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qui, pelos ensinamentos decisivos, orientação consistente e exemplar profissionalismo que

marcaram de forma indelével minha trajetória.
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Ao professor Marcelo Azevedo Costa, agradeço pelo incentivo cont́ınuo, pelos en-

sinamentos e pela permissão para utilizar o laboratório LADEC, o que foi fundamental
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Resumo

A análise de sobrevivência é uma das áreas mais importantes da estat́ıstica. Um de seus

objetivos é avaliar potenciais fatores de risco na ocorrência de eventos. Os modelos de

regressão de taxas de falha proporcionais (PH) são os recursos mais usados para esse fim,

mas apresentam algumas limitações. Sua forte suposição de que a razão de taxas de falha

é constante pode impedir o uso de modelos PH em algumas casúısticas. Alternativas

ao modelo PH são discutidas na literatura, como os modelos de chances proporcionais

(PO) e Yang e Prentice (YP). Entretanto, esses modelos não são capazes de acomodar a

correlação entre eventos. Alguns trabalhos discutem a introdução de um efeito aleatório

(ou fragilidade) na estrutura de regressão dos modelos PH e PO ou o uso de cópulas para

acomodar dependências. Os dados de sobrevivência podem manifestar dependência de

várias maneiras. O presente trabalho aborda casos em que um indiv́ıduo pode vivenciar

eventos sucessivos, chamados eventos recorrentes. Além disso, esses indiv́ıduos estão su-

jeitos a experimentar um evento terminal, isto é, um evento que impede a continuidade

do acompanhamento do indiv́ıduo, não podendo, este, experimentar novos eventos recor-

rentes. Dessa forma, os processos de eventos recorrentes e terminal apresentam alguma

dependência. Nosso objetivo é desenvolver, sob a abordagem Bayesiana, uma classe de

modelos conjuntos de fragilidade-cópula para ajustar eventos recorrentes sujeitos a um

evento terminal. Devido à forma matemática atrativa, usamos a cópula arquimediana de

Clayton. Acoplamos polinômios de Bernstein (BP) e o modelo exponencial por partes

(PEM) como funções de risco basais. Além disso, apresentamos uma classe de modelos

de regressão Yang and Prentice para ajustar apenas os eventos terminais ou recorrentes

usando as mesmas funções de linha de base. Apresentamos um estudo de simulação e

exemplificamos nossos modelos através de uma aplicação.

Palavras-chave: sobrevivência; modelo Yang and Prentice; polinômios de Bernstein;

fragilidade; cópulas.



Abstract

Survival analysis is one of the most important areas of statistics. One of its objectives

is to assess potential risk factors in the occurrence of events. Proportional hazard (PH)

regression models are the most commonly used tools for this purpose, but they have some

limitations. Their strong assumption that the hazard rate ratio is constant can prevent the

use of PH models in some cases. Alternatives to the PH model, such as proportional odds

(PO) and Yang and Prentice (YP) models, are discussed in the literature. However, these

models are not capable of accommodating the correlation between events. Some studies

discuss the introduction of a random effect (or frailty) into the regression structure of the

PH and PO models or the use of copulas to accommodate dependencies. Survival data can

exhibit dependence in various ways. This work addresses cases where an individual may

experience successive events, called recurrent events. Furthermore, these individuals are

subject to experiencing a terminal event, that is, an event that prevents the continuation of

the individual’s follow-up, thus preventing new recurrent events. Therefore, the processes

of recurrent and terminal events show some dependence. Our goal is to develop, under

the Bayesian approach, a class of joint frailty-copula models to fit recurrent events subject

to a terminal event. Due to its attractive mathematical form, we use the Archimedean

Clayton copula. We couple Bernstein polynomials (BP) and the piecewise exponential

model (PEM) as baseline hazard functions. Additionally, we present a class of Yang and

Prentice regression models to fit only terminal or recurrent events using the same baseline

functions. We present a simulation study and exemplify our models using a real case.

Keywords: survival; Yang and Prentice model; Bernstein polynomials; frailty; copulas.



List of Figures

1.1 Follow-up of an individual who experiences recurrent events and a terminal

event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Schematic representation of the model class proposed in this work. . . . . . . . 22

1.3 Elucidation of the application of frailty and copula approaches on the occur-

rence of recurrent and terminal events of an individual. . . . . . . . . . . . . . 24

2.1 Examples of survival curves when (a) ψ = 1 and ϕ = −1, (b) ψ = −1 and

ϕ = 1, (c) ψ = ϕ = 0.5, and (d) ψ = 0 and ϕ = 0.5, in YP model.. . . . . . . . 31

2.2 The Bernstein basis functions of degree 7 on t in [0, τ ]. . . . . . . . . . . . . . 35

2.3 Example of h(t) defined by PE. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Clayton copula, when θ = −0.9: (A) density function, (B) cumulative distribu-

tion function, and (C) scatter plot. Clayton copula, when θ = 1: (D) density

function, (E) cumulative distribution function, and (F) scatter plot. Clay-

ton copula, when θ = 20: (G) density function, (H) cumulative distribution

function, and (I) scatter plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Schematic representation of clustered survival times. . . . . . . . . . . . . . . 46

3.2 Schematic representation of data with recurrent events. . . . . . . . . . . . . . 47

3.3 Schematic representation of multivariate survival times. . . . . . . . . . . . . . 49

4.1 Schematic representation of the generation of the times to event considering

individual frailties (class 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Schematic representation of the generation of the gap times between recurrent

events considering shared frailties (class 1) . . . . . . . . . . . . . . . . . . . . 57

4.3 Boxplot of RB(%) for the YPEX , YPPE, and YPBP models with individual

frailties, for L = 300 and MC = 250. . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Boxplot of RB(%) for the YPEX , YPPE, and YPBP models with shared frail-

ties, for L = 300 and MC = 250. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Schematic representation of the generation of times until the terminal event

and the gap times between recurrent events using the Clayton copula (class 2) 63

4.6 Boxplot of RB(%) for the joint frailty-copula models: PHEX , PHPE when the

generator is equivalent to the PHEX model (L = 300 and MC = 250). . . . . . 68

4.7 Boxplot of RB(%) for the joint frailty-copula models: POEX , POPE when the

generator is equivalent to the POEX (L = 300 and MC = 250). . . . . . . . . . 69



4.8 Boxplot of RB(%) for the joint frailty-copula models: YPEX , YPPE when the

generator is equivalent to the YPEX (L = 300 and MC = 250) . . . . . . . . . 70

5.1 Proportion of the number of readmissions. . . . . . . . . . . . . . . . . . . . . 72

5.2 Proportion of the categories of the covariates (A) sex, (B) chemotherapy treat-

ment, and (C) Dukes’s stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 MCMC applied to YPBP model: (A) Trace plots for the posterior samples;

(B) Posterior density plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Kaplan-Meier (step function) and survival curves estimated by YPBP model

(continuous function) about the terminal event for the levels of variables (A)

sex, (B) chemo, and (C) dukes. Time is measured in days. . . . . . . . . . . . 77

5.5 MCMC applied to YPBP model: (A) posterior trace plots for the posterior

samples; (B) posterior density plots. . . . . . . . . . . . . . . . . . . . . . . . 81

A.1 Numerical and graphical results of the Monte Carlo simulation study of the

models of the first class of models. . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Numerical and graphical results of the Monte Carlo simulation study of the

models of the second class of models. . . . . . . . . . . . . . . . . . . . . . . . 97

A.3 Numerical and graphical results of the real application of the models of the

first class of models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Numerical and graphical results of the real application of the models of the

second class of models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Tables

4.1 True values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Monte Carlo summary statistics of the YPEX , YPPE, and YPBP models with

individual frailties, for L = 300 and MC = 250. . . . . . . . . . . . . . . . . . 58

4.3 Monte Carlo summary statistics of the YPEX , YPPE, and YPBP models with

shared frailties, for L = 300 and MC = 250. . . . . . . . . . . . . . . . . . . . 60

4.4 True values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Monte Carlo summary statistics of the joint frailty-copula models: PHEX ,

PHPE, and PHBP when the generator is equivalent to the PHEX (L = 300 and

MC = 250). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Monte Carlo summary statistics of the joint frailty-copula models: POEX ,

POPE, and POBP when the generator is equivalent to the POEX (L = 300 and

MC = 250). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Monte Carlo summary statistics of the joint frailty-copula models: YPEX ,

YPPE, and YPBP when the generator is equivalent to the YPEX (L = 300 and

MC = 250). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Dummy variable for variable dukes. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Summary of the PH and PO models fitted to the readmission data considering

the terminal events: posterior mean estimate (est), standard deviation (sd)

along with the 95% credible interval (LW, UP), and WAIC. . . . . . . . . . . 78

5.3 Summary of the YP models fitted to the readmission data considering the

terminal events: posterior mean estimate (est), standard deviation (sd) along

with the 95% credible interval (LW, UP), and WAIC. . . . . . . . . . . . . . . 79

5.4 Summary of the PH models fitted to the readmission data considering terminal

and recurrent events: posterior mean estimate (est), standard deviation (sd)

along with the 95% credible interval (LW, UP), and WAIC. . . . . . . . . . . 82

5.5 Summary of the PO models fitted to the readmission data considering terminal

and recurrent events: posterior mean estimate (est), standard deviation (sd)

along with the 95% credible interval (LW, UP), and WAIC. . . . . . . . . . . 83

5.6 Summary of the YPEX model fitted to the readmission data considering ter-

minal and recurrent events: posterior mean estimate (est), standard deviation

(sd) along with the 95% credible interval (LW, UP), and WAIC. . . . . . . . . 84



5.7 Summary of the YPPE model fitted to the readmission data considering ter-

minal and recurrent events: posterior mean estimate (est), standard deviation

(sd) along with the 95% credible interval (LW, UP), and WAIC. . . . . . . . . 85

5.8 Summary of the YPBP model fitted to the readmission data considering ter-

minal and recurrent events: posterior mean estimate (est), standard deviation

(sd) along with the 95% credible interval (LW, UP), and WAIC. . . . . . . . . 86



List of Symbols

T Follow-up time to event

D Follow-up time to death (terminal event)

R Gap-times between the recurrent events or between the last recurrent event

and the terminal event

L Number of clusters

C Follow-up time to right-censoring

Y Observed follow-up time

S(t) Survival function

h(t) Hazard function

h0(t) Baseline hazard function

H(t) Cumulative hazard function

H0(t) Baseline cumulative hazard function

R(t) Odds function

R0(t) Baseline odds function

OR Odds ratio

z Frailty

w Natural logarithm of frailty

BC∗
m (t) Bernstein polynomial of degree m for the continuous function C∗(t)

bk,m(t) Base of the Bernstein polynomial

fβ(t, a, b) Probability density function of a Beta distribution with parameters a and b

evaluated at t

x Vector of covariates of the regression model

gm(t) Vector of base functions in the Bernstein polynomial

Gm(t) Vector of cumulative base functions in Bernstein polynomial

MC Number of Monte Carlo replicas

βββ Vector of regression coefficients in PH and PO models

φφφ Vector of base function parameters in the Bernstein polynomial

δ Failure state indicator

ψψψ Short-term regression coefficients vector in YP model

θ Copula association parameter

Θ Set of the parameters model

ϕϕϕ Long-term regression coefficients vector in YP model

κ Precision of the frailty



λλλ Vector of hazard functions in Piecewise exponential model

ν Short-term hazard ratios in YP model

ξ Long-term hazard ratios in YP model

ρ Time grid in Piecewise exponential model

σw Standard deviation of the frailty

τ Maximum of time-to-event or time to right censorship

τκ Kendall’s tau

Υ Copula generating function



Abreviation

PH Proportional hazards model

PO Proportional odds model

YP Yang and Prentice model

PHBP Proportional hazards model with Bernstein polynomials baseline and frailty

PHEX Proportional hazards model with exponential baseline and frailty

PHPE Proportional hazards model with piecewise exponential baseline and frailty

POBP Proportional odds model with Bernstein polynomials baseline and frailty

POEX Proportional odds model with exponential baseline and frailty

POPE Proportional odds model with piecewise exponential baseline and frailty

YPBP Yang and Prentice model with Bernstein polynomials baseline and frailty

YPEX Yang and Prentice model with exponential baseline and frailty

YPPE Yang and Prentice model with piecewise exponential baseline and frailty

RB Relative bias

ASE Average standard error

SDE Standard deviation estimate

LW Lower bound of the credible interval

UP Upper bound of the credible interval

CP Coverage probability

par Model parameters

est Posterior average of model estimates

CI Credible interval



Contents

1 Introduction 19

2 Survival analysis fundamentals 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Proportional hazards model . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Proportional odds model . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Yang and Prentice model . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Frailty model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Bernstein polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Piecewise exponential model . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Clayton copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Proposed models 44

3.1 Class 1: Yang and Prentice frailty model . . . . . . . . . . . . . . . . . . . 44

3.1.1 Notation and the likelihood function for clustered data . . . . . . . 45

3.1.2 Notation and the likelihood function for data with recurrent events 47

3.2 Class 2: The joint frailty-copula models . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 The likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Monte Carlo simulation study 53

4.1 Analysis of the Yang and Prentice frailty models (Class 1) . . . . . . . . . 56

4.1.1 Yang and Prentice model with individual frailty . . . . . . . . . . . 58

4.1.2 Yang and Prentice model with shared frailty . . . . . . . . . . . . . 59

4.2 Analysis of the joint frailty-copula models (Class 2) . . . . . . . . . . . . . 61

5 Data analysis 71

5.1 Analysis of the Yang and Prentice frailty model (Class 1) . . . . . . . . . . 74

5.2 Analysis of the joint frailty-copula models (Class 2) . . . . . . . . . . . . . 77

6 Final remarks and future research 87

References 90



Appendix A Numerical and graphical results of all models 97

A.1 Monte Carlo simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Real application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



19

Chapter 1

Introduction

Survival analysis is a fundamental field in statistics that has witnessed significant ad-

vancements, particularly in the 1980s and 1990s (Colosimo and Giolo, 2006; Klein and

Moeschberger, 2006). The primary focus of survival analysis is to study the time until the

occurrence of an event of interest, such as the death of a patient or the failure of a me-

chanical equipment. A defining characteristic of survival data is the presence of censoring,

which refers to incomplete information about the exact time when an event occurred.

In survival analysis, individuals are monitored over a specific period, and when

the event of interest happens, its time is recorded. It is commonly assumed that the

times until the event of interest occurrence are mutually independent. However, this

assumption may not hold in certain scenarios. Consider situations where we want to

evaluate the survival time of different litters of cats, the time until the onset of a disease

in groups of twins, or the lifespan of patients treated in the same intensive care units.

Assuming independence within these groups may be inappropriate, as individuals within

the same group may exhibit similarities in the time until the event, which would not be

observed in individuals outside these groups. It is important to note that these groupings

can be either natural or artificial.

Individuals may also experience multiple occurrences of the same event, referred to

as recurrent events. Examples include patients being infected by a virus multiple times or

experiencing successive heart attacks, electrical systems encountering repeated failures in

transmitting electricity, or the occurrence of repeated crimes in a specific area. In those

cases, individuals can be interpreted as a group, where the “individual” represents the

patient in the first and second examples, the electrical system in the third example, and

the geographical areas in the last example.

Often, these events are followed up until the individual becomes unavailable. There

can be various reasons for unavailability, such as the individual moving to a different city

or the patient’s decision not to proceed with an experimental treatment because of strong

side effects. In these cases, the study is terminated without the individual experiencing

the event of interest. However, there may be outcomes that lead to the discontinuation of

follow-up, such as death. In such cases, we refer to the event that terminates the follow-up

as a terminal event, as it occurs only once.
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A very common goal in studies involving survival analysis is the evaluation of

potential risk factors on the occurrence of events. Proportional hazards (PH) regression

models, such as Cox (1972), are the most used approaches for this purpose. These models

allow an intuitive interpretation of the regression parameters but have some limitations.

Among them is the assumption of the hazard functions ratio of the observed individuals

remaining constant over time. Another limitation is that PH models do not allow for

accommodating potential correlation between recurrent events (Amorim and Cai, 2015;

Li et al., 2019).

It is a fact that recurrent events can have some kind of association. These events

are very useful for assessing the deterioration of an individual’s health status, as argued

by Huang and Wang (2004). When survival times have an association induced by clusters

or recurrences of events, we say that the data are multivariate. On the other hand, if the

independence between times is not violated, we say that the survival data are univariate

(Colosimo and Giolo, 2006).

Colosimo and Giolo (2006), Hanagal (2011) and others argue that a commonly used

approach to deal with some dependence on survival data is to assume that these data have

independence, conditioned on a set of unobserved variables, called frailty. The concept of

frailty, introduced by Vaupel et al. (1979), defines it as a latent and multiplicative random

variable. The authors used frailties, also called the random effect, to explain the effect of

unobserved heterogeneity on the mortality of a population. Clayton and Cuzick (1985)

used frailties to explain the heterogeneity about the hazard function in an extension of the

PH model for multivariate survival data. Huang and Wang (2004) proposed a subject-

level shared frailty model to accommodate the association between recurrent and terminal

events. The name shared frailty is justified by the fact that each individual shares the

same random effect on the hazard function of the terminal and recurrent events. Figure

1.1 illustrates the follow-up of an individual who experiences some recurrent events (circle)

and a terminal event (triangle).

Figure 1.1: Follow-up of an individual who experiences recurrent events and a terminal
event.

Source: Prepared by the author.

In addition to frailty, there are studies that model the association between survival

data through copulas. Clayton (1978) developed a survival model for bivariate time-to-
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event data using copulas. Other copula applications can be seen in Oakes (1982), Suzuki

(2012), Biondo and Suzuki (2016), Prenen et al. (2017) and Patiño (2018). Emura et al.

(2017) developed a joint frailty-copula model as an extension to the shared frailty model

for meta-analysis. Li et al. (2019) introduced a joint frailty-copula model, in which the

random effect explains the correlation between the recurrent events of an individual and

a copula is used to model the association between the recurrent and the terminal events

of each individual.

As for the regression models, there are alternatives to the PH model. The pro-

portional odds (PO) model is one of them and was introduced by Bennett (1983). The

hypothesis of this model is that the survival curves approximate each other, but do not

intersect (Collett, 2015). Although these models also cannot explain the correlation be-

tween the data, it is possible to incorporate on them a random effect for this purpose

(Economou and Caroni, 2007). Another alternative is the Yang and Prentice (YP) re-

gression model introduced by Yang and Prentice (2005), which includes the PH and PO

models as particular cases. Here, the survival functions are allowed to intersect, and this

provides an advantage over the PH and PO models (Demarqui and Mayrink, 2021).

The arguments presented evidence that researchers are seeking to develop even

more realistic and, consequently, more complex models. It is known that computational

advances allowed the development of classical and Bayesian methodologies in survival

analysis (Ibrahim et al., 2014). Programming languages such as R (R Core Team, 2024),

for example, allow for the implementation of inferential methods. Several researchers

have been developing computational packages that facilitate the replication of published

results and promote a greater flow of knowledge and usability of their methods. In this

work, we will focus on using the R language.

One of the aims of this work is to present two classes of models, under the Bayesian

approach, to explain the effect of observed characteristics on the process of recurrent

events that can be interrupted by a terminal event or a loss of follow-up due to external

factors. We chose to use copula with the shared frailty model to have a clear and directly

interpretable measurement of the association between recurrent and terminal events, as

argued by Li et al. (2019). We further choose to use the YP regression structure since it

generalizes the PH and PO models.

We will also be able to assess the potential risk characteristics of individuals into

clusters using shared frailty models in a YP regression structure. Furthermore, we will

be able to study univariate survival data also using YP regression models.

To clarify the contributions of this thesis, see Figure 1.2. The notation designated

for the models is presented within the same figure, specifically in the row associated with

the corresponding models. In this figure, dotted lines denote models that are already

established in the literature and can be considered as special cases of the models proposed

in this work. The solid red lines represent the original models developed in this thesis.
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Notably, we introduce novelty in the frailty models with a PO regression structure when

we combine it with a piecewise exponential baseline, a concept not previously found in

the literature.

Figure 1.2: Schematic representation of the model class proposed in this work.

Source: Prepared by the author.

Our models for survival data encompassing both recurrent and terminal events also

stand as significant contributions to the field. We have developed PH models that utilize

piecewise exponential and Bernstein baselines at the same time that we use the Clayton

copula for modeling the associations between recurrent and terminal events, as well as

frailties to model the association among recurrent events within the same individual.

These approaches are not found in the current literature.

Additionally, this thesis presents innovations in PO and YP families of regression

models: the use of exponential, piecewise exponential, and Bernstein baselines, along

with the incorporation of the Clayton copula and frailties. Since we are not aware of any

existing studies that have documented these approaches, the models proposed here signify

advancements in the methodologies of survival analysis.
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Goal

The primary goal of this study is to develop two classes of frailty models within

the Bayesian framework. Figure 1.3 illustrates the structure of these classes.

• The first class of models will have a frailty YP with three baseline functions avail-

able: exponential, piecewise exponential, and Bernstein polynomial. It will allow to

analyze survival data arranged in three configurations:

– 1st.: The frailty term will serve to explain unobserved heterogeneities, that is,

variations in survival time that are not explained by the fixed effects of the

models. In this case, we will refer to the element of the frailty as individual

frailty.

– 2nd.: Individuals have only one time until the event but are arranged in artificial

or natural clusters. Individuals in the same cluster will share the same frailty

due to the similarities resulting from the grouping. Frailty (here referred to

as shared frailty) will therefore serve to accommodate a possible association

between the survival times of individuals belonging to the same cluster.

– 3rd.: Individuals present recurrent events. Thus, frailty will be used to accom-

modate the association between the survival times of the same individual. In

this context, we can understand the individual as a cluster and frailty here will

also be referred to as shared frailty.

• The second class of models consist of three regression families: PH (proportional

hazard), PO (proportional odds), and YP (Yang and Prentice) allowing great flexi-

bility. Regression structures will have three possible baseline functions: exponential,

piecewise exponential, and Bernstein polynomials. This class of models will allow us

to analyze survival data in which individuals may experience recurrent events and

a terminal event or administrative censoring. Loss of follow-up induces a dependent

censoring of the individual’s process of recurrent events. In our models, individ-

ual’s recurrent events will share a term of frailty that will serve to accommodate

a possible association between the gap times of these recurrences. Terminal events

that may also have a dependence on recurrent events will be incorporated into the

likelihood function using the Clayton copula. Figure 1.3 elucidates how interactions

between the survival times of recurrent and terminal events will be handled within

this model class.

The selection of the Clayton copula for this study is primarily due to its simplicity

and widespread usage among Archimedean copulas. Additionally, our models draw inspi-
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ration from the work of Li et al. (2019), who also employed the Clayton copula in their

model.

Figure 1.3: Elucidation of the application of frailty and copula approaches on the occur-
rence of recurrent and terminal events of an individual.

Source: Prepared by the author.

Text structure

This thesis is organized as follows. Chapter 2 presents some fundamental concepts

of survival analysis, the PH, PO, and YP models, as well as a description of the frailty

model. The Bernstein polynomials and the piecewise exponential model, which will be

used to handle the baseline hazard functions, are also presented in this chapter. Besides, it

discusses concepts and properties of copulas and introduces the Clayton copula. Chapter

3 presents our proposed models. It starts by setting the notation and then explains the

construction of the likelihood function. Chapter 4 discusses the data generation steps and

the results of the Monte Carlo study. Chapter 5 presents a real application. We close this

text with discussions of some results and perspectives for future research in Chapter 6.
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Chapter 2

Survival analysis fundamentals

2.1 Introduction

In survival analysis, the response variable is the time until the occurrence of an

event of interest, called the failure time. The main characteristic of survival data is the

presence of censoring which is an incomplete observation. It can occur for several reasons

that can be or not related to the study (Klein and Moeschberger, 2006; Schneider, 2017).

If the study ends before the individual experiences the event, the censoring mechanism

is administrative. Another type of censoring is called dropout, in which the individual

leaves the study for external reasons. If, however, this loss of follow-up is associated with

the study, we say that the censoring mechanism is informative. An example of this type

of censoring is when an individual leaves the study due to side effects from the treatment.

When it happens, it is expected that there is a correlation between time-to-event and time-

to-censoring, and ignoring this possible correlation can cause biased estimates (Huang and

Wolfe, 2002; Schneider et al., 2020).

Another case in which censoring is said informative occurs when the individual

experiences recurrent events and a terminal event (Huang and Wang, 2004; Huang and

Liu, 2007; Li et al., 2019). The terminal event might be related to the recurrent events

experienced by that individual. This is because the terminal event prevents the continuity

of the individual’s follow-up regarding recurrent events.

As for the types of censoring, we can establish other classifications: right-censoring,

left-censoring, and interval-censoring. Right-censoring occurs when the follow-up time is

not enough for the individual to experience the event of interest. It can be a type I

censoring - when the study duration is specified in advance and, therefore, the number of

events is random. A type II censoring - when the number of failures is defined before the

beginning of the follow-up. A random censoring is observed when an individual leaves the

study for a reason not related to it. The left-censoring occurs when the individual begins

to be accompanied, having already experienced the event of interest at some unknown

moment in the past. Finally, interval-censoring is defined when an individual experiences



2.1. Introduction 26

an event at an unknown moment between two observed times. In this work, we will focus

on right-censoring. The data used are right-censored, either due to a loss of follow-up of

the individual for reasons outside the study or due to the occurrence of a terminal event

that prevents new recurrent events.

Let T ≥ 0 be the random variable denoting the time-to-event of an individual

and let C ≥ 0 be the random variable representing the time-to-censoring for the same

individual. An observation is right-censored when T > C. In this case, the time of

observation of the individual is

Y =

T , if T ≤ C;

C, otherwise.

Let δ be an indicator such that δ = 1 indicates that the observed time of an individual is

a time-to-event or, mathematically, δ = I(T ≤ C).

Now, let’s discuss some important functions in survival analysis. One of them

is the survival function. It is defined as the probability that an individual does not

experience an event until a certain time t, that is, the probability that he or she will

survive until t (Colosimo and Giolo, 2006; Klein and Moeschberger, 2006). Denote by

F (t) = P (T ≤ t) the cumulative distribution function (c.d.f) of the random variable T ,

that is, the probability of an individual experience an event up to time t. In this way,

the survival function and the cumulative distribution function are complementary, and

therefore, the survival function is given by

S(t) = 1− F (t).

Another relevant function is called the hazard function. We denote it by h(t). This

function is more informative than the survival function since similar survival functions

can have different hazard functions (Colosimo and Giolo, 2006). The hazard function is

given by

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t
,

Furthermore, the cumulative hazard function is given by

H(t) =

∫ t

0

h(u)du.

In this work, we will use the odds function R(t). It is defined as the ratio between

the probability of an individual experiencing an event until a time t and the probability

of surviving until that time (Bennett, 1983). Consider:

R(t) =
F (t)

1− F (t)
=
F (t)

S(t)
.
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Some well-known relationships between the mentioned functions are as follows:

f(t) = − d

dt
S(t) = h(t) exp[−H(t)],

H(t) = − logS(t) ⇐⇒ S(t) = exp[−H(t)],

h(t) =
d

dt
H(t) = −S

′(t)

S(t)
, with S ′(t) =

d

dt
S(t),

and

R(t) = exp[H(t)]− 1.

See additional details in Hosmer and Lemeshow (1999), Klein and Moeschberger (2006),

Kleinbaum and Klein (2010), Lawless (2011), and Ibrahim et al. (2014). The next sections

will discuss some important regression models in survival analysis.

2.2 Regression models

In this section, three important regression models will be presented. They are

the PH model, the PO model, and the YP model, of which the PH and PO models are

particular cases. For these models, denote by x = (x1, ..., xp) a row vector of explanatory

variables.

2.2.1 Proportional hazards model

The proportional hazards model, introduced by Cox (1972), allows to assess the

effect of some characteristics of an individual on the time-to-event. These characteristics

are incorporated in the hazard function. The PH model is one of the most used in clinical

studies due to its versatility. Its hazard function is commonly given by (Colosimo and

Giolo, 2006; Kalbfleisch and Prentice, 2011)

h(t|x) = h0(t) exp(xβββ), (2.1)

where the parameters βββ = (β1, ..., βp)
′ are the regression coefficients and h0(·) is a non-

negative function called baseline hazard, which does not depend on x, and can be modeled

either parametrically or non-parametrically. The intercept β0 is not explicit because it is

incorporated by the term h0(t) (Colosimo and Giolo, 2006).
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The PH model has the property of a constant ratio in time between the hazard

functions of two different individuals, as long as the effect of covariates is invariant over

time. Consider two individuals, i and j, then the ratio between their hazard functions is

given by

hi(t|xi)
hj(t|xj)

=
h0(t) exp(xiβββ)

h0(t) exp(xjβββ)
= exp{(xi − xj)βββ}.

In this sense, the parameters βββ will allow the identification of which covariates increase

or decrease the hazard of an individual experiencing a failure.

The survival function for the PH model can be rewritten as

S(t|x) = exp {−H0(t) exp (xβββ)} ,

where exp{−H0(t)} = S0(t) is the baseline survival function.

When the assumption of proportional hazards is violated, the model described in

this section becomes inappropriate. Furthermore, when there is some dependence between

the survival data, the PH model is also inadequate as it does not explain the correlation

between events (Colosimo and Giolo, 2006; Li et al., 2019). This problem is easily solved

by introducing frailty. In addition, when the censoring mechanism is informative, the PH

model does not offer valid estimates (Schneider et al., 2020). There are several approaches

in the literature that provide alternatives to the PH model. Two of those alternatives are

described in the subsequent sections: PO and YP models. These models also depend on

the assumption of independence of observations.

2.2.2 Proportional odds model

The proportional odds model was introduced by Bennett (1983) to deal with sit-

uations in which the survival curves become closer as t → ∞, but do not intersect. We

can cite some works that bring applications of this model as Royston and Parmar (2002),

Hanson and Yang (2007), Wang and Dunson (2011), and Panaro (2020).

Let R(t) be the odds function and let R0(t) be the baseline odds function, that is,

R0(t) =
1− S0(t)

S0(t)
.

This model can be characterized as follows:

R(t|x) = F (t|x)
S(t|x)

= R0(t) exp(xβββ), (2.2)
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The survival function is given by

S(t|x) = 1

1 +R(t|x)
,

and the cumulative hazard function is defined as

H(t|x) = − log[R(t|x) + 1].

It is possible to verify that the ratio between the odds functions of two individuals,

i and j, is constant over time. This is an assumption of the PO model. One can write

OR =
R0(t) exp(xiβββ)

R0(t) exp(xjβββ)
= exp{(xi − xj)βββ}.

Some considerations can be made regarding the value of OR: if OR = 1, the failure is

equally likely to happen for both individuals. If OR > 1, the individual i is more likely

to experience failure compared to j; and the opposite happens when OR < 1.

The PO model, as well as the PH model, can be understood as a particular case

of the YP regression model (Yang and Prentice, 2005). The next section provides some

details about the YP approach.

2.2.3 Yang and Prentice model

As already discussed, both the PH and the PO models are very important in

survival analysis, but they cannot be applied in situations where the hazard ratio and

odds ratio, respectively, are not constant. To deal with this limitation, Yang and Prentice

(2005) proposed a model in which survival curves can intersect. This model can be

characterized in terms of the survival function

S(t|x) =
[
1 +

ν

ξ
R0(t)

]−ξ
, (2.3)

where ν = exp(xψψψ) and ξ = exp(xϕϕϕ), ψψψ = (ψ1, ..., ψp)
′ and ϕϕϕ = (ϕ1, ..., ϕp)

′ are vectors

of regression parameters without intercepts. We are evaluating the impact of the same

variables over both short and long terms, although this is not required. The function R0

is the baseline odds as defined in Section 2.2.2.

We can express the hazard function of this model as

h(t|x) = νξ

νF0(t) + ξS0(t)
h0(t), (2.4)

where F0(t) is the baseline cumulative distribution function, S0(t) = 1 − F0(t) is the

baseline survival function and h0(t) is the baseline hazard function.
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The YP model can be reduced to the PH and PO models. Note that when ψψψ = ϕϕϕ,

h(t|x) = h0(t) exp(xψψψ) = h0(t) exp(xϕϕϕ),

and this is the hazard function of the PH model, as shown in Expression (2.1). If ϕϕϕ = 0,

we have

S(t|x) = [1 +R0(t) exp(xψψψ)]
−1 ⇒ R(t|x) = F (t|x)

S(t|x)
,

and this is the expression of the odds function in the PO model, as presented in (2.2).

When ψjϕj < 0, for any pair of coefficient (ψj, ϕj), with j ∈ {1, ..., p}, the survival curves
intersect.

Another feature of the YP model is related to the hazard ratio limits, if t → 0 or

t→ ∞. When t→ 0, we have

lim
t→0

h(t|x)
h(t|0)

= ν,

where ν is interpreted as the short-term hazard ratios, and ψψψ as the short-term regression

coefficients vector. Additionally, if t→ ∞,

lim
t→∞

h(t|x)
h(t|0)

= ξ.

We can interpret ξ as the long-term hazard ratios, and ϕϕϕ as the long-term regression

coefficients vector.

Demarqui and Mayrink (2021) illustrate four different scenarios generated by choos-

ing some values of ψ and ϕ. It is possible to see the effect of these choices on the survival

functions. They intersect when ψ = 1 and ϕ = −1 and when ψ = −1 and ϕ = 1 . This is

shown in Figures 2.1-(a) and 2.1-(b), respectively. When ψ = ϕ = 0.5 , the model reduces

to the PH model, as can be seen in Figures 2.1-(c). Finally, choosing ψ = 0 and ϕ = 0.5,

one finds a structure of proportional odds shown in Figures 2.1-(d).

Several works address the YP model in the literature, as Yang and Zhao (2012),

Diao et al. (2013), Wang (2013) and Demarqui et al. (2019). Demarqui and Mayrink

(2021) proposed a semiparametric model for survival data using YP regression and the

piecewise exponential as the baseline hazard function. The fit of this model can be done

using by R package YPPE from the first author (Demarqui, 2020b). The inference is done

under the frequentist and the Bayesian approaches.

2.3 Frailty model

In survival analysis, we are generally interested in identifying the factors that can

increase or decrease an individual’s hazard of experiencing the event of interest. However,
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Figure 2.1: Examples of survival curves when (a) ψ = 1 and ϕ = −1, (b) ψ = −1 and
ϕ = 1, (c) ψ = ϕ = 0.5, and (d) ψ = 0 and ϕ = 0.5, in YP model..

Source: Demarqui and Mayrink (2021).

not all characteristics of an individual are known or measurable. In the literature, it is

common for such unknown factors to be defined as individual heterogeneity or frailty.

Clayton (1978) introduced this concept to explain that different individuals may present

different hazards even though their measurable attributes are similar. Vaupel et al. (1979)

introduced the term “frailty” as a latent and multiplicative random variable on the mor-

tality rate of individuals. This random variable, in that study, absorbs the unobserved

heterogeneity.

Since the work of Vaupel et al. (1979), the frailty model has received a great deal

of attention in the literature. Clayton and Cuzick (1985) proposed an extension of the

proportional hazards model (Cox, 1972) to account for multivariate survival data by the

addition of a random effect representing unobserved heterogeneity. Frailty models can

also be used to accommodate the association between recurrent events, as in Lawless

(1987). These models were further applied to handle recurrent events in the presence of

a terminal event such as in Huang and Wang (2004), Liu et al. (2004) and Mazroui et al.

(2012). Schneider et al. (2020) used the frailty to fit survival data subjected to dependent

censoring.

Frailty models can also be used to accommodate the correlation between individu-

als belonging to the same group or cluster. In these cases, the model is called the shared

frailty model, since individuals from the same group share the random effect. The shared

frailty framework is understood as an extension of the PH model. Let i = 1, ..., nk be the
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individual i of the group k, with k = 1, ..., q, and nk be the number of individuals in the

k-th group. The hazard function of this individual is given by:

hi,k(t|xi,k, zk) = h0(t)zk exp(xi,kβββ)

= h0(t) exp(xi,kβββ + wk),

where zk = exp(wk) is the frailty of the k-th group, xi,k = (xi,k,1, ..., xi,k,p) is a row vector

of covariates. Colosimo and Giolo (2006); Klein and Moeschberger (2006) highlight that

wk is usually assumed to have a distribution with zero mean and unknown variance.

Other distributions can be chosen for zk as the gamma, and positive stable distribution,

for example; see Hougaard (2012) and Wienke (2020) for more details.

According to Colosimo and Giolo (2006), the presence of the random element in

the PH model generates different interpretations for the hazard ratio.

1. When individuals i and j are from different groups k ̸= k′, the hazard ratio is

hi,k(t|xi,k, zk)
hj,k′(t|xj,k′ , zk′)

=
h0(t)zk exp(xi,kβββ)

h0(t)zk′ exp(xj,k′βββ)
=
zk
zk′

exp{(xi,k − xj,k′)βββ}.

Thus, the ratio between the hazard functions depends not only on the observed

characteristics but also on the random effects of the two individuals.

2. Let i and j be individuals from the same group k. Both individuals have the same

zk element of frailty. In this case, the hazard ratio is given by

hi,k(t|xi,k, zk)
hj,k′(t|xj,k′ , zk)

= exp{(xi,k − xj,k)βββ},

and the interpretation follows the PH model.

3. Now consider two individuals, i and j, who have equal values of covariates but are

from different groups k ̸= k′. The hazard ratio is

hi,k(t|xi,k, zk)
hj,k′(t|xj,k′ , zk′)

=
zk
zk′
.

Here, the ratio between the hazard functions is the ratio of frailties.

We have discussed the incorporation of a random effect into the PH model. How-

ever, there are works that also use frailty in PO models as Economou and Caroni (2007),

Lin and Wang (2011), and Gupta and Peng (2014). In this case, the frailty is inserted in

the linear predictor shown in (2.2).
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2.4 Bernstein polynomials

Polynomials are mathematical tools that have attractive features such as the fact

that they can be easily derived and integrated. Bernstein (1912) introduced a polynomial

that is a linear combination of basis and is known as the Bernstein polynomial. Let m

be a positive integer, the Bernstein polynomials of degree m for the continuous function

C∗(t), defined in a range [0, 1], can be written as

BC∗

m (t) =
m∑
k=0

C∗
(
k

m

)
bk,m(t); t ∈ [0, 1], (2.5)

where bk,m(t) is the basis of the polynomial such that

bk,m(t) =

(
m

k

)
tk(1− t)m−k; k ∈ 0, ...,m.

The Bernstein polynomials became an important mathematical tool to prove the

Weierstrass approximation theorem, which states that a continuous function in the closed

interval [a, b], with a ∈ R and b ∈ R, a < b, can be approximated arbitrarily by a

polynomial (Lorentz, 1986).

Farouki and Rajan (1987) present a formulation for the Bernstein polynomials to

accommodate a continuous function C∗(t) restricted to the closed interval [a, b] as

BC∗

m (t) =
m∑
k=0

C∗
(
a+

k

m
(b− a)

)
bk,m

(
t− a

b− a

)
; t ∈ [a, b]. (2.6)

Feller (1987) shows that BC∗
m (t) converges uniformly to C∗(t), when m ∈ N is

chosen arbitrarily greater than M ∈ N. In other words,

∀ ϵ > 0,∃ M ∈ N such that m > M ⇒ |BC∗

m (t)− C∗(t)| < ϵ,∀ t ∈ [0, 1].

The Bernstein polynomials in the form described in (2.5) can be rewritten as the

expected value of the C∗ (K
m

)
with K ∼ Binomial (m, t). This is,

E

[
C∗
(
K

m

)]
=

m∑
k=0

C∗
(
k

m

)(
m

k

)
tk(1− t)m−k. (2.7)

Note that (2.5) and (2.7) are equivalent (Koralov and Sinai, 2007). As we consider K ∼
Binomial (m, t), we have

m∑
k=0

bk,m(t) = 1.

Farouki (2012) presents some important properties of the Bernstein polynomial:
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1. Non-negativity: the basis of the polynomial are non-negative for any t ∈ [0, 1], that

is, bk,m ≥ 0, if 0 ≤ k ≤ m,

bk,m ≡ 0, if k < 0 or k > m.

2. Symmetry: the basis of the polynomial bk,m and bm−k,m are symmetric in t = 1
2
,

that is

bm−k,m(1− t) = bk,m(t).

Figure 2.2 shows the basis functions of a polynomial of degree 7 and illustrates this

property. Each basis of the BP is represented by a curve.

3. Recursion: The basis of degree m+ 1 can be generated from the basis of degree m

using the relation

bk,m+1(t) = tbk−1,m(t) + (1− t)bk,m(t),

for k = 0, 1, ...,m+ 1 and starting the recursion with b0,0 ≡ 1.

4. Derivatives: The basis of the polynomial satisfy the equation

d

dt
bk,m(t) = m [bk−1,m−1(t)− bk,m−1(t)] .

Now, consider t ∈ [0, τ ]. The derivative of Bernstein polynomials with respect to t can be

written as (Osman and Ghosh, 2012):

bC
∗

m (t) =
m∑
k=1

{
C∗
(
k

m
τ

)
− C∗

(
k − 1

m
τ

)}
1

τ
fβ

(
t

τ
, k,m− k + 1

)
, (2.8)

where fβ
(
t
τ
, k,m− k + 1

)
is the probability density function of a Beta distribution with

parameters k and m− k + 1 valued at t
τ
.

Now, assume φφφ = (φ1, ..., φm), with

φk = C∗
(
k

m
τ

)
− C∗

(
k − 1

m
τ

)
;φk ≥ 0, k = 1, ...,m.

Note that φφφ is not time-dependent. Its values are unknown. Also consider gm(t) =

(g1,m(t), ..., gm,m(t))
′, where

gk,m(t) =
1

τ
fβ

(
t

τ
, k,m− k + 1

)
; gk,m(t) ≥ 0, k = 1, ...,m.

Thus, we can rewrite (2.8) as

bC
∗

m (t) = φφφ gm(t).
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Figure 2.2: The Bernstein basis functions of degree 7 on t in [0, τ ].

Source: Farouki (2012).

Osman and Ghosh (2012) used this expression to model the hazard function. That is,

h(t|φφφ) = φφφ gm(t), t ∈ [0,∞). (2.9)

The authors justify the choice of Bernstein Polynomials for this purpose due to their

attractive properties. More explicitly, they argue that since such polynomials have good

derivation properties. Furthermore, the monotonicity of the cumulative hazard function

is naturally modeled by Bernstein Polynomials, since that φk ≥ 0,∀ k ∈ {1, ...,m}. This
function is expressed by

H(t|φφφ) =
∫ t

0

h(u,φφφ)du = φφφ Gm(t), (2.10)

with

Gm(t) = (G1,m(t), ..., Gm,m(t))
′ ,

where

Gm,k(t) =

∫ t

0

fβ

(u
τ
; k,m− k + 1

)
d
(u
τ

)
,∀ k ∈ {1, ...,m}.

The function Gm,k(t) is the Beta cumulative distribution function with parameters k and

m− k + 1.

Osman and Ghosh (2012) also discuss some aspects of choosing τ in the previous

expressions. This must be done with care, as it influences the estimation. It is necessary

that τ < ∞, such that τ = inf{t : S(t) = 0}. In practice, in survival analysis, τ is

chosen as the maximum value among the times observed until the occurrence of the event

of interest or until the follow-up stops. Here, we will denote it by τ̂ . But, using this

choice, it is not possible to satisfy H(τ |φφφ) = ∞. Besides, there is no information about

survival times in the region t > τ̂ (Demarqui et al., 2019). Therefore, this choice requires

an adjustment in the hazard and cumulative hazard functions. As a solution, Osman and
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Ghosh (2012) suggest some alterations in these functions, as follows:

h∗(t|φφφ) =

h(t|φφφ), if 0 ≤ t < τ̂ ,

m φm

τ̂
, if t ≥ τ̂ ,

H∗(t|φφφ) =

H(t|φφφ), if 0 ≤ t < τ̂ ,

H(t|φφφ) +m(t− τ̂) φm

τ̂
, if t ≥ τ̂ .

There are few works in the literature with applications of Bernstein Polynomials in

survival analysis. One of them is Chang et al. (2005) which uses the Bernstein polynomials

whose degree is a random quantity that needs to be estimated. Demarqui et al. (2019)

use the Bernstein polynomials to model the baseline functions of the YP model. The R

package YPBP of Demarqui (2020a) can be used to fit this model. Panaro (2020) developed

an R package named spsurv (Panaro et al., 2020) to explain survival times using Bernstein

polynomials coupled to some regression structures as PH and PO models.

2.5 Piecewise exponential model

The piecewise exponential model was introduced by Kalbfleisch and Prentice (1973)

and is widely used in survival analysis due to its flexibility. It establishes a finite partition

of the time axis and, for each partition, a constant hazard function is defined. Thus, the

model allows approximating the hazard function using line segments.

The model is constructed as follows. Consider a time grid ρ = {ρ0, ..., ρm}. Thus, ρ
makes a partition of the time axis in m intervals at the points ρ0, ρ1, ..., ρm, with 0 = ρ0 <

ρ1 < ... < ρm < ∞ . The intervals generated from that partition are I1 = (ρ0, ρ1], I2 =

(ρ1, ρ2], ..., Im = (ρm−1, ρm].

The set ρ, and consequently the quantity of intervals m, can be established in

different ways. Breslow (1974) and Demarqui and Mayrink (2021) assume that ρ is a

known set composed by each of different time-to-event observations. The choice of ρ has

influence over the inferential results, since we assume that the hazard function in each

interval is constant and given by

h(t) = λj, for t ∈ Ij, j = 1, ...,m and λj > 0. (2.11)

Kalbfleisch and Prentice (1973) affirm that the choice of ρ can be independent of

the data set. On the other hand, Demarqui and Mayrink (2021) argues that large m

values can provide unstable estimates. In other approaches, ρ is treated as being random;

see Demarqui et al. (2011, 2012).



2.6. Clayton copula 37

Regardless of the choice of ρ, the cumulative hazard function is given by

H(t|λλλ) =
m∑
j=1

λj(tj − ρj−1), (2.12)

where

tj =


ρj−1, if t < ρj−1;

t, if ρj−1 < t ≤ ρj;

ρj, , if t > ρj.

(2.13)

The piecewise exponential model takes the exponential model as a particular case when

m = 1.

To understand the Expression (2.12), see the example illustrated by de Mello (2016)

in Figure 2.3. In this case, it is assumed that the time axis has been divided into four

intervals and that t is the time-to-event or censoring time. The cumulative hazard function

can be interpreted as the area hatched in the aforementioned figure.

Figure 2.3: Example of h(t) defined by PE.

Source: de Mello (2016).

2.6 Clayton copula

In survival analysis, there are situations in which more than one survival time is

observed for the same individual. In these cases, the survival data are multivariate. It

is reasonable to assume that there is an association among the multiple survival times
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observed for the same individual. In particular, consider the case where an individual

may experience successive recurrent events and a terminal event. The terminal event

prevents new recurrent events from occurring. One possible approach to accommodate

this association between survival times is through the use of copulas.

Clayton (1978) used copulas to treat bivariate survival data. Oakes (1989) showed

that the Clayton copula is a specific case of the gamma-shared frailty model. Joe (2005)

proved the asymptotic efficiency of the two-stage estimation process based on copula

models. Li et al. (2019) developed a joint Bayesian frailty-copula model for situations in

which individuals experience recurrent events and a terminal event.

Now, we discuss some mathematical aspects of copulas. Copulas are functions

that connect univariate marginal distributions with their joint multivariate distribution

(Nelsen, 2006). There are several copulas in the literature, each leading to a type of

association between variables. Let’s start by mathematically defining the copula function.

Definition 2.6.1. A copula is a multivariate distribution whose marginals are uniform

variables U(0, 1). Consider U = (U1, ..., Un) ∈ [0, 1]n. Let C̄ be a copula and θ be the

copula association parameter (Nelsen, 2006). Thus,

C̄(u1, ..., un; θ) = P (U1 ≤ u1, ..., Un ≤ un; θ), with (u1, ..., un) ∈ [0, 1]n. (2.14)

The existence of such copulas is guaranteed by Sklar’s theorem.

Theorem 2.6.1. (Sklar’s theorem) Suppose that H is a joint distribution function and

its margins are F1, ..., Fn. Then, for all x1, ..., xn ∈ R̄n, exists a copula C̄ such that

H(x1, ..., xn) = C̄(F1(x1), ..., Fn(xn); θ),

where R̄n = [−∞,∞]n. The function C̄ is unique if F1, ...Fn are continuous; otherwise,

C̄ is uniquely determined on Range(F1) × ... × Range(Fn). Understand Range(·) as the

image of a function. Conversely, consider that C̄ is a copula and F1, ..., Fn are distribution

functions. Then, the function H is a joint distribution function and its margins are

F1, ..., Fn (Hofert et al., 2018).

From Definition 2.6.1, we present the concept of the survival copula in Definition

2.6.2.

Definition 2.6.2. Let U = (U1, ..., Un) ∈ [0, 1]n and θ be the copula association para-

meter. A survival copula is a function that connects marginal survival copulas with their

joint distribution (Hofert et al., 2018). Mathematically,

C(u1, ..., un; θ) = P (U1 > u1, ..., Un > un; θ), with (u1, ..., un) ∈ [0, 1]n. (2.15)
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From on now, we will focus on bivariate survival copulas, that is, when n = 2 in

Definition 2.6.2. This is because, in this study, we will use survival copulas to accommo-

date the correlation between just two types of events.

Nelsen (2006) highlights a very important result about the existence of first-order

partial derivatives of copulas, which will be useful when dealing with our likelihood func-

tion. This result is presented in Theorem 2.6.2.

Theorem 2.6.2. (Nelsen, 2006) Let C be a bivariate copula. Then, for almost all u, and

for such u and v,

∃ ∂

∂u
C(u, v; θ) and 0 ≤ ∂

∂u
C(u, v; θ) ≤ 1.

Additionally, for almost all v, and for such u and v,

∃ ∂

∂v
C(u, v; θ) and 0 ≤ ∂

∂v
C(u, v; θ) ≤ 1.

Hofert et al. (2018) present a result about the copula’s second-order derivatives

∂2C/∂u∂v. Through the chain rule, we can operate this derivation whose result is

fUV (u, v) = fU(u)fV (v)
∂2

∂u∂v
C(u, v; θ), (2.16)

where fU(u) and fV (v) are the univariate marginal densities. The function fUV (u, v) is

a bivariate density function, and this result will be useful when building the likelihood

function.

To indicate the mentioned derivatives, consider the following notation

C(01)(u, v; θ) =
∂

∂v
C(u, v; θ),

C(10)(u, v; θ) =
∂

∂u
C(u, v; θ),

and

C(11)(u, v; θ) =
∂2

∂u∂v
C(u, v; θ).

A great advantage of copulas is the clearer definition of a measure of the correlation

between variables. This motivated the choice of the approach of copulas in the present

work. Although copula already has an association parameter, researchers are usually

interested in some measure of correlation. The most common is the Kendall’s tau.

Definition 2.6.3. Consider that (U1, V1) and (U2, V2) are two independent replicas of any

pair of any random variables (U, V ) . Kendall’s tau τκ coefficient is defined as

τκ = P [(U1 − U2)(V1 − V2) > 0]− P [(U1 − U2)(V1 − V2) < 0].
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Kendall’s τκ measures the difference between the probabilities of concordance and

discordance. Understand concordance as the cases where U1 > U2 and V1 > V2, or U1 < U2

and V1 < V2 and discordance, otherwise. In other words, we can say that when the value

of one variable increases and the other also increases (alternatively, when the value of one

variable decreases and of the other also decreases), the probability of concordance also

increases (Nelsen, 2006).

If U and V are continuous, τκ can be calculated using

τκ = 4

∫ 1

0

∫ 1

0

C(u, v; θ)dC(u, v; θ)− 1. (2.17)

Kendall’s τκ is one of the best-known correlation measures used in the context of

copulas (Hofert et al., 2018) because it is invariant over monotonous transformations in

opposite to Pearson’s correlation coefficient. In this section, we start presenting some

concepts about the Archimedean copula class, focusing on the bivariate case.

Definition 2.6.4. (Hofert et al., 2018) A bivariate Archimedean copula has the form

C(u, v; θ) = Υ
(
Υ−1(u) + Υ−1(v)

)
, (2.18)

where Υ is called the copula generating function and is continuous and descending on

[0,∞] satisfying:

1. Υ(0) = 1

2. Υ(∞) = limt→∞ Υ(t) = 0, and

3. Υ is strictly decreasing in [0, inf{t : Υ(t) = 0}].

Definition 2.6.4 shows the main difference between this class of copulas and the

others, which is the fact that it is possible to write the copula function from a generator

function. This brings some advantages because it allows one to generate copulas of this

class by changing only the generating function.

Nelsen (2006) discusses some properties of bivariate Archimedean copulas:

1. Symmetry: C(u, v; θ) = C(v, u; θ);

2. C is associative: C(C(u, v; θ), w; θ) = C(u,C(v, w; θ); θ) for all u, v, w ∈ [0, 1];

3. Let Υ be the generator of C. Then, for any constant a > 0, aΥ is also a generating

function.

The Clayton Archimedean copula is considered in this work. Assume the marginal

survival functions u = S1(t1) and v = S2(t2). Then, the joint survival function is

ST1,T2(t1, t2) = C(u, v; θ).
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The Clayton copula is an Archimedean copula whose generating function is

Υ(t) = (1 + t)−1/θ, with θ ∈ (0,∞).

Then,

C(u, v; θ) = (u−θ + v−θ − 1)−
1
θ . (2.19)

When θ → 0, U and V are independent because

lim
θ→0

C(u, v; θ) = uv,

and when θ → ∞, U and V have perfect positive dependency (Hofert et al., 2018). The

Kendall’s tau τκ for Clayton copula can be calculated using Expression (2.17) and its

value is

τκ =
θ

2 + θ
,

with τκ > 0. There is an extended form of the Clayton copula in which θ ∈ [−1,∞) −
{0}. In that case, τκ ∈ [−1, 1) − 0. The purpose of this extension is to allow negative

associations between the variables. It is defined by

C(u, v; θ) = max
{
(u−θ + v−θ − 1), 1

}− 1
θ .

To explore the graphical characteristics of this copula, refer to Figure 2.4, which

presents plots generated using three distinct values of θ. For θ = −0.9 (τκ ≈ −0.82),

the density function of the Clayton copula is depicted in Figure 2.4-(A), with the corre-

sponding distribution function shown in Figure 2.4-(B). Additionally, 1000 independent

pairs of observations, derived from the Clayton copula with this θ value, are displayed in

Figure 2.4-(C). This analysis was repeated for θ = 1 (τκ ≈ 0.33), with the copula den-

sity function shown in Figure 2.4-(D), its distribution function in Figure 2.4-(E), and the

1000 independent observation pairs in Figure 2.4-(F). Finally, for θ = 20 (τκ ≈ 0.91), the

copula density function is presented in Figure 2.4-(G), the distribution function in Figure

2.4-(H), and the 1000 observation pairs in Figure 2.4-(I). For θ = −0.9, the density func-

tion exhibits a hyperbolic pattern where high values of one variable tend to correspond

with low values of the other. This pattern is mirrored in both the distribution function

and the scatter plot. For θ = 1, the density function shows a concentration along the

line u2 = u1. When comparing the distributions for θ = 1 and θ = 20, it is evident that

they differ; the surface generated with θ = 1 is smoother. With θ = 20, the scatter plot

displays a very tight clustering of points along the line u2 = u1, indicating strong positive

dependence, as high values of one variable almost invariably align with high values of the

other. Conversely, there is more dispersion in the scatter plot when θ = 1.

After the discussion on the graphical characteristics of the Clayton copula (Figure

2.4) we now focus on its mathematical formulation. Specifically, the first and second-order
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Figure 2.4: Clayton copula, when θ = −0.9: (A) density function, (B) cumulative distri-
bution function, and (C) scatter plot. Clayton copula, when θ = 1: (D) density function,
(E) cumulative distribution function, and (F) scatter plot. Clayton copula, when θ = 20:
(G) density function, (H) cumulative distribution function, and (I) scatter plot.

Source: Prepared by the author.

derivatives of the Clayton copula function are detailed below:

C(01)(u, v; θ) = v−(θ+1)(u−θ + v−θ − 1)−
1
θ
−1,

C(10)(u, v; θ) = u−(θ+1)(u−θ + v−θ − 1)−
1
θ
−1,

and

C(11)(u, v; θ) = (θ + 1)(uv)−(θ+1)(u−θ + v−θ − 1)−
1
θ
−2.
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In this thesis, we chose to use the simplest version of the Clayton copula, such that

θ ∈ (0,∞).
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Chapter 3

Proposed models

In this chapter, we provide a discussion of the structure of our model classes. Section

3.1 focuses specifically on the Yang and Prentice models, addressing both individual and

shared frailties. Within this section, we define the notation employed in the models,

outline the types of data that are suitable for modeling, and detail the likelihood function

used to estimate the parameters of interest. Section 3.2 explores the particularities of

our second class of models, which is focused on data involving recurrent and terminal

events. In this part of the text, we introduce the joint frailty-copula models and explain

the notation employed, followed by a characterization of the regression families and their

likelihood function. The parameter estimation process is done applying the rstan package

(Stan Development Team, 2018).

3.1 Class 1: Yang and Prentice frailty model

In certain situations, survival data can exhibit correlations due to natural or artifi-

cial groupings among individuals (Colosimo and Giolo, 2006; Li et al., 2019). For example,

survival times may be observed within the same family or among patients treated in the

same intensive care unit (ICU). It is reasonable to assume that individuals within the

same cluster share some similarities in their survival times. Therefore, considering inde-

pendence among survival times within a group may not be a realistic assumption. In such

cases, a common approach is to introduce a shared frailty term in the hazard function,

where all individuals within a group share the same effect.

Alternatively, survival data may involve individuals experiencing recurrent events,

where the survival times of the same individual exhibit a correlation with each other. For

instance, patients who experience recurrent strokes while hospitalized. In this scenario,

individuals can be considered as a group, and a random effect can be introduced for each

individual, with the assumption that all survival times within the same individual are

independent given the frailty.
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Frailty can also be employed in the context of univariate survival data, where each

individual is considered a unit-sized group. In this context, frailty is incorporated to

account for unobserved heterogeneity and explain why individuals with similar observed

characteristics may exhibit distinct survival times (Vaupel et al., 1979; Colosimo and

Giolo, 2006).

In the cases described above, the key distinction lies in how the group is defined,

within which survival data are conditionally independent given the frailty. This section

commences with an introduction to the notation and the likelihood function for clustered

data in subsection 3.1.1. Following this, subsection 3.1.2 presents the notation and the

likelihood function for data with recurrent events.

One goal of this study is to propose a Bayesian frailty model in a Yang and Prentice

regression structure. In this approach, the baseline hazard functions are modeled using the

exponential function, the piecewise exponential model, and Bernstein polynomials. The

modeling of h0(t), the baseline hazard function, is achieved by adopting (2.9) (Demarqui

et al., 2019; Panaro, 2020) for the Bernstein polynomials model, and (2.11) (Breslow,

1972, 1974; Schneider et al., 2020) for the piecewise exponential model.

3.1.1 Notation and the likelihood function for clustered data

Consider a study with L clusters, where the group sizes are denoted as n1, n2, . . . , nL,

which may vary across groups. Let Ri,j be the time-to-event of the individual j; j =

1, . . . , nL, of cluster i, with i = 1, . . . , L. Suppose that the survival times Ri,j, . . . , RL,nL

are mutually independent conditioned on the frailty of the cluster wi. Define Ci,j as

the time until administrative censoring and δi,j = I(Ri,j < Ci,j), the failure state in-

dicator where δi,j = 0 means administrative censoring and δi,j = 1, an event. Let

Yi,j = min{Ri,j, Ci,j} be the observed time of the j-th individual of the i-th cluster.

Figure 3.1 illustrates the notation used in this section. Two possible situations can be

evaluated according to the notation established.

• The first is when each time-to-event concerns a unique individual and the clusters

represent groups of individuals who share the element of frailty. That is, ni ≥ 1,∀i ∈
{1, . . . , L}.

• The second case involves databases in which each individual has only one survival

time, therefore each cluster is a one-point set. That is, ni = 1,∀i ∈ {1, . . . , L}.

To model the times to events, we employ the YP family. The survival function, in
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this case, can be expressed as:

S (ri,j|xi,j, wi) =
[
1 +

νi,j
ξi,j

R0(ri,j)

]ξi,j
. (3.1)

where

νi,j = exp (xi,jψψψ + wi)

and

ξi,j = exp (xi,jϕϕϕ+ wi) .

The term νi,j represents the short-term hazard ratio, ξi,j represents the long-term hazard

ratio in the YP model, ψψψ and ϕϕϕ are p × 1 vectors of regression coefficients, and xi is a

1 × p vector of covariates of the regression. It is important to note that incorporating

frailty into the YP model is a contribution of this work.

Figure 3.1: Schematic representation of clustered survival times.

Source: Prepared by the author.

We can write the likelihood function as:

L(Θ|D,w) =
L∏
i=1

ni∏
j=1

[f(yi,j|wi)]δi,j [S(yi,j|wi)]1−δi,j ,

where D is the set of observed data, such that

D = {yi,j, δi,j,xi,j; i = 1, . . . , L; j = 1, . . . , ni} ,

and Θ = {γγγ,ψψψ,ϕϕϕ, σ2
w} denotes the set of parameters to be estimated in the models.
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3.1.2 Notation and the likelihood function for data with

recurrent events

Now, consider L to be the number of individuals. Denote by Ci the time to

the administrative censoring, that is, the time until loss of follow-up for some reason

external to the study, with i = 1, . . . , L. Denote by Ri,j the gap-time between the (j−1)-

th and j-th occurrences of the recurrent event, and let Ti,j =
∑j

j′=1Ri,j′ be the total

observation time until the j-th recurrent event. Suppose the i-th individual experiences

a total of ni recurrent events. When j = ni + 1, Ri,ni+1 = Ci −
∑ni

j=1Ri,j, which can be

interpreted as the gap-time between the ni-th recurrent event and the end of follow-up.

Define δi,j = I(Ti,j < Ci) is the failure state indicator for the j-th recurrent event. When

δi,j = 0, it indicates that the observed time is an administrative censoring time. The

notation used in this section is illustrated by Figure 3.2

Figure 3.2: Schematic representation of data with recurrent events.

Source: Prepared by the author.

We employ the YP family to model the times to events whose survival function

is also expressed by (3.1). Assuming that the survival times Ri,j, . . . , RL,nL
are mutually

independent conditioned on the frailty term wi, we can obtain the likelihood function as:

L(Θ|D,w) =
L∏
i=1

{
S(ri,ni+1|wi)

ni∏
j=1

f(ri,j|wi)

}
,

where D as the set of observed data, such that

D = {ri,j, ri,ni+1, δi,j,xi,j; i = 1, . . . , L; j = 1, . . . , ni} .

Let Θ = {γγγ,ψψψ,ϕϕϕ, σ2
w} denote the set of parameters to be estimated in the models.
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3.2 Class 2: The joint frailty-copula models

In this section, we discuss the joint frailty-copula model for multivariate survival

data. The data analyzed here consists of the survival times of individuals who may

experience both recurrent and terminal events. We introduce the notation in subsection

3.2.1 and present the likelihood along with its construction steps in subsection 3.2.2. This

section also highlights the proposed model class and its contributions to the literature.

3.2.1 Notation

Let L be the number of individuals. Each individual can experience two types

of events: recurrent and terminal events. Denote by Di the time to the terminal event

and by Ci the time to the administrative censoring, that is, the time until loss of follow-

up for some reason external to the study. Let δi = I(Di < Ci) be the failure state

indicator for the terminal event. The observable time of i-th individual is then given by

Yi = min{Di, Ci}.
Now, denote by Ri,j the gap-time between the (j − 1)-th and j-th occurrences of

the recurrent event, and let Ti,j =
∑j

j′=1Ri,j′ be the total observation time until the j-th

recurrent event. Suppose the i-th subject experiences a total of ni recurrent events. When

j = ni + 1, Ri,ni+1 = Yi −
∑ni

j=1Ri,j, which can be interpreted as the gap-time between

the ni-th recurrent event and the end of follow-up.

When the terminal event occurs, it generates an informative censoring on the

recurrent event process, once it prevents new recurrent events from happening to an

individual. Define Ci,j = max{Yi − Ti,j−1, 0} as the time to this dependent censoring on

the j-th recurrent event. A schematic view of the notation adopted is seen in Figure 3.3.

An approach based on survival copulas will be used to accommodate the correlation

between recurrent events and the terminal event. Three families of survival regression

models will be used to explain the effect of some covariates on the time to both types of

events: PH, PO, and YP families. In all of them, consider x
(T )
i and x

(R)
i as 1× p vectors

of covariates of the regression model associated with the terminal event and recurrent

events, respectively, and wi as the individual frailty element which captures the correlation

between its recurrent events. It is assumed that the frailty element wi has a distribution

N(0, σ2
w).

In the context of the PH and PO families, denote βββ(T ) and βββ(R) as p × 1 vectors.

These vectors quantify the impacts of the covariates x
(T )
i and x

(R)
i on Di and Ri,j, respec-
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Figure 3.3: Schematic representation of multivariate survival times.

Source: Prepared by the author.

tively. Specifically, βββ(T ) represents the regression coefficients associated with the terminal

event, while βββ(R) corresponds to those for recurrent events. In the case of YP families, we

introduce ψψψ(T ) and ϕϕϕ(T ), vectors quantifying the short-term and long-term effects of the

covariates x
(T )
i on terminal events, respectively. Similarly, ψψψ(R) and ϕϕϕ(R) are vectors that

measure the short-term and long-term effects of the covariates x
(T )
i on recurrent events.

For the PH family, the hazard function for the time to terminal event Di, and the

gap-time to recurrent event Ri,j of the i-th subject are expressed by

hD

(
d|x(T )

i , wi

)
= h

(T )
0 (d) exp

(
x
(T )
i βββ(T ) + wi

)
(3.2)

and

hR

(
r|x(R)

i , wi

)
= h

(R)
0 (r) exp

(
x
(R)
i βββ(R) + wi

)
. (3.3)

The baseline hazard functions h
(T )
0 (·) and h(R)

0 (·) will be modeled using the expo-

nential, Bernstein polynomials, and piecewise exponential models.

The PO family, discussed in Section 2.2.2, will also be applied to model the times

of both terminal and recurrent events. The respective odds functions, in this case, will

be given by

RD

(
d|x(T )

i , wi

)
= R(T )

0 (d) exp
(
x
(T )
i βββ(T ) + wi

)
and

RR

(
r|x(R)

i , wi

)
= R(R)

0 (r) exp
(
x
(R)
i βββ(R) + wi

)
. (3.4)

Finally, the YP family will also be employed to model the times to the terminal

and recurrent events. In this case, we will have the following survival functions:

SD

(
d|x(T )

i , wi

)
=

[
1 +

ν(T )

ξ(T )
R0(d)

]ξ(T )

(3.5)
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and

SR

(
r|x(R)

i , wi

)
=

[
1 +

ν(R)

ξ(R)
R0(r)

]ξ(R)

. (3.6)

Here,

ν(T ) = exp
(
x
(T )
i ψψψ(T ) + wi

)
, ξ(T ) = exp

(
x
(T )
i ϕϕϕ(T ) + wi

)
,

ν(R) = exp
(
x
(R)
i ψψψ(R) + wi

)
, and ξ(R) = exp

(
x
(R)
i ϕϕϕ(R) + wi

)
,

where ν(T ) and ν(R) are short-term hazard ratios and ξ(T ) and ξ(R) are long-term hazard ra-

tios in YP model. The incorporation of frailty in the YP model constitutes a contribution

from the present work.

3.2.2 The likelihood function

Consider that ni recurrent events occur for the individual i. According to Li et al.

(2019), the joint probability of Di > di and Ri,j > ri,j, conditional on wi, is

P (Di > di, Ri,j > ri,j|wi) = C[SD(di|wi), SR(ri,j|wi)],∀ i = 1, ..., L;∀ j = 1, ...ni + 1,

where C is the copula function as defined in Chapter 2. Based on the survival copula, we

have

P (Di > di, Ri,j = ri,j|wi) = C(01)[SD(di|wi), SR(ri,j|wi); θ]fR(ri,j|wi),

P (Di = di, Ri,j = ri,j|wi) = C(11)[SD(di|wi), SR(ri,j|wi); θ]fD(di|wi)fR(ri,j|wi)

and

P (Di = di, Ri,j > ri,j|wi) = C(10)[SD(di|wi), SR(ri,j|wi); θ]fD(di|wi),

where C(01) =
∂
∂v
C(u, v; θ), C(10) =

∂
∂u
C(u, v; θ) and C(11) =

∂2

∂u∂v
C(u, v; θ). For a subject

with δi = 0, Ci,j = max{Ci−Ti,j−1, 0} and Ci,j is independent of Ri,j. The aforementioned

probabilities represent contributions of the gap times between recurrences and the times

until the terminal event on the likelihood function.

When δi = 0, the individual i has not experienced the terminal event, because

it was censored. Given the assumption that Ri,j, . . . , Ri,ni+1 are mutually independent,

conditional on wi, the probability of the i-th subject survives up to di and experiences ni
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recurrent events is (Li et al., 2019)

P (Di >di, Ri,1 = ri,1, . . . , Ri,ni
= ri,ni

, Ri,ni+1 > ci,ni+1|wi) =

=P (Ri,1 = ri,1, . . . , Ri,ni
= ri,ni

, Ri,ni+1 > ci,ni+1|Di > di, wi)P (Di > di|wi)

=P (Ri,1 = ri,1, . . . , Ri,ni
= ri,ni

|Di > di, wi)P (Ri,ni+1 > ci,ni+1|Di > di, wi)

× P (Di > di|wi)

=

ni∏
j=1

P (Ri,j = ri,j|Di > di, wi)P (Ri,ni+1 > ci,ni+1|Di > di, wi)P (Di > di|wi)

=

ni∏
j=1

P (Ri,j = ri,j, Di > di|wi)
P (Di > di|wi)

P (Ri,ni+1 > ci,ni+1, Di > di|wi)
P (Di > di|wi)

P (Di > di|wi)

=

ni∏
j=1

P (Ri,j = ri,j, Di > di|wi)
SD(di|wi)

P (Ri,ni+1 > ci,ni+1, Di > di|wi)
SD(di|wi)

SD(di|wi)

=

ni∏
j=1

C(01) [SD(di|wi), SR(ri,j|wi); θ] fR(ri,j|wi)
SD(di|wi)

C [SD(di|wi), SR(ci,ni+1; θ|wi)] .

(3.7)

On the other hand, if δi = 1, the individual i has experienced the terminal event.

Thus, given the same assumption that Rij, . . . , Ri,ni+1 are mutually independent, condi-

tional on wi, we can express the probability that the i-th subject survives until di and

experiences ni events as given below (Li et al., 2019):

P (Di =di, Ri,1 = ri,1, ..., Ri,ni
= ri,ni

, Ri,ni+1 > ci,ni+1|wi) =

=P (Ri,1 = ri,1, ..., Ri,ni
= ri,ni

|Di = di, wi)P (Ri,ni+1 > ci,ni+1|Di = di, wi)

× P (Di = di|wi)

=

ni∏
j=1

P (Ri,j = ri,j|Di = di, wi)P (Ri,ni+1 > ci,ni+1|Di = di, wi)P (Di = di|wi)

=

ni∏
j=1

P (Ri,j = ri,j, Di = di|wi)
P (Di = di|wi)

P (Ri,ni+1 > ci,ni+1, Di = di|wi)
P (Di = di|wi)

P (Di = di|wi)

=

ni∏
j=1

P (Ri,j = ri,j, Di = di|wi)
fD(di|wi)

P (Ri,ni+1 > ci,ni+1, Di = di|wi)
fD(di|wi)

fD(di|wi)

=

ni∏
j=1

C(11) [SD(di|wi), SR(ri,j|wi); θ] fR(ri,j|wi)

× C(10) [SD(di|wi), SR(ci,ni+1|wi); θ] . (3.8)

Define DL as the set of observed data, such that

DL =
{
yi, δi, δi,j, ri,j,x

(T )
i ,x

(R)
i ; i = 1, . . . , L; j = 1, . . . , ni + 1

}
.

Denote by βββ∗ =
{
βββ(T ),βββ(R)

}
the set of regression coefficients in PH and PO families and

βββ∗ =
{
ψψψ(T ),ψψψ(R),ϕϕϕ(T ),ϕϕϕ(R)

}
the regression coefficients in YP family. In addition, assume
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Θ =
{
γγγ(T ), γγγ(R),βββ∗, σ2

w, θ
}
the set of parameters of models to be estimated, where γγγ(T ) and

γγγ(R) are the parameters of the baseline hazard function. Thus, the conditional likelihood

function is given by

L(Θ|DL,w) =
L∏
i=1

{P (Di > yi, Ri,1 = ri,1, . . . , Ri,ni
= ri,ni

, Ri,ni+1 > ri,ni+1|wi)}1−δi

× {P (Di = yi, Ri,1 = ri,1, . . . , Ri,ni
= ri,ni

, Ri,ni+1 > ri,ni+1|wi)}δi .

Using the results (3.7) and (3.8), we have the likelihood function (Li et al., 2019):

L(Θ|DL,w) =

=
L∏
i=1

{
ni∏
j=1

C(01) [SD(yi|wi), SR(ri,j|wi)] fR(ri,j|wi)
SD(yi|wi)

C [SD(yi|wi), SR(ri,ni+1|wi)]

}1−δi

×

{
ni∏
j=1

C(11) [SD(yi|wi), SR(ri,j|wi)] fD(yi|wi)fR(ri,j|wi)
fD(yi|wi)

}δi

×

{
ni∏
j=1

C(10) [SD(yi|wi), SR(ri,ni+1|wi)]

}δi

=
L∏
i=1

{
C(10) [SD(yi|wi), SR(ri,ni+1|wi)]

fD(yi|wi)

}δi
×
{
C [SD(yi|wi), SR(ri,ni+1|wi)]

[SD(yi|wi)]ni

}1−δi

×
ni∏
j=1

[
{
C(01) [SD(yi|wi), SR(ri,j|wi)] fR(ri,j|wi)

}1−δi
×
{
C(11) [SD(yi|wi), SR(ri,j|wi)] fD(yi|wi)fR(ri,j|wi)

}δi ]. (3.9)

The present work also proposes an extension of the joint frailty-copula model of

Li et al. (2019) in a Bayesian approach and this extension is one of our contributions to

the literature. The authors propose a model that utilizes only the PH regression struc-

ture and exponential baseline functions, incorporating the Clayton copula for capturing

dependence. The objective here is to expand that model by incorporating two additional

regression structures, PO and YP, in which baseline functions will be modeled by the

Bernstein polynomials and the piecewise exponential. The application of the Bernstein

polynomials and the piecewise exponential model to fit the baseline hazard functions is

done by assuming h0(t) as described in (2.9) (Demarqui et al., 2019; Panaro, 2020) and

in (2.11) (Breslow, 1972, 1974; Schneider et al., 2020), respectively.
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Chapter 4

Monte Carlo simulation study

In this chapter, we detail our simulation studies designed to assess the impact of model

selection on parameter estimates. Our goal is to investigate the estimation biases, average

standard error, posterior standard deviation, credible intervals, and coverage probability.

The simulation study was conducted, with data generation and model fitting executed

in the R programming language (R Core Team, 2024). We utilized rstan package (Stan

Development Team, 2018) to generate four Markov chain Monte Carlo (MCMC) chains

for each parameter, each chain comprising 2000 iterations, with 1000 warm-up iterations.

This approach yielded posterior sample sizes of 4000 for each parameter.

Our studies were conducted for both classes of models. The first class comprises

the YP frailty models, in which we evaluated two scenarios:

• individual frailty, where each individual represents a single-unit cluster, and

• shared frailty, where individuals are clusters of size greater than or equal to one. In

this case, we mean that individuals experience recurrent events.

The detailed steps of the simulation, its specific configurations, and the outcomes

are discussed in Section 4.1. Additionally, we run another simulation study for the second

class of models, which encompasses the joint frailty-copula models. An overview of the

settings and steps undertaken for this simulation, along with an analysis of the results

are presented in Section 4.2.

We now proceed with the details of generating survival times. Given that the YP

model generalizes the PH and PO regression families, we have chosen to generate our

data using this model. Consider an individual with p characteristics denoted by x =

(x1, . . . , xp). For our simulation studies, we define the specific values for the short-term

regression coefficients ψψψ = (ψ1, . . . , ψp)
′ and the long-term coefficients ϕϕϕ = (ϕ1, . . . , ϕp)

′.

Additionally, we established a determined value for the variance of the frailty term, de-

noted as σ2
w. We assume that the frailty w follows a normal distribution with mean 0

and variance σ2
w. We calculate linear predictors of our models ηS and ηℓ. The short-term

and long-term linear predictors for an individual are calculated using ηS = xψψψ + w and
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ηℓ = xϕϕϕ+ w, respectively. The survival function for an individual is given by

S(t|x, w) =
[
1 +

ν

ξ
R0(t)

]−ξ
,

where ν = exp(ηS) and ξ = exp(ηℓ).

We initiate by sampling a variable U from U(0, 1). Then, define u as the survival

function at time t given the covariates vector x and the frailty w, expressed as u :=

S(t|x, w). Generate the time-to-event by applying the inverse of the survival function,

represented by t = S−1(u|x, w). To do this, note that

u =

[
1 +

ν

ξ
R0(t)

]−ξ
⇔ R0(t) =

ξ

ν

(
u−

1
ξ − 1

)
.

But,

R0(t) = exp [H0(t)]− 1.

In this way, we can write

ξ

ν

(
u−

1
ξ − 1

)
= exp [H0(t)]− 1

⇔ H0(t) = log

[
ξ

ν

(
u−

1
ξ − 1

)
+ 1

]
. (4.1)

Define Ω := ξ
ν

(
u−

1
ξ − 1

)
. So, we can rewrite (4.1) as

ϑ := H0(t) = log(Ω + 1). (4.2)

The function H0(t) depends on the baseline chosen for data generation. Therefore, to

calculate the time-to-event, we can alternatively utilize the inverse of the baseline cumu-

lative hazard function, i.e., t = H−1
0 (ϑ). We choose an exponential baseline, whose rate

parameter is γ. In this case, the cumulative hazard function is given by

H0(t) =
t

γ
. (4.3)

Thus, we can obtain the time-to-event by inverting the function presented in (4.3), whose

result is

t = γϑ, (4.4)

in which ϑ is obtain in (4.2).

Additionally, for each individual, we generate the administrative censoring time as

a random variable C, drawn from U(0,maxfu), where maxfu is defined previously and

represents the maximum follow-up time. The follow-up time of an individual is given by

y = min{t, c}, (4.5)
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and the failure state indicator of this time is denoted by δ = I{t ≤ c}, where δ = 1, y

represents a failure time, whereas δ = 0, y corresponds to a right-censored time.

From the simulation study, aiming to compare the performance of our models,

we are interested in some statistics. Consider a generic parameter, whose true value is

Φ, and Φ̂K is the posterior estimate obtained from the k-th Monte Carlo replica, which

k ∈ {1, ...,MC}. The average estimate (est) is given by

est(Φ) =
1

MC

MC∑
k=1

Φ̂k.

We compute bias as bk(Φ) = Φ̂k − Φ and the relative biases (RB) as

RB(%) = 100× 1

MC

MC∑
k=1

bk
|Φ|

.

Additionally, we can compute the average standard error (ASE) of the estimates by

ASE =
1

MC

MC∑
k=1

se(Φ̂k),

where se(Φ̂k) represents the standard error estimates of Φ. We are also interested in

evaluating the standard deviation estimate (SDE) of Φ by

SDE =

√√√√ 1

MC − 1

MC∑
k=1

[
Φ̂k − est(Φ)

]2
.

In a well-fitted model, we note these characteristics: est(Φ) should be close to the

true value Φ; SDE and ASE should be similar; RB(%) should approximate zero; and CP

should be close to the pre-defined confidence level (1 − α). When the ASE < SDE, is

expected CP < 1−α. On the other hand, if ASE > SDE, it is expected that CP > 1−α.

In this simulation study, we also evaluated the lower (LW) and upper (UP) limits of

the 95% credible intervals. These limits are calculated from the 2.5% and 97.5% quartiles

of the parameter’s posterior density functions.

Before starting to detail the simulation study scenarios, it is necessary to highlight

that in all of them, the data are generated using the YP model with an exponential

baseline. Furthermore, we consider that X1 ∼ Bernoulli (0.5) and X2 ∼ Normal (0, 1).

The individual frailty w was generated from Normal (0, 1). The values are the same as

those chosen by Li et al. (2019), whose work has influenced some aspects of this thesis. We

generated MC = 250 replicas, each one with L = 300 individuals. Furthermore, regarding

parameter estimation, for the piecewise exponential baseline, we chose the number of

intervals m = 5. In all simulations, we set α = 0.05.
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4.1 Analysis of the Yang and Prentice frailty

models (Class 1)

This section aims to detail the configurations employed in our simulation study

in which we evaluate the first class of YP models. In the dataset generated in Section

4.1.1, each individual can experience an event only once. In this way, individual frailties

are utilized to capture unobserved heterogeneities. Therefore, the time-to-event ti of

the individual i is generated conditionally to an individual frailty element wi. Figure

4.1 shows a schematic representation of the generation of times to events considering

individual frailties (class 1).

Figure 4.1: Schematic representation of the generation of the times to event considering
individual frailties (class 1)

Source: Prepared by the author.

Conversely, in Section 4.1.2, the datasets simulated represent individuals who may

experiment recurrent events. Thus, each individual can be considered a cluster, in which

shared frailties are employed also to model the correlation among recurrence times. We

generate the gap-times ri,j between the recurrences j−1 and j of the i-th individual. This

generation is done using ri,j = γϑ, with ϑ = H0(ri,j), in which H0(·) is defined in (4.2).

The gap-time ri,j is generated conditionally to frailty wi of the i-th individual. Thus,

only one value wi is generated for each i. The values ri,j are generated interactively until

ti,j =
∑j

j′=1 ri,j′ ≤ ci. Figure 4.2 presents a schematic representation of the generation

of the gap times between recurrent events considering shared frailties (class 1) for an
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individual.

Figure 4.2: Schematic representation of the generation of the gap times between recurrent
events considering shared frailties (class 1)

Source: Prepared by the author.

The true values of the parameters established for simulations related to the first

class of models are in Table 4.1.

Table 4.1: True values

ϕ1 ϕ2 ψ1 ψ2 γ σw

-1.0 2.0 2.0 2.0 1.2 1.0

The following prior distributions were used:

ψψψ ∼ Normal
(
0, 42

)
,

ϕϕϕ ∼ Normal
(
0, 42

)
,

and

γ ∼ LogNormal (0, 2).

We assume that the standard deviation of the frailty is

σw ∼ Gamma (0.1, 0.1).

The prior distributions established for the regression coefficients ψψψ, ϕϕϕ, and the the stan-

dard deviation of the frailty σw are weakly informative (Stan Development Team, 2023).

A weakly informative prior is designed such that, in the presence of a sufficiently large

dataset, the likelihood will dominate the estimation rendering the prior’s influence rela-

tively insignificant (Gabry et al., 2019). For the parameter γ, we choose the prior distri-

bution that provides greater stability in the inferential process, as suggested by Demarqui

et al. (2019). All simulation study results, shown in this section, are also available online1.
1Access the link cassiushenrique.shinyapps.io/appSimulationsFrailty.

https://cassiushenrique.shinyapps.io/appSimulationsFrailty/
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Table 4.2: Monte Carlo summary statistics of the YPEX , YPPE, and YPBP models with
individual frailties, for L = 300 and MC = 250.

95% CI

fitted model par true est RB (%) ASE SDE LW UP CP

YPEX ϕ1 -1 -0.9406 5.9395 0.2970 0.2935 -1.4732 -0.3098 0.9360
ϕ2 2 2.0795 3.9738 0.3404 0.3388 1.4428 2.7755 0.9440
ψ1 2 2.0175 0.8726 0.2941 0.2940 1.4410 2.5919 0.9560
ψ2 2 2.0094 0.4704 0.1713 0.1713 1.6731 2.3453 0.9640
σw 1 0.9971 -0.2909 0.1763 0.1763 0.6489 1.3418 0.9400

YPPE ϕ1 -1 -0.9399 6.0081 0.3085 0.3049 -1.4925 -0.2813 0.9520
ϕ2 2 2.0681 3.4029 0.4606 0.4595 1.2328 3.0187 0.9360
ψ1 2 2.1097 5.4830 0.3482 0.3452 1.4506 2.8150 0.9600
ψ2 2 2.0802 4.0083 0.2497 0.2481 1.6254 2.6026 0.9360
σw 1 0.9944 -0.5598 0.3186 0.3185 0.4260 1.6263 0.9320

YPBP ϕ1 -1 -0.9632 3.6782 0.3076 0.3063 -1.5138 -0.3090 0.9520
ϕ2 2 2.1899 9.4949 0.5176 0.5086 1.2725 3.2830 0.9240
ψ1 2 2.0925 4.6234 0.3439 0.3418 1.4595 2.8115 0.9640
ψ2 2 2.0851 4.2546 0.2574 0.2556 1.6606 2.6741 0.9640
σw 1 1.0628 6.2832 0.3346 0.3306 0.4848 1.7816 0.9440

4.1.1 Yang and Prentice model with individual frailty

In this section, we present the results of the Monte Carlo study for YPEX , YPPE,

and YPBP models with individual frailties (ni = 1, ∀i ∈ {1, . . . , L}). In simulated data,

approximately 68.4% of the individuals experienced the event of interest, on average. The

Monte Carlo summary statistics in Table 4.2 compare the performance of our models.

Regarding the estimation of the parameters for the YPBP model, we consider m = L0.4,

where L is the total number of individuals. The choice of the polynomial degree is

motivated by the suggestion of Osman and Ghosh (2012).

The estimates from our models are close to the true values. The estimates of σw and

ϕ2 by the YPBP model are slightly less accurate, deviating more from their true values,

compared to the corresponding estimates obtained from the other models. The YPEX

model presented smaller biases for the short-term effect coefficients (ψ1 and ψ2). The

YPEX and YPPE models show greater RB for the parameters of dichotomous variables

in comparison to continuous covariates effects. For all the models, credible intervals are

similar. Furthermore, the ASE values are close to SDE, and CP values are close to the

desired level 0.95, indicating good performance. We also evaluated the MCMC chains

generated by our models and observed a satisfactory convergence of all parameters in the

simulated study.

Overall, all models show good performance with some variations in precision and
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bias with YPBP and YPPE providing similar results to the parametric model that gen-

erated data. Thus, the choice of the model would depend on the importance of each

parameter, and the balance between bias and precision as indicated by these summary

statistics.

Figure 4.3 presents the boxplot of the relative biases of the estimates of each

parameter of the three models. The medians closest to zero were found by ϕ1 in the YPBP

model, ψ1, ψ2 and σw in the YPEX model and by ψ2 in the YPPE model. The variability

of the estimates of each parameter is not so different when we look at the three models,

although the YPEX presents less variability in the short-term regression coefficients and

the frailty standard deviation. This is well-accepted since it equals the generating model.

The regression coefficients of the long-term effect showed a greater number of outliers.

However, the YPBP model also has more outliers in the other parameters. We can state

that all models performed well as they have median biases close to zero for all parameters.

Figure 4.3: Boxplot of RB(%) for the YPEX , YPPE, and YPBP models with individual
frailties, for L = 300 and MC = 250.

Source: Prepared by the author.

4.1.2 Yang and Prentice model with shared frailty

We continue to evaluate the models that comprise our first class. We also carried

out a Monte Carlo study considering that each individual can have various recurrences



4.1. Analysis of the Yang and Prentice frailty models (Class 1) 60

Table 4.3: Monte Carlo summary statistics of the YPEX , YPPE, and YPBP models with
shared frailties, for L = 300 and MC = 250.

95% CI

fitted model par true est RB (%) ASE SDE LW UP CP

YPEX ϕ1 -1 -0.9831 1.6948 0.2586 0.2583 -1.4664 -0.4492 0.9760
ϕ2 2 2.0664 3.3213 0.2951 0.2940 1.5314 2.6889 0.9560
ψ1 2 1.9834 -0.8318 0.2090 0.2090 1.5739 2.3930 0.9640
ψ2 2 2.0076 0.3822 0.1377 0.1377 1.7418 2.2819 0.9520
σw 1 1.0172 1.7159 0.0911 0.0908 0.8519 1.2085 0.9600

YPPE ϕ1 -1 -0.9692 3.0824 0.2676 0.2666 -1.4629 -0.4144 0.9760
ϕ2 2 2.0885 4.4248 0.3237 0.3218 1.5101 2.7747 0.9640
ψ1 2 1.9628 -1.8625 0.2128 0.2125 1.5461 2.3796 0.9600
ψ2 2 1.9958 -0.2118 0.1387 0.1386 1.7282 2.2718 0.9440
σw 1 1.0133 1.3316 0.0906 0.0904 0.8491 1.2037 0.9600

YPBP ϕ1 -1 -0.9755 2.4497 0.3115 0.3109 -1.5326 -0.3207 0.9560
ϕ2 2 2.1264 6.3217 0.3226 0.3186 1.5465 2.8140 0.9640
ψ1 2 1.9396 -3.0183 0.2435 0.2426 1.4703 2.4252 0.9360
ψ2 2 1.9755 -1.2260 0.1447 0.1446 1.6976 2.2649 0.9440
σw 1 1.0099 0.9855 0.0938 0.0937 0.8401 1.2073 0.9720

(ni ≥ 1, ∀i ∈ {1, . . . , L}). We fit the YPEX , YPPE, and YPBP models with shared frailty

(because each individual is a cluster). As suggested by Osman and Ghosh (2012), in the

YPBP , we consider m =
[∑L

i=1 ni

]0.4
, in which

∑L
i=1 ni is the total number of recurrent

events. From Table 4.3, some interesting comparisons emerge.

As expected, the YPEX shows a high degree of accuracy in estimating the parame-

ters. The estimates for all the parameters are very close to their true values, with relative

biases (RB) ranging from −0.8318% to 3.3213%. In contrast, when the YPPE is fitted,

the relative biases for the same parameters increase slightly, in magnitude, except for σw.

For instance, the estimate for ϕ1 shows a relative bias of 3.0824%, compared to 1.6948%

in the YPEX model. However, these biases remain within acceptable limits. The YPBP

demonstrates a further increase in relative biases for parameters such as ϕ2, where the

bias reaches 6.3217%, the highest among the three models. Additionally, The ASE and

SDE estimates are close to each other. The CP values are approximately 0.95, deviating

by no more than 0.026 from this level in all cases.

Notably, across all models, the estimation of the frailty parameter σw is accurate,

with relative biases under 2%. This indicates that all three models are reliable in capturing

the shared frailty component, which is an essential aspect.

Overall, our models show similar performance in terms of the criteria analyzed.

Some of the comparisons discussed can also be evaluated from Figure 4.4.
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Figure 4.4: Boxplot of RB(%) for the YPEX , YPPE, and YPBP models with shared
frailties, for L = 300 and MC = 250.

Source: Prepared by the author.

4.2 Analysis of the joint frailty-copula models

(Class 2)

In this section, we discuss the outcomes of a simulation study conducted to assess

the performance of our joint frailty-copula models. Consider the scenario in which we

evaluate the time to the terminal event for n individuals. Each one can experience recur-

rent events. Some characteristics that supposedly influence the time to terminal events

and recurrent events were recorded at the beginning of their follow-up period. We denote,

for an individual, these characteristics as 1× p vectors x(T ) and x(R), respectively.

We define the short-term (ψψψ(T ) and ψψψ(R)) and long-term (ϕϕϕ(T ) and ϕϕϕ(R)) regression

coefficients as 1 × p vectors. Furthermore, we specify the variance σ2
w of the individual

frailty. In our models, we assume w ∼ Normal (0, σ2
w). The baseline function parameters

γ(T ) and γ(R) are also established. Lastly, we choose the value of the association parameter

of copula θ.

We calculate the linear predictors of our models. The short-term linear predictors

of terminal events and recurrent events for an individual are given by, respectively η
(T )
S =

x(T )ψψψ(T ) + w, and η
(R)
S = x(R)ψψψ(R) + w. Moreover, the long-term linear predictors of

terminal events and recurrent events for an individual, respectively η
(T )
ℓ = x(T )ϕϕϕ(T ) + w,

and η
(R)
ℓ = x(R)ϕϕϕ(R) + w,
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We can obtain the PH and PO models from the Yang and Prentice (YP) model.

To obtain the PH model, do η
(T )
ℓ = η

(T )
S , and η

(R)
ℓ = η

(R)
S . In contrast, to obtain the

PO model, the long-term linear predictors η
(T )
ℓ and η

(R)
ℓ are defined with η

(T )
ℓ = 0, and

η
(R)
ℓ = 0. Using these quantities, we generate the time to the terminal event by the inverse

t = S−1
D (u|x, w) which is equivalent to the result shown in (4.4) and the observed follow-up

time as shown in (4.5).

We now proceed to the generation of recurrent events given the times to the

terminal event. We set j as the recurrent event count for the i-th individual, with

j ∈ {0, 1, ..., ni}. The time between recurrent events is generated by the inverse ri,j =

S−1
R (vi,j|x, w) and it can be calculated using (4.4). We define Ui,j := C(ui, vi,j; θ), where

ui = SD(ti|xi, wi) and vi,j = SR(ri,j|xi, wi). The θ parameter takes a unique value for

all individuals. Generate Ui,j ∼ U(0, 1). Then, we can find the values of the survival

function vi,j|ui,j of the j-th recurrent event of an individual through the inverse of the

copula function C−1
(10)(ui, Ui,j; θ), according to Nelsen (2006).

Assume that the joint distribution of ui and vi,j is a Clayton copula whose density

is

C(ui, vi,j, θ) =
(
u−θi + v−θi,j − 1

)− 1
θ .

The derivative of this copula with respect to u is given by

C(10)(ui, vi,j, θ) = u
−(θ+1)
i

(
u−θi + v−θi,j − 1

)− θ+1
θ . (4.6)

Thus, the inverse values of the Clayton copula function are determined as follows:

vi,j = C−1
(10)(ui, Ui,j, θ) =

[(
U

− θ
θ+1

i,j − 1

)
u−θi + 1

]− 1
θ

. (4.7)

Using

Ωi,j =
ξ
(R)
i

ν
(R)
i

(
v
− 1

ξ
(R)
i

i,j − 1

)
,

we define ϑi,j := H0 (ri,j) = log (Ωi,j + 1). Thus, if the baseline is based on the exponential

distribution, then

ri,j = γ(R)ϑi,j.

We compute the times between recurrent events ri,j while ti,j =
∑j

j′=1 ri,j′ ≤ yi. If

j = ni + 1, ri,ni+1 = ri −
∑ni

j=1 ri,j is the gap-time between the ni-th recurrent event and

the end of follow-up.

It is worth highlighting that the frailty used to generate the times is computed at

the individual level. Therefore, for the times until the terminal event and the gap times

between recurrent events of the same individual, a unique value of w is generated. Figure

4.5 shows a schematic representation of the generation of times until the terminal event

and the gap times between recurrent events using the Clayton copula (class 2).
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Figure 4.5: Schematic representation of the generation of times until the terminal event
and the gap times between recurrent events using the Clayton copula (class 2)

Source: Prepared by the author.

Now, we present the results from the Monte Carlo study of the joint frailty-copula

models. The true values of the parameters of our models are in Table 4.4. To simplify

the notation, from now on, we assume βββ(T ) = ϕϕϕ(T ) = ψψψ(T ) and βββ(R) = ϕϕϕ(R) = ψψψ(R), in PH

models. Moreover, in PO models, we consider βββ(T ) = ψψψ(T ) and βββ(R) = ψψψ(R), since, under

this model, ϕϕϕ(T ) = ψψψ(T ) = 0. In YP models, we still use the notation established in this

section.

Table 4.4: True values

PH PO YP

ϕ
(R)
1 2.00 0.00 -1.00

ϕ
(R)
2 2.00 0.00 2.00

ϕ
(T )
1 1.00 0.00 -1.00

ϕ
(T )
2 1.00 0.00 1.00

ψ
(R)
1 2.00 2.00 2.00

ψ
(R)
2 2.00 2.00 2.00

ψ
(T )
1 1.00 1.00 1.00

ψ
(T )
2 1.00 1.00 1.00

γ(R) 1.20 1.20 1.20

γ(T ) 1.00 1.00 1.00

σw 1.00 1.00 1.00

τκ 0.25 0.25 0.25

We selected a τκ value of 0.25 based on the observation that the real data from our

application, discussed in Section 5.2, exhibit a notably weak correlation between recurrent

and terminal events. In generated datasets, the individuals had, on average, 2.48 recurrent
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events, with a standard deviation of 5.74. Approximately 76.5% of individuals experienced

a terminal event.

The following prior distributions were used:

βββ(T ) ∼ Normal
(
0, 42

)
,

βββ(R) ∼ Normal
(
0, 42

)
,

ψψψ(T ) ∼ Normal
(
0, 42

)
,

ψψψ(R) ∼ Normal
(
0, 42

)
,

ϕϕϕ(T ) ∼ Normal
(
0, 42

)
,

ϕϕϕ(R) ∼ Normal
(
0, 42

)
,

θ ∼ Gamma(0.01, 0.01),

γ(T ) ∼ LogNormal(0, 2),

and

γ(R) ∼ LogNormal(0, 2).

We assume for the standard deviation of the frailty the prior

σw ∼ Gamma(0.1, 0.1).

The prior distributions established for the regression coefficients βββ(T ), βββ(R), ψψψ(T ), ψψψ(R),

ϕϕϕ(T ), and ϕϕϕ(R), σw, and the copula association parameter θ are weakly informative. For

the parameters γ(R) and γ(T ), we choose prior distributions that provide greater stability

in the inferential process, as suggested by Demarqui et al. (2019).

For the piecewise exponential and Bernstein baselines we established m in the

same way as the Sections 4.1.1 and 4.2 for the terminal and recurring events, respectively.

The results found in the Monte Carlo study are presented in Tables 4.5, 4.6, and 4.7.

Analysis of Table 4.5 revealed interesting results. While the PHEX model exhibited the

smallest biases, the PHPE showed higher relative biases for both the regression coefficients

and the frailty standard deviation parameters compared to the other models. On the

other hand, the PHBP demonstrated competitive performance in terms of relative biases.

This indicates that the model based on the Bernstein polynomials to handle the baseline

functions effectively captured the complexities of the data, resulting in accurate estimates.

In terms of the width of the credible intervals, there was also remarkable similarity

among the models. However, it was observed that the generator model tends to produce

narrower credible intervals compared to the other models in most cases. This suggests

that the generator model was able to provide more precise estimates, leading to tighter

intervals. This result was expected.

Overall, these findings provide valuable insights into the performance of the differ-

ent models. While the PHEX exhibited the smallest biases and narrower credible intervals,
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Table 4.5: Monte Carlo summary statistics of the joint frailty-copula models: PHEX ,
PHPE, and PHBP when the generator is equivalent to the PHEX (L = 300 andMC = 250).

95% CI

fitted model par true est RB (%) ASE SDE LW UP CP

PHEX β
(R)
1 2.00 1.9943 -0.2852 0.1725 0.1725 1.6638 2.3228 0.9640

β
(R)
2 2.00 2.0093 0.4650 0.0969 0.0968 1.8319 2.1943 0.9360

β
(T )
1 1.00 0.9800 -1.9998 0.1944 0.1940 0.6151 1.3439 0.9560

β
(T )
2 1.00 1.0035 0.3515 0.1000 0.1000 0.8174 1.1930 0.9440
σw 1.00 1.0360 3.6011 0.1241 0.1228 0.8631 1.2729 0.9640
τκ 0.25 0.2447 -2.1384 0.0322 0.0317 0.1852 0.2995 0.9480

PHPE β
(R)
1 2.00 2.0684 3.4204 0.1860 0.1848 1.7174 2.4380 0.9520

β
(R)
2 2.00 2.0395 1.9731 0.1213 0.1209 1.8173 2.2795 0.9400

β
(T )
1 1.00 1.0516 5.1577 0.1873 0.1846 0.6948 1.4205 0.9280

β
(T )
2 1.00 1.0258 2.5754 0.1075 0.1068 0.8260 1.2387 0.9480
σw 1.00 1.0378 3.7819 0.1159 0.1145 0.8399 1.2681 0.9400
τκ 0.25 0.2434 -2.6301 0.0334 0.0327 0.1795 0.3075 0.9240

PHBP β
(R)
1 2.00 1.9934 -0.3297 0.1820 0.1819 1.6516 2.3525 0.9560

β
(R)
2 2.00 2.0261 1.3065 0.1140 0.1138 1.8247 2.2535 0.9600

β
(T )
1 1.00 0.9774 -2.2645 0.1896 0.1891 0.6176 1.3448 0.9520

β
(T )
2 1.00 1.0168 1.6796 0.1031 0.1028 0.8231 1.2218 0.9360
σw 1.00 1.0369 3.6852 0.1156 0.1143 0.8509 1.2694 0.9600
τκ 0.25 0.2418 -3.2749 0.0301 0.0290 0.1840 0.2977 0.9240

the PHBP showed competitive performance and captured the complexities of the data well.

The PHPE, on the other hand, exhibited higher biases and performed relatively less favor-

ably. These results highlight the importance of carefully selecting the appropriate model

structure to obtain accurate and reliable parameter estimates in multivariate survival

analysis.

Upon further analysis of PO family models by Table 4.6, we made some obser-

vations. The generator POEX exhibited the smallest biases. On the other hand, the

POPE showed higher relative biases for all coefficients. The POBP demonstrated compet-

itive performance in terms of RB. It performed similarly to the true model and showed

superior performance compared to the POPE. This suggests that the use of Bernstein

polynomials for modeling the baseline functions provided certain advantages, capturing

the complexities of the data more effectively.

Regarding the amplitudes of the credible intervals, it was observed that the gen-

erator model tends to produce more restricted intervals compared to the other models.

However, the use of Bernstein polynomials in the POBP conferred certain advantages in

terms of providing precise and narrower estimates, in comparison with POPE. The tighter

intervals generated by the POBP imply a higher precision in the estimated parameter val-
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Table 4.6: Monte Carlo summary statistics of the joint frailty-copula models: POEX ,
POPE, and POBP when the generator is equivalent to the POEX (L = 300 andMC = 250).

95% CI

fitted model par true est RB (%) ASE SDE LW UP CP

POEX β
(R)
1 2.00 1.9987 -0.0637 0.1930 0.1930 1.6329 2.3616 0.9520

β
(R)
2 2.00 2.0021 0.1043 0.1068 0.1068 1.7997 2.2076 0.9520

β
(T )
1 1.00 0.9781 -2.1920 0.2562 0.2558 0.4948 1.4141 0.9760

β
(T )
2 1.00 0.9937 -0.6263 0.1346 0.1345 0.7391 1.2403 0.9240
σw 1.00 1.0021 0.2148 0.1390 0.1390 0.7449 1.2674 0.9560
τκ 0.25 0.2383 -4.6822 0.0328 0.0306 0.1750 0.2911 0.9520

POPE β
(R)
1 2.00 2.0600 2.9980 0.2162 0.2153 1.6518 2.4832 0.9400

β
(R)
2 2.00 2.0235 1.1725 0.1326 0.1324 1.7731 2.2863 0.9360

β
(T )
1 1.00 1.0765 7.6518 0.2441 0.2383 0.6099 1.5525 0.9360

β
(T )
2 1.00 1.0161 1.6121 0.1345 0.1342 0.7606 1.2799 0.9000
σw 1.00 1.0170 1.6994 0.1814 0.1811 0.6663 1.3659 0.9560
τκ 0.25 0.2375 -4.9986 0.0356 0.0331 0.1675 0.3022 0.9600

POBP β
(R)
1 2.00 2.0096 0.4796 0.2310 0.2309 1.5848 2.4628 0.9360

β
(R)
2 2.00 2.0131 0.6567 0.1243 0.1243 1.7864 2.2611 0.9520

β
(T )
1 1.00 1.0227 2.2710 0.2490 0.2485 0.5488 1.5103 0.9440

β
(T )
2 1.00 1.0150 1.4955 0.1319 0.1317 0.7679 1.2736 0.9240
σw 1.00 1.0053 0.5324 0.1623 0.1623 0.7062 1.3249 0.9320
τκ 0.25 0.2407 -3.7274 0.0306 0.0292 0.1785 0.2954 0.9520

ues, which can be beneficial in various inferential analyses.

Regarding the YP family of models, some observations can be made. Their results

are shown in Table 4.7. First, the estimates of the YPEX exhibited less bias in most

parameters compared to the other models. However, it is worth noting that the coefficients

of Bernoulli’s random variable showed relatively higher biases. It is important to consider

that outliers in the posterior samples can influence this quantity. To further assess these

biases, we will examine their medians in subsequent analyses. When considering the

remaining parameters, the YPBP demonstrated competitive performance with similar

relative biases compared to the other models.

For all scenarios discussed in this section, the values of ASE and SDE are simi-

lar. In terms of the coverage probabilities of the credible intervals, all the models also

demonstrated relatively similar performance, closely aligning with the nominal level of

95%, deviating by a maximum of 5%.

Let us now examine the boxplot depicting the relative biases of the parameters

for each regression family. Figure 4.6 provides a visual representation of the performance

of the PH family. Upon observing the boxplots, it is evident that all baseline functions

yielded relative biases with medians close to zero. However, the estimates of σw displayed
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Table 4.7: Monte Carlo summary statistics of the joint frailty-copula models: YPEX ,
YPPE, and YPBP when the generator is equivalent to the YPEX (L = 300 andMC = 250).

95% CI

fitted model par true est RB (%) ASE SDE LW UP CP

YPEX ϕ
(R)
1 -1.00 -0.8366 16.3379 0.4066 0.3799 -1.3378 -0.0791 0.9440

ϕ
(R)
2 2.00 2.1282 6.4114 0.2805 0.2764 1.6488 2.6839 0.9400

ϕ
(T )
1 -1.00 -0.8874 11.2628 0.3583 0.3457 -1.3698 -0.2105 0.9560

ϕ
(T )
2 1.00 1.0366 3.6566 0.1974 0.1961 0.7031 1.4073 0.9360

ψ
(R)
1 2.00 1.9858 -0.7123 0.2019 0.2018 1.5945 2.3712 0.9520

ψ
(R)
2 2.00 2.0048 0.2401 0.1238 0.1238 1.7753 2.2452 0.9760

ψ
(T )
1 1.00 0.9682 -3.1781 0.2582 0.2572 0.4702 1.4512 0.9320

ψ
(T )
2 1.00 1.0040 0.3966 0.1407 0.1407 0.7344 1.2754 0.9640

σw 1.00 1.0276 2.7611 0.1287 0.1279 0.8269 1.2779 0.9360
τκ 0.25 0.2372 -5.1068 0.0342 0.0316 0.1726 0.3013 0.9200

YPPE ϕ
(R)
1 -1.00 -0.8900 10.9961 0.3105 0.2984 -1.3552 -0.2936 0.9400

ϕ
(R)
2 2.00 2.1316 6.5816 0.3064 0.3021 1.6257 2.7361 0.9400

ϕ
(T )
1 -1.00 -0.9145 8.5509 0.2921 0.2848 -1.3891 -0.3370 0.9560

ϕ
(T )
2 1.00 1.0233 2.3258 0.1925 0.1919 0.6737 1.3922 0.9560

ψ
(R)
1 2.00 2.0400 1.9984 0.2250 0.2246 1.6074 2.4818 0.9360

ψ
(R)
2 2.00 2.0304 1.5181 0.1365 0.1362 1.7762 2.2981 0.9680

ψ
(T )
1 1.00 1.0286 2.8563 0.2867 0.2859 0.4830 1.5943 0.9360

ψ
(T )
2 1.00 1.0234 2.3380 0.1514 0.1508 0.7357 1.3188 0.9680

σw 1.00 1.0331 3.3075 0.1407 0.1396 0.8089 1.3082 0.9320
τκ 0.25 0.2361 -5.5790 0.0379 0.0348 0.1639 0.3073 0.9400

YPBP ϕ
(R)
1 -1.00 -0.9336 6.6351 0.2901 0.2857 -1.3840 -0.3836 0.9440

ϕ
(R)
2 2.00 2.1773 8.8642 0.3333 0.3254 1.6371 2.8287 0.9200

ϕ
(T )
1 -1.00 -0.9568 4.3191 0.2889 0.2870 -1.4234 -0.3969 0.9560

ϕ
(T )
2 1.00 1.0331 3.3149 0.1732 0.1721 0.7094 1.3710 0.9280

ψ
(R)
1 2.00 1.9766 -1.1697 0.2156 0.2155 1.5666 2.3975 0.9400

ψ
(R)
2 2.00 2.0039 0.1934 0.1359 0.1359 1.7575 2.2716 0.9560

ψ
(T )
1 1.00 0.9663 -3.3733 0.2812 0.2801 0.4311 1.5178 0.9440

ψ
(T )
2 1.00 1.0051 0.5114 0.1553 0.1553 0.7173 1.3086 0.9720

σw 1.00 1.0293 2.9257 0.1399 0.1390 0.7999 1.3060 0.9320
τκ 0.25 0.2370 -5.2038 0.0361 0.0334 0.1688 0.3056 0.9160
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more asymmetric biases compared to the other parameters, with a higher number of

outliers across all three models. Here, an outlier is defined as a value that deviates from

the nearest quartile by at least 1.5 times the interquartile range. The Kendall correlation

coefficient, τκ, exhibited negative medians of RB in all three models, although the values

were close to zero. The variabilities of the biases for each parameter were relatively similar

across the three models.

Figure 4.6: Boxplot of RB(%) for the joint frailty-copula models: PHEX , PHPE when the
generator is equivalent to the PHEX model (L = 300 and MC = 250).

Source: Prepared by the author.

Now let’s examine the performance of the relative biases for the PO regression

family. Figure 4.7 provides the boxplots of the relative biases for the POEX , POBP , and

POPE. Similar to the PH family, in this family all baseline functions resulted in relative

biases with medians close to zero. Additionally, all parameters exhibited approximately

symmetric biases. The variabilities of the biases for each parameter are similar across the

three models.

Let us now delve into the analysis of the YP regression family, which exhibits a

slightly different behavior compared to the PH and PO model families. Figure 4.8 displays

the boxplots of the relative biases for the models with Yang and Prentice regression

structure. What stands out in the YP regression family is the presence of higher mean

biases for certain parameters compared to others. When examining the boxplots of the

short-term regression coefficients, we observe a more significant number of outliers. This

may be attributed to specific characteristics of the generated Monte Carlo replicas. These

outliers have a substantial impact on the mean relative biases of certain parameters.

Notably, in the YPEX , even though it is the generator model, the coefficients ϕ
(R)
1 , ϕ

(R)
2 ,
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Figure 4.7: Boxplot of RB(%) for the joint frailty-copula models: POEX , POPE when the
generator is equivalent to the POEX (L = 300 and MC = 250).

Source: Prepared by the author.

and ϕ
(T )
1 exhibited significant discrepancies, although the proportion of outliers did not

exceed 3.6% of the total number of posterior samples.

On the other hand, when considering the median biases, all parameters in the three

models demonstrated values close to zero. Similar to the other regression families, the

τκ exhibits negative medians, albeit close to zero. The variability of the biases for this

parameter was nearly symmetrical, and the mean biases were also negative.

In terms of the long-term regression coefficients, their biases exhibited a more

symmetrical behavior around the median, resulting in similar mean and median biases.

As for the parameter σw, it generated right-skewed biases with a positive median close to

zero.

These analyses provide an understanding of the biases within the YP regression

family. Although there are some outliers and discrepancies in certain parameters, the ma-

jority of the biases, as reflected by the median values, are close to zero. This suggests that

the YP models were generally able to capture the characteristics of data. All simulation

study results shown in this section are available online2

2Access the link cassiushenrique.shinyapps.io/appSimulationsJointFrailtyCopula.

https://cassiushenrique.shinyapps.io/appSimulationsJointFrailtyCopula/
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Figure 4.8: Boxplot of RB(%) for the joint frailty-copula models: YPEX , YPPE when the
generator is equivalent to the YPEX (L = 300 and MC = 250)

Source: Prepared by the author.
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Chapter 5

Data analysis

In this chapter, we present the application of our models. Works such as Rondeau et al.

(2007) and Li et al. (2019) illustrate the application of survival models to individuals with

recurrent events and dependent censoring caused by a terminal event. To illustrate the

application of our proposal, we use a database called readmission from the frailtypack

package (Rondeau et al., 2012), previously applied in the study of González et al. (2005).

The data originates from Bellvitge’s Public University Hospital in Barcelona, Spain, cap-

turing records from January 1996 to December 1998. Out of 523 newly diagnosed colorec-

tal cancer patients, that study focused on the 403 who underwent surgery. The study’s

response variable is readmission time (in days), considering it as a potentially recurrent

event since patients with colorectal cancer may have several readmissions after discharge.

The study began on each patient’s surgery date, resulting in varying follow-up durations.

Some premature follow-up termination occurred in cases of patient death, migration, or

hospital transfer.

The first readmission time was considered as the interval between the date of

the surgical procedure and the first readmission related to colorectal cancer. Subsequent

readmission times were considered as the difference between the last discharge date and the

current hospitalization date. This information was collected from the discharge diagnosis

recorded by the clinical documentation department.

In the sample, descriptive statistics revealed of the 403 individuals, only 103 of them

died, which means that administrative censorship reached a level of 72.95%. Furthermore,

it was observed an average of approximately 1.14 readmissions per individual, with a

standard deviation of about 2.02. While the highest observed number of readmissions

for a single individual was 22, the median stood at one readmission, indicating a skewed

distribution. Notably, a mere 10 subjects experienced over five readmissions each. The

graph displayed in Figure 5.1 shows these readmission frequencies. It also includes a red

dashed line indicating the average number of recurrences.

From this dataset, four time-fixed effects recorded in the file will be considered:

• sex (Male, when sex = 0, or Female, when sex=1),

• chemo which represents whether there was chemotherapy treatment (Treated, when
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Figure 5.1: Proportion of the number of readmissions.

Source: Prepared by the author.

chemo=1, or nonTreated, when chemo=0) and,

• dukes which represents the Dukes’ stage. González et al. (2005) classified the sample

pacients as (A-B, C or D). These stages range from cancer within the inner intestinal

layer to distant spread. The Dukes’ stages are used to classify colorectal cancer

into different stages based on the extent of the tumor into four main stages: Dukes

A, when the cancer is in the inner layer of the intestine or growing slightly in the

muscular layer; Dukes B, when cancer has grown through the muscular layer of the

intestine; Dukes C, if cancer has spread to at least one lymph node near the intestine

and, Dukes D, if cancer has spread to another part of the body, such as the liver,

lungs or bones (Wong et al., 2004). Table 5.1 shows how we configure two dummy

variables to accommodate the three levels of Dukes’ stages, A-B, C, and D.

Table 5.1: Dummy variable for variable dukes.

Dukes’ stages Dukes1 Dukes2

A-B 0 0
C 1 0
D 0 1

Another characteristic available in the readmission database is the Charlson in-

dex. Many individuals showed changes in the value of this index over time. Initially

developed by Charlson et al. (1987), this index is widely used in medical research and

clinical practice to adjust or control the influence of comorbidities in epidemiological stud-

ies and analyses of health outcomes. González et al. (2005) used an adaptation of this

index proposed by Librero et al. (1999). As our class of models does not accommodate
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time-dependent explanatory variables, it will be disregarded in this application. In future

work, the models could be adapted to accommodate this type of covariate.

Figure 5.2 shows the proportion of the categories of the covariates. We observed

that 164 were women, 239 were men; 217 received chemotherapy treatment and 186 did

not. Colorectal cancer of 180 patients was classified as Dukes’ stage A-B, of 148 as Dukes’

stage C, and of 75 as Dukes’ stage D.

Figure 5.2: Proportion of the categories of the covariates (A) sex, (B) chemotherapy
treatment, and (C) Dukes’s stage.

Source: Prepared by the author.

In this chapter, we will present the application in two sections: Section 5.1 provides

an analysis of the models that are in our first class. In this case, we only focus on ter-

minal events and use individual frailties to explain non-observed heterogeneities. Moving

beyond the analysis of terminal events, Section 5.2 focuses on the influence of readmis-

sions on survival time. In that section, we adopt a more holistic approach, by fitting

our second class, considering not just terminal events but also recurrent events (hospital

readmissions). This analysis is particularly interesting as it explores the interplay between

terminal and recurrent events, offering a comprehensive view of patient trajectories.

To make our comparative analysis more robust, we use an objective criterion. The

Widely Applicable Information Criterion (WAIC) is a statistic for model comparison,

especially useful in Bayesian contexts (Ninomiya, 2021). It is a generalization of the

well-known Akaike Information Criterion (AIC) and is applicable even when the model is

complex or when the number of parameters is large concerning the number of observations

(Akaike, 2011).

WAIC calculates the log-likelihood of the data given a model, denoted as ̂lppd, and
penalizes for the complexity of this model, considering the effective number of parameters.

Lower WAIC values indicate a model with a better predictive fit. Unlike AIC, WAIC is

based on a weighted average of all parameter posterior distributions rather than just a

point estimate (Vehtari et al., 2023). Mathematically, it is an alternative approach to
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estimating the expected log pointwise predictive density and is calculated by

êlppdwaic = ̂lppd− p̂waic,

where p̂waic is the estimated effective number of parameters and is computed based on the

sum of the posterior variance of the log-likelihood function. In practical terms, we can

calculate using the posterior variance of the log predictive density function for each data

point yi, i.e.,

p̂waic = V Q
q=1

[
log p

(
yi|Θ(q)

)]
,

in which

V Q
q=1aq =

1

Q

Q∑
q=1

(aq − ā)2.

Then, we define

WAIC = −2 êlppdwaic. (5.1)

To compare the fits of our models, we applied the function waic available in the

package loo (Vehtari et al., 2021) which uses the previous expression to calculate the

WAIC value based on each model.

We can use the R-hat to evaluate the convergence of the parameters more carefully.

In MCMC methods, R-hat, also known as the Gelman-Rubin statistic, is a diagnostic tool

used to assess the convergence of the MCMC algorithm (Gelman et al., 1995). It compares

the variance between multiple chains to the variance within each chain. If the chains have

converged to the target distribution, the between-chain, and within-chain variances should

be similar, yielding an R-hat value close to 1. Values of R-hat substantially greater than

1 indicate that the chains may not have converged, suggesting that either more iterations

are needed or the model requires meliorations (Gelman et al., 1995; Peng, 2020).

In all models whose baseline is piecewise exponential or Bernstein Polynomials, we

use m = 5. In future work, we can perform a sensitivity analysis of the choice of m on

the WAIC values.

5.1 Analysis of the Yang and Prentice frailty model

(Class 1)

We initiate our application by fitting the first class of models. For the inference

procedure, we generated four MCMC chains for each parameter via rstan (Stan Develop-

ment Team, 2018) with 5000 iterations, of which 2500 are warm-ups, resulting in posterior
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samples of size 10000. To reduce a possible autocorrelation effect of the σw parameter,

we choose to record the posterior systematic samples with a period equal to 3. This way,

of every three MCMC samples, only the last one was saved. This setting was adjusted by

setting thin = 3 in the rstan::sampling function. In this section, we show the posterior

means of these samples, their standard deviation as well as their 95% credible intervals

(CI).

We choose weakly informative prior as classified by Stan Development Team (2023).

They are listed as follows:

ψ1, . . . , ψp ∼ Normal (0, 3),

ϕ1, . . . , ϕp ∼ Normal (0, 3),

γ1, . . . , γm ∼ LogNormal (0, 2),

σw ∼ Gamma (1, 1),

where m represents the dimensions of the baseline functions, while p denotes the covariate

vector length, considering interactions between some covariates.

The WAIC estimates and the statistical summary provided by Tables 5.2 and 5.3

show the application from our first class of models that introduced a frailty term in the

likelihood. We indicate significant variables by highlighting point estimates in bold. A

significant covariate is defined as one whose credible interval does not contain zero. We

show the 95% credible interval of each parameter, the standard deviation of its estimates,

and the WAIC score of the models, highlighting in bold the one with the lowest WAIC. The

primary interest is in the model with the best WAIC score, which is YPBP . Therefore,

let’s explore the estimates found from this model. It is interesting to note that the PHBP

model was in second place, with a very close WAIC value.

In YPBP , the parameters of the baseline hazard function γγγ are equivalents as φ in

Section 2.4. They will not be discussed here, since they do not have a direct interpretation.

The estimate for sex variable is negative, both in the short and long term. The negative

value suggests that being female (sex=1) might be associated with a lower probability of

death compared to being male (sex=0), but the credible interval includes 0, indicating

this result is not statistically significant. The variable chemo is also not significant. The

estimate for Dukes2 is positive and signifcative, in the short and long terms. Its value

indicates that being at Dukes’ stage D in comparison to A-B is associated with a higher

likelihood of death. The interaction between chemotherapy treatment and Dukes’ stage is

significant in the short term. This means that individuals with cancer in more advanced

stages, even if they undergo chemotherapy at the beginning of follow-up, have a higher risk

of death. We note that the estimates of the parameter σw suggest that there is variability

among study individuals that is not explained by the model’s fixed effects alone.

Figure 5.3-A shows MCMC graphs and Figure 5.3-B presents the posterior densi-

ties provided for YPBP . The MCMC chains for the regression coefficients appear to be
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Figure 5.3: MCMC applied to YPBP model: (A) Trace plots for the posterior samples;
(B) Posterior density plots.

Source: Prepared by the author.

mixing well, with overlap between the four chains and no visible trends, which indicates

convergence. The standard deviation of the frailty σw shows a reasonable convergence

between the chains. The estimates of R-hat for the parameters are between 0.9995 and

1.1243 indicating that convergence occurred. Observing the posterior densities we note

that they are all unimodal.

From Figure 5.4, we can notice a similarity between the survival functions esti-

mated by our model (represented by the continuous curves) and the Kaplan-Meier esti-

mates. This fact suggests that our model is capturing the pattern of the observed data.

However, it is perceived the high volume of censoring in this dataset. Our models do not

include cure fraction models. The inclusion of this approach could increase the precision

of long-term effect estimates. It is anticipated that incorporating cure fraction models

into our class of models will be done in future research.

Figure 5.4-A displays the survival curves for both men and women. This figure

suggests that there is insufficient statistical evidence to conclude that a patient’s sex

significantly influences survival time. Figure 5.4-B presents the short-term and long-term

impact of the chemotherapy treatment. The curves are further apart at the beginning of

the follow-up and get closer at the end of the follow-up. However, individuals with cancer

in more advanced stages, even those receiving chemotherapy, tend to be at greater risk

of death. In Figure 5.4-C, we see the survival functions for Dukes’ stages A-B, C, and

D present well-defined differences between them. The Dukes’ stage D shows the lowest

survival functions over time, while patients with Dukes’s stages A-B colorectal cancer
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appear to survive longer.

Figure 5.4: Kaplan-Meier (step function) and survival curves estimated by YPBP model
(continuous function) about the terminal event for the levels of variables (A) sex, (B)
chemo, and (C) dukes. Time is measured in days.

The estimates of the other models are found in Table 5.2 whose MCMC and poste-

rior density graphs can be seen online1. The PH and PO models agreed that the patient’s

sex is the only non-significant variable at 95% confidence. This classification was also

observed in the short-term effects of the YP models.

5.2 Analysis of the joint frailty-copula models

(Class 2)

After analyzing our model in the context of terminal events, we expanded our focus

to include both terminal and recurrent events. For this more comprehensive evaluation,

the implementation of our joint frailty-copula models will be useful. These models are

in the second class. They also allow us to assess the strength of the association between

hospital readmissions and deaths.

For the inference procedure, we use the default of rstan::sampling function. It

means that we generate four MCMC chains for each parameter using the rstan package

1Access the link cassiushenrique.shinyapps.io/appRealFrailty.

https://cassiushenrique.shinyapps.io/appRealFrailty/
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Table 5.2: Summary of the PH and PO models fitted to the readmission data considering
the terminal events: posterior mean estimate (est), standard deviation (sd) along with
the 95% credible interval (LW, UP), and WAIC.

95% CI

model WAIC par description est sd LW UP

PHEX 1831.34 β1 Sex -0.2528 0.2150 -0.6833 0.1566
β2 Chemo -0.4221 0.4976 -1.3829 0.5902
β3 Dukes1 0.6181 0.4413 -0.2241 1.5359
β4 Dukes2 2.6718 0.4580 1.8333 3.6204
β5 Chemo * Dukes1 1.2072 0.6057 0.0044 2.4112
β6 Chemo * Dukes2 1.5377 0.5856 0.3664 2.6595

σw sd(Frailty) 0.5445 0.2521 0.1181 1.0001
γ1 baseline 0.2014 0.0796 0.0765 0.3903

PHPE 1824.28 β1 Sex -0.3038 0.2356 -0.7899 0.1312
β2 Chemo -0.4841 0.4972 -1.4680 0.4893
β3 Dukes1 0.5737 0.4465 -0.2636 1.4575
β4 Dukes2 2.7978 0.4992 1.8577 3.8196
β5 Chemo * Dukes1 1.3361 0.6228 0.0951 2.5346
β6 Chemo * Dukes2 1.7531 0.6123 0.5562 2.9583

σw sd(Frailty) 0.8243 0.2152 0.4304 1.2695

PHBP 1798.27 β1 Sex -0.5138 0.3357 -1.2268 0.0904
β2 Chemo -0.7478 0.5862 -1.9153 0.3705
β3 Dukes1 0.5368 0.5265 -0.4980 1.5807
β4 Dukes2 3.6270 0.7175 2.2175 5.0647
β5 Chemo * Dukes1 1.9482 0.8147 0.4213 3.6343
β6 Chemo * Dukes2 2.7450 0.9205 1.0549 4.5723

σw sd(Frailty) 1.6462 0.4532 0.6968 2.3694

POEX 1834.81 β1 Sex -0.3343 0.2565 -0.8486 0.1500
β2 Chemo -0.4872 0.4996 -1.4413 0.5235
β3 Dukes1 0.5854 0.4530 -0.2569 1.5322
β4 Dukes2 2.7849 0.4786 1.8860 3.7793
β5 Chemo * Dukes1 1.3830 0.6455 0.0852 2.6272
β6 Chemo * Dukes2 1.8384 0.6185 0.6295 3.0458

σw sd(Frailty) 0.2263 0.1613 0.0300 0.5997
γ1 baseline 0.2464 0.0889 0.1037 0.4477

POPE 1833.48 β1 Sex -0.3452 0.2540 -0.8484 0.1530
β2 Chemo -0.4673 0.5408 -1.5358 0.5985
β3 Dukes1 0.6367 0.4773 -0.2992 1.6272
β4 Dukes2 3.0335 0.5299 2.0176 4.0840
β5 Chemo * Dukes1 1.4364 0.6715 0.0839 2.7385
β6 Chemo * Dukes2 1.9408 0.6933 0.6341 3.3162

σw sd(Frailty) 0.2484 0.2112 0.0034 0.7480

POBP 1819.15 β1 Sex -0.5107 0.3328 -1.1926 0.0980
β2 Chemo -0.5407 0.5847 -1.7126 0.5632
β3 Dukes1 0.7338 0.5149 -0.2934 1.7539
β4 Dukes2 3.8928 0.6548 2.6767 5.2011
β5 Chemo * Dukes1 1.7880 0.8148 0.2876 3.4728
β6 Chemo * Dukes2 2.6787 0.8903 1.0115 4.4661

σw sd(Frailty) 1.2280 0.5505 0.1069 2.0402

(Stan Development Team, 2018), each comprising 2000 iterations, of which the initial

1000 iterations are of warm-up. Consequently, this process yielded posterior samples with

a total size of 1000. We evaluate our models in terms of their average posterior estimate,

the posterior standard deviation, and their respective 95% credible intervals (CI).

We have opted for weakly informative priors, as categorized by Stan Development
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Table 5.3: Summary of the YP models fitted to the readmission data considering the
terminal events: posterior mean estimate (est), standard deviation (sd) along with the
95% credible interval (LW, UP), and WAIC.

95% CI

model WAIC par description est sd LW UP

YPEX 1832.35 ψ1 Sex -0.2717 0.2565 -0.7713 0.2511
ψ2 Chemo -0.4269 0.5388 -1.4898 0.6541
ψ3 Dukes1 0.6157 0.4876 -0.3009 1.6039
ψ4 Dukes2 2.6540 0.4854 1.7134 3.6474
ψ5 Chemo * Dukes1 1.2468 0.6817 -0.0870 2.5966
ψ6 Chemo * Dukes2 1.6725 0.6586 0.3847 2.9726

ϕ1 Sex 0.9042 2.1382 -2.5312 5.8734
ϕ2 Chemo 1.1207 2.2117 -2.5051 5.9694
ϕ3 Dukes1 1.8497 2.0123 -1.1997 6.4772
ϕ4 Dukes2 2.9056 1.6995 0.1847 6.8180
ϕ5 Chemo * Dukes1 0.3714 2.6935 -4.5275 6.0358
ϕ6 Chemo * Dukes2 -0.1321 2.6694 -4.9818 5.1890

σw sd(Frailty) 0.5310 0.2328 0.1597 0.9950
γ1 baseline 0.2055 0.0825 0.0823 0.3952

YPPE 1830.92 ψ1 Sex -0.2731 0.2857 -0.8162 0.3125
ψ2 Chemo -0.4393 0.5390 -1.4933 0.6224
ψ3 Dukes1 0.6341 0.4917 -0.3066 1.6425
ψ4 Dukes2 2.7646 0.4904 1.8464 3.7775
ψ5 Chemo * Dukes1 1.3920 0.7154 0.0586 2.8562
ψ6 Chemo * Dukes2 1.8363 0.6664 0.5550 3.1525

ϕ1 Sex 0.5027 1.9652 -2.5778 5.3000
ϕ2 Chemo 0.6188 2.1787 -2.8811 5.3461
ϕ3 Dukes1 1.3993 2.0395 -1.6015 6.0357
ϕ4 Dukes2 2.7956 1.8234 0.0324 7.0962
ϕ5 Chemo * Dukes1 0.3629 2.7057 -4.5682 6.2907
ϕ6 Chemo * Dukes2 -0.1198 2.5105 -4.9650 5.1718

σw sd(Frailty) 0.6235 0.2933 0.1516 1.2229

YPBP 1794.64 ψ1 Sex -0.2122 0.4257 -1.0333 0.6558
ψ2 Chemo -0.3307 0.7277 -1.6513 1.2817
ψ3 Dukes1 1.1541 0.6554 -0.1094 2.5243
ψ4 Dukes2 3.6413 0.5822 2.5000 4.8180
ψ5 Chemo * Dukes1 2.0182 0.9840 0.0650 3.9126
ψ6 Chemo * Dukes2 2.8088 0.9107 0.9140 4.5319

ϕ1 Sex -0.6734 1.1280 -2.6184 2.0198
ϕ2 Chemo -0.7680 2.0203 -3.8750 3.6330
ϕ3 Dukes1 -1.1885 1.4296 -2.7703 2.8973
ϕ4 Dukes2 2.0736 1.6249 -0.3909 5.8904
ϕ5 Chemo * Dukes1 0.7192 2.1300 -3.6591 4.4600
ϕ6 Chemo * Dukes2 0.2049 2.1791 -4.1632 4.1804

σw sd(Frailty) 1.2043 0.4062 0.3946 1.9889

Team (2023), which are outlined as follows:

θ ∼ Gamma (1, 1),

σw ∼ Gamma (1, 1),

γ
(R)
1 , . . . , γ(R)

mR
∼ LogNormal (0, 2),

γ
(T )
1 , . . . , γ(T )mT

∼ LogNormal (0, 2),

ψ
(R)
1 , . . . , ψ(R)

p ∼ Normal (0, 3),

ψ
(T )
1 , . . . , ψ(T )

p ∼ Normal (0, 3),

ϕ
(R)
1 , . . . , ϕ(R)

p ∼ Normal (0, 3),
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and

ϕ
(T )
1 , . . . , ϕ(T )

p ∼ Normal (0, 3),

where mR and mT represent the dimensions of the baseline functions for recurrent and

terminal events, respectively, while p denotes the dimension of the linear predictor vectors.

The estimates derived from the PH models are presented in Table 5.4, and from the

PO models in Table 5.5. Tables 5.6 , 5.7 and 5.8 provide the estimates from the YP models.

Additionally, these tables include the WAIC values for each respective model. Notably,

the YPBP demonstrates the most favorable WAIC, indicating its superior performance in

comparison to the others. Therefore, in this section, we will focus on it. As the parameters

of the baseline hazard function are not interpretable, we will not display its results here.

The variable sex was identified as significant only in the short-term effects on

readmissions. Its negative coefficient suggests that females (sex=1) have a lower risk of

hospital readmissions compared to males (sex=0). Chemotherapy treatment is not sig-

nificant in both short-term and long-term effects on death, because the credible intervals

contain zero. In contrast, the treatment is significant on readmissions. The estimates

of the regression coefficient of this variable indicate a crossover in the survival curves

concerning readmissions. At the beginning of follow-up, patients undergoing chemother-

apy faced a higher readmission risk compared to those who did not receive treatment.

However, in the long term, the opposite trend was observed. However, we identified that

the interaction between Dukes’ stage and chemotherapy is significant in readmissions.

Patients whose cancer is in more advanced stages, even receiving chemotherapy, are at

greater risk of experiencing new cancer-related hospital readmissions at the end of the

follow-up. Dukes’ stage D is significant in death risk in the short term, however, in the

long term, the Dukes’ stages are not significant. Additionally, in the short term, the

Dukes’ stage of cancer is significant in the readmissions.

The estimates of the standard deviation of frailty lead us to conclude that there

is some association between the readmissions of the patients. The interval estimates of

the Kendall correlation coefficient indicate a small correlation between readmissions and

death in the investigated colorectal cancer patients.

Figure 5.5-A displays the MCMC graphs for the YPBP . The MCMC chains for the

coefficients are well-mixing, evidenced by the overlap among the four chains. The R-hat

estimates for the parameters range from 0.9994 to 1.0020. Furthermore, in Figure 5.5-B

we see the posterior densities are unimodal. The MCMC and posterior density graphs for

the other models are available online2.

2Access the link cassiushenrique.shinyapps.io/appRealJoint FrailtyCopula.

https://cassiushenrique.shinyapps.io/appRealJointFrailtyCopula/
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Figure 5.5: MCMC applied to YPBP model: (A) posterior trace plots for the posterior
samples; (B) posterior density plots.
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Table 5.4: Summary of the PH models fitted to the readmission data considering terminal
and recurrent events: posterior mean estimate (est), standard deviation (sd) along with
the 95% credible interval (LW, UP), and WAIC.

95% CI

model WAIC par description est sd LW UP

PHEX 2282.12 γ
(T )
1 baseline 0.1594 0.0669 0.0594 0.3159

γ
(R)
1 baseline 1.3974 0.3292 0.8479 2.1126

β
(T )
1 Sex -0.2618 0.2476 -0.7448 0.2115

β
(T )
2 Chemo -0.4937 0.5294 -1.5355 0.5806

β
(T )
3 Dukes1 0.5364 0.4776 -0.3650 1.4922

β
(T )
4 Dukes2 2.6943 0.5154 1.7143 3.7023

β
(T )
5 Chemo * Dukes1 1.3723 0.6665 0.0662 2.6797

β
(T )
6 Chemo * Dukes2 1.8519 0.6485 0.5258 3.1114

β
(R)
1 Sex -0.5558 0.1712 -0.8920 -0.2301

β
(R)
2 Chemo -0.2919 0.2805 -0.8635 0.2484

β
(R)
3 Dukes1 0.3199 0.2745 -0.2012 0.8603

β
(R)
4 Dukes2 2.0169 0.3309 1.3794 2.6581

β
(R)
5 Chemo * Dukes1 0.4429 0.4093 -0.3561 1.2505

β
(R)
6 Chemo * Dukes2 0.2593 0.4359 -0.6044 1.1356

σw sd(Frailty) 1.1818 0.0856 1.0195 1.3539
τκ Kendall’s tau 0.0072 0.0064 0.0002 0.0236

PHPE 2261.98 β
(T )
1 Sex -0.2775 0.2305 -0.7373 0.1524

β
(T )
2 Chemo -0.6994 0.4734 -1.6249 0.2236

β
(T )
3 Dukes1 0.3278 0.4158 -0.4723 1.1787

β
(T )
4 Dukes2 2.4460 0.4387 1.5726 3.3219

β
(T )
5 Chemo * Dukes1 1.5025 0.6135 0.3131 2.7261

β
(T )
6 Chemo * Dukes2 2.1059 0.5958 0.9746 3.2937

β
(R)
1 Sex -0.4804 0.1513 -0.7735 -0.1904

β
(R)
2 Chemo -0.2589 0.2411 -0.7279 0.2238

β
(R)
3 Dukes1 0.2868 0.2361 -0.1643 0.7491

β
(R)
4 Dukes2 1.5316 0.2885 0.9817 2.1061

β
(R)
5 Chemo * Dukes1 0.2990 0.3497 -0.3848 0.9850

β
(R)
6 Chemo * Dukes2 -0.0034 0.3869 -0.7461 0.7543

σw sd(Frailty) 0.9085 0.0804 0.7556 1.0725
τκ Kendall’s tau 0.0083 0.0080 0.0002 0.0300

PHBP 2262.59 β
(T )
1 Sex -0.3328 0.2333 -0.8176 0.1131

β
(T )
2 Chemo -0.9931 0.4718 -1.9200 -0.0710

β
(T )
3 Dukes1 0.0341 0.4083 -0.7325 0.8476

β
(T )
4 Dukes2 2.2431 0.4307 1.4140 3.0979

β
(T )
5 Chemo * Dukes1 1.8201 0.6153 0.6223 2.9995

β
(T )
6 Chemo * Dukes2 2.5683 0.6002 1.4345 3.7479

β
(R)
1 Sex -0.5302 0.1541 -0.8446 -0.2335

β
(R)
2 Chemo -0.4336 0.2511 -0.9238 0.0561

β
(R)
3 Dukes1 0.1391 0.2471 -0.3384 0.6268

β
(R)
4 Dukes2 1.4984 0.2932 0.9460 2.0607

β
(R)
5 Chemo * Dukes1 0.4865 0.3694 -0.2105 1.2284

β
(R)
6 Chemo * Dukes2 0.2872 0.3987 -0.4764 1.0790

σw sd(Frailty) 0.9891 0.0839 0.8356 1.1616
τκ Kendall’s tau 0.0077 0.0073 0.0002 0.0274
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Table 5.5: Summary of the PO models fitted to the readmission data considering terminal
and recurrent events: posterior mean estimate (est), standard deviation (sd) along with
the 95% credible interval (LW, UP), and WAIC.

95% CI

model WAIC par description est sd LW UP

POEX 2342.48 γ
(T )
1 baseline 0.1058 0.0522 0.0353 0.2364

γ
(R)
1 baseline 0.9202 0.1803 0.6085 1.3138

β
(T )
1 Sex -0.3198 0.3161 -0.9573 0.2831

β
(T )
2 Chemo -0.4462 0.6167 -1.6652 0.7408

β
(T )
3 Dukes1 0.8656 0.5695 -0.2592 1.9714

β
(T )
4 Dukes2 3.5241 0.6320 2.3117 4.7782

β
(T )
5 Chemo * Dukes1 1.5257 0.7970 0.0071 3.0865

β
(T )
6 Chemo * Dukes2 1.8387 0.8086 0.2542 3.4522

β
(R)
1 Sex -0.6555 0.2305 -1.1119 -0.2137

β
(R)
2 Chemo 0.3294 0.3236 -0.3232 0.9463

β
(R)
3 Dukes1 1.2548 0.3241 0.6146 1.8805

β
(R)
4 Dukes2 3.0076 0.3962 2.2345 3.7873

β
(R)
5 Chemo * Dukes1 -0.3761 0.5194 -1.3628 0.6588

β
(R)
6 Chemo * Dukes2 -0.6677 0.5818 -1.7976 0.5188

σw sd(Frailty) 1.5362 0.1128 1.3247 1.7650
τκ Kendall’s tau 0.0105 0.0096 0.0003 0.0359

POPE 2292.66 β
(T )
1 Sex -0.4109 0.3146 -1.0271 0.1929

β
(T )
2 Chemo -0.8261 0.5500 -1.8943 0.2479

β
(T )
3 Dukes1 0.4139 0.4986 -0.5432 1.4149

β
(T )
4 Dukes2 3.2861 0.5841 2.1145 4.4280

β
(T )
5 Chemo * Dukes1 1.9799 0.7337 0.6054 3.4124

β
(T )
6 Chemo * Dukes2 2.8436 0.7735 1.3537 4.3445

β
(R)
1 Sex -0.6990 0.2169 -1.1249 -0.2872

β
(R)
2 Chemo -0.1858 0.3183 -0.8469 0.4086

β
(R)
3 Dukes1 0.6466 0.3212 0.0220 1.2649

β
(R)
4 Dukes2 2.1636 0.4111 1.3758 2.9685

β
(R)
5 Chemo * Dukes1 0.0776 0.4864 -0.8419 1.0528

β
(R)
6 Chemo * Dukes2 -0.2591 0.5484 -1.3279 0.8245

σw sd(Frailty) 1.3128 0.1173 1.0878 1.5504
τκ Kendall’s tau 0.0087 0.0082 0.0003 0.0307

POBP 2286.16 β
(T )
1 Sex -0.4878 0.3139 -1.1054 0.1023

β
(T )
2 Chemo -1.1338 0.5465 -2.2028 -0.0872

β
(T )
3 Dukes1 0.1211 0.4972 -0.8401 1.0978

β
(T )
4 Dukes2 3.1230 0.5591 2.0085 4.2290

β
(T )
5 Chemo * Dukes1 2.3357 0.7399 0.9106 3.7773

β
(T )
6 Chemo * Dukes2 3.3505 0.7711 1.8597 4.9019

β
(R)
1 Sex -0.7505 0.2204 -1.1878 -0.3220

β
(R)
2 Chemo -0.3072 0.3374 -0.9674 0.3466

β
(R)
3 Dukes1 0.5467 0.3270 -0.0972 1.1738

β
(R)
4 Dukes2 2.1231 0.4080 1.3056 2.9244

β
(R)
5 Chemo * Dukes1 0.2004 0.5067 -0.7844 1.2025

β
(R)
6 Chemo * Dukes2 -0.0896 0.5707 -1.2003 1.0314

σw sd(Frailty) 1.3788 0.1170 1.1546 1.6120
τκ Kendall’s tau 0.0088 0.0083 0.0003 0.0311
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Table 5.6: Summary of the YPEX model fitted to the readmission data considering ter-
minal and recurrent events: posterior mean estimate (est), standard deviation (sd) along
with the 95% credible interval (LW, UP), and WAIC.

95% CI

model WAIC par description est sd LW UP

YPEX 2261.64 γ
(T )
1 baseline 0.2182 0.0888 0.0863 0.4331

γ
(R)
1 baseline 2.2016 0.4160 1.4620 3.1036

ψ
(T )
1 Sex -0.3321 0.2506 -0.8174 0.1717

ψ
(T )
2 Chemo -0.5923 0.5423 -1.6593 0.4562

ψ
(T )
3 Dukes1 0.4561 0.4893 -0.4843 1.4502

ψ
(T )
4 Dukes2 2.5130 0.4915 1.5622 3.4857

ψ
(T )
5 Chemo * Dukes[1] 1.3965 0.6670 0.0802 2.7037

ψ
(T )
6 Chemo * Dukes[2] 1.8881 0.6531 0.5810 3.1382

ϕ
(T )
1 Sex 0.9909 2.2059 -2.6678 6.0189

ϕ
(T )
2 Chemo 1.4688 2.2345 -2.3834 6.2493

ϕ
(T )
3 Dukes1 1.9666 2.0351 -1.1484 6.5623

ϕ
(T )
4 Dukes2 3.2635 1.7416 0.4937 7.3547

ϕ
(T )
5 Chemo * Dukes[1] 0.3176 2.7229 -4.8826 6.0018

ϕ
(T )
6 Chemo * Dukes[2] 0.3357 2.6766 -4.6503 5.7090

ψ
(R)
1 Sex -1.2882 0.2471 -1.7698 -0.7997

ψ
(R)
2 Chemo 1.4212 0.3546 0.7398 2.1128

ψ
(R)
3 Dukes1 2.2120 0.3063 1.6075 2.8154

ψ
(R)
4 Dukes2 2.5978 0.3383 1.9281 3.2488

ψ
(R)
5 Chemo * Dukes[1] -2.3454 0.5724 -3.4740 -1.1911

ψ
(R)
6 Chemo * Dukes[2] -1.9262 0.5529 -3.0173 -0.8213

ϕ
(R)
1 Sex 0.2328 0.2479 -0.2269 0.7308

ϕ
(R)
2 Chemo -2.2666 0.2066 -2.6706 -1.8574

ϕ
(R)
3 Dukes1 -1.9170 0.1993 -2.3040 -1.5188

ϕ
(R)
4 Dukes2 -0.1799 0.3723 -0.8326 0.6261

ϕ
(R)
5 Chemo * Dukes[1] 2.8925 0.4486 2.0468 3.7829

ϕ
(R)
6 Chemo * Dukes[2] 2.5848 0.8868 1.1839 4.4222

σw sd(Frailty) 0.8582 0.0775 0.7129 1.0165
τκ Kendall’s tau 0.0100 0.0096 0.0003 0.0369
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Table 5.7: Summary of the YPPE model fitted to the readmission data considering ter-
minal and recurrent events: posterior mean estimate (est), standard deviation (sd) along
with the 95% credible interval (LW, UP), and WAIC.

95% CI

model WAIC par description est sd LW UP

YPPE 2255.11 ψ
(T )
1 Sex -0.4129 0.2943 -0.9692 0.1973

ψ
(T )
2 Chemo -0.6129 0.5431 -1.6603 0.5115

ψ
(T )
3 Dukes1 0.3887 0.4653 -0.4944 1.3338

ψ
(T )
4 Dukes2 2.5694 0.4895 1.6296 3.5787

ψ
(T )
5 Chemo * Dukes[1] 1.6753 0.7417 0.2498 3.2078

ψ
(T )
6 Chemo * Dukes[2] 2.7069 0.7684 1.2490 4.2415

ϕ
(T )
1 Sex 0.5805 1.6251 -2.0940 4.7130

ϕ
(T )
2 Chemo -0.0953 2.0165 -3.2136 4.5006

ϕ
(T )
3 Dukes1 1.3279 2.0528 -1.7578 5.9499

ϕ
(T )
4 Dukes2 2.3699 1.5605 -0.0347 5.8939

ϕ
(T )
5 Chemo * Dukes[1] 0.1220 2.4823 -4.6490 5.3225

ϕ
(T )
6 Chemo * Dukes[2] -0.9888 2.3331 -5.3203 3.9500

ψ
(R)
1 Sex -1.0507 0.2522 -1.5549 -0.5646

ψ
(R)
2 Chemo 0.9183 0.4074 0.1374 1.7050

ψ
(R)
3 Dukes1 1.6601 0.3985 0.8897 2.4481

ψ
(R)
4 Dukes2 2.0604 0.4089 1.2815 2.9012

ψ
(R)
5 Chemo * Dukes[1] -1.6953 0.6124 -2.8763 -0.4703

ψ
(R)
6 Chemo * Dukes[2] -1.3045 0.5854 -2.4984 -0.1908

ϕ
(R)
1 Sex 0.2886 0.3116 -0.2792 0.9269

ϕ
(R)
2 Chemo -1.9590 0.3028 -2.5142 -1.2965

ϕ
(R)
3 Dukes1 -1.6378 0.2716 -2.1330 -1.0669

ϕ
(R)
4 Dukes2 0.9966 1.3406 -0.4491 4.7710

ϕ
(R)
5 Chemo * Dukes[1] 2.8414 0.6644 1.7339 4.2710

ϕ
(R)
6 Chemo * Dukes[2] 2.5495 1.7478 -0.8350 6.5352

σw sd(Frailty) 0.8834 0.0848 0.7209 1.0519
τκ Kendall’s tau 0.0094 0.0089 0.0003 0.0324
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Table 5.8: Summary of the YPBP model fitted to the readmission data considering ter-
minal and recurrent events: posterior mean estimate (est), standard deviation (sd) along
with the 95% credible interval (LW, UP), and WAIC.

95% CI

model WAIC par description est sd LW UP

YPBP 2244.92 ψ
(T )
1 Sex -0.5262 0.3318 -1.1591 0.1804

ψ
(T )
2 Chemo -0.7881 0.6057 -1.8527 0.5471

ψ
(T )
3 Dukes1 0.2148 0.5134 -0.6928 1.3275

ψ
(T )
4 Dukes2 2.4979 0.5088 1.5529 3.5745

ψ
(T )
5 Chemo * Dukes[1] 2.2203 0.8457 0.5911 3.8469

ψ
(T )
6 Chemo * Dukes[2] 3.4574 0.8035 1.8488 4.9818

ϕ
(T )
1 Sex 0.2239 0.9641 -1.4668 2.1291

ϕ
(T )
2 Chemo -0.9719 1.7046 -3.6407 2.8316

ϕ
(T )
3 Dukes1 0.3260 1.8586 -2.2756 4.7853

ϕ
(T )
4 Dukes2 1.7294 1.4400 -0.4654 5.1862

ϕ
(T )
5 Chemo * Dukes[1] -0.1006 2.2082 -4.4366 4.2702

ϕ
(T )
6 Chemo * Dukes[2] -0.7985 1.9959 -4.9738 2.8192

ψ
(R)
1 Sex -1.2495 0.2520 -1.7337 -0.7498

ψ
(R)
2 Chemo 1.0885 0.3924 0.3533 1.8768

ψ
(R)
3 Dukes1 1.8709 0.3652 1.1826 2.6190

ψ
(R)
4 Dukes2 2.2535 0.3868 1.5054 3.0304

ψ
(R)
5 Chemo * Dukes[1] -1.9697 0.5715 -3.0683 -0.8586

ψ
(R)
6 Chemo * Dukes[2] -1.5366 0.5660 -2.6667 -0.4461

ϕ
(R)
1 Sex 0.2429 0.2827 -0.3046 0.8144

ϕ
(R)
2 Chemo -2.1654 0.2378 -2.6259 -1.6876

ϕ
(R)
3 Dukes1 -1.8396 0.2172 -2.2603 -1.4183

ϕ
(R)
4 Dukes2 0.1409 0.5257 -0.6639 1.3534

ϕ
(R)
5 Chemo * Dukes[1] 2.8638 0.4767 1.9577 3.8248

ϕ
(R)
6 Chemo * Dukes[2] 2.5603 1.1403 0.7224 5.2623

σw sd(Frailty) 0.8801 0.0824 0.7194 1.0419
τκ Kendall’s tau 0.0099 0.0090 0.0003 0.0335
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Chapter 6

Final remarks and future research

This thesis proposed to develop two classes of models within a Bayesian framework, de-

signed to explain the impact of observed characteristics on survival curves that may

intersect. For this finally, we used the YP regression structure for its ability to encompass

and generalize the PH and PO models.

The first class of models embraces YP frailty. The incorporation of frailty in these

models constitutes a contribution of this study, since in the literature the YP models did

not incorporate frailty. We combined exponential, piecewise exponential, and Bernstein

polynomials baseline functions. The selection of these last two baseline functions was

motivated by their versatility because can fit a wide variety of hazard function shapes. In

that regard, the innovations promoted by this thesis are the YPEX , YPPE, YPBP , and

POEX frailty models.

The models of the first class enable the analysis of survival data under distinct

scenarios:

• individuals with a unique survival time where individual frailty explains unobserved

heterogeneities;

• individuals organized in clusters for which the shared frailty explains a likely depen-

dency in their survival times. This is because individuals from the same group may

present certain similarities among them that are not observed when we compare

them with individuals outside their group. Another way to apply shared frailty

would be to evaluate the survival times of individuals who present recurrent events.

In this case, the shared frailty accommodates the association between the survival

times of the same individual. We can consider the individual as a cluster, thus, the

frailty assumes a statistical context corresponding to when individuals are arranged

in clusters.

The second class of models is another contribution of this thesis. This class em-

braces the joint frailty-copula models with three distinct families of regression: PH, PO,

and YP. In each regression framework, three baseline functions also are considered: ex-

ponential, piecewise exponential, and Bernstein polynomials. These models are designed

to model survival data involving individuals who may experience both recurrent events
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and a terminal event. Within these models, the recurrent events attributed to an indi-

vidual are linked by a frailty term, aimed at capturing potential associations among the

times between recurrences. Furthermore, the terminal events are potentially influenced

by the occurrence of recurrent events. The association among them is modeled by the

Clayton copula. Thus, this thesis also introduces new features into the statistical liter-

ature through the YPEX , YPPE, YPBP , PHPE, PHBP , POEX , POPE, and POBP joint

frailty-copula models.

The models of the two classes include frailty terms, i.e., latent variables. In the

frequentist approach, the likelihood function would need to be integrated with respect to

this variable. For this reason, we choose to apply the Bayesian approach.

This thesis discusses some essential concepts of survival analysis, encompassing

the PH, PO, and YP regressions, along with an overview of the frailty model. It further

explored the Bernstein polynomials and the piecewise exponential, which were utilized

for modeling baseline hazard functions. Additionally, the thesis examined the concepts

and properties of copulas, going deeper specifically for the Clayton copula. We presented

details of our proposed models, starting with the definition of notation and proceeding

to elaborate on the construction of the likelihood function. The methodology for data

generation and the findings from the Monte Carlo study were thoroughly presented and

analyzed. Finally, the thesis presented the application of the models.

As for numerical results, we executed a Monte Carlo simulation study for each

model class aimed at evaluating the influence of model selection on parameter estima-

tion. This assessment focused on some criteria such as estimation biases (RB), average

standard error (ASE), standard deviation of estimates (SDE), credible intervals, and cov-

erage probability (CP). A total of MC = 250 Monte Carlo replicas were generated, each

comprising L = 300 individuals in 12 scenarios. In all the scenarios, our estimates mean

and median are generally close to the true values, indicating a good level of accuracy. In

addition, the ASE and SDE values are close and the CP values are not very far from 95%.

These facts signal a good performance of our models.

In the data analysis, we fitted our models on the readmission database. This

dataset contains the times to the death of patients with colorectal cancer along with the

times between their hospital readmissions due to cancer. Three characteristics related to

individuals were evaluated: sex, chemotherapy treatment, and Dukes’ stage of cancer. All

variables are categorical and showed no changes over the follow-up period. We initially

only evaluate the time to terminal event by applying our first class of models. Then,

we modeled the times to the terminal event jointly with the times between recurrent

events by applying the second class of models. The performance of each adjustment

was evaluated against the WAIC estimate. Concerning this criterion, the YPBP models

presented better values, in both the first and second class of models. We provide Shiny

applications developed from the Shiny package (Chang et al., 2023) with all simulation
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and real application results.

Some limitations of this research were:

• In our simulation studies, we did not apply WAIC to Monte Carlo samples. We

acknowledge that the assessment of these values could enhance the depth of com-

parative analysis of our models.

• We did not consider Weibull baseline distributions in the fit of our models.

• In the real application, we believe that the high volume of administrative censoring

somewhat reduced the predictive ability of our models.

• In the joint frailty-copula models, we only used the Clayton copula because it is the

simplest and most used among the Archimedean copulas.

• Our models are not yet capable of accommodating time-dependent variables.

In future research, we want to apply the following approaches:

• Evaluate the WAIC of our model fits in a simulation study.

• Conduct a more extensive simulation study incorporating the baseline Weibull dis-

tribution.

• Incorporate a cure fraction model into our model classes.

• Incorporate other Archimedean copulas (Frank, Gumbel, Joe, and AMH) into the

second class of models. It will allow us to deal with different correlation ranges,

both positive and negative, and evaluate the impact of choosing the incorrect model

on RB, ASE, SDE, CP, and WAIC.

• Adapt our regression frameworks to allow us to model time-dependent covariates.

• Extend our models to a frequentist approach.

• Deploy a residual analysis that provides an additional way of evaluating the quality

of our fits.

• Publish an R package that provides the functions used in this thesis, facilitating the

replication of its results.
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González, J. R., Fernandez, E., Moreno, V., Ribes, J., Peris, M., Navarro, M., Cambray,
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Appendix A

Numerical and graphical results of

all models

A.1 Monte Carlo simulation study

The results of the Monte Carlo simulation study of all models are available in the

Shiny application. These applications can be accessed via the links

• cassiushenrique.shinyapps.io/appSimulationsFrailty, and

Figure A.1: Numerical and graphical results of the Monte Carlo simulation study of the
models of the first class of models.

Source: Prepared by the author.

• cassiushenrique.shinyapps.io/appSimulationsJointFrailtyCopula

Figure A.2: Numerical and graphical results of the Monte Carlo simulation study of the
models of the second class of models.

Source: Prepared by the author.

or by the QR codes shown in the Figures A.1 (YP frailty models) and A.2 (the joint

frailty-copula models).

https://cassiushenrique.shinyapps.io/appSimulationsFrailty/
https://cassiushenrique.shinyapps.io/appSimulationsJointFrailtyCopula/
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A.2 Real application

The outcomes from the real application of all models can also be explored through

a Shiny application. Access to these applications is provided via the links

• cassiushenrique.shinyapps.io/appRealFrailty, and

Figure A.3: Numerical and graphical results of the real application of the models of the
first class of models.

Source: Prepared by the author.

• cassiushenrique.shinyapps.io/appRealJoint FrailtyCopula

Figure A.4: Numerical and graphical results of the real application of the models of the
second class of models.

Source: Prepared by the author.

or by the QR codes shown in the Figures A.3 (YP frailty models) and A.4 (the joint

frailty-copula models).

https://cassiushenrique.shinyapps.io/appRealFrailty/
https://cassiushenrique.shinyapps.io/appRealJointFrailtyCopula/
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