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Resumo

Estudamos taxas de decaimento de Cp-semigrupos, semigrupos auto-adjuntos e grupos unitérios
de evolugao. Para Cy-semigrupos em espacos de Banach, obtemos taxas de decaimento sob a
suposicao de que a norma do resolvente do gerador do semigrupo cresce com |s|? log(|s|)?, 3, > 0,
com |s| — oo, e com |s|*log(1/|s])*, a,a > 0, como |s| — 0. Nossos resultados nao supéem
que o semigrupo seja limitado. Em particular, para a = b = 0, os nossos resultados refinam as
taxas envolvendo tipos de Fourier obtidas por Rozendaal e Veraar (J. Funct. Anal. 275(10):
2845-2894, 2018). Quanto aos grupos de evolugao unitarios, obtemos taxas de decaimento lentas
para a média da probabilidade de retorno de um dado inicial no sentido tipico (no sentido de
Baire), e para os semigrupos auto-adjuntos, obtemos também taxas de decaimento lento para a
orbita de um dado inicial.

Palavras Chaves: Taxas de decaimentos; Cp-semigrupos; semigrupos auto-adjuntos; grupos de

evolugao unitarios.



Abstract

We study decay rates of Cp-semigroups, self-adjoint semigroups and unitary evolution groups.
For Cp-semigroups in Banach spaces, we obtain decay rates under the assumption that the norm
of the resolvent of the semigroup generator grows with |s|®log(|s|)?, 8,b > 0, with |s| — oo, and
with |s|"*log(1/]s|)*, a,a > 0, as |s|] — 0. Our results do not assume that the semigroup is
bounded. In particular, for a = b = 0, our results improve the rates involving Fourier types
obtained by Rozendaal and Veraar (J. Funct. Anal. 275(10): 2845-2894, 2018). As for unitary
evolution groups, we obtain slow decay rates for the average return probability of a typical (in
Baire’s sense) initial state, and for self-adjoint semigroups, we also obtain slow decay rates for

the orbit of a typical initial state.

Keywords: Decay rates; Cy-semigroups; self-adjoint semigroups; unitary evolution groups.
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Selected Notation

N:={1,2,3,---} and C4 := {z € C | Re(\) = 0}

p=p/(p—1) Holder conjugate.
X Complex Banach space.
l-Il=1"1lx Norm in a Banach space X
L(X,Y) Space of bounded linear operators from X to Y.
D(A) Domain of a linear operator A.
Ran(A) Range of a linear operator A.
o(A) Spectrum of a linear operator A.
p(A) Resolvent set of a linear operator A.
R\ A) :=(A—A)"1 Resolvent operator of A at A € p(A).
EA Resolution of the identity of A (self-adjoint).
i Spectral measure of A (self-adjoint) associated with the
vector .
(T'(t))e=0 Co-semigroup.
F Fourier Transform.
S(R; X) Spaces of X-valued Schwarz functions.
S'(R; X) Spaces of X-valued tempered distributions.
cx Space of test functions with compact support.
CBF Set of all Complete Bernstein functions.
f(t) < g(t) 3 C,tp > 0 such that for each t > tg, f(t) < Cg(t).

Su:={2€C|0<|arg(z)] <w} Open sector of angle w.

B(w,¢) Open interval (w — e, w + €) centered at w € R.

HGC(S,) :=={f: S, — C| fis holomorpic and exist C' > 0,s > 0; |f(2)| < Cmin{|z|"%, |z|°},Vz € S, }
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Introduction

This thesis is divided into two parts. In the first part, we discuss results for the decay of
Cy-semigroups defined in Banach spaces. In the second part, we discuss results for the slow

decay of self-adjoint semigroups and unitary Cy-groups defined in Hilbert spaces.

Part I

Historical background

An important question in the theory of differential equations refers to the asymptotic behavior
(in time) of their solutions; more specifically, if they reach an equilibrium and, if so, with which
speed. For those linear partial differential equations which can be conveniently analyzed by
rewriting them as evolution equations, it is well known that the long-term behavior of the
solutions of each one of these equations is related to some spectral properties (and behavior
of the resolvent) of the generator of the associated semigroup.

The asymptotic theory of semigroups provides tools for investigating the convergence to zero

of mild and classical solutions to the abstract Cauchy problem

(1)

We know that (1) has a unique mild solution for every z € X, and that the solution depends
continuously on x if, and only if, —A generates a Cy-semigroup (7'(t))¢>0 on X (see [7, 29]). In
this case, the unique solution u to (1) is given by u(t) = T'(t)z, V¢t >0, and if z € D(A), then
u € C1([0,00), X) N C([0,0), X) (see [29], Proposition 11.6.2).

For the classic theory of ODEs in finite dimension, the Lyapunov stability criterion (see [29],
Theorem 2.10) is an excellent tool in the study of the asymptotic behavior of solutions to (1),
but this criterion is in general not valid if X has infinite dimension. However, in this case, the
asymptotic behavior can be deduced from of the norm of the resolvent of the operator A. For
example, on a Hilbert space X, one has the Gearhart(1978)-Priiss(1984)-Greiner(1985) Theorem.

In what follows, p(A) := {X € C | [[(A = A)zx) < oo} and o(A) := C\ p(A) stand,
respectively, for the resolvent set and the spectrum of A, a densely defined linear operator in a
Banach (Hilbert) space X.

In order to establish notation and nomenclature within the theory of Cpy-semigroups, we
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suggest a quick read of the Appendix A. We also suggest some books for the introductory study
of semigroups: [7, 29, 35, 47, 51, 52, 62].

Theorem 1 (Theorem I1.10 in [29]). A Cp-semigroup (T'(t))>0 on a Hilbert space X is uniformly
exponentially stable if, and only if, its generator —A satisfies C_ C p(A) and

sup [[(A +A) 7 £x) < o0
ReA<0

Remark 1. A uniform bound for the resolvent is not sufficient to ensure exponential stability

on general Banach spaces; see Counterexample IV.2.7 in [29].

The works of Lebeau [39, 40] and Burq [19] raised the question of what is the relation
between the growth rates for norm of the resolvent and the decay rates of the norm of semigroup
orbits. More precisely, assuming a spectral condition under the generator, o(A4) C C4 in (1), and
| R(is, A)l|z(x) — oo as |s| — oo, then (T'(t)):>0 is not exponentially stable and one typically
obtains other asymptotic behavior.

Until 2010, much attention has been paid to polynomial decay rates of the norm of semigroup
orbits. In the work of [9], Batkai, Engel, Priiss and Schnaubelt proved that for uniformly bounded
semigroups, a polynomial growth rate of the norm of the resolvent implies a specific polynomial

decay rate for classical solutions to (1).

Theorem 2 (Theorem 3.5 in [9]). Let (T'(t)):>0 be a bounded semigroup on a Banach space X
with infinitesimal generator —A such that o(A) NiR = (). Let s > 0 and set

M(s) = sup [|(i€ + A) Mz (2)
If there exist constants C, 3 > 0 such that M(s) < C(1+ s)?, then for each ¢ > 0, there exists a

positive constant C. such that for each ¢t > 0,
1
IT@)(1+ A) o) < Cet™ 577 (3)

Liu and Rao obtained in [38] sharper estimates than those given by (3) in case X is a Hilbert

space.

Theorem 3 (Theorem 2.1 in [38]). Let X be a Hilbert space, and let (T'(t))¢>0, A and M be as in
the statement of Theorem 2. Then, if there exist constants C, 3 > 0 such that M (s) < C(1+5)5,
then

l+1
1T 1+ A) Vo) = O (“‘ﬂ*“) o oo,

=

In [12], Batty and Duyckaerts extended this correspondence to the case where the resolvent
growth is arbitrary; they were also able to reduce the loss € > 0 (see relation (3)) to a logarithmic

scale.
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Theorem 4 (Theorem 1.5 in [12]). (M,e-Theorem) Let (7'(t));>0 be a bounded semigroup
on a Banach space X with infinitesimal generator —A such that o(A4) N iR = (. Let
M : (0,00) — (0,00) be given by (2); then, there exists a positive constant C' such that

1
1T+ A) o) =0 ~=1 7 |+ t = 00 (4)
(0 Mlogl(Ct)
where Mlggl is the right inverse of Miog(s) := M (s)(log(1 + M(s)) +1log(1+ s)). In particular, if
M(s) < C(1+s)? for any 8> 0 and C > 0, then

oe()\ /5
IO+ 4) e =0 (52) 7t oo,

Table 1: M,

M /M~ (ct) | 1/My;(Ct)
C e Cs
log s et e=Ct/?
(1+s)? t—1/8 t=1/Blog(t)1/?
CS 1 1
c log t logt

Source: Compiled by the author.

Still in [12], Batty and Duyckaerts conjectured that the logarithmic correction may be
dropped in the case of Hilbert spaces, but one cannot expect rates better than (4) for general
Banach spaces. Then, Borichev and Tomilov partially solved the conjecture in [18]; namely, they
have shown that in case of a power-law resolvent growth, the logarithmic correction loss is sharp
on general Banach spaces (it is worth noting that this optimality is also valid for sub-polynomial
functions, as recently shown by Dubruyne and Seifert in [27]), but that it is not necessarily true

on Hilbert spaces.

Theorem 5 (Theorem 2.4 in [18]). Let (T'(t)):>0 be a bounded Cy-semigroup on a Hilbert space
X with generator —A so that iR C p(A). Then, given 5 > 0, the following assertions are

equivalent:
L |[(is + A) Ml gx) = O(1s]?), [s] = oo
2. [T 1+ A) Y ox) =0 YP), t = .

By seeking to answer the conjecture of Batty and Duyckaerts for a larger class of functions

than power-law type, Batty, Chill and Tomilov have obtained in [14] the following result.

Theorem 6 (Theorem 1.1 in [14]). Let (T'(¢))+>0 be a bounded Cp-semigroup on a Hilbert space
X with generator —A so that iR C p(A). Let § >0 and b > 0.

1. The following assertions are equivalent:
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(a) lI(is + A) o) = O log(ls]) ), Is| — oc.
(b) 1T (L +A) gy = O P log(t)~*/7), t — co.
2. If
I(is + A4) " 2x) = Osl7Log(|s])").  |s| = oo,

then for each € > 0,

1T+ A) | 2x) = O P log(t)"PF9), ¢ = o0

Remark 2. Theorem 6 remains valid when replacing |s|® log(|s|)~® with a function of the type

|s|¢(|s|)~!, where £ is an increasing and slowly varying function (see Theorem 5.6 in [14]).

Finally, Rozendaal, Seifert and Stahn in [56] have extended the previous results to a
larger class of functions, namely, those of positive increase: a continuous increasing function
M : (0,00) — (0,00) is said to be of positive increase if there exist positive constants a > 0,

c € (0,1] and sp > 0 such that

M(As)
M(s) —

cA®, A>1,5> 5.

Theorem 7 (Theorem 3.2 in [56]). Let (T'(¢))+>0 be a bounded Cp-semigroup on a Hilbert space
X, with generator —A, and let M : (0,00) — (0,00) be a function of positive increase. The

following assertions are equivalent:
1 iR C p(A) and [[(is + A) | i) = O(M(Js))). |s] = .
2T A+A) e = OMH(Y)), t — oo

So far we have presented a compilation of the main results for the situation in which A
has only singularity at infinity, i.e, [|R(is, A)llzx) — oo as |s| — oo; there are also some
other works in the literature that study the decay rates of Cp-semigroup for this situation, for
example [9, 23, 50, 57, 63]. Nevertheless, there are many other works that study decay rates for
the situation in which A has a singularity at zero [14, 22, 55, 56], or even when A has singularity
at zero and infinity [14, 42, 55, 56]. In the present work, we consider all of these scenarios.

Until this point, we have presented some of the main results of the asymptotic theory of
bounded Cy-semigroups. Nevertheless, there are many natural classes of examples where the
norm of the resolvent of the generator grows with a power-law rate as |s| — oo, for example, but
the semigroup is not uniformly bounded, or where it is unknown whether the semigroup is in
fact bounded. For example, this happens with some concrete partial differential equations, like
the standard wave equation with periodic boundary conditions; here, uniform boundedness fails
(see [55] for a more complete discussion on these examples).

The currently available literature on polynomial or other types of decay deals almost

exclusively with uniformly bounded semigroups. To the best of our knowledge, the following
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result due to Batkai, Engel, Priiss and Schnaubelt is the first in the literature that proves

polynomial decay for not necessarily bounded semigroups. In what follows, wo(T) :=
limy 00 (log [[T'(t) [l 2(x)) /-

Theorem 8 (Proposition 3.4 in [9]). Let (T'(t))s>0 be a semigroup defined in a Banach space X
with generator —A such that there exists 8 > 0 so that the map A +— (A + A)~!1(1+ A)~7, with
Re A > wy(T'), has a bounded holomorphic extension to Re A > 0. Then, there exists a positive
constant C,, 5 such that for each n € N, § € (0,1] and ¢t > 0,

1T () (1 + A) P10 ) < Crpt ™

Then, by using geometrical properties of the underlying Banach space (like its Fourier type),

Rozendaal and Veraar have shown the following result (see Theorem 4.9 in [55]).

Theorem 9. Let (T'(t)):>0 be a Cp-semigroup with generator —A defined in a Banach space X

with Fourier type p € [1,2], and let % = % — 1% (where %D + 1% = 1). Suppose that C_ C p(A)
and that there exist 3,C > 0 such that [|[(A + A) 7! zx) < C(1 + [A])? for each A € C_. Let

T > [+ 1/r; then, for each p € [O, T_Bl/r - 1), there exists C,, > 0 such that for each ¢t > 1,

7)1+ A) " lex) < Cpt ™" ()

In case X is a Hilbert space (which corresponds to p = p’ = 2 and r = o), they have shown

the following result.

Corollary 1 (Theorem 1.1 in [55]). Let (T'(t))¢>0 be a Cp-semigroup with generator —A defined
in a Hilbert space X. Suppose that C_ C p(A4) and that there exist 3,C > 0 such that
A+ A) e <CA+ IA|)? for each A\ € C_. Then, for each 7 > /3 there exists a positive
constant C; such that for each t > 1,

1T+ A) || gx) < Crt' 777

Main results

By using the techniques developed in [55] that involve Fourier Multipliers and also inspired by
the techniques developed by Batty, Chill and Tomilov in [14] that involve functional calculus of
sectorial operators, we have obtained decay rates for Cp-semigroups as defined in the statement
of Theorem 9 by assuming that the norm of the resolvent of the generator behaves as a function
of type |s|?log(|s])® as |s| — oo (a particular example of a regularly varying function). Under
these assumptions on the resolvent and without the assumption of boundedness of the semigroup,
to the best knowledge of the authors, these estimates are new and constitute one of the main

results in this work.

Theorem 10. Let § > 0, b > 0 and let (T'(t)):>0 be a Cp-semigroup defined in the Banach space
X with Fourier type p € [1,2], with —A as its generator. Suppose that C_ C p(A) and that for
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each A € C with Re()\) <0,
I+ A) Ml S (LA (log(2 + [A)".

Let r € [1,00] be such that % = ;1) — 2%, and let 7 > 0 be such that 7 > 8 + % Then, for each
d > 0, there exist constants cs, € [0,00) and tg > 1 such that for each ¢ > t,

b(‘rf'r_1 146

Tfr_l
1T+ A) o) st 7 log(l4t) 7 v (6)

The next result is the particular case of Theorem 10 where X is a Hilbert space.

Corollary 2. Let /3, b, A and (T'(t))+>0 be as in the statement of Theorem 10 and let X be a
Hilbert space. Let 7 > (. Then, there exist constants ¢, > 0 and #3 > 1 such that for each
t 2> to,

IT() (1 + A) 7 llox) < et 7 log(1+1) 5. (7)

Note that in case b = 0, one obtains from Theorem 10 the following result.

Corollary 3. Let 5 > 0 and let (T'(t)):>0 be a Cp-semigroup defined in a Banach space X with
Fourier type p € [1,2], whose generator is given by —A. Suppose that C_ C p(A) and that for
each A € C_, [[(A+ A) gy S (1 + IA[)?. Let r € [1,00] be such that 1 = % - 1%’ and let
7 > 0 be such that 7 > B+ 1. Then, for each § > 0 and each p € [0,1— (7 —r~")/3], there exist
constants c5 » € [0,00) and to > 1 such that for each t > ¢,

lrié

[T (1 + A) " x) < csrt™"log(l +1) (8)

Remark 3. 1. Note that relation (8) presents a sharper bound to ||7'(t)(1+ A)~7||z(x) than
the one presented in relation (5); namely, in relation (8), the exponent in ¢ is precisely the
unattained upper-bound of p in Theorem 9. This partially solves the question posed by
Rozendaal and Veraar in [55] if whether (5) is valid for p = T Ur

— 1 or not, given that
the bound presented in (8) has a logarithmic correction. Note that if one lets b = 0 in (7),
then Corollary 2 coincides with Corollary 1 for 7 > 5.

2. We also note that the power law in the logarithmic factor presented in (8) depends on the
geometry of the space (that is, its Fourier type): a greater value of r (which means that

the space is “closer” to a Hilbert space) results in a lesser logarithm correction.

3. Furthermore, such logarithm factor is not optimal, even in case b = 0. Namely, it is
possible to obtain

a version of Proposition 2.2.1 and Theorem 2.2.1 (these two results are central in the
(Tfril)iﬂ

proof of Theorem 10, which consists of "eliminating" the operator log(2 + A)fb B T
(r—r—1) 5
from || T(¢)(1 + A)" " log(2 + A)_b CR— llz(x)), where log(1 + 15)1%(s is replaced by

146

log(1+t)log(1+log(1+1t)) ™ ; we do not present a proof of this statement, given that the
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techniques discussed here seem to be far from optimal. We just stress that such replacement
is possible given that the functions log(1 + ¢) and log(1 + log(1 + t)) are both complete

Bernstein functions (see Definition E.1.2).

We have also obtained similar decay rates for the situation in which 0 € o(A). In the
following result, as in Theorem 10, let us assume that the norm of the resolvent grows with order

s|™*1og(1/]s])* as |s| — 0 and with order |s|?log(|s|)? as |s| — oo.
||~ log g

Theorem 11. Let (T(t)):>0 be a Cp-semigroup defined in the Banach space X with Fourier
type p € [1,2], with —A as its generator. Suppose A injective, C_ \ {0} C p(A) and that there
exist « > 1, B, a,b > 0 and positive constants C; and Cs such that

CiAT*log(1/[A)®, Al <1

(9)
CalAPlog(IA])®, A > 1,

A+ Az < {
with A € C_ \ {0}. Let o,7 be such that ¢ > a — 1 and 7 > B + 1/r. Then, for each
pE [O,min{%ﬂ -1, 77’%_1 — 1}} and each § > 1—1/r, where r € [1, oc] is such that 1 = %—I%,
there exist Cj, > 0 and 9 > 1 so that for each ¢ > 1,

IT(6) A% (1 + A) 7Tl £(x) < Cs b log(1 + ) PTHDF/TH0, (10)

with ¢ = max{a, b}.
Remark 4. By assuming (9), it is natural to let a > 1. Indeed, suppose that a € [0,1); then,

1

dsth o (A) = IR, A)llecxy < A (og(1/]A])*

Since 0 € o(A), it follows that dist(\,o(A)) > |A], so [A|*"L(log(1/|A]))™* < C. On the
other hand, since a € [0,1), it follows that /l\in})|)\\a*1(log(1/\)\\))*“ = oo, from which follows
—

that a > 1if 0 € o(A).

Remark 5. In case X is a Hilbert space (that is, when p = 2), one has r = oo, and so (10) is
just
IT(#)A%(L+ A) ™ Tl g(x) < Cspt ™" log(L + 1) IPIHDH,

In case a = b = 0, one has the following result.

Corollary 4. Let (T'(t))¢>0 be a Cp-semigroup defined in the Banach space X with Fourier type
p € [1,2], with —A as its generator. Suppose A injective, C_ \ {0} C p(A) and that there exist
a > 1, f >0 and positive constants C; and Cs such that

Cl’)‘liox |)‘| <1

A+ At <
II¢ ) e {CQ|A|B, A1

with A € C_ \ {0}. Let o,7 be such that ¢ > a — 1 and 7 > 8 + 1/r. Then, for each

pE [O,min{‘%l -1, T_’% — 1}} and each § > 1—1/r, where r € [1, 00| is such that % = :711_1%’
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there exist C), 5 > 0 and to > 1 so that for each ¢t > 1,
IT(£)A% (1 + A) "7 |l ox) < Cspt P log(L+ )/ (11)

Remark 6. 1. Note that relation (11) improves the estimates obtained by Rozendaal and
Veraar in [55] (see Theorem 4.9 in [55]). More precisely, we show that it is possible to

replace the factor ¢¢, with £ any positive number, by log(1 + t)l/ ™9 in their estimate.

2. Note that even in case X is a Hilbert space, the estimate obtained in Corollary 4.11 in [55]
still has a factor ¢%; Corollary 4 shows that it is possible to replace it by log(1 + t)5, with
o> 1

3. Corollary 4 partially solves the question posed by Rozendaal and Veraar in [55], if whether

1 e |
estimate (11) is valid for p = min { oYl 1, T ﬂr - 1} or not, given that the bound
o

presented in (11) has a logarithmic factor.

We also studied the situation in which there is only a singularity at zero (but not at infinity);
this situation is also discussed in [14, 22, 55, 56]. As in [22, 55, 56|, we suppose that the Cp-
semigroup is asymptotically analytic on the Banach space X (see Definition 2.4.1 and Section 2.4

for more details).

Theorem 12. Let A be an injective sectorial operator defined in the Banach space X such that
—A generates (T'(t))i>0, an asymptotically analytic Cp-semigroup on X. Suppose that there
exist @ > 1 and a > 0 such that for each A € C_ \ {0},

I+ A) M2y S AT (og(1/1AD)" (12)
Let o0 > o — 1. Then, for each § > 0 there exists cs, > 0 such that for each ¢ > 1,
IT()AT(1+ A) 7l ox) < epot'™ " log(1 4 £) %+, (13)

In case a = 0, the estimate presented in Theorem 12 improves the one presented in Theorem
4.16 in [55]. More precisely, as in the previous cases, we have shown that it is possible to replace

the factor t° by log(1 + t)!*¢, where ¢ > 0 (see equation (14)).

Corollary 5. Let A, X and (T'(t))s>0 as in Theorem 12. Suppose that C_ \ {0} C p(A) and
that there exists o > 1 such that [|R(A, A)|lzx) S |7 for each A € C_\ {0}. Let 0 > o — 1.
Then, for each § > 0, there exists c5, > 0 such that for each ¢ > 1,

o+1
IT(£)A%(1+ A) || pix) < esot' ™o log(1 + 1)+ (14)
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Part 11

The existence of orbits of operator semigroups that converge to zero arbitrarily slowly has
been studied by many authors in the last two decades (see |2, 4, 43, 44, 45, 46| and references
therein). Pioneering results were established by Miiller in the discrete case |43, 44, 45]. Namely,
given any ¢ > 0 and a sequence of real numbers (ay,),>1 satisfying |a,| < 1 for all n > 1 and
lim a, = 0, a known result in 43| states that if 7" is a bounded operator on a complex Banach

n—oo
space X with spectral radius equal to 1, then there exists a normalized x € X such that

1T 2| > (1 - €)an], ¥n>1.

With respect to the continuous case, Miiller and Tomilov [46] have established several

analogous results.

Theorem 13 (Theorem 5.3 in [46]). Let (T'(t))+>0 be a weakly stable Cp-semigroup on a Hilbert
space X (i.e, it converges weakly to zero as t — oo) such that wy(7) = 0. Let g : Ry — (0,00)
be a bounded function such that tlim g(t) = 0 and let ¢ > 0. Then, there exists x € X so that
—00
||z|| < sup{g(t)} + ¢ and
>0
(T (t)z,x)| > g(t), Vt=0. (15)

Contextualition

Let X a separable complex Hilbert space and let A be a pure point negative self-adjoint operator

and let (,,)n>1 be the normalized eigenvectors of A, say Ax,, = Ay, so that (A\,)n>1 C (—00,0)
N

are the corresponding eigenvalues which satisfy limsup A,, = 0. For x = Z bjr; € X, one has
n—oo

j=1
N
|etz|| = jz::lbjet)‘j:):j < N1%Sg§v‘bj’€)\t’
with A = max A\; < 0, that is, for these initial conditions, one has that the orbits go to zero

I<j<N
exponentially fast. Due to the abstract results by Miiller and Tomilov [46] (see also Theorem 13),

given 3 : Ry — (0,00) with
lim B(t) = oo,

t—o00

there exists x € X such that

lim sup 3(t)||e"! 2| = oo,
t—o00

since 0 € o(A) in this case. In this specific context, in Theorem 14 i), we refine this result
in the following sense: we show how it is possible to perturb any initial condition (in terms of
the spectral structure of the generator) to explicitly provide a new initial condition whose orbit

goes to zero slower than any prescribed speed, at least for a sequence of time going to infinity,
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and in item ii), we obtain a version of such result in terms of perturbations of the infinitesimal

generator.

Theorem 14. Let X a Hilbert space and let 8 : Ry — (0,00) be a strictly increasing onto

function, so

i)

ii)

lim B(t) =

t—o0
Let A be a pure point negative self-adjoint operator whose eigenvalues (Ap)p>1 C (—00,0)
satisfy limsup A\, = 0. For each x € X, there exists a sequence (zj)r>1 C X that converges

n— o0
to z such that, for each k,
limsup A() ez = o0
t—o0

Let A be a negative bounded self-adjoint operator. Then, for each 0 # x € X, there exists
a sequence (Ag)i>1 of negative bounded pure point self-adjoint operators that strongly

converges to A such that, for each k,

lim sup B(t)||et*z|| = oo
t—ro0

Remark 7.

i)

ii)

iii)

o)
Let us describe the vectors zj in the statement of Theorem 14 i). Write = = Z byx; and,
=1
for each subsequence (\j,);>1 of eigenvalues of A with Aj, 10 and Y2, m < 00, one
> "

may pick

T = blaﬁl +
Z l;}-l V 1/|)‘]l

It follows from the Spectral Theorem and dominated convergence that for each x € X,

lim [|e"z(|* = 42 ({0}) + lim e dpg (w) = pg ({03) = | EA({0})=]*.
t—o00 t—o00 R,\{O}

t4 is stable (i.e, all the orbits go to zero as t — oo) if, and only if, 0 ¢ o(A).

Therefore, €
Hence, Theorem 14 i) is particularly interesting in this case. Note that a well-known
example of injective operator that satisfies the hypotheses of this theorem is the Hydrogen

atom model restricted to its point subspace; see Chapter 11 in [26] for details.

If 0 € o0(A), then there exists 6 > 0 such that for each ¢y € X and each ¢ > 0, by the
Spectral Theorem,

-9
leta))? = / A (w) < o2 |z?,
— 00

that is, all orbits go to zero exponentially fast as t — oo.
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iv) Given any nonzero initial condition z € X, Theorem 14 ii) says that we may always
(strongly) perturb the negative bounded self-adjoint infinitesimal generator A so that the
orbit of 1 goes to zero slower than a prescribed speed [(t), at least for a sequence of time

going to infinity.

Let us now consider unitary evolution groups. Given a self-adjoint operator A in X, recall that

—itA

Rot—e ™ isa one-parameter strongly continuous unitary evolution group and (e Z)teRr

is the unique solution to the Schrédinger equation

Owx = —iAx, teER,
z(0) =z € D(A).

A standard (and important in quantum mechanics) dynamical quantity that probes the large

time behavior of e#4z is the so-called (time-average) return probability, given by the law

L[t
Wek(t) == t/ (e, z)[* ds.
0
By the Spectral Theorem and Wiener’s Lemma (Theorem 2.2 in [34]; see also |26, 6]),

lim W) = |ur (AN

t—o0
AER

in particular, if A has purely continuous spectrum, then

lim WA(t) = 0.

t—00

Our next result, Theorem 15, ensures the existence of orbits, under each spectrally continuous

unitary evolution group, with arbitrarily slow power-law convergence rates.

Theorem 15. Let A be a self-adjoint operator with purely continuous spectrum. Then, there

exists x € X such that for every € > 0,

lim sup £ WA(t) = co.

t—o00

Remark 8. Although the existence of orbits of operator semigroups that slowly decay is a
subject extensively studied in the literature, to the best of our knowledge, Theorem 15 is the
first general result on slow dynamics for (spectrally continuous) unitary evolution groups; see

also Example 1.2 and Remark 1.1 in [5].

Stimulated by results due to Miiller and Tomilov in [46], our main goal here is to obtain
orbits of self-adjoint semigroups and unitary groups (in this case, for the (time-average) return
probability) that converge slowly to zero. More precisely, by exploring local dimensional
properties of self-adjoint operators, we show explicitly how it is possible to perturb initial

conditions, or generators, to obtain orbits of self-adjoint semigroups that converge to zero
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arbitrarily slowly, at least for a sequence of time going to infinity (see Theorem 14 ahead).

We also obtain a result about slow power-law decaying rates of the return probability (see the

definition ahead) of unitary evolution groups with purely continuous spectrum (Theorem 15).
As an application of the arguments developed here, we compute (Baire) generically the local

dimensions of systems with purely continuous spectrum, as the following theorem shows.

Theorem 16. Let A be a bounded self-adjoint operator with purely continuous spectrum. Then,

there exists a generic set M C X such that for each x € M, the set
»i={w e o(A) | d;A(w) =0 and d:A(w) = o0}

is generic in o(A).

Using the Theorem 16 we show that the time-average (quantum) return probability, of (Baire)
generic states of systems with purely absolutely continuous spectrum, has an oscillating behavior

between a (maximum) fast power-law decay and a (minimum) slow power-law decay .

Theorem 17. Let A be a bounded self-adjoint operator with purely absolutely continuous

spectrum. Then, the set of x € X such that for each k € N,

liminf ' V*WA#) =0 and limsupt/*WA(t) = oo,

t—o0 t—o00

is generic in X, i.e., it contains a dense G subset of X.

Organization

This thesis is divided into three chapters. In Chapter 1, we review elements of operator
theory, functional calculus for sectorial operators, and present some properties of the logarithm
operator that will help us prove the results of Part I. In Chapter 2, we present some aspects of
the geometry of Banach spaces: Fourier types, Fourier multipliers, and we prove the estimates
obtained for Cp-semigroups that were presented in Part 1. In Chapter 3, we present the
results obtained for self-adjoint semigroups and unitary evolution groups presented in Part II.
We also provide some appendices composed of basic results from the theory of Cpy-semigroups
(Appendix A), spectral theory for self-adjoint operators (Appendix B), class of complete
Bernstein functions (Appendix E) and two appendices (C and D) with the proofs of some

results of Chapter 2 which were omitted.
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Chapter 1

Preliminaries

1.1 Operator Theory

In this chapter we present some basic results of operator theory on Banach spaces.

Throughout this chapter, X always denotes a complex Banach space.

Definition 1.1.1. Let A: D(A) — X be a linear operator on X. The resolvent set of A is given
by
p(A)i= (AEC| (A= A) 1 e £(X)}

and its spectrum by

g(A):=C\ p(A4).

Lemma 1.1.1. (a) (Resolvent identity) For each A\, u € p(A), the identity

holds.

(b) For each X\ € p(A), one has

1

IR Dlleco) 2 Fam oy

(¢) The function ¥ : p(A) — L(X,(D(A),| - ||a)), defined by ¥(A\) := R(X, A) is infinitely
differentiable and for each n € N,

() O = oty

where ||| 4 := ||z]| + ||Az|| for each z € D(A).

Proof. See Theorem 1.13 in [62]. O
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1.2 Adjoint Operators (Hilbert adjoint)

Definition 1.2.1. Let (X, (-,-)) a Hilbert space and let A : D(A) C X — X be a densely defined
linear operator. The (Hilbert) adjoint of A is the operator A* with domain

DAY ={ye X |3z X;(y,Tz) = (z,x), Ve € D(A)},

with z = T™y.

Definition 1.2.2. A densely defined linear operator A : D(A) — X on X Hilbert space is called
self-adjoint if A* = A (in particular, D(A*) = D(A)).

Theorem 1.2.1. Let X be a Hilbert space and let A be densely defined and symmetric. The

following assertions are equivalent.

a) A* = A,

b) o(4) C R;

¢) Let p(A) NR # (). Then, A is self-adjoint.

d) Let A be self-adjoint. Then we have, for each \ ¢ R,

1
< —.
1RO Dlleco <

Proof. See Theorem 4.7 in [62] or Theorem 2.2.17 in [26]. O

Here we present some examples of self-adjoint operators in the context of differential

equations; for more details, see Examples 4.8 a) e 4.8 d) in [62].

Example 1.2.1. a) Let X = L?(R) and define A : D(A) — X by the law Af = i%, with
D(A) = WH2(R). Then A, is a self-adjoint operator with o(A) = R.

b) Let X = L?(R") and let A = A, with D(A) = W22(R"). Then, 4 is a self-adjoint operator
with 0(A4) = (—o0,0].

Definition 1.2.3. Let A be a self-adjoint operator. A is called negative if for each = € D(A),

(x, Ax) < 0.

1.3 Sectorial Operators
For each w € (0,7), set S, := {2z € C| 0 < |arg(z)| < w}; set also Sy := (0, 00).

Definition 1.3.1. A linear operator A : D(A) C X — X is called sectorial of angle w if
o(A) C S, and M(A,w) := sup{||]AR(X, A)|lzx) | A € C\ S, &' € (w,m)} < 00. One denotes
this by A € Sectx (w).
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Figure 1.1: The spectrum of a sectorial operator.

a(A)

Source: Figure 1.10 in [65]

Set wy = min{w € (0,7) | A € Sectx(w)}, which is the minimal angle for which A is

sectorial. For the required background on sectoral operators, we refer to [32].

Remark 1.3.1. Let A: D(A) C X — X be a linear operator for which (—o0,0) C p(A) and

Ma i= M(A,m) = sup (¢ + 4) ) < oo
>

then, it follows that A € Sectx (m — arcsin (1/M4)).

Example 1.3.1. a) Let —A be the generator of a bounded semigroup (7°(t))¢>0; then, A is a

sectorial operator. Indeed, let M := sup;>( [|T'(t)||; then, by Theorem A.0.3 (Hille-Yosida
Theorem), one has C_ C p(A) and for each A € C_,

M
RN\, —A < — .
1RO ~A)leo) < oy
Now, if |arg(A)| > § 4 ¢ with € € (0,7), then

M M
< 9
|[ReA| — |A|sine

IR, =A)lleex) <

and A € Sectx(§ +¢), i.e, wg < m/2.

Let p € [1,00) and X = LP(R,X); the operator Af = f with D(4) = W"(R, X) is
sectorial with wq = T. Firstly, we shown that —A generates the Cp-semigroup (7'(t))s>o,
with T'(t) f(s) = f(s —t) for each f € D(A). Let B the generator of (T'(t)):>0. We know that
Cl(R,X) C D(B) and it is dense in LP(R, X). Since C}(R, X) is invariant under translations,
it follows that C}(R, X) is dense in D(B) and still C}(R, X) is dense in W1P(R, X). Since both
A and B are closed operators (semigroup generators are always closed, see Proposition G.2.3 in
[66]), it follows that D(A) = D(B), and so —A = B. Therefore, A € Sectx(7/2), by item a).
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c¢) Suppose that the resolvent of A: D(A) C X — X, satisfies for each A € C\ R

M
< —.
1RO Dlleco <€ oy

Then, A2 is a sectorial operator of angle 0. In particular, this is the case if —iA generates a

bounded Cp-group. See item 4 of example 9.1 in [33].

d) Theorem A.0.2 may be formulated as stating that for a densely defined operator A on a
Banach space X, A is sectorial of angle 0 < § < 7, if and only if —A generates a bounded
analytic Co-semigroup (7'(t))s>0 on Sy for some 0 < 6 < 3.

The following result presents some useful properties of sectorial operators.
Lemma 1.3.1. Let A € Sectx(wa). Then,

(a) (1+A)"1 A(1+A)~! € Secty(wa). If Ais injective, then A~ € Sectx(wa), and the identity

11 -

AMA+A ) T=1-s(5+A4 1.1
holds for each 0 £ X\ € C .

(b) Let o € (0,1) and set A, := (A +0)(1 +0A)~! € L(X); then, A, is a sectorial operator,

sup My, < oo, and for each A € p(A), R(\, A,) converges to R(\, A) in L(X) as 0 — 0T,
0€(0,1)

Proof. We begin proving relation (1.1). Note that for each 0 # A € C,
AMA+A ) t=1-A70+AH ™ = 1-(A+4aHAa)!

1/1 -1
— 1—()\A+1)‘1:1—)\</\+A) .

(a) For each A\ ¢ S,,,, it follows from (1.1) that

1 /1 -1
IAR(A, (1 4+ A) Dl ex) < 1+ o ‘ (A -1- A)
£(X)
Moreover, by relation (1.1)
ARMAL+A)™) = ARM1-(1+A4)7YH
A A 1 -1
= —1+(14+4)Ht= — 1+ A4
A=A = 2 A ()
A A A !
= —1+(1+A)Ht= - A
AA=T+A+A)T) T =375 (/\—1)2<)\—1+ ) !

and since A is a sectorial operator, one concludes that (1+A)~! and A(1+ A)~! are also sectorial

operators.
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(b) Let o € (0,1), A € S,,,, and note that

A—(A+0)14+0A)1 = A14+64)— (A+0))(1+54)71
A=0c+ Mo —1DA)(1+0A)™!

-1
)\5—1<)\—0 —|—A> <1+A> ;
o Ao —1 o

then,

AA - (A+o)(1+oA))h =

A A—o Y A—o -1
= A A A
)\U—1</\J—1+ ) +)\J—1 <)\0—1+ >

A—o -1 Ao A(A—o0) [(A—0 -1
A — A
+ ) v (Ao —1)2 <)\J—1+ )

<;U__Ul +A>_1. (1.2)

Ao A1 —o?
Ao—1 (Ao—1)

N [ ~—

Therefore,

1 Mo A1 = 0®)] Ma|ro — 1]
ey = Dot ooiP pool
_ e M- o)
~ |Ao—=1]  |Ao—1||]A—o0]
_ Ml
-~ A=1/a| |Ae—=1A—0]|’

[AA=(A+0o)(1+0A)!

(1.3)

proving that A, is sectorial. Now, let A € p(A) and by (1.2) and resolvent identity (Lemma 1.1.1-
a)) note that,

o — o2 —0 -1
A=—(A+0)1+cA) ™ H - -a)1 = o1 (Ala—l)z (;\0—1 +A>
— o2
+ ()\10_1)2(>\+A)_1
- (/\1;012)2(—A+A)1+(—/\+A)1
- Ao —1

1— o2 A—oO A—oO -1

- | == A A+ AL
()\0—1)2< )\U—1> ()\or—l+ > (=A+4)
Mo2 —2 o+ 0

+ Do 1) (=A+4)7L
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Thus, by (1.3), one has

g

I0=(A+a)A+oA™ = A=A eeo < 5o

AR (ST I BT
(Ao —1)3 Ao —1 £
L(X)
No?2 -2 o+ o 1
o A202 —2 o+ 0o
< A+ A
n o—Xo | [|A|Ad = 1||\ — | + My )
Ao — 12|\ [N=1/a||da —1||]N=46| ) /)’
which goes to zero as o — 07. O

1.3.1 Functional Calculus for Sectorial Operators

We begin with the Riesz-Dunford functional calculus of bounded operators: for each A €
L(X), let U be an open connected of o(A), let v be a path in U around o(A) and let f be a
complex function whose restriction to U is holomorphic; then, one may define the bounded linear
operator f(A): X — X by the law

F(A) = / F(2)R(z, A)dz. (1.4)
Y

"~ 2mi

Now, consider the Banach algebra
H§°(Sy) :=={f:S,— C| fis holomorpic and exist C > 0,s > 0;|f(z)| < Cmin{|z|"%, |z|°},V z € S, },

endowed with the norm

1 lrge(s.) = sup{lf(2)] | z € Su}-
Now, let A € Sectx(wa), ¢ € (wa, ) and f € HG®(S,,). Define f(A) € L(X) by the law

FA) = [ F)R(z A)dz, (1.5)

- 211 Fw’
where T, stands for the positively oriented boundary of S, for ' € (wa,p). A standard
argument using Cauchy’s Integral Theorem shows that this definition is actually independent of

w’. An interesting reference for this Functional Calculus and its applications is [32].

Remark 1.3.2. Let o, 3 > 0, v1,v2 >0, ¢ € (0,7) and

Za

(14 2)**+Plog(2 + 2z)v1 (27 — ilog(z))v2’

fapo10:(2) = z € S
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it is straightforward to show that fo g, 0, € H3°(S,). Therefore, by (1.5), one may define

1

fagorw(4) = i N faBo1,00(2)R(2, A)dz

1 o
T 2mi 1.
2mi mﬂl+@w%bﬂ2+dm@w—u%@»wR@ﬂ“Wv (1.6)

where T’/ is the positively oriented boundary of S, for w’ € (w4, ¢). If A is invertible, then one
may let &« = 0 in the expression (1.6). This operator will play an important role in the proofs of
Propositions 2.2.2, 2.3.2 and 2.3.3.

Lemma 1.3.2 (Lemma 2.3.1 in [32]). Let A € Sectx(w) and let ¢ € (w,m). Then, if B is
a closed operator which commutes with R(A,\), A € p(A), then B commutes with f(A). In
particular, f(A) commutes with A and with R(X, A) for each A € p(A).

The next result is used in the proof of the important Moment Inequality.

Proposition 1.3.1 (Proposition 2.6.11 in [32]). Let ¢ € (0, 7] and let f € H5°(S,). Then, there
exists a constant C'y > 0 such that

gwmﬂMMSQM%@

for each sectorial operator A € Secty(w), with w € (0, ). Moreover, given 6 € [0, p — w), one
has [[f(AA) | ccx) < CrM(A, ¢ — 0) for each A € C, |arg)| < 6.

Proposition 1.3.2 (Moment Inequality). Let A be a sectorial operator on the Banach space X.
Let o, B, v € R such that v < 8 < a and 7 > 0 or v = 0. Then, there exists a constant C' > 0
such that for each x € D(A%),

c oy g
4% < g 40 4%,
where 0 := 5 7
o —7
Proof. Let ¥(z) = (1+z)2a(zl—|—log( )2) € H{°(S.,) and note that z%y(z),z"*p(z) are
1 oo
still bounded functions. Define h(z ' 9(s2) g(z) = / w(sz)ds, where ¢ :=
Cc J1 S

/ wg)ds then, foreacthSwA,h(z)—i—g z) = / w( )d =1
0 0 ~

Now, let A(z) := 2= (@ Fh(2) and §(z) := 28~7¢g(2), and note that h, g € H3°(S,,, ). For each
x € D(A%) and ¢ > 0, one has

APx = h(tA) APz + g(tA) APz = t° Ph(tA) A% + =P~ g(tA) A7z
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Then, it follows from Proposition 1.3.1 that

1A%

IN

P R(tA)| x| A + =BGt A) || £ ox) | AV |
Crt @ VA=) Aoz || + Cyt~ 9| A7z,

IN

By taking the infimum with respect to ¢ > 0, one gets

0||A7x -0 o 1—6)|| A%\’
1% < 6 (i) vl + G (S ) v
o \1- 1_p\1-?
< G(gog) Ml + G (F50) Al Al
< Yol 1—6 .0
< 2C<(1_9) +(50) | nelrpaca
where C' := max{Cj, Cj }. O

Now we recall some basic properties of the functional calculus of sectorial operators
based on complete Bernstein functions. We use [14] as a reference in our discussion (see

also [13, 15, 16, 17]).

Definition 1.3.2 (Definition 3.3 in [14]). Let A € Sectx(wa) be densely defined and let
f € CBF, with Stieltjes representation (a, b, i) (see appendix E). One defines the linear operator
fo(A) : D(A) — X by the law

fo(A) = az + bAz + /: A(A+ N ""zdu()), = € D(A). (1.7)

Set f(A) := fo(A). We call the linear operator f(A) a complete Bernstein function of A.

Theorem 1.3.1 (Theorem 3.6 in [14]). Let A be a sectorial operator on a Banach space X and
let f € CBF. Then, f(A) is sectorial.

1.3.2 Logarithm operator

Given the nature of our problem, an investigation involving the definition of the logarithm
of an injective sectorial operator is required. Such operator was first defined by Nollau [48] and
was subsequently studied by Okazawa [49] and Haase [31].

Let A be an injective operator over the Banach space X such that A € Sectx(wa). Let
¢ € (wa,m) and set 7(2) := z(1 4+ 2)72; note that 7 € HS*(S,) and 7(A) = A(1 + A)~2, by
relation (1.6) (with v1 = v = 0, « = 1 and 8 = 1). Set B(Sy) :={f: S, = C | 3In e
N such that 7" f € H3®(S,)}. Since A is injective, 7(A) is also injective, and so one may define
for each f € B(S,)

FA) = (r(A) (T (2) £ (2)))(A), (1.8)

with n large enough so that 7" f € Hg°(S,).
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Remark 1.3.3. Definition (1.8) is independent of the choice of n (see Proposition 2.1 in [31]).
Note that f(A) is a closed operator with domain D(f(A)) = {z € X | (7"(2)f(2))(A)x €
D(7(A)~H"}. We refer to [31] for more details.

Definition 1.3.3 (Haase, [31]). Let A € Sectx(wa) and injective. Let f : Sz — C be given by
the law f(z) =log(z). Since f € B(S,), then

log(A) := f(A). (1.9)

Remark 1.3.4. Let A € Sectx(wa) be densely defined. It follows from (E.2) and from
Definition 1.3.2 that for each z € D(A),

log(1+ A)x = / A(A+ t)fla:%. (1.10)
1

This representation for log(1 + A) was presented for the first time in [48].

Definition 1.3.4 (Okazawa, see [49]). Let A € Sectx(w4) and injective. Suppose that D(A)
and Ran(A) are dense in X. Then, log(A) is defined as the closure of

log(1 + A) —log(1 4+ A™1h).

Remark 1.3.5. Naturally, the Definitions 1.3.3 and 1.3.4 for log(A) when A is an injective
operator must coincide when D(A) and R(A) are both dense; for details see [24].

The following result is a direct consequence of Definition 1.3.4.

Lemma 1.3.3. Let A € Sectx(wa) be injective and densely defined (with not necessarily dense
range). Then, for each x € D(A) NRan(A),

log(A)x = log(1 4 A)z —log(1 + A1)z,

Proof. Let 0 € (0,1) and set A, := (A+0)(1+0A)~! € L(X). Tt follows from Definition 1.3.4
that for each z € X, and in particular, for each D(A) N Ran(A),

log(Ay )z = log(1 + Ag)x — log(1 4+ A1)z (1.11)

Now, it follows from Lemma 3(c) in [48] that for each =z € D(A) N Ran(A),
lirg+ log(Ay)z = log(A)z and lirg+ log(1 4+ Ag)x = log(1 + A)x; thus, by (1.11), one has for each
o— o—

x € D(A) NRan(A) that

hrng log(1+ A )z = lim log(1 + Ay)z — lim log(Ay)z = log(1+ A)z — log(A)z.
o—

o—0t o—0t

Since A, A+1, A~ + 1 are sectorial operators, log(1+ A~!) is well-defined by (1.9); thus, it
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follows from Proposition 3.1.3 in [24| and Lemma 3.1 in [31] that for each x € D(A) N Ran(A),
log(1 + A)z — log(A)z = log(1 + A)z + log(A ™z = log((1 + A)A Yz = log(1 + A~ ).
Then, it follows from the previous relations that for each z € D(A) NRan(A),
lim log(1 + A; Yz =log(1 + A~ ),
o—07t
and so, for each z € D(A) N Ran(A), one gets

log(A)z =log(1 4+ A)x —log(1 + A~ ).

Let us now recall some properties of the logarithm and fractional power.
Lemma 1.3.4. Let A € Sectx(wa). Then, the following assertions hold:
(a) A is sectorial, with o € (0,1).

(b) If A € £(X), then for each o > 0, A7 € L(X).
(c) If A is injective, then for each o € [0, 1], log(A?) = o log(A).

(d) Let (T'(t))e>0 be a Cp-semigroup on the Banach space X, with —A its infinitesimal generator.
Let, for each € € (0,1), f.(A) = (1 + A)° — 1. Then, for each t,s > 0,

T(1)f-(A)(s + [=(A) ! = fo(A)(s + f-(A) 7' T ().

Proof. (a) Given that for each o € (0,1), [s — s7] € CBF (see Example E.1.1-(a)), it follows
from Theorem 1.3.1 that the operator f,(A) = A is sectorial. (b) This is Proposition 3.1.1 (a)
in [32]. (c) This is Satz 5 in [48]. (d) It follows from Theorem 3.9 (a) in [14] that for each
t >0, T(t)f-(A) C f-(A)T(t), and so, by Proposition B.3 in [7], one has T(t)(s + f-(A))~! =
(s + f-(A))~'T(t) for each s,t > 0. O
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Refined Decay of Cj-semigroups on Banach
spaces
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Chapter 2

Refined Decay of Cj-semigroups on

Banach spaces

In this chapter we present the proof of the results presented in Part I of Introduction, that
is, our results regarding the decay of Cy-semigroups. As mentioned there, we have refined some
results in the literature (more specifically, some results presented in [55]) by taking into account
only the geometry of the Banach space (i.e., its Fourier type) and the growth of the norm of the

resolvent of the generator.

2.1 Preliminaries: Fourier Multipliers and Stability for -
Semigroups

In this section we define Fourier types, Fourier multipliers, and present Theorem 2.1.2

(Theorem 4.6 in [55]), which is very important in the proof of our results.

2.1.1 Fourier Types

Definition 2.1.1. Let p € [1,2]. A Banach space X is said to have Fourier type p if the Fourier
transform F : S(R, X) — L¥ (R, X) extends to a bounded operator in LP(R, X).

Example 2.1.1. a) Every Banach space X has Fourier type 1. Indeed, for each f € L'(R, X)
and s € R,

F()e) = [ e rwat,
R
so [|F(f)l[zee < I flLr-
b) It follows from Plancherel Theorem that every Hilbert space X has Fourier type 2.

c) Let (S, A, 1) be a measure space; for each p € [1,00), LP(S) has Fourier type min{p, p'}.

d) Let X be a Banach space, (S,.A, 1) be a measure space and let r € [1,00). If X has Fourier
type p, then L"(S, X) has Fourier type min{p,r,r'}.



38

The next result shows that the converse of item b) in Example 2.1.1 is also valid, that is, any
Banach space with Fourier type 2 is isomorphic to a Hilbert space (for more details, see Theorem
2.1.18 in [65]).

Theorem 2.1.1 (Kwapieri). For a Banach space X, the following assertions are equivalent.
1. The Fourier-Plancherel transform extends to a bounded operator on L?(R, X).

2. X is isomorphic to a Hilbert space.

2.1.2 Growth at infinity

Let X and Y be Banach spaces and let m : R — £(X,Y) be a X-strongly measurable map
(i.e. the map & — m(&)x is a strongly measurable Y-valued map for every x € X'). One says that
m is of moderate growth at infinity if there exist 8 > 0 and g € L'(R) such that for each ¢ € R,

e M ©leo £ 9(6)

For such measurable m, one defines the Fourier multiplier operator associated with m,

Tm : S(R; X) = S'(R;Y), by the law
To(f) :=F H(m- Ff), V f € S(R; X);

m is called the symbol of T),,. For p € [1,00) and g € [1,00], let M, ,(R;L(X,Y)) denote
the set of all X-strongly measurable maps m : R — L(X,Y) of moderate growth such that

T € LILP(R; X), LY(R; Y)) and [|m| s, ,r:ic(x,v)) = 1Tmll corrix),Lo@y))-

Growth at zero and infinity

Let S(R, X) := {f € S(R; X) | f*¥)(0) = 0 for each k € NU{0}} and m : R\ {0} — L(X,Y)
be a X-strongly measurable map. One says that m is of moderate growth at zero and infinity if
there exist a > 0 and g € L'(R) such that for each ¢ € R,

€1

W”m(f)’\ﬁ(&y) S 9(6).

For such measurable m, one defines the Fourier multiplier operator associated with m, T, :
S(R; X) — S'(R;Y), by the law

Tn(f) :=F Ym-Ff), V feSR;X);

m is called the symbol of T,,. For p € [1,00) and ¢q € [1,00], let M, 4(R; £L(X,Y)) denote the
set of all X-strongly measurable maps m : R\ {0} — £(X,Y) of moderate growth such that
T € LILP(R; X), LYR; Y)) and [[m||ag, (ric(x,v)) = |Tmllc(e®x),La@;y))- For more details

about discussion above, see [54].
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The next result will be used in the proofs of Theorems 10 and 11. For more details, see [54].

Proposition 2.1.1 (Proposition 3.3 in [54]). Let X be a Banach space with Fourier type
p € [1,2], let Y be a Banach space with Fourier cotype ¢ € [2,00], and let r € [1,00] be
such that 1 = ;17 — %. Let m : R\ {0} — L(X,Y) (or m : R — L(X,Y)) be an X-strongly
measurable map such that [[m(-)||z(xy) € L"(R). Then, m € M, (R, L(X,Y)).

The theory of (LP, L?) Fourier multipliers has proven to be an important tool for the stability
theory of Cy-semigroups [36, 37, 54, 53, 55, 57, 67, 68]. In particular, by using it, Rozendaal and
Veraar have obtained the following result that characterizes polynomial stability. We stress that
this result is a necessary tool in our analysis. (see also Theorem 5.1 in [57]).

The following Lemma is used in the proof of Theorem 2.1.2 and intuitively shows us the

relation between the resolvent and the Fourier multipliers. For more details, see [55].

Lemma 2.1.1 (Lemma 3.1 in [55]). Let —A be the generator of a Cy-semigroup (7'(t))+>0 defined
on a Banach space X and let n € NU{0}, x € X and £ € R. Suppose that —i{ € p(A) and that
[t — t"T(t)z] € L'([0,0), X). Then

)
F([t = t"T(t)a])(€) = nl(i + A) "'z

b) For each g € LI(R)
F (/OOO tnT(t)-’L'g( — t)dt) (f) = Q({)n‘(z{ + A)_n_1$.

Theorem 2.1.2 (Theorem 4.6 in [55]). Let —A be the generator of a Cyp-semigroup (7'(t))s>0
defined on a Banach space X such that C_ \ {0} C p(A) and such that there exist a;, 3 > 0 so
that

IO+ A e S AT+ A7, (2.1)

with Re(\) < 0. Let n € NU {0} and Y be a Banach space which is continuously embedded
in X and suppose that there exists a constant Cp > 0 such that, for each ¢t > 0, T(t)Y C Y,
IT(t) ‘Y||£(y) < Or||T(t)|lz(x), and that there exists a dense subspace Yy C Y such that for each
y € Yy, [t — t"T(t)y] € L'([0,00),Y). Then, the following statements are equivalent:

a) sup {t"[T(t)llc(v,x) } < 0.
>0
b) There exist ¢ € C:°(R), p € [1,00) and g € [p, 00| such that for each k € {n —1,n,n + 1},
Y()R(i-, AP € My (R, L(Y, X)) and (1 —(-))R(i-, A)F € M, 4(R, L(Y, X)).
Moreover, if (a) or (b) holds then R(i-, A)* € M, (R, L(Y, X)) for:

i)n>2,ke{l,---,n—1}and 1 <p < q < o0
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(ii) k=n>1land 1 <p<q<o0;

(iii) k=n+1,p=1and g = co.

Proof. (b) = (a) Let w, My, > 1 be such that ||[T'(t)||zx) < My,e™®=1) for each t > 0 and for

e R\ {0}
m(€) :=nl(i€ + A)"(Ix +w(i& + A1) € LY, X)

Since, for each ¢ € R\ {0}, (i€ + A)~! = —R(—i&, A), it follows from Proposition 3.2 in [55] that
T : LP(R;Y) N LY(Y;R) — L®(R; X) is bounded with

| Tl (e ®v)nL (viR), Lo (R X)) S 2MnH(Cr + wCiin), (2.2)

where M := sup [|T(t)|z(x), for each k € N, C}, is as in Proposition 3.2 [55], and Cp :=
t€[0,2]
1y [l £(v,x)- Now let Yo C Y and fix # € Y. By Lemma 2.1.1, one has

F([t — t"T(t)z])(-) = nl(i - +A) " L. (2.3)
For each t > 0 define f(t) := e “!'T(t)z and f =0 on (—o00,0). Then, for each t > 0
IFOlly < e T@)llevy < Crlle™ T cox)l2lly-

Hence f € L'(R,Y) N L>®(R,Y) and | fllpr@y) < CrMyllz|ly for each r € [1,00]. By
Lemma 2.1.1, F(f)(-) = (w+i-+A)"'z. Therefore, by Lemma 1.1.1 item a), for each & € R\ {0},

m()F(f)(&) = nl(i€ + A) " 'z (2.4)
Combining (2.3) and (2.4) with (2.2) yields
?gg [E"T#)z|| < 1Tl 2(r@yv)net (vir), Lo @ x) U fll ey + 1l wyy) < Cllzlly

where C' := 4Mn!CpM,,(C), + wCy41). The required result now follows since Yy C Y is dense.

(a) = (b) Set K, := sup;>|t"T(t)z| and let Yo C Y be as in hypothesis. Let
fe SR X)®Y, and set Si(f)(s) := /OotkT(t)f(s—t)dt for s € R and k € {0,---,n},
by Lemma 2.1.1 item b) one has "

Sk(f) = KIF (- +A) () = K Tpay-e1 () (2.5)
Now, for n > 2, k€ {0,--- ,n— 2}, and r € [1, 0],

It = T O] L @, cv,x)) < M + Knlllt = 72| 1r(1,00) < M + K.
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Similarly, for n > 1 and r € (1, oc],

Ky

= T Ol ey < M+ =

By combining these estimates with (2.5) and with Young’s inequality for operator valued

kernels (Proposition 1.3.5 in [7]) one obtains, for p € [1,00) and ¢ € [p, o0]

. M+ K,

HR(Z"A)kHMp,q(]R{,E(Y,X)) < W (TL >2 ke {1, e — 1}) (2.6)
. n M+ K,(r—1)"r

[R5 A)* | Ay 0 (R LY, X)) < (n(_ i ) (n>1,p<q) (2.7)

|RG-, 4)1 < K (2)
3 Mioo(RL(Y.X) = .

Now (2.5), (2.6), (2.7) and (2.8) yield statements (i)-(iii) for (i-+A4)~! and by reflection these
statements hold for R(i-, A) as well. Finally, for (b) let 1) € C°(R). Then Young’s inequality and
relations (2.6), (2.7) and (2.8) yield 1 (-) R(i-, A)* € My (R, L(Y, X)) foreach k € {1,--- ,n+1},
and one obtains (2.6), (2.7) and (2.8) for ¢(-)R(i-, A) with an additional multiplicative factor
|F ()|l L1y Similarly, (2.6), (2.7) and (2.8) holds with an additional multiplicative factor
|F=1(1 — ) 1(g) upon replacing R(i-, A) by (1 — %(-))R(i-, A).

O

Remark 2.1.1. The assumption in Theorem 2.1.2 that [(- + A)7'[|zx) satisfies the
equation (2.1) for some a, 3 > 0 is only made to ensure that Tp;. 4) is well-defined, and the

specific choice of a and S is irrelevant here.

2.2 Singularity at Infinity

We begin introducing some notation that will be useful throughout this section.

Let v,v > 0 and A € Sectx(wa); since A — log(1 + A) € CBF (see Example E.1.1-(b)), it
follows from Theorem 1.3.1 that the operator log(2 + A) is sectorial, and so (log(2 + A))™" is
well-defined and bounded (see definition of fractional powers of sectorial operators in [32, 41]).

Define the operator
D,(v) =D,(A,v):=(14+A) Vlog(2+ A)"" € L(X),
and set X, (v) := Ran(®,(v)). The space X, (v) is a Banach space with respect to the norm
lzllx,) = llzll+ ()~ el = ] + [log(2 + A)"(1 + A)’z], = € X,(v).
Note that ®,(v) : X — X, (v) is an isomorphism, so for each T' € L(X,(v), X),

[Tz)| = (T2, (0)yll < [TPu(0)llcx)lyll < NTPw ()] 0012 x, )
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(here, y := ®,(v)"'z) and

IT®, (V)] < Tl zix, ), 10 (V)] < T 20x, 0),x) [P0 (V)] 2x) 1215

therefore, for each T' € £(X, (v), X), one has

1T 2x, 0),x) < NTPu(0)ll2ix) < NP0 ()2 1T | 2(x0 (0),) - (2.1)

Note that ®,(0) = ®,(A) and X, (0) = X,, where ®,(A) and X, are the objects defined in
[55].

In this subsection, we discuss the decay rate of a Cip-semigroup whose infinitesimal generator
— A is such that C_ C p(A) and such that there exist 3 > 0 and b > 0 so that [|[(A+A4) 7| zx) S
(14 AP log(2 + |A]), for A € C satisfying Re(\) < 0.

Theorem 2.2.1. Let 8> 0,b > 0 and (T'(¢))+>0 be a Cp-semigroup defined in the Banach space
X with Fourier type p € [1,2], with —A as its generator. Suppose C_ C p(A) and for each A € C
with Re()\) < 0,

IO+ A) Moo S (1 + (A Tog(2 + [A])". (2:2)
Let r € [1,00] be such % = % - I% and let 7 be such that 7 > 8+ % Then, for each 6 > 0
and each p € [0, T_ﬁl/T — 1], there exists ¢, s > 0 such that for each ¢ > 1,
b(rq /) 148 _
IT(0) (1 + A) " log(2 4+ A) 5T T |4 ) < et (2.3)

The following results are needed in the proof of Theorem 2.2.1. Note also that the following
proposition is a version of Theorem 2.2.1 in case p = 1 (that is, in case X is a Banach space with

trivial type).

Proposition 2.2.1. Let b > 0, § > 0 and let A be an injective sectorial operator on a Banach
space X such that —A generates a Co-semigroup (T(t))¢>0 on X. Suppose C_ C p(A) and for
each A\ € C with Re(\) <0,

IO+ A) e S (L4 M) log(2 + |A]". (2.4)

Let 7 > 8+ 1. Then, for each 6 > 0 and each p € [0, TTZI — 1], there exists ¢, 5 > 0 such that for
each t > 1,
—7 —b(r—1)-1-6 —p
IT(t)(1+A) "log(2+ A) 5 lcx)y < cpst™”.

Proof. We follow the same steps of the proof of Proposition 4.3 in [55]. The proposition is
equivalent to the following statement: for each s > 0 and ¢ > 0 there exists Cs 5 > 0 such that
for each t > 1,

IT(E)(1+ A) " log(2+ A) "l z(x) < Cst™,
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where v:=b(s+ 1)+ 146, v:=(s+1)8+ 1.
Firstly, we obtain the result for s = n € NU {0} and then for any s > 0 by an interpolation
argument.

So,let 0 >0, ne NU{0},v=bn+1)+1+6,v=(n+1)f+1and z € X,11(v). Set

Y= [<I>,,(U)]_1:E =log(2+ A)’(1+ A"z = log(2+ A)"(1+ A)” ((1 + A)_l’_1 log(2 + A)_Uz)
= log(2+ A)" ((1+A) 'log(2+ A)"z)
= (1+ A)flz,

with z € X, and note that (1 + A)~'z € D(A); here, we have used that log(2 + A)Y commutes
with (1+ A)~! (for more details, see Proposition 2.3-(d) in [49] and Proposition 3.1.1-(f) in [32]).
Let g : [0,00) — X be given by

1

—1400 Y 1
g(t) = 27Ti/ioo e 15 V7 log + )\)]UR()\,A)yd)\, (2.5)

and note that for each t > 0, g(t) € X; namely, for each ¢ > 0, one has

lg@Il <

z;n(lée%t<1-—iﬁ)ﬂﬂ3g<2-—isnvlg“ig“A)yde

1 ‘ »
: </R @+ e fos@ + e 1 4 Hc<x>d€> Iyl

Now, by assuming (2.2), it follows that the integral above is finite.
A

(I+ ) (log(2+ N))v

Moreover, since y € D(A), the function A —

R(\, A)y is integrable and
by dominated convergence,
1 —100 Y A

IO="35 ). ¢ T Tog@ s A O A

which proves that g is differentiable everywhere. Now, by Lemma D.0.1,

, _ L —100 - . 1 ) )

! (t) 2w »/zoo ' (1 + )\)”[log(Q + )\)]U ( AR<)‘7 A)y y)d/\

= 1 e oM 1 -
- <27”3 /m 05 0 los@ 1 AP A)ydk>

1 —100 Y 1
- @mﬂmeAu+»m%@+wﬂgy
=0 Ag(t) = —Ag(1),

1 [T 1
- Ayd\ = &, (v)y = «, 1.6).  Then,
and ¢(0) 57 /ioo (1+/\)V[log(2+/\)]”R()\’ YydA (V)y ==z, by (1.6) en

g'(t) = —Ag(t) for each t > 0, and g(0) = z. Therefore, for each ¢t > 0, g(t) = T(t)z, by

the uniqueness of the Cauchy problem associated with —A.
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Integration by parts yields

1
"T (e = — My, A)yd)
(t)x ot ) (A, A)yd,

where p(A, A) is a finite linear combination of terms of the form

R(\, A)n—itl R(\, A)n—itl
(1+A)H(2+ N)flog(2+ A)]o 7 (14 A)YH(2+ M) [log(2 + A)]v

with 0 < i < j < n, each one of them being integrable (see the proof of Proposition 4.3 in [55]

for details). Then, there exists a positive constant d,, s so that for each ¢t > 1,

1 _
70l < (5 [ 10 A)eqoda ) Il < dsll 1082 + AP (1 -+ 4) 0] < dllel
.
Since X, 41(v) is dense in X, (v), it follows from the previous discussion that for each ¢ > 1,

IT() e, o) ) < st ™ (2.6)

It remains to prove the result for any s > 0. For each s > 0, let n € NU {0} be such that
n <s<mn-+1. Let also define 6 := 6(s) € [0,1) by the relation s = (1 —0)n + 6(n + 1).

Set a1 = % and as := ﬁ and note that a; + ag = 1; then, by Proposition E.1.1-(c),
fA) =10+ N log(2+ N\)* € CBF, where A > 0. Now, by Lemma 1.3.1, the operator

(FA) ™ = (1 4+ A) " log(2 + A) %2

is sectorial, given that f(A) is sectorial (by Theorem 1.3.1).

Since (f(A))~! is sectorial, it follows from relation (2.6), the moment inequality (see
Proposition 1.3.2) and Theorem 2.4.2 in [32| that there exists a positive constant Css such
that for each t > 1,

1T AN, 0)llex) S ITOR )5 IT @A), ()17
= 1T () IT @)L+ A) P log(2 + A) @, (0)l|7x)
= TR ITOB 5005211 (b +2) + 14 8) [,
< ( n&t_ )1 ( n+1,5t " 1) :Cs,(st_s,

and we are done. O

Note that for b = ¢ = 0, the following result is Proposition 3.4 in [55] (see also Theorem 5.5
in [14]).

Proposition 2.2.2. Let A € Sectx(wa) be such that C_ C p(A), and let 3,b,¢ > 0 and
By € [0,1). If
1€ + A) M2y S (14 1€D)7 log(2 + [¢])°, (2.7)
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then the family
{0 1og (2 + AN+ A) "l £(xp s (crmx) | A € R, A = 13 (2.8)

is uniformly bounded.

Proof. We proceed as in the proof of Proposition 3.4-(2) in [55]. Fix 6 € (wa,7) and let the path
[:={re? | r €[0,00)} U{re ™ |r € [0,00)} be oriented from oce? to coe™®. Set & := b+ (;
since A + % € Sectx(wy), it follows from Remark 1.3.2 (by letting @ = 0, vo = 0) and from
Lemma D.0.2 that for each A € iR, |A| > 1, and for each z € X

_ 5 _z 1 A+ A)~t 1
A+ A)TA+A) P Plog2+ A = — ~R<,A+> d
( A ) ol ) 27 Jr (% + 2)P*+Po log(3 + 2)° : 9 ) ¥4*
= i <)\+A)_1 xdz
2w Je (5427 log (5 + )%=+ A - 3)
N 1 R(z,A+3) i
271 T (% + Z)B+IBO log(% + Z)E(Z + \— %)
1

= A+ A+ T
=0 logz — n TA) o+ D

with

1 1 )
D= am ¢ R 7A+* dz.
A 27‘(7,/{: (% —|—Z)B+BO lOg(% +Z)C(Z—|—)\ _ %) (Z 2) z

Let hg, ¢(A) == (1 — M) log(2 — \)¢, with X € iR, |A| > 1; then, for each 7 € X

A+A)!
(1—X\)Plog(2—\)

hgec N+ AL 1+ A) PP log(2 + A) %z = s+ hgy (N, (2.9)

1
Let € € (0,5 + Bo) and note that the function z — mR(z, A+ 1/2) is integrable on
z
I'. Note also that, by Lemma A.1 in [55], for each z € T and each A € iR, one has
1 1
- S . 2.10
|z 4 |FtPo—<llog (3 4+ 2) |flz+ A — 5| ~ 1+ [} (2.10)
Therefore, by relations (2.9) and (2.10), it follows that
. 1
Mo c NN+ A) 1+ A) PP log(24+ A)~° < A+ A
IO+ 4710+ ) o244 ey 5 | T ymegap® A7
|log(2 — A)[°
(L4 AP

log(2 — \)|¢
By relation (2.7) and since lim | log( NS

R cppy =T 0 (recall that By € [0,1)), one concludes
—00

that
{IA% 1og(2 + AN+ A) Ml 2,4 a(cbyx) | A € R, A} > 1}

is uniformly bounded. O
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Remark 2.2.1. Note that by relations (2.9) and (2.10), for each A € iR,

A+ A7t
H (1 —=X)Plog(2 - A)°

AN

1L =2 log(2 = )¢ (A + A) (1 + A) ™7 P log(2 + 4)~[lz(x)

L(X)

+ 11 = NP log(2 — N T ex)

S (=M% log(2 = M)A+ A) M1+ A) PP log(2+ A) |2
| log(2 = M)
(L4 [A)t=Fo?

_.|_

thus, by assuming that the condition (2.8) is valid, one gets.

A+ A)~!

<
H = NP log@ — WP || ~ &

L(X)
This shows that the converse of Proposition 2.2.2 is also valid.

Proof of Theorem 2.2.1. The case p = 1 corresponds to Proposition 2.2.1. Let n € NU{0}
and set v := (n+1)8+1 v:= b(n—}—l)—{—l%"; incasep € (1,2) (1 <r <o0),and v := (n+1)p5,
v :=b(n+1)if p =2 (that is, if r = 00). Set also B := A+ 1. By letting fp = ¢ = 0 in
Proposition 2.2.2, it follows that for each k € {1,...,n},

sup || R(i€, A)¥|| £x,,5(m) x) < 00 (2.11)
£eR
Let 6 > 0 and let A, 5 : R — R be given by the law h, 5(§) = (1 + |§\)% log(2 + ]§|)#, then,
it follows from Proposition 2.2.2 (by taking Sy = 1/r and { = (14 §)/r) that
. _g-1 _p— 148
sup B ()| R(E, A)B~7 log(1 + B) ™% ) < oo, (2.12)

£eR

Thus, for each k € {1,...,n + 1}, it follows from relations (2.11) and (2.12) that

. . _B(ne1)—L _b(na-1)— 18
sup s (E)IR(E, 4)" 2, 0).x) < sup (hra(©IRGE, AV BP0~ log(1 4 B) D=5 5 )

. _g_1 _p_ 148 . —1—8n —bn
S sup (g (€) IR A)B log(1 4+ B)™ 7 g |1R( A B log(1+ B) ™))
€

. _p-1 _p_ 146 . _
< sup (hys(€) | R(ig, A)B~ 7 log(1 + B) ™ gy ) sup (IR A e, ) x) ) < 0
EER ¢erR
(2.13)
It follows from Proposition 2.2.1 that the space X, (v) satisfies the conditions presented in

the statement of Theorem 2.1.2. By proceeding as in the proof of this Theorem 9 (see Theorem
4.9 in [55]), let ¢ € C.(R) be such that ¢» = 1 on [—1,1]. One has, by (2.13), that for each
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ke{l,....n+1},
w()R(lvA)k € Ll (R,,C (X,/(U),X)) C Ml,oo (R,E (XI/(U)7X)) ;

and
(1 = ()R, A)Fll £ix,0).x) € LT (R). (2.14)

Note that X, (v) has Fourier type p, since X, (v) is isomorphic to X. Then, by Proposition 2.1.1
and by (2.14), one concludes that for each k € {1,...,n+ 1},

(1= w( )R A € Myy (R, L(X,(v), X)).
Now, by Theorem 2.1.2, for each n € NU {0} there exists ¢, > 0 such that for each t > 1,
IT(#)(1+ A) 7 log(2 + A) =P D=5 L) < ent™. (2.15)

Let s >0, v=0(s+ 1)+ 1/r and let n € NU {0} be such that n <s <n+1. Let § € [0,1)
be such that s = (1 — 0)n+ 6(n + 1). Then, by following the same arguments presented in the
proof of Proposition 2.2.1, it follows that for each ¢ > 1,

14 <

—v —0(s — 9 —S
IT(#) B log(2+ A) "= oy S 7

O

Remark 2.2.2. Let A be a linear operator defined in a Banach space X, not necessarily sectorial,

such that
1. —A generates a Cp-semigroup on X;
2. C_ C p(A) and (A +A) 7 zx) S (1+]A)P log(2 + |A])?, for each A € C_.

Under the above assumptions, note that for each € > 0, A + ¢ is sectorial. Then, the operator
24+ A)Plog3+A) P =1+1+A)Plog2+1+4)"°

is well-defined through the sectorial functional calculus for A + 1. Note that previous results
are still valid. So, in this context, we are able to remove the hypothesis of sectorially of A (see
Theorem 2.2.1).

Lemma 2.2.1. Let —A be the generator of a Cp-semigroup (7T'(t))s>0 on a Banach space X.
Suppose that there exist 5 > 0, 6 € [0,1), n € p(—A) that such 1 & 0(A + ), and a sequence
(tn)nen C [0,00) such that ¢, — oo and

lim [|7'(ta)(n + A) " [log(A + 0)] [l £(x) = 0. (2.16)

n—oo

Then, C_ C p(A).
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Proof. We begin with the following remarks:

e One may let n € R be such that 7 — 1 > wp(7"); namely, it follows from the definition of
wo(T) that 1 —n € p(A) (see also [47]).

e Since n — 1 > wo(T), n + A is sectorial, and so (n + A)~?, log(A + n)~° are well-defined.

e One has for each t > 0,
I17(t) (n+A) " log(A+n)] || 2(x) < lllog(A+m] >l cex) 1T () (n+4) 7 log(A+m)] = |l 2(x),
(2.17)

and so it is sufficient to assume that there exists a sequence (t,)nen C [0,00) such that

ty, — oo and
im [T (8) (0 + A)~*log(A + )] (x) = 0.

For each \ € C, with ReA > —n, and each a > 0, set f; ()\) := e *(n + \)~%[log(A + )] 2.
Let a > 0 and for each ¢ € R, one has £ %log(¢)™! = L(v(-,a — 1))(€) (see Table 5.7 in [8]),

where
0 .,L.era d
’U(ZL‘, (Z) = /0 m S.

Now, for a > 1, the inverse Laplace transform of £~ log(¢)~2 reads

1 b+ioco 1 1 b+ioco d 1
— ef/\72d/\ = —— et ( ) dA
2700 Jp—ioo A log?(\) 2700 Jp—ioo dX \ log()\)
1 _ 1 qbrir  (—a 1) [oHio 1
= 1 - E)x)\ a+1 N / {Aid)\
oo 270 log()\)}b—ir + 27 beico < e log(\)

£ b+ioco e 1
* 2wif£4a>‘3 o Tlog(n) “
= (cato(Ea—1)+ Eu(Ea—2)

Next, set

%@%{KG+DM&GU+EM&amk"€ £ 0
0, £<0,

and note that for each A € C with Re\ > —n, one has

LG +k)(N) = e /OOO e Mky(s)ds

_ e—)\t/ e—(/\+n)8(_a + Dv(s,a — 1) + sv(s,a — 2)]ds
0

= M+ ) (log(A+1) 2 = fra(N).
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Now, by Hille-Phillips Functional Calculus, one has
fra(A) =T (t)(n + A) " log(A+n) "%

Case > 1:

Let a = B; by the Spectral Mapping Theorem (which is a consequence of Hille-Phillips
Functional Calculus; see [35, 32]), one has fi(c(A)) C o(fi(A)) for each t > 0. Let A € o(A);
then, fi,(\) € o(ft,(A)) for each ¢, and

e—Re)\tn

|(n + A)[P[log(A +n))]

3 = 1fea W < IT(ta) (1 + X) P llog(A +m)] 72l.

ReM)tn — (), which is only possible if —ReA < 0.

It follows from relation (2.17) that limy, —co e (
Case < 1:

Let a > 1, and note that

IN

1T (t) (1 + A) = (log(n + A) 7 £x)
< M+ AP oo I T ) (1 + A) 7 log(n + A) 7o ex)

1T () (n + A)~ (log(n + A)) ™|l c(x)

A

O

2.2.1 Proof of Theorem 10

Proof of Theorem 10. The result is equivalent to the following statement: for each s > 0
and each 0 > 0, there exists Cs s > 0 such that for each ¢ > 1,

IT()(1+ A) Y lex) < Cost*log(1+1)",

1
where v := (s + 1)+ 1/r and v:=b(s+ 1) + 0 forp#2, v:=0(s+1)and v:=b(s+1)
r
otherwise. Set m := [v] and n := {v} € (0,1). We divide the proof into the cases where n = 0

and 1 > 0. In both of them, we proceed recursively over m.
Case 1 > 0.

Step 1: removing 7 > 0. Since (0,00) 3 7+ log(1 + 7)" € CBF (by Proposition E.1.1), it
follows that

* T

log(1 + )7 = / du(N).

o+ T A

Let 8 = 0(s) € (0,1) be such that s > 6 > 0. Let, for each o € (0,1), f5 : [0,00) — R be
given by the law f, (&) = (14 £)? — 1; it is a complete Bernstein function (see Example E.1.1).
Then, for o = ¢ := M, fe(B) is a sectorial operator, by Theorem 1.3.1, where B := A+ 1.
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Therefore, by Lemma 1.3.4,
1
log(1+ B)" = . log(1 + f-(B))".

By the choice of ¢ > 0, D(B”*) C D(f-(B)) (see Proposition 3.1.1 (c) in [32]). It follows from
equation (1.7) (with a = b = 0; see (E.2)) and from the previous facts that for each z € X,

T(t)B " log(l14 B) ™"z = éT(t) log(1+ f-(B))"log(1 + B)""B~"log(1 + B) ™z
= %T(t) log(1 + f-(B))"B~" log(1 + B) ™ "z

9
= 70 [ FBO+ ) B log(1 + B) " ().

Let ¢ € [0,v), ¢ >0, set Pr(By) := B~ ?log(1 + B)™¢ € £(X) and

_ @) Prnn(Be) [ 2x)
T (t) Pty (Bo) [l c(x)

T > 0.

Since f.(B) is a sectorial operator and since for each ¢ > 0, T'(t) commutes with f.(B) (see

Lemma 1.3.4), it follows that for each ¢t > 0,

HT(t) [ rmo+ fs<B>>-1Pm+n<Bo>xdﬂ<A>H
0+
< T () Py (Bo)| ey (M () + 1) /O e

T

< AT (1) Pars(Bo) | cor M. ) /0 dp(V)lz] (2.18)

T
+T+HA a

where My, (py = ili% AN + fg(B))_lHE(X) > 1. Moreover, by Lemma 1.3.4,

70 [ 80+ 18 Pl By

< IIT(t)fa(B)Pm+n(Bo)Hc(X)/ IO\ + £=(B)) ey dpe(N) [l

-
1

~dp(N) ||

< IO £B) P (Bo) o M) [

< 2T L(B) P Bl eoo Mpoy [ 55l (219)

By combining relations (2.18) and (2.19), one gets, for each ¢t > 0,

T

|7 Pu(Bo)e| < CLIT() Pty (Bo)lecx) ( /0 )

|T(t) fe(B) Prntn (Bo) [l o (x) /°° 1
IT'(t) Pt (Bo) | £x) ; AtT

duu)) Il (220

where CL := 4M;_(p).
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Note that, for each t > 0, T'(t) commutes with (14 B)*B~¢ — B¢, hence for each z € X,

IT(#) fe(B) Pty (Bo)z|| - = [T()((1+ B)* = 1) Py (Bo)||
= || T(t)((1+B)*—B °B°)B "log(1+ B) ™ x|
IT(t)((1+ B)*B™ — B~)B™""log(1+ B)"" "

= (1 +B)*B™° = B °)T'(t) Py (Be) |
< [[((T+B)*B™* = B7) |l c(x)IT(8) Pavgn (Be) [l 20y |l
and so
1T'(t) f(B) Prntn(Bo)ll c(x) < CellT(t) Pty (Be) [l £ (2.21)

where C. := |[(1+ B)*B~° — B™%[|z(x)
Therefore, it follows from relations (2.20) and (2.21) that for each ¢t > 0,

T

ITOB " og(1 + ) ") < CH1+COITOPwsa(Bolecr) ([ s +7 [~ iuv)

= CLL+ CIIT(t) Prnsn(Bo)ll(x) log(1 + 7). (2.22)

On the other hand, by the definition ¢ = M, one has B(s+1)+1/r—e > B+ 1/r;
then, it follows from Theorem 2.2.1 that there exists a positive constant Cs ., such that for each
t>1,

1T () P (Be)l £ (x) < Coeqt "5, (2.23)

One also has from Theorem 2.2.1 that there exists a positive constant Cs; so that for each t > 1,
IT(£) P-4 (Bo) l e x) < Copt ™. (2.24)
Now, set kmy(t) := | T(t) Pmiy(Bo)llz(x); by (2.24), one has for each t > 1,

Cs.e ntferB ~
— >, Cs ¢ 2.25
k - (t) Sy 777 ( )

m\m

with Cy,, = (Cs,)~". It follows from relations (2.23), (2.24) and by letting v = 1, £(w) =

~ e —st+3
log(1 +w)", s = CsyCscyt? and w = % in Proposition E.2.1 (note that w > s,

by (2.25)) that there exists C' > 0 (which depends only on the function log) such that for each
sufficiently large t,

Cyent 58
log(1+7)7 < log (1 + m) < C

ngntis+% ~ e\
2 lo (1+c 5C tﬁ>
kmvn(t) () g > e

08777087677]tE km’n t

C ~ eNT
= — o 1 + CS Cs ts
Fo (t)CsmtS g ( nVsen )

= Ci(s,e,n) log <1 + Cy(s, ¢, n)t%>n(2.26)

1
E ()t
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with Ci(s,e,n) := C’/C~’S777 and Cy(s,e,n) := CN's,nCsfm.
Then, one concludes from (2.22) and (2.26) that for each sufficiently large ¢,

Cé(l + Cz—:)Cl(S: &, 77) km,n(t)
= e T (1)8°

~ )n

= Ci(s,e,n)t"*log (1 + Cs(s, ¢, n)t%>n , (2.27)

o

|76 B log(1 + B) ™™ 2x) log (1+ Ca(s, 2, n)t

!
- 1
with Cy (s, 2,) = C=0F Cgicl(s,s,n).

Step 2: removing m. If m = 0, there is nothing to be done. So, let m € N. It follows from

the discussion presented in the beginning of Step 1 that for each z € X,
1
T(t)B™Vlog(1+ B)™™" 'z = =T(t)log(1+ f-(B))B " log(l + B) ™z
€

= 270 [ LB+ LB Pa(Bo)adu()
0+

where p now stands for the Borel measure related to the integral representation of log(1 + )

(which is a complete Bernstein function).
_ IT@) P (Be)ll x)

Let 7 := T P (Bo)| > 0. By proceeding as in Step 1, one gets from (2.27) that for
m\DP0)|[L(X)
each t > 1,
IT(8) Prn-1(Be)llex) S 777/  log (1 +8)", (2.28)
and
1T() Pr—1(Bo)ll cx) S 1T (8) P (Bo) |l £ (x) log(1 4 7). (2:29)

Now, let np,(t) := ||T(t) Pm(Bo)l z(x); it follows from (2.29) and (2.28) that there exists a

positive constant ¢s. so that for each ¢t > 1,

t* 5 log (1 +1)"
N (1)

> G th. (2.30)

—s+ £
tif# in Proposition E.2.1

By letting v = 1, (w) = log(1l + w), s = 657525% and w =
(note that w > s, by (2.30)), it follows from relation (2.30) that there exists ¢ > 0 such that for

each sufficiently large ¢,

N (t)

Cot ™5 log (14 1)" 5
i — 2g( 1) log (Hce,s,csésva”)
Cg,scs,etﬁnm(t)

cl 14+t)" ~ £
_ s+, (14 Cusioet ™) . (2.31)

N (1) Cs 1

Cest ™" 5 log (14 1)"
log(l4+7) < log <1+ sl og (1 + )>

IN
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Then, by (2.29) and (2.31), one has for each t > 1,

I P (Bolllec) S " log (14 1) log (14 ot )

S
< t%log (141)'7.
By proceeding recursively over m, it follows from the previous discussion that for each ¢ > 1,

IT)B™|lexy S ¢ °log (148",

Case 11 = 0. Since in this case m € N, one just needs to proceed as in Step 2 of the case

7 > 0 in order to obtain, for each ¢t > 1,
ITt)B " lexy S t *log(1+1)".
Hence, in both cases, relation (6) follows, and we are done. [l

2.2.2 Resolvent growth slower than log(|¢|)®

e Case p #£ 2

By using the same strategy presented in the proof of Theorem 2.2.1, we conclude that for
B=0<b (that is, for ||(i€ + A) 7| z(x) S log(2 + [€])%, € € R), for each s > 0 and each § > 0,
there exists ¢ 5 > 0 such that for each ¢ > 1,

146 _
r ||£/(X) S 08,61; 8.

IT(#)(1+ A)~Y" log(1 + B)~be+D-

Actually, it is possible to obtain in this setting a better estimate than the previous one.

Namely, note that for each z € D(A),
t
Tt)x == —I—/ T(w)Axdw.
0

Let # € Xy 41/7(v), with v :=b(s+1) + ITM' We argue that [t — T'(t)x] is a Lipschitz continuous
function: it follows from the previous identity that for each t,u > 0, || T(¢t)x — T'(u)z|| < |t —
ul Ha:HXl/T(U), and since X/, (v) is dense X .(v), one concludes that || T'(t) =T (u)||£(x, (v),x) S
|t — ul.

Now, note that for each z € X and each t > 0, f,(t) = T(t)(1+A)~"/"log(1+ B) ™V satisfies
the assumptions of Theorem 2.1 in [22] (with F,(s) = R(is, A)(1 + A)~Y/"log(1 + B)~"z and
M(s) = log(2 + |s])?), so for any ¢ € (0,1/2) and tg such that for each t > t and each z € X

with [|z|| = 1, one has

1
1 —awT

-1 ~

log(ct)

IT()(1+ A)~ " log(1+ B) V|| S
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Therefore, for each t > t,

1
1

IT(@)(1+ A" log(1+ B)™|lgxy < e "

By proceeding as in the proof of Lemma 4.1 in [55], one can show that for each 7 > 1/r,

1

IT() (1 + A) " log(1 + B) ™ || pxy < e et (2.32)

Theorem 2.2.2. Let b > 0 and let (T'(¢)):>0 be a Cp-semigroup on a Banach space X whose
generator —A satisfies C_ C p(A). Suppose that X has Fourier type p € [1,2) and that for each
A € C with Re(\) <0,

IO+ )Y o) S log(2 -+ A

Let 7 € [1,00) be such that 1/r = 1/p — 1/p’. Then, for each §,¢ > 0 and each 7 > 1/r, there
exists c; 5, > 0 such that for each t > 1,

L Tr 6
IT@+ A) Nl < erpepee™ ™ o EDEED,

Proof. We proceed as in the proof of Theorem 10, by replacing relation (2.3) by
relation (2.32). O

e Case p=2
As in the case above, by using the same strategy presented in the proof of Theorem 2.2.1, we
conclude that for =0 < b, for each s > 0 and each ¢ € (0,1/2), there exists ¢; 5 > 0 such that
for each t > 1,
IT()(1 + A) " log(1 + B) D | ) < eqst ™.

Actually, it is possible to obtain in this setting a better estimate than the previous one.

Namely, note that for each x € D(A),
t
T(t)x == —I—/ T(w)Axdw.
0

Let x € X145(v), with v := b(s+1). We argue that [t — T'(¢)x] is a Lipschitz continuous function:
it follows from the previous identity that for each t,u > 0, |[T'(t)z — T'(u)z| < [t — ull|2[ x5(0);
and since X1,5(v) is dense X5(v), one concludes that || T'(t) — T'(u)|| £ x;00),x) S [t — ul-

Now, note that for each z € X and each t > 0, f,(t) = T(t)(1+ A)~%log(1 + B) Yz satisfies
the assumptions of Theorem 2.1 in [22] (with Fi.(s) = R(is, A)(1 + A)"%log(1 + B) "z and
M(s) = log(2 + |s|)?), so there exists to(6) > 1 such that for each t > ¢y and each z € X with
llz|| = 1, one has
1 mT

—1 ~

log(dt)

IT()(1 + A)~°log(1 + B) V|| S
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Therefore, for each t > t,

1

||T(t)(]. + A)_6 log(l + B)_v||£(X) 5 e_§tb+1 )
Let 7 > 0 and ¢ € (0,1/2) be such that 7 > § > 0, then by proceeding as in the proof of

Lemma 4.1 in [55], one can show ,

1

HT(t)(l + A)_T log(l + B)—'UT/(SHE(X) S e—Ttb+1 '

Theorem 2.2.3. Let b > 0 and let (T'(¢))¢>0 be a Cp-semigroup on a Hilbert space X whose
generator — A satisfies C_ C p(A). Suppose that for each A € C with Re()\) < 0,

IO+ A)Hlex) S log(2 + A"

Let €,7 > 0 and 0 € (0,1/2) be such that 7 > § > 0. Then, there exists ¢, .5 > 0 such that for

each t > 1, )
Tb(e+1)

1T+ A) (o) < crese ™ o0

Proof. We proceed as in the proof of Theorem 10, by replacing relation (2.3) by
relation (2.32). O

Example 2.2.1. Let u > 0 and suppose that for each t > 1, ||T(t)[[z(x) < . Now, let a > 0
and define, for each t > 0, Sy (t) := e~ %T(t). Then,

sup [|Sa(t)[| £(x) S sup{e” '} Sah.
>0 >0
It follows from Theorem 4 that for each 7 > 0 and ¢ > 0,
1Sa(B) (1 + A)Tllzex) S sup [Sa(®)ll oyt log(1+ )77 < a=#t7 7P log(1+ )7/,
>0
so, by setting a := 1/t, one has
IT()(1+ A) || gxy S t#7/Plog(1 +t)7/7. (2.33)
Note that for each 7 > 8+ 1, it follows from Corollary 3 that
T—1
1)1+ A) ey St 7 log(1+4)7%, (2.34)

with 6 = 7/8 — 1 > 0. The estimate (2.34) improves (2.33) if, and only if, p > 1 + %

The next example shows that one cannot expect to improve the power-law presente in
Corollary 2 (see Exemple 4.20 in [55]).

Example 2.2.2. We show that for each 4,7 € (0,1), there exists an operator A be as in the

statement of Corollary 2 such that ||T(-)[|z(x, x) is unbounded for each 7 € [0, 10&(%) Set
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Bo = izi(é%)) and for n € N, let the n x n matrix B,, be given by

1 I=k+1
Bn(k,l):—{ i

0 otherwise.

1
Let m(n) := {bﬁ%} let ng € N be such that m(ng) > 2 and let the Hilbert space
X = @ Efn(n) be the 2 direct sum of the m(n)-dimensional E%l(n) spaces for n > ng. Let, for
n>ng
each n > ng,
=i 4 y-B
n = log(n) Y m(n)

and define the operator A by the law Az := (An25)n>m(ng), With

D(A) =z = (ﬁn)nzm(no) | Z

n>m(ng)

" zaf? < oo
log(n)? ™"

Let also define the family of bounded linear operators on X, (T'(¢)):>0, by the law T'(¢t)z :=
(e*tA"xn)an(no), and note that it is a Cp-semigroup (namely, —A generate (T'(t))>0)-

Now, we show that A satisfies the hypotheses of Corollary 2.
Claim: C_ C p(A) and that there exists a C' > 0 such that, for each n > 0 and £ € R

10 + i€ + A) "l 2x) < CUEIT log(2 + €)™ + 1). (2.35)
Namely, for each n > 0 and £ € R, set z := 7 4 i and note that BZ((Z)) =0¢€ E(E?n(n)) and
By ll 22 o = 1, for each n > ng. Moreover,
- — Pm(n) = — k1
log(n) e,y ke |2 = i(n/log(n)) + 1l

Let n1 € N be such that ny > ng and

Toa(n1) _f‘ = min{|n/log(n) —¢| | n € N;n > no}.

Note that |z —in/log(n)+| > 7, for each n € N. Hence, in case £ > 0 and n € {ng,...,n1+1},

one has
m(n)—1 _
. ~ 1 ~y m(n) _ 1
1 _
Iz = i(n/log(n)) + 7 = Bmm)) ™ N, ) < kZ_O ST T,
—m(ni1+1)
Y B
< — < 1)Fe
< g S+l

IN

(F7HE)P +1 < (J¢]log(2 + €)) + 1,

with f(s) = s/log(s + 2), where we have used that f(n1) <&+ 2.
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Now, in case £ < 0 or n > ny + 2, then |z —in/log(n) + 7| > ¢y := /1 +~2 > 1. Therefore,

oo
. _ 1
(2 = i(nlog(n) + % = B(m) lleez, ) < T <o
k=0
and now (2.35) follows.

We now show that ||T'(t)[(x, x) is unbounded for 7 € [O, logl(%)' First note that
IT@)llex,x) > Tiagely for each z € X- with [[(1+ A)7z| < [lz]x, = 1. Let n > no
and let x := (T )k>n, € X be such that ), = 0 for each k # m(n) and z,(,) = (0,0,0,...,0,1).
Then, for each 7 € NU {0}, Newton’s Binomial Formula yields

.
. n
101+ Y7l = 1+ 3 = in0g0) = Bl 5 (25 (2.36)
Then, it follows from Proposition 1.3.2 that (2.36) follows for each 7 > 0. Now, set
t:=m(n) —1>1. Then, by Lemma A.2 in [55],

m(n)—1 1/2 1=y

2
+k e(l=r)m(n) — Tee(1/5)
— —t th(n) = -t e > 2 °
IT(t)x|| =e e $nH£(£fn(n)) € kZ:O <kl> ~ o mn)Y4 ™ m(n)t/4

By combining this with relation (2.36), one gets

T o

— tT_1/4 vt
10+ A7) ~ logn)/Ar — ¢ €

— 7, where the implicit constant does not depend on n > ng and t > 1.

2.3 Singularity at infinity and zero

Let p,v,v > 0 and A € Secty(wa); it is known that 27 — ilog(A) is sectorial (see page 92
in [32]), and so (2m —ilog(A))~" is well-defined, by the functional calculus of fractional powers
(see [32, 41]). Define the operator

DE(v) = D(A,v) 1= AH(1+ A) P (21 — ilog(A)) ™" € L(X),

and the space X/ (v) := Ran(®)(v)). If A is injective, then the space X}/ (v) is a Banach space

with the norm
lzllxpey = Nzl +12Lw) " el = llall + [|2r — ilog(A))" (1 + A)* Azl ¥z € X[ (v).
Moreover, ®)(v) : X — X//(v) is an isomorphism and so

1T 2 xt )30 < ITRL () ex) < NPUONMee) 1Tl exsw),x), T € L(XP(v), X). (2.1)
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Note that ®5(0) = & (A) and X} (0) = X/, where ®J(A) and X/} are the objects defined in
[55].

Theorem 2.3.1. Let (T'(t));>0 be a Cp-semigroup defined in the Banach space X with Fourier
type p € [1,2], with —A as its generator. Suppose A injective, C_ \ {0} C p(A) and that there
exist & > 1, 8> 0, a,b > 0 such that, for each A € C_\ {0},

AT log(1/[AD®, Al <1

A+ A7 <
H( ) HE(X) { ‘)\’5 log(|/\|)b, ‘)\’ > 1.

Let o, 7 be such that 0 > a—1 and 7 > S+1/r. Then, for each p € [O,min {"TH —1, T—g*l _ 1}}
11

and each 6 > 1 — 1/r, where r € [1,00] is such that % =5 = there exist C, 5 > 0 and tg > 1
so that for each t > 1,

IT()A7 (1 + A) 77 (2 — ilog(A))~“IPHDTV=0| 1) < Ot ™7, (2.2)

with ¢ = max{a, b}.

In order to prove Theorem 2.3.1, some preparation is required. The next result is the version

of Proposition 2.2.1 in this setting, and consists in the result stated in Theorem 2.3.1 in case

p=1.

Proposition 2.3.1. Let A be an injective sectorial operator defined in the Banach space X such
that —A generates the Cy-semigroup (7'(t))¢>0 on X. Suppose that there exist « > 1, 5 > 0,
a,b > 0 such that, for each A € C_\ {0}

(AT (log(1/[AN)%; Al <1

A+ A) oo S {
AP log(|A])®; Al > 1.

Let 0 > a—1and 7 > 8+ 1. Then, for each § > 0 and each p € [O,min{‘%l—l,ﬂ—l}},
there exists ¢, s > 0 such that for each ¢ > 1,

IT()A7 (1 + A) 77 (2m — ilog(A)) P £y < ¢ 5t 77, (2.4)

where ¢ = max{a, b}.

Proof. Let n €e NU{0} and set p:=a(n+1)—1,v:=(n+1)f+1,v:=c(n+1)+1+4. For

each z € X}, (v), let

y = (P (v) Ttz = (2m —ilog(A))’(1+ A TFA g
= (2m —ilog(A))Y(1 + A)"THATH (AM(1 4+ A V1 (2m —ilog(A))V2)
= B l2eD(A),
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where z := (®, ,(v))'z. Let g : [0,00) = X be defined by the law

1 —100 Y AH
t) = — A, A)yd.
90 =55 | T AT R = egoy)e TN AW

Note that for each ¢ > 0, g(¢) is indeed an element of X and it is differentiable. Namely, since

4 )\M+1

D then A

y € D(A), then A = s T Toa (V)
dominated convergence, one gets

~R(\, A)y is integrable in iR. Therefore, by

(1) = — - Y Al R(\, A)yd\
TW="0mi Jiw  © M NP HeEr —ilog(V)) YN

Moreover, by Lemma D.0.1,

0 = 5 mm e_M(1+A)v+u(2A: “TogQuy AR Ay —w)dA
- _AQLM' ;oo e 1+ A)vw(;: ~iTog(n)r N AlydA =
- 2% ,-:OOG_M(IJM\)”W(Q)\: gy Y
= —Ag(t)
Then, ¢'(t) = —Ag(t) for each t > 0, and g(0) = z. Therefore, g(t) = T(t)z, by the

uniqueness of the solution to the Cauchy problem associated with —A.

Integration by parts yields

T = —— / e Mp(\, A)yd,
iR

C2mi
where p(A, A) is a finite linear combination of terms of the form

NER(L Ay AR, Ay
(1+ Nprv k) (27 — ilog(N))oH (1 + N (2 — ilog(\))oHER)

where 0 < j<k<I<nandl—-k<m<Il—k+1.
Then, for each t > 0,

n 1 —
el < 5o [ leIp0 Alylx
T JiR
1 —
< %/R e\ Dl ceoydrllyll < Cl@E ) 2l S Nl xew)-
Since X}, | (v) is dense in X//(v), it follows from the previous discussion that for each ¢ > 1,
1T £t o), ) ST

In general, for each s > 0, let n € NU {0} be such that n < s < n + 1; then, there exists
0 =0(s) € (0,1) sothat s=(1—-0)n+60(n+1). Let a1 :=a(n+1)—1, ag :== a(n +2) — 1,



60

f1 = pB(n+1)+1and B2 := B(n+2)+1, then a(s +1) — 1 = (1 — 0)ag + Oz and
Bls+1)+1=(1—-0)p1 +6B2. Set 0:=c([s] +1)+ 1+ 3. Then, by a moment-like inequality
(Lemma 4.2 in [55]), it follows that

IT ()DL (A)(2r —ilog(A)) Cllecxy S IT(E! (A)(2m —ilog(A) ™"l x%, -
17605 (A) 2 — i1og(4) I Y, S
O
The following result is analogous to Proposition 2.2.2; its proof is presented in Appendix C.

Proposition 2.3.2. Let A € Sectx(wa), with C_\ {0} C p(A). The following statements hold:

(a) Let a > 1 and a > 0 be such that, for each A € C_ \ {0} with |\| < 1, one has
I+ A) " Hl2x) S A Qog(1/]AD)% (2.5)
then, for each ¢ > 1,
{)\(277 —ilog(\) (A 4+ A7t XA e iR\ {0}, ]\ < 1} C LXHa+¢),X)
is uniformly bounded.
(b) Let > 1,8>0, fp €[0,1) and b > 0. If
sup{|A| " log(L + [AD~*I(A + A) 7! [ A € T2\ {0}, [A] = 1} < oo, (2.6)
then for each ( > 1,
{)\50(277 ~ilogW)S (A + A) L A € R, A > 1} C L(XG,5(C+D),X) (27

is uniformly bounded.

Proposition 2.3.3. Let A € Sectx(w4) be such that C_\ {0} C p(A) and let a > 1, 8,a,b > 0.
Then,
A log(1/IA)e, A <1

(2.8)
AP log(IAD?, A >1

I+ A) e S {

implies
sup{[|(A + A) "l z(xgren),x) | A € 1R\ {0}} < o0,

where ¢ = max{a,b} and n € N.

Proof. We consider the following cases.

e Case 1: a=1.
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Case 1(a): c € (0,1). Note that for each A € p(—A),

1

(A+A)TTA(1+A) P (2m—ilog(A)) ¢ = T

((1 + AT AN+ A) N1+ A)—B) (2m—ilog(A)) .
(2.9)
By the moment inequality (recall that (27 — ilog(A))~! is sectorial) and by (C.3), it follows

from (2.8) that for each |\| < 1,

IMNA+A)7H 1+ )P @2m —ilog(A) o) S IAA+A) A+ A) 755
IMA+A)7H (1 + )P (2m —log(4)) g

) . H)\log IADA+A)! ¢
A+ 4)” X -1 orilos() |y | 1= A
< log(1/|A])et=) H +
/P ( —ilog(— M) | ) * log(AD Tog(ADI* Tog(ADIF
A+ A)~ 1-A )
2.10
(H log(A* |1og<w>|c> 210

Then, it follows from relations (2.9) and (2.10) that for each A € iR\ {0},
sup{||(A + A)TA(L + A) P (2m — ilog(A) ¢l gy | A € iR\ {0}, [A] < 1} < o0.

Now, note that A(1+A)~! commutes with (27 —ilog(A4))~!, and by Closed Graph Theorem,
log(2 4+ A)¢(2m —ilog(A))~¢ € L(X); thus,

A B L , B
IO+ ) A )P 2 — ilog(A) e
) : .
S IO )7 (L 4) 5 log(2 + ) N

and so, it follows from Proposition 2.2.2 that

)\ _ 1 . —C
sp { AL 4y AL+ 4) P — ilog(4)) Hﬁ(X)} <00
reir =1 LT+ Al

Case 1(b): ¢ =1. It follows from (2.8) and (C.3) that for each A € iR with [A\| <1,

AN+ A)~!
(21 — ilog(—A))

A[—1
cexy log(IA)

A+ A) AL+ A) P (2 — ilog(A)) ) < H <1

For A € iR with |\| > 1, one just proceeds as in Case 1(a).
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Case 1(c): ¢ > 1. Note that for each A € p(—A),

A+A)TTAQ+A) P2 —ilog(A)™¢ = (1—=AA+A)"HAQ+ A2 P21 —ilog(A))~°
+ A+ A)TAQ+ AP 2r —ilog(A)~C
= A1+ A)"2P(2r —ilog(A))~°
+ (1=NA+A)TAQ+ A) 2 P21 —ilog(A))C

(2.11)
Now, by Remark 1.3.2, one has
_ g , . 1 z2R(z, A) _
A+ A TAQ+ A2 P2r —ilog(A)™¢ = omi o s 25 (2 — ilog(z))cdzo\ +A)7!
_ (=) _
= @ ieal)ea A T AT
n 1 zR(z, A) d
2mi Jp (1 + 2)2FB(2m —ilog(2))* (A + 2)
(2.12)

where I' is given as in the proof of Proposition 2.2.2. Since A is sectorial, one can replace
[ R(z, A)llzx) by 1/]z], and so the function z + (27 — ilog(z)) “R(z, A) is integrable on I'
(recall that ¢ > 1). Now, by letting v = 6 = 1 in Lemma A.1 in [55], it follows that for each
z€I'and X € iR\ {0},

z(1=X)
(1+2)2H8(2 + \) Sl (2.13)

Now, by (2.8) and relations (2.11), (2.12) and (2.13), it follows that

I+ A) T AQ+ )P 2r —ilog(A)Cllexy < A+ A) 727 (2m — ilog(A) ™Il cx)

+ L= A+ A)THAQL + A) 2P (27 — ilog(A)) |z ex)
MDA+ A4)!

(
. H (27 —ilog(—\))e(1 — X)1+8 +1<1.

~

£(X)

e Case 2: a > 1. Let ¢ > 0, and notice that

A+ A)TA% 1+ A) 7P 2r —ilog(A)) ™ = (A+A) TN (A+ DAL+ A) P (2r —ilog(A)) ™
= A%(1+A)"* 7727 —ilog(A))~°
+ (1=NAY(1+ A)~ B (2r —ilog(A))~¢

Hence, by Remark 1.3.2, one has
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A+ A)7TAY(1 + A) 2P 2r —ilog(A)) ¢ = % /F i z)ajﬁi?((;r/i)ilog(z))cdz()\ +A)7!
_ (=)
(27 —ilog(=\))e(1 — N)athtl
n 1 2*R(z, A) &

2mi Jp (14 2)0F8+1(2r — ilog(2))e(\ + 2)

It follows from (2.8) that the first term in the right-hand side of the previous relation is bounded.
3

As for the second term, let e € (0, min{a — 1,1}) and consider the map z — R(z, A),

_c
(1+ 2)%
which in integrable over T'; then, by letting v = o — e and § = f+ 1 — ¢ in Lemma A.1 in [55],

one gets

" 211 = )|
P+ 2)27 12 (21 — ilog(2))*(A + 2)|

]zeF,)\eiR\{O}} < 00
(note that (2m — ilog(z))~¢ is uniformly bounded over I'). Therefore,
sup  ||(A+A)TAY(1+ AP (2r — ilog(A))™“llz(x) < oo
A€iR\{0}
O
Proof of Theorem 2.3.1. We follow the same arguments presented in the proof of

Theorem 2.2.1. Let n € NU {0} and set g == (n+ l)a—1, v := (n+ 1)+ L and
v:=c(n+1)+1/r+ 6. By Proposition 2.3.3 one has, for each k € {1,...,n},

zlelﬂlg | R(i€, A)k\\c(xgg(cn),)() < o0. (2.14)

€l

ar et [og(I€)])7+?, and note

Let hy5 : R — R be given by the law h, (&) =

that for each £ € R,

A

. - —(a(n — n 1 ; —v
hes(OIRGE, AFllexrwyx) S hrs(€)R(E, A)F B~ HD=IHAOTDT) (97 — ilog(A)) ™|l £ (x)
he 5 (€)|| R(i€, A) A B~ (21 — ilog(A)) 0| £(x)
IR(i€, A)F~1 A" B~ (21 — ilog(A)) ™|l £(x),

IN

where B := A + 1. It follows from Proposition 2.3.2 and relation (2.14) that for each
kEe{l,...,n+1},

zlel]g hr s (N RGE A)¥ || £(xs ), x) < 00 (2.15)

As in the proof of Theorem 2.2.1, let ¢ € C(R) with be such that ¢» =1 on [—1, 1]. It follows
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from (2.15) that for each k € {1,...,n},
@Z)()R(’LvA)k € Ll(Rv‘C(Xﬁ(U)vX)) C Ml,oo(Ra'C(Xz!xL(U)’X)%

and [|(1 — ¢(-))R(i-, A)¥|| ;(x(0),x) € L"(R). Note that XJ'(v) has Fourier type p, since X/(v)

is isomorphic to X. Then,
(1= ¢()R(i, A € Myy (R, L(XE (v), X)),
and by Theorem 2.1.2, there exists ¢, > 0 such that for each ¢ > 1,

IOl ety x) < ent™

In general, for each s > 0, set p := a(s+1)—1, v := f(s+1)+1/r and 0 := ¢([s]+1)+1/r+6;
by following the same argument presented in the proof of Proposition 2.3.1, one concludes that

for each t > 1,

IT() A B~ (21 — ilog(A) “llexy S %

2.3.1 Proof of Theorem 11

Lemma 2.3.1. Let A be an injective sectorial operator defined in a Banach space X. Let a > 1,
B,8>0,r€[l,00] and z € D(A) C X. Then,

AalH)=1(q 4 A)—(O&+5)(5+1)+1—%x € D(A) NRan(A).

Proof. Let € X and set p:= (s +1) —1, v :=B(s+ 1) + L and B := 1 + 4; it follows from
Proposition 3.1.1 in [32] (see items (c) and (f)) that

A= (tv) . = pAr—1g—(u—1+14v),

— B! (A“_IB_(“_H”)JC) € D(A).
Thus, it follows that for each = € X,
APB= )y = 4 (A“’lB’(’””)x) € Ran(A). (2.16)
Now one has, for each x € D(A),

APB=Wt)y = ArpTt) BTl
~ B! (A“B—<ﬂ+”>) Bz € D(A).
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O
Proof of Theorem 11. Let § > 1 —1/r, set B := A+ 1 and for each £,s > 0, set
p=a(s+1)—1Lv:=0(s+1)+1/r,v:i=cn+1)+1/r+6 (with n = [s]) and

Qu(Ac, B.) := AP B+ (21 — jlog(A))™" € L(X).

Set m := [v], so m € N\ {1} and m — 1 < v < m. We divide the proof into the cases v = m
and v € (m —1,m).

e Case v = m.

min{a, 5,1}6

Step 1: estimating ||7(¢) log(A)Q. (Ao, Bo)|. For each s > 0, let ¢ = 5

where 6 € (0, min{1, s}); then, one has for each x € D(A),

> 0,

T(t) 1Og(A)QU(A0, Bo)x = T(t) log(l + A)QU(A(), BQ)JZ — T(t) log(l + Ail)QU(Ao, Bo)x

= zﬂit) log((l + A)E)QU(A()’BO);U — ,Iét)log((l 4 Ail)E)Q’U(AO,BO)x
= Tit) o F (A + £2(A)71Qu (Ao, Bo)zdu(N) —

_ T(t/ fe(ATH A+ £(A™D) 7' Qu (Ao, Bo)zdp(N)
iy (2.17)

with fo(A) = (1 4+ A)® — 1, where we have applied Lemmas 1.3.3 and 2.3.1 in the first identity,
Lemma 1.3.4 in the second identity and relation 1.7 in the third identity.

1T (#)Q@u (Ao, Be)ll £(x)

IT°(2) Qv (Ao, Bo)ll £(x)
the proof of Theorem 2.2.1, one gets

Estimating I;. Let 7 := ; by following the same arguments presented in

70 [ 0+ 2407 Qut0 oo < AITOQ G0 Bl Mrn [ 5Vl

and

Hm) /Toofa(A)(AJrfs(A))_le(Ao,Bo)xdu()\)H AL G Bl |

Note that for each ¢ > 0 and each x € X,

IT(8) f-(A)Qu(Ao, Bo)z| = [[(1 =B~ *)T(t)B*Qu(Ao, Bo)x||
1= B™ll2x) IT(#) B*Qu (Ao, Bo)x||
CelT(#)Qu(Ao, Be)ll c(x)ll- (2.18)

IN

IN
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Then, by (2.18), it follows that

T o)

1
I8l 5 e TR0 Boleco (| —dn)+ Cor [T 5 )

< e T ()Qu(Ao, Bo)lleix) log(1 + 7). (2.19)

Estimating Is.
1T (#)Qu(Ae, Be)lle(x)

Let 0 := , SO
1T (t)Qu (Ao, Bo)ll£(x)

g

70 [ a0 1) Q0 Boledu| S ITOQ (o Bolecr) [ 555 nN i,
and

70 [~ 20470+ 00 @ul0 Boledu| S ITOLAQ Ao Bolle) [ 3o du)
Note that for each z € X,

IT0)£.(A)Qu(Ao, Bl = 11— (14 A=) T(@)(1 + A~)F A*B49) (or — i log(4))

< Co|Tt)(1+ A™HTAP B~ W) (27 — jlog(A)) V|

Now, by relation (1.1) one has (1+ A7)~ !=1—(14+A)~! = A(1+ A)~}, so it follows from
Propositions 3.1.1 (e) and 3.1.9 (b) in [32] that

[(1+ A7) = (AL + A) 77 = A%((1+ 4)7) !

Then, (1+ A7) = (1+ A)°(A%)~1 = (14 A)*A~* (see Proposition 3.2.1 (a) in [32]). Therefore,

by the previous discussion,

Co||T(t)A*—= B=WH)+e (21 — jlog(A)) Vx|
CoIT(#)Qu(As, Bl )l (2.20)

IT(t) f(A™")Qu (Ao, Bo)z|

IN

IN

Thus, by (2.20),

g

~ 1
Bl 5 e ITOQ o Boleco ([ 5an + G [ ) el

< e NTHQu(Ao, Bo)llgex) log(1 + o)l (2.21)

[e.9]

Finally, by combining relations (2.17), (2.19) and (2.21), and by the density of D(A), one
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gets for each sufficiently large ¢,

Ce||T(1)Qu (Ao, Be)ll £(x) >
|7 (t)Qu (Ao, Bo)llz(x)

Co||T(H)Qu(As, Be)l o) )

|7 (t)Qu (Ao, Bo)ll£(x)

1T'(2) 1og(A)Qu (Ao, Bo)llecxy < Cel|T()Qu(Ao, Bo)ll£(x) log (1+

+ Cl|IT(t)Qu(Ao, Bo) |l £(x) log (1 +

< 20 st log(1 + ¢4t?),

with C; s and ¢, positive constants, where in the last inequality we have applied Proposition E.2.1

to log(1 + A) (see the proof of Theorem 10 for details).

Step 2: removing m. The idea is to apply Step 1 recursively in order to obtain an estimate for
[T () A* B~ £ (x)-
First of all, note that for each k € N and each y € D(log(A)*), one has

k

(2m — ilog(A))Fy = <f> (27)* 77 (i log(A)) . (2.22)

n=0

Now, note that for each n € {1,...,m} and each z € X, (21 — ilog(A)) "™ A*B~ W)y ¢
D((2m —ilog(A))™) C D(log(A)™), and so by (2.16), for each x € D(A), one has

D(A) > B (21 —ilog(A))"Qu(Ag, By)Bx
= A"B=WH) (27 —ilog(A))™(2r —ilog(A)) ™z € Ran(A).

Therefore, it follows from relation (2.22) that for each = € D(A),

n

T(#)(2r — 110g(A4)"Qu( Ay, Bo)r = 3 (m) (1) (2™ T (1) (10 (A))" Qu( Ao, Bo)z. (2.23)

n=0

The next step consists in estimating the norm of each one of the terms presented in

relation (2.23).

e n = 0. It follows from Theorem 2.3.1 that ||T'(t)Q. (Ao, Bo)llzx) St°.

e 1 <n <m. We proceed by induction over n. Case n =1 is just Step 1. If n > 1, for each

0<e<1let
_ IT(t) (log(A)" ' Qu(Ac, Be)ll£(x)
17'()(log(A))" 1 Qu (Ao, Bo)ll c(x)

and note that, by proceeding as in Step 1, one gets

T(t, Ae, Be)




68

I7(t) log(A) (log(A))" ™ Qu( Ao, Bo)ll£(x)

S e HIT(1)(log((L + A))(log(A))" ™' Qu (Ao, Bo)ll£(x)

e H|T(t) (log((1 + A™1)7) (log(A4))" " Qu(Ao. Bo) |l £(x)
I7°(#) (log(A4))" ' Qu(Ao, Bo)ll£(x) log (1 + 7(t, Ao, B:))
+ || T(t)(log(A))" ™ Qu(Ao, Bo)llc(x) log (1 +7(t, Az, Be)) ;

| 7(t)(log(A))"Qu(Ao, Bo)llzix)

N+

then, by the inductive hypothesis, it follows that for each ¢ > 1,

I7°(£)(log(A))" ' Qu(Ao, Bo)ll £(x) St~ log(1 +1)" "

Now, by replacing the previous estimates on (2.23), it follows that for each t > 1,

IT()A* B~ £ x, IT(#) (27 — ilog(A))™ Qu (Ao, Bo)ll£(x)

< P log(l+ )™
Case v # m.

Since v € (m — 1,m), it follows from the moment inequality (recall that (27 —ilog(A4))~! is

a sectorial operator) and from the previous case applied to v = m and v = m — 1 (recall that

m > 2) that for each t > 1,

T A B~ x) = [|T()(27 — ilog(A)) " Qu(Ao, Bo)l(x
IT(2)(2m — ilog(A))™" 1QU(A0,Bo)!m X)

I7(t) (27 — ilog(A))™ Qu (Ao, Bo)ll 7)™

(¢ log(L + £)™ )™ (¢ ~* log(1 + t)m)v—m1

t*log(1+1t)".

N

AR AN

2.4 Singularity at zero

Let pu,v > 0 and let A € Sect(w,) be an injective operator over the Banach space X (by
Lemma 1.3.1, A~! is a sectorial operator); since A — log(1+ \) € CBF (see Example E.1.1-(b)),
it follows from Theorem 1.3.1 that the operator log(2+A~!) is sectorial, hence (log(2+A71))7? €
L(X) is well-defined. Define the bounded operator

PH(v) = PH(A,v) = AH(1 + A) Hlog(2 + A1)



69

and set X*(v) := Ran(®*(v)). The space X*(v) is a Banach space with respect to the norm
|zllxnw) = Nl + 12 (w) " 2] = [l + | log(2 + A7) (1 + AF ATz, = € XH(v).
Note that ®#(v) : X — X*(v) is an isomorphism, so for each T' € L(X*(v), X),

1T £xm(v),x) < TR ()]l 2x) < N2 ()l 20x) I TN £(xm (v), ) - (2.1)

Definition 2.4.1. Let (T'(t));>0 be a Cp-semigroup (7'(t))¢>0 on a Banach space X with
generator —A. One defines the non-analytic growth bound ((T") of (T'(t))¢>0 as

¢(T) :=inf{w € R | supe ™ ||T(t) — Sl z(x) < oo for some S € H(L(X))},
>0

where H(L(X)) is the set of the operators S : (0,00) — £(X) having an exponentially bounded
analytic extension to some sector containing (0,00). One says that (T°(t)):>0 is asymptotically
analytic if {(T) < 0.

Remark 2.4.1. Let

sP(—=A) = inf{w € R|3 R >0 such that {Re(\) > w and [Im(\)| > R} C p(—A) and
s O+ A o) < oo} |
Re(A)>w,Im(\)|>R

It is shown in [10] (Proposition 2.4) that ((T") > s§°(—A). So, if (T'(t))>0 is asymptotically
analytic, then s§°(—A) < 0; more generally, Theorem 3.6 in [11] states that ¢(7") < 0 if, and
only if, sg°(—A) < 0. In our strategy, we use the fact that s3°(—A) < 0.

2.4.1 Proof of Theorem 12

Proof of Theorem 12. Step 1: Here, we use the same ideas presented in the proof of

Theorem 10. Let n € N and set p:=a(n+1)—1, v:=a(n+1)+1+46. For each z € X*((), let

y = (O ()l = log(1+A N1+ AFA
= log(2+ A (1 + A)FA™H (A (1 + A) P log(2+ A1) V%)
= B l2eD(A),

where z := (®*(v))"lz. Let g :[0,00) — X be defined by the law

1 —1i00 oy 2K
t) i = — A ‘
9(t) 278 Jioo € (1+ Nelog(2 + A—l)uR()" JydA

Note that for each t > 0, g(t) is indeed an element of X (which follows from relation (12)
and from sg°(—A) < 0) and it is differentiable. Namely, since y € D(A), then A —
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)\;Hrl

1+ Vi log(2 £ A 1)0 R(\, A)y is integrable in iR. Therefore, by dominated convergence,

= [T e asl R(\, A)ydA
TV =00 Ji  © (L4 Milog(2 + ATy o AYER

Moreover, by Lemma D.0.1, ¢/(t) = —Ag(t) for each t > 0, and g(0) = =. Therefore, g(t) = T'(t)z,
by the uniqueness of the solution to the Cauchy problem associated with —A.

Now, integration by parts yields

1
t"T(t) = — / e Mg\, A)yd),
iR

27
where g(A, A) is a finite linear combination of terms of the form

)\‘u_jR(A, A)n—k+1 and )\,u,—jR()\’ A)n—k—l—l
(1 + AN)Hth=3(2X + 1) log(2 + A~ 1)vti (1 + N)HHE(2X + 1) log(2 + A~ 1)vti’

where 0 <i<j<k<nandk—j<I<k—j+1.
Then, for each t > 0,

1 _
el < 5o [ 1ol Aylax
T JiR

1 _
< 277/1@ llax, Dl ccxydAllyll < ClE@H ()™ el S lllxnw)-
Since X4'(v) is dense in X#(v), it follows from the previous discussion that for each ¢ > 1,

I1TE) | oxnwy,x) St

It remains to prove the result for any s > 0. So, for each fixed s > 0, let n € N be such that
n <s<mn-+1. Let also define 6 := 6(s) € [0,1) by the relation s = (1 —0)n+ 6(n + 1).
Set a1 == ;% and az := %, and note that a; + az = 1; then, by Proposition E.1.1-(c),

FA) = (14N log(2+ ) € CBF, where A > 0. Now, by Lemma 3.2 in [14], the operator

(A7) = (+AT) " log(2+ A7)
= A1+ A) “log(2+ A7) ®

is sectorial, given that f(A~!) is sectorial, by Theorem 1.3.1.

Since (f(A™1))~! is sectorial, it follows from the moment inequality (see Proposition 4.6 in
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[32]) and Theorem 2.4.2 in [32] that

ITOIF AT W)l S 1T ()5 )IIT(t [(f(A)) ok (0) |7 x)
1T ()@ () | ) I T (¢
( (

AN

Step 2. For each € > 0, set
Wy (Ae, B.) := A¥*B " log(14+ A~ H ™" € L(X).

Set m := |v] and n := {v}. As in the proof of Theorem 10, we divide the proof into the cases

where 7 = 0 and n > 0. In both of them, we proceed recursively over m € N.

Case n > 0.
e Removing 7.
Let e = % > 0, where 6 € (0, min{1, s}). Note that for each x € D(A), one has

T(t) Wi (Ao, Bo)z = iT(t) log(1+ fo(A™))) "W n (Ao, Bo))z

= [T AT Wi (Ao Boad)

Let
HT< ) m+n(A€7B )HC

Q) m+77(AOvBO)HL

then, by proceeding as in the proof of Theorem 10, one gets

IT(OWm(Ao, Bolex)y S IT@)Winty (Ao, Bo)llox) log(l +7)". (2.3)

Again, by combining the estimates (2.2) and (2.3) with the arguments presented in the proof of
Theorem 10, it follows that for each ¢ > 1,

[T (#)Win (Ao, Bo)llcx) St log(1 +1)". (2.4)

e Removing m. It follows from the discussion presented in the previous item that for each
x e X,

T(t) A" B~ log(l + A=)~ Flz = éT(t) log(1 + f-(A"1)A"B~"log(1 + A1) ™z

_ 1y / Fo(BYON+ £-(B)) " Wi (Ao, Bo)adpu(N).

)
JAY(L+ A)“log(2 + A1) @y (a) 7 x)
I (1)@ (0) | 23 I ()22 (an 4 2) + 1+ 8) |y

(2.2)
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o HT(t)Wm(AsaBs)HE(X)

T (OWan(Ao, Bo)lle(x)
follows from relation (2.4) that for each t > 1,

Let 7 :

; then, by proceeding as in the proof of Theorem 10, it

1T (8)Win—1(Ao, Bo)ll e (x) S ¢ log(1 +¢)'*7.

By proceeding recursively over m (see the proof of Theorem 10 for details), it follows from

the previous discussion that for each ¢ > 1,

IT() A B~ £(x) St~ log (1+1)" ™.

Case n = 0. Since in this case v = m € N, one just needs to proceed as in the previous item in

order to conclude that for each ¢ > 1,
IT(5) A" Bl gy S ¢ log (1+6)™.

O

Remark 2.4.2. Suppose that a = 1 in the statement of Corollary 5, so [|[R(X, A)|z(x) S [A™!
with Re(A) < 0. Then, by relation (13), for each o > 0 there exists C5, > 0 so that for each
t>1,

IT(#) A7 (L + A) Il zx) < Cost™ 7 log(1 + 1)+ (2.5)

Now, for each o > 1, take d = o0 — 1 > 0, and so for each t > 1,

—1
M,

IT(1)A7(1 + 4) lle(x) < st~ log(L+1)7 = O ((1@)) ) |

This shows that in case a = 1 and o > 1, one gets the same estimate as in Corollary 2.12

in |22] for bounded Cy-semigroups, and so for these particular parameters, the result is optimal.



PART 11

Slow dynamics for self-adjoint semigroups and
unitary evolution groups
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Chapter 3

Slow dynamics for self-adjoint
semigroups and unitary evolution

groups

In this chapter, we discuss the proofs of the results presented in Part II of Introduction, with
an application to almost-Mathieu operators. For the definitions and notations regarding spectral

measures, spectral types and the Spectral Theorem, we refer to Appendix B.

3.1 Proofs of Theorems 14 and 15

3.1.1 Proof of Theorem 14

Recall that A is a pure point negative self-adjoint operator, whose eigenvalues (A,)n>1 C
(—00,0) satisfy limsup A,, = 0. Let (xy,),>1 be the corresponding normalized vectors of A, that
is, Az, = Apn fgyeoaoch n>1.

The main ingredient in the proof of this theorem is the well-known expression of the resolution
of the identity of a pure point self-adjoint operator. Namely, since A is a pure point operator, each
x € X can be written as Z;’il b;x; for some square-summable sequence (b;); of complex numbers,
and, for each Borel set A C R, the corresponding spectral measure is p2(A) = > AEA 65126, :
in particular, for every n > 1, u2({\n}) = |bn|?. See Appendix B for more details.

i) Let ()j,)i>1 be a subsequence of eigenvalues of A, with the corresponding orthonormal
o

- 1
eigenvectors (z;,);>1, so that A;, T 0 and —
ez i 2 B

< 0. For each x € X, write x = ijxj
j=1
and set

Ty = bix; +
Z l;l V 1/|)‘JI

It follows that for each | > k + 1,

1

i (i, 0) 2 g, ({5 3) = B
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and therefore

0 1/2
B/ D eV P Az = B(1/|N;,) ( 2wy (w ))
0 1/2
BL/al) ( 21/ Dy (o ))
)‘Jl
> ‘lﬁ (/1N (i (i 0T) 2
> BA/IAl),
which implies
lim sup B(t)|e" x| = oo
t—00

oo
ii) Let 2 € X and let {e;};>1 be an orthonormal basis of X such that z = Z ajej, with a; # 0

j=1
for infinitely many j’s. Let (a;,);>1 be a subsequence of (a;);>1 with |a;| L 0. Let (¢;);>1 be a
positive sequence such that ¢, — oo and B(t;) = |a;,| 2.
For each k > 1, set
=1
Ap = P<pAPick — ) CIRLTE
I=kt1
where Pj<}, is the projection onto the subspace generated by {e;};<j. It is clear that Ay — A as
k — oo in the strong sense. The operator P<;AP,<j is pure point and negative. Note that for
1
large enough I, Ay(e;,) = —7€j,
Fix k; for large enough [, one has

Ap(1_ Ap(f_ — g 2:L
o ([=1/4,0)) = pp*({=1/t}) = laj,| 3’
and therefore
0 1/2
sl = ate) ([ raud)
0 1/2
Qtl’wd
= (/l/tl 'u )>
> e B(t) (g ([=1/1,00)"?
> 6_1 B(tl)a
which results in
kg = oo

lim sup 5(t)||e
t—o00
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3.1.2 Proof of Theorem 15

Let a € [0, 1]. Recall that a finite positive Borel measure p on R is uniformly a-Holder continuous
(denoted UaH) if there exists a constant C' > 0 such that for each interval I with £(I) < 1,
u(l) < C LI Theorem 3.1.1 i) is, indeed, a particular case of a well-known theorem by
Strichartz [64].

Theorem 3.1.1 (Theorems 2.5 and 3.1 in [34]). Let p be a finite Borel measure on R and
a € [0,1].

i) If p is UaH, then there exists C), > 0, depending only on g, such that for every
f € LR, du) and every t > 0,

1 t
7

ii) If there exists C, > 0 such that for every t > 0,
I :
n / / e dp(w)
tJo | Jr

Lemma 3.1.1 (Lemma 2.1 in [4]). Let A be a negative self-adjoint operator with 0 € o(A) and
let @ : Ry — (0,00) be such that

2
ds < Cy”f”%,?(R,du) e

/R eI £ (w) dpu(w)

2
ds < C,t™°,

then p is UG H.

tliglo a(t) = oco.

Then, there exist z € X and a sequence t; — oo such that, for sufficiently large j,

A
B(0;1/t;)) > .
:U’z( (0; /])) = aty)
Proof of Theorem 15. Let w € 0(A) and set Ly, = (—oo,w] No(A), A, = AEA(L,,) and
also AY = A, —wl. So, by Lemma 3.1.1, there exist z € X and ej — 0 such that, for sufficiently
large j,

p B0 2 s = e (Bis) 2

= pg (B(wieg)) > py (B(wiej) N Ly) = pg (B(w;ej)) > ———
Hence, uj;‘ is not UaH for all 0 < o < 1. Thus, by Theorem 3.1.1, for every € > 0,

1 t
limsup t® — /
t—o0 t 0

Since one has, by the Spectral Theorem, that for every s € R

2
ds = oo.

/ e dp (w)
R

) = [ ),
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the result follows. O

3.2 Generic spectral properties and proofs of Theorems 16 and
17

In this section we compute (Baire) generically the local dimensions of systems with purely
continuous spectrum (Theorem 16) in order to prove Theorem 17.

Note that, for each w € R and each € > 0,

/ e 2w =slqy(s) > / e 25l dp(s) > e 2pu(B(w; 1/1)).
R B(w;l/t)

On the other hand, for each 0 < § < 1 and each ¢t > 0,

/e—2tw—sd'u(8) _ / €_2tw_sd,u(8)—|—/ e—2t|w—s\du(s)
R B(w; 1) B(w; )¢

1—0 13

< u(B(w, 1/1'7%) + e u(R). (3.1)

Thus, at least when p has a certain local regularity (with respect to the Lebesgue measure),
we expect that / e~ 2w=sld(s) and pu(B(w;1/t)) are asymptotically comparable as t — co. In
R
this sense, the following identities are expected:
Inffy 2 ldu(s)]

htrgégf 7 = —d; (w), (3.2)

1 72t\wfs|d
s oup L €21 d)
t—o00 Int

— —d (w), (3.3)

Indeed, these identities were proven in [4] (note that since it is not possible to compare directly the
two terms on the right-hand side of (3.1), some caution should be exercised when checking (3.2)
and (3.3)). We use them in the proof of Theorem 16 below.

Proof of Theorem 16. Note that it is enough to show that for each w € o(A), the set

G(w) :={z e X | d;g?(w) =0 and d::?(w) = oo} (3.4)

is generic in X. Namely, given 0 € X, set

0= N U {weota [ et < o}

>1n>1k>1t>k

and

Q= m ﬂ ﬂ U {w co(A)| tl/l/Re_Qtw_8|du§(s) > n}

I>1n>1k>1t>k
Note that
jx == Q, N Q+.
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So, since the mapping

o(A) 3w~ /Re_%'w_sd,uf(s)

is continuous for each ¢ > 0 (by dominated convergence), it follows that Q_ and Q are Gy sets
in o(A); consequently, 7, is a G5 set in o(A).

Now, let (wp)p>1 C 0(A) be a dense sequence in o(A). So, if

rEM= ﬂ G(wy) ={pe X | d;g(wn) =0 and d:é(wn) = o0, for each n € N},

n>1

it follows that 7 is generic in o(A).

After such preliminaries, we divide the proof of Theorem 16 into 4 steps.

Step 1. Let us show that for each p > 0 and each w € g(4),
{reX| d;rg(w) 2 d;;,(w) > p}
is dense in X. Namely, let for each n € N and each s € R,
1/2
fn,p(wv 5) = (]_ _ e—n‘w—s|p) ’

and for each x # 0, let @, := f, ,(w, A)x, where f,, ,(w, A) := E4(fn ,(w,")). Since pZ is purely

continuous, one gets, by the Spectral Theorem and dominated convergence, that

1 fnp(w, Az — ®
= [(fnp(w, A) = Dl

= [y e

phwh + [

B\ {w)
- /R\{w}

(1-—6—Mw—ﬂp>u2_-1
as n — oo, that is, x, — x in X.

lzn — 2|

(1 emntesi) 7 1‘2 au(s)

2
dpgl(s) — 0
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Now, by Fubini’s Theorem,

Lt o) = [ 0.0

_ /e—2t|w—s(1 o e—n\x—sV’)dM?(s)
R
1 — e—nlw—sl?
— /e—%lw—8|w_5|p(e)duf(s)
R w — s

e PpP / (1— e—nlw—S\”)
R

<
- 2rtp |lw — s|P

—p P n
S // e s dr dpd(s)
20t Jr Jo

ne Ppf o
< el

dpiz (s)

we have used the fact that mgac(e*“up ) < e Ppf. Thus, it follows from identity (3.3) that for

eachn > 1, d;A (w) > p, and so
{ze X [df,(w) >d,(w)>p}
is dense in X.

Step 2. Let us show that, for every w € o(A), there exists x € X such that d;A (w) = 0. Set
Ly = (—oo,w] No(A), Ay, = AEA(L,,) and A% = A, —wI. So, by Lemma 3.1.1, there exist
x € X and £; — 0 such that for sufficiently large j,

uf%(B(0§5j)) > —lnl(gj) = M;“w(B(w;gj)) > —lnl(aj) = In (ﬂf(B(w;f:‘j))) >1In (M?(B(w;Ej) ﬂLw))
1
= In(u;v(B(w;ey))) >ln<—ln(€J)>
then
In (2 (Blwsey)) _ 1 (me) (w) =0
Ing; B Ine; "

Step 3. Let us show that for every w € o(A),
{zeX| d;f(w) =0}

is dense in X. Namely, let w € o(A) and set, for every n > 1,

Sy = <—oo,w—i> U{w} U (w+i,oo>.
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Set also, for each z € X and each n > 1,
A 1
Ty = E7(Sp)x + —x,
n

where z is given by Step 2. One has that z,, — = in X, since EA(Sn) — I in the strong sense.

Moreover, for each n > 1 and each 0 < ¢ < %, one has

pa, (Bwie)) = (BA(B(w;e))an, zn)

= (ET(B(w;e)EA(Sn)z,2n) + — (B4 (B(w;e))z, o)

1
—  (BA(B(w:e) N Su)a, ) + %(EA(B(w;E))x,xn>
= (B ({w ) za) + (A (Bw; ), BA(S,))

1
P
= (BA(wh)a, o) + B, o) + - (B (Bw; ), )

1

= S (BA(Bwie)r,)

(E4(B(w;e))z, )

= %Hf(B(w;E)),

and so

In(pA (B(w; In(u?(B(w;
d-y () = liminf 2B e e Blwie) oy g
T €l0 Ine €10 Ine Zg

Hence,

{zeX| d;g,?(w) =0}
is dense in X.
Step 4. Finally, in this step, we finish the proof of the theorem. Since, for each w € R and each

t > 0, the mapping
X3am [P ud(s) = (oA w)e. ).
R

with g:(s,w) = e~ 2tlw=sl ig continuous, it follows that for every w € R, each one of the sets

B_(w) := {x€X|d:§(w):oo}

- NN AU {sexie [ elaws) < 1/n}

I>1n>1k>1t>k R
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and

Bi(w) = {zeX| d;%,(w) =0}
= NN AU{zexiet [ e > n},
I>1n>1k>1t>k R

is a G set in X. Thus, it follows from Steps 1 and 3 that for each w € o(A), both B_(w) and

B, (w) are generic sets in X, and so

Gw)=[){reX]| d(w)=0 and d',(w) > n} (3.5)

n>1
is also generic in X. O

Remark 3.2.1. Let z and A be as in the statement of Theorem 16. Consider also w = /\mi&) A
€o
Note that A,, = wl— A is a bounded negative self-adjoint operator and, by the Spectral Theorem,

we may rewrite (3.2) and (3.3) by using the norms of semigroup orbits as

In ||et(wI_A)a:||2.

)

+ _ gt — —Tim
D) = 0 OV =~ Bt =

B 3 ) lnHet(waA)w.”Q
= =1 = W
d4(w) = d 4, (0) imn sup 0

In this case, Theorem 16 has a clear asymptotic meaning.

Remark 3.2.2. Theorem 16 is particularly interesting when A has purely absolutely continuous
spectrum, since it shows the striking difference between the typical behaviour of dii‘ from the
topological and measure points of view; namely, if ,uaf‘ is purely absolutely continuous, then it
is well known that there is a Borel set A C R such that u2(A) = p2(R) = ||z||> and, for every

w € A, d:féﬁ,‘ (w) =1 (see [30] for details).

3.2.1 Proof Theorem 17

We will also need the following result.

Claim. If w € o(A), then G(w) C {z € X | p2 isnot UBH, V 8 > 0}. Indeed, it is enough to
note that given a > 0, if 2 is UaH, then for each w € o(A), d;A (w) > a.

For w € o(A), if z € G(w), then one has from the Claim that for each 8 = ¢, k > 1, pi is
not UBH. Thus, it follows from Theorem 3.1.1 ii) that for each k > 1,

lim sup t/¥ WA(t) = oo,

t—o00
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and then one has from the proof of Theorem 16 (recall (3.5)) that for each k£ > 1, the set
{zeX| lim sup t/* WA(t) = 0o} D G(w)
t—r00

is generic in X.

It remains to prove that for each £ > 1, the set
._ e 11k Ay
X = {a:EX]hggft Wi(t) =0}

is generic in X. The proof that for each k > 1, X is a Gy subset of X, follows from the same
arguments presented in the proof of Lemma 3.3.1 and Theorem 16. On the other hand, it follows
from Theorem 3.1.1 i) that for each k > 1,

{z € X | p2 is uniformly 1-Holder continuous} =: Xyp (1) C Xj.

Finally, since by Theorem 5.2 in [34] (by taking a = 1) Xyp(1) is dense in X, it follows that
for each k > 1, X} is a dense Gy subset of X (recall that T' has purely absolutely continuous
spectrum, by hypothesis).

3.3 Application to the Almost Mathieu Operator

We recall that the Almost Mathieu Operator Hy™® is a bounded operator defined on ?%(Z) by
the law
(Hu’J\O‘u)n = Upt+1 + Up—1 + 2A cos(2m(w + na))uy, (3.6)

with a,w € T = R\ Z, « irrational. It is well known that for every 0 < A < 1, H&a has purely

absolutely continuous spectrum. For more details, see [25].

Theorem 3.3.1. Let a and w be as before, and let 0 < A1 < Ay < 1. Then, there exists a
generic set M C ¢2(Z) so that, for each z € M, the set of A € [A1, \o] such that for each k > 1,

HXA HX
liminf ' Y* W, “* () =0 and limsupt'/* W, “°(t) = oo,
t—00 t—00

is generic in [A1, Aa].

Remark 3.3.1. It is worth underlying that such phenomenon has been shown, for some singular
continuous systems, by Aloisio, Carvalho and de Oliveira in [1, 20] (see also [21]) by exploring
the density of pure point operators in appropriate spaces, a quite different setting from this work.
In this case of purely absolutely continuous spectrum, this phenomenon is, in some sense, the
counterpart of the situation of an operator with pure point spectrum and quasiballistic transport
[3, 28].

Let us proceed to the proof of Theorem 3.3.1. We begin with some preparation.
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Lemma 3.3.1. Let a and w be as before, and let 0 < A\; < Ay < 1. Then, for every x € (*(Z)
and k> 1,

A A
{\] liginf o1/ Wf“’“(t) =0 and limsupt'/* Wy oo (t) = oo}
o0

t—o00
is a G set in [A1, Aa].

Proof. Note that this proof is based on the same arguments presented in the proof of Proposition

3.11in [3]. Let A € [A1, Ao]; if A, — A, then H)» converges strongly to H) ., as n — oo. Thus,

& w,a
it follows from Propositions 10.1.8 and 10.1.13 in [26] that for every ¢t € R, e~ IHHL converges
itH)

strongly to e ""w.a as n — oo, and so it follows from dominated convergence that for each

x € /%(Z),t € R and k > 1, the map

A tl—l/k t )
i da] 34 e 1 e gy = T / (e~isHDa g, )2 ds
0

is continuous. Since

A
{)\ \ litminftl_l/k Walee (1) = 0}:
—00

n>11>1t>1
A A
{)\ | lim sup ¢! ~1/% Wf‘”’”‘(t) = oo}: ﬂ {)\ | g1 /R Wf‘”’”‘(t) > n},
=00 n>11>1t>1
the result follows. O

Proof of Theorem 3.3.1. The result is a direct consequence of Theorem 17 and of an
argument involving separability (see [1, 5]). Let (A;)j>1 be a dense sequence in [A1, A2] and
let H; = H))

(Hj,x), it follows from Theorem 17 that

’» be the corresponding operators. If ,u% denotes the spectral measure of the pair
M = m {z e (2(Z) | lim inf ¢1=1/* wili (t)=0 and limsupt'/* Wil (t) = oo}
. t—ro0 t—o0
jz1
is generic in £2(Z). Since, by Lemma 3.3.1, for every 2 € M and k > 1,

A A
{\] lilginftl_l/’C Wf“”o‘(t) =0 and limsupt'/* Wf“‘“(t) =00} D {\;}

t—o00

is a Gs set in [A1, Ao], the result follows. O
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Appendix A
Cp-semigroups

Here, we present the basic definitions and results regarding Cp-semigroups. For a real

exposition of the theme, see |7, 29, 35, 47, 51, 52, 62].

Definition A.0.1. Let X be a Banach space and let (T'(t));>0 C £(X) be a one parameter

family of linear operators satisfying the following properties:
1. T(0) = Ix = 1;
2. for each s,t >0, T(t+s) =T(t) o T(s) (semigroup property).
Then, (T'(t))s>0 is called an operator semiproup. The linear operator A, given by

Az = lim M

t—0+ t ’
where

D(A) := {x € X | lim T(t)::—x exists},

t—0t

is the so-called infinitesimal generator of the semigroup (7'(¢));>0 and D(A) is the domain of
A.

Lemma A.0.1 (Theorem 1.4, Chapter II in [29]). The generator of a strongly continuous

semigroup is a closed and densely defined linear operator that determines the semigroup uniquely.

Definition A.0.2. A semigroup (7'(t))s>0 defined on X is called a Cp-semigroup (or strongly

continuous semigroup) if for each x € X,
lim T'(t)z = .

t—0t

A (T'(t))t>0 Co-semigroup is bounded (uniformly bounded) if

sup | 7)1 2x) < .
t>0
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Example A.0.1 (Proposition 4.11 in [29]). Let (T'(t)):>0 be the multiplication semigroup

generated by a measurable function ¢ : R — C satisfying

ess. sup Reg(s) < oo,
seR

that is, let for each ¢t > 0 and each f € LP(R,dpu),
(T()f)(s) := e f(s), V>0

Then, the mappings
Ry >t T(t)f =e%f c LP(R,du)

are continuous for every f € LP(R,du). Moreover, the semigroup (7'(t));>o is uniformly

continuous if, and only if, ¢ is essentially bounded.

Example A.0.2. Let X = W12(1,00) and let o(s) = 1/s+1is® (s > 1), with b € (0,1). Define

(T()f)(s) = e f (s).

For each t > 0, there exist positive constants C' and C such that

k
A7 —t(s)
S

1Tl z(x) =C sup sup = Ct.

ke{0,1} s>1

Therefore, (T'(t))i>0 is an unbounded Cp-semigroup.

Proposition A.0.1 (Proposition G.2.2 in [66]). Let (7'(t))i>0 be a Cp-semigroup on the Banach
space X. There exist constants M > 1 and w € R such that ||T'(t)||zx) < Me** for each t > 0.

Theorem A.0.1 (Theorem 1.10, Chapter II in [29]). Let (T'(¢))i>0 be a Cp-semigroup on the
Banach space X and suppose that there exist constants w € R, M > 1 such that for each ¢ > 0,

7)) ) < Me*.

For the generator —A of (T'(t)):>0, the following properties hold.

o
a) If A € C is such that R(\)x := / e T (s)xds exists for all z € X, then A € p(—A) and
0
R(A\,—A) = R(\).

b) If ReA > w, then X\ € p(—A), the resolvent is given by the integral expression in a) and

M

A —A < -
1RO, =A)lecx) < 5 —

Definition A.0.3 (Analytic Semigroups). A Cp-semigroup(T'(¢))s>0 on a Banach space X is
called analytic on S, if for all € X, the function [0,00) > ¢t — T'(t)x extends analytically to
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S,, and satisfies

lim S(z)x==x.
2E€S,,2—0

We call (T'(t))i>0 an analytic Co-semigroup if (T'()):>0 is analytic on S, for some w € (0, ).

Theorem A.0.2 (Theorem G.5.2 in [65]). For a closed and densely defined operator A on a

Banach space X the following assertions are equivalent:

a) there exists ¢ € (0, g) such that A generates a bounded analytic Cp- semigroup on S;

b) there exists 6 € (%, ) such that Sp C p(A) and

sup [|AR(A, A)||x) < o0
AESy

The following are some results for the characterization of strongly continuous groups and

semigroups, for more details we suggest [29, 65, 26].

Theorem A.0.3 (Hille-Yosida). For a densely defined operator A on a Banach space X and

constants M > 1 and w € R, the following assertions are equivalent:

a) A generates a Cp-semigroup on X satisfying ||T(¢ < Me™? for each t > 0.
g group ying L£(X)

M
(b) (€ | Rer > w) € p(4) and RO AV o) < o — gy ¥ ach A € C with Red > w

and n € N.

Theorem A.0.4 (Stone). An operator —iA on a Hilbert space X generates a Cy-group of unitary

operators if, and only if, A is self-adjoint.
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Appendix B

Spectral Theorem, spectral resolution,

spectral measures and spectral types

Definition B.0.1. Let A the Borel o-algebra in 2 C C. A resolution of the identity is a mapping
A5 A — E(A) € L(X)

with the following properties:
L. BE(0) = 0gx) and E(Q) = 1;
2. for each A € A; E(A) is is an orthogonal projection;
3. if AN Ag =0, then E(A1 UAy) = E(A1) + E(Ag);
4. E(A1 N Az) = E(A1) o E(As);
5. to each pair x,y € X, one associates the complex Borel measure
A3 N = iy (A) = (2, E(A)y).
The measure p, , is called the spectral measure of the resolution of the identity £ associated

with the pair z,y € X.

We note that for x = y, the spectral measure of F with respect to X is always a real-valued

measure, since F(A) = (z, E(A)z) > 0; we denote it by fi.

Example B.0.1. Let X = L?(1,00), let ¢ : (1,00) — R be a measurable function and set
D(A) :={f € L*(1,00) | pf € L?(1,00)}. Define the linear operator A : D(A) C X — X by the
law

(Af)(s) = @(s)f(s).

In fact, A is a self-adjoint operator and the map

A>3 A — E(A) = ch—l(A)
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is a resolution of the identity.

Theorem B.0.1 (Spectral Theorem). Every self-adjoint operator A defined on a Hilbert space

corresponds to a unique resolution E4 of the identity such that

A= / MEA(N).
o(4)

Theorem B.0.2 (Functional Calculus I). Let f : R — C be measurable Borel function and let
A be a self-adjoint operator defined in the Hilbert space X. Then,

1.

f(A) = FNAEA(N)
o(A)

is a well-defined linear operator, whose domain

D(f(A4)) := {fﬂ S X;/(A) [FO)Pdpg (V) < OO}

is dense in X.
2. (f(A)z,y) =/ FNdp,(A) and ||f(A)$||2=/ | FO)Pdus ().
o(A) o(A)

Example B.0.2. Let (\,)nen be a real sequence and let (P,),en be a sequence of pairwise

orthogonal projections on X such that Z P, = 1. Let A be a self-adjoint defined by the law
n

D(A) = {m e X [ PPz < oo} , Az =Y MNPz, ¥z € D(A).

Then, for each A € A, one has

It follows from Theorem B.0.2 that
D(f(4)) = {93 X D If )Pl Paz]| < OO} , f(A)z =) f(A)Pux, V€ D(f(A)).

Let £ denote the Lebesgue measure over the Borel sets A C R. Recall that, by Lebesgue
Decomposition Theorem (see Theorem 6.10 in [59]), a Borel measure p over R can be (uniquely)
decomposed as pt = i, + pe, with g and g, denoting its continuous part (that is, u.({a}) =0,
for each a € R) and point part (that is, there is a countable set A C R so that p,(R\ A) = 0),
respectively. Observe that £ and p, are mutually singular measures. Again by Lebesgue
Decomposition Theorem, one has (uniquely) p. = fige + pise, where pg. and £ are mutually
singular measures and 4. is absolutely continuous with respect to £. Then, u = pp, + ftac + fse,
where 4. is called the absolutely continuous component of p, while pg. is the singular continuous

component of . We will study this decomposition in the context of spectral measures.
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Definition B.0.2. Let X be a Hilbert space and let A be a self-adjoint operator. The point
subspace of A is X, = X,(A) C X given by the closure of the linear subspace spanned by the

eigenvectors of A. Its orthogonal complement X, = X,(A) := Xpl is the continuous subspace of
A.

Theorem B.0.3 (Theorem 12.1.2 in [26]). Let A be a self-adjoint operator and let p2 the

spectral measure of A at z € X. Then,

(a) there exists a countable set A C R so that
X, = {z€ X | AR\ A) = 0}.

A C R can be taken as the set of eigenvalues of A;

b) X, = {z € X | p?({a}) = 0, V¥ a € R}, that is, the function & — ||[E4((—o0,&])z| is

continuous;
(c) X =X,d X..

Let B2 == E4| | B4 := E4| | A, := AE2 and A, := AE{". Then, the decomposition
X Xe

A= A, + A, is valid (see Theorem 9.8.3 in [26]).

Definition B.0.3 (Definition 12.1.3 in [26]). The point spectrum of A is o,(A) := 0(A4,), and

the continuous spectrum of A is o.(A) := o(A.).

Definition B.0.4 (Definition 12.1.5 in [26]). Let A be a self-adjoint operator and let 4 be the

spectral measures of A at x € X.

(a) The singular subspace of A is
X (A):={ze X |pud L L}

(2t L L indicates that pZt and £ are mutually singular). So, X,(A) C Xs(A).

(b) The absolutely continuous subspace of A is
Xoe(A) ={z e X | p2 < L}

(u2 < L indicates that p2 is absolutely continuous with respect to L). So, Xqe(A) C Xc(A).

C e singular continuous subspace of A, denoted by Xg. , 1s the set of x € so that
The singul i b fA d d by X.(A), is th f X h
pA(R\ Ay) = 0 for some Borel set AcR with £(A;) = 0 and pZ(A) = 0 for each countable
sets A C R. Hence, p4 is a singular continuous measure. So, Xs.(4) C X.(A) N X4(A).

Definition B.0.5 (Definition 12.1.10 in [26]). The absolutely continuous spectrum of A
is 04c(A) := 0(As) and the singular continuous spectrum of A is 04.(4) = o(As).

The operator A has purely point spectrum if o,.(A) = 0 = 04 (A); purely absolutely
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continuous spectrum if o,(A4) = 0 = 04(A); purely singular continuous spectrum if

0ac(A) = 0 = op(A). It is also common to say that A is pure point, and so on.
Example B.0.3. If A is a self-adjoint and compact operator, then A is pure point.

Definition B.0.6. Let p be a finite (positive) Borel measure on R. The pointwise lower and

upper local scaling exponents of p at w € R are defined, respectively, by

)

In u(B In u(B
d, (w) := lim inf Inp(B(w, €)) and df (w) :=limsup In p(B(w, ¢))
. 0 Ine H 10 lne

if, for all € > 0, u(B(w,€)) > 0; df (w) := oo, otherwise.

Proposition B.0.1 (Proposition 2.2 in [4]). Let A be a negative self-adjoint operator and let
x € X, with « # 0. Then,

tAxHQ tASCHQ

In |le In |le

d*,(0) = — liminf and d ,(0) = —limsup

Mz t—o00 ln t—00 ].n t ’

where p4 is the spectral measure of A associated with the vector z.

Note that Proposition B.0.1 indicates that the power-law decaying rates of an orbit (etAx)tZO
may depend on sequences of time going to infinity; i.e., if d;g 0) < d:f;, (0) (see [4] for more

details).
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Appendix C

Proof of Proposition 2.3.2

Item (a). Let ¢ > 1 and set ¢ := ( + a.
e Case 1: o = 1.

Case 1(a): ¢ € (1,2]. Note that in this case, a € [0,1). Set hy¢(A) = A¥(27m — ilog(N))°,
with A € iR \ {0}, and define the operator L, z(A) := (1+ A)~"(2r —ilog(A))~¢ € L(X). Since
(A+ A)~ commutes with L, z(A), it follows from the Moment Inequality (see Proposition 1.3.2)
that

i cOVO+A) ™ Lus(A) ey S e O+ Lt (AVES 2 a) Ok A) ™ Lusa(A) [k,
(C.1)
Let € > 0, set A, := (A+¢)(1+¢cA4)~! and note that AZ! € £(X). For each X € iR\ {0},
let » € (0,|A|/2] and R > 2|A| + 2 be such that o(A4:) C {z € C | r < |z] < R}, let
0 € (r/2,7) and set v, = {se | s € [r,R]}, v = {te™® | t € [, R]}, v» = {re’* | s € [0, 0]},
r = {Re"” | s € [-0,0]} and v := v, U~y_ U, Uvg. Then, by the Riesz-Dunford functional
calculus (see (1.4)), for each z € X (here, y := (1 + A) " x),

hi1—a(A)(A+ Aa)il(zﬂ' - ilOg(Ae))ily = hl’;;ai@) / @r = zllog(z)) R(z, Ac)(A + Ag)flydz
¥
~ hiao a()\) 1 s 1
N 21 /7 (2m —ilog(2)) (A + )d (A+4e)

hll a 1
R(z, Ac)yd
+ [y (2 — ilog(2)) (A + 2) (2, Ac)ydz
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_ haeaN( ANy L /R hi1-a(Ne PR(te™, Ay
21 —ilog(—\) 2mi J, (27 — 0 —ilog(t)) (A + te—?)

hi,1-a(A) /R et 0
- __R(te, A, )ydt
2mi  J, (27 + 0 —ilog(t)) (A + teif) (te”, Ac)y
hi1-a(N) /9 iRe' ,
: — R(Re®. A d
+ 27 _g 2m — s+ ilog(R))(A + Re™) (Re™, Ac)yds
hi1-a(N) /9 ire' .
- ’ "R s A d
omi J_g (27 — s +ilog(r)) (A + reis) (re*®, Ac)yds,

where we have used the residue theorem in the third identity. By taking the limit # — 7 on both

sides of the identity above, one gets

PacaN+ A 2r — ilog(A) Ty = 5 Ay
1 (R h11-a(N\)

" 277/ (7 — i1og (D)) (A — 1)

i R hl’lfa(k)(t + AE)_ly

omi J, (3 — ilog(t))(A —¢)

1 [T thi11—q(A\)Re”R(Re", Ac)y

omi | (27 — s — ilog(R))(\ + Re®)
hi1—a(N) '

" ire* A
- — R(re*. A \ud
2mi /—7r (27T +s— ilOg(r))()\ + rezs) (7”6 ) E)y S

(t+ Ac)"lydt

dt

Now, by taking the limits » — 0 and R — oo on both sides of the last identity, one gets for each
x e X,

hl’l—a(k)()‘ + As)_l(Q’TF - ilog(Ae))_ly = hl’l_a()\)(A + Aa)ily

21 — ilog(—\)
* ih11-a(A) B
+ /0 (372 — 4milog(t) — log(t)?) (A —t) (t+ A) Ly dt.

Finally, by taking the limit € — 0" on both hands of the identity above, one gets

hii—a(NA+A) "y
2w —ilog(—\)
o0 ihl,l—a(/\)(t + A)fly
+ /0 (372 — drilog(t) — log()2) (A — 1)

hii—aNN+ A) 21 —ilog(A) ™y =

dt,(C.2)

where we have used on the left-hand side that (A + A.)"! — (A + A)~! uniformly (by
Lemma 1.3.1), (2m—ilog(A.))~! — (27 —ilog(A))~! strongly (see the proof of Lemma 3.5.1 [32]),

and on the right-hand side dominated convergence.
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Then, by (C.2), one gets

(1o || (A + A) 7! 27 — ilog(A) ™ (1 + A) ™|+,
1

N6 iRy - SO
ey Y
= e ax)*/ooo T e
A= o) )

where we have used relation (E.3) in the last identity.
Note that for each A € iR\ {0} with |A] < 1, it follows from (2.5) that

and since for each n > 0, lim |A|log(|A])” = 0, one gets
I\[—=0+

hl’lfa(k)(k + A)_l
2w — ilog(—\)

<1

~ )

L£(X)

(2m + [log(IADD' (1Al = 1)
log(|A)

[hi1-a(M[(A = 1)
[A[Tog(A[)

_a IA|=0T

S [Al[Tog(|A])] 0

<
and |h11-q(\)| = 0 as |\| — 0F. Hence, one concludes that
sup{||h1,1-a(N) (A + A) "1 (1 + 4) 7" (27 — ilog(A))*lHﬁ(X) | A €iR\ {0}, |A] <1} <o0. (CA4)

Now, by using the same ideas as before, one has for each € > 0 and each z € X,

hiaaNAF+ A)TH A+ A) e
N (2 — ilog(N))?

hz-a (VA + Ao) (27 — ilog(A2)) (1 4+ A) ™

_ /°° 2ih12-a(N) (21 —ilog())(t + Ao)7H(1 + A)_det
0 (3w2 — 4milog(t) — log(t)?)2(\ — t) :

So, by taking the limit ¢ — 0™ on both sides of the identity, one gets

. h172_a(/\)()\ + A)fl(l + A)fyl'
n (2m — ilog(N))?

h12—a(A\) A+ A) (21 —ilog(A)2(1+ A)™

- /°° 2ifn a-a(N)(27 — ilog(t) (t+ A) (1 + A) o
0 (3m2 — 4milog(t) — log(t)?)2(\ — t) :
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Then,
. . . hia (M)A +A4)~!
[Pr2-a (V) (A + A4)7 (2 — ilog(A) ™2 5‘ 1<2z7r_uog<x>>2 £(x)
T Jhiaa(V)[log(®)] T JhaaM)(|log(t)| +27) dt
+/0 t(m2 + log(t)2)2(|\| + t) di + /6277 |(372 — 4milog(t) — log(t)2)2] t
% |h1s-a(N)]|log(t)]
i / -+ log(D2)2(N + ) "
hio—a(AN)(X+ A)7t 2 — 2 1+ 1/t)log(t) + log(t)?
s et oy T Il G o g )
‘ Mo aWA+ A (2 >r<|A|log<w> — AL+ 1+ [A[log(|A)?)
(27 —ilog(\)? oo [A[log(|A])2 ’

where we have used relation (E.4) in the last identity.

By using the same reasoning as before, one concludes that
sup{”hm,a()\)()\ + A)7H2r —ilog(A)2(1 4+ A)~ Hz: | A €iR\ {0}, [N\ <1} <o0. (C.5)
Finally, by combining (C.1), (C.4) and (C.5), it follows that

sup{[[a1,c (WA + A) " Lua(A) | £ex) | A € R\ {0}, A < 1} < 0.

Case 1(b): ¢ € (2,3]. In this case, a € [1,2); then, by Propostion 1.3.2, one gets for each
A €iR\ {0},

I e+ A Loe(A)leiy S Iha-aNA+ A Lua( A2 Is-a WA+ A) 7 Lus (A

and it remains to estimate ||h13_q(X)(A + A)*lLl,,g(A)Hi_()l(). Note that for each A € iR \ {0},
e > 0 and each = € X, one has (here, y = (1 + A) "z)

ha-a(NA+A) 7
(27 — ilog(—\))?
. > (267° — 24n%ilog(t) + 67 log(t))(t + Ac) !
+ Zh1,3—a()\)/0 (32 — 4milog(t) — log(t)?)3(X — 1)

h13—a(AN) N+ A2)H2m —ilog(AL)) 3y

Yat,

and then, by taking the limit € — 0T on both sides of the last identity, one gets

h1,3—a(/\)()‘ + A)ily
(27 —ilog(—A\))3

/°° ih1 3—a(A\) (2673 — 24723 log(t) + 67 log(t)
0 (3w2 — 4milog(t) — log(t)?) (A —t)

hi3—a(N)(A+A) 'Ly 3(A)z

(t + A) "Ly dt.
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Thus, by relation (E.5),

hi3—a(N) (XA +A)~?
(2m —ilog(—\))3

[h1,3-a (V) (A + A) T Lys(A) || o x) S ‘

L(X)

—V3r _
[ e 20 o010+ ) e,
(72 +log(t)?)?|A — ¢

|h13-a(N)] 1
’ t+ A dt
+/\/3 |3772—4m'10g(t)—log(t)2H|)\—t\H< A e

2673 + 2472|log(t)| + 67 log(t)? _
i a—al ’/ (72 +log(t)?)3|A — t| It A) e de

B © lhiaaWIS(0)
co /0 1 + log(t2P (A 1 D

s(A+A)

h13—a(
7r—210g ))

[h1,3-a(N)]
dt
N / or O] 371'2 4m10g(t)—1og(t)2y

h13-a( 1 (IA[log(JA])? — 2(|A[log(|A[) — |A] + 1)
H 2w — zlog )) sA+A) £(X) T lhs-a(A) [Allog(|A])?
+lh13-a(A)];

where for each t > 0,
f(t) = m2((=2 4+ 72)t — 2) + tlog(t)* — 4tlog(t)® + 2((3 + %)t + 3) log(t)? — 4wt log(t).
By proceeding as in Case 1(a), one concludes that
sup{[|lh1,c(N) (A + A) " Ly a(A)ll gy | A € iR\ {0}, [A] € 1} < oo

Case 1(c): ¢ > 3. In this case, a > 2. Let ( = (1 + (2, with {2 € (1,2). Again, by applying

the Moment Inequality (see Proposition 1.3.2) over (s, one gets

1P1,c N A+ A) ™ Lyarci e (Al 2y S Mhi,cA)A+ A) T Ly gy, (A)ll2(x)
S N+ A) " Ly pa(A) 7 C“’thz( N+ A) Lo (DNES
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Let v be the same path as presented in Case 1(a). Then, for each € > 0 and each = € X,

hy1(A) (A + AE)_1(27T — ilog(AE))—(l-i-a)x _ hi,1(X\) / :

oor ha(NA+Ae) e 1
(2m —1

1 [R hi1(N\)

log(—M\)+e 2w

R

1

21

(2m —ilog(t))1+e (X —

“2mi ), (37w —ilog(t))Te(\ —

t)

(t + Ao) tadt

1 g Zhl 1()\)]%61S .
- > _ R(Re® As
omi /_W (7 —s —ilos(R))Fo(r 5 Ry e Az

R(reis, Ag)

_hl,l()\) /W ireis

211

r—0,R—00 h171()\)
(2m — ilog(—\))1te

1 > h171(A)(t+Aa)_1

_r (27 + s —ilog(r))He(N\ 4 rei)

A+A) o+ —

C2mi Jy (3w —ilog(t))Fe(N —

D)

1

t)

ds

xds

h171()\)(t + AE)_l

21 —ilog(z))1+e

hia(A )(t+A2 ! ot

xdt

2mi Jo  (m —ilog(t))te(\ —¢)

xdt.

Now, it follows from dominated convergence that for each = € X,

hia(N) (A + A)~H2r — ilog(A))~HHg =

1 [ hi1(N)

2mi Jo  (m —ilog(t))He (N —t)

Therefore,

(t

hi1(A)(A

+ Az

1
A) " tadt — —
+A) e 2mi

th,l()\)(A + A)_1(27T — Zlog(A)) 1+a

> [haa (I +A) "l

(2 — ilog(—\))lte

hl,l()\) (t + A)fl

j /0 (3w — ilog(t))1Te(N —1t)

YA+ A)~L

H hia(A

> [hia W+ A) e

—1

log ))1+a £(X)

dt

Dt +

(% +1og(1)*)(IA] +1)

21 Jo (w2 +1log(t)2) (N + 1) o
:‘ hia(AM)(A+ A)7! |11 (A )I(W—l)
(2m —ilog(=A) T || £ x) [Allog([Al)

Now, by the same reasoning as before, one gets

hi2(A) (A + A~ Hor - ilog(A))_(2+“) =

1 [ hi2(N)

Tomi Jy = ilog(t) T (A —1)

SO

112N A+ A) " Ly 2 ra(A)ll2ix)

AN

hl,g()\)()\ + A)_l

1
t+ A" tdt — —
( + ) 271

o

(27 —ilog(—N))%te

h172(>\) (t =+ A)_l

o (3w —ilog(t))**(A—1)

h1 2 /\ + A) n
(2w —1 log ) 2ix)
\hl 2(M)] (m® = 2(1 + 1/t) log(t) + log(t)?)

dt

(% +log(t)?)? (1Al + 1)

h12( )\—I—A -1

I

21 — ilog(—M\))%te

L(X)

[71,2(M)[([A[Tog (JA]) —

R(z, A)(A+ A) " tadz

xdt.

dt,

Al +1)

[ Allog(|A[)?
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Again, by proceeding as in Case 1(a), one concludes that

sup{ [l WA + A) " Lot (Dl ex) [ X € R\ {0}, A < 1} < 0.

e Case 2: a > 2. By using the functional calculus for H§® functions (see Remark 1.3.2),
one gets for each x € X,
a—1 ~1
hi e+ A)~tA2 11 4 A)~@D(2r —ilog(A) %z = hlz’jr(?) /F <f+ zgij;;tl(z)
P (M) (=N
(1= XN)2"127 —ilog(—M))°
+ hic(N)Sya,

R(z, A)xdz

A+ A)~!

where

7" 1 Za_l
Sy = — R(z, A)dz.
A Qm'/F (1+ 2)° Thoa(2)(z + A) (2, A)dz

The function z — (27 — ilog(z)) °R(z, A) is integrable on I and by Lemma 5.9 in [55], for
z € I" and |A\| <1, one has

<C;

‘ Za_thC()\) ' < C
(I4+2)21z+ N~ [1=A

hence, sup{thC S//H[; | A € 4R\ {0}L|A\] < 1} < oo, and since
hlg ) 1()\+A)
(1— N 1 27r—zlog( A))¢

is also bounded (by hypothesis), then
L(X)

sup{ |1, c A+ 4) T A 1+ A) 7V (2r —ilog(4) " leex) | A € iR\ {0} A < 1} < oo,

e Case 3: a € (1,2). By Proposition 1.3.2 (applied over « — 1 € (0,1)), one gets

11, c DA+ A) AL+ A) ) Ly a(A) |l 2x)
S PN+ AT L (A E S 1h e N+ A)THAQL + A) T Lo (A) 135,

The first factor is treated as in Case 1, and the second factor is treated as in Case 2.

Item (b)

eCase l: a=1.Let ( >1andset c:=(+a> 1.

Given that the operator (log(2 + A))¢(2m — ilog(A))~¢ is closed, it follows from the Closed
Graph Theorem that it is bounded; hence,

I+ A) 711+ A) 2 —ilog(A)) ey S IO+ A) ML+ A)Hog(A +2) ™| £(x)
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Now, by Proposition 2.2.2, one gets

A é .
sup {(1_’_”)\”)1_5(}\(27 —log(\)|*l[(A+ A) 711+ A) M og(A +2) " x| A € 4R, |A] > 1} < o0.

)\Oé
(1 —X)1=Fo
functional calculus for H® functions (see Remark 1.3.2), for each 2 € X, one has

e Case 2: a > 2. Let go () = (21 —ilog()))S, with A € iR\ {0}; then, by the

gl,g()\)()\ + A)_le‘_l(l + A)—(a+/3+ﬂo—1)(27.r —ilog(A)) %z
_91.c(M) / 22 A+ A)7! y
= o - (1 + z)a+5+r30_1(27r — ZlOg(Z))ER(Z’ )l'dz

B g1cN) (=Nt
= 1- )\)a+5+50*1(2ﬂ' —ilog(—\))¢

A+ A7+ g1 VT,

where
a—1

7 1 z
T)\ = 27”/F (1 +Z)°‘+5+50_1(27T—ilog(z))é(z+)\) R(ZyA)dZ,

with I' the path defined in the proof of Proposition 2.2.2. The function z +— (27 —
ilog(z))"¢R(z, A) is integrable on I' and by Lemma 5.9 in [55], for z € " and |A| > 1, one

has

g1 () s el o,

’ (14 z)otB+Bo=1(z 4+ X) |~ |1 — A

thus, sup{\|g17g()\)T)/\,||L(X) | A €iR, |A| > 1} < oo, and since

gr.c(N) (=2t i
sup {H (1- )\)a+ﬁ+5071(2ﬂ. — ilog(_)\))é A+ A) 1

| A €iR, A > 1) < o0,
L(X)

by hypothesis, it follows that

3P { 9ac IO + 4) 1A% 114 4) P304 (0 — 10g(4)) 7 x) | A € 1R, [N > 1} < o0,

e Case 3: a € (1,2). It follows from Propositon 1.3.2 (applied to « — 1 € (0,1)) that

lgr e A+ A)THAQL +A) 7 Logy e(A) £ x)
S lgre) A+ A) g g, (A F % 91N+ A) LA+ A) " g g, 6(A) | 2%

The first factor must be treated as in Case 1, and the second one as in Case 2.
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Appendix D

Estimates

Lemma D.0.1. Let u,¢ > 0 and v > 1; then, for each t > 0,

—100 1
1. —At d\ = 0.
/m T+ N (log2+ N)E
—100 pVL
2. At d)\ = 0.
/m © T NFEET —ilog(V))E 0

Proof. We just present the proof of the first equality, since the proof of the other one is analogous.
Let us first show the following statement.

Claim:

I 1 1 —t 1
—_— d\ = — dA D.1
omi e © L+ N (log(2+ N))E omi /F TN og2+ M) (D-1)
where I'y, = {re'? | r € [0,00)} U{re™" | r € [0,00)} and 0 < ¢ < Z.
Nt 1
and for each

Namely, for ¢ > t R A hi(A) =
el for 02 0 set 13 A Y O T A (log(2 + )Y
R.r > 0 and each n € p,m/2], set T, = (R | 6 € (9. 5)} T, = {re” | 0 € (2.)),
Tp, = {Re™ | 0 € (p.5)}, Ty = {re™™ | 0 € (0,5)}, % = {s¢" | s € [,R]} and

v, ={se”" | s € [r, R]}. By Cauchy’s Integral Theorem,

—~ /Ffw he(A)dA + /”Z he(A)dA + /Fm he(A)dA — /nt he(A)dA =0, (D-2)
" /_ he(A)dA — /7; he(N)d\ — /sz he(N)dA + /Y; ht(A)dA = (D.3)
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Note that, by Lemma 5.2.2 in [24],

3 Re—tcost
/Fﬁw he(N)dA| < L (1 + ReEi0)|“| Tog(2 + Reii9)|4d6
s " .
. ¢ (14 R)”(1+ cos(9))v/2 <log(2 +R)+ %log (HCTOS(Q)))C
R1-v
log(2 + R)¢

and

<r

/F L he(A)dx

X

By adding the equations (D.2) and (D.3), and by taking the limits R — oo, 7 — 0, one gets
(D.1).

By Claim, it suffices to prove that

BT Gt 1
2mi Jr, (L+A)“1og(2+N)

Cal>\:().

It follows from Cauchy’s Integral Theorem that for each 0 < r < R,

1 1 1
— [ hN)dA + — he(A)dA + 2,/ he(\)dA = 0, (D.4)
Tryo

2mi Jr, T g, i

with g, := {Reie | 0 € [—¢,p]} and v, = {re*ia | 0 € [—, 0]}
Note that for each sufficiently large R,

1-v
. om
~ log(2+ R)¢

1

—\t

e dX
[m,w (14 MY log(2 + N)S

and for each sufficiently small 7,

<.

~

1
—At
X
[, © AT Alog(2 + A

e

The result follows by taking the limits 7 — 0 and R — oo in relation (D.4). O

Lemma D.0.2. Let ¢ € (0,3] and § € (7 — ¢,m). Set Q := Cy \ (S, U {0}) and let

I = {re? | r € [0,00)} U{re® | r € [0,00)} be oriented from coe? to coe™®. Then, for
each a € [0,00), 8 € (0,00), n € (0,1] and each X € Q, one has
1 1

@) /p (1t 2P(og(l t 0+ )Gt Atn— D7 = T—nP(log@ M)
P (I=XA—n)~

b) /p (n+ 2)atB(2r —ilog(—1+n+2)S(z+ A +n— 1)dz (1 —N)(2r —ilog(—)))¢"




106

Proof. We just present the proof of item a). Let A € Q. For each r € (0,Im(\)/2] and each
R > 2\ +2, set v4 := {se’ | s € [, R]}, v := {se™ | s € [r, R]}, v, := {re? | v € [-6,6]},
g = {Re" | v € [-0,0]} and . g := (—4) Uy— U (=) Uvr. Let fsca 1 C4 — C be given
by the law fg ¢ a(2) = L ; then,

(n+2)Plog(1+n+2))S(z+A+n—1)

0
< / . R ‘ . dv
o In+ Re™|Plog(|1 +n + Re™|)¢|Re™ + A +n — 1]
RA
log(1 + R)¢’

/ faca(z)dz
YR

which goes to zero as R — oo. Similarly, one can show that

lim =0.
r—0

/ faea(z)dz
Ve

On the other hand, by the Residue Theorem, one has

1 1
/w,R (n+ 2)Pog(1+n+2)5(z+A+n— 1)dz T M\)Plog(2 - A)C

Thus, it follows that

1
/p (n+2)Plog(1+n+2)(z+A+n—1)
1 1

00 Jo L n+ 2)P(og(l+ 1+ 2)) (4 A+ -1 (1= 2P log(2 — A)S

dz
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Appendix E

Some important classes of functions

E.1 Complete Bernstein functions

In this section, we recall the definitions and some properties of some special functions that

appear throughout the text. We refer to [60] for details (see also [14]).

Definition E.1.1 (Definition 1.3 in [60]). A function f € C*(0,00) is called completely
monotone if
(=)™ ™ (X) > 0 for each n € NU {0} and each A > 0.

By Theorem 1.4 in [60], which is known as Bernstein’s Theorem, every completely monotone
function f is the Laplace transform of a positive Radon measure on R;. Recall that f €

C*(0,00) is called a Bernstein function if
f >0 and fis completely monotone.

It is easy to see from this definition that the fractional powers A — A%, with 0 < o < 1, and
A — log(1 + A), are Bernstein functions. By Lévy-Khintchine Representation Theorem (see
Theorem 3.2 in [60]), a function f is a Bernstein function if, and only if, there exist constants
a,b > 0 and a positive Radon measure prx (this notation is used in [14]) defined over the Borel

subsets of (0,00) such that for each A\ > 0,
() = a -+ bA +/ (1= ) dprrc(s),

o+

with

x5
d s) < oo.
| )

The triple (a,b, purx) determines f uniquely and vice versa (see Theorem 3.2 in [60]), and it
is called the Lévy-Khintchine triple of f. Every Bernstein function can also be extended to a

holomorphic function in Cy (this is Proposition 3.6 in [60]).
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Now we consider a subclass of the Bernstein functions, the so-called complete Bernstein

functions.

Definition E.1.2 (Definition 6.1 in [60]). A function f € C°°(0,00) is called a complete
Bernstein function if it is a Bernstein function and the measure pyx in the Lévy-Khintchine
triple has a completely monotone density with respect to Lebesgue measure. The set of all
complete Bernstein functions is denoted by CBF.

By Theorem 6.2-(vi) in [60], every f € CBF admits a representation of the form

o0

FOO = a+br+ /0+ Aisdu(s), A0, (B.1)

with a,b > 0 constants and p a positive Radon measure defined over the Borel subsets of (0, co)

that satisfies
s) < oo.
0+ s+1 a

As discussed in Remark 2.1 in [14], complete Bernstein functions admit other representations

than the one given by (E.1). In particular, one has

oo

A
fA) =a —i—/o mdu(t) =a+v({0HX+ /0+ mdv(t),

where v is a positive Radon measure defined over the Borel subsets of (0, 00) that satisfies

1
du(t
/0 —dv(t) < oo,

and the pair (a,v) is unique.
The representation formula (E.1) is unique (that is, the triple (a,b, 1) is unique), and it is
called the Stieltjes representation for f (see Chapter 6 in [60] for details). Note that
)

= i A d b= lim —=.
@70 S and =0

Example E.1.1. (a) The function f : (0,00) — R given by f(\) = A%, with a € [0,1], is a
complete Bernstein function whose Stieltjes representation is given by

i > A d
f(A):Sln(aﬂ)/ g A ds A0,
T 0+ S"‘AS

(b) The function A — (1 + X\)* — 1, with « € (0,1), is a complete Bernstein function whose
Stieltjes representation is given by
_sin(am)

o o0 o A ds

(c) The function A — log(1+ A) is a complete Bernstein function whose Stieltjes representation
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is given by
lo (1—1—)\)—/00 (s)Lﬁ A>0 (E.2)
g - 04 X(l,oo) A+s s 9 . .
(d) The function A — log_( N is a complete Bernstein function whose Stieltjes representation is
given by \ \
-1 & s+1
= d A . E.
s = b, ST g 3 =0 (E3)

Alog(A) — A +1
log(A)?

(e) The function A +— is a complete Bernstein function whose Stieltjes

representation is given by

ds, A>0. (EA4)

Alog(A) —A+1 /°° 72 —2(1+1/s)log(s) + log(s)? X
g0 s (7 + log(5)?)? Nt

(—2 4+ 21 — 22 log(\) + Alog()\)?)

log(A)?
Stieltjes representation is given by

(f) The function \ — is a complete Bernstein function whose

ds, A >0,
(E.5)
where f(s) = 72((—2+72)s—2) +slog(s)* —4slog(s)>+2((3+72)s+3) log(s)? —4m2slog(s).

(=2 42X — 2Xlog(A) + Alog(N)?) /OO f(s) A
log(\)3 oy s(m? +1og(s5)2)3 (A + s)

The next results play an important role in the proofs of Theorems 10 and 11; items (a) and

(b) are Theorem 2.2 in [14], and item (c) is Proposition 7.13 in [60].

Proposition E.1.1. Let f,g: (0,00) — R be non-zero functions.

A 1
—— Af| =) € CBF. Conversely, if
e (5) Y

(a) If f € CBF, then
then f € CBF.

A 1
T8y € CBF or Af (A) € CBF,

(b) If f,g € CBF, then go f € CBF.

(c) Let aj,as € (0,1) be such that a; + a; < 1. Then, for each f,g € CBF, one has
f@-g* € CBF.

E.2 Slowly varying functions

Definition E.2.1. Let a € R and let ¢ : [a,00) — R be a strictly positive measurable function
such that for each A > 0,

TE

Then, ¢ is said to be slowly varying.

Example E.2.1. (a) The function s — log(1 + s) is a slowly varying function.
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(b) If ¢ is a slowly varying function, then the following ones are also slowly varying functions:

s+ L(s)Y, with a € R; s +— £(s) log(s).
The next result also plays an important role in the proof of Theorems 10, 11 and 12.

Proposition E.2.1 (Corollary 2.8-(a) in [14]). Let ¢ be a slowly varying function and let v > 0.

Then, there are positive constants C, ¢ such that for each sufficiently large s,t with t > s,

()= <e(t)'
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