as séries temporais de tensão de forma
a maximizar o horizonte de tempo dentro do qual todos os dispositivos permanecem lig-
ados. Provamos ambos os problemas como NP-Difíceis. Propomos três algoritmos de
programação dinâmica pra resolvê-los em tempo exponencial com respeito ao número de
dispositivos e em tempo linear com respeito ao tamanho do horizonte de tempo, sendo
portanto exponenciais com respeito ao número de bits utilizados para representar esse
horizonte. Propomos ainda três algoritmos gulosos como heurísticas para os problemas e
elaboramos um algoritmo para gerar instâncias de teste aleatórias com solução garantida
e dificuldade parametrizável. Experimentos indicam que o melhor algoritmo de progra-
mação dinâmica dentre os propostos é capaz de encontrar uma solução viável para 97% das
“instâncias fáceis”, enquanto o melhor guloso proposto é capaz de encontrar uma solução
viável para 92% dessas instâncias. Para “instâncias difíceis”, por sua vez, conseguem obter
uma solução viável em 89% e 74% das vezes, respectivamente.

Keywords: transferência de energia sem-fio; redes de n-portas; np-completude; pesquisa
operacional; distribuição de energia sem-fio; carregamento sem-fio de baterias; formação
de feixe.



Abstract

The charging of wireless devices using inductive power transfer has gained prominence in
recent years with the creation of beam-forming techniques using systems with multiple
inputs and multiple outputs. However, previous work aimed at optimizing these applica-
tions is, in general, focused on power transmission, leaving aside aspects of the battery
charging process and the energy consumed by the devices. In this work, we propose two
new computational problems associated with the charging of wireless devices using wire-
less power transfer via magnetic induction, enabling ubiquitous charging, meaning the
user does not need to know how and when the devices are charged. The Minimum-Time
MIMO Charging Problem consists of finding voltage time-series for each transmitting de-
vice to finish charging all nodes as soon as possible. The No-Starvation MIMO Charging
Problem, in turn, consists of determining the voltage time-series for maximizing the time
window in which all devices remain alive. We prove both problems as being NP-Hard.
We propose three dynamic-programming algorithms to solve them in exponential time
regarding the number of devices and in linear time regarding the duration of the time
window – or in exponential time regarding the number of bits required for representing
the duration. We also propose three greedy algorithms as heuristics for the problems.
We describe an algorithm to generate random test instances with a guaranteed solution
and parameterizable difficulty. Experiments indicate that the best proposed dynamic-
programming algorithm finds a feasible solution for 97% of the “easy instances”, while
the best proposed greedy algorithm finds a feasible solution for 92% of these instances.
Furthermore, they obtain a feasible solution for 89% and 74% of the “hard instances”,
respectively.

Keywords: wireless power transfer; n-port networks; np-complete; operational research;
wireless energy distribution; wireless charging; beam-forming.
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Chapter 1

Introduction

The power supply is one of the most significant challenges when it comes to extending
the lifetime of a device in wireless networks. If there is no access to a virtually infinite
power source, such as the power grid or a reliable energy harvesting element, the lifetime
of devices such as those used in Wireless Sensor Networks is generally limited to the
autonomy of their batteries. In difficult-to-reach environments or when there are a large
number of devices, the manual replacement or recharging of batteries is often impractical.
In this case, a very common approach is simply to treat such devices as disposable, which
results in expenses related to hardware replacement and garbage accumulation in the
environment.

However, the energy issue is remarkable even when there is the possibility of the user
being responsible for replacing or recharging the batteries. In the case of mobile devices,
for example, the massive use of network communication and the increasing demand for
high processing applications is increasingly limiting battery autonomy, which generally
requires to be recharged at least once a day, and opportunistically [Bulut et al., 2018].
Therefore, the user must often carry a tangle of wires and chargers, often one for each
device, and risk forgetting to recharge and then run out of batteries.

A relatively old solution to this problem is to recharge the batteries by wireless power
transfer (WPT). Indeed, with the advancement of mobile device usage, the WPT market
has grown at an annual rate of 60.49% since 2014, introducing many mobile phone models
integrated with wireless power transceivers. Research firm MarketsandMarkets predicts
that the WPT market will reach US$ 17.04 billion by 2020 [MarketsandMarkets, 2017].

The advantages of using wireless power transfer are quite diverse. In addition to
the already mentioned ease of battery renewal, we can highlight the reduction of the
required cabling. This is especially positive for reducing hardware costs and for improving
the mobility of the receiving device. Another notable advantage is the reduction of the
receiving device’s physical dimensions, as often, especially in small devices, the battery is
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a major determinant of the final chassis size. Besides that, WPT recharging also favors
charger-receiver interoperability. Indeed, it eliminates the need for a male connector to
be physically and electrically compatible with the female connector.

However, even developed since the late nineteenth century, the WPT area re-
mained highly limited for a long time. The several approaches in the literature such
as radiofrequency-based transfer, laser, microwave, and magnetic induction (MI or IPT,
from inductive power transfer) always have tradeoffs between range, efficiency, user safety,
and maximum transferred power.

In the last few years, nevertheless, some work in WPT focused on magnetic induc-
tion and, more precisely, on magnetic resonance, achieving promising results with high-
efficiency at medium range [Jadidian and Katabi, 2014][Shi et al., 2015][Cao et al., 2018].
Since classical implementations of IPT were almost always applicable only at very short
distances, sometimes requiring physical contact between transmitter and receiver, these
results have proved themselves highly relevant. Also, they mitigated other disadvantages
of the former IPT implementations, such as the need for precise alignment between the
coils and the impossibility of charging more than one device at once. Those works were
based on the beamforming technique, which uses a MISO (Multiple Input Single Output)
or a MIMO (Multiple Input Multiple Output) setup in a way to control the power dis-
tribution between the devices by applying different electric currents in each transmitting
coil, as illustrated by Figure 1.1.

In particular, the authors of those three papers indicated the recharging of mobile
devices as the main use case. Using such methods, several devices in a user’s pocket or
body, such as cell phones, smartwatches, and more, might recharge simultaneously while
sitting in front of their desk where an appropriate transmitter was previously installed.

In this work, we address two computational problems involving wireless power trans-
fer and, more precisely, wireless charging using IPT. The input parameters of both prob-
lems are the temporal series of the circuit parameters as well as information about the
behavior of the consumers in the system and the circuit limitations. The decision vari-
ables, in turn, are the temporal series of the voltages within each transmitting circuit.
Unlike the previous works, whose optimization models aimed at maximizing the trans-
ferred power at each moment, our approach optimizes the charging process, following two
main objectives. The first one is intuitive and consists of recharging all devices as soon as
possible. This objective is addressed by the Minimum-Time MIMO Charging Problem.

The other one, in turn, consists of avoiding any device in a determined population
from running out of batteries for a determined time-horizon. This objective is addressed
by the No-Starvation MIMO Charging Problem. It is useful for applications such as the
indoor charging of mobile devices, as illustrated in Figure 1.2. For these applications, a
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Figure 1.1. Beamforming in IPT refers to applying different currents for each trans-
mitting coil to control the power distribution between the receivers. The scheme
represents the power within each coil (circular elements) and its color indicates in-
tensity.

set of heterogeneous devices moves through a restricted space together with some trans-
mitting MI devices. The transmitters feature an eternal power supply, although it is
limited regarding the electric-current magnitude and the dissipated power. Moreover,
each receiving device has an individual IPT receiver, a rechargeable battery, and a power
consumer with variable but deterministic behavior.

Let us assume that all devices remain confined into the referred space and that
there is a centralized control system aware of all electrical parameters for the entire time-
horizon. These parameters include but are not limited to batteries capacity, state-of-
charge, resistances, and the mutual induction between each pair of coils at each moment.
Let us also abstract the life-cycle of the batteries.

Thus, for the aforementioned application, the batteries do not need necessarily to
be charged until they are full. Instead, the power transmitters might simply guarantee
that all charges are always above the minimum limit to stay operational. Besides saving
energy, this approach improves the connectivity between the devices. Indeed, the load
resistances of the receiving devices increases as their charge increases, which prejudices
their role as passive signal repeaters, as illustrated by Figure 1.3.
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Figure 1.2. Power flow in an indoor wireless charging application.

Figure 1.3. Premature finishing the charging process of an intermediate device can
cause the disconnection of other receivers which depend on it as a passive transmitter.

1.1 Motivation

The global wireless charging market size was valued at $6,514.2 million in 2018 and is
projected to reach $49,304.1 million by 2027 [Patil, 2020]. In particular, nearly 500 million
devices with wireless charging shipped in 2017, according to IHS Markit [Tech, 2018].
Nevertheless, most wireless charging solutions in the literature do not address the charging
process in their modeling, often focusing purely on wireless power transfer. In theory,
maximizing the power transfer is equivalent to minimize the charging time and maximize
the life-time of the devices around if the system features a single power transmitter.
Indeed, maximizing the power applied to the single transmitter maximizes the delivered
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power. However, the problems became quite different for multiple transmitting devices,
especially for heterogeneous networks.

Many of the most promising recent works [Shi et al., 2015; Yang, 2017] involving
wireless power transfer consider more than one transmitting device, which is mainly used
to improve control over power distribution and transmission range. Thus, the problems
addressed by this work fill the gap between the approach employed by the aforementioned
works and the charging processes of the powered devices.

The Minimum-Time MIMO Charging Problem applies to cases where a MIMO IPT
transmitting station must charge a set of nodes as soon as possible. Use cases include the
automated charging of wireless sensor nodes [Xie et al., 2012; Peng et al., 2010] and the
power distribution among unmanned aerial vehicles (UAVs) in Flying Ad hoc Networks
(FANETS) [Bekmezci et al., 2013]. The automated charging of wireless nodes is often
implemented using a wireless transmitting vehicle that runs within the network area
and meanwhile provides the power for charging the nodes. Thus, charging the nodes in a
certain sub-area as fast as possible is fundamental for the vehicle to attend other sub-areas
without disconnections due to energy issues. For the power distribution among FANETs,
in turn, the nodes must approach each other for the power transmission to occur, so the
main purposes of the network may be temporally prejudiced and, therefore, it is required
for the charging process to be agile. Besides that, UAVs face landing inaccuracies that
might lead to conditions of poor coupling with the transmitter [Wang et al., 2019]. Thus,
a MIMO setup can bring strong tolerance to misalignment and distance.

The No-Starvation MIMO Charging Problem, in turn, paves the way for ubiquitous
wireless power charging. Thus, it allows users of mobile devices to remain oblivious to
battery charging, due to the ubiquity of transmitters around and the smart handling of
both remaining charges and power transfer.

The ubiquitous wireless power transfer has already some glimpses since a few years
ago. Huang et al. [2012], for instance, describes a simple power transmitter based on
flexible sheets and solar panels, which are simple enough to allow extensive implantation
and have its own power supply, avoiding issues towards energy distribution. Assuming
that mobile receivers are always close enough to the populations of transmitting devices,
the priority is no longer to minimize charging time. Indeed, if the devices are not expected
to stay out-of-reach for long periods, the transmitting controller might just manage the
available resources in a way to fulfill all energy requirements of the receivers around.
However, if a particular device expects to move away from the transmitter population
soon, it can simply send a leaving-notification to the controller so that it seeks to ensure
a sufficient charge while the device is still reachable.

Besides the applications in low-power mobile devices, the ubiquitous wireless power
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transfer paradigm allows the reduction of the dimensions of batteries in electric vehicles
through frequent, fast, and opportunistic charging [Ma et al., 2011]. Since vehicle trajec-
tories are somewhat predictable, a controller that manages a population of transmitters
along the roads can optimize charging processes with an awareness of device positions
over an extended time window. Moreover, the predictability of routes and consequent
positions of receivers will increase soon with the popularization of autonomous vehicles.

1.2 Objectives

Our main objective is to propose solutions to enable the ubiquitous wireless power charging
using ubiquitous wireless power transfer and knowledge about the electrical parameters of
the system. These parameters can be obtained using sensors, wireless communication, and
access to the routes of the receivers. In short, the algorithms proposed in this work shall
receive the time-series of all relevant parameters of the system in a given time window
and then build a voltage time-series to every transmitting device to keep all devices
operational for the considered time-horizon. Thus, the proposed algorithms must solve
the No-Starvation MIMO Charging Problem. Moreover, we aim at proposing algorithms
that can be used with few modifications to generate the voltage time-series to charge all
nodes as quickly as possible, thus solving the Minimum-Time MIMO Charging Problem.

1.3 Contributions

We define two new computational problems involving the process of charging multiple
devices into N-Port network systems [Cederbaum, 1956]. An application example for the
proposed problems is the inductive power transfer systems. We prove both problems as
NP-Hard and demonstrate that the greedy approach followed by the previous literature
works may be sub-optimal. We propose a dynamic programming method to solve both
problems in exponential time regarding the number of devices and in linear time regarding
the duration of the time horizon – or in exponential time regarding the number of bits
required to represent the time duration. We describe three different algorithms based
on the proposed method and also three other greedy algorithms to serve as heuristics.
We define a method to create random instances for the proposed problems which have
guaranteed solution and parametrized difficulty. We validate the proposed algorithms
using randomly-generated instances and extensive statistic support.

Experiments indicate that for “easy instances” the best dynamic-programming algo-
rithm among those proposed finds a feasible solution for 97% of the instances, while the
best greedy algorithm finds it for 92% of them. For “difficult instances”, in turn, the rates
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are 89% and 74%, respectively. The proposed solutions surpass the considered baselines
regarding the number of feasible solutions found, although they are equivalent regarding
charging-time.

1.4 Organization

After the description of the related literature in Chapter 2, Chapter 3 states the as-
sumptions and mathematical modeling followed by the other chapters. Then, Chapter 4
defines the two main computational problems addressed by this work – the No-Starvation
MIMO Charging Problem and the Minimum-Time MIMO Charging Problem. Next, we
prove both problems as NP-Hard and describe a dynamic-programming strategy for the
solution of both.

Chapter 5 describes three algorithms that apply the concepts from Chapter 4 to
solve the aforementioned problems. Chapter 5 also proposes three greedy algorithms and
discusses the asymptotic complexity of the proposed methods. Chapter 6 presents imple-
mentation details and comments about the employed data structures. Chapter 7 describes
the experimental methodology, the generation of random instances for the problems, and
defines the statistical tools to evaluate the algorithms. Chapter 8, in turn, exposes the
results considering many scenarios and input parameters. Finally, Chapter 9 presents our
conclusions and future work.
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Chapter 2

Literature Review

The Wireless Power Transfer concept refers to transmitting energy between two or more
devices without using a conductor object that directly ties the sources to the destinations.
The transmission medium is usually an air gap, although some applications consider
underwater environments or even vacuum. Most literature work uses inductive coupling,
resonance coupling, radio-frequency radiation, and laser for transmitting power, although
there are other less popular approaches like ultrasonic waves [Pudur et al., 2014]. Table 2.1
summarizes some attributes of the main WPT methods.

The methods based on electromagnetic phenomena can be divided into two groups.
The near-field WPT uses the near-field region of the electromagnetic field, whose en-
ergy decays fast with distance and is in part redirected to the transmitter. They are
represented by the inductive power transfer methods and feature short-range and high-
efficiency. There are two subdivisions for this group. The inductive coupling is the
inductive power transfer method which uses signals with frequencies different than the
natural oscillating frequency of the circuits. Thus, despite the high efficiency in semi-
contact and the simplicity of implementation, these methods suffer from short-range and
heating-effect, since the inductive and capacitive reactances do not cancel each other,
thus increasing energy dissipation. The inductive coupling methods are widespread in the
market, encompassing industry standards such as Qi [WPC, 2008], which is quite popular
for the charging of modern mobile devices, as illustrated by Figure 2.1. The resonant
coupling, in turn, uses signals in resonant-frequency. Therefore, it has medium-ranges
and does not suffer from heating-effect.

The far-field-based Wireless Power Transfer methods, as known as radiative meth-
ods, use the far-field region of the electromagnetic field, whose energy decays by the
inverse-square law. Their representatives include laser-based techniques and radio-
frequency-based transfer technologies. In particular, the radio-frequency-based technolo-
gies are widely applicable to outdoor environments, including the automated charging of
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Table 2.1. Summary of the main WPT approaches [Pudur et al., 2014].

Inductive
Coupling

Resonant
Coupling

Radio-
Frequency Laser

Mode of
Transfer

Magnetic
Inductance

Magnetic
Inductance

RF
Radiation Light

Range Short-range
(Omnidirectional)

Mid-Range
(Omnidirectional) Long-range Long-range

(line-of-sight)

Efficiency High High Low High

Media Coils Resonators Antennas
Laser diodes &
Photoelectric

Panels

Power High High Low High

Figure 2.1. Qi Transmitter charging a cellphone (Source: WPC).

wireless nodes [Xie et al., 2012; Peng et al., 2010]. However, there are serious limitations
regarding their use for mobile devices and general devices in indoor environments. Indeed,
despite there are works like Mohanti et al. [2018] which adapts the power transfer protocol
to avoid being harmful to the 802.11ac communication, the WPT using electromagnetic
radiation has a trade-off between transmitted power and damage to human and environ-
ment health [Dai et al., 2014]. Therefore, the remaining of this text addresses the main
alternative for the radiative WPT, that is, the Inductive Power Transfer.

The following sections present the main literature works within the three main
themes to be explored in this dissertation. These are the run-time optimization of wireless
power transfer, the charge optimization, and the wireless energy distribution. Table 2.2
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Table 2.2. Comparison between the main related work and this work.

Work Similarities Differences

Qi
[WPC, 2008] IPT method

Single
transmitter,

single
receiver

MagMIMO
[Jadidian and Katabi, 2014]

Beam-forming,
IPT method

Single
Receiver,

disregards the
amplitude

limitations of
each signal

MultiSpot
[Shi et al., 2015]

Beam-forming,
IPT method,
MIMO setup

Disregards the
amplitude

limitations of
each signal,

disregards the
charging process

Yang [2017]

Beam-forming,
IPT method,
MIMO setup,
constrained

signal amplitude

Disregards the
charging process,
focus on power
transmission

Zhao et al. [2020]
and Lin et al. [2019]

Charging
optimization,

mobile transmitter,
multiple receivers

Single
transmitter,
sub-network
scheduling

Madhja et al. [2016],
Nikoletseas et al. [2017],
and Madhja et al. [2018]

Energy
distribution to

extend networks’
lifetime

Peer-to-peer
transmission,
simplified
charging

summarizes the main similarities and differences between the main related work and this
work. The “differences” column refers to attributes of the related work which are the
opposite of this work. For instance, the table points out “Single receiver” as a difference
of the MagMIMO system. Thus, it means MagMIMO admits a single receiver and this
work admits multiple ones.
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2.1 Run-Time Optimization of WPT

The energy transference methods may follow four different setups. The Single-Input-
Single-Output (SISO) systems have a single transmitting device and a single receiving
device. For instance, Wang et al. [2019] propose an asymmetric coupling system suitable
for wireless charging of drones using IPT. The system is based on a SISO setup with a
ground transmitting base and the receiver deployed in the drone. The ground transmitter
is designed with a large-sized primary coil to overcome the lack of transmission power
caused by landing error. The Single-Input-Multiple-Output (SIMO) setup, in turn, has a
single transmitting device and multiple receiving devices.

Systems with more than one IPT transmitting device may follow the beamforming
approach, which roughly enables the transmitting range and misalignment-tolerance to be
improved. MagMIMO [Jadidian and Katabi, 2014] is one of the first works that addressed
this approach. It follows the Multiple-Input-Single-Output (MISO) setup, although its
name suggests the employment of the Multiple-Input-Multiple-Output (MIMO) setup. As
the intensity of the magnetic field decreases very rapidly with distance, the transmitting
side is composed of several coplanar coils arranged side by side in a matrix, as shown in
Figure 2.2. By controlling the electric current over each transmitting coil, it is possible to
compose the resulting magnetic field and increase the flux intensity over a point of interest
in space, that is, over the receiving coil. One of the main advantages of this system is
the simplicity of the receiver side implementation, which can be just a small resistor-
inductor-capacitor (RLC) circuit resonating at the same frequency as the transmitting
side. In short, the beamforming approach consists of a set of techniques based on the
composition of a resulting magnetic field using multiple transmitter coils.

The MagMIMO algorithm is divided into two steps. The first step calibrates the
parameters employed in the optimization model and the second one calculates the op-
timal transmitting currents and applies the corresponding voltages to the transmitting
coils. The power transfer occurs effectively only in the second step, so the total efficiency
of the method is consequently decreased by the time employed in the first step. Also,
MagMIMO simplifies the constraints regarding the maximum active power and omits the
constraints towards the maximum current of the devices, which is potentially problematic
in realistic applications. Finally, the algorithm requires that parameters such as the mu-
tual inductance between each pair of transmitter coils be pre-parametrized, which reduces
the interoperability of the devices. Moreover, it requires manual pre-parametrization each
time the transmitting coils are repositioned, which involves several measurements using
a multimeter and an oscilloscope.

After the creation of MagMIMO, several works followed the beamforming strategy.
Yang et al. [2016] address the optimization of the current over a single receiver by defining
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Figure 2.2. MagMIMO system illustration from Jadidian and Katabi [2014].

the currents over multiple resonant transmitters. Yang [2017], in turn, describes more
general iterative algorithms for obtaining good results for systems with, in fact, a MIMO
setup. Their model includes constraints for the amplitude of the electrical signals, which
is very close to the modeling employed in this work.

Some work achieved performance improvements from hardware addends, such as
Chang et al. [2017], which enables operational frequency optimization. The system is
based on SISO and dynamically adjusts the frequency of the source using a pulse width
modulation (PWM) generator. The controller evaluates the gain or loss in voltage in the
transmitting coil itself which, by reflection, may indicate whether there was gain or loss
in the receiving part. Therefore, it performs an exhaustive search that usually takes some
time to reach the optimum and depends on the good behavior of the transferred power
landscape. Kisseleff et al. [2015], in turn, proposes the use of orthogonal coils to improve
beamforming performance.

Some works, in turn, considered software enhancements, such as Kim et al. [2017].
It uses several simplifications to get an extremely simple algorithm for finding a good
current configuration in a beamforming system. Jiang et al. [2017], in turn, proposes an
optimization model very similar to MagMIMO, which also uses a data harvesting step to
obtain mutual inductance values. Its contribution is to consider a de facto MIMO system,
that is, with support for multiple receivers, which optimizes the power received through
Lagrange multipliers.

The direct evolution of MagMIMO, as known as MultiSpot [Shi et al., 2015], gener-
alizes its equations to admit multiple receivers simultaneously. In addition to the gains
in flexibility, it has also concluded that the presence of multiple receivers in the envi-
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Figure 2.3. Illustration of the system proposed by Cao et al. [2018].

ronment improves range and efficiency results. These improvements occur because each
receiver works passively as a signal repeater for the others. However, MultiSpot is not
concerned with power distribution between receivers. So, it can often create injustices by
putting all its efforts into optimizing only a portion of the devices. Also, it requires the
pre-parameterization of the mutual inductances between the transmitting pairs, which
restricts their positioning freedom. Finally, it does not limit the maximum amplitude of
the signals, which may lead to harmful conditions for each transmitter or receiver.

TheMultiSpot protocol has been extended to Cao et al. [2018] (Figure 2.3), where the
distribution of the transmitted power among the receiving devices can be controlled using
a weight vector. The algorithm is applicable when there are devices of different kinds and
different energy requirements in the same environment. However, the algorithm requires
explicit inference of all mutual inductance values, which leads to the same problem of loss
of efficiency faced by MagMIMO.

This work proposes two new computational problems regarding the prolonging of
the battery autonomy of wireless devices using WPT. We demonstrate that the approach
of always maximizing the immediately received power is sub-optimal and may lead to very
unfavorable scenarios, although the average case has good results. Notice that this greedy
approach is employed by all works covered in this section. Indeed, it may interrupt wave-
guide states and disconnect devices which were once reachable using other receivers as
passive signal repeaters. The proposed optimization models consider the time evolution of
the charges and other characteristics of the devices, such as current-conversion efficiency,
limits for the charge current, discharge current, and more.
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2.2 Charging Optimization

As far as we know, all works which address the optimization of the wireless charging
process instead of simply optimizing the power transference focus on scheduling wireless
nodes in wireless sensor networks. In short, those works address the optimization of the
temporal-series of the battery charges by selecting sub-networks to be prioritized at each
time-interval. Zhao et al. [2020], for instance, schedules the charging processes along
the local sub-networks by controlling the path of a mobile agent with a SIMO wireless
transmitter.

Analogously, Lin et al. [2019] aim at maximizing the delivered charge in a SIMO
system with a mobile transmitter. They use a drone with a power transceiver to travel
between energy-transmitting bases and the rechargeable wireless sensors in a 3D land-
scape. They prove the problem of scheduling the position of the drone for maximizing
the delivered charge with discrete space and time as being NP-hard and provide a greedy
heuristic to solve it.

Unlike these works, we consider a MIMO setup, which allows beamforming and
enables the transmitting-voltages to be used as decision variables. Indeed, maximizing
the transferred power with a single transmitter is a polynomial problem and might be
solved by the method described in Section 5.2.

2.3 Wireless Energy Distribution

Some works focused on the distribution of energy across populations of energy transceiver
devices. Most works abstracted the WPT method and focused on optimizing the schedul-
ing of the devices to be charged. Nikoletseas et al. [2017] showed that the energy balance
between a population of power transceiver devices can be obtained by following an op-
portunistic strategy. The proposed algorithm analyzes each moment when two devices
establish a feasible link for the power transfer and dynamically decides if the transfer will
be effectively performed or not. The algorithm was validated via probabilistic simulations
that assume a constant energy loss for each transfer.

Madhja et al. [2016], in turn, describe a protocol from which the network self-
organizes using a star topology in which the central node concentrates half of the available
energy. Again, the proposed algorithm was validated via simple probabilistic simulations,
although these, different from Nikoletseas et al. [2017], allow variable energy losses ac-
cording to the link quality. Finally, Madhja et al. [2018] describe distributed algorithms
that aim to organize the population into spanning trees where parents have at least twice
the charge of their children. Their objective, in short, is to reduce the number of times
the users have to manually charge their device. They also obtained their results through
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simulations, since the authors do not admit limits for the capacity of the batteries and,
therefore, the real-world implementation is impracticable.

The Dynamic Wireless Power Transfer (DWPT), addressed by Bi et al. [2019], en-
ables charging-while-driving and offers opportunities for eliminating range anxiety, stim-
ulating market penetration of electric vehicles (EVs), and enhancing the sustainability
performance of electrified transportation. The paper focuses on infrastructure issues and
employs genetic algorithms to optimize the DWPT deployment encompassing two dimen-
sions: (i) a spatial dimension, i.e., where to deploy DWPT; and (ii) a temporal dimension,
i.e., when to deploy DWPT, considering the EV market boosting.

As a wireless energy distribution technology, this work differs from its predecessors
for (i) admitting charge limits within each battery can operate, (ii) considering bases
dedicated to power transmission, and (iii) aiming, under ideal conditions, that users do
not have to worry about the explicit charging of their devices and, therefore, the power
sourcing of their devices be truly ubiquitous.
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Chapter 3

Preliminary Concepts

The mathematical modeling employed in this work is widespread along with the state-of-
the-art works, such as Jadidian and Katabi [2014], Shi et al. [2015], Cao et al. [2018], and
Jung and Lee [2019]. All the aforementioned works use active/passive Resistor-Inductor-
Capacitor (RLC) rings as building blocks for the IPT systems.

3.1 Hardware Summary

The transmission unity (Figure 3.1) is a set of na transmitting devices connected by a
single controller. The controller is connected to a transceiver and each transmitting device
is composed of a PWM/DC converter, a square-wave converter, and an RLC circuit in
series with a digital ammeter. The controller must be able to read the absolute value
of the current ‖ik‖ of each active RLC circuit and its phase φk. Thus, the current in
phasor notation is given by ik = ‖ik‖ cosφk +

√
−1 · ‖ik‖ sinφk. The controller also must

control the amplitude of the signal generated by each square-wave converter. The angular
frequency of all signals is ω.

Each passive device (Figure 3.2) is composed of a passive RLC circuit in series with
a digital ammeter. This ammeter is analogous to the ones in the transmitting part and
thus its value can be read by the controller in phasor form during the runtime. Unlike
the transmitting part, each passive device has its own controller and transceiver, which
can also be used by the powered device. The device can be a WSN mote, a cellphone,
or even a car. The passive device is also composed of an AC/DC converter, a battery
controller, and a rechargeable battery.
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Figure 3.1. Main modules of a generic transmission unity.

Figure 3.2. Main modules of a receiving device.

3.2 Notation

The notations used in this work are summarized in Table 3.1. The character � is employed
as a wildcard.

3.3 Physical Modeling

In terms of physical modeling, each set of PWM/DC converter and square-wave converter
can be approximated by an individual sinusoidal-wave generator [Chen et al., 2014], which
voltage is set by the controller in runtime. Thus, each transmitting device can be approx-
imated by an independent active AC RLC circuit. It is important to emphasize that
the total power consumed by the system cannot exceed the maximum supported by the
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Table 3.1. Summary of notations used in this work.

Notation Meaning

�+ the Moore-Penrose matrix inverse of �

I the identity matrix. Its size is determined by the context
~1 A vector in which every entry is equal to 1. Its size is determined by

the context
~0 A retracted form for 0 ·~1
~� A column vector

�k The k-th element of ~�
~�a The sub-vector of ~� which refers to the active circuits

~�p The same for passive circuits. In short, ~� =
[
(~�a)T (~�p)T

]T
�̂ The maximum acceptable value of �

� The minimum acceptable value of �

‖�‖ The element-wise euclidean norm of �

� ◦ 4 The Hadamard (element-wise) product between � and 4

��4 The Hadamard (element-wise) division between � and 4

diag(~�) The diagonal matrix whose main diagonal is equal to ~�

Re(�) Real part of �

Im(�) Imaginary part of � without the imaginary unity.
(Im(�) = −

√
−1(�−Re(�)))

max{~�; ~4} Vector where the k-th position is max{�k;4k}

min{~�; ~4} Vector where the k-th position is min{�k;4k}

�−1() Inverse function
~�() Vector function

�<,�> Limits for a interval such that �< ≤ � ≤ �>

source.
Let < ~v(t),~i(t), Z(t) > be the state of a reciprocal n-port WPT system [Monti et al.,

2017] using magnetic resonance at the moment t. ~v(t) is a column vector containing the
source voltages of each device in phasor notation, which can be defined as ~v(t) ∈ Rn,
if we assume that all voltages are always in phase. ~i(t) is a column vector containing
the current across each device also in phasor notation and Z(t) is the square impedance
matrix, in such a way that ~v(t) = Z(t)~i(t). Assuming Z(t) always invertible, we can also
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Table 3.2. Summary of symbols which meaning keeps the same regardless the
section.

Symbol Meaning

~v(t) Phasor voltage vector at moment t (AC).
~i(t) Phasor current vector at moment t (AC).
~id(t) Discharge current vector at moment t (DC).

na Number of active devices

np Number of passive devices

ZT Transmitting impedance matrix

ZR Receiving impedance matrix

M Coupling matrix between each receiver and each transmitter

ω Operational angular frequency

~q(t) Battery-charge vector
~R(~q) Equivalent-resistance vector values if the charges are equal to ~q

~C(
∥∥∥~ip∥∥∥) Direct-current values after the conversion of the receiving currents ~ip

∆t · ~η(~j) Charge variation if the input DC currents are ~j

Z(t) See Equation 3.7

write the following.
~i(t) = Z(t)−1~v(t) (3.1)

The order of the voltage values and current values inside ~v and ~i may be arbitrary,
requiring only that vk(t) and ik(t) correspond to the same device for all t. Thus, to
simplify the equations, we assume that the first na positions of each vector correspond
to the transmitting devices and the last np correspond to the receivers. Thus, all the na
transmitting devices form the transmission unity and each one of the np receiving devices
is a passive device, both described in Section 3.1

The source voltages of the receivers are always equal to zero because they are passive
from the point of view of WPT and therefore do not have a voltage source. Thus, the
voltage values associated with the transmitters are the only directly controllable ones.
Table 3.2 summarizes the main variables used for mathematical modeling.

The matrix Z(t) abstracts environment parameters, such as the position and ori-
entation of the coils, and internal parameters, such as the resistance of each circuit and
the equivalent resistance of each battery [Chen et al., 2014]. Each parameter varies
relatively slow compared to a computer clock rate or even compared to the human per-
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ception because they depend mainly on the handling of the coils and the charging of
the batteries, which are both slow processes. Thus, one might perform a set of m sam-
ples

{[
~v(t1),~i(t1)

]
;
[
~v(t2),~i(t2)

]
; ... ;

[
~v(tm),~i(tm)

]}
with a small-time variation between

them and then approximate all the corresponding impedance matrices Z(t) to a single
matrix Z. Using that approximation, the states of the m moments are related as in
Equation 3.2.

[~v(t1) ~v(t2) ... ~v(tm)] = Z[~i(t1) ~i(t2) ... ~i(tm)] (3.2)

The formulas and meanings for different interpretations of electric power used in
this work are from the IEEE Standard Definitions for the Measurement of Electric Power
Quantities Under Sinusoidal, Non-sinusoidal, Balanced, or Unbalanced Conditions [IEEE,
2010]. Thus, the active power refers to the power effectively dissipated by the system,
and its definition for a given moment t is shown in Equation 3.3.

ρact(t) = Re(~i(t)∗ ~v(t)) (3.3)

All coupled circuits are simple RLC and therefore the Z(t) matrix can be block-wise
defined as in Equation 3.4. The matrices ZT (t) ∈ Cna×na and ZR(t) ∈ Cnp×np carry the
impedance of the transmitting and receiving setups, respectively. The real parts of both
are non-negative diagonal matrices, while the imaginary parts are symmetric matrices.
M(t) ∈ Cnp×na , in turn, is the coupling matrix between both setups and is defined as
M(t) = −

√
−1ωM, whereM∈ Rnp×na consists of the mutual inductances between each

pair of active/passive circuits.[
~va(t)

~0

]
= Z(t)

[
~ia(t)

~ip(t)

]
=

[
ZT (t) M(t)T

M(t) ZR(t)

][
~ia(t)

~ip(t)

]
(3.4)

Applying block-wise multiplication on Equation 3.4, the following is obtained.{
~va(t) = ZT (t) ~ia(t) +M(t)T ~ip(t)

M(t) ~ia(t) = −ZR(t) ~ip(t)
(3.5)

Let λ ∈ Cna . Then the second equality in Equation 3.5 matches one of the following
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cases.

~ia(t) =


−M(t)−1 ZR(t) ~ip(t), det(M(t)) 6= 0

−(M(t)∗ M(t))−1 M(t)∗ ZR(t) ~ip(t), det(M(t)∗ M(t)) 6= 0

−M(t)+ ZR(t) ~ip(t) +
(
I −M(t)+ M(t)

)
λ, M(t)M(t)+ ZR(t) ~ip(t) = ZR(t) ~ip(t)

(3.6)
Each passive circuit has a power consumption device that can be approximated to

a variable resistor for simplification purposes [Chen et al., 2014]. We assume that each
device k has a battery whose charge qk(t) is the only significant variable for determining
the equivalent resistance at moment t. Thus, let us define Rk(qk(t)) : R≥0 −→ R, that is,
the monotonically increasing function of the equivalent resistance of the k-th device given
its charge is equal to qk(t). Thus, ZR(t) can be expanded as in Equation 3.7, considering
Z the part of ZR(t) that is independent regarding ~q(t).

ZR(t) = Z + diag
(
~R(~q(t))

)
(3.7)

The charges of the batteries depend on the euclidean norm of the receiving current
‖ipk(t)‖ of the device over time, the discharge current idk(t) over time, and the conversion
efficiency. The conversion efficiency is not constant regarding the input current and limits
the range of current values for which the charging is effective. For now, let us abstract
the function which converts the receiving current into direct-current for the k-th device at
moment t using the monotonically increasing function Ck(x) : R≥0 −→ R≥0. Furthermore,
let us also abstract the function which converts the direct-current into effective charge
variation for the k-th device at moment t using the also monotonically increasing function
ηk(x) : R −→ R.

Thus, the charge of the k-th battery at moment t is given by Equation 3.8.

qk(t) = qk(0) +

∫ t

0

ηk
(
Ck(‖ipk(τ)‖)− idk(τ)

)
dτ (3.8)

Equation 3.8 can be approximated by discretizing the time interval into homoge-
neous slots of ∆t units of time. Let us consider the electric current and other time-variant
parameters as constants inside each slot. Thus, the charging integral can be approximated
using the composite trapezoidal rule as follows.

qk(t) ≈ ∆t

t/∆t−1∑
τ=1

{
ηk
(
Ck(‖ipk(∆t · τ)‖)− idk(τ)

)}
+ ∆t

2

{
ηk
(
Ck(‖ipk(0)‖)− idk(0)

)
+ ηk

(
Ck(‖ipk(t)‖)− i

d
k(t)
)}
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The formula for the approximated charge variation within a single time-slot of ∆t

units of time is shown in Equation 3.9. Consider the time-slot being represented by a
sequential indexing τ ∈ N where τ = 0 corresponds to the initial state.

qk(τ)− qk(τ − 1) ≈ ∆t
{
ηk
(
Ck(‖ipk(τ)‖)− idk(τ)

)}
(3.9)

Since both C and η functions are monotonically increasing, they admit eventual
sub-domains where the functions are constant. Thus, the inverse functions C−1 and η−1

are not guaranteed to be possible. Instead, one might define functions C−1
< , C−1

> , η−1
< ,

and η−1
> such that

C(x) = y ⇐⇒ C−1
< (y) ≤ x ≤ C−1

> (y)

η(x) = y ⇐⇒ η−1
< (y) ≤ x ≤ η−1

> (y)

Notice that the referred intervals are convex since the functions are monotonically
increasing. Besides that, if x does not belong to a constant sub-domain, the limits for the
corresponding interval will be coincident.

3.4 Discretization

For practical reasons, the charge of each device is considered to be discrete. Thus, the
charge of the k-th device is lower-bounded by q

k
and upper-bounded by q̂k with s − 1

uniformly-distributed intermediate states. It is notable that in nature the electrical charge
is, in fact, a discrete quantity based on the charge of a single electron. However, this
elementary charge is small enough to allow its representation as a continuous quantity
(≈ 1.6 × 10−19 C). In short, we consider s ∈ N | s > 1 as being one of the parameters of
the problems and q

k
< qk ≤ q̂k as being the feasible charge interval of the k-th device.

Equation 3.10 describes a surjective and non-injective vector function which maps
each possible charge vector into a natural vector ~d ∈ Nnp , where 0 ≤ di < s ∀ i.

~d =
⌈
s · (~q − ~q)� (~̂q − ~q)

⌉
(3.10)

Equations 3.11 and 3.12, in turn, provide a lower bound ~q< and an upper bound ~q>
to the ~q vectors which map into a determined ~d. Moreover, ~q< < ~q ≤ ~q> if and only if ~q
maps into the corresponding ~d.

~q< = ~q +
1

s
· ~d ◦ (~̂q − ~q) (3.11)
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~q> = ~q +
1

s
· (~d+~1) ◦ (~̂q − ~q) (3.12)

Thus, vectors ~q< and ~q> determine a polytope in Rnp space, whose center is placed
in 1

2
(~q< + ~q>). In this work, we admit two charge vectors to be the same if they

belong to the same polytope. For the algorithms described in Chapter 5, the polytope
might be represented by its center or by the first charge vector found inside its domain.
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Chapter 4

Problem Formulations

We propose here two problems that can be directly applied to Wireless Power Charging
using magnetic induction. The previous works [Shi et al., 2015; Cao et al., 2018] focused
on optimizing only the power transference, which can be done without considering the
time component by using some resources like phasors. On the other hand, optimizing
the charging process includes several time-dependent parameters and functions, which
demands new and more complex modeling. Therefore, the proposed problems consist of
determining the time-evolution of the voltages across each transmitting coil to minimize
the time for which the charges of all batteries exceed a given threshold (Minimum-Time
MIMO Charging Problem) or to maximize the time-horizon in which all nodes remain
online (No-Starvation MIMO Charging Problem). We consider the omniscient versions of
the problems, which means that every system parameter (all resistance values, couplings
between each pair of coils, etc.) are known at each moment.

4.1 Minimum-Time MIMO Charging Problem

This problem applies to networks where there is no guarantee of the receivers being
reachable from the transmitters for a long time, so the best approach is to recharge them
as soon as possible. The decision variables for this optimization problem are the functions
vk(τ) : R≥0 −→ R, which map the phasor-notation voltage across the k-th transmitting coil
to each moment τ . Since we admit that all voltages are in phase, they are represented
by real values instead of complex numbers. The optimization version of the problem is
stated by Definition 4.1.1.

Definition 4.1.1. The Optimization Version of the Minimum-Time MIMO
Charging Problem consists of finding the voltage-vector time-series ~va(τ) : R≥0 −→ Rna

which solves Equation 4.1.
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min t

s.t. qk(t) ≥ Q
k
∀ 1 ≤ k ≤ np

qk(τ) ≥ q
k

∀ 0 ≤ τ ≤ t, 1 ≤ k ≤ n

ρact(τ) ≤ ρ̂act ∀ 0 ≤ τ ≤ t

‖ik(τ)‖ ≤ îk ∀ 0 ≤ τ ≤ t, 1 ≤ k ≤ n

(4.1)

The first set of constraints in Equation 4.1 ensures all charges are over the minimum
acceptable threshold after the last time-slot. The charge progression is modeled by Equa-
tion 3.9 and depends on the receiving currents, current conversion function, discharge
currents, charging efficiency and the charges in the previous time-slot, starting from the
initial charges. The second one ensures the required discharge currents are always possi-
ble, and the device always has at least the minimal charge to stay operational. The third
one limits the active power, which is modeled by Equation 3.3, and the last one limits
the maximum amplitude of the electric currents. The voltages and currents are related
according to Equation 3.5, following a N-port network model where the resistances and in-
ductances are modeled in a impedance matrix. The charges and the receiving impedance
are related according to Equation 3.7. This optimization problem has a decision version,
which is summarized in Definition 4.1.2.

Definition 4.1.2. The Decision Version of the Minimum-Time MIMO Charging
Problem consists of deciding if there is a voltage-vector time-series ~va(τ) : R≥0 −→ Rna

for which the constraints in Equation 4.1 are respected considering t ≤ t̂ for a given
time-horizon t̂ ∈ R≥0.

4.2 No-Starvation MIMO Charging Problem

This problem applies to networks in which all nodes are restricted to a space that is
well-covered by a set of wireless transmitters. Thus, each node is reachable from the
transmitter set at any time. Better than complete the charging processes as soon as
possible, one might require that the nodes be operational for the longest possible time.
The No-Starvation MIMO Charging Problem consists of finding the voltage time-series
~va(t) : R≥0 −→ Rna which maximizes the time-horizon t in which all nodes remain alive.
This problem formulation is suitable for use cases involving house automation, mobile
devices under indoor situations, electrical vehicles, and more. The optimization version
of the problem is stated by Definition 4.2.1.



40

Definition 4.2.1. The Optimization Version of the No-Starvation MIMO
Charging Problem consists of finding a voltage-vector time-series ~va(τ) : R≥0 −→ Rna

which solves Equation 4.2.

max t

s.t. qk(τ) ≥ q
k

∀ 0 ≤ τ ≤ t, 1 ≤ k ≤ n

ρact(τ) ≤ ρ̂act ∀ 0 ≤ τ ≤ t

‖ik(τ)‖ ≤ îk ∀ 0 ≤ τ ≤ t, 1 ≤ k ≤ n

(4.2)

A valid voltage time-series is such that, for all time-slots from 1 to t, (i) all devices
have at least the minimal charges to stay operational, (ii) the consumed power never
exceeds the given limit according to Equation 3.3, and (iii) the amplitude of the currents
never exceed the given limit. Analogously to the Minimum-Time MIMO Charging Prob-
lem, the voltages and currents are related according to Equation 3.5 and the charges and
the receiving impedance are related according to Equation 3.7. The decision version of
the problem is formally described by Definition 4.2.2.

Definition 4.2.2. The Decision Version of the No-Starvation MIMO Charging
Problem consists of deciding if there is a voltage-vector time-series ~va(τ) : R≥0 −→ Rna

which respects all constraints from Equation 4.2 considering a time-horizon of t̂ ∈ N of
time-slots.

4.3 Time Complexity

This section proves the problems from Definitions 4.1.2 and 4.2.2 as being in NP-Hard.
For that, we first prove an auxiliary problem as being in NP-Hard, and then we show that
both problems can be used to solve any instance of it by setting some polynomial-size
parameters.

Definition 4.3.1. The well-known NP-Complete 0-1 Knapsack Problem can be for-
mulated as follows. Given a real prize vector ~p and a real weight vector ~w, decide if there
is ~x such that ~pt~x ≥ p, ~wt~x ≤ ŵ and xk ∈ {0, 1} ∀ k.

Definition 4.3.2. The Auxiliary Problem can be formulated as follows. Let ~d be a
real vector and A be a real matrix with one or two rows, such that the rows are linearly
independent. Decide if there is ~z such that −~d ≤ A~z ≤ ~d and zk ∈ {−1, 1} ∀ k.
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Lemma 4.3.3. Let ~d be a real vector and A be a real matrix. The sandwich inequality

−~d ≤ A

[
1

~y

]
≤ ~d | yi ∈ {−1, 1} ∀ i

has a solution if and only if

−~d ≤ A~z ≤ ~d | zi ∈ {−1, 1} ∀ i

is solvable. In other words, the second inequality has a solution if and only if it has a
solution where z1 = 1.

Proof. Suppose there is a certain ~y which solves the first inequality. ~z =

[
1

~y

]
is a trivially

valid solution for the second inequality. Now suppose there is a valid ~z which solves the
second inequality. If z1 is 1, ~y = {zi | i ≥ 2} is trivially a valid solution for the first
inequality. Otherwise, ~y = {−zi | i ≥ 2} is a valid solution for the first inequality, since
−~z is also a valid solution for the second inequality. Indeed, −~d ≤ A~z ≤ ~d is equivalent
to (−1)− ~d ≥ (−1)A~z ≥ (−1)~d and, consequently, to −~d ≤ A((−1)~z) ≤ ~d.

Lemma 4.3.4. The 0-1 Knapsack Problem (Definition 4.3.1) can be polynomially
reduced to the Auxiliary Problem (Definition 4.3.2).

Proof. There are two mutually disjoint cases.

1. ~p and ~w are linearly dependent. So, there is K ∈ R such that ~p = −K~w.
If K ≥ 0, the knapsack formulation ~pt~x ≥ p ∧ ~wt~x ≤ ŵ is equivalent to ~wt~x ≤
− 1
K
p ∧ ~wt~x ≤ ŵ and, therefore, to

~wt~x ≤ min(− 1
K
p; ŵ)

In short, ifK ≥ 0, there is a valid solution if and only if ~wt~x′ ≤ min(− 1
K
p; ŵ), where

x′i = 0 if wi > 0 and x′i = 1 otherwise. This test can be computed in polynomial-
time regarding the size of ~x and, therefore, the polynomial reduction towards this
sub-problem is trivial.

If K < 0, in turn, ~pt~x ≥ p ∧ ~wt~x ≤ ŵ is equivalent to − 1
K
p ≤ ~wt~x ≤ ŵ. By adding

1
2K
p − 1

2
ŵ to both sides and substituting ~x = 1

2
~y + 1

2
, the following inequality is

obtained.

−
(

1

2
ŵ +

1

2K
p

)
≤ 1

2
~wt~y +

1

2
~wt~1 +

1

2K
p− 1

2
ŵ ≤

(
1

2
ŵ +

1

2K
p

)
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The expression is equivalent to

−
(

1

2
ŵ +

1

2K
p

)
≤
[

1

2
~wt~1 +

1

2K
p− 1

2
ŵ;

1

2
~wt
][

1

~y

]
≤
(

1

2
ŵ +

1

2K
p

)
which can be solved by any algorithm that solves

−~d ≤ A

[
1

~y

]
≤ ~d | yi ∈ {−1, 1} ∀ i

2. ~p and ~w are linearly independent. Let us define

A =

[
−~pt

~wt

]
~b =

[
−p
ŵ

]
~β =

[
min~x {−~pt~x}
min~x {~wt~x}

]

Thus, the original inequalities can be rewritten as ~β ≤ A~x ≤ ~b, since ~β is a lower
bound of A~x. By adding −1

2
(~β +~b) to both sides and substituting ~x = 1

2
~y + 1

2
, the

following inequality is obtained.

−1

2
(~b− ~β) ≤

[
1

2
A~1− 1

2
(~β +~b);

1

2
A

][
1

~y

]
≤ 1

2
(~b− ~β)

Analogously to the previous item, it can be solved by any algorithm that solves

−~d ≤ A

[
1

~y

]
≤ ~d | yi ∈ {−1, 1} ∀ i

According to Lemma 4.3.3, any instance of

−~d ≤ A

[
1

~y

]
≤ ~d | yi ∈ {−1, 1} ∀ i

can be polynomially reduced to

−~d ≤ A~z ≤ ~d | zi ∈ {−1, 1} ∀ i

The A matrices in the enumerated cases are either a row vector or a matrix with two
linearly independent rows and, therefore, the 0-1 Knapsack Problem can be polynomially
reduced to the Auxiliary Problem.

Lemma 4.3.5. The Auxiliary Problem (Definition 4.3.2) is polynomially reducible to
the Minimum-Time MIMO Charging Problem (Definition 4.1.2).
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Proof. Let < ~d,A > be any instance of the Auxiliary Problem.
Let the instance of the decision version of the Minimum-Time MIMO Charging

Problem described below. The load resistances are constant regardless of the charges.
Notice that ~R(~q) being a constant function does not disrespect the requirement of being
monotonically increasing. Besides that, the time-horizon is composed of a single time-slot
with length equal to t̂. Furthermore, the discharge currents are zero and the current
conversion functions are such that ~η

(
~C
(∥∥∥~ip∥∥∥)) =

∥∥∥~ip∥∥∥. Let the charge thresholds ~q be
always zero. Therefore, this instance of the problem is equivalent to decide if there is ~va

such that 

qk(0) + t̂ · ‖ipk‖ ≥ Q
k
∀ 1 ≤ k ≤ np

ρact ≤ ρ̂act

‖iak‖ ≤ îak ∀ 1 ≤ k ≤ na

‖ipk‖ ≤ îpk ∀ 1 ≤ k ≤ np

Let ρ̂act = +∞. The power constraint becomes trivially satisfied and then the
system of inequalities is equivalent to

qk(0) + t̂ · ‖ipk‖ ≥ Q
k
∀ 1 ≤ k ≤ np

‖iak‖ ≤ îak ∀ 1 ≤ k ≤ na

‖ipk‖ ≤ îpk ∀ 1 ≤ k ≤ np

Let Q
k

= qk(0) + t̂ ∀ k. Let qk(0) < Q
k
∀ k. The duration t̂ of the time-horizon is

always positive, so for the first set of constraints to be satisfied, ‖ipk‖ must be at least 1.
If we set îpk = 1 ∀ k, in turn, the system is equivalent to Equation 4.3.{

‖iak‖ ≤ îak ∀ 1 ≤ k ≤ na

‖ipk‖ = 1 ∀ 1 ≤ k ≤ np
(4.3)

Let na = np = 1
2
n. Let the impedance matrices be defined as ZT = T +

√
−1U

and ZR =
√
−1S, where T is an arbitrary real-positive diagonal matrix – which is always

invertible –, S is an arbitrary symmetric real invertible matrix with all values in the main
diagonal equal to zero and U is such that U = −Im(M)tS−1Im(M). Notice that U is
symmetric since

−Im(M)tS−1Im(M) = −(Im(M)tS−1Im(M))t = −Im(M)t(S−1)tIm(M)

and S−1 is symmetric.
The M =

√
−1Υ−1 matrix and the values îak are constructed as follows.

• If A has a single row, the first line of Υ is equal to −AS−1 and the other lines are
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any set of rows in such a way that all lines are linearly independent and, therefore,
Υ is invertible. In this case, îa1 = d and îak = +∞, k 6= 1.

• If A has two linearly independent rows, the first two rows of Υ are equal to −AS−1

and the other rows are composed in order to Υ be invertible. This composition is
always possible since the first two rows are linearly independent. Indeed, if they
were linearly dependent the rows of A would be linearly dependent, which leads
to a contradiction. Analogously to the previous item, îa1 = d1, îa2 = d2 and îak =

+∞, k > 2.

M is invertible and, therefore, the first definition of Equation 3.6 can be used to
build a bijection which relates ~ia and ~ip, that is, ~ia = −M−1ZR~i

p. For the considered
values of M and ZR, the bijection is equivalent to ~ia = −ΥS~ip. Thus, from Equation 3.5,
it follows that

~va = ZT~i
a +MT~ip = (−TΥS −

√
−1UΥS +

√
−1(Υ−1)T )~ip

Substituting U = −Im(M)tS−1Im(M) = (Υ−1)tS−1Υ−1, the following is obtained

~va = −TΥS~ip

The function which relates ~va to ~ip is a bijection, since S, Υ, and T are invertible and,
therefore, the problem can be restructured in order to ~ip be the decision variable. Notice
that ~va, T , Υ, and S are real and so is ~ip. Thus, the restrictions ‖ipk‖ = 1 are equivalent
to ~ipk ∈ {−1, 1}np . Furthermore, −ΥS is also real and so is ~ia. So, the inequality system
is equivalent to

−~̂ia ≤ −ΥS~ip ≤ ~̂ia | ~ip ∈ {−1, 1}np

The first one or two rows of Υ are −AS−1, so the first one or two rows of −ΥS are
−(−AS−1)S = A. Therefore, the first one or two inequalities are equivalent to

−~d ≤ A~ip ≤ ~d | ~ip ∈ {−1, 1}np

As det(ΥS) 6= 0, the linear coefficients of the other inequalities are not all zero. So, the
other inequalities are trivially satisfied since the lower bounds are all −∞ and the upper
bounds are +∞.

In short, this instance of the Minimum-Time MIMO Charging Problem is equivalent
to a general instance < ~d,A > of the Auxiliary Problem. The reduction consists of defining
a polynomial-size set of parameters and each parameter is polynomial-sized regarding
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the number of devices in the system. Therefore, the Auxiliary Problem is polynomially
reducible to the Minimum-Time MIMO Charging Problem.

Theorem 4.3.6. The Minimum-Time MIMO Charging Problem (Definition 4.1.2)
is in NP-Hard.

Proof. The problem is NP-Hard because the 0-1 Knapsack Problem can be polynomially
reduced to it. Indeed, the 0-1 Knapsack Problem can be polynomially reduced to the Aux-
iliary Problem according to Lemma 4.3.4 and the Auxiliary Problem can be polynomially
reduced to the Minimum-Time MIMO Charging Problem according to Lemma 4.3.5.

Theorem 4.3.7. The No-Starvation MIMO Charging Problem (Definition 4.2.2)
is in NP-Hard.

Proof. The problem is in NP-Hard because the Auxiliary Problem can also be polyno-
mially reduced to it in a way similar to the Minimum-Time MIMO Charging Problem
as follows. Let the instance of the decision version of the No-Starvation MIMO Charg-
ing Problem where the equivalent resistances are constant regarding the charges, the
maximum active power ρ̂ is such that ρ̂ = +∞ and the time-horizon is equal to a
single slot with length t̂. Besides that, the current conversion functions are such that
~η
(
~C
(∥∥∥~ip∥∥∥)−~id) =

∥∥∥~ip∥∥∥−~id. Thus, the instance is equivalent to deciding if there is ~va

such that the current amplitudes do not exceed the maximum limit and the charges at
the end of the slot allow the devices to stay operational. In short,

qk(0) + t̂ ·
(
‖ipk‖ − i

d
k

)
≥ q

k
∀ 1 ≤ k ≤ np

‖iak‖ ≤ îak ∀ 1 ≤ k ≤ na

‖ipk‖ ≤ îpk ∀ 1 ≤ k ≤ np

After some algebraic manipulations, the system can be rewritten as
‖ipk‖ ≥ idk +

(
q
k
− qk(0)

)
t̂

∀ 1 ≤ k ≤ np

‖iak‖ ≤ îak ∀ 1 ≤ k ≤ na

‖ipk‖ ≤ îpk ∀ 1 ≤ k ≤ np

Assume that ~q(0) ≥ ~q – otherwise, the problem would be trivially unsolvable. Let the
discharge currents be such that

idk = 1 +
qk(0)− q

k

t̂
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Notice that they are valid, since they are real and positive as ~q(0) − ~q ≥ 0 and t̂ ≥ 0.
Substituting in the system of equations, it follows that

‖ipk‖ ≥ 1 ∀ 1 ≤ k ≤ np

‖iak‖ ≤ îak ∀ 1 ≤ k ≤ na

‖ipk‖ ≤ îpk ∀ 1 ≤ k ≤ np

If we set îpk = 1 ∀ k, the system is equivalent to Equation 4.3. As demonstrated by the
proof of the Lemma 4.3.5, an algorithm which solves that system of equations can also
be used to solve a generic instance of the Auxiliary Problem.

Corollary 4.3.7.1. Deciding if ~q ∈ Fτ is reachable from ~q′ ∈ Fτ−1 is NP-Complete.

Proof. This problem can be summarized as deciding if there is ~va for which

q′k + ∆t · Ck
(
ηk (‖ipk‖)− i

d
k

)
= qk ∀ 1 ≤ k ≤ np

ρact(τ) ≤ ρ̂act

‖iak(τ)‖ ≤ îak ∀ 1 ≤ k ≤ na

‖ipk(τ)‖ ≤ îpk ∀ 1 ≤ k ≤ np

Let ∆t = 1, ρ̂act = ∞, îpk = ∞ ∀ k, idk = 0 ∀ k, q′k = 0 ∀ k, qk = 1 ∀ k, Ck(x) = x ∀ k,
and ηk(x) = x ∀ k. This instance of the problem is equivalent to decide if there is a
voltage vector for which {

‖ipk(τ)‖ = 1 ∀ 1 ≤ k ≤ np

‖iak(τ)‖ ≤ îak ∀ 1 ≤ k ≤ na

This system is equivalent to Equation 4.3 and, as demonstrated by the proof of the
Lemma 4.3.5, an algorithm which solves that system of equations can also be used to
solve a generic instance of the Auxiliary Problem. Thus, this problem is Np-Hard. Since
a given voltage-vector can be verified in polynomial-time – notice that this time we have
a single time-slot to check – the problem is NP and therefore it is NP-Complete.

4.4 The greedy approach for the optimization version

The greedy approach consists of applying the voltages which maximize the sum of the
charging currents at each instant. Similar methods are employed by MagMIMO [Jadidian
and Katabi, 2014], by MultiSpot [Shi et al., 2015] and by Cao et al. [2018]. So, for each
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moment t, the method applies the voltage ~va calculated as in Equation 4.4.

~va = arg max
{∑np

j=1 ηj
(
Cj
(∥∥ipj∥∥))}

s.t. ρact(τ) ≤ ρ̂act ∀ 0 ≤ τ ≤ t

‖ik(t)‖ ≤ îk ∀ 0 ≤ τ ≤ t, 1 ≤ k ≤ n

(4.4)

Although simple, the greedy approach has no guarantees of optimality. Let us consider a
system with two transmitting coils and two charging devices. The impedance sub-matrices
are defined as follows.

ZT =

[
1 0

0 1

]
, ZR =

[
1 −10

√
−1

−10
√
−1 3

]
, M =

[
−10
√
−1 −5

√
−1

−1
√
−1 −5

√
−1

]

Assume the receiving device with 1 Ω static resistance is Device A and the one with
3 Ω is Device B. Device B needs at least 875 mA to charge, while Device A has
no requirements. Besides the eventual lower bound, both devices convert the receiving
current to charging current with total efficiency. The maximum amplitude for the currents
is set as infinity, while the maximum allowed active power is 10 W. For both devices,
R(q) = q and the battery capacity is 10 units of charge. The discharge currents are
always zero.
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Figure 4.1. Time progression of the charges.

The example is constructed in such a way that Device A acts as a waveguide to
Device B, that is, the current induced from coil A to coil B is quite significant to the
total receiving current of B. Furthermore, when Device A finishes charging, the load
resistance is large enough for the waveguide to be interrupted. In this case, the receiving
current of Device B drops below 875 mA and its charging is also interrupted. Like the
load resistance of A, the load resistance of B does not change anymore, since it depends
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only on its charge. So, the system turns stationary and, therefore, Device B will never
finish charging.

Figure 4.1 compares the outcomes when the greedy approach is employed and when
a single transmitting coil is excited at a time. The integration step is 0.01 units of time
and both simulations last for 20 units of time. Under the greedy approach, Device A
finishes charging too soon, so Device B cannot finish charging. Despite being naive, the
other approach successfully finishes both charging processes, sinceDevice B is completely
prioritized at the beginning of the simulation. The transmitting coil with higher coupling
to coil B is excited with full power until 5 units of time and, after that, the other coil
receives full power. As a result, Device B finishes charging before Device A and,
therefore, it is contemplated with waveguiding for the whole process.

4.5 The Exact solution

This section describes a gadget for solving both the optimization version of the Minimum-
Time MIMO Charging Problem and the decision version of the No-Starvation MIMO
Charging Problem. We focused on the decision version of the No-Starvation MIMO Charg-
ing Problem instead of the optimization version because it might have an infinite-sized
solution, which is impossible to compute since the problem formulation states that each
time-slot has independent parameters. Thus, it would be necessary to compute each
voltage vector of the infinite time-series. The decision version, on the other hand, has a
fixed-size time horizon.

From a practical point of view, this decision makes the timeline have to be divided
into time horizons, each one being an instance of the No-Starvation MIMO Charg-
ing Problem. Therefore, the algorithms described here introduce a new constraint to
guarantee that the batteries at the end of a time horizon have enough charge to survive
the next one. Otherwise, a device might be at imminent disconnection when the next
time-horizon starts. Thus, the charge vector ~q(t̂) in the last time-slot must be such that
~q(t̂) ≥ ~Q for ~Q ∈ Rnp

≥0.
First, we get a method for deciding if a given instance is solvable using exactly t ∈ N

time-slots. Moreover, the method determines a sequence of voltage-vectors whereby the
instance is solved. The asymptotic complexity of these methods is linear regarding the
number of time-slots, which represents an enormous advantage. Indeed, the number of
time-slots must be very large for the discrete approximation of the charge integral to be
accurate.

Definition 4.5.1. Given an instance of the Minimum-Time MIMO Charging
Problem/No-Starvation MIMO Charging Problem, ~q1 is reachable from ~q0 at time
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τ if and only if there is at least a feasible voltage-vector ~va(τ) for which ~q(τ) = ~q1 given
~q(τ − 1) = ~q0.

Definition 4.5.2. Given a set Q of charge-vectors and a time-slot τ from a determined
instance of the Minimum-Time MIMO Charging Problem/No-Starvation MIMO Charging
Problem, the charge-vector ~q1 is a Feasible Future Charge-Vector (FFCV) at time τ
if and only if there is at least one charge-vector ~q0 ∈ Q such that ~q1 is reachable from ~q0

at time τ .

Definition 4.5.3. Given a set Q of charge-vectors and a time-slot τ from a determined
instance of the Minimum-Time MIMO Charging Problem/No-Starvation MIMO Charging
Problem, the Feasible Future F(Q | τ) of Q given τ is the set of all FFCV of Q at τ .

Definition 4.5.4. Given an instance of the Minimum-Time MIMO Charging
Problem/No-Starvation MIMO Charging Problem, the j-th Feasible Future Fj is re-
cursively defined as follows. {

F0 = {~q(0)}

Fj = F(Fj−1 | j)

Lemma 4.5.5. The j-th Feasibility Future is equivalent to the set of all charge-vectors
reachable from ~q(0) within exactly j time-slots.

Proof. We divide the proof into (1) all elements in Fj are reachable from ~q(0) within
exactly j time-slots and (2) the elements in Fj are the only reachable ones starting from
~q(0) and using exactly j time-slots.

1. Using mathematical induction. Base case: F0 is ~q(0) by definition, which is trivially
the only vector reachable from itself without any step. Induction step: Suppose
Fj−1 is the set of all charge-vectors reachable from ~q(0) within j − 1 time-slots.
Fj = F(Fj−1 | j), so Fj is the set of all charge-vectors reachable from at least one
element from Fj−1 at time j. Thus, the elements in Fj are reachable from ~q(0) by
turning ~q(0) into the corresponding element from Fj−1 using t − 1 time-slots and
then into the corresponding element from Fj using slot j. Therefore, each element
in Fj is reachable from ~q(0) using exactly (j − 1) + 1 = j time-slots.

2. Proof by contradiction. Suppose ~q′ such that ~q′ /∈ Fj and ~q′ is reachable from ~q(0)

using exactly j time-slots. Thus, there is a feasible voltage time-series ~va(τ) for
0 < τ ≤ j which turns ~q(0) into ~q′ using j time-slots and a charge time-series ~q′(τ)

where ~q′(0) = ~q(0) and ~q′(j) = ~q′. Using mathematical induction, it is possible to
demonstrate that ~q′(τ) ∈ Fτ ∀ 0 ≤ τ ≤ j as follows.
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Base case: ~q′(0) = ~q(0) is trivially reachable from ~q(0) without any time-slot.
Induction step: Suppose ~q′(τ−1) ∈ Fτ−1. ~q′(τ) is reachable from ~q′(τ−1) at time
τ since ~va(τ) is feasible for all 0 < τ ≤ j by hypothesis. Thus, ~q′(τ) ∈ F(Fτ−1 | τ),
which is equivalent to ~q′(τ) ∈ Fτ .

In short, ~q′(τ) ∈ Fτ ∀ 0 ≤ τ ≤ j implies ~q′ ∈ Fj, which is a contradiction.

Theorem 4.5.6. A given instance of the No-Starvation MIMO Charging Problem is solv-
able in exactly t time-slots if and only if ∃ ~q′ ∈ Ft such that ~q′ ≥ ~Q.

Proof. According to Lemma 4.5.5, Ft is exactly the set of all charge-vectors reachable
from ~q(0) using exactly t time-slots. So, any vector from Ft is associated with at least
one voltage time-series which is feasible regarding maximum power, maximum current,
and minimal charge constraints for each time-slot. Thus, the solution associated with
any ~q′ ∈ Ft trivially satisfies all constraints but ~q(t) ≥ ~Q and, therefore, the solution is
feasible if and only if ~q′ ≥ ~Q.

Theorem 4.5.7. The optimization version of the Minimum-Time MIMO Charging Prob-
lem is equivalent to find the minimal τ ∈ N for which ∃ ~q′ ∈ Fτ such that ~q′ ≥ ~Q

Proof. Similarly to the proof of Theorem 4.5.6, the solution associated with any ~q′ ∈ Fτ
trivially satisfies all constraints but ~q(τ) ≥ ~Q and, therefore, the solution is feasible if
and only if ~q′ ≥ ~Q. By hypothesis, τ is the first time-slot with a feasible solution and,
therefore, the solution is minimal.

4.6 Graphical Interpretation of the Exact Solution

Figure 4.2 illustrates how Theorem 4.5.7 can be used to solve an instance of theMinimum-
Time MIMO Charging Problem. Let the large squares be the charge-vector space for each
time-slot. Let the small red squares in slot j be the vector sub-spaces which belong to
Fj. In other words, these squares are the ones whose charge-vectors are reachable from
vectors within red squares in the previous time-slot. Let the blue squares be the vector
sub-spaces whose charge-vectors surpass the threshold ~Q. The blue path runs through
feasible intermediate states and reaches a feasible final state whose charges exceed the
threshold. Each hop is associated with a voltage-vector which enables the previous state
to reach the actual state. Thus, the storage of these vectors allows finding the voltage
time-series that solves the problem.

Figure 4.3, in turn, illustrates how Theorem 4.5.6 can be used to solve an instance
of the No-Starvation MIMO Charging Problem. Notice that it works in a very similar way
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time-slot 1 time-slot 2 time-slot 3 time-slot 4initial

Figure 4.2. The Minimum-Time MIMO Charging Problem aims at finding the
fastest path to any valid final charge-vector.

as in Figure 4.2, although it does not stop enumerating the feasible futures after finding
the first charge-vector which exceeds the threshold. In exchange, it finds a path that runs
through feasible states within all time-slots in the time horizon until it finds a valid final
state in the last time-slot. Thus, the voltage time-series associated with the blue path
ensures the no-starvation of the devices throughout the whole time window.

time-slot 1 time-slot 2 time-slot 3 time-slot 4initial

final time-slot time-slot 5

Figure 4.3. The No-Starvation MIMO Charging Problem aims at finding a path to
any valid final charge-vector within the last time-slot.
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Chapter 5

Proposed Algorithms

5.1 Overview

This chapter describes algorithms for solving the problems proposed in Chapter 4. It first
introduces two methods used to populate the feasible futures (Definition 4.5.4). Then it
describes the proposed algorithms themselves. Next, it analyzes the asymptotic complex-
ity of those and, finally, it discusses the parameter acquisition in a real-life system.

Strictly speaking, all of the algorithms described here are heuristics. Despite that,
the algorithms from Section 5.4.1 approach the exact method from Chapter 4, differing
only in that they do not necessarily fully populate the feasible futures for reasons of
efficiency. All those algorithms can be used to solve both problems, with the only dif-
ference being the stop condition. For the Minimum-Time MIMO Charging Problem, the
algorithms must stop populating the feasible futures as soon as they find an acceptable
finishing state. For the No-Starvation MIMO Charging Problem, in turn, they must pop-
ulate all feasible futures within the time horizon and then evaluate if the last feasible
future has at least an acceptable finishing state.

The simplified generic algorithm for the No-Starvation MIMO Charging Problem is
summarized in Algorithm 1. It is based on Theorem 4.5.6, which allows the expansion of
the feasible future states through the time-slots parting form a determined initial state
using a dynamic-programming strategy. The feasible futures are represented as hash-
based sets of points in Rnp , which will be mentioned hereinafter as point clouds. Each
state vector ~q in a point cloud Fτ is related to a previous state vector ~q0 ∈ Rnp in Fτ−1 and
also to a voltage vector ~va ∈ Rna such that ~q is reachable from ~q0 at time τ by applying
~va voltages into the active circuits.

The simplified generic algorithm for the Minimum-Time MIMO Charging Problem,
in turn, is summarized in Algorithm 2. It follows an idea very similar to that of Algo-
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Algorithm 1 Algorithm for the No-Starvation MIMO Charging Problem
t←− 0
Ft ←− {~q(0)}
S ←− ∅
while t ≤ maxt do
if Ft full or S = ∅ then
if Ft = ∅ then
return failure

else
t←− t+ 1
S ←− Ft−1

end if
else
~q′ ←− get any from S
S ←− S − {~q′}
Ft = Ft ∪ F({~q′} | t)

end if
end while
if ∃ ~q ∈ Fmaxt | q ≥ ~Q then
return Voltage sequence in F0..maxt starting from ~q

else
return failure

end if

Algorithm 2 Algorithm for the Minimum-Time MIMO Charging Problem
t←− 0
Ft ←− {~q(0)}
S ←− ∅
while @ ~q ∈ Ft | q ≥ ~Q do
if Ft full or S = ∅ then
if t ≥ maxt or Ft = ∅ then
return failure

else
t←− t+ 1
S ←− Ft−1

end if
else
~q′ ←− get any from S
S ←− S − {~q′}
Ft = Ft ∪ F({~q′} | t)

end if
end while
return Voltage sequence in F0..maxt starting from ~q
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rithm 1, except for the stop condition, as mentioned before. Both algorithms build the
final solution starting from the acceptable finishing state and then going way back to the
initial state, as described by Algorithm 3.

Algorithm 3 Voltage sequence in F0..t starting from ~q

if t = 0 then
return [ ]

else
~q′ ←− Ft.findQ0 ( ~q )
~va ←− Ft.findV ( ~q )
return [voltage sequence in F0..t−1 starting from ~q′, ~va]

end if

One might create the τ -th Feasible Future Fτ from the (τ − 1)-th Feasible Future
Fτ−1 by systematically testing the reachability between each polytope from Fτ−1 and each
one of the snp polytopes that may compose Fτ . Thus, for each ~q ∈ Fτ−1 and each candidate
~q′ for Fτ , the algorithm would search for a ~va which enables ~q′ to be reachable by ~q time
τ .

However, as demonstrated by Corollary 4.3.7.1, deciding if ~q(τ) is reachable from
~q(τ − 1) is NP-Complete. So, it is reasonable to assume that an algorithm that solves the
general case of the reachability problem belongs to Ω(2n) complexity class. Therefore, in
the worst case, the algorithm for populating the feasible features mentioned above would
perform a Ω(2n) operation O(snp) · snp = O(s2np) times.

Thus, the algorithms used in this work for building new feasible futures are based on
two different methods. The exploration method creates a set of feasible future charge-
vectors in Fτ using a ~q(τ−1) charge-vector and random voltage-vectors. The exploitation
method, in turn, searches for a ~va(τ) which enables ~q(τ) to be reachable from ~q(τ−1), just
like the aforementioned algorithm. Despite that, the exploitation is easier in the average
case because it starts searching from a quasi-optimal solution.

5.2 Exploration

This section describes a method for creating new feasible futures ~q(τ) from a given past
charge-vector ~q(τ − 1) and a random vector ~va where vaj ∼ U(−1, 1).

Let us define the voltage-vector ~v as ~v , k · ~v, where k ∈ R. The corresponding
current vector ~i given the Z impedance matrix is then ~i = k · Z−1 ~v. Furthermore,
the current of the j-th device is given by ij = k · (Z−1)j,• ~v and its absolute value by
‖ij‖ = ‖k‖ · ‖(Z−1)j,• ~v‖. Thus, the necessary and sufficient condition for ‖ij‖ to be
upper-limited by îj is shown in Equation 5.1.
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‖k‖ ≤ îj
‖(Z−1)j,• ~v‖

(5.1)

Similarly, one might define the active power in terms of ~v, so achieving

ρ = Re
(
(k · Z−1 ~v)∗ (k · ~v)

)
Rearranging the terms, it follows that

ρ = Re
(
k2 · ~v∗(Z−1)∗ ~v

)
And, since ~v and k are both real, the active current can be described as in Equa-

tion 5.2.

ρ = k2 ·Re
(
~vt(Z−1)∗ ~v

)
(5.2)

The necessary and sufficient condition for ρ to be upper-limited by ρ̂ is shown in
Equation 5.3.

‖k‖ ≤
√

ρ

Re
(
~vt(Z−1)∗ ~v

) (5.3)

According to Equation 3.9, the charging of the j-th device within a single slot τ is
described as follows.

qj(τ) = qj(τ − 1) + ∆t · ηj
(
Cj(
∥∥ipj(τ)

∥∥)− idj (τ)
)

To ensure that qj(τ) > q
j
,
∥∥ipj(τ)

∥∥ must be such that

ηj
(
Cj(
∥∥ipj(τ)

∥∥)− idj (τ)
)
>

1

∆t

(
q
j
− qj(τ − 1)

)
Notice that both η and C conversion functions are monotonically increasing and idj (τ)

is constant, so the necessary and sufficient condition for the minimum charge constraint
to be respected at device j and time-slot τ is given by

∥∥ipj(τ)
∥∥ > C−1

<

(
η−1
<

(
1

∆t

(
q
j
− qj(τ − 1)

))
+ idj (τ)

)
, xj

Moreover, a voltage vector ~v = k · ~v is feasible regarding the minimum charge
constraint for a device j and time-slot τ if and only if the inequality from Equation 5.4 is
respected.
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‖k‖ > xj∥∥(Z−1)(na+j),• ~v
∥∥ (5.4)

Thus, for a given voltage vector ~v = k · ~v to be feasible regarding all constraints, k
must be as described by Equation 5.5.

maxj

{
xj

‖(Z−1)j,• ~v‖

}
< ‖k‖ ≤ min

{√
ρ

Re
(
~vt(Z−1)∗ ~v

) ; minj

{
îj

‖(Z−1)j,• ~v‖

}}
(5.5)

In short, let (Z−1)R be the last np rows of Z−1 and ε be a small real positive scalar.
Any future state

~q(τ) = ~q(τ − 1) + ∆t · ~η
(
~C(
∥∥k′ · (Z−1)R~v

∥∥)−~id
)

where

k′ ∼ U

(
maxj

{
xj

‖(Z−1)j,• ~v‖

}
+ ε,min

{√
ρ

Re
(
~vt(Z−1)∗ ~v

) ; minj

{
îj

‖(Z−1)j,• ~v‖

}})

is feasible if and only if Equation 5.5 is valid.

5.3 Exploitation

The exploitation aims at finding a voltage vector ~va which enables a given state ~q(τ−1) to
reach ~q at time-slot τ . The algorithm admits knowledge about an initial solution ~va which
enables ~q(τ − 1) to reach ~q + ~ε at time-slot τ , where εk is a very small real value. Thus,
for ~q(τ − 1) to reach ~q, each receiving current

∥∥ipj∥∥ must be such that x<j ≤
∥∥ipj∥∥ ≤ x>j ,

where

x<j , C−1
<

(
η−1
<

(
1

∆t
(qj − qj(τ − 1))

)
+ idj (τ)

)

x>j , C−1
>

(
η−1
>

(
1

∆t
(qj − qj(τ − 1))

)
+ idj (τ)

)
Let ~i

p
be the receiving current vector corresponding to the initial solution ~va. The
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method chooses a target receiving current vector ~itarget such that
itargetj = x<j if

∥∥ipj∥∥ < x<j

itargetj =
∥∥ipj∥∥ if x<j ≤

∥∥ipj∥∥ ≤ x>j

itargetj = x>j if
∥∥ipj∥∥ > x>j

which respects the intervals for reaching ~q and is as close as possible to the initial solution.
Then, the problem to be solved is summarized as the following.

∥∥ipj∥∥ = itargetj ∀ 1 ≤ j ≤ np∥∥iaj∥∥ ≤ îj ∀ 1 ≤ j ≤ na

Re{(~ia)t~va} ≤ ρ

Let zj be the first na columns of the j-th row of Z−1. Let Z be the first na columns
of the first j rows of Z−1. Thus, ipj = zj~v

a and ~ia = Z~va. Moreover, the problem can be
rewritten as follows. Notice the use of slack variables in order to transform inequalities
into equations. 

(~va)t(zpj )
∗(zpj )~v

a = (itargetj )2 ∀ 1 ≤ j ≤ np

(~va)t(zaj )∗(zaj )~va + (saj )
2 = (̂ij)

2 ∀ 1 ≤ j ≤ na

Re{(~va)tZt~va}+ s2
ρ = ρ

All decision variables can be reorganized as a single vector ~x , [~va; sρ;~s
a]. Let

~uk , [0j−1, 1, 0na−j], that is, the vector where all na positions are zero except for the j-the
entry, which is one. For convenience, the following definitions are pertinent.

Aj ,

(zpj )
∗(zpj ) 0na

~0

0na 0na
~0

~0t ~0t 0

 Bj ,

(zaj )∗(zaj ) 0na
~0

0na diag(~uj) ~0

~0t ~0t 0

 C ,

Re{Z
t} 0na

~0

0na 0na
~0

~0t ~0t 1


Using the new definitions, the problem can be rewritten as

~xtAj~x− (itargetj )2 = fpj ∀ 1 ≤ j ≤ np

~xtBj~x− (̂ij)
2 = faj ∀ 1 ≤ j ≤ na

~xtC~x− ρ = fρ

For a given vector ~x to solve the problem, the residue vector ~f =
[
~fp; ~fa; ~fρ

]
must

be a zero vector. For the first solution, the slack variables are

sρ =

√
ρ−Re{(~i

a
)t~va}
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saj =

√
(̂iaj )

2 −
∥∥iaj∥∥2

)

and the residue vector is all zeros except by ~fp. The slack variables are guaranteed to be
real since the original solution ~va is feasible by definition.

The next solutions are calculated iteratively using the Pseudo-Inverse Newton-
Raphson method, which converges locally if the rank of the Jacobian matrix is con-
stant [Gatilov, 2014]. Since the initial solution is assumed to be quasi-optimal, these
conditions are assumed to be respected. The main formula is shown by Equation 5.6,
where J is the Jacobian of the system.

~x = ~x0 − J+ ~f (5.6)

Since all equations are bilateral-quadratic, the calculations for the Jacobian are quite
simple. The j-th row of the matrix is the transpose of the gradient of the j-th equation
~xtDj~x evaluated at ~x0. Thus, Jj• = (∇(~xtDj~x))t = ~xt(Dj +Dt

j).
Figure 5.3 shows the effectiveness of the described method for different magnitudes

of ~ε considering 1000 repetitions. The referred noise factor is the ratio between the
maximum magnitude of ~ε and the maximum value of ~q.

Figure 5.1. Failure ratio for different noise factors considering 10 and 100 maximum
number of iterations, respectively.

5.4 Algorithms

The algorithms below are all based on algorithms 1 and 2, which, in short, build sequen-
tially new feasible future sets at each time-slot based on the immediately preceding sets.
Therefore, the difference between the algorithms described in this section is basically how
they build the τ -th Feasible Future Fτ from the previous set Fτ−1.
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Moreover, each one of the algorithms described below can be used to solve both
problems. If they follow the processing flow defined by Algorithm 1, they will handle
instances of the No-Starvation MIMO Charging Problem. If they follow the processing
flow defined by Algorithm 2, in turn, they will handle instances of the Minimum-Time
MIMO Charging Problem.

The flag stopOnThresholdReached is set to true if the algorithm aims at solving an
instance of the Minimum-Time MIMO Charging Problem or if the actual time-slot is the
last one. Thus, there is no point in keeping the search after a valid final state is found.

5.4.1 Dynamic-Programming Algorithms

5.4.1.1 Simple Algorithm

This algorithm is entirely based on the exploration method and on a floating-point based
point cloud. The feasible future Fτ starts empty and then is filled using feasible charge
vectors generated from a random choice of ~q(τ −1) ∈ Fj−1 and a randomly sampled base-
voltage vector ~va. The algorithm stops filling the set when (i) it has a maximum number
of elements, (ii) a predefined time-to-leave reaches zero, or (iii) the last attempts using a
random previous-charge vector and a random base-voltage vector could not produce any
new feasible future state.

Let thr be the maximum acceptable number of consecutive failed attempts to pro-
duce a feasible new future state. Let ttl be the maximum number of attempts to produce
a new future state. Let ε be a very small real positive scalar. The Simple Algorithm is
summarized in Algorithm 4.

The execution flow is cascaded in three nested loops to allow the optimization of
space usage. For each previous-state chosen, an entire population of new states is gener-
ated. Therefore, all Fτ polytopes may be filled using a small number of previous states.
Moreover, the system can discard previous-states that did not generate new states in
Fτ . Indeed, they cannot be intermediate states between the first and the last time-slot.
Thus, if memory-space is scarce, the system may reduce memory usage using the follow-
ing procedure. All elements from Fτ−1 start signaled with false. When a previous-vector
is successful at generating a valid next state, it is signaled with true. Then, after Fτ is
ready, the system might create a new Fτ−1 with only the elements signaled with true.

5.4.1.2 Fly-Weight Algorithm

This algorithm is based on a fly-weight point cloud. Thus, the charge vectors and the
previous charge vectors are stored using their discretized versions to save memory usage.
In particular, this algorithm uses around 5 times less memory than the Simple algorithm.
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Algorithm 4 Feasible Future set generation for using the Simple Algorithm
Fj ←− ∅
while TTL1 > 0 and failures < thr and Fτ not full do
TTL1 ←− TTL1 − 1
(~q, ~d)←− any element of Fτ−1

while TTL2 > 0 and failures < thr and Fτ not full do
TTL2 ←− TTL2 − 1
Sample ~va where vj ∼ U(−1, 1)
Get (k<, k>) for (~q, ~va) using the exploration method
if k< + ε > k> then
failures←− failures+ 1

else
for k ←− k< + ε : k> do
~va ←− k · ~va
~q ←− the charge vector corresponding to ~va
if ~q /∈ Fτ then
Insert (~q /∈, ~va, ~d) into Fτ
failures←− 0

else
failures←− failures+ 1

end if
if returnIfThreholdReached and ~q ≥ ~̂Q then
return Fτ

end if
end for

end if
end while

end while
return Fτ

Therefore, the centroids are used as representants of the charge-vectors within the same
polytope, so that the error propagation along the time-slots is minimized.

Populating the fly-weight point cloud is similar to populating the floating-point
version using the Simple algorithm. However, each charge vector ~q generated from the
previous charge vector ~q0 is substituted by the centroid ~q′ of its polytope using the ex-
ploitation method. If the exploitation method fails to find a vector ~va which enables ~q0 to
reach ~q′, the new element is not inserted into Fτ and the attempt is counted as a failure.

5.4.1.3 Pareto Algorithm

This algorithm is also based on a floating-point point cloud but has two differences towards
the Simple Algorithm. The first difference is that at most one next state is inserted into
Fτ for each pair of base-voltage vector ~va and previous-charge vector ~q0. If the feasible



61

interval [k<, k>] is non-empty, the chosen next state is the one obtained using ~va = k> ·~va,
that is, the feasible voltage vector which maximizes the power transfer. Intuitively, using
many of these charge vectors as intermediate states will reduce the chances of no feasible
future state to be found for one of the next time-slots. Furthermore, these vectors speed
up the charging of the devices, which can be interesting for solving the Minimum-Time
MIMO Charging Problem.

Besides that, the elements from Fτ−1 used as previous-charge vectors are selected
sequentially without repetitions. Thus, if TTL and THR are large enough, the algorithm
will select all elements from Fτ−1 exactly one time. This strategy is positive for problem
instances with very few feasible solutions when compared with the total number of values
for the decision variables. Thus, using all possible previous-states prevents the algorithm
to lose a rare intermediate state which enables finding the solution.

5.4.2 Greedy Algorithms

The algorithms described in this sub-section are all greedy and, therefore, store a single
state of each feasible future.

5.4.2.1 Max-Sum-of-Currents Algorithm

This algorithm is an adaptation of algorithms such as MultiSpot and Yang [2017], which
employs the voltage vector which maximizes the receiving power. Thus, this algorithm is
basically the one referred in Section 4.4. In this case, besides the insertion of the maximum
current and minimum charge constraints, the objective function was altered to maximize
the sum of the absolute value of the receiving currents. This modification was due the
currents are more intimately related to the charge variations than the transferred power.
Algorithm 5 summarizes the Max-Sum-of-Currents Algorithm. The small real-positive
scalar ε is used to guarantee the limit k< as exclusive since it represents the threshold for
which the charge of at least one device drops below the minimum allowed.

5.4.2.2 Max-Sum Algorithm

This algorithm is almost the same as Max-Sum-of-Currents Algorithm but maximizes the
sum of the charges instead of the magnitude of the receiving currents. The idea behind
this algorithm is that the current-conversion functions can be complex and depend on the
used devices. Thus, it searches locally for the best average state for the whole network.
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Algorithm 5 Feasible Future set generation for the Max-Sum-of-Currents Algorithm
Fj ←− ∅
(~q, ~d)←− the only element of Fτ−1

s←− 0
while TTL > 0 do
TTL←− TTL− 1
Sample ~va where vaj ∼ U(−1, 1)
Get (k<, k>) for (~q, ~va) using the exploration method
λ←− (1− ε) · λ′ + ε, where λ′ ∼ U(0, 1)
~va ←− (λ · k< + (1− λ) · k>)~va

~q ←− the charge vector corresponding to ~va
~ip ←− the receiving-current vector corresponding to ~va

s′ ←−
∑∥∥∥~ip∥∥∥

if s′ > s then
~q′ ←− ~q
~va′ ←− ~va
s←− s′

end if
if returnIfThreholdReached and ~q ≥ ~̂Q then
Insert (~q,~va, ~d) into Fτ
return Fτ

end if
end while
Insert (~q′, ~va′, ~d) into Fτ
return Fτ

5.4.2.3 Max-Min Algorithm

Analogously to the Max-Sum Algorithm, this one is very similar to the Max-Sum-of-
Currents Algorithm. The difference is again the objective function. In this case, it is the
maximization of the charge qk of the weakest device k, that is, the device whose charge
is the closest to the minimum q

k
.

This approach is notable because there is already an algorithm for selective charging
which can be adapted for maximizing the delivered power for a single passive device. In
particular, the algorithm proposed by Jung and Lee [2019] employs semi-definite relax-
ation and rank reduction based on randomization to maximize the total delivered power.
To allow the selective optimization, it provides constraints to impose an upper-bound for
the power delivered to unintended devices and a lower-bound to the power of the intended
ones. Since the conversion constraints are guaranteed to be monotonically increasing and
the load resistance is real-positive, maximizing the charge variation for a single device is
equivalent to maximize the power delivered to it.
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5.4.2.4 Random-Feasible-Future Algorithm

This heuristic is used exclusively to evaluate the random generation of problem instances
from Section 7.1. The generation of the τ -th feasible feature set Fτ given the (τ − 1)-th
feasible feature set Fτ−1 is described by Algorithm 6.

Algorithm 6 Feasible Future set generation for the Random-Feasible-Future Algorithm
Fj ←− ∅
(~q, ~d)←− the only element of Fτ−1

Sample ~va where vj ∼ U(−1, 1)
Get (k<, k>) for (~q, ~va) using the exploration method
λ←− (1− ε) · λ′ + ε, where λ′ ∼ U(0, 1)
~va ←− (λ · k< + (1− λ) · k>)~va

~q ←− the charge-vector corresponding to ~va
Insert (~q,~va, ~d) into Fτ
return Fτ

5.5 Complexity Analysis

The decision variable ~va(τ) can be represented by a na× t matrix, where t is the number
of time-slots and na is the number of transmitters. Thus, a simple Brute-force Search
Algorithm would enumerate

O(sna·t
a ) = O(exp (log(sa) · na · t))

solutions, where sa is the number of voltage possibilities within a single transmitter.
The dynamic-programming algorithms, in turn, perform O(s

np
p ) insertions into each

feasible-future set. In total, there are O(t · snp
p ) insertions. The number of evaluated

feasible futures is, roughly, O(sna
a ) for each previous state from each time-slot. Thus, the

total number of relevant operations is

O (t · exp(log(sa) · na + log(sp) · np))

Thus, the algorithms are also exponential regarding the number of devices. However, they
are linear towards the number of time-slots, which is expected to be large.

Except by the Random Feasible Future algorithm, the asymptotic complexity of all
proposed greedy algorithms can be similarly deduced as

O(t · sna
a ) = O(t · exp (log(sa) · na))
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5.6 Considerations Regarding Parameter Acquisition

The dynamic-programming algorithms admit complete knowledge about all parameters
of the system for all time-slots. This assumption is not applicable for all situations and
depends on network communication, multiple sensors, information towards the electrical
components of all devices, and tight movement planning for all devices at every moment
within the time window.

From the positions, geometries, and orientations of all coils, the value of each mutual
induction Mi1,i2 can be expressed by Neumann’s formula, shown in Equation 5.7. The
µ0 factor corresponds to the magnetic permeability of the medium, ζ is the path of one
coil, ds is the infinitesimal slice of ζ, and |Di1,i2| is the absolute distance between dsi1 and
dsi2.

Mi1,i2 =
µ0

4π

∮
ζi1

∮
ζi2

dsi1 · dsi2
|Di1,i2|

(5.7)

The greedy algorithms, in turn, do not require knowledge about all future time-slots,
since the decisions are taken locally. Let us admit no knowledge about the positions,
geometries, and orientations of the coils. From Equation 3.2, one might relate a set of
voltage samples and the corresponding currents as

[~v(t1) ~v(t2) ... ~v(tm)] = Z[~i(t1) ~i(t2) ... ~i(tm)]

Assuming na linearly independent voltage samples, any possible voltage vector ~v
can be expressed as a linear combination of the samples, that is,

~v = [~v(t1) ~v(t2) ... ~v(tm)]~λ, ~λ ∈ Rna

Moreover, the transmitting voltages can be expressed as

~va = [~va(t1) ~va(t2) ... ~va(tm)]~λ

Notice that [~va(t1) ~va(t2) ... ~va(tm)] is a square matrix with linearly independent
columns and, therefore, the coefficient vector can be calculated using Equation 5.8

~λ = [~va(t1) ~va(t2) ... ~va(tm)]−1~va (5.8)

Furthermore, ~i = Z−1~v is equivalent to Equation 5.9.

~i = Z−1[~va(t1) ~va(t2) ... ~va(tm)]~λ = [~i(t1) ~i(t2) ... ~i(tm)]~λ (5.9)

Finally, from Equations 5.8 and 5.9, it follows that
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~i = [~i(t1) ~i(t2) ... ~i(tm)][~va(t1) ~va(t2) ... ~va(tm)]−1~va

Notice that this formula is enough for the utilization of the exploration method,
which is the base of all proposed greedy algorithms.
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Chapter 6

Implementation Decisions

The Point Cloud data structure is responsible for storing the charge-vectors which com-
pose a feasible future set. The set has O(snp) charge-vectors and therefore the structure
must be implemented in such a way that the associated operations are time-efficient. In
short, the minimal set of operations is the following.

• Search. Verify if exists a charge-vector in the point cloud which belongs to the same
polytope as the informed charge-vector.

• Insertion. Insert the informed charge-vector, its predecessor, and the associated
voltage-vector into the point cloud.

• Reading. Return the charge-vector, its predecessor, and the associated voltage-
vector inside a given polytope.

• Signaling. Toggle a boolean flag associated with a determined polytope. This oper-
ation is used to identify charge-vectors that are predecessors of ones from the next
feasible future. Those that aren’t can be deleted to save memory.

• Counting. Return the number of elements inside the point cloud.

• Uniform sampling. Return one of the charge-vectors inside the point cloud. Every
element in the point cloud must have the same probability to be chosen.

• Sequential sampling. Return the next charge-vector from the point cloud. Each
element is returned exactly one time.

Populating the point cloud with one charge-vector for each possible polytope or even
storing one structure for each possible polytope may be intractable. Thus, the point cloud
structure must be able to efficiently store large sparse sets of multi-dimensional points.
In this work, we implement the point cloud as a hash table with H buckets, where H
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is an input parameter. Figure 6.1 shows a simplified scheme of the point cloud internal
structure, considering a fly-weight approach. In short, the vectors are stored using their
discretized versions instead of their original values. Thus, each charge or voltage value can
be represented using a single integer or even a single byte. In addition to the fly-weight
hash, we also use a hash whose elements are based on double-precision numerals.

Discretized Charge
Vector

Previous Discretized
Charge Vector

Discretized Voltage
Vector

# Elements

Utility Flag

# Elements

# Elements

# Elements

# Elements

1

2

3

4

H

Figure 6.1. Overview of the main data structure employed on both algorithms to
represent cloud-based Feasible Futures.

The mapping between a polytope ~d and its corresponding bucket is based on a
polynomial rolling hash function, as shown in Equation 6.1. The multiplier m is the first
prime number such that m ≥ s and gcd(m,H) = 1. The main goal of this function, apart
from being deterministic, is to generate an uniformly distributed mapping, that is, the
probability of any vector ~d to be mapped into a determined bucket h is as close as possible
to 1

H
.

h =

np∑
i=1

mi−1di (6.1)

Figure 6.2 shows a typical distribution of the elements along with the buckets (or
entries) and the histogram of the number of elements in a single bucket. Both charts were
generated using the same hash table, which has 1000 buckets and 5000 elements.

Since all the code is written in MATLAB environment, the hash structure was
adapted to cover certain peculiarities of the language. Implementing tables whose rows
have different lengths is only possible using Cell Arrays or Structs. However, the access
to these structures is much more time-expensive than to regular matrices. Thus, the
internal structure of the hash table was adapted to work with one main matrix, one
auxiliary matrix, and one vector of integers, as illustrated by Figure 6.3.
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Figure 6.2. Typical data distribution in the point cloud.

Discretized Charge
Vector

Previous Discretized
Charge Vector

Discretized Voltage
Vector

Utility Flag

1

3

2 H

1 2 H

1 2

# ElementsPool

Figure 6.3. Structure of the hash considering MATLAB-related issues.

Each bucket has a maximum number of elements, which are previously allocated
and sequentially organized in the main matrix. If a bucket receives more data than it
is able to store, the exceeding elements are stored in the pool matrix, whose length is
not fixed. In particular, the pool is reallocated with double the length when required.
Besides these matrices, the structure is also composed of an integer vector that stores the
number of elements within each bucket, even the ones stored in the pool. The operations
mentioned at the beginning of the section are implemented as follows.

• Search. The hash function is used to transform ~d into the bucket identifier h. Then,
the length l of the h-th bucket is verified. If it is smaller than the actual size, ~d is
searched in the first l positions of the sub-matrix. If l is larger than the actual size,
~d is searched in the entire sub-matrix and next in the pool. Thus, in the average
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case, the search has constant-time complexity, since the vast majority of buckets
are limited to their sub-matrices in the main matrix. In the worst case, however,
the entire pool must be verified.

• Insertion. It is assumed that the search function was called externally before inser-
tion. Therefore, the new element can be inserted without collisions with eventual
other elements within the same polytope. Then, the length of the corresponding
bucket is incremented. If its new value is larger than the fixed size of the bucket
sub-matrix, the element is appended in the pool. If the pool is full, it is reallocated
with double the length. Thus, the average case of the operation is time-constant
and, in the worst case, the pool is reallocated.

• Reading. The same as the search operation, but the element is returned instead of
a single boolean.

• Signaling. The same as the search operation, but the utility flag of the corresponding
element is toggled instead of returning anything.

• Counting. Sum of the elements of the vector of lengths. In this case, its time-
complexity is O(H). It may also be implemented using a “size” global variable
which is incremented at each insertion. In this case, the complexity of the counting
itself is constant. However, each insertion must perform an additional sum.

• Uniform sampling. If the point cloud is not empty, the bucket identifier is chosen
as h = dh′e, h′ ∼ U(0, H). If the corresponding bucket is empty, the identifier is
incremented as h = (hmodH) + 1 until a bucket with l > 0 elements is found.
Then, the element identifier is chosen as j = dj′e, j′ ∼ U(0, l). If it is smaller
then the fixed size of the bucket sub-matrix, the corresponding element is returned.
Otherwise, the element is in the pool. Then, all elements in the pool receive the
same probability to be chosen, regardless of the corresponding bucket. Since each
element has the same probability to be chosen and the buckets are expected to have
the same number of elements, in average case the choice of the returned element has
a uniform distribution. The time-complexity of choosing the bucket is O(H) and
the sample itself is O(1).

• Sequential sampling. All elements in the main matrix can be represented by their
bucket index and their index inside the corresponding bucket. The first element to
be returned is the index 1 from the first bucket. Then, the index is incremented
at each new sample, until it reaches the fixed size of the bucket sub-matrix or the
length of the bucket. The bucket index is incremented and the internal index is
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reset. After finishing the main matrix, the elements in the pool are sequentially
returned. Each sample has constant complexity.

Figure 6.4. Time and space usage in the fly-weight cloud.

Figure 6.5. Time and space usage in the floating-point cloud.

Figure 6.4 shows the space-usage and processing-time data measured in the same
experiment than the one from Figure 6. The fixed size of each bucket sub-matrix is 5 and
the initial size of the pool is 100. For the processing-time evaluation, the find function,
which is a MATLAB built-in function, was used as a reference and is referred to in the
chart as the default search. Figure 6.5, in turn, shows the same results for a floating-point
cloud. The fly-weight cloud is around 5 times more efficient than the floating-point cloud
regarding memory-usage.
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Chapter 7

Methodology

The experiments described in this chapter aim at evaluating the No-Starvation MIMO
Charging Problem and Minimum-Time MIMO Charging Problem as computational prob-
lems, regardless of the applications on Wireless Power Transfer. Therefore, we admit
the modeling from Chapter 3 for generating a large set of diverse and statistically-
representative random problem instances with a guaranteed solution.

We evaluate the tractability of the problems and the capability of the proposed
dynamic-programming algorithms to find a feasible solution. We also evaluate the effi-
ciency regarding processing time. Finally, the three greedy heuristic solutions are tested
as alternatives to the dynamic-programming algorithms.

We compare the results with three baseline approaches. The Max-Power algorithm
is an representation of WPT algorithms based on maximizing transferred power in MIMO
systems, like Yang [2017]. Thus, the algorithm maximizes the power dissipated by the
resistive components of the receiving elements and limits the maximum active power
dissipated by the system and the maximum amplitudes of each signal. The MultiSpot
algorithm also maximizes the power dissipated by the resistive components of the receiving
elements constrained to a maximum active power dissipated by the system, but has no
limitations regarding each signal. The Max-Sum-Of-Currents is also compared since it
can be implemented by a simple adjustment in Yang [2017] implementation, that is, using
an identity matrix instead of the receiving-resistances matrix in the bilateral-quadratic
objective function.

We performed all experiments using an Intel Core i7-3537u CPU with 2 GHz of
clock-frequency and 8GB of RAM and using MATLAB R2016a environment. The code
is available in github.com/AlexDecker/DCCSystem.

github.com/AlexDecker/DCCSystem
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7.1 Random Instance Generation

First, functions R, C, and η are defined for each device using lookup tables. For conve-
nience, function R is defined using SOC values instead of the charges themselves. Thus,
it is generated starting from (SOC = 0,R ∼ U(0, 1)), and then iteratively by adding
(∆SOC ∼ U(0, 1),∆R ∼ U(0, 1)) into the previous values. If SOC surpasses 1, it is
fixed by assigning SOC = 1 and then the table is considered to be ready. The other
lookup tables are generated analogously, although they are guaranteed to cross the origin
of the coordinates and the domain of η is guaranteed to be compatible with the image of
C. Moreover, the addend limits are set in a way to guarantee the inputs are always larger
than the outputs. Indeed, they represent energy conversion devices and, consequently, a
larger output would imply energy creation. Finally, the domain of the η function starts
from a negative value so that the discharge process is also modeled.

The maximum charge q̂k for each device k is a random variable with uniform dis-
tribution U(0, 1000). The upper limit of the distribution domain is arbitrary since the
time variation ∆t is further defined to guarantee the feasibility regarding the image of
η. Let ε be a very small arbitrary real positive value and αin, βin be the parameters of
a beta probability distribution, which are used to control the difficulty of the generated
instances. The threshold charges, the final charges, the initial charges, and the minimum
charges are respectively defined as follows

Q
k

= qk(t) = (q̂k − ε) · b1 + ε, b1 ∼ β(αin, βin)

qk(0) = (q̂k − ε) · u1 + ε, u1 ∼ U(0, 1)

q
k

= (min{qk(0), qk(t)} − ε) · u2 + ε, u2 ∼ U(0, 1)

Despite the flexibility of its shape, the beta distribution family was chosen due to its
domain be between 0 and 1, which makes it easier to ensure the relaxed restrictions are
still valid.

Next, the other charge vectors of the solution are defined using linear interpolation.
Then, each charge value qk(τ) is updated to min{max{qk(τ) + z, q

k
}, q̂k}, where z ∼

N
(

0, λ
4
· (q̂k − qk)

)
. The value of the standard deviation is calculated based on the 68-

95-99.7 rule. In this case, the rule states that the probability of z to be inside the interval
[−2σ, 2σ] is 95%. For the experiments, we consider λ = 2

t
, which means the new value

of qk(τ) has a 95% chance to stay between the former values of qk(τ − 1) and qk(τ + 1),
as demonstrated below. Notice that since the former values of the charges are obtained
by linear interpolation between ~̂q and ~q, the difference between two time-adjacent charges
qk(τ) and qk(τ + 1) is 1

t
· (q̂k − qk).
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σ =
λ

4
· (q̂k − qk)⇔ σ =

2

4t
· (q̂k − qk)⇔ 2σ =

1

t
· (q̂k − qk)

The final charge-vector sequence of the solution is then obtained using the dis-
cretization mechanism described by Section 3.4. The charge vectors are replaced by the
centroids of their polytopes, which does not invalidate ~̂q either ~q. However, both initial
and threshold vectors must be updated.

The time-variation constant ∆t is defined in a way to ensure that all charge variations
are feasible regarding the domains of the η conversion functions. So, let the interval
[η<k , η

>
k ] be the image of the conversion function of the k-th device. The ∆t constant is

defined as follows.

∆t = maxk,τ

{
max

{
1

η>k
(qk(τ)− qk(τ − 1));

1

η<k
(qk(τ)− qk(τ − 1))

}}
After that, the parameters within each time-slot τ are defined in a way that the

charge progression of the solution is feasible. The load resistances are calculated using
the R lookup table, ~q(τ − 1), and ~̂q. The fixed resistances ~rp of the passive devices are
calculated a priori and kept constant for all slots so that the load resistances are the
only resistive components that vary over time. Thus, the impedance sub-matrix ZR(τ)

is generated as in Equation 7.1. Notice that ZR is guaranteed to be symmetrical and
imaginary except by the main diagonal, as defined in Section 3.3. The beta distribution
is used again due to its domain limits are between 0 and 1, which avoids very extreme
and unrealistic couplings.

ZR = diag(~rp + ~R(~q(τ)))−
√
−1

2
(B +BT ), Bij ∼ β(2, 2) (7.1)

Let y<k (τ) ≤ ‖ipk‖ (τ) ≤ y>k (τ) be the interval such that η(C(‖ipk‖ (τ)) − idk(τ)) =

qk(τ)− qk(τ − 1). In other words, for any receiving current inside this interval, there is at
least one discharge current 0 ≤ idk(τ) ≤ îdk such that the resulting charge variation is equal
to qk(τ)− qk(τ − 1). The impedance sub-matrices ZT (τ) and M(τ) as well as the voltage
vector ~va(τ) are calculated following the procedure from Algorithm 7, which generates
a sample of possible sets of parameters and then chooses the most efficient regarding
dissipated power. All lower-bound constraints are then multiplied by a factor with beta
distribution β(αin, βin) and all upper-bound constraints are divided by a number with the
same probability distribution. These operations work as relaxations of the constraints
and determine the average difficulty level of the generated instances.

The next subsections aim at explaining some sub-algorithms used for the generation.
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Algorithm 7 Algorithm for generating valid impedance sub-matrices and voltage vector
bestρ ←−∞
while TTL > 0 do
TTL←− TTL− 1
~ip ←− any current such that ~y< ≤

∥∥∥~ip∥∥∥ ≤ ~y>
generate M and ~ia such that M~ia + ZR~i

p = 0
generate ZT such that V = ZT~i

a +MT~ip is real
ρ←− (~va)TRe{~ia}
if ρ < bestρ then
bestρ ←− ρ
bestv ←− ~va
bestzt ←− ZT
bestm ←−M

end if
end while
return bestρ, bestv, bestzt, bestm

7.1.1 Generation of the coupling matrix

The generation ofM(τ) occurs as follows. If na ≥ np, it is randomly generated asM(τ) =
√
−1M such that Mij ∼ β(2, 2) and all rows are linearly independent. If na < np, on

the other hand, there are more rows than columns and, therefore, they cannot be linearly
independent. Thus, M(τ) must be chosen in a way that M(τ)M(τ)+ ZR(τ) ~ip(τ) =

ZR(τ)~ip(τ) (see Equation 3.6).
LetM be the first na rows ofM(τ). Let R be the first na rows of ZR(τ). M can also

be generated by random beta sampling in a way to all rows to be linearly independent.
Thus,M is invertible and the currents of the active circuits are obtained by

~ia(τ) = −M−1R~ip(τ)

Rows na + 1 to np, in turn, must be imaginary (see Section 3.3) and such that

mi
~ia = −zi~ip

where mi is the i-th row of M(τ) and mi is the i-th row of ZR(τ). Thus, the following
equalities must be respected in order to mi to be imaginary.{

miRe{~ia} = −
√
−1 Im{zi~ip}

√
−1mi Im{~ia} = −Re{zi~ip}
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Which is equivalent to [
Re{~ia}
Im{~ia}

]
mT
i =
√
−1

[
−Im{zi~ip}
Re{zi~ip}

]

Assuming na ≥ 2 and Re{~ia} and Im{~ia} are linearly independent, this equation has
infinite solutions. These can be obtained using the pseudo-inverse, which is guaranteed
to be real. Since the right side is guaranteed to be imaginary, so is mi.

7.1.2 Generation of the transmitting-impedance matrix

The generation of M(τ) creates ~ia as by-product. Thus, ZT must be generated so that
~va = ZT~i

a + MT~ip be real. Moreover, according to Section 3.3, ZT must be symmetrical
and imaginary except by the main diagonal. The method described in the following
paragraphs is summarized by Algorithm 8.

Algorithm 8 Algorithm for generating a valid transmitting-impedance matrix
~ra ←− −~1
Ma ←−

√
−1
2

(B +BT ), Bij ∼ β(2, 2)
while true do
~x←−

√
−1MaRe{~ia} − Im{MT ~ip}

~ra ←− ~x� Im{~ia}
if rai > 0 ∀ i then
break

else
k ←− arg min{~ra}
∆m←−

√
−1 xk

Re{iak}
−
√
−1 sign(Im{iak}) · sign(Re{iak}) · (g + ε) g ∼ γ(1, 2)

Ma
k,k ←−Ma

k,k + ∆m
end if

end while
ZT ←− diag(~ra) +Ma

return ZT

According to Equation 3.5, the voltage vector ~va, the transmitting impedance sub-
matrix ZT , the coupling matrixM , the transmitting currents~ia, and the receiving currents
~ip are related as follows.

~va = ZT~i
a +MT~ip

Let ZT be decomposed as ZT = diag(~ra) −Ma, where ~ra is the resistance vector,
which is real, and Ma is the matrix with the couplings between transmitting coils, which
are all imaginary. Thus, the imaginary part of ~va is expressed by

Im{~va} = diag(~ra)Im{~ia} −
√

1MaRe{~ia}+ Im{MT~ip}
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Let ~x ,
√

1MaRe{~ia} − Im{MT~ip}. For Im{~va} to be zero, diag(~ra)Im{~ia} = ~x.
In other words, admitting Im{iak} 6= 0, the following must be respected.

~ra = ~x� Im{~ia}

The resulting ~ra is guaranteed to be real, but its values must be also positive since
it represents resistances. Thus, let rak be such that rak ≤ 0. One might add an imaginary
∆m to Ma

kk so that (i) Ma stay imaginary, (ii) Ma stay symmetrical, and (iii) only rak is
affected in ~ra. Thus, rak becomes

rak =
xk +

√
−1∆mRe{iak}
Im{iak}

Thus, for rak to be greater than zero, admitting Re{iak} 6= 0, there are two cases,
depending on the signal of Re{iak}

Im{iak}
.


∆m <

√
−1

xk
Re{iak}

,
Re{iak}
Im{iak}

> 0

∆m >
√
−1

xk
Re{iak}

,
Re{iak}
Im{iak}

< 0

And, since g ∼ γ(1, 2) is always real and non-negative, the following formula is
guaranteed to create a valid rak without disturbing the other active resistances. Consider
that ε is a very small real positive constant.

∆m =
√
−1

xk
Re{iak}

−
√
−1 sign(Im{iak}) · sign(Re{iak}) · (g + ε)

7.2 Statistical Analysis Description

This section aims to describe the statistical tools employed in the experiments. In short,
we use

• Pearson Correlation [Benesty et al., 2009] to test linear dependency between a
measured quantity and an input parameter, when both are continuous or the dis-
cretization interval is small enough. The correlation varies between -1 and 1, where
-1 means complete inverse correlation, 0 means independence and 1 means com-
plete correlation. This statistic is used to testify linearity between the number of
time-slots and the execution time.

• Kruskal-Wallis H Test to test overall dependency between a continuously measured
quantity and a discrete input parameter. The null hypothesis of the test states
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that the probability distributions of the measured data for all values of the discrete
variable are all the same. Thus, a small p-value means probable dependence between
the quantities of interest. This statistic is used to testify the dependence between
the input parameters and the execution time.

• Chi-Squared Test for Independence to testify independence between a discrete mea-
sured quantity and a discrete input parameter. Analogously to Kruskal-Wallis H
Test, a small p-value means probable dependence between the quantities of interest.
This statistic is used to testify the dependence between the input parameters and
effectiveness.

• Binomial confidence interval with normal approximation, as known as the Wald
method for a binomial confidence interval, to compare the effectiveness between
algorithms for the No-Starvation MIMO Charging Problem. Let p be the sample
probability of success, that is, the ratio between the number of successes n and the
number of experiments m. The confidence interval for a given significance level α
is as follows.

p± z(1−α/2)

√
p · (1− p)

m

• Hypothesis test for comparison between two binomial random variables. Let n1 be
the number of successes for m1 instances using algorithm 1. Let n2,m2 be analogous
to algorithm 2. Let p1, p2 be respectively the success probabilities of algorithms 1

and 2. The null-hypothesis states that p1 = p2 while the alternative-hypothesis
states that p1 > p2. Thus, rejecting the null-hypothesis means that Algorithm 1

can be considered as more effective than Algorithm 2. Let p′1 = n1

m1
and p′2 = n2

m2
be

maximum likelihood estimators for p1 and p2. The probability distributions of p′1
and p′2 are approximately normal and are described as follows.

p′1 ∼ N

(
p1,

p1 · (1− p1)

m1

)
p′2 ∼ N

(
p2,

p2 · (1− p2)

m2

)
Thus, the probability distribution of their difference is as follows

p′1 − p′2 ∼ N

(
p1 − p2,

p1 · (1− p1)

m1

+
p2 · (1− p2)

m2

)
By standardizing the distribution, it follows that

z =
p′1 − p′2√

p′1 · (1− p′1)

m1

+
p′2 · (1− p′2)

m2

∼ N(0, 1)
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And, therefore, the corresponding p-value is the probability

P(Z > z |Z ∼ N(0, 1))

• t-Student Confidence Interval is used to compare execution times between different
algorithms.

Besides the statistical methods used for comparing the results, let us also define the
Expected Relative Lifetime (ERL) score, which measures the difficulty of a given problem
instance to be solved using a randomized algorithm. The score varies between 0 (very
difficult) and 1 (very easy).

Definition 7.2.1. The Expected Relative Lifetime (ERL) score of a problem instance
is the normalized expected index of the time-slot where the charge of one of the devices
will drop below the minimum ~q for the first time, considering the Random-Feasible-Future
Algorithm (see Section 5.4.2.4). Thus, let τj be the time-slot where the j-th execution of
the RFF Algorithm failed due to the minimum charge constraint. Let λj be an indicator
variable which is 1 if the solution solves the problem and 0 otherwise. Let t be the total
number of time-slots of the instance. The ERL score e considering 1000 repetitions is
defined as

e =
1

1000 · (t+ 1)

(
1000∑
j=1

(τj + λj)

)
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Chapter 8

Experimental Results

We employed the six proposed algorithms to solve randomly generated instances of both
No-Starvation MIMO Charging and Minimum-Time MIMO Charging problems. The
parameters chosen for each algorithm are summarized in Table 8.1. The time-to-leave
value for the greedy algorithms is a large arbitrary number. The parameters chosen
for the Dynamic-Programming-based algorithms were chosen in a way to approach their
execution times. nk is the number of samples of the k multiplier for each pair (~q0, ~va) in
the exploration method.

8.1 No-Starvation MIMO Charging Problem: easy

instances

The first set of experiments used “easy instances”, that is, instances generated using
αin = 3 and βin = 2 input parameters. Figure 8.1 shows the histogram of a sample of
10000 values generated using the beta distribution and the aforementioned parameters.
The instance generator uses these values to relax the constraints, resulting in a set of
problem instances whose ERL scores are described by the second histogram.

Figure 8.2 shows the success ratio of each considered algorithm for the generated
instances, that is, the ratio between the number of successes and the total number of
experiments. Each algorithm attempted to solve the same 100 instances. The confidence
intervals were calculated using the binomial distribution with normal approximation (see
Section 7.2) with a 10% significance level.

For almost all cases, Simple, Pareto, Max-Sum, and Max-Min algorithms remained
statistically equivalent. However, considering all instances, the Pareto algorithm achieved
a 97% success ratio against the 92% success ratio achieved by the Max-Sum algorithm.
Thus, the corresponding p-value for equivalence against Pareto superiority results in



80

Table 8.1. The considered parameters for each algorithm.

TTL1 TTL2 TRH nk
Simple 250 80 100 5
Pareto 750 60 250 -
Fly-Weight 250 40 100 5
Max-Sum 10000 - - -
Max-Min 10000 - - -
Max-Sum-Of-Currents 10000 - - -

Figure 8.1. Beta distribution with αin = 3 and βin = 2 and the corresponding
ERL score histogram.

0.059354, which can be rejected for a 10% significance level. Consequently, the Pareto
algorithm is more effective than Max-Min and Fly-weight algorithms for considered in-
stances.

The Fly-weight algorithm, in turn, achieved a significantly less success ratio than the
other ones. In particular, Simple and Pareto algorithms achieved a larger success ratio
than the greedy ones for instances with two active circuits. Besides that, the sample means
of Simple and Pareto algorithms moved away from the greedy ones with the increase in the
number of passive devices. Indeed, both statistically surpassed the Max-Min algorithm
for instances with four passive devices.

Table 8.2 summarizes the calculated p-values of the chi-squared tests for indepen-
dence (see Section 7.2) between each input parameter and the successes of the considered
algorithms. For a 10% significance level, the success of Max-Sum, Max-Min, and Fly-
Weight algorithms can be considered as being dependent on the number of passive circuits.
Roughly, their success ratio decreases as the number of passive devices increase, which
might be resulting from the enlargement of the charge vector space. The other algorithms
do not show sufficient evidence of dependence on the number of passive circuits.
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Figure 8.2. The success ratio for some input parameters with αin = 3, βin = 2.

In addition, the Fly-Weight algorithm can be considered dependent on the number
of active circuits. Roughly, its success ratio increases as the number of passive devices
increase, which might result from the enlargement of the active-voltage vector space.
Thus, more voltage vectors generate the same receiving-current vector and, therefore, the
exploitation method is facilitated.

TheMax-Min algorithm can also be considered dependent on the number s of charge
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Figure 8.3. Absolute number of successes for some input parameters with αin =
3, βin = 2.

Table 8.2. P-values for the Chi-Squared independence test between input parame-
ters and the number of successes of each considered algorithm.

Pareto Simple Max-Sum Max-Min Fly-weight
np 0.34 0.63 0.036 0.005 2.1e-8
na 0.42 0.29 0.1 0.38 2.5e-8
t 0.72 0.81 0.58 0.62 0.69
s 0.61 0.58 0.18 0.08 0.21
nSamples 0.36 0.15 0.74 0.13 0.14

Table 8.3. P-values for the Kruscal-Wallis independence test between input pa-
rameters and the execution times of each considered algorithm.

Pareto Simple Max-Sum Max-Min Fly-weight
np 0.45 0.29 0.42 0.50 0.05
na 0.22 0.39 0.28 0.29 0.42
t 3e-14 1e-13 1e-13 1e-13 5e-4
s 0.07 0.11 0.11 0.09 0.51

discretization intervals, although this statistic may be negatively influenced by the degen-
erated point s = 15 (indicated with the arrow in Figure 8.2). The same degeneration also
appears in the sample size chart from Figure 8.2, which is also indicated by an arrow.
Figure 8.3 shows the absolute number of successes instead of the success ratio. Notice
that the number of instances with s = 15 and with nSample = 3 is very small when
compared to other scenarios.

Figure 8.4 shows the execution times towards the same experiments from Figure 8.2.
The confidence intervals are based on t-student distribution with 99 degrees-of-freedom
and a 10% significance level. As expected, the dynamic-programming-based algorithms
are clearly more time-expensive than the greedy ones since the last ones consider only
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Figure 8.4. Execution times for some input parameters with αin = 3, βin = 2.

Table 8.4. Pearson correlation values between input parameters and the execution
times of each considered algorithm.

Pareto Simple Max-Sum Max-Min Fly-weight
np 0.03 0.02 -0.03 -0.04 -0.003
na 0.11 0.08 0.08 0.07 0.15
t 0.84 0.81 0.85 0.84 0.46
s -0.05 -0.06 -0.1 -0.1 -0.02

one previous-charge vector for each time-slot. From Table 8.3 and considering a 10%
significance level, one might conclude that the execution-time for all considered algorithms
is highly dependent on the number of time-slots. Furthermore, the values present in
Table 8.4 state that the pearson correlation between the execution-times of all algorithms
and the number of time-slots is significant, which indicates a probable linear relation. The
only exception is the Fly-Weight algorithm, whose correlations are probably prejudiced
by the high number of failures.
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8.2 No-Starvation MIMO Charging Problem: hard

instances

The next set of experiments used “hard instances”, that is, instances generated using
αin = 5 and βin = 0.5 input parameters. Figure 8.5 shows the histogram of a sample of
10000 values generated using the beta distribution and the aforementioned parameters.
Similarly to the “easy instances”, the second histogram describes the ERL scores resulting
from the new distribution of the relaxation factors.

Figure 8.5. Beta distribution with αin = 5 and βin = 0.5 and the corresponding
ERL score histogram.

We chose the Pareto algorithm as a representative of the dynamic-programming-
based methods due to the good balance between execution-time and effectiveness. The
resulting success ratios of the Pareto, Max-Sum and Max-Min algorithms for the same
128 instances are shown in Figure 8.6. Over again, the error bars are based on binomial
confidence-intervals with normal approximation and 10% significance level.

Notice that, unlike for the “easy instances”, the Max-Sum algorithm is often more
effective than the Pareto algorithm. However, the mean difference occurs because of the
instances with a small number of intervals for charge discretization. The p-value of the
chi-squared test for independence between the successes of Pareto and the number of
intervals is 0.092652, which indicates dependence for a 10% significance level. Indeed, the
mean effectiveness increases as the number of intervals increases, since the assumption of
equivalence between states within the same polytope becomes more accurate.

Thus, considering all instances where the number of intervals is more than 15, the
Pareto algorithm achieved an 89% success ratio against the 77% success ratio achieved
by the Max-Sum algorithm. Thus, the corresponding p-value for equivalence against
Pareto superiority results in 0.09968, which can be rejected for a 10% significance level.
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Figure 8.6. Normalized number of successes for some input parameters with αin =
5, βin = 0.5.

Consequently, for the chosen significance level, the Pareto algorithm is also more effective
than the Max-Min algorithm.

Figure 8.7 shows the execution times for the same experiments from Figure 8.6.
Kruskal-Wallis tests for independence indicated that the execution time of all algorithms
is dependent on the number of time-slots since all calculated p-values resulted in values of
less than 10−10. Moreover, the Pearson correlations for Pareto, Max-Sum, and Max-Min
algorithms are respectively 0.76, 0.78, and 0.75, which indicated a linear tendency.

The other parameters do not have enough evidence to be considered as influencing
the execution time. This indicates that the generation of feasible futures using the Pareto
algorithm usually ends due to time-to-leave conditions. Thus, the algorithm would require
milder time limitations to fill sufficient polytopes in the charge space.
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Figure 8.7. Execution times for some input parameters with αin = 5, βin = 0.5.

8.3 No-Starvation MIMO Charging Problem:

Comparison with baselines

Figure 8.8 evaluates the greedy algorithms using 350 “hard instances”. Analogously to
the other experiments involving the success ratio, we calculated the confidence intervals
using a binomial distribution with normal approximation. The mean success ratio of the
Max-Sum-Of-Currents and the Max-Power algorithms achieved the midterm between the
Max-Sum and the Max-Min, though they was statistically equivalent to the Max-Sum
algorithm in each case separately and to Max-Min algorithm for some punctual cases.
Considering all instances, the Max-Sum algorithm achieved a 74% success ratio against
the 69% success ratio achieved by the Max-Sum-Of-Currents algorithm and 70% achieved
by the Max-Power algorithm.

Thus, the corresponding p-value for equivalence between Max-Sum and Max-Sum-
Of-Currents against Max-Sum superiority results in 0.065137, which can be rejected for
a 10% significance level. Furthermore, the p-value for equivalence between Max-Sum and
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Figure 8.8. Success ratios for some input parameters with αin = 5, βin = 0.5, and
only the greedy algorithms.

Max-Power against Max-Sum superiority results in 0.08873, which can also be rejected
for a 10% significance level. Consequently, for the chosen significance level, the Max-
Sum algorithm is also more effective than the Max-Sum-Of-Currents and Max-Power
algorithms. The MultiSpot algorithm, in turn, achieved poor performance, as it disregards
the maximum signal amplitude restrictions.

Table 8.5 shows the p-values for chi-squared independence tests between the in-
put parameters and the successes of the algorithms. Even for a 1% significance level,
the success of all algorithms can be considered dependent on the number of passive de-
vices. There was no evidence enough to state dependence concerning the number of
active devices. Moreover, only Max-Sum, Max-Sum-Of-Currents and Max-Power can be
considered statistically as dependent on the number of time-slots.
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Table 8.5. P-values for the chi-squared independence test between input parameters
and the successes of each considered algorithm.

na np t
Max-Sum 0.27 1e-6 0.0004
Max-Min 0.49 2e-9 0.13
Max-Sum-Of-Currents 0.61 0.002 6e-5
Max-Power 0.29 4e-5 0.02
MultiSpot 0.12 9e-6 0.46

Table 8.6. P-values for the Kruskal-Wallis independence test between input pa-
rameters and the normalized charging times of each considered algorithm.

Pareto Simple Max-Sum Max-Min Fly-weight
np 0.03 0.03 0.01 0.02 0.81
na 0.78 0.91 0.67 0.84 2e-3
t 0.02 0.03 0.01 0.02 0.22
s 0.26 0.22 0.31 0.30 0.19
nSamples 0.55 0.52 0.57 0.48 0.59

8.4 Minimum-Time MIMO Charging Problem

The main metric chosen to evaluate the algorithms for the Minimum-Time MIMO Charg-
ing Problem was the normalized charging time, that is, the number of time-slots each
solution took to reach the threshold charge vector divided by the maximum number of
time-slots of the problem instance. Thus, the resulting values vary between 0 and 1, where
0 means the initial state of the problem instance is already a valid solution and 1 means
all time-slots were required to charge the devices.

Figure 8.9 shows the means of the normalized charging times and the t-Student
confidence intervals calculated similarly to the ones from Figure 8.4. The results for
all considered algorithms were statistically equivalent, except by some cases where the
Fly-Weight algorithm achieved worse charging times when compared to the others. The
Kruskal-Wallis independence test indicates that, even for a 5% significance level, the
charging times are dependent on the number of passive devices and the maximum number
of time-slots, as illustrated by Table 8.6. The effectiveness of the Fly-weight algorithm
is again affected by the small success ratio. The only input parameter which has enough
evidence to be considered correlated to the charging time is the number of active circuits.
Indeed, the increasing of the number of active circuits favors the exploitation method.
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Figure 8.9. Normalized charging times.

8.5 Minimum-Time MIMO Charging Problem:

Comparison with baselines

Since the previous experiments indicated no evidence of a difference between the pro-
posed algorithms regarding the normalized charging times, some were omitted in the next
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Figure 8.10. Comparison of the normalized charging times considering the proposed
algorithms and the baselines.

experiments for sake of clarity. Thus, besides the greedy algorithms Max-Sum and Max-
Min and the baseline algorithms Max-Power, MultiSpot and Max-Sum-Of-Currents, we
considered only the Pareto algorithm. Indeed, the Pareto algorithm achieved the best
results among the dynamic-programming ones.

Figure 8.10 shows the normalized charging time results considering only “easy in-
stances”. Most algorithms can be considered equivalent regarding the charging time, but
MultiSpot required significantly less time to charge the devices in the average case. How-
ever, this does not mean that MultiSpot was more effective than the other algorithms.
MultiSpot obtained a solution in 45 out of 99 tested instances, whileMax-Sum-Of-Currents
obtained 95 solutions, Max-Power obtained 94, Max-Sum obtained 97, Max-Min obtained
96, and Pareto obtained 97. Thus, Figure 8.10 counts only the instances for which Mul-
tiSpot obtained success, that is, the easiest instances. Figure 8.11 shows the normalized
charging time data considering only the instances where MultiSpot was successful.

Analogously to the experiments from Section 8.5, MultiSpot is prejudiced by not
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Figure 8.11. Comparison of the normalized charging times considering only in-
stances for which MultiSpot was successful.

considering amplitude limitations. Indeed, the test for equivalence between MultiSpot
and Max-Power, which has the second worst average, has a p-value of 7 · 10−20, which
can be rejected even for a extremely low significance level. The other algorithms cannot
be considered different regarding effectiveness since the corresponding p-values are all
superior to 10%. Notice that this does not disaffirm the results obtained for the No-
Starvation MIMO Charging Problem because a valid solution for the Minimum-Time
MIMO Charging Problem may be smaller than the time horizon.
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Chapter 9

Conclusions and Future Work

In this work, we proposed two novel computational problems related to Wireless Charg-
ing using Inductive Power Transfer. The No-Starvation MIMO Charging Problem aims
at finding a feasible voltage temporal-series for all power transmitting elements in the
network which enables all power receivers to stay alive for a determined period of time.
The Minimum-Time MIMO Charging Problem, in turn, aims at finding a feasible voltage
temporal-series which minimizes the time required to recharge all elements in the network.

We proved the decision version of both problems as being NP-Hard and provided
a dynamic-programming approach to solve both problems with linear time-complexity
towards the duration of the period of time, which is the most expressive input parameter.
Furthermore, the method is exponential towards the number of devices in the network.
We proposed three algorithms based on the dynamic-programming approach. The Simple
algorithm populates the Feasible Future sets with all reachable states and uses floating-
point representation. The Pareto algorithm uses only the reachable states generated with
voltage vectors that lead to Pareto-optimal charge vectors. The Fly-Weight algorithm, in
turn, represents the states as vectors of bytes and, therefore, requires special treatment to
avoid excessive error propagation, although the employed data structure is 5 to 6 times
more efficient regarding memory-usage.

We also proposed three greedy algorithms as heuristics for the problems. The Max-
Sum algorithm chooses at each moment the voltage vector which maximizes the sum
of the state-of-charges of all device batteries. The Max-Min algorithm maximizes the
minimal state-of-charge. Finally, the Max-Sum-Of-Currents maximizes the sum of the
magnitudes of the receiving currents.

We created an algorithm to generate problem instances with a guaranteed solution
and different difficulty levels. We established a methodology for testing and comparing
the proposed algorithms using the generated instances. The collected results support the
following conclusions.
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1. Problems become more difficult as the number of passive devices increases because
the charge vector space becomes larger.

2. The Fly-Weight algorithm becomes more effective as the number of active devices
increases. The exploitation algorithm is favored by the enhancement of the multi-
plicity of voltage vectors which lead to the same receiving currents.

3. Increasing the number of charge segments makes dynamic-programming algorithms
more effective as long as they have a high enough time-to-leave. Indeed, smaller
polytopes fortify the assumption that all internal states are equivalent to each other.

4. The search space at each time-slot is large enough that the dynamic-programming
algorithms cannot fill all feasible polytopes using a reasonable time limit.

5. For the No-Starvation MIMO Charging Problem and with a sufficient number of
charge segments, the Pareto algorithm is more effective than all greedy algorithms
and the Fly-Weight algorithm, achieving 97% effectiveness in “easy instances” and
89% in “hard instances”.

6. For the No-Starvation MIMO Charging Problem, the Max-Sum algorithm is the
most effective among the proposed greedy algorithms, achieving 92% effectiveness
in “easy instances” and 74% in “hard instances”.

7. For the considered limitations of the number of iterations and the ERL scores of
the instances, all proposed algorithms are equivalent regarding the Minimum-Time
Charging Problem.

Thus, the results lead us to the following overall conclusions.

• If enough computational power is provided as well as omniscient information about
the behavior of the powered devices for a whole time horizon, the Pareto algorithm
is indicated to solve the No-Starvation MIMO Charging Problem.

• Otherwise, the Max-Sum algorithm is indicated to solve both proposed problems.

Future work include the creation of an dynamic-programming algorithm that im-
proves the representation of feasible futures, for example, using a KD-tree for grouping
regions of the charge hyper-space. They also include the development of a more efficient
algorithm for the Max-Sum heuristic using, for example, a branch-and-bound approach.
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