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Resumo

Nos últimos anos, o uso de véıculos aéreos não tripulados (VANTs) – conhecidos como

drones – cresceu, evoluindo de serviços únicos para domı́nios colaborativos. Consequente-

mente, a Internet dos Drones (IoD) surgiu como um novo paradigma de rede móvel focado

na integração de drones, coordenando o acesso ao espaço aéreo controlado e fornecendo

um ambiente de comunicação robusto para nós aéreos e terrestres. Similar às redes móveis

tradicionais, segurança e a privacidade são requisitos importantes a se garantir. IoD é um

ambiente móvel com caracteŕısticas particulares, diferindo dos paradigmas tradicionais.

Portanto, os mecanismos de proteção existentes podem não ser adequados para garantir

um ńıvel de segurança e privacidade suficientes em IoD. Esses aspectos levam à duas im-

portantes questões de pesquisa: (i) Os mecanismos de proteção atuais podem fornecer o

mesmo ńıvel de proteção para IoD quando comparados às redes móveis tradicionais? (ii)

Se não podem, é posśıvel adaptá-los para serem aplicados em IoD? Tendo em vista estes

desafios, o objetivo principal desta tese é estudar o design de mecanismos de proteção para

IoD considerando as suas caracteŕısticas particulares. Além disso, realizamos um estudo

aprofundado sobre os principais conceitos de IoD e sua relação com outras redes, quais

as ameaças, quais os mecanismos de proteção existentes e como eles mitigam as ameaças.

Este estudo revela a necessidade de aprimorar os mecanismos de proteção existentes para

atender às caracteŕısticas de IoD pois em maioria eles não podem oferecer o mesmo ńıvel

de proteção, ou mesmo não podem ser aplicados. Portanto, propomos um framework

para orientar o design de mecanismos de proteção para IoD. Seguindo esse framework,

avançamos no estado da arte em três frentes: (i) projetamos três novos Mecanismos de

Proteção de Privacidade de Localização, também projetando um framework para aplicá-

los cooperativamente; (ii) projetamos um mecanismo Anti-Jamming para IoD, sendo o

primeiro mecanismo que mitiga os efeitos dos ataques de jamming em um ambiente com

espaço aéreo restritamente definido; e (iii) introduzimos uma nova abordagem para iden-

tificar drones automaticamente no ambiente a partir de diferentes fontes, baseado no

conceito de dissimilaridade. De modo geral, nossas contribuições aperfeiçoaram significa-

tivamente os ńıveis de segurança/privacidade de uma rede IoD comparado às soluções

existentes, considerando um grupo de métricas relacionadas. Por fim, as contribuições

deste estudo abrem espaço para o projeto de novos mecanismos de proteção sistematica-

mente, aumentando os niveis de segurança e privacidade em IoD.

Palavras-chave: Internet dos Drones; segurança; privacidade; mecanismos de proteção



Abstract

In the last years, the use of Unmanned Aerial Vehicles (UAVs), a.k.a. drones, has grown

immensely, evolving from single-UAV services to collaborative domains. Hence, the Inter-

net of Drones (IoD) emerged as a novel mobile network paradigm focused on the air-to-

ground integration of drones, coordinating the access of drones to controlled airspace and

providing a robust communication environment to the aerial and ground nodes. Likewise

in traditional mobile networks, security and privacy are major requirements to be ensured.

IoD is a unique mobile environment with particular characteristics, differing from the tra-

ditional paradigms. Hence, the existent protection mechanisms may not be adequate to

ensure a proper level of security and privacy in IoD. These aspects lead to two important

research questions: (i) Can the current protection mechanisms provide the same protec-

tion level to IoD when compared to the traditional mobile networks? (ii) If they can not,

is it possible to adapt them to be applied in IoD? Bearing these challenges in mind, the

main goal of this dissertation is to study the design of protection mechanisms for the IoD

considering its particular characteristics. Apart from that, we conduct a thorough study

regarding the main concepts of IoD and its relationship with other networks, what are

the attacks that threaten this environment, what are the existent protection mechanisms,

and how these mechanisms mitigate the attacks. This study reveals a need to enhance the

existent protection mechanisms to meet the IoD characteristics since most of them can

not offer the same protection level or even not be applied. Hence, we propose a framework

to guide the design of IoD-based protection mechanisms. Following this framework, we

advance the state of the art in three fronts: (i) we design three novel IoD-related Location

Privacy Protection Mechanisms (LPPMs), also designing a framework to apply them co-

operatively; (ii) we design an Anti-Jamming mechanism for IoD, being the first mechanism

that mitigates the effects of Jamming Attacks in an aerial environment with restricted

available airspace; (iii) and we introduce a new approach to automatically identify drones

in the environment from different sources, based on the dissimilarity concept. Summarily,

our contributions significantly enhanced the security/privacy levels of the IoD facing the

existent solutions, considering a pool of related metrics. Finally, the contributions of this

study make room for the design of novel protection mechanisms systematically, enhancing

the IoD security and privacy levels.

Keywords: Internet of Drones; security; privacy; protection mechanisms
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Internet dos Drones. In Anais do XL Simpósio Brasileiro de Redes de Com-
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Chapter 1

Introduction

Over the last years, the Unmanned Aerial Vehicle (UAV), also known as “drone”, has

gained new business interests in different fields. For instance, urban centers, rural ar-

eas, industry, and ports [1, 2]. Several companies have been exploring Drone as a ser-

vice (DaaS). For instance, Amazon Prime Air is an on-demand package delivery service.

DroneDeploy1 is a company that provides drone-based solutions for agriculture. Indeed,

the Federal Aviation Administration of the United States (FAA) reported the register of

869,472 drones until July of 2023 in which 59% were for recreational purposes and 41% for

commercial operation [3]. Several reports point out a huge growth of the drone market,

resulting in an increase of about U$ 35 billion by 2025 [4].

From a Computer Network point-of-view, the widespread utilization of drone-based

technology in the civilian context creates a heterogeneous mobile network environment

composed of different drones with different purposes acting as nodes. Drones can sig-

nificantly enhance Intelligent Transportation System (ITS) due to drone mobility, au-

tonomous operation, and communication capabilities [1]. Given this growth, the scope of

UAV networks have evolved from single to multi-UAV applications. Therefore, the next

generation of UAV networks will require a robust, reliable, and inter-operable network to

accomplish organized and collision-avoidance airspace.

Anticipating this environment, Gharibi et al. [5] proposed a layered network archi-

tecture, named the Internet of Drones (IoD). Although the architecture name indicates a

general purpose, it aims to coordinate the access of UAVs to controlled airspace, provid-

ing navigation services to the drones through a Zone Service Provider (ZSP), which acts

as a base station. A remarkable characteristic of the network is the presence of airways,

referring to delimited aerial regions where drones can fly, being similar to the roadways

concept. Despite this definition, IoD can also refer to UAV-networks in broad scope,

ranging from swarm-based to an interoperable environment, integrating different network

infrastructures.

Compared to ground mobile networks, such as Vehicular Ad hoc Network (VANET),

IoD has particular characteristics, for instance: drones move fast over the airspace limited

by the airways; they communicate at the Line of Sight (LoS); and have Size, Weight and

1https://www.dronedeploy.com/solutions/agriculture/
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Power (SWaP) limitations [1], which can affect the provided Quality of Service (QoS)

deeply. Thus, IoD demands a thorough investigation in the design of network protocols

since its characteristics can affect the performance of an existing one [6].

1.1 Problem Statement

Security is one of the major challenges to be addressed in this novel and unique

scenario [1, 4, 7, 8, 9]. Since drones are in the airspace, there is a range of attack methods

that can be more harmful when compared to grounded mobile networks [1, 7]. Likewise,

privacy is a concept interlaced with mobile network security. It is commonly defined as

the protection level that needs to be addressed regarding the user’s personal information

[1, 10]. Nonetheless, considering the IoD context, the privacy concept can be extended,

incorporating a great number of environmental aspects, such as the drone’s privacy as a

device, the communication channel’s privacy, and the territorial aerial privacy.

Likewise in other mobile networks, both the network infrastructure and the sur-

rounding environment must have Protection Mechanisms (PMs) to ensure well-known se-

curity properties (e.g., availability, integrity, and confidentiality) [4, 8] not just for drones

but also for other elements of the environment. For instance, ground vehicles must com-

municate with drones through a reliable channel. Buildings and people must be aware of

the presence of drones and be protected from a potential malfunction [1, 5, 7].

On one hand, PMs have been investigated in other mobile paradigms, such as

VANETs, IoT [11], and general UAV-related networks [8]. On the other hand, they have

not been applied in IoD or even verified for the threats that can affect this environment.

Indeed, this issue is a serious challenge since this prospected environment represents

a novel scenario with particular characteristics [1]. Thus, the design of PMs related

specifically with IoD is in its initial steps.

Therefore, some research questions arise. Let us consider a set of well-known

attacks A, and a set of protection mechanisms PM applied as countermeasures in a

traditional mobile network environmentMN T . Also, let us consider an IoD environment

MN IoD, subjected to different attacks from A.

▶ RQ1: Can the protection mechanisms of PM provide the same protection level to

MN IoD when compared toMN T ?

▶ RQ2: If RQ1 is false, is it possible to adapt a protection mechanism ρ ∈ PM,

aiming to enhance the protection level provided to I?
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These questions represent opened challenges in the Computer Networks research

field, specifically, in the security and privacy aspects of IoD. Obtaining the answers to

these questions can bring significant advancements regarding the deployment of PMs

in real-world IoD environments, contributing to the planning and development of this

prospected scenario.

1.2 Goals and Contributions

The main goal of this dissertation is to study the design of Protection Mech-

anisms (PMs) for the Internet of Drones (IoD) paradigm, considering the

particular characteristics of this environment. To address this goal, we conduct a

thorough study regarding the main concepts of IoD and its relationship with other net-

works, what are the attacks that threaten this environment, what are the existent PMs,

and how these mechanisms mitigate the attacks.

This study reveals seven major attacks that can affect severely IoD due to its par-

ticular characteristics: Traffic Analysis Attack (TAA); Software/Hardware Exploitation

(SE/HE); De-Anonymization Attack (DAA); Jamming Attack (JA); Eavesdropping At-

tack (EA); Spoofing Attack (SA); Hijacking Attack (HA). Likewise, we surveyed five ma-

jor PMs that can mitigate the occurrence of these attacks: Location Privacy Protection

Mechanism (LPPM); Automatic Drone Detection (ADD); Anti-Jamming mechanisms;

Anti-Spoofing; and Cryptographic-based mechanisms. From that, there is a need to in-

vestigate whether the PMs meet the IoD characteristics and whether they can offer the

same protection level or even be applied.

From this study, we advance the state-of-the-art in the IoD security/privacy field

on four different fronts. Figure 1.1 summarizes the main contributions of this dissertation.

We describe them as follows.

▶ Guidelines Framework: we propose a framework to guide the design of IoD-related

PMs, systematically. This framework encompasses the definition of the IoD scenario, the

attack modeling, the PMs modeling, the conduction of experiments, and their evaluation.

The design of all the subsequent PMs follows this framework;

▶ Location Privacy Protection Mechanisms (LPPMs): this front represents a

major contribution of this dissertation since LPPMs have not been investigated in the IoD

environment. Our contributions enhanced the level of provided location privacy facing
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Figure 1.1: Related research field and dissertation’s contribution
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Source: Elaborated by the author

both location and identity-based attacks, also mitigating the occurrence of Hijacking

Attack (HA). The contributions involve the design of the following novel mechanisms:

• t-MixDrones: a Mix Zones-based (MZ) Location Privacy Protection Mechanism

(LPPM) for the IoD. This mechanism overcomes the location privacy protection level

when compared to traditional MZ-based approaches, considering IoD scenarios with

dense topology;

• MixRide: an energy-aware LPPM for the IoD. This mechanism handles the energy

constraints of the drones, providing location privacy through the aerial-grounded

vehicle collaboration, where the drones take a ride with grounded vehicles, changing

their pseudonyms while saving energy;

• TDG: a topological dummy-based LPPM for the IoD. We propose TDG for sce-

narios with sparse topology, overcoming the application that lacks the two former

mechanisms.

The three proposed LPPMs have better performance in different environment con-

ditions. Therefore, we also design a Reinforcement Learning (RL) approach for the dy-

namic assignment of PMs in IoD, named IoDAPM. The approach aims to improve the

QoS provided by the network from a transition model of rewards, obtained by previous

mechanism assignments made in the network, considering the environmental conditions.
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▶ Anti-Jamming mechanism: we shed light on the impact of the JA in the IoD,

mainly regarding the drone path planning and, therefore, the drone trajectory. To over-

come these challenges, we propose the IoD-JAPM, an airway-aware protection mech-

anism against JA, ranging from analyzing the airway’s availability to the potential re-

formulation of the drone path planning. IoD-JAPM protects directly against JA, also

mitigating the occurrence of both HA and Spoofing Attack (SA);

▶ Automatic Drone Detection (ADD) strategies: we introduce new approaches to

detect drones in the airspace. Our contributions in this field are twofold. First, we investi-

gate the drone’s propeller acoustic signal as a primary source to automatically detect and

identify drones, demonstrating that this source provides suitable detection/identification

rates when combined with Machine Learning (ML) techniques. Also, we introduce the

dissimilarity concept to detect unknown drones in the airspace through the DissIdent

mechanism. This solution can identify patterns from different features through a smart

workflow involving ML and clustering concepts. Considering that our findings represent

a new front of research, we discuss different techniques that can be applied to enhance

our proposed approaches.

1.3 Dissertation Outline

The remainder of this dissertation is organized into six chapters, described as

follows. Chapter 2 presents the fundamental concepts of the IoD and security/privacy

aspects. Chapter 3 brings an overview of attacks that threaten this environment, and

the existent protection mechanisms facing these attacks. This chapter also proposes a

framework to guide the design of novel IoD-related PMs. Chapter 4 presents the contri-

butions related to the design of novel LPPMs. Chapter 5 brings the contribution related

to Anti-Jamming mechanisms, named IoD-JAPM. Chapter 6 presents the contributions

regarding the design of ADD strategies. Last but not least, Chapter 7 summarizes all

the contributions addressed in this dissertation. Additionally, this chapter lists new chal-

lenges to tackle, shedding light on new research directions regarding the IoD security and

privacy fields.
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Chapter 2

Basic Concepts of the Internet of

Drones (IoD)

This chapter presents the fundamental concepts regarding IoD. Initially, we present an

overview of the current scenario regarding UAV Networks, and the prospection for the

next generation of this paradigm (Section 2.1). After, we state the basic concepts of

the IoD considering it as a layered mobile network [5] (Section 2.2). Section 2.3 brings

the relationship between IoD and traditional mobile networks. After, in Section 2.4,

we present security and privacy aspects involved with IoD. Lastly, we state our chapter

remarks (Section 2.5).

2.1 UAV Networks: Where We Are and Where We

Will Go

Over the years, UAV-related applications changed from single to multi-UAV ser-

vices [12]. They have boosted the usage of Drone as a service (DaaS) in different market

fields, including urban centers, rural areas, industry, and also oceanic environments. These

applications have the potential to bring a new panorama of UAV networks, improving the

people’s quality of life in personal and social aspects [1, 6].

Figure 2.1 illustrates different areas where UAV networks can act. A single drone

can support rural activities by taking aerial images of crops and transmitting them to

cloud systems to process these data by applying AI-based techniques and optimizing

rural tasks[13]. UAVs can also communicate with High-Altitude Platform (HAP) (e.g.,

atmospheric balloons), creating a collaborative aerial network to assist ground operators,

such as in the industry [14]. In this direction, UAVs can collaborate with well-established

ground systems such as vehicular networks. For instance, drones can assist police in

surveillance services [2]. Sensor networks (e.g. Underwater Wireless Sensor Networks
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Figure 2.1: Action areas of UAV networks

Rural area Industrial area Urban area Port area

Source: Elaborated by the author

(UWSN)) can also collaborate with UAV networks, where drones can move fast through

the ocean surface and collect data fast [15].

In the near future, there is a prospection that these services will occur simultane-

ously, leading to an enhanced Intelligent Transportation System (ITS), empowering an

environment where drones will fly over our heads, performing several services in different

areas and from different companies [16]. Therefore, this environment requires a robust, re-

liable, and interoperable network to manage the airspace traffic flow (similar to terrestrial

roads) and also to provide a fair and shareable communication channel.

The emerging of new communication protocols and technologies, mainly the 5G

and Beyond (B5G), leverage drones to a higher level in a such way that drones can play

a crucial role in assisted networks, or even represent a novel mobile network paradigm [2,

12]. Several researchers investigated drone technology acting as a well-structured mobile

network. These studies lead to the concepts of different paradigms, such as Internet of

Flying Things (IoFT) [17] and Flying Ad hoc Network (FANET) [18]. Most of them focus

on communication issues, neglecting the flight policies in aerial space.

However, from an ITS point-of-view, it is indispensable to define properly how

the involved nodes can move, and where they can move. Prospecting a UAV-based ITS

neglecting their flight policies is similar to designing a VANET infrastructure without

considering how and where the ground vehicles will move. Moreover, defining these aerial

policies leads to an unprecedented environment, mainly regarding the security/privacy

aspects, and how to ensure them.

Nonetheless, Gharibi et al. [5] proposed an UAV network model named Internet

of Drones (IoD). This model covers most of the issues discussed above. Therefore, this

dissertation takes IoD as the reference network model. The next section discusses this

model in detail.
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2.2 IoD as a Layered Mobile Network

Gharibi et al. [5] modeled IoD as a cross-layered network architecture to allow

coordinated access to the airspace for drones. This architecture is based on three large-

scale networks: Air Traffic Control (ATC), Cellular network, and the Internet. These

networks achieve some of the goals or functionalities desired for the IoD, in which the

model brings together the advantages of each one. In this dissertation, we consider the

following definitions:

• Internet of Drones (IoD): it is any mobile network environment MN IoD that

involves a set of nodes N and a subset of drones D, such that D ⊂ N . The

network infrastructure related to MN IoD has as the main goal to provide a fair

aerial space to D, where they can perform a set of services DS for different third-

parties networks and their nodes (represented by the IoD users U). The navigation

over this aerial space is modeled as a graph G = (V,E), being managed by a set of

management nodes Z, such that Z ⊂ N . In a nutshell, the proposed architecture

can be described in terms of infrastructure and layers. The IoD infrastructure is

composed of drones, Zone Service Provider (ZSP), and airways.

• Drone: it is a UAV node d ∈ D, such that D ⊂ N , capable of operating in the aerial

networkMN IoD. A given drone d has specific configurations and requirements of

hardware and software, in accordance withMN IoD.

• Zone Service Provider (ZSP): it is a base station node z ∈ Z such that Z ⊂ N ,

providing navigation information to D considering a fairness policy. A given ZSP

z communicates with a set of drones Dz ⊂ D through a shared communication

channel λ.

• Airways: in a computational point of view, the airways represent the edges E from

a graph G = (V,E), being the minimum flyable aerial distance between two nodes

v1, v2 ∈ V such that each node can represent an intersection point between airways,

or a Points of Interest (PoI), such as a recharge station or even restricted airspace

(e.g., airport region).

In a broader scope, each ZSP covers a geographic region, called a zone. However,

two or more ZSPs may stay in the same zone. ZSP follows the governing laws regarding the

airways, intersections, and nodes to ensure a safe and reliable drone traffic flow. Moreover,

a ZSP must be independent of drone companies, and consequently, it can not have access

to the application’s contextual information unless in the cases that the drone allows it. To

manage all this infrastructure, the network assumes a cloud system, connecting the ZSPs
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Figure 2.2: IoD layered network architecture
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and, therefore, allowing communication with each other or with third-party entities over

the cloud. It means that ZSPs provide not only navigation but the main communication

channel for drones.

Figure 2.2a illustrates an example of the IoD infrastructure, where each sphere

represents a node, and each arrow represents an edge. In this scenario, two similar parallel

airways are placed over different altitudes. Considering that different ZSPs will manage

the airspace synchronously, we note that nodes and edges are blue (representing Zone 1)

on one side, whereas they are yellow on the other side, representing airspace coordinated

by a different ZSP. The red stars represent the borders between two zones, named gates.

As drones perform various services, they will have PoIs created in real-time, expressed

through the green objects.

Furthermore, IoD has five layers to ensure flexibility, scalability, and maintain-

ability of the network. Differing from the traditional Internet stack protocol, the layers

are crossed by each other, where upper layers can access lower layers and not just the

layers directly below them. Figure 2.2b illustrates how these layers are organized. Their

expected features are presented as follows.

▶ Airspace: it is responsible for implementing the navigation directives between the

ZSPs and the drones. The expected features covered by this layer are the airways’ map

representation, drone’s location guidance & track, navigation vectors, collision avoidance,
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and traffic anomalies (e.g., weather conditions).

▶ N2N : this layer focuses on the navigation information inside a zone, considering the

graph representation. The expected features consist of zone graph management, node

navigation data sharing, path planning processing, and emergencies decision-making, for

instance, an emergency pathway for a drone that broadcasted an SOS message due to

propellers failure;

▶ E2E : Although the N2N layer handles the navigation management inside a zone,

the E2E focuses on the inter-zones management. Hence, it is expected that this layer

implements the routing of drones between adjacent zones managing the shared access to

the gates, the hand-off of adjacent zones, and inter-zone traffic congestion notifications.

▶ Service: While the three above-mentioned layers focus on management and fair

access to the airspace, the Service layer aims to provide a shared platform where drones

can broadcast their service requirements. For instance, a given drone can notify other

drones that it will perform a service of some corporation in a specific region. As the

message will be encapsulated, only the drones that pertain to the same corporation will

understand the message, through the next presented layer.

▶ Application: As the name suggests, this layer focuses on the applications provided by

drones. From the ZSP point of view, the Application layer is a black box whose content

is decapsulated only by the drones involved in the related application.

As presented in Figure 2.2b, protection mechanisms must ensure the required se-

curity and privacy levels throughout all the layers. A major IoD challenge is that security

is mostly provided for the application layer rather than the lower ones [5]. Furthermore,

drones can demand different levels of privacy, depending on the provided service [7]. For

instance, a drone delivery service may allow the drone’s location at a certain level with

the service customers. On the other hand, a surveillance service must require full cloaking

regarding the drone’s position. Thus, the service-oriented level of security and privacy is

an open challenge in IoD.
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Table 2.1: Comparison between traditional mobile networks and the IoD

Aspect IoD Cellular Vehicular WSN UWSN
Speed High, typically

over 15mps
Slow, less than 5
mps

High (on highways),
over 20mps; medium
(on urban ways),
around 8mps

Slow, typically follow-
ing the integrated de-
vice speed

Slow, following the
ocean/river dynamics

Mobility Varies according
to the applica-
tion

Random Follows the road lay-
out

Typically random Follows the
ocean/river dynamics

Altitude
change

High Small Small Small Medium

Topology
change

High High High Low Medium

Comm. A2A, A2G, com-
monly at the
LoS, outdoor

G2G, environ-
mental obsta-
cles, indoor and
outdoor

G2G, environmental
obstacles, outdoor

G2G, environmental
obstacles, indoor and
outdoor

underwater acoustic
signals, commonly at
the LoS

Processing
power

Medium High High Low Low

Energy con-
straints

High Medium Low High High

2.3 The Relation Between IoD and Traditional

Mobile Networks

IoD is categorized as a mobile network, likewise Vehicular, Cellular, Wireless Sensor

(WSN), and Underwater Sensor (UWSN) Networks. Table 2.1 presents a comparison of

different aspects between these networks. IoD has particular characteristics that differ

from the other networks, representing a novel mobile network paradigm. IoD is unique

in terms of mobility since the drones fly at a high speed over the airspace, being able to

change their altitude several times during the performed service. Also, given a source and

a destination point, a drone’s path planning can be changed with less impact compared

to other networks, such as VANETs. In this case, the ground vehicles must follow the

road layout. On the other hand, the IoD network infrastructure can define new airways

at a minimum cost, allowing drones to perform pathway deviations [19].

Likewise in Cellular and VANETs, the IoD topology changes fast. Also, drones can

communicate with other drones through RF or optical-based Air-to-Air (A2A) channels

as well as with terrestrial nodes through Air-to-Ground (A2G). One of the paramount

IoD communication advantages is the LoS propagation, providing a faster transmission

with less packet losses [1]. However, as well as the nodes of UWSN, drones are spread

over different altitudes, representing a challenging environment in terms of communica-

tion protocols. Furthermore, the communication channel is more susceptible to attacks

compared to the other networks. Although the LoS provides a series of advantages, it

allows the performance of continuing eavesdropping, which can lead to other harmful

attacks, such as jamming, spoofing, and hijacking [9].
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Moreover, drones have energy constraints, which limit their processing power and

flight time [14]. IoD is unique regarding this aspect. As the Cellular and Vehicular network

nodes, drones move fast gathering and exchanging data through embedded devices (e.g.,

cameras, microcontrollers, and a plethora of sensors). However, their battery power is

much more constrained than cars, for instance. Allied with these issues, the drone’s

propellers consume a high amount of power, differing the consumption model from a

node of WSN or UWSN [20].

2.4 Concepts of Security and Privacy in the IoD

Security is a fundamental aspect of computer networks, entailing a set of strategies

and protocols designed to protect digital assets against an extensive range of potential

threats. It encompasses several requirements, such as confidentiality, integrity, and avail-

ability, ensuring the preservation of information, and permitting access solely to duly

authorized entities [9]. Privacy is a paramount security aspect that must also be ensured

in any network. It pertains to the protection of users’ sensitive information, communica-

tion patterns, and location data as they traverse mobile networks [7]. With the ubiquity

of mobile devices, such as smartphones and sensor devices, maintaining privacy is crucial

to preventing unauthorized access, eavesdropping, and data breaches.

Considering the traditional concept of privacy applied to human users, there are

four categories that encompass personal privacy [21]: information, bodily, communica-

tion, and territorial privacy. The first category is related to the personal data that can

be obtained by an attacker; the second concerns the safety of the human body against

not allowed procedures; the third involves the level of privacy in all types of human

communication and; the fourth covers the limits of intrusion on personal space.

These categories can be easily fitted to a UAV instead of a human. However, it is

necessary to consider that, in information and territorial privacy, human (represented by

the user) privacy merges with the UAV since drones carry the user’s personal information

with them. Based on these categories, we define IoD privacy and its four major drone-

centered privacy issues, presented as follows.

• IoD privacy: It is defined as the right of any IoD component – for instance, a drone,

a ZSP, or a user – to decide how, when, and for which purposes their information

could be released to external parties;

• Information-based privacy: It refers to the safety of the drone’s data, for in-

stance, its identity, location, and sensitive information related to the provided ser-
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Figure 2.3: Venn diagram of IoD privacy issues and their relation with the IoD components
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vice;

• Device-based privacy: This category points out the precaution regarding the

IoD devices, roughly, considering the hardware. It also involves the methods that a

drone needs to handle in case of failures or atypical conditions;

• Communication-based privacy: It concerns the information leakage over the

communication protocols between the network nodes;

• Traffic-based privacy: It pertains to the civilian laws and traffic regulations that

must be respected in different scenarios. This category also involves people’s and

places’ privacy, which can be violated by the drone, e.g., a flight over a forbidden

region;

The privacy issues are strictly interlaced with three main aspects of the IoD en-

vironment, which are: the user, whose personal information and intentions are carried

by the UAV nodes and can be stored in a cloud service; the scenario, where the drones

are flying and, consequently, can be damaged or violated by external elements; and the

infrastructure, responsible for ensuring the security of information that is related to the

network.

Figure 2.3 illustrates a Venn Diagram of these relationships. Personal information

leakage directly affects the user and/or a UAV node. It can occur through the scenario –

for instance, physical eavesdropping of a human attacker – or through the infrastructure,

e.g., a Spoofing Attack (SA). Likewise, device-based privacy is related to the three aspects.

The scenario may present factors that affect the drone’s performance. Exemplifying,

adverse weather conditions can damage the UAVs, causing a network rupture. In addition,
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Table 2.2: IoD application aspects and what privacy issues they impact

Application aspect
Privacy Issue

Information Communication Device Traffic

Airspace   
Grounded environment   
Localization   
Communication channel   
Other drones   
Network infrastructure    
Third-party network   
Users   
Sensors and camera     
Operational software    

drones are susceptible to “environment attacks”, such as a hijacking attack in which an

attacker can take down a drone and obtain its data (including user’s information).

Communication-based privacy involves the security mechanisms to keep the ex-

changed data between user vs. infrastructure and infrastructure vs. infrastructure safe.

Aside from data safety, these mechanisms must consider some aspects of IoD. For instance,

a UAV is, generally, an embedded system with energy and fuel constraints. In this context,

the study and application of lightweight communication protocols are mandatory.

Traffic-based privacy is the most changeable category: the civilian and traffic reg-

ulations may vary from city, state, or country. Also, the infrastructure must know these

variations, handling its topology to fit the scenario demands. For instance, consider two

scenarios: (a) a big city with several high-rise buildings; and (b) a small city in the coun-

tryside. In (a) the drone’s altitude is probably the main privacy concern since the people

living in the buildings can be “surveilled” by the drones. On the other hand, this concern

is a minor issue in the (b) scenario.

Privacy issues are also interlaced with IoD applications. Each aspect represents

a target for an ill-intentioned entity that aims to harm the network, as presented in

Table 2.2. Likewise discussed in Figure 2.3, information is a crucial privacy issue, having

the potential to be explored through the majority of aspects, ranging from a simple

localization spot to detected failures over the operational software, that can forfeit a task.

Communication is also a compromised issue by a bulk of application aspects. Each

party that demands a data exchange is a potential target to a malicious attacker through

its communication channel. Device and traffic privacy issues have a smaller number of

aspects that can lead an attacker to affect them. However, information and communica-

tion issues are more critical to the application. Airspace and the grounded environment

impose different conditions on a drone during a service – e.g., a thunderstorm – directly

affecting its hardware integrity and route.
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2.5 Chapter Remarks

This chapter presented the fundamental concepts of the Internet of Drones (IoD).

We formally defined the main components of this mobile environment, and compared the

main aspects of IoD with the traditional mobile networks, discussing the similarities and

differences between them. This comparison reinforced the assumption that IoD is a new

environment with particular characteristics.

Moreover, this chapter discussed the main concepts regarding security and privacy,

linking these concepts with IoD. As presented, the IoD particular characteristics pose

a new scenario from a security/privacy point-of-view, opening a vast research field to

investigate. Due to these issues, several protocols and mechanisms applied to traditional

mobile networks may not be adequate to IoD. For instance, protection mechanisms ensure

security and privacy based mainly on both the environmental characteristics and the

node’s configuration [11].

In the next chapter, we present the main attacks involved with this paradigm, the

current protection mechanisms to avoid these attacks, and why they potentially can not

embrace the IoD characteristics properly, reinforcing the research questions related to this

dissertation.
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Chapter 3

Attacks and Protection Mechanisms

in IoD: Overview and Design

Guidelines

This chapter discusses the attacks that threaten the IoD environment and the existent

protection mechanisms that can potentially mitigate these attacks. From this discussion,

we propose a framework to guide the design of novel IoD PMs.

The chapter is organized as follows. Section 3.1 surveys seven major classes of

attacks that affect IoD. In Section 3.2, we list six groups of potential PMs that can

mitigate the surveyed attacks, and how they can protect the IoD elements. We point

out the main trends and challenges regarding the design of PMs for IoD in Section 3.3.

From this discussion, we propose a framework to guide the Design of IoD-based PMs in

Section 3.4. Section 3.5 presents our chapter remarks.

3.1 Attacks in IoD

In the previous chapter, we discussed security and privacy aspects related to IoD,

considering four drone-centered issues. This new scenario leads us to analyze and classify

UAV-related attacks from a new perspective, surveying the attacks that can deeply affect

the network due to its particular characteristics. It is important to state that, in this

Dissertation, we focus on investigating the attacks that can be favored by these particular

characteristics, highlighting the new challenges imposed by the attacks. Exemplifying, a

replay attack is a type of threat that can occur in UAV networks, however, the considered

IoD model does not cause any changes in how this attack can occur, or even the damage

level caused in the network [4]. On the other hand, Jamming Attack has several differences

in IoD, as will be discussed in Section 3.1.4.

We surveyed seven major classes of attacks that deeply affect IoD: Traffic Analy-
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Figure 3.1: IoD-related attacks taxonomy
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sis Attack (TAA); Software/Hardware Exploitation (SE/HE); De-Anonymization Attack

(DAA); Jamming Attack (JA); Eavesdropping Attack (EA); Spoofing Attack (SA); and

Hijacking Attack (HA). These attacks can be grouped according to the presented behavior,

as passive or active.

▶ Definition #1: Attack behavior Indicates if an attack has the potential to break

some level of privacy and apply damages to IoD by itself (active attack) or if it just

contributes to improving the knowledge about the IoD environment, acting as a passive

attack to an active attack.

Mobile networks, in a general way, can be affected by a variety of attacks, from

different sources and purposes. Due to its characteristics, IoD is more susceptible to

some attacks when compared to other networks. Likewise, some attacks do not present

considerable damage. In the same way, a range of them can be considered as a privacy-

based attack – reaching the sensitive data as the primary goal – and another portion has

the potential to affect privacy, but it is not their goal.

UAV-centered attacks are a serious threat in military environments, leading to the

possibility of government-sensitive data leakage and, in critical situations, a diplomatic

crisis. In 2011, a military drone from the United States was captured by the Iranian forces

in Kashmir city. According to an Iranian engineer interview1, the drone was hijacked

through a JA followed by a GPS Spoofing Attack (GPS-SA), forcing the drone to land

on Iranian’s ground instead of to land on the US military base.

Some attacks are commonly developed using as prior knowledge the results from

another privacy attack. Another important aspect is that they commonly do not damage

the drone device or the infrastructure. In many cases, they are carried out in a “silent

1https://www.csmonitor.com/World/Middle-East/2011/1215/Exclusive-Iran-hijacked-US-drone-
says-Iranian-engineer
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Table 3.1: Main aspects of the IoD-based attacks

Attack
Type Mobility Privacy Issue

Single Multiple Smart Stationary Mobile Information Comm. Device Traffic
DAA     
TAA      
EA        
JA        
SA         
HA        
SE/HE      

mode”, intercepting the sensitive data without the network noticing the attack. Further-

more, an active attack can act as an intermediary to another, improving the effectiveness

of the whole attack. These relations are indicated by means of arrows in Figure 3.1.

Thus, a “workflow” of attacks can be designed. For instance, a TAA can provide network

knowledge serving enhanced information to SA. This attack, in turn, can be used as the

first door to other attacks, such as HA.

Improving our taxonomy, Table 3.1 presents fundamental characteristics regarding

the attacks. The type of an attack α indicates what are the most common ways that α

is performed: if it is performed by itself, in a single way (single); if a variation of α is

applied at the same time in order to improve the effectiveness of the attack (multiple); or

if different attacks are performed together, with different computational methods, having

α as the main attack (smart). Mobility refers to the most common mobile behavior of

the malicious entities related to α. Finally, we also summarize what privacy issues are

affected by α.

In the next sections, we discuss in detail the seven named attacks. Besides the

topics of Table 3.1, for all of them, we introduced a formal definition, its relation with

other mobile networks, its current literature overview, and the challenges involved.

3.1.1 De-Anonymization Attack (DAA)

De-anonymization is a technique that breaks the data’s anonymization regarding

a given entity, such as people and cars. De-anonymization is strictly related to the dis-

covery of identity, also called re-identification. However, the technique does not embrace

the identity only but the interlaced characteristics of each entity. For instance, anony-

mous grounded vehicles can have their identity discovered by analyzing their mobility

behavior [22].
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▶ Definition #2: De-Anonymization Attack (DAA) Let us consider a set of

attackers ADAA ⊂ A, a set of IoD nodes N , a set of IoD anonymized entities Nanon, a set

of cyber tools CT , a bijective function f that maps n→ n′ such n ∈ N and n′ ∈ N ′, and

a bijective function f ′ that maps n′ → n. DAA occurs when ADAA applies CT to get the

function f ′ in a way that f ′ is the inverse function of f . In other words, ADAA tries to

reach the correct relation between the anonymized and the actual data.

The performance of a previous attack is mandatory to perform DAA, generally,

the one that leaks the IoD data at some level. Exemplifying, a SE can be explored to

reveal stored data. Based on this data, a TAA has the potential to aid an attacker in

executing DAA. In turn, DAA is also applied as an intermediary attack. For instance,

it can lead to discovering a specific drone or user, so the attacker intends to direct their

final attack. Therefore, DAA represents a threat to both information and traffic privacy

issues.

DAA has been extensively studied in traditional mobile networks, mainly in Ve-

hicular and Cellular networks. The dissemination of social networks and the LBSN, such

as Facebook, Foursquare, and Waze, also contributes to the improvement of the DAA

model, in which public user information can be combined with their mobility, typifying

a Location Privacy Leakage (LPL). LPL embraces information and traffic privacy as a

“multi-privacy issue” [23].

In the LPL concept, there are a bunch of DAA-based attacks, called Location

Privacy Attack (LPA), whose goal is to de-anonymize the network entities through attacks

over their location. Besides the user and/or vehicle identity leakage, these attacks entailed

the re-identification of sensitive places (called Points of Interest (PoI)), trajectories, and

transportation modes behavior [22, 23] of targeted users.

To our knowledge, there is no study modeling DAA in IoD scenario. It is essential

to clarify that we are considering the attacks that directly affect the IoD nodes/users,

excluding studies that only use data from drone-based services, e.g., re-identification of

grounded vehicles provided by video surveillance of traffic roads [24]. The central aspect

that contributes to this absence is the lack of anonymized drone mobility trace datasets,

either real or synthetic. Hence, developing these datasets represents an excellent research

opportunity, allowing a series of related studies.

As previously discussed, drones do not transport people and, consequently, they

do not lead to IoD user’s mobility. On the other hand, it can have a great relationship

with IoD users. Exemplifying, drone-based delivery services carry people facilities, com-

monly having as the final destination the user location. Thus, supposing that a DAA is

successfully performed over a set of drones, is it implied in de-anonymizing the IoD users?

All these subjects are unexplored areas in IoD, creating a significant challenge to solve.
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3.1.2 Traffic Analysis Attack (TAA)

Traffic Analysis Attack (TAA) is a passive attack whose primary goal is to extract

enhanced knowledge about a network based on data gathered by the node’s mobility. Due

to its particular characteristics, this approach is applied in mobile networks with a high

level of nodes with a well-defined mobility pattern, for instance, Vehicular Networks. As

well as ADD, considering the general context of mobile networks, TAA is not applied as

an attack commonly, being used to improve several aspects of a mobile network and its

environment as a whole [25].

▶ Definition #3: Traffic Analysis Attack (TAA) Let us consider a set of drones

D, a set of attackers ATAA ⊂ A, a set of cyber tools CT , a time interval ∆t, a network

knowledge level kl, and a function f(kl,D, CT ,∆t) that calculates the knowledge gain

regarding IoD to ATAA after ∆t. TAA occurs when f > 0.

In the literature, TAA is an under-investigated IoD-related attack. As presented

in Section ??, Sciancalepore et al. [26] integrated traffic analysis as a primary method

for the automated detection and identification of drones. Several collected network data,

such as the number of packets and the inter-arrival time, are used to classify and predict

different aspects regarding the network nodes’ traffic.

The lack of well-established airways in practice is a fundamental aspect that con-

tributes to the absence of studies that embrace TAA. Traffic analysis becomes a challeng-

ing task without traces of real-world drones, and consequently, TAA can not be studied

thoroughly.

3.1.3 Eavesdropping Attack (EA)

The cyber Eavesdropping Attack (EA) exploits the communication link between

two or more network nodes, violating the network reliability. In an unauthorized way,

a malicious node infiltrates a network through some communication vulnerability and

monitors the data exchange. In the same way as JA, an eavesdropping attack can also

be applied as a protection mechanism, discovering and avoiding malicious users over a

network [27, 28].

▶ Definition #4: Eavesdropping Attack (EA) Let us consider a set of attackers

AEA ⊂ A, a set of IoD nodes N , a communication link λ, a network knowledge level
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Figure 3.2: An example of EA being performed

Source: Elaborated by the author

kl, and a function f(A′
EA,N ′, λ, kl), such A′

EA ⊂ AEA and N ′ ⊂ N , that calculates the

knowledge gain of the network during the communication. The EA occurs when f > 0,

which means, a communication among nodes was successfully intercepted, improving the

attacker’s knowledge.

Figure 3.2 illustrates an example of EA carried out by two malicious entities – a

drone d1 and a grounded attacker d2 – over a set of network devices, the base station

n1 and the drones n2, n3, and n4. The green circles represent the communication radius

range of transmitters n2 (on the left) and n1 (on the right). We can note that d1 is inside

the communication area of n2 and, thus, can perform an EA. Similarly, d2 is inside the

n1 communication range. We assume that both d1 and d2 get unauthorized access to the

IoD network.

Acting directly over network communication, EA represents a severe threat to

information privacy, in which sensitive data can be intercepted. Eavesdropping is a well-

explored approach in traditional networks.

Following this, many proposals considered that the EA model presented an evolu-

tion regarding its target based on the communication channel. Another important evident

aspect observed is the single attack modeling. The studies of Xiao et al. [29] and Khan et

al. [30] are the only ones that perform an attack and have as target a Drone-to-Everything

(D2X) communication. This latter exploited untrustworthy parties where personal data

can be eavesdropped on aiming to perform active attacks, such as hijacking.

Among those studies, five of them have as a target a D2I communication. Liu et

al. [31], Liu et al. [32], Zhang et al. [33], and Fan et al. [34] modeled the attack occurring

over a communication channel (the first and second studies considered a wiretap channel)

in which the attacker is a stationary grounded node. Similarly, Ma et al. [35] presented a

model with stationary grounded eavesdroppers. However, the scenario consists of a UAV-
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enabled mmWave relaying network in which a link is disconnected, and the communication

occurs through a selected relay.

The communication between drones (D2D) as a target was explored in the prelimi-

nary study of Hoang et al. [36], where a single communication between two actual network

drones has eavesdropped through an unauthorized drone. With a more robust model, Liu

et al. [37] considered a drone swarm scenario. In this model, drones as eavesdroppers try

to exploit the communication of several drones (acting as transceivers). In contrast, a

swarm of drones acts as intermediate drone relays, assisting the communication among

the transceivers.

EA’s research also investigated Drone-to-Ground (D2G) communication in which

the grounded nodes are not part of the infrastructure. Cui et al. [38] considered an

attack model where a drone communicates with mobile grounded nodes susceptible to

eavesdroppers on the ground. The application of drones as a base station of wireless

networks (UAV-BS) is a current research trend. Kang et al. [39], Lei et al. [40], Cheng

et al. [41], and Wu et al. [42] modeled an attack scenario in which wireless users act as

eavesdroppers in random positions under a UAV-BS coverage area. Also, Kang et al. [39]

considered the presence of buildings and solid obstacles in the coverage area, simulating

an urban scenario.

Included in the eavesdropping context, there is a specific variation of attack called

Man-in-the-middle Attack (MiMA), whose goal is to intercept a legitimate communication

between two nodes, disrupting the actual connection and acting as an intermediary point.

MiMA can actively modify the sensitive data transmitted without the nodes’ awareness.

MiMA represents a severe threat to IoD regarding information and communication issues.

However, only some studies consider this attack with a defined model, as in the attack

types above [43]. In both studies, the attacker is assumed to be powerful enough to read,

modify, and replay the intercepted messages. The central aspect that can lead to this lack

of knowledge is that the IoD topology is very dynamic, with drones moving in different

altitudes at a high speed, which can make the performance of MiMA. Notwithstanding,

MiMA is an attack that deserves special attention and further investigation since it can

significantly affect IoD privacy.

3.1.4 Jamming Attack (JA)

Jamming Attack (JA) is a type of Denial of Service (DoS) that occurs when a set of

devices neutralizes communication between network nodes by flooding the network com-

munication channels. The main goal is to ensure that any node cannot use the network,
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hampering the provided service. JA is a threat to IoD privacy regarding communication

and traffic issues since it can hamstring the communication channel and, consequently,

influence mobility and the drone’s traffic [44].

▶ Definition #5: Jamming Attack (JA) Let us consider a set of attackersAJA ⊂ A,
a set of drones D, a threshold τ , a communication link λ, and a function f(A′

JA,D′, λ),

such that A′
JA ⊂ AJA and D′ ⊂ D. The function f calculates the flooding caused by A′

JA

in λ. JA occurs when f ≥ τ , indicating that there is no possibility to the IoD nodes to

communicate.

From a device point of view, a drone can be used as a jammer device to hamper

the communication of different mobile networks. Likewise, a drone-based network can be

exploited by a jamming device. In the literature, JA has been investigated in the IoD

context. Recently, some studies have explored this area, improving the state-of-the-art.

Some studies investigated JA in a broad scope: Xu et al. [45] modeled a JA with

a smart jammer, adjusting its strategy adaptively; Li et al. [46] discussed two varieties

of jamming attacks based on the speed of the malicious drone. On the other hand, some

studies focused on specific UAV scenarios. Xiao et al. [29] modeled JA, focusing on D2I

communication. Van den Bergh and Polin [47], as well as Gupta et al. [48], described the

drone’s susceptibility regarding a Global Navigation Satellite System (GNSS) jamming.

Sliti et al. [49] investigated JA considering Optical communication.

Several studies investigate how an attacker affects the drone’s mobility [44, 50, 51,

52]. Overall, they discussed the difficulties faced by a jammed grounded base to planning

the trajectory of drones first, explaining how a malicious drone can nullify the benefits of

a network with a multi-path routing protocol, and showing how D2I communication can

hamper the drone’s mobility and its power consumption.

Regarding the attack type, most are focused on performing a JA only, demonstrat-

ing punctual investigations that consider the specific characteristics of the attack. On the

other hand, inspired by the advent of Software Defined Network (SDN), there are propos-

als [29, 45, 46, 50] that exhibited an innovative approach in which the malicious entity

has an attack pool and different parameters that are considered to perform a proper JA

over the network. Various aspects are considered in the smart choice method, such as

the environment communication power [29, 50], the attacker’s ability to infer the location

and time of a drone’s transmission [45], and the drone’s speed [46].

Mobile jammers are investigated in most proposals to model a realistic scenario,

trying to nullify the network communication at different levels. The studies that state a

stationary jammer only justify this mobility pattern by considering that their main goal is

to hamper the network, centralizing the attack on the ZSP component whose mobility is

also stationary. An important aspect is that only two studies have considered stationary

and mobile jammers [46, 47].
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Figure 3.3: An example of SA being performed
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Source: Elaborated by the author

3.1.5 Spoofing Attack (SA)

Spoofing Attack (SA) is a kind of network falsification where a malicious attacker

pretends to be an authorized network node or an authorized network service. Figure 3.3

illustrates an example of SA, where two malicious drones, d1 and d2, falsify their identities

as authorized nodes/services in the network. Drone d1 pretends to be n2 when communi-

cating with n1 and tries to obtain sensitive data regarding the network. Meanwhile, the

drone d2 performs a GPS-SA, acting to provide the GPS service originally provided by

s1. Thus, d2 can change the planned path of n3.

▶ Definition #6: Spoofing Attack (SA) Let us consider a set of attackers ASA ⊂ A,
a set of drones D, and a set of services DS that can be provided by D or a third-party

network service. The SA occurs when an attacker α ∈ ASA falsifies its identity iα in which

a node d ∈ D believes that α ∈ D or α ∈ DS.
SA is a critical threat to IoD privacy, in which sensitive information can be leaked

or changed through communication disruption. The most exploited network target is the

GPS signal. The GPS-SA is one of the most imminent threats against civilian drones since

most GPS services have no protection mechanisms used on the transmission signal [53]. A

malicious entity can perform other attacks through this attack, such as hijacking drones,

transmitting fake GPS signals, and forcing a drone to land on a suspicious field.

Shepard et al. [53] presented the first comprehensive study of GPS-SA, discussing

that this attack is effective over the civil GPS signal when the attack has previous knowl-

edge regarding the GPS signal. In this study, the authors discussed different devices that

can perform the attack and the attack architecture, including various strategies based on
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the drone’s distance. Until then, there was no defense mechanism against GPS-SA, a

high-priority study to be studied in the security context. The SA model established in

that study was widely adopted in subsequent proposals investigating SA and protection

mechanisms to avoid it [54, 55, 56, 57, 58, 59].

The attack type and mobility of the SA model are similar in most GPS-SA studies,

which demonstrates once again the influence of Shepard et al. [53]. The attacker entity

is represented as a stationary GPS spoofer, performing a single GPS-SA attack over

drones inside the coverage attack area. The study of Zhang et al. [58] is the only one

that models multiple attacks with a mobile spoofer, considering a malicious drone that

performs eavesdropping and a GPS-SA. Another prominent aspect is that the attack is

executed over a single drone. Huang and Wang [56] and Eldosouky et al. [60] improve

this aspect by attacking simultaneously in a group of drones.

Two relevant studies exploit different targets. As presented in Section 3.1.4, Xiao et

al. [29] modeled an attack that can perform an SA based on previous knowledge obtained

in an eavesdropping attack. In this model, the spoofer communicates with a targeted

drone, masquerading its identity to obtain sensitive information about the network and/or

the specific drone. Davidson et al. [61] exploited the downward-facing optical flow camera

used by some drones to stabilize the flight. To perform this attack, an attacker needs to

cover and spoof three main aspects: the environmental influence, in which the attacker

must be able to alter the appearance of the ground plane that the optical flow camera

captures; the plausible input, referring to the attacker’s influence over the environment

to induce a sensor’s reading used as valid input; and the meaningful response, meaning

the control that the adversary has over the device.

3.1.6 Hijacking Attack (HA)

Being one of the most dangerous threats to IoD, the Hijacking Attack (HA) tries to

control a specific drone, forcing it to move to an attacker’s geographic location of interest.

A primary attack is commonly necessary to accomplish the hijack, for instance, a JA, a

SA, or an EA (or all).

▶ Definition #7: Hijacking Attack (HA) Let us consider a set of attackers AHA ⊂
A, a set of drones D, a set of preliminary attacks Ω, a geolocation dest that represents

the drone’s final destination, and a function f(Ω,D′, dest), D′ ⊂ D, that indicates a new

calculated region dest′ to drones D′. The HA occurs when f ̸= dest, in other words, there

is a change of the actual drone’s destination, indicating an interception.
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Figure 3.4: An example of HA being performed
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Figure 3.4 illustrates an example of HA in which an attacker intercepts a drone,

pretending a localization L′ instead of the actual localization L. In this situation, a

GPS-SA is accomplished as an intermediary attack to manipulate the drone’s location.

HA demands a great effort from the attacker, requiring a series of favorable factors

in a specific time interval to accomplish it. Considering military tasks performed by

drones, this kind of attack has profound intentions, in which the attacker tries to hijack

the drone to obtain governmental data or even destroy him. In civilian contexts, HA

still demands a great effort to be accomplished. However, the attacker’s intentions vary

according to the application context and target.

Over the years, different studies have investigated HA in the civilian context. Cur-

rently, HA is performed following an approach in which the attack model considers differ-

ent factors, chooses a set of intermediary attacks to take control of the drone, and hijacks

the device. The other two prominent aspects pointed out in the table are the stationary

behavior of an attacker and the GPS signal as a primary target of exploitation. Unlike

others, Mendes et al. [62] is the only one that discussed the possibility of performing an

HA using a support malicious drone in addition to the grounded attacker.

As discussed in Section 3.1.5, most GPS services have no protection mechanisms

used on the transmission signal, which leads to a concentration of attacks. Several stud-

ies [55, 62, 63, 64, 65] showed how the GPS-SA leads to a HA

Besides the GPS-spoofing, both the communication channel and malicious soft-

ware are well-explored means to perform HA. Mototolea and Stolk [66] investigated the

DSM2 radio protocol aiming to achieve an attack over small drones. Daubert et al. [67]

explored Telnet and MAVLink protocols with the same objective. Some studies investi-

gated the failures and vulnerabilities of specific devices. Pleban et al. [68] described an

HA performed over the AR.Drone 2.0 by exploiting security vulnerabilities, such as port

scan and backdoor software, and combining different cyber attacks. Kang and Joe [69]

explored the Erle-Copter drone through communication link exploitation. Similarly, Jares
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and Valasek [70] described an HA through the communication feedback signal. The ad-

versary performs the attack by changing the feedback signal to send a false state to the

victim. Thus, the drone goes to the attacker’s target state rather than the original one.

Analyzing the current scenario of IoD, its applications, and the literature, there is

a lack regarding the HA as a threat to delivery services. Besides the risk of the drone’s

hijacking, the packages are also an attacker’s target. This factor leads to a novel approach

to theft, in which an attacker stoles the goods carried by the drones.

3.1.7 Software and Hardware Exploitation (SE/HE)

Software / Hardware Exploitation (SE/HE) mainly aims to exploit network data,

affecting both information and device privacy issues. They are the “first door” to cyber-

attacks, exploring previous network infrastructure failures. This aspect makes SE/HE

a complex threat to counter since its traceability is harder to detect and has a broad

attack range. For instance, if a drone’s operational software is released with a backdoor,

all IoD applications that have this drone as a device are affected by an SE. Likewise,

if a drone’s radio transceiver presents a factory defect, it can be explored to break the

network’s privacy.

▶ Definition #8: Software Exploitation (SE) Let us consider a set of malicious

attackers ASE ⊂ A, a set of IoD nodes N , a set of drone-related softwares DS, such that

∀n ∈ N DS is part of n, a set of cyber tools CT , and a function f(CT ,DS,N ) that

calculates the level of information privacy leakage regarding N . SE occurs when f > 0,

which means, ASE develops or changes a software s ∈ DS in a way that the network

information is leaked in some level.

▶ Definition #9: Hardware Exploitation (HE) HE can be defined similarly: let

us consider a set of malicious attackers AHE ⊂ A, a set of IoD nodes N , a set of drone-

related hardware components DH, such that ∀n ∈ N DH is part of N , a set of cyber

tools CT , and a function f(CT ,DH,N ) that calculates the level of device privacy damage

regarding N . The SE occurs when f > 0, which means, AHE develops or changes some

behavior of a hardware h ∈ DH in a way that it is damaged, affecting the network.

The literature presents some reports regarding using SE as an intermediary at-

tack of HA. Kang and Joe [69] described the exploitation of backdoors and port-scan of

AR.Drone 2.0 and Erle-Copter, respectively. The oneCase Cheerson CX-10W, DJI Phan-
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tom 3, and Hawkeye II 2nd FPV Quadcopter are also devices with software failures [71].

If these devices have some hardware failure, it can be explored through the previous SE.

SE is not limited to drone software. Malicious software stemming from a third-

party client can also intercept sensitive data from an attacker or even cause damage to

the network. Considering that the IoD is strictly related to the IoT and has data storage

in the cloud, if a SE is performed successfully on the cloud side, an attacker can obtain

all services’ vital information, including the user preferences and the mobility traces of

the drones.

Desnitsky and Kotenko [72] investigated the application of both SE and HE, aim-

ing to hamper the drone device through energy depletion attacks, whose focus is to exploit

its autonomy through the wasting of the communication channel and/or its motor move-

ments. They discussed the different targets to perform this attack, which include the

primary drone’s movements, namely, takeoff, landing, and free flight; as well as the ob-

struction or overload of communication channels through intermediary attacks, such as

Jamming Attack (JA) and Spoofing Attack (SA) (described in sections 3.1.4 and 3.1.5,

respectively).

SE and HE are even a serious threat to other mobile networks. Hasrouny et

al. [73] pointed out that VANETs are susceptible to SE and HE, where data integrity and

authenticity can be violated, mainly through malware injection over the vehicle’s main

system. Ferrag et al. [74] highlighted that some cellular network protocols are vulnerable,

allowing privacy data leakage. The same aspect occurs in WSNs and, considering that

there are e-health WSNs, SE and HE represent a high-priority threat to be handled.

3.2 Protection Mechanisms for IoD: Do We Need to

Reinvent the Wheel?

Every network paradigm must take into account its associated security require-

ments to become a safe and robust environment and protect its infrastructure and users.

There are fundamental concepts that define and specify all these requirements, such as

availability, integrity, and confidentiality [9]. In the previous section, we presented which

attacks threaten the IoD environment and which elements they affect, potentially. Thus,

in this section, we focus on the existent PMs to mitigate these attacks.

Firstly, we present in detail which elements demand protection, grouping them into

four different categories and highlighting their relations. As previously discussed, some

attacks can occur not in IoD only, but also in other mobile networks, for instance, the
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JA and SA. Likewise, there is a range of protection mechanisms to avoid these attacks in

different network paradigms. Thus, we highlight one of the fundamental questions of this

dissertation: can these existent protection mechanisms provide an adequate protection

level in IoD? Do they fit in this novel environment properly?

3.2.1 Elements to Protect in IoD

Considering the recent advancements of IoD [1, 4, 9], this network paradigm has

several elements that demand protection. They can be summarized into four categories:

device, communication, environment, and information. These elements have several re-

lationships, which can influence the required level of security and how the protection

mechanisms must be designed.

Table 3.2 presents the elements that demand protection and their relationships,

denoted through the black dots. Each row has an element, which is associated with

a label. Each black dot arranged in its row indicates a relationship with a previously

defined element, labeled by the top of the column. In this way, it is possible to find

relationships between previously described elements and the next ones. For instance, the

Battery element (D2) is related to the Sensors element (D1), defined earlier. Looking at

the column with its label, D2, it is possible to find the other relationships with the other

elements of the Device and the Communication categories, besides the Trajectory, Data

Storage, and Data Processing elements.
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▶ Device: this category embraces the protection of both hardware and software of

the entire network. It is necessary to ensure that the embedded devices (from drones to

other nodes, such as base stations) work according to the manufacturer’s specifications

and what action must be taken in case of malfunction. Likewise, the drone application

services must meet the invasion-proof criteria, ensuring a proper security level for the

drone. Moreover, it is expected that the drone has applications exclusively dedicated to

communicating with the ZSP, demanding a high-priority security level. The battery has

relationships with all the other elements, highlighting that any battery’s failure or even

an abnormal power consumption can malfunction the other devices.

▶ Traffic: here, we highlight the elements beyond drones that can be affected by

the drone’s traffic, such as aerial animals, weather conditions, and those representing

network nodes: industrial vehicles, buildings/stations, and people. Likewise, the drone

must protect these elements, avoiding harming them. For instance, if a given drone

presents a malfunction when flying, how to prevent it from falling over a person? The PoIs

and the trajectories are central elements influencing the drone’s trajectory. Therefore,

they also affect the other mobile nodes since they communicate with the drone.

▶ Communication: it is associated with the communication channel requirements that

demand a higher security level, ranging from the physical to the upper layer. It in-

cludes the proper configuration for transmitting and receiving messages, ensuring that

the transceivers will process them accordingly. Furthermore, it is necessary to encrypt

the communication channel and authenticate the involved parts as best as possible, avoid-

ing malicious entities taking advantage of the exchanged messages. These elements are

totally tied with the battery device since the SWaP limitations demand the development

of lightweight protocols. Furthermore, communication security is related to all environ-

mental mobile nodes. If the communication channel is violated, so are the mobile nodes

of the network.

▶ Information: it is a valuable item that demands protection. Besides the commu-

nication based policies, information must follow privacy guidelines. For a given drone’s

service, it is necessary to define what level of location and other sensitive information can

be shared from both drone and third-party users, which affect their security. Furthermore,

the IoD system needs to have well-defined approaches to storing and processing the data,

ensuring a proper security level for all network components.

In this section, we summarize six different categories of PMs: LPPMs, ADD,

anti-jamming, anti-spoofing, cryptographic-based techniques, and air traffic regulations.

ADD and Air traffic regulations focus on UAV-based networks. Anti-Jamming, Anti-

Spoofing and cryptographic-based mechanisms provide protection for different mobile
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Table 3.3: Protection mechanisms and what element groups they protect

PM / Elem. Group Device Traffic Communication Information

LPPM    
ADD   

Anti-Jamming   
Anti-Spoofing    

Cryptographic-based    
Air traffic regulations  

networks, including UAV-based ones. However, LPPMs have not been designed for IoD

yet, representing an open challenge.

Together, these categories can cover the element groups that demand protection,

as presented in Table 3.3. Furthermore, these mechanisms can mitigate the discussed at-

tacks, as shown in Table 3.4, where a half-filled circle indicates partial protection against

the attack, and a full-filled circle indicates complete protection against a given attack.

We discuss each PM in the next sections, extending the discussion regarding the afore-

mentioned tables.

3.2.2 Location Privacy Protection Mechanisms

Location privacy is a fundamental concern in mobile networks. Since a mobile

node commonly shares its location to obtain information from an LBS, it is vulnerable

to being leaked. It can cause severe damage to the network, exposing sensitive data of

them, such as their identity, and spatial and temporal location. Location privacy is a

well-studied area in mobile networks, such as VANETs. Different privacy models have

been developed to ensure data confidentiality. On the other hand, several threats related

to localization can break the protection mechanisms, such as TAA.

Due to IoD being an envisioned scenario, there is a lack of studies regarding loca-

tion privacy in this environment [1, 7]. However, location information is omnipresent in

IoD. Considering the prospection that this environment will spread over urban and rural

scenarios, it is mandatory to investigate the current Location Privacy Protection Mech-

anisms (LPPMs) and whether they meet the IoD characteristics. Although there are no

LPPMs designed for IoD, specifically, we discuss four well-studied categories related to

this type of mechanism, referring to the other mobile networks.

▶ Anonymization-based LPPMs: Several mechanisms are based on the node’s

identity change using pseudonyms. They are based on the k-anonymity concept, whose
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Table 3.4: Protection mechanisms and what attack categories they can mitigate

PM / Attack TAA DAA SE/HE EA JA HA SA

LPPM G#  G# G# G#
ADD G# G# G# G#
Anti-Jamming  G# G#
Anti-Spoofing G# G# G#  
Cryptographic-based G# G# G# G# G# G#
Air traffic regulations G#

idea is to avoid an attacker to identify individuals from a small subset of their attributes,

diminishing the probability of re-identification and, therefore, their location [11].

A classical anonymization-based LPPM is Mix-Zones [75], whose goal is to change

the pseudonyms when k nodes enter and leave a geographic region r at a close time

interval. When a node is inside the Mix-Zone, it cannot communicate with nodes outside

the zone. From an attacker’s point of view, Mix-Zones cause “confusion” in the track

of both node’s identity and location since the trajectories before and after the zone are

“unlinked”. They are well investigated in traditional networks, mainly VANETs [75, 76,

77, 78, 79].

Two questions regarding the design of Mix Zone-based mechanisms are: Where are

the best regions to place a Mix Zone? ; and How many Mix Zones are necessary to provide

proper location privacy? They represent the problem known as the Mix Zone Placement

(MZP) [80]. Typically, the current mechanisms place Mix Zones in regions where a con-

siderable concentration of nodes throughout a specific time interval. In VANETs, for

instance, they are placed near road intersections controlled by traffic lights [76]. However,

these places do not exist in an IoD environment. Furthermore, the concentration of drones

can vary depending on different factors, such as the drone’s task and the density of the

drone’s traffic.

▶ Spatio-temporal obfuscation: This strategy also considers the k-anonymity con-

cept to “increase” the granularity of spatial information instead of the exact location.

Thus, a node reports its approximated location area. If two or more nodes are near each

other, they can report the same place, creating cloaking regions, and obfuscating their

actual position. Therefore, an attacker can not obtain the location of nodes with high

accuracy. There is a range of obfuscation-based mechanisms designed for traditional net-

works [11], and most of them apart from a seminal study that introduced the l -diversity

concept [81]. This approach considers at least l different geolocations to create the k-

anonymity group. Thus, is harder for an attacker to assume where each anonymized user

is since the locations are distant enough from each other. Nonetheless, the l selected ge-

olocations must be semantically coherent, allowing the mechanism to be able to provide

an adequate level of privacy.
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▶ Dummy-based mechanisms: These mechanisms aim to generate a group of

dummy queries simulating fake nodes so that third-parties servers, e.g., a malicious LBS,

cannot distinguish the real node. Also, they are well investigated in traditional networks,

but there is no study regarding these mechanisms in IoD [82, 83, 84, 85]. They are strictly

related to environmental factors, mainly the communication model, and both the node’s

trajectory and traffic flow. As discussed, IoD differs from the other networks regarding

these characteristics.

▶ Protocol-based mechanisms: Differing from the above categories, a protocol-

based mechanism aims to provide location privacy without modifying the node’s data [86].

Its premise is to apply a node-to-node privacy protocol, based at most on the nodes’

proximity. LPPMs included in this category have the best privacy performance in ad hoc

mobile networks. Considering the IoD, protocol-based mechanisms require an accurate

study. They are commonly based on cryptographic protocols that demand a significant

power of processing while drones have SWaP constraints.

3.2.3 Anti-Jamming Mechanisms

Over the years, JA has been countered in different wireless and mobile networks

through anti-jamming mechanisms [87]. Likewise, some studies assess these mechanisms

for UAV-related networks [44, 51, 88]. These works analyzed how JA interferes in the

drone’s trajectory, discussing how UAVs communicate with grounded nodes and can suffer

a jamming signal from a grounded, stationary source. QoS represents a key aspect of

designing anti-jamming mechanisms, in which communication throughput and delay are

main requirements considered.

Commonly, anti-jamming strategies model the jamming threat as an optimization

problem, designing a trajectory planning method to optimize the drone’s position in the

airspace dynamically, introducing new concepts (e.g., slack variables allied to two-block

coordinate descent (BCD) algorithms [51]) to solve it sub-optimally, which improved sig-

nificantly different QoS requirement levels. Drones are also considered as a relay commu-

nication node in other mobile networks (such as VANETs) in the model of anti-JA [89].

Recently, Machine Learning-based strategies have been considered for intelligent anti-

jamming mechanisms for UAV-based networks [88, 90], being based on reinforcement

learning and federated learning approaches.

None of these approaches considered an environment with a robust and inter-

operable network where the drones fly following well-defined airways, as designed in the
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IoD concept. The constrained flyable airspace designated by the airways is a prior re-

quirement that was not considered in the previous works. All studies assume that the

drones can fly freely over the airspace and, consequently, regions free from the action of

the JA can be reached. However, drones have limited airspace to fly in IoD. Given that an

airway is affected by a JA in which it does not have a flyable region free from the attack,

the drone’s path planning must be reformulated. Considering the current solutions, for

instance, the trajectory optimization proposed by Wu et al. [51], the drones trajectory

will deviate aiming to optimize its transmit power and the minimum delay considering

the original path planning. However, this deviation can lead the drone to invade other

airways that were not originally in its flight plan. These aspects pose severe risks to

the availability and integrity of other drones since collisions can occur, representing open

challenges to be solved.

Furthermore, it is expected that a given airway has a constant traffic flow in a

real-world environment. Inductively, the identification of a compromised airway leads to

a path planning reformulation of all drones that will fly over this airway. The system must

handle these issues and communicate with the affected drones as soon as possible. These

aspects pose serious risks to IoD, mainly regarding the drone’s availability, representing

open challenges to investigate.

3.2.4 Automatic Drone Detection

Nowadays, government entities have been expending efforts to regulate airspace

(e.g. the Remote ID rule [91]). However, the lack of a standardized flight policy facilitates

the presence of unauthorized drones. Although these unauthorized drones may just be

flying with no intention to cause damage, they can be malicious entities, performing

passive attacks, for instance, eavesdropping communication, or causing serious damage,

such as UAV hijacking.

In addition to human vision-based drone recognition, there is a wide range of

phenomenologies to detect a drone as well as the technologies that use them. As phe-

nomenologies, we have the reflectance of photons and radar, acoustic and electromagnetic

emission, and the induced magnetic field. The technologies consist of passive visible and

thermal imaging, active time of flight systems, acoustic-based sensors, Radio Frequency

(RF) and radar-based systems, magnetic detection systems, and human intelligence. Over

the years, the drone automatic identification problem has been improved with the explo-

ration of smart approaches integrated with traditional technologies and methods, such as

the use of Deep Learning algorithms [26, 92, 93, 94].
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It is important to state that ADD is composed of two different tasks: (i) detection,

in which an environmental element is detected as a drone; and (ii) identification, referring

to what kind of drone is the detected one. The identification can occur in a general way,

where the proposed mechanism just infers if the element is a drone and, moreover, if it is

authorized to fly in that space. On the other hand, identification can be comprehensive,

informing the drone’s brand, number of motors, distance, and others.

ADD acts in the “front” of protection, trying to identify an anomaly in the IoD

(in this case, an unauthorized element). Hence, this approach provides partial protection

facing a range of attacks, as described in Table 3.4. Nonetheless, other actions must be

taken when ADD detects some unauthorized element. These methods can be very useful

to avoid aerial animals since an ML-based model can be trained to differentiate drones

from aerial animals [95]. Furthermore, ADD is a key mechanism to avoid early attacks

performed by unauthorized drones with a significant impact in IoD, such as EA and SA.

Identification is not a task handled by the majority of the studies. It means that

the proposed techniques aim to detect the presence/absence of a drone in the environ-

ment, but do not concern with accurately identifying what a drone is. However, in a

real-world IoD environment, there is a prospection that several models of drones from dif-

ferent companies will fly cooperatively. Hence, the correct identification of drones will be

mandatory to avoid properly malicious ones, which demands the investigation of robust

protection mechanisms.

3.2.5 Anti-Spoofing Mechanisms

SA targets the GPS signals, mostly. Considering that drones will fly without a

human controller in IoD, these signals are vital to the drone’s flight over the airways,

requiring accurate protection. The current anti-spoofing mechanisms are mainly based

on signal processing techniques. Autonomous integrity monitoring techniques have been

applied to ensure safer navigation to UAVs [96, 97, 98]. They assess the availability

performance of the GPS signals by calculating the protection level on-the-fly, which is the

radius of a circular area centered around the position solution [97].

Furthermore, ML-based techniques can mitigate significantly the occurrence of SA

in UAV-based networks [59, 99, 100]. These studies consider the environmental aspects

where the drones are involved in terms of the GPS signal, for instance, jimmer, shimmer,

and frequency modulation. Apart from the detected environmental factors, the best ML-

based method from a pool of models, such as K-learning, and SVM.
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3.2.6 Cryptographic-based Mechanisms

Currently, cryptographic-based mechanisms embrace a wide range of methods to

ensure authentication, mainly, providing a high level of security. Commonly, these mecha-

nisms protect the communication channel. Differing from LPPMs, several studies designed

drone-centered cryptographic protocols. Most of them consist of key agreement schemes,

involving both the drones and authority entities [30, 101, 102].

Considering the range of trending technologies in recent years, blockchain is un-

doubtedly one of the most successful cryptographic-based approaches, being applied in

several fields. Blockchain consists of a distributed system based on the mutual trust be-

tween the parties applying different concepts, such as hashing, smart contracts, consensus

protocols, and public and private keys [103]. In the UAV-based networks, blockchain

can ensure security and privacy in several ways, also in some aspects already discussed:

mitigating jamming signals; detecting possible hijacking situations; avoiding collisions;

authenticating the involved nodes; and protecting data dissemination [103].

Compared to traditional network environments, most state-of-the-art authentica-

tion techniques do not fit appropriately in IoD requirements since drones have SWaP

limitations. Cryptographic-based mechanisms demand a significant computational ef-

fort that can compromise the drone’s energy efficiency. Hence, IoD-based authentication

mechanisms must take into account this issue, verifying previously if the mechanism rep-

resents a lightweight approach in terms of computational processing, affecting as less as

possible the drone’s autonomy to perform a given service. Recently, novel approaches

have been proposed to overcome these issues. A technique that has gained attention is

the Physical Unclonable Functions (PUF) [104]. According to its hardware features, it

represents a unique and “unclonable” physical identity of a device. PUF can provide

reliable authentication for D2X communications.

3.2.7 Air Traffic Regulations

As grounded vehicles that follow transit laws, drones must move under air traffic

regulations in an ITS environment. Since drone usage is an emerging area, the rules

regarding a robust drone’s air traffic are in the initial steps. A reference entity for air

traffic is the Federal Aviation Administration (FAA) in the United States. Nowadays,

the FAA has proposed some advances toward uniform unmanned aircraft system traffic

management. For instance, FAA announced the implementation of the Remote ID, a
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framework followed by an in-flight drone to provide identifying information that other

parties can receive [91]. Technically, Remote ID consists of a standard message that

drones have to broadcast from their takeoff to the shutdown. The following elements

compose the standard Remote ID message:

▶ Unmanned Aircraft (UA) ID: it refers to a unique ID for the drone, being its

serial number or a session ID;

▶ UA and Control Station Location: it is composed of the latitude, longitude,

altitude, and velocity for both the drone and the control station;

▶ Emergency Status: when a drone has some anomaly, or it is in a risk situation, it

flags an emergency in this data;

▶ Time Mark: this data is given by a synchronized timestamp of the system;

The message’s broadcast must occur periodically, with a maximum time interval

of 1 second. Also, the guidelines define the Industrial, Scientific, and Medical (ISM)

frequencies band to be used in the available communication channel. Regarding the

Remote ID deployment, there are two ways to meet the requirements. Firstly, the drone’s

manufacturer can build a drone with a built-in standard remote ID capability that follows

the final rule’s requirements. Otherwise, an individual Remote ID’s broadcast module

must be attached to the drone. Thus, the company side that is operating the drone can

be able to see the vehicle at all times during the flight. Furthermore, a drone can operate

without the Remote ID broadcast when it is flying over FAA-recognized identification

areas, commonly defined by community organizations or educational institutions.

In Europe, new civil aviation regulations have been proposed and applied by the

EU Aviation Safety Agency (EASA), conceiving a regulatory framework for secure drone

operations. However, the proposed framework is centralized in a few authorities, and

their rules are mostly unclear. Hence, there is a need to review the framework, delegating

decentralized tasks [1].

The lack of well-established legislation represents uncertainty for the IoD develop-

ment at all levels. Traffic regulations contribute to avoiding some attacks, mainly the ones

related to the drone’s flight. On the other hand, they directly impact the drones’ mobility,

thus, influencing location privacy. Another challenge is the possibility of having different

traffic regulations in different places. In this case, a location privacy approach needs to

be as general as possible, specializing its implementation according to each regulation.
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3.3 Trends and Challenges

As discussed, there are a set of attacks that have their models based on their

similarities to other mobile networks, for instance, JA, SA, and EA. Therefore, it is

intuitive that the existing protection mechanisms can properly counter them. However,

the IoD particular characteristics make room for new exploitation targets. The continuous

development and definitions regarding IoD infrastructure as well as the airways regulation

have the potential to change IoD environment constantly, posing a need to study, review,

and explore both the attacks and protection mechanisms. In the following, we list the

major trends related to the occurrence of new attacks in IoD, and the challenges in the

design of IoD-centered protection mechanisms.

▶ Drone’s Mobility Traces and Location Privacy Attacks. Node’s mobility

trace is fundamental to characterizing and analyzing the mobility behavior of a given

network environment. This behavior is a useful way to perform a DAA over VANETs [22].

However, IoD scenario (in contrast to VANET), in practice, still is not well established,

hindering the experimentation of related studies. Hence, there is an absence of drone

mobility traces available. This absence represents a big challenge since it affects the

investigation of different mobility-dependent fields, e.g., location-based privacy attacks

as well as location-based protection mechanisms. Still considering a comparison with

VANETs, there are several attack and protection models well defined and investigated

in grounded networks that are not studied in IoD, mainly because there are no mobility

traces available as an information source to these approaches. A suitable way to address

a drone’s mobility traces is through synthetic traces, generated by IoD simulators.

▶ Energy Constraints. This aspect is a fundamental issue related to drones, im-

posing a great challenge not solely in the security/privacy context but also in commu-

nications, path planning, and other fields. This constraint affects significantly how an

attack/protection mechanism is modeled. Robust attack models tend to process a mas-

sive amount of data to obtain a high level of success, and, consequently, consume more

energy. The same behavior occurs with smart and collaborative protection mechanisms.

In the former case, research directions must concentrate on design strategies to delegate

the potential drone’s data processing aiming for a data balance, or even sharing the pro-

cessing with other network nodes, with greater energy efficiency. This challenge leads to

the following one.

▶ Decentralization of AI-based Approaches: the advancement of AI-based tech-

niques also embraced the design of protection mechanisms, providing accurate detection
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of potential adversaries [92]. However, most of them demand a high computation effort

to properly train and deploy in a real-world scenario. It faces the drone’s SWaP limita-

tions, which can bring an impracticable scenario. Nonetheless, AI-based mechanisms can

be decentralized through the network nodes with a higher computational power, such as

those belonging to stationary devices, and the Cloud System. Furthermore, the UAV-

assisted Federated Learning [105] is a promising approach that can be explored toward

this decentralization.

▶ Smart Models, Mobility and Environment Prediction. A major risk in IoD en-

vironment is the continuous improvement of smart attacks. In HA discussion, for instance,

we can observe that intermediary attacks can lead to a better performance of hijacking in

which different environmental factors need to be analyzed together. In addition, there are

considerable network aspects with the potential to affect the attack performance (includ-

ing the “intermediary attacks choices”), e.g., drone’s energy constraints, being another

challenge pointed out. Therefore, there is room for the development of smart attacks and,

consequently, important challenges to be considered in the design of a protection mech-

anism. For instance, the attacker’s mobility also represents an opportunity in terms of

attack modeling. Thus, considering smart attacks, how to decide the mobility behavior?

Does a stationary attacker perform a required level of success? On the other hand, if a

mobile attacker is modeled, what is its impact in terms of the system constraints?

In a nutshell, an intelligent protection mechanism must be composed of different

countermeasures. The intelligent observation of environmental factors can serve as the

initial step in implementing the mechanisms as well as the mobility behavior of IoD nodes.

Thus, they must be activated dynamically based on the prediction of an imminent attack

situation. Furthermore, the decentralization of these mechanisms is a key requirement

since IoD embraces a wide and heterogeneous environment, where sensing in different

locations can deeply contribute to deploying mitigation techniques.

3.4 A Framework to Guide the Design of IoD-based

Protection Mechanisms

The discussion of this section highlighted a major aspect: unprecedented attacks

can occur in IoD, or even well-known attacks can occur in a different manner. This

aspect entails in several challenges for the design of protection mechanisms in which a

major question is to investigate if the existing mechanisms can provide the same protection
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level to IoD compared to the traditional mobile network environments. The two research

questions (RQ1 and RQ2), presented in Section 1.1, are totally tied to these challenges.

Therefore, we propose a framework to guide the design of protection mechanisms

for IoD, representing the key directions toward security and privacy. This contribution

handles the current challenges in this area since it is still in its first steps. It is necessary to

explore novel defense mechanisms and evaluate the protection mechanisms’ performance

stemming from other mobile networks. Figure 3.5 shows our proposed framework consid-

ering a flow chart layout, ranging from the first step to the last one. In other words, the

figure presents the flow, step-by-step, that a researcher may follow to design an IoD-based

protection mechanism. They are described in detail as follows.

▶ Definition of IoD scenario: the first step consists of defining the specific scenario

of interest, including mostly the environment definition (e.g., urban, rural, industry en-

vironment), and the service/application scope (e.g., on-demand delivery or surveillance).

Furthermore, the required QoS levels shall be defined in this step (besides the secu-

rity/privacy requirements). For instance: is the application delay-tolerant? what is the

minimum acceptable level of the drone’s energy to perform the service?

▶ Attack definition: based on the scenario definition, the attack design must be in ac-

cordance with the drone’s services, defining the goals and which elements can be exploited.

Formally, this step consists of mathematically defining the threat model. Exemplifying,

let us suppose the primary goal of the designed defense mechanism is to provide location

privacy through anonymization. In that case, the attack needs to propose a cybernetic

approach whose objective is to re-identify the network nodes and/or users.

▶ Protection mechanism definition: next, it is necessary to design the protection

mechanism based on the following approaches: by proposing a novel approach; or by

investigating an existing one. The design must consider the current literature allied with

the two former steps. The first case is the best strategy to follow when there is a lack of

knowledge regarding both the investigated scenario and the attack model. On the other

hand, the latter shall be applied when there is a need to study the impact of the IoD

characteristics in the observed scenario and attack, for instance, JA or SA. Two or more

approaches can be combined to perform better security/privacy levels.

▶ Experiments: after defining the attack approach and the protection mechanism,

we need to plan the experiments comprehensively. A critical issue involves the dataset

and the simulation tools to carry out the experiments, which is a challenge in this area.

Also, it is mandatory to follow a well-structured experimentation methodology, ensuring

its correctness and replicability.
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Figure 3.5: Framework to guide the design of IoD protection mechanisms
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▶ Evaluation: finally, it is necessary to define the metrics to evaluate the proposed

mechanism. Understanding the evaluation results can lead to a new cycle of experiments.

A series of adjustments in the scenario, the mechanism, and the attack might be necessary

until the results point out that the mechanism’s performance is suitable to the proposed

IoD scenario.

3.5 Chapter Remarks

This chapter presented the main concepts regarding seven major IoD-related at-

tacks. For each attack, we formalized it through a mathematical notation, establishing

a general threat model and contributing to a concise definition of them. Given these

attacks, we discussed what elements are necessary to protect in IoD and what are the

existent mechanisms to protect them and mitigate the attacks, surveying six different

categories of mechanisms.

Bearing all these aspects in mind, we discussed that most of these mechanisms do

not meet the IoD particular characteristics, presenting a potential lack of security and

privacy in this environment. Therefore, we proposed a framework to guide the design of

IoD-centered protection mechanisms, embracing the following steps: the definition of the

IoD scenario; the attack and protection mechanism definition; the experiments; and the

evaluation. This framework meets the scientific method but inserts specialized aspects

into each design step.

In the further chapters, we design novel protection mechanisms for IoD following

the proposed framework. They are grouped into three categories: LPPMs, anti-jamming,

and ADD. For each proposed mechanism we: raise the application scenario; define a
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threat model of the attack; assess if there is an existent mechanism to mitigate the attack

and what adaptations must be made; carry out thorough experiments; and evaluate the

solutions using well-known security and privacy metrics.
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Chapter 4

Design of Location Privacy

Protection Mechanisms for IoD

This chapter presents the contributions related to the design of Location Privacy Protec-

tion Mechanisms, representing the major research front of this dissertation. We design

three new LPPMs: t-MixDrones, MixRide, and TDG. The design of these mechanisms is

guided by the proposed framework in such a way that all of them can overcome the per-

formance of the existing mechanisms, being applied in different situations. Considering

that they provide a suitable level of location privacy in different environmental condi-

tions, we model an RL approach for their dynamic assignment, providing enhanced levels

of location privacy regardless of the IoD network conditions. Furthermore, we present a

case study regarding the importance of location privacy in the IoD context, and how the

existing governmental policies must be in accordance with these principles.

This chapter is organized as follows. Section 4.1 brings an introduction and moti-

vation regarding the importance of designing new LPPMs for IoD. Sections 4.2 and 4.3

present the design of two Mix Zone-based LPPMs for dense environments: t-MixDrones

and MixRide, respectively. In Section 4.4 we present the design of TDG, a mechanism

proposed for sparse environments. Section 4.5 discusses the fundamentals of IoDAPM,

an RL-based approach for the dynamic network assignment of the proposed mechanisms.

In Section 4.6, we technically demonstrate through the design of a location-based attack

that the Remote ID rule, proposed by the FAA, is a threat to the drone’s location pri-

vacy considering its final proposal. To tackle this issue, we propose an enhanced design

of Remote ID, incorporating different privacy-related mechanisms in its model. Lastly,

Section 4.7 brings the chapter remarks.
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4.1 Introduction

DAAs represent a critical issue in the IoD research field since they are a major group

of location privacy attacks (discussed in Section 3.3). Considering that this class of attacks

has not been investigated in IoD, one of the major research fronts of this dissertation is to

study the attack model of DAA, the existing mechanisms, verify if they are suitable to IoD,

and therefore, propose new mechanisms. Specifically, we investigate comprehensively the

trajectory-centered attacks, whose goal is to de-anonymize the drones’ identity through

traffic analysis, characterizing a TAA. Hence, the proposed mechanisms face a smart

attack in the IoD environment in which TAA act as a primary attack to DAA.

As discussed, there is a lack of studies regarding the use of this kind of LPPM in the

IoD. Most of the proposed strategies take advantage of terrestrial vehicular behavior to

provide the required privacy level. For instance, MZ strategies consider road intersections

controlled by traffic lights as a proper place to consider as the MZ region [76]. However,

aerial traffic does not have this characteristic. These aspects reinforce the need to study

the current strategies in this network paradigm, assessing the need to adapt them to IoD.

We design three new LPPMs considering different IoD scenarios. For dense en-

vironments, we propose two MZ-based mechanisms: t-MixDrones and MixRide. While

t-MixDrones focuses on providing a suitable privacy level through maneuvers for altitude

changes, MixRide aims to improve the energy efficiency of drones through collaborative

rides between aerial and ground transportation systems, overcoming the shortcomings

highlighted by t-MixDrones. As IoD can be deployed in sparse environments, we de-

sign TDG, a dummy-based mechanism that can provide a suitable level of anonymization

regardless of the density of drones in the airspace.

Although all of these mechanisms present suitable levels of protection in terms of

location privacy, they were designed for specific scenarios. Therefore, we can assume that

no mechanism can be considered a “silver bullet” for addressing optimal location privacy.

Therefore, we model an RL approach for the dynamic assignment of the proposed mech-

anisms in a given IoD environment to cover the design of smart mechanisms, highlighted

as one of the major challenges in IoD security/privacy research field.

The next sections present the design of each LPPM in detail, following the frame-

work proposed in Section 3.4.
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4.2 t-MixDrones

The t-MixDrones is a traffic-aware MZ-based LPPM for urban scenarios with a

high density of drones, taking advantage of their’ “omnipresent” behavior. As they move

fast and can support the communication of different mobile nodes, it is possible to expand

the applicability and integration with other networks, providing new IoT solutions, and

embracing the new era of communication technologies, strongly supporting connectivity

through 5G and beyond (B5G).

The proposal of t-MixDrones considers the prospected scenario of different drone-

related companies performing heterogeneous services that demand a constant information

exchange with 3rd-party users [1]. For instance, drone delivery must keep the final users

informed about the remained flight time until the delivery as well as an approximated lo-

cation. Therefore, we assume that the sensitive information of drones must be anonymized

to preserve the integrity of both drones and users.

Considering this scenario as a starting point, we follow the remained steps of the

guidelines framework to design t-MixDrones. Firstly, we formulate the threat model.

After, we present the basic concepts of MZ and the recent related studies that proposed

MZ-based PMs in existing mobile networks. From that, we formally design t-MixDrones.

With the previous steps completed, we define a methodology to perform experiments and,

therefore, carry out an extensive evaluation through simulations. Each step is described

in the next subsections.

4.2.1 Threat Model

The main goal of a set of adversariesA is to de-anonymize the successive pseudonym

changes of a given drone. The mobile node trajectory is a potential aspect to be exploited

by a malicious entity[9, 79, 105]. In this case, A can perform trajectory-based linking

attacks. In this type of attack, A tries to link the generated sub-trajectories, rebuilding

the full path planning of a targeted drone. Once A links each sub-trajectory correctly, it

can also link the pseudonyms to a single drone.

An inductive question arises about performing trajectory-based linking attacks:

How to link the sub-trajectories correctly? As discussed, drones have energy constraints

that affect their mobility and flight time. Hence, we formulate the hypothesis that, given

a geographic destination v ∈ G.V (from the general airspace graph model), the drone will

fly following the shortest path over the airways G.E. This is a reasonable assumption
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considering the SWaP limitations of drones, mainly the power restrictions.

In this study, we assume that a given attack performed by A has the following

steps [22]:

1. The attack calculates the minimum path using the Dijkstra algorithm for all com-

binations of trajectories before and after the Mix Zones application;

2. It calculates the Dynamic Time Warping (DTW) between the minimum path and

the trajectory combination;

3. It minimizes the attribution costs generated by DTW considering a cost matrix. The

attributions designate the matching between a previous and subsequent pseudonym

associated with trajectories;

Furthermore, we make the following assumptions about adversary A[1, 9, 79, 105]:

• A has a background knowledge kl, addressed by the exploitation of a location server

LS ∈MN IoD that manages and stores the drones requests;

• A has complete access to LS as an eavesdropper, but not as a man-in-the-middle.

It implies that although A can access all location requests and information sharing

of the drones, it can not modify them;

• A has complete airway topology knowledge. In other words, A can build a topolog-

ical graph G = (V,E) of the airways;

• The IoD network protection mechanisms are not aware of A’s existence. It means

that there is no action to break its silent performance;

• The communication channel of a given ZSP z ∈ Z and the authorized drone d ∈ D
is fully reliable and cannot be violated, ensuring the protection of the exchanged

data.

Given these assumptions, t-MixDrones must be designed to mitigate the effect of

A over the IoD networkMN IoD, mainly over the drones as mobile nodes.

4.2.2 Mix Zones Concepts

MZ is an approach to provide location privacy for mobile entities in a mobility

environment through pseudonym changing [106]. A pseudonym is an identity that acts

as a protector mechanism, hiding the entity’s real data. MZ can be informally defined
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Figure 4.1: Example of a MZ region

Source: Svaigen et al. [80]

as a geographic region that changes pseudonyms (pseudonymization) of k entities that

are inside it. Thus, users enter the MZ with a pseudonym, change to a new unused

pseudonym, and, after a length of time, exit under the new pseudonym [106]. Since

pseudonymization occurs with k entities, it is intuitive that MZ must be placed in regions

with heavy traffic of entities.

Figure 4.1 illustrates the MZ method applied to ground vehicles as mobile entities.

In this example, a MZ was placed at a roundabout, and the shaded circular region indicates

the coverage area. Three different cars are near the MZ with pseudonyms “A, B and C”.

Let us assume they entered the MZ at a close time. In that way, a pseudonymization

was processed, giving them new pseudonyms: “X, H and S”, respectively. If an attacker

eavesdrops on this service, obtaining the user’s trace data, when “A, B and C” enter the

MZ region, the attacker can not obtain inside-data. Thus, the next obtained data will

have the new pseudonyms, causing difficulty to the attacker’s trace monitoring. This will

probably hamper the attacker’s success.

Besides the location privacy protection level, the MZP is a current challenge linked

with the design of MZ-based mechanisms, consisting of modeling how many MZs are

necessary to perform the anonymizations and where to place them [80]. They should

be placed in strategic regions that maximize the anonymization coverage in an optimal

configuration. Theoretically, it can be addressed by covering all the possible regions.

However, the MZ management demands a high computational cost, being an unfeasible

solution. Thus, this task lays on an NP-Hard problem [107].
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Table 4.1: Recent studies of MZ mechanism

Ref. Network MZP Approach Explored Features

[112] VANET Reputation-based pseudonymization – Road intersection

[107] ITS Multiple MZ for Map Services – Vehicle’s position

[113] VANET Cluster-based pseudonym change
– Vehicle’s energy
– Vehicle’s position

[80] VANET Clustering and Exponential Moving Weighted
Average

– Vehicle’s position

[114] ITS De-correlation privacy model
– Traffic analysis
– Traffic light
– Parking location

[115] ITS Dynamic swap zones – Vehicle’s position

[116] ITS ML-based vechicle’s lane changing – Traffic analysis

[117] VANET Decoy traffic – Road intersection

[118] VANET Indistinguishability Swap
– Vehicle’s direction
– Vehicle’s speed
– Vehicle’s position

[119] ITS Privacy preserving authentication – Communication delay

[120] ITS Differential privacy
– Traffic analysis
– Parking location

[76] VANET Real-time traffic-based MZ
– Traffic analysis
– Traffic lights

[77] VANET Neural Network-based attack model – Traffic analysis

[75] VANET Communication delay-based MZ – Roadside infrastructure

Ours IoD
– Bio-inspired MZP
– Airways as a mixing factor

– Traffic Analysis
– Drone’s position
– Airways congestion

4.2.3 Related Studies

Over the years, several studies investigated MZ in mobile networks, introducing and

defining solid guidelines for advancing the state of the art regarding location privacy [108,

109, 110, 111]. Recently, MZ has been massively explored in VANETs and ITSs as a

whole. These studies treated both traffic and roadside features to place and apply the

MZs. IoD, in turn, is almost an unexplored environment regarding the use of MZ as a

protection mechanism. In fact, t-MixDrones is the first LPPM in this paradigm, to the

best of our knowledge. Table 1 shows the summary of the recent studies regarding MZ.

As the recent AI-based techniques enable real-time processing and pattern discov-

ery, traffic analysis has become a powerful feature to support the design of MZ, predicting

how, when, and where the mobile nodes will meet the main conditions to perform the

mechanism [76, 77, 114, 116, 120]. These factors also turn the MZP dynamic, whose

application regions are defined according to the environmental features instead of fixed

places, as occurred in different studies [108, 109, 110, 111]. The approaches vary signif-
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Table 4.2: Relation of Factors Between MZs for VANETs and for IoD

Factor VANET IoD

Mobile node Car Drone

Comm. infrastructure RSU ZSP

Trajectory “decision” Driver ZSP

Traffic Management Traffic lights, roundabouts, etc. ZSP

Mix Zone placement Street intersections Airway intersections

Coverage area 2D-based 3D-based

icantly, ranging from statistical methods [80, 107] to machine learning models [77, 116].

Some studies also consider group-based solutions, focusing on agreements between the

vehicular nodes [75, 76, 112, 113]. Moreover, some methods from the information theory

field explore different privacy properties [114, 119, 120].

Road intersections represent the central regions to place the MZs since they repre-

sent a convergence traffic point with a high probability of vehicle concentration. However,

other PoIs have been explored, for instance, parking locations [114, 120], where the elapsed

time of a vehicle inside this area is uncertain, enhancing the location privacy provided by

the mechanism. Besides these placement factors, several vehicular and roadside features

contribute to the design of improved MZ models, mainly the vehicle’s direction, speed,

and current location and the monitoring of traffic lights.

The mobility model of nodes in the IoD is significantly different from a tradi-

tional mobile network [1]. In VANETs, vehicles move mainly along two axes, the altitude

changes smoothly and gradually. On the other hand, civilian drones vary their altitude

considerably, performing landings, takeoffs, and even flight deviations due to different

factors, such as environment and weather conditions.

This tridimensional mobility becomes an appealing property to explore when we

consider the IoD. Figure 4.2a illustrates a scenario where the traditional mechanism is

applied with k-anonymity = 4. Airways with the same color represent parallel airways

with different altitudes. Black spheres represent the intersection area. The gray ellipses

illustrate a placed MZ covering all airways intersections at the same altitude. It is essential

to state that the MZ acts as a “black box”. When a drone is inside a MZ, it can not

communicate with an LBS sender/user, restricting it to receive/send messages only to

ZSP, the trusted party involved.

As we can note, parallel airways remain “isolated” from each other, with the

pseudonymization occurring just at the same altitude. Although drones D1, D2, D3

and D4 cross the MZ at a close time, they change only their pseudonym (represented

by different arrow colors). Considering an attacker’s point of view, given the trajectories

before and after the MZ, the re-identification task of trajectories can be limited at the
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Figure 4.2: Comparison of a traditional MZ and t-MixDrones proposal

(a) Traditional MZ applied to IoD (b) t-MixDrones (MixDrones module) applied
to IoD

Source: Elaborated by the author

same airway. Consequently, the de-anonymization of the drone’s pseudonym is facilitated,

whereas the airway remains the same.

Furthermore, when terrestrial vehicles are inside a MZ, they are typically in con-

stant movement, stopping only for traffic lights, road accidents, or traffic jams. In these

scenarios, cars have a similar stationary time interval. On the other hand, airways have

no traffic lights, neither are commonly conditioned to traffic jams. Although airway traffic

has a better flow compared to urban roads, a large concentration of drones near airway

intersections at a close time interval tends to be small. This aspect can diminish the

anonymization coverage of drones for configurations requiring many drones inside the ap-

plication zone to apply the mechanism. Hence, it is necessary to keep the drone inside

the MZ for a time interval to decrease the chances of re-anonymize drones.

The t-MixDrones explores these aspects in the design of a new MZ-based mecha-

nism. It embraces a tridimensional and temporal context present in IoD scenarios. MZ

regions are logically placed at airway intersections in our design, which is similar to terres-

trial crossroads. Hence, we contribute to the advancement of the state of the art regarding

location privacy in the IoD environment.

4.2.4 t-MixDrones Architecture

The t-MixDrones is composed of two modules. The first one is the pseudonymiza-

tion module, named MixDrones, responsible for changing the airway of a drone besides its

pseudonym. The second module is the BioMixD, a bio-inspired MZP algorithm that con-
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Figure 4.3: Architecture of t-MixDrones
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siders the traffic behavior of drones as the main factor in placing the zones. The proposed

design of both MixDrones and BioMixD allows them to work cooperatively. Therefore,

both strategies compose the architecture of the t-MixDrones. As presented in Figure 4.3,

t-MixDrones is a distributed system, being part of the drones and the ZSPs.

The drone’s main role is the periodical update regarding its location, which feeds

both BioMixD and MixDrones. Besides updating its position, the drone can receive in-

structions for a new trajectory due to the potential airway change, and a new pseudonym.

These data are received and processed in a trajectory management drone’s module. Con-

sidering the whole scope of t-MixDrones, the drone sustains additional communication

with the ZSP as less as possible since it must share its location regardless of the applica-

tion of t-MixDrones.

The ZSP keeps the most processing effort of t-MixDrones. Considering a real-

world application scenario, when the mechanism is deployed in the network, the BioMixD

is initialized, scheduling the first call to the BioMixD-updateMZ algorithm (described in

Section 4.2.6), and spreading the sets FMZcand and Φ. As the ZSP receives the drone

location updates, the BioMixD-dronePos algorithm (described in Section 4.2.6) updates

the traffic flow counting, which will be considered in the next MZ update.

When BioMixD defines the setMZcand′, it immediately sends it to the MixDrones

module. Thus, when it receives a drone location update, the locationUpdate algorithm

(Section 4.2.5) verifies if the drone is inside an up-to-date MZ. When the established

k-anonymity is satisfied, the airwayMgmt algorithm (Section 4.2.5) receives the set of

drones D′ that will change the pseudonym, potentially defining a novel airway as a mixing

factor. After that, the ZSP sends these data to the preceding drones, completing a cycle

of application of t-MixDrones.

In the following, we formally define both MixDrones and BioMixD modules.
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4.2.5 MixDrones Module

The MixDrones approach includes airways as a “mixing” factor when the mecha-

nism is applied. The drone can change its airway based on a probability Pchange, defining

a novel variation of MZ that properly fits into the IoD environment. Our proposal intro-

duces two concepts: Intermediary airways and MixDrones Placement.

▶ Intermediary Airways: it is denoted by a vertical airway connecting two

parallel intersections (considering their altitude), allowing a given drone to change its al-

titude. Moreover, with an airway change, the drone stays longer inside a MZ, contributing

to the k-anonymity be satisfied. Differing from common airways, the intermediary airway

has a bidirectional flow. Hence, it is mandatory to establish well-defined flight policies to

avoid drone collisions.

▶ MixDrones Placement: the MZ are placed at each potential region where

drones can be concentrated, grouping airways intersection areas, covering a cylindrical

area based on a coverage radius r. The centroid coordinate of the intersections becomes

the central point of each MZ for the same altitude.

Moreover, given a traffic zone, the ZSPs of this zone are responsible for applying the

mechanism, whereas they also manage the drone’s path planning. Figure 4.2b illustrates

an example of the MixDrones application in the same scenario of Figure 4.2a, where

the vertical black airways represent the intermediary ones. Compared to the traditional

approach (Figure 4.2a) every drone changes its airway (Pchange is satisfied for all drones

in this example) through the intermediary airways, potentially hampering the success of

a de-anonymization attack.

The possibility of a drone collision due to airway space competition, as depicted

in Figure 4.2b, is an issue that MixDrones considers. For instance, drone D1 can collide

with D3 or D4 when it arrives at the upper airway. Hence, the probability of collisions

increases, whereas both k-anonymity and the density of drones also increase.

In the literature, different studies proposed drone collision avoidance strategies.

Yasin et al. [121] presented an energy-aware and response time minimization method to

avoid collisions between drones and obstacles for swarm formations. In this approach,

a leader drone detects a given obstacle, calculates its new path planning, and sends the

followers’ information. Ahmed et al. [122] also proposed an energy-efficient approach in

IoD environments to avoid stationary and mobile obstacle collision. The algorithm is

based on the gradient optimization of the drone’s path planning that indicates if there is

any available collision-free path. Kumar et al. [123] defined algorithms to avoid collisions

in an on-road traffic monitoring scenario. In a drone-centered context, a given drone

remains inside a self-region with a minimum distance l between any two drones.

Embracing these aspects, ZSPs can coordinate cooperatively the drone’s path plan-
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Figure 4.4: Conception of helical mobility to avoid collision between two drones

Source: Elaborated by the author

ning, including speed reduction alerts and redirecting the traffic. Moreover, several drones

have sensors to predict and avoid collisions. Nonetheless, in very dense scenarios, more

than one drone can share the same intermediary airway. In this case, the ZSP can coordi-

nate the involved drones to perform helical movements in clockwise and/or anticlockwise

directions, avoiding their collision, as illustrated in Figure 4.4. Next, we formally define

our proposed protocol, including a drone collision avoidance algorithm that handles this

issue.

Bearing in mind the previous discussion, we formalize the MixDrones approach.

Firstly, it is based on the following assumptions:

• ZSP is the IoD trusty-party that communicates through a reliable communication

channel with drones;

• Drones send their position to ZSP constantly, considering a time interval ∆t, main-

taining the management up-to-date;

• Each drone has a group of sensors DH that can detect obstacles omnidirectionally,

considering a distance δ;

• Given an IoD zone, there is at least one ZSP responsible for managing the airspace;

• In the case of more than one ZSP per zone, there is a “leader” that coordinates the

operations.

Formally, the MixDrones approach is defined through two main collaborative al-

gorithms: (i) drone’s location updating, which handles with a drone where it is inside

a MZ; and (ii) airways management, which acts directly to process the airway change,

selecting intermediary airways to the drones. It is important to state that these algo-

rithms are ZSP-centered, in which it keeps a computational task for each MZ under its

responsibility.
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Algorithm 1: MixDrones-locationUpdate
Input : D, Einter, r, k, Pchange, d

1 l← predictCurrentLocation(d.location)
2 if isDroneInsideMixZone(R, l) then
3 if d /∈ D then
4 D ← D ∪ {⟨d, false⟩}
5 if |D| ≥ k then
6 ⟨d, β⟩ ← find tuple of d ∈ D
7 if ¬β then
8 p← generatePseudonym()
9 send(d.pseudonym, p)

10 β ← true
11 mixDrones-airwayMgmt(Einter, Pchange, d)
12 if d ∈ Einter then
13 α← find α value of d in Einter
14 if ¬ isDroneInsideIntermediaryAirway(d, α) then
15 Einter ← Einter − {⟨d, α⟩}

16 else if d ∈ D then
17 D ← D − {⟨d, ∗⟩}

Before executing these algorithms, an initialization step must be processed aiming

to establish the initial configuration of some attributes used by them. All these attributes

are initialized as an empty set. They are listed as follows:

• Einter: it denotes the intermediary airways as well the drones inside them. Each

element of this set is composed of a tuple ⟨d, α⟩ in which d is a drone and α is the

respective intermediary airway in use;

• D: it is a set of drones that are inside a given MZ. Each element is composed of a

tuple ⟨d, β⟩ in which d is a drone and β is a boolean value that indicates if d was

already considered to apply the mechanism.

Algorithm 1 presents our proposed mechanism for a specific MZ managed by a ZSP.

This mechanism must act as a listener method, being processed at each drone location

update. As input, the mechanism requires the sets Einter and D, the MZ coverage radius

r, the level of k-anonymity k, the probability Pchange, and the drone d that updates its

location.

Given a location update, the mechanism initially predicts the current drone loca-

tion l (Line 1), whereas there are communication delays involved. This prediction verifies

if the drone is inside the MZ based on the coverage radius r (Line 2). If not, it verifies

if the drone belongs to the set D, indicating that d just left the MZ and then removes

it from D (Lines 16–17). In an affirmative case, it is necessary to verify three different

conditions. The first one is related to the moment that the drone d enters inside the MZ,

in which it is added to the set D (Lines 3–4).
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The second condition verifies if the k-anonymity level is satisfied (Line 5). In an

affirmative case, it is necessary to analyze if drone d was already tested, whereas it peri-

odically updates its location (Lines 6–11). If it was not considered yet, a new pseudonym

is generated and sent asynchronously to drone d (Lines 8–9), and it is considered as being

part of the mechanism’s application (Line 10). Next, the airway management function is

called (Line 11), the drone d will change its airway. It is important to note that regardless

of the airway change, the drone is always anonymized.

The third condition handles the case of a drone leaving an intermediary airway

(Lines 12–15). It is important to state that it requires that the ZSP assigned d to perform

an airway change in a previous location update. If the drone d belongs to some interme-

diary airway α in the set Einter, its airway is extracted (Line 13) and, if the drone is no

longer inside α, it is removed from Einter (Lines 14–15).

Next, we define and describe the airways management algorithm (Algorithm 2,

called in Algorithm 1, Line 11. Firstly, a random probabilistic number is sorted, ranging

from the interval between 0 and 1 (Line 1). This number is compared with the Pchange,

defining if the airway change will be performed (Line 2).

In the affirmative case, the algorithm processes the possible intermediary airways

that the drone d can fly during its time inside the MZ (Line 3). With the candidates,

the airway will be chosen (Line 4) based on the number of drones flying inside it, i.e.,

the least congested intermediary airway, which can aid in avoiding the possibility of a

drone collision. Hence, for each airway α of the candidate set (Lines 6–10), it is processed

the number of drones inside α (Line 7). After, the intermediary airway with lower traffic

is allocated to drone d (Lines 8–10). Finally, it is verified if any airway was selected.

This verification is necessary since k-anonymity can be addressed when a given drone d

is almost leaving it and, consequently, there is no more intermediary airway available to

perform the change. If there exists some airway, the drone is associated with α (Line 12),

and the ZSP adjusts the path planning of drone d, scheduling the flight over α, where d

will flight performing helical movements (Line 13).

4.2.6 BioMixD Module

BioMixD is a bio-inspired and traffic-aware MZP strategy. It considers the traffic

behavior of drones as the main factor in placing the zones. As long as drones fly over the

airway checkpoints, they deposit pheromones in these regions, which evaporate over time.

The checkpoints with more pheromones indicate where the MZ will be placed. Hence, as

the traffic behavior changes, the MZ locations also change. BioMixD follows a lightweight



4.2. t-MixDrones 78

Algorithm 2: MixDrones-airwayMgmt
Input : Einter, Pchange, d

1 prob← randomValue({0, 1})
2 if prob ≤ P(change) then
3 Acand ← findAirwayCandidates(Einter, d.pathplanning)
4 αchoice ← ∅
5 nchoice ←∞
6 for α ∈ Acand do
7 ndrones ← |{⟨∗, α⟩} ∩ Einter|
8 if nchoice > ndrones then
9 αchoice ← α

10 nchoice ← ndrones

11 if αchoice ̸= ∅ then
12 Einter ← ⟨d, αchoice⟩
13 adjust the path planning of d with an airway change at α entrance performing

helical movements

approach to save the drone’s battery. Hence, the ZSP is responsible for processing most

of the tasks, where the drone updates its position and receives the ZSPs directives. The

approach adequately meets the ZSP attributions since both the MZP and anonymization

tasks are traffic-based operations.

▶ MZP for IoD: As in the terrestrial mobile networks, the MZP for the IoD is an

NP-hard problem. Although it represents a similar optimization task, the MZP definition

must be extended for a 3-dimensional environment to meet the IoD characteristics.

• Let CS be the real-world coordinate system that represents the IoD 3-dimensional

environment;

• Let ζ = ⟨V ′, r⟩ be an MZ region candidate, composed of a set V ′ ⊂ G.V , representing

the intersection nodes related to the MZ region, and a radius r that indicates the

MZ coverage range;

• Let MZcand be the set of all the possible MZ candidates, such that MZcand =

{ζ0, ..., ζi}, for i possible MZ regions;

• LetMZcand′ ⊂MZcand be the subset of the placed MZ regions;

• LetMp be a set of metrics related to the MZP problem, for instance, the number

of drones that traverse a given ζ;

• Let n be the max number of placed MZ allowed in the environment;

Considering this system model, the MZP in IoD can be stated by the following

question: “GivenMZcand MZ candidates in the IoD environment G, what are the best



4.2. t-MixDrones 79

set of candidatesMZcand′ such thatMZcand′ provides the best result when applied to

Mp”?

Mathematically, MZP for the IoD can be defined by the following optimization

problem:

max
∑

m∈Mp

fm(MZcand′, D),∀MZcand′ ⊂MZcand

Subject to: |MZcand′| ≤ n

(4.1)

The optimal MZP is given by the highest sum of the results obtained by the

application f of each metric m ∈ Mp for all the subsets of MZ regions with n regions at

most. The subsetMZcand′ associated with the highest sum represents the best regions

to place an MZ. Whereas the number of subsetsMZcand′ increases, the computational

effort to process the function also increases since the subsets combination has a factorial

order [110]. Thus, it is necessary to propose strategies that balance a good solution for

MZP and the computational effort.

▶ BioMixD Main Concepts: Over the years, bio-inspired algorithms have been mas-

sively applied as heuristics to provide accurate results in optimization problems. These

algorithms have an “intelligent behavior” since they are designed based on biological

organisms and systems, being self-adaptive. Neural Networks (NN), Genetic Program-

ming (GP), Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO)

are well-known bio-inspired algorithms [124]. These last two also embrace a bio-inspired

category named “swarm intelligent” algorithms. Shortly, they consider that individual

agents interact with the entire system, providing and receiving feedback for their actions,

leading to a collective decision.

ACO [125], specifically, generates optimized solutions based on the premise that

the agents deposit pheromones while walking. With time, the path with more pheromones

induces other agents to follow it. As time goes by, the pheromone evaporates from non-

visited regions. ACO has been designed as a solution for different tasks of ITS, such as

the vehicle job assignment problem [126], and trajectory decision [127]. To the best of

our knowledge, ACO has never been designed as a solution for MZP. However, its main

concepts fit into the IoD environment considering a drone’s traffic point of view.

Table 4.3 shows the mapping of the main concepts between a traditional ACO

and the BioMixD. In the BioMixD, the drone represents the agent that traverses the

available paths, carrying and depositing the corresponding pheromone, here represented

as the traffic flow through an MZ region candidate ζ. In other words, when a given drone

d ∈ D flies over a candidate ζ, d deposits a “pheromone unit” in ζ, which will evaporate

over time, representing the evaporation factor.

A significant conceptual difference between ACO and BioMixD is that the drone

does not follow the path with more pheromones, keeping the path planning provided by
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Table 4.3: Mapping of the main concepts of ACO and BioMixD

Concept ACO BioMixD
Agent Ant d ∈ D
Feedback factor Pheromone Traffic flow through ζ
Pherom. deposition Ant’s path ζ
Solution selection By epoch By a time window ∆t

Goal Best path discovery BestMZcand′

the ZSP. Thus, drones can be considered “independent” agents. On the other hand,

MZs are placed according to the pheromone rate. Based on a time window ∆t and in a

maximum number n of MZs to be placed, the regions with a higher pheromone rate form

theMZcand′ set, representing where MZ will be located until the next time window ∆t

ends.

The pheromone rate ϕζ of a given MZ region ζ over a time window ∆t is given

by Equation 4.2, where ρ is the pheromone’s evaporation rate, and f is a function that

calculates the rate of drones that traverses the MZ region ζ during ∆t. f is described in

Equation 4.3.

ϕζ(∆t) = (1− ρ) ϕζ(∆t−1) + f(ζ,D,∆t) (4.2)

f(ζ,D,∆t) =

∑
d∈D

{
1, if d traverses ζ during ∆t

0, otherwise

|D|
(4.3)

Summarily, regions with a low pheromone tend to keep a low value unless a greater

number of drones fly over there over time. Likewise, regions with a higher pheromone

tend to keep a high value unless a few drones fly over there along the time. This property

ensures that the placed Z ′ reflects not just the traffic at a given time interval but a recent

traffic history.

BioMixD is defined through three complementary distributed algorithms. Algo-

rithm 3 describes how to initialize the mechanism. Algorithm 4 presents the drone position

update, and Algorithm 5 refers to the MZ placement update. We describe them in detail

and discuss their time complexity as follows.

▶ Algorithm 3 BioMixD Initialization : Before applying the t-MixDrones mech-

anism in a given environment, the BioMixD must have an initial information about the

drones traffic flow during a time interval ⟨0, tinit⟩. To address this information, it uses

a data structure FMZ such that each element fz ∈ FMZ is composed of a tuple ⟨ζ, i⟩
where ζ ∈ MZcand and i ∈ Z, representing that i drones fly over the MZ candidate ζ.

Moreover, the initial pheromone value ϕ of each ζ ∈MZcand must be initialized. Thus,
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Algorithm 3: BioMixD-Init
Input :MZcand,tinit, Φ
Output: FMZ , Φ

1 FMZ ← ∅
2 Φ← ∅
3 for ζ ∈MZcand do
4 FMZ ← FMZ

⋃
{⟨ζ, 0⟩}

5 Φ← Φ
⋃
{⟨ζ, 1⟩}

6 t← current system time
7 Schedule an event call for BioMixD-UpdateMZ at time t+ tinit

BioMixD considers a similar data structure Φ to keep these values. Each ϕ ∈ Φ is also

composed of a tuple ⟨ζ, p⟩ such that ζ ∈ MZcand and p ∈ R, representing the current

pheromone value of the MZ candidate ζ.

Both structures carry the main data of BioMixD, being accessed and modified

through all BioMixD algorithms. Therefore, they must be modeled as a data structure

with rapid access and update, for instance, a binary heap or a hash-based structure.

Considering that each ζ has a unique coordinate, it can be coded as a key to identify

each region in both FMZ and Φ. In this work, we design both structures as two distinct

binary heaps whose key is coded by ζ’s coordinate. However, other arrangements can be

considered, and our proposal is not limited nor dependent on this structure.

As input, Algorithm 3 requires the set of MZ candidates MZcand, the initial

learning time interval tinit, and the pheromone set Φ. Initially, the algorithm initializes

both sets as empty (Lines 1-2). After, each corresponding MZ candidate ζ ∈ MZcand
has an associated tuple in the sets FMZ and Φ (Lines 3-5). The first is initialized with 0

since any drone already flies over the region, and the second is initialized with 1 as the

initial pheromone value. Lastly, the algorithm appropriately schedules an event call to

Algorithm 5 after the time interval tinit, when the MZP will start to occur (Lines 6-7). It

gives the BioMixD time to gather initial information about the traffic flow.

▶ Algorithm 3 BioMixD Time Complexity Analysis The initialization of the sets

FMZ and Φ as empty sets (Lines 1-2) as well as the schedule of a call for Algorithm 5

(Lines 6-7) occurs in Θ(1) since they are addressed through well-known mathematical set

operations and system calls, respectively. On the other hand, the iteration regarding the

flow and pheromone of each MZ candidate(Lines 3-5) demands an ordered insertion based

on the ζ key to facilitate its access, as previously discussed. As we consider the struc-

tures a binary heap, the insertion has a time complexity of O(log |MZcand|), occurring
|MZcand| times for each structure. Hence, the time complexity can be defined as follows:

T (BioMixD-Init) = 4Θ(1) + 2 |MZcand| O(log |MZcand|)

= O(|MZcand| log |MZcand|)
(4.4)
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Algorithm 4: BioMixD-DronePos

Input : dpos,MZcand,FMZ ,r
Output: FMZ

1 for ζ ∈MZcand do
2 if verifyDroneInsideMZ(dpos, ζ, r) then
3 ⟨ζ, i⟩ ← search(ζ, FMZ)
4 i← i+ 1
5 update(⟨ζ, i⟩, FMZ)

▶ Algorithm 4 BioMixD Drone Position Update : The algorithm is called every

time a drone d updates its position dpos, sending it to the nearest ZSP. Its main objective

is to update the FMZ of an MZ candidate ζ since d flies near ζ. The algorithm requires

as input the drone’s position Dpos, the set of MZ candidates MZcand, the traffic flow

structure FMZ , and the coverage radius r that indicates if a given drone is close enough

to the MZ. Algorithm 4 consists of iterating over the MZ candidates and verifying if the

drone is near a given candidate ζ based on the radius r (Lines 1–5). In the affirmative

case, the tuple related to ζ is recovered on FMZ (Line 3), increased (Line 4), and updated

(Line 5).

▶ Algorithm 4 BioMixD Time Complexity Analysis : Given the drone position

update request, the time complexity depends on the search (Line 3) and update (Line 5)

operations, according to the data structure model. Using binary heap structures, the

search has a time complexity of O(log |FMZ |). As the update operation does not change

the key coding of the tuple, it is not necessary to rebuild the heap structure. Considering

that the sets MZcand and FMZ have the same size since they refer to the MZ region

candidates, the time complexity can be defined as follows:

T (BioMixD-DronePos) = |MZcand| O(log |FMZ |)

= O(|MZcand| log |MZcand|)
(4.5)

▶ Algorithm 5 BioMixD Update Mix Zones : After the first scheduling generated

by Algorithm 3, the MZ update occurs periodically given a time interval ∆t. Besides

this time interval, the algorithm requires as input the sets MZcand, FMZ , Φ, and the

total number n of MZ to place. As auxiliary structures, we have a counter η that stores

the number of times the drones flew over the MZ candidates, and the setMZcand′ that
stores the selected MZs. Initially, they are assigned as 0 and ∅, respectively (Lines 1-2).

After, the algorithm calculates the number of times that the drones flew over the

MZ candidates. This task is addressed by iteration over all the tuples of the candidates

ζ ∈ FMZ , increasing the value of η (Lines 3-5). This sum properly represents the function

f defined in Equation 4.3, which is applied as a part of the pheromone update function.
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Algorithm 5: BioMixD-UpdateMZ
Input :MZcand,FMZ ,Φ,∆t, n
Output: FMZ ,Φ,MZcand′

1 η ← 0
2 Z ′ ← ∅
3 for ζ ∈MZcand do
4 ⟨ζ, i⟩ ← find the tuple related to ζ in FMZ
5 η ← η + i

6 for ζ ∈MZcand do
7 ⟨ζ, i⟩ ← find the tuple related to ζ in FMZ
8 ⟨ζ, ϕ⟩ ← find the tuple related to ζ in Φ

9 ϕ ← update ϕ according Eq. 4.2 considering that i
η represent the function f in

Eq. 4.3
10 update the tuple related to ζ in Φ with the values ⟨ζ, ϕ⟩
11 Φ′ ← extract the n tuples with higher ϕ
12 for ⟨ζ, ϕ⟩ ∈ Φ′ do
13 MZcand′ ←MZcand′

⋃
{ζ}

14 for ζ ∈MZcand do
15 ⟨ζ, i⟩ ← find the tuple related to ζ in FMZ
16 i← 0
17 update the tuple related to ζ in FMZ with the values ⟨ζ, i⟩
18 t← current system time
19 Schedule an event call for BioMixD-UpdateMZ at time t+∆t

These updates occur for each MZ candidate ζ (Lines 6-10), considering the stored traffic

flow in its region (Line 7) and its current pheromone (Line 8). Based on all these data,

the algorithm calculates the new pheromone value according to Equation 4.2 (Line 9),

updating it in the set Φ (Line 10).

The next step is obtaining the n tuples from Φ with the highest pheromone, repre-

senting the MZ regions with more increased traffic flow (Line 11). Thus, the setMZcand′

includes the regions ζ associated with these pheromones (Lines 12-13). As the historical

traffic flow behavior is inherent to the pheromone updates, BioMixD does not consider

a historical counting of the traffic flow of each ζ. Thus, they need to be re-initialized

(Lines 14-17). Lastly, a new update of MZ is scheduled based on the time interval ∆t.

▶ Algorithm 5 (BioMixD) Time Complexity Analysis Similar to Algorithm 3, the

initialization of data structures (Lines 1-2) as well as the system schedule (Lines 18-19) has

a time complexity of Θ(1). The iteration of Lines 3-5 is dominated by the complexity of

the search method, being O(log |MZcand|), as presented in the analysis of Algorithm 4.

Likewise, the iterations of Lines 6-10 and Lines 14-17 have the same time complexity since

they have search and update operations. The extraction of the n highest pheromones

(Line 11) demands the creation of an auxiliary structure sorted by the pheromones. It

is necessary because the MZ location sorts the binary heap Φ instead of the pheromone
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value. Hence, it is possible to use an auxiliary binary heap whose creation has a time

complexity of O(|MZcand| log |MZcand|). The selection of the best ζ in Lines 12-13

has a complexity Θ(n). However, |MZcand| will be greater than or equal to n since we

can not place more MZ than the available. Hence, the complete time complexity can be

defined as follows:

T (BioMixD− UpdateMZ) = 4Θ(1) + 4O(|MZcand| log |MZcand|) + Θ(n)

= O(|MZcand| log |MZcand|)
(4.6)

4.2.7 Simulation Setup and Performance Evaluation

This section describes our experimental evaluation of t-MixDrones through exten-

sive simulations. With this evaluation, our goals are threefold: (i) analyze how comprehen-

sive t-MixDrones is in terms of location privacy; (ii) investigate how resilient t-MixDrones

is when facing de-anonymization attacks; and (iii) verify at what configurations and in

what level the BioMixD contributes to the location privacy provided by t-MixDrones.

▶ Metrics: Our experimental evaluation intends to investigate the performance of

t-MixDrones as an LPPM in several IoD configuration scenarios (discussed in the next

section), comparing it with a traditional MZ mechanism (applied for VANETs), and with

a version with MixDrones, only. In this second case, our goal is to evaluate in what level

the BioMixD approach contributes to the mechanism as a whole.

We applied four different metrics to evaluate them: Coverage Rate (Crate), Re-

anonymization Average Rate (RAR), Trajectory Matching Accuracy (TMA), and the

Increasing Travel Time Rate (ITTR). They are described as follows.

• Coverage Rate (Crate): this metric measures the fraction of drones that are anonymized

at least once in the network. Let D be the total number of drones, and βi ∈ {0, 1}
a boolean value that indicates if the drone i was anonymized. Thus,

Crate =

∑D
i=0 βi

D
(4.7)

• Re-anonymization Average Rate (RAR): this metric calculates how many times a

drone is re-anonymized per trip. Equation 4.8 defines it, where d represents a given

drone, T is the set of performed trips, and anonymizations is a function that

returns the number of anonymizations of the drone d during the trip.

RAR =

∑|T (d)|
trip=1 anonymizations(d, trip)

|T (d)|
(4.8)
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Figure 4.5: Simulated urban scenario for t-MixDrones performance evaluation

(a) Map of Manhattan Island, NY.
Black line segments represent the cor-
responding public and flyable airspace.
Blue pins represent the available PoIs.

(b) Topological graph representation.
Black dots indicate a node, and the
blue arrows represent the directed
edges.

Source: Elaborated by the author

• Trajectory Matching Accuracy (TMA): measures the rate of correct re-identification

of trajectories, considering the attacker’s perspective. The greater the TMA, the

lower the t-MixDrones resilience. Let Nreid be the number of trajectories correctly

re-identified, and |Tp| the sum of related trajectories before and after the Mix Zone.

Thus, TMA can be defined as follows.

TMA =
Nreid

|Tp|
(4.9)

• Increasing Travel Time Rate (ITTR): based on the travel time of the original trip –

denoted by Torigin – it measures the rate of increasing time Tmix generated by the

mechanism application.

ITTR =
Tmix

Torigin
(4.10)

▶ Environment simulation: We model a region of Manhattan Island, NY, as the

urban scenario to support these assumptions to evaluate t-MixDrones. Figure 4.5a shows

the geographic map of this scenario, covering an area of around 39.8 km2. As we observe
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on the map, the drones are not allowed to fly over all the airspace, following well-defined

airway boundaries. Likewise, drones can take off/land only in specific locations, as in-

dicated by the blue pins. The IoD network system models this urban environment as a

graph representation (Figure 4.5b), where each node has an associated localization, and

the edges have a specific direction.

We carried out extensive simulations to evaluate the t-MixDrones. We used the

IoDSim1 as a simulation tool. It is an IoD simulation environment integrated with the

INET framework through the simulator OMNeT++. The IoD concept used in the simu-

lations follows the layered network proposed by Gharibi et al. [5], where drones fly over

well-defined airways in which the ZSP manages the airspace. We model an urban en-

vironment scenario that represents a piece of Manhattan Island. Table 4.4 shows a list

of relevant parameters of the simulation environment. A parameter with a bold font

indicates that its value varies, representing different configurations.

We define these parameters considering a reasonable time interval to allow a drone

to communicate and include the mechanisms. During the three hours of simulation, the

drones fly over the airways following a previously defined path planning, with scheduled

landings and takeoffs. To address a thorough analysis, we compare three LPPMs: the

traditional MZ scheme, commonly applied in vehicular networks; the MixDrones, solely

(the MZ regions are defined a priori,); and t-MixDrones. For each mechanism, we set

72 configurations, combining the different parameterizations of the number of airways,

the number of MZ to place, the coverage radius, and the k-anonymity. Regarding the

communication model, IoD nodes have the same protocols and radio configurations, using

TCP, AODV, and CSMA/CA. The radio operates following the standard 802.11n with

modulation mode of 1× 1 20MHz, having a maximum throughput of 72.2Mbps.

Furthermore, we execute 30 simulations with different seeds for each configuration,

replicating the same scenario for each mechanism. Hence, we perform 6,480 simulation

experiments, highlighting our approach’s robustness and statistical validation, leading to

results with a 95% confidence interval.

4.2.8 Results and Discussion

This section presents the results of our experimental evaluation, considering the

discussed metrics. We conducted a thorough analysis of each one, highlighting the perfor-

mance of t-MixDrones and comparing it with both the traditional Mix Zones for grounded

vehicular networks and MixDrones protocol, solely. It is essential to state that the in-

1https://iodsim.manna.team
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Table 4.4: Simulation parameters regarding the t-MixDrones performance evaluation

Parameter Value

General Parameters

Simulation time 180 minutes
Environment boundaries 3.8 × 10.5 × 0.25 km3

Drone speed uniform [36–54] km/h
Mobility pattern Gauss-Markov
#Drones 50
#Airways {2,4}
Mechanisms {traditional MZ, MixDrones, t-MixDrones}

t-MixDrones Parameters

∆t 1min
ρ 0.1
Pchange 0.8
#Mix Zones to place {1,2,4}
Mix Zones coverage radius {50m, 250m}
k-anonymity {2, 4, 6}

terval errors for all results are less than 1% and, therefore, they are not represented in

the charts. Lastly, we present a general discussion considering the results from a broad

perspective.

▶ Coverage Rate results: The Crate evaluates a fundamental privacy aspect since

it measures how many drones have at least one anonymization. This metric shows the

rate of the network nodes that have protection against trajectory-based location attacks.

Figure 4.6 shows the results of Crate . Each chart presents the evaluated mechanisms’

results with a different number of MZ placed over all the k-anonymity values, varying

the number of available airways and the coverage radius. In the left column, we have the

configurations with 50m of coverage radius, and in the right column, the configurations

with 250m. In the upper row, the configurations with two airways, and in the lower row,

the configurations with four airways.

It is noteworthy that the t-MixDrones mechanism achieves the high Crate in all

scenarios, considering all numbers of placed MZ. For a higher radius coverage, when the

value of k-anonymity is higher, t-MixDrones keeps covering around 100% of the drones,

regardless of the number of airways, whereas MixDrones and the traditional MZ decrease

the rate significantly. This result indicates that the dynamic MZP performed by the

BioMixD approach plays a crucial role in drone coverage through t-MixDrones.

As expected, the MixDrones-based mechanisms have a higher performance than

the traditional MZ mechanism, reinforcing that the model of MZ as a cylindrical re-

gion represents better the IoD characteristics, providing higher privacy. Another insight

about the Crate is that the number of available airways does not affect MixDrones and

t-MixDrones performance. The cylindrical model is also responsible for this performance,
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Figure 4.6: Results of Coverage Rate regarding the t-MixDrones performance evaluation

Source: Elaborated by the author

covering all airway altitudes. Regardless of how the drones are spread out at different

altitudes, the engine will always capture them as being in the same region.

However, the results point out a challenge that demands further investigation. For

a low coverage radius and a higher value of k-anonymity, all the mechanisms provide a

coverage rate lower than 20%. Considering the dimensions of the simulated environment

and its airways topology, the conditions that satisfy the application of the mechanism are

very restricted. Hence, the coverage radius must be tuned accordingly before deploying

the mechanism.

▶ Results of Re-anonymization Average Rate: The Crate indicates how many

drones are covered by the LPPM, but it does not consider how frequently drones are

anonymized. In this case, the RAR metric provides this overview, as depicted in Fig-

ure 4.7. The charts follow the same layout as Figure 4.6, exhibiting the three evaluated

LPPMs. Each value represents the average of how many times a given drone has been

anonymized during a single trip.
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Figure 4.7: Results of Re-anonymization Average Rate regarding the t-MixDrones per-
formance evaluation

Source: Elaborated by the author

As in the Crate metric, the t-MixDrones mechanism provides higher levels of re-

anonymization in all configurations. Furthermore, the higher the number of MZ placed,

the higher the RAR for t-MixDrones. Although t-MixDrones prevails in all configura-

tions, the number of MZ placed is a major aspect of providing a higher frequency of

re-anonymizations. For instance, the MixDrones mechanism with four placed MZ pro-

vides a higher RAR than the t-MixDrones with two placed MZ. Nonetheless, as the re-

quired k-anonymity increases, the difference between these two configurations decreases,

highlighting again that, for more restricted environments, t-MixDrones presents better

performance.

The value of coverage radius also represents a factor of impact to provide a higher

re-anonymization per trip. The radius of 250m provides almost a double RAR value

compared to the radius of 50m. Nevertheless, regardless of the configuration, a higher

value of k-anonymity implies few re-anonymizations, even for the higher coverage radius.

When k = 6, for instance, the average re-anonymization is less than 1, indicating that
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Figure 4.8: Results of Trajectory Matching Accuracy regarding the t-MixDrones perfor-
mance evaluation

Source: Elaborated by the author

there are trips where the drone does not change its pseudonym.

▶ Results of Trajectory Matching Accuracy: From a location privacy point of

view, besides a high rate of both coverage and frequency of re-anonymizations, an LPPM

must have proper resilience against location privacy attacks. In this study, TMA provides

this analysis, where a high TMA points out that an LPPM provides a lower level of lo-

cation privacy. Figure 4.8 shows the results regarding TMA. The charts are presented in

the same way as in the former metrics. It is important to note that, for these charts, a

lower value represents better performance. Moreover, the charts present the results from

the configurations that performed at least one anonymization. For instance, in the con-

figuration with four airways and 50m of coverage radius, the traditional MZ mechanism

does not perform any anonymizations when k-anonymity = 6.

The results point out that both t-MixDrones and MixDrones present an outstand-

ing resilience compared to the traditional MZ. As the value of k-anonymity increases, the
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resilience facing the attack also increases. In the more restricted scenarios, the attacker

links correctly around 10% of the trajectories, representing a noteworthy location privacy

protection from these two mechanisms.

Differing from Crate and RAR, t-MixDrones and MixDrones present a similar per-

formance considering the overall evaluation. For the configurations with 50m, the t-

MixDrones presents a better performance with lower k-anonymity values, but MixDrones

overcomes t-Mixdrones for a higher k. On the other hand, the opposite happens for

a coverage radius of 250m, even with a smaller performance difference. This similar

performance occurs due to the airway change representing the main “mixing” factor that

confounds the attacker. Considering that both MixDrones and t-MixDrones have the same

architecture regarding the performance of airway change, it is quite reasonable that they

have similar resilience. Furthermore, we can observe that the t-MixDrones results present

behavior that approaches a linear function in the order of the value of k-anonymity. It

can be strictly related to the higher Crate and RAR provided by this mechanism. Indeed,

less coverage and less anonymization lead to outliers in TMA, as we can observe with the

traditional MZ mechanism.

▶ Results of Increasing Travel Time Rate: Both t-MixDrones and MixDrones

request that drones change their airways, and, thus, there is a potential time travel delay

caused by the airway change. Depending on the provided service, delays can cause severe

complications in the QoS of a given drone. Figure 4.9 presents the results of ITTR for

these two mechanisms. In this metric, we take the time travel of the traditional MZ

mechanism as the baseline since the mechanism does not perform any airway change and,

therefore, reflects the drone’s time travels without delays.

Both mechanisms cause an ITTR of less than 8% of the baseline travel for all

configurations. For configurations with fewer available airways, t-MixDrones presents a

slightly higher delay, explained by the greater distance between the two available airways.

Furthermore, since t-MixDrones perform a higher number of anonymizations, the travel

time increases in these scenarios. The k-anonymity also influences the travel time. As we

already discussed, higher values of k set a restricted scenario for applying the mechanism.

Hence, as the anonymizations – and consequently the airway change – occur less, the

ITTR diminishes.

In our experiments, a drone performs trips that take around 15 minutes. Hence,

the delay corresponds to less than 1.5 minutes, on average. The impact of the delay is

fundamentally related to the type of service. For instance, emergency tasks can act in

real time and do not tolerate significant delays. Furthermore, the distance between the

current and the new airways and the drones’ speed can influence the delay caused by the

change of airways. These issues require a thorough analysis of the following aspects: (i)

the provided drone’s service; (ii) the arrangement of the airways; and (iii) how the speed
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Figure 4.9: Results of Increasing Travel Time Rate regarding the t-MixDrones perfor-
mance evaluation

Source: Elaborated by the author

of drones can affect the delay and continue to guarantee a low ITTR for the evaluated

mechanisms.

▶ General Discussion: Through this evaluation, we can observe that t-MixDrones

provides the best anonymization coverage for drones in all evaluated scenarios, especially

when the MZ coverage radius is broader. In these scenarios, t-MixDrones provides more

than 95% of coverage regardless of the required k-anonymity. Besides the best coverage,

t-MixDrones also provides a higher number of anonymizations per trip. It implies a higher

entropy to the location privacy system, which can hamper the success of the adversary.

Furthermore, t-MixDrones keeps the same resilience of the MixDrones approach

facing a trajectory-based linking attack. These approaches provide protection higher

than 50% of the traditional MZ mechanism. Also, the drone’s airway change performance

causes an increasing travel time of less than 8% in all scenarios. Considering the drone’s

SWaP limitation and the average travel time, this delay has a minor impact on the

network. However, the inherent characteristics of the provided application service must
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be considered to evaluate the effects of this additional time properly.

In a nutshell, t-MixDrones is the LPPM to provide a better location privacy level

to drones in the IoD environment. Overall, t-MixDrones overcomes both MixDrones and

the traditional MZ mechanism, mainly providing a higher coverage and re-anonymization

rate. Therefore, t-MixDrones can be applied in real-world IoD environments with dense

traffic of drones, being an enhanced and lightweight security protocol to ensure the drone’s

location privacy.

Also, this evaluation highlights new challenges to be further investigated:

• A major shortcoming faced by t-MixDrones is the potential energy consumption

increase caused by the additional maneuvers from the altitude change. Indeed, even

with a small ITTR, it represents a small parcel of flight time which intuitively means

a small growth of energy consumption.

• The provided QoS must be investigated thoroughly, mainly regarding the ITTR as

a key “side effect” of the drone’s airway change. This mechanism goal is currently

performed considering two factors: the probability of changing the airway and the

availability of intermediary airways. Hence, QoS factors can also be considered,

such as the delay tolerance;

• Some configuration parameters of t-MixDrones should be tuned dynamically ac-

cording to the environmental topology. For instance, the MZ coverage radius must

adapt to a length that provides a proper coverage and anonymization rate;

4.3 MixRide

In the last section, we present the t-MixDrones, the first LPPM designed specifi-

cally for IoD. Although t-MixDrones presented a suitable performance regarding location

privacy, the mechanism is not an energy-aware approach. It means that its utilization can

increase the drone power consumption, affecting the flight time and, therefore, the QoS.

Therefore, new strategies must be designed to overcome this shortcoming.

In recent years, the cooperation between aerial and grounded transportation has

arisen as a promising approach to enhancing the drone’s energy efficiency [128, 129, 130].

In these approaches, drones take a ride on ground transportation to save or recharge their

batteries, for instance, on the bus roof. These places can represent a silent zone since

they can accommodate many drones. Hence, the design of novel LPPMs can explore this

characteristic.
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Bearing this cooperation in mind, we design MixRide, an energy-aware LPPM for

the IoD. In a nutshell, MixRide provides location privacy through aerial-grounded vehicle

collaboration, where drones take a ride with grounded vehicles. MixRide assigns a vehicle

for the drone to land and remain in silent mode. Hence, the ground vehicle acts as a

mobile MZ, where the drones change their pseudonyms while saving energy.

As occurred in the t-MixDrones proposal, we follow the framework guidelines to

design MixRide. In the next subsections, we: describe the application scenario and

threat model; present existing approaches regarding an air-to-ground collaboration; model

MixRide formally; conduct a performance evaluation to compare our solution with t-

MixDrones; and discuss the impact of rides on the drone QoS in terms of delay, battery

power consumption, communication channel usage, and the level of location privacy.

4.3.1 Threat Model

Both the application scenario and threat model are similar to the ones described

for t-MixDrones (Section 4.2). In general, the referred IoD scenario embraces an urban

environment with a high density of drones, and buses are part of a ground public trans-

portation system. Furthermore, We consider IoD as a transportation environment where

the available airways are parallel to the terrestrial roads at different altitudes. Also, we

assume that the communication channel between the nodes is entirely reliable.

As MixRide provides location privacy through successive re-pseudonymization when

the drones land on the same vehicle, a trajectory-based de-anonymization attack can

hamper this provided privacy. Therefore, we consider the adversary model described in

Section 4.2.1, which aims to link the trajectories and then de-anonymize the generated

pseudonyms. This attacker acquires a background knowledge of the network through the

invasion of some unreliable Location Server in the network, including the anonymized

mobility traces. The adversary assumes that drones fly following the shortest path given

the source and destination points. Thus, he estimates this aspect considering all combi-

nations of the sub-trajectories before and after the re-pseudonymization to address the

shortest one, linking a former and a new pseudonym as belonging to a unique drone.
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4.3.2 Related Studies

The collaboration between aerial and terrestrial transportation emerges as a proper

strategy to mitigate the challenges posed by drone SWaP limitations. This approach

entails the aerial vehicles hitching a ride on terrestrial ones, based on specific criteria,

enabling the former to undertake their flight continuously. As the propellers consume a

significant portion of the drone’s battery, the rides contribute to the energy efficiency.

Over the years, different studies explored this collaboration in different applica-

tions, as presented in Table 4.5. They are related with parcel delivery systems [129, 130,

131] and surveillance applications [128, 132]. Besides the ride process, some approaches

investigated the viability of recharging the drones with devices attached to the ground

vehicles [128, 130] or also to swap the battery [129].

On one hand, the majority of proposed scheduling approaches are based on Mixed

Integer Linear Programming (MILP) [128, 132, 133] or even the application of suboptimal

algorithms [129, 131]. In general, the scheduling process occurs “offline”, in other words,

the system assigns a ride before the drone starts to fly. These approaches can provide a

local-optimum result considering each specific study’s goal but they do not consider an

important aspect of real-world transportation: the inherent delay caused by traffic jams.

Therefore, these strategies do not cover realistic scenarios. On the other hand, some

studies applied greedy-based heuristics focusing on assigning the rides “in-flight” [130].

With these strategies, the network system assigns the ride in an opportunistic way, as

much as possible. Although it can mitigate the related ground transportation delay, the

associated QoS can be affected since there is no “broader view” over the whole network.

Therefore, new strategies must be designed to merge the best characteristics of each kind

of approach.

Given this perspective, we design MixRide to overcome these issues, focusing on

enhancing the drone’s energy efficiency while providing adequate location privacy. We

address these aspects through the collaboration between the drones and the grounded

transportation system. The grounded vehicle acts as a mobile silent MZ where the drones

can change their pseudonym.

4.3.3 Design of MixRide

MixRide follows the concept of the MZ mechanism and, therefore, the k-anonymity

principle. In this approach, the drone has a PoI to save its battery, taking place on a
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Table 4.5: Related Studies of Aerial and Terrestrial Transportation Collaboration

Ref. Colab. Application Goal Scheduling Ap-
proach

[128] Public buses Video surveil-
lance

Recharging the UAVs battery
on the buses’ roof, optimizing
the video surveillance system

Mixed Integer Linear
Programming (MILP)
with a heuristic

[133] Public buses General cover-
age mission

Save the UAVs battery
through scheduled rides on the
buses’ roof

MILP

[129] Public train Delivery Swapping of the UAVs battery
via an automatic battery swap
system

Suboptimal task allo-
cation algorithm

[132] Public transporta-
tion vehicles

Surveillance Save the UAVs battery aiming
to reach far away surveillance
areas

MILP with two subop-
timal algorithms

[130] Public buses Last-mile deliv-
ery

Recharging the UAVs battery
on the buses’ roof

Greedy-based heuris-
tic

[131] General grounded
vehicles

Delivery Design of an incentive mecha-
nism to promote the collabo-
ration between grounded vehi-
cles and UAVs, determining a
ride’s pricing process

Polynomial near-
optimal algorithm

Ours Public buses General Enhance location privacy
through anonymizations
while the drones save
battery

Greedy-based
heuristic

grounded vehicle (e.g., a bus roof). This PoI represents a mobile MZ that allows the

drones to change their pseudonyms while saving battery.

Fig. 4.10 illustrates the MixRide concept. In this scenario, two drones (A and B)

fly over the environment, having distinct destinations. In Fig. 4.10a, a bus is near these

drones, and it is approaching a bus stop. In this case, the IoD system identifies that

both drones can take a ride on the bus to save energy. When the drones land on the bus’

roof, the bus becomes a mobile MZ, where the drones can change their pseudonyms and

remain in a silent mode (Fig. 4.10b). When the bus passes through a given checkpoint,

the drones leave the roof and fly to their respective destinations (Fig. 4.10c).

In terms of the drones’ mobility traces, when they are on the roof of the bus, they

do not update their location as they are in the silent zone (MZ). So, when they leave the

MZ, the traces are associated with new pseudonyms, which can increase the network’s

location privacy.

▶ Formal definition: To support the MixRide formal definition, we assume the fol-

lowing system model:

• D is the set of available drones in the IoD system. Each drone d ∈ D has the follow-

ing attributes. ε: the current energy level. PP = ⟨p0, . . . , p|PP |⟩: the current path

planning, composed by |PP | geographic checkpoints. This path planning considers
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Figure 4.10: MixRide concept

A

B

(a) Two drones fly near to a
bus

A
B

Mix Zone

(b) When the bus stops at a
station, they take a ride on the
bus’ roof, which acts as a MZ

A

B

(c) When the drones are close
to their destination, they leave
the bus’ roof

Source: Elaborated by the author

only the aerial space, which means that it does not embrace a potential ride; l: the

current location, denoted by a given geographical coordinated system;

• GV is the set of available vehicles in the grounded system. Each vehicle v ∈ GV has

the following attributes. maxd: the maximum number of drones that the vehicle

can carry; S = ⟨s0, . . . , s|S|⟩: the ordered sequence of stops associated with its

current trip; l: the current location; C = ⟨c0, . . . , c|S|−1⟩: the ordered sequence of

allocated drones between two consecutive stops. Thus, the ith element is related to

the trajectory between the stops si → si+1;

• Tripvd = ⟨PP b, Sr, PP f⟩ represents a collaboration trip between a drone d ∈ D and

a grounded vehicle v ∈ GV . It comprises three sub-sequences from the drone’s path

planning d.PP and the grounded vehicle’s stops v.S. PP b is a sub-sequence of d.PP

represents the initial aerial trip until the drone starts the ride; Sr is a sub-sequence

of v.S and represents the geographical points during the grounded ride; PP f is also

a sub-sequence of d.PP , but represents the final part of the aerial trip when the

drone leaves the ride and flies until the destination point.

The aerial-grounded collaboration has a trade-off: while the ride can save the

drone’s battery power, it also causes a delay in the drone’s travel since the grounded

vehicle’s average speed is lower than the drone’s speed [129, 130]. Thus, we can define three

different environmental factors that affect the MixRide performance: the k-anonymity

level, the ride’s delay, and the battery’s power consumption. Considering the k-anonymity

principle, the higher the k value, the higher the system’s entropy, leading to a higher

location privacy.

Therefore, we adopt an opportunistic approach, in which MixRide assigns drones

to take a ride as much as possible, following the maxd restriction. Once the MixRide

allocates a given drone d to take a ride on a grounded vehicle v, the initial point of the

ride Tripvd is already defined, but it is necessary to determine where the ride will finish.
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Algorithm 6: MixRide
Input : d, τ, w0, w1

Output : Tripvd
1 GVcand ← ∅, Trip

v
d ← ∅, ridebest ←∞

2 foreach v ∈ V do
3 vstp ← index of v.S element related to the next v’s stop

4 if distance(d.L, V.Sstp) ≤ τ ∧ v.Cvstp
< v.maxd then

5 GVcand ← Vcand ∪ v

6 foreach v ∈ Vcand do
7 vstp ← index of v.S element related to the next v’s stop

8 PP b ← ⟨d.PP0, . . . , nearest(d.PP, v.Svstp
) ⟩

9 Scand ← ⟨v.Svstp+1, . . . , v.S|v.S|⟩
10 foreach index s of Scand do
11 if v.Cs < v.maxd then
12 Sr ← ⟨v.Svstp

, . . . , v.Ss⟩
13 PP f ← ⟨nearest(d.PP, v.Ss), . . . , d.PP|d.PP |⟩
14 Trip′ ← ⟨PP b, Sr, PP f ⟩
15 ride← w0Trate(d,Trip′) + w1Erate(d,Trip′)
16 if ride < ridebest then
17 ridebest ← ride
18 Tripvd ← Trip′

19 else
20 goto Line 6

This endpoint is the fundamental factor in minimizing the impact of the ride’s delay and

the battery’s power consumption.

It leads us to the formal definition of MixRide (Algorithm 6). The algorithm is

a ZSP-centered method, called in every drone’s location update. In this approach, we

assume that a given ZSP z ∈ Z is aware of the path plannings of all drones and grounded

vehicles under its geographic region. As input, the algorithm requires the data about

the drone d, a given distance threshold τ , and two weight values w0 and w1 related to

the impact of the ride’s delay and the battery consumption, respectively. As output, the

algorithm generates the collaborative trip Tripvd.

Besides the output, the algorithm considers a set GVcand ⊂ GV that stores the

grounded vehicles that can provide a ride to d, and a variable ridebest 7→ R+ that stores

the value of the best ride, based on a minimization function, which is described further.

Before calculating the ride’s cost, it is necessary to address which grounded vehicles can

provide a ride. It occurs by evaluating of the distance between the drone’s current location

d.L and the next stop location of a given vehicle v ∈ GV , and the availability of a vehicle

“slot”. If both conditions are satisfied, v is added as a candidate (Lines 2-5).

After, MixRide evaluates each candidate, considering all the possible rides (Lines 6-

20). It is modeled step-by-step. Firstly, PP b is taken from the source geographic point
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that d started its trip to the aerial geographic point nearest to the next v’s stop (Line 8).

The next step consists of defining Sr, which effectively represents the ride. As the initial

geographic point v.Svstp
is already defined, the candidates’ endpoint must range from the

next immediate point to the last one. They compose the sequence Scand (Line 9). Each

endpoint candidate s of Scand can pose a different configuration regarding the ride’s delay

and d’s battery consumption. Hence, they need to be assessed one by one (Lines 10-18).

The first evaluated aspect is the current number of allocated drones until the endpoint s.

If there is no available spot, s is not a valid endpoint. As the ride must follow the ordered

stops v.S, all the following endpoints cannot be considered since v will be “full” at the

stop v.Ss (Lines 19-20). Otherwise, it is possible to offer a ride with v.Ss as the endpoint.

Thus, the algorithm defines a ride Sr from the next v’s stop v.Svstp to v.Ss (Line 12).

PP f is taken from the aerial geographic point nearest the ride’s endpoint to the actual

drone’s destination (Line 13). These three sub-sequences (PP b, Sr, and PP f ) compose a

candidate trip Trip′.

Hence, the ride can finally be evaluated for its potential delay and energy consump-

tion through two distinct functions, described in Equations 4.11 and 4.12, respectively

(Line 15). Trate is given by the rate of d.PP and Tripvd, considering their predicted time

interval to reach the destination point. Thus, MixRide aims to provide a lower Trate . The
Erate gives the battery’s power consumption as a predicted energy power consumption

rate that d has to perform the Tripvd and d.PP , respectively. Also, MixRide intends to

provide a lower Erate , which indicates that the ride allows the drone to save a significant

amount of power. The results of these functions are tuned through the input weights w0

and w1, and the resulting sum represents the ride score. If the ride score is less than the

current best ridebest, the trip candidate Trip’ becomes the new best ride (Lines 16-19).

After the algorithm evaluates all the candidates and potential rides, Tripvd represents the

best ride configuration. Therefore, the related ZSP sends this data to drone d, which

will replace its original path planning d.PP . The drone’s approximation, landing, and

takeoff occur synchronously with the grounded vehicle. These maneuvers are not limited

nor dependent on MixRide and can be applied according to the well-known methods of

the literature [129, 130].

Trate(d,Tripvd) = 1− predTime(d.PP )

predTime(Tripvd)
(4.11)

Erate(d,Tripvd) =
predEnrgConsump(d.E,Tripvd)

predEnrgConsump(d.E, d.PP )
(4.12)
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4.3.4 Simulation Setup and Performance Evaluation

Considering the obligatory presence of ground vehicles, we consider an urban en-

vironment where buses are part of a public transportation system. We use the RioBuses

dataset [134] to support our experiments. RioBuses has GPS data gathered from the

public transportation vehicles in Rio de Janeiro, Brazil. We delimit the experiments over

Ipanema Beach, where buses have a large concentration. The region contains around

15 km of roads.

As in the t-MixDrones setup, we use the IoDSim as a simulation tool of the IoD

environment. We spread 50 drones over that scenario, reaching a maximum speed of

15m/s. The energy consumption model follows the drone MD4-300, commonly used in

delivering goods, whose expected time flight is 45minutes [135]. Thus, the drone does

not recharge its battery during the simulation. There are 24 buses available to give a

ride, carrying a maximum of 3 drones. Each bus moves with a maximum speed of 12m/s

through distinct routes, based on the Riobuses dataset [134].

Regarding the communication model, IoD nodes have the same protocols and radio

configurations, using TCP, AODV, and CSMA/CA. The radio operates following the

standard 802.11n with modulation mode of 1×1 20MHz, having a maximum throughput

of 72.2Mbps. Regarding the MixRide parameterization, we consider a distance threshold

τ of 50m, which delimits a ride-matching between nearest drones and buses. To evaluate

the impact of the weights w0 and w1 over the mechanism, we define three configurations:

• C1 (w0 = 0.25, w1 = 0.75): it prioritizes rides with less predicted delays;

• C2 (w0 = 0.5, w1 = 0.5): it prioritizes rides that balance both the delay and power

consumption;

• C3 (w0 = 0.75, w1 = 0.25): it prioritizes rides with less predicted power consump-

tion;

▶ Metrics: Based on the discussed goals, we consider four metrics, such that one of

them is TMA, already presented in Section 4.2.7. The remained metrics are described as

follows.

• Trip Delay Rate (TDR): based on the duration time ∆ta of a baseline trip (aerial

only), the TDR calculates the delay rate ∆tm of the same trip when influenced by

an LPPM, such as MixDrones and MixRide. It is defined as follows.

TDR =
∆tm
∆ta

(4.13)
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Table 4.6: Simulation Parameters regarding the MixRide performance evaluation

Parameter Value
Simulation time 30 minutes
#Drones 50
Drone max. speed 15m/s
Drone’s Energy Model MD4-300 [135]
#Buses 24
Bus max. speed 12m/s
maxd 3
τ 50m
Configuration of weights w0, w1 {C1, C2, C3}

• Power Consumption Rate (PCR): Similar to TDR, it measures the rate between

the battery’s power consumption εa and εm, where they represent the consumption

during a trip through the air and when an LPPM influences it, respectively. It is

formally defined as follows.

PCR =
εm
εa

(4.14)

• Generated Packets Rate (GPR): this metric calculates the rate between the number

of generated packets of the baseline trip Pkta and its corresponding when applying

a mechanism Pktm. With this metric, we can analyze what mechanism consumes

the most of the communication channel. It is given by:

GPR =
Pktm
Pkta

(4.15)

4.3.5 Results and Discussion

This section presents the results of the experimental evaluation. They were ob-

tained through the average of 35 replications for each evaluated mechanism and con-

figuration with 95% of interval confidence. To perform a fair comparison, we simulate

the replications in an environment without utilizing of any LPPM, named the “base-

line experiments”. For all results, the interval errors are less than 1%. Thus, they are

not represented in the charts. Also, we define the following acronyms: MixD represents

the t-MixDrones mechanism; MixR-C1, MixR-C2, and MixR-C3 represent the MixRide

mechanism, parameterized with the configurations above.
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Figure 4.11: Results of the MixRide performance evaluation

(a) TMA (b) TDR

(c) PCR (d) GPR

Source: Elaborated by the author

▶ Trajectory Matching Accuracy (TMA): Fig. 4.11a shows the results of TMA for

the evaluated LPPMs. As we can note, MixRide with configurations that do not prioritize

the related delay (C2 and C3) provides a privacy level similar to the MixDrones. Indeed,

configuration C3 provides higher location privacy than t-MixDrones, where less than 25%

of the trajectories are de-anonymized. The balanced configuration (C2) also addresses a

proper privacy level, with a TMA similar to the t-MixDrones. It indicates that C2 can

be used in services in which drones have reasonable energy efficiency and do not need to

perform fast flights.

On the other hand, when MixRide prioritizes the rides with less predicted delay

(C1), the attacker can de-anonymize about 42% of the trajectories. This high value is

associated with the short time interval that a given drone remains on its ride, in which

there is no time for another drone to enter the MZ of the same vehicle. Thus, there are

situations in which the drone remains alone until it leaves the vehicle, which facilitates

the attack’s success since there are no other trajectories to link.
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▶ Trip Delay Rate (TDR): For TDR, we consider only the trips a given drone takes

a ride. This selection makes the comparative evaluation unbiased. Fig. 4.11b presents

the TDR results. Following the premises of each configuration, the lower the weight w0,

the lower the delay. Although the delay increases in the balanced configuration (C2),

it is less than 30% of the baseline trip, on average. It highlights that balanced weight

configurations can be a proper choice for delay-tolerant services. The rides following the

configuration C3, in turn, present an average delay higher than 50%, which can indicate

a loss of QoS for services that demand a fast performance.

Also, we can note that t-MixDrones presents a delay lower than all configurations

of MixRide. However, the t-MixDrones-related trajectory is similar to the baseline one.

The difference consists in changes of the airways resulting from the application of the

mechanism. However, all the flight is performed through the air, demanding more battery

power, as described in the following result.

▶ Power Consumption Rate (PCR): As in TDR, we also consider only the trips

in which the drone takes a ride. The PCR results, presented in Fig. 4.11c, highlight an

opposite scenario to TDR. t-MixDrones presents a rate higher than 100%, indicating that

the trips consume more battery power than the baseline ones, on average. This result

occurs due to the airway change demanded by the mechanism, expending an additional

effort on the drone’s propellers and, therefore, its battery power. Regarding the MixRide,

all the configurations can save the power consumption compared to the baseline trip. As

occurs with the TDR metric, the results point out that the premises of each configuration

are properly followed. Thus, the lower the weight w1, the lower the PCR. Specifically,

almost half of power consumption is saved in configuration C3. Considering the TDR of

C3, this economy occurs due to the longer rides assigned to the drones, where they remain

in the silent mode for a longer time.

Configurations C1 and C2, in turn, consume a power rate of about 78% and 71%

of the baseline trip, on average. Analyzing these results with the TDR, we note that their

performance has a similar interval difference. However, when we consider the evaluated

TMA, C2 highlights a better configuration in terms of location privacy.

▶ Generated Packets Rate (GPR): Once again, to keep the evaluation unbiased,

we only consider the packets generated by the drones. Fig. 4.11d shows the results of

GPR. These rates are similar to PCR because the generation of communication packets

in the MixRide is related to the time interval that the drones remain in a silent zone and,

therefore, save power.

Furthermore, we can note that configurations that prioritize the assignment of rides

with less power consumption also avoid a potential communication channel congestion.

On the other hand, t-MixDrones generates more packets than the baseline scenario. This
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issue occurs because the drones remain inside the MZ over a small interval. Moreover,

the number of packets related exclusively to the mechanism overlaps the number of non-

transmitted packets when the drone stays in the MZ.

▶ General Discussion: This experimental evaluation reveals that MixRide can pro-

vide location privacy to the IoD at the same level as t-MixDrones while improving the

drone’s power consumption and reducing the number of generated data packets. However,

the MixRide configuration affects these improvements deeply.

Configurations that prioritize the assignment of rides with less power consumption

can provide an adequate level of location privacy, reducing the number of generated

packets, besides the battery’s power economy. However, the drone’s trip has an increased

delay, representing an issue when the provided service does not tolerate significant delays.

On the other hand, configurations that prioritize rides with a lower delay can allow

the drones to assign rides with delay rates lower than 20% while saving a parcel of battery.

However, the provided location privacy is low compared to the other configurations. In

this case, MixRide can be integrated with other LPPMs (e.g., t-MixDrones), in which the

IoD management can learn through the environment the best way to apply each one in a

smart approach.

Summarily, the results point out the following challenges to be further investigated:

• It is fundamental to carry out a comprehensive study regarding the dynamic tuning

of MixRide configuration in such a way the mechanism can adapt to the environ-

mental conditions and the provided service requirements. AI-based techniques can

be applied to mitigate this shortcoming, for instance, the designing of RL-based

strategies;

• Given a real-world service performed by the drone, the analysis of the required

QoS is a paramount aspect of configuring MixRide accordingly. For instance, delay-

tolerant services can use the MixRide with a configuration that tries to reduce power

consumption. Whether the environment has several recharge stations, balanced

configurations can be a proper choice, providing adequate location privacy;

• MixRide is susceptible to an absence of available rides since the mechanism considers

a heuristic approach to assign them, based on a “regional exploration” of available

rides. Hence, enhanced ride-scheduling strategies shall be designed to optimize the

location privacy performance, the ride-related bus load, and the trade-off regarding

power consumption and delay.
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4.4 TDG

In the former sections, we presented two MZ-based LPPMs. However, they were

designed to be deployed in dense scenarios, only. Hence, there remains a lack of LPPMs for

sparse environments in the IoD. Although DaaS technologies are currently growing, some

services will still be provided by a few drones, for instance, restricted surveillance or mobile

wireless coverage [1]. As discussed in Section 3.2.2, dummy-based protocols are a group

of LPPMs that can provide location privacy in traditional mobile networks for sparse

scenarios [83]. It aims to protect a node’s location through spatial cloaking, generating

dummy positions in a way that they compose an indistinguishable set, simulating a group

with real and fake nodes. Hence, the design of this mechanism for IoD can overcome this

current lack.

We propose the Topology-based Dummy Generation (TDG) LPPM for the IoD

paradigm. This mechanism focuses on the IoD topology characteristics regardless of the

presence of nearest drones, meeting the requirements to be applied in a sparse scenario.

To the best of our knowledge, TDG is the first approach for sparse scenarios in IoD,

contributing to the advancement of the state of the art in this field.

In this section, following the framework to design LPPMs, we present a threat

model based on an IoD spatiotemporal inference attack (IoD-STIA). To better understand

the current literature, we analyze the recent studies regarding dummy-based strategies.

From that, we design TDG, discussing its key characteristics, how it can be applied in the

IoD environment. We also evaluate the TDG performance regarding the communication

channel usage and facing IoD-STIA through a series of simulations.

4.4.1 Threat Model

The drone’s trajectory planning is an optimization problem that considers sev-

eral requirements to compute the best path [136], where the airspace is modeled as “free

to flight”. IoD, in turn, has a traffic topology composed of well-defined airways, con-

straining the flyable airspace. Thus, it is necessary to plan the drone’s trajectory into

the airways’ boundaries. Thus, it is reasonable to formulate the hypothesis that in the

IoD environment, the planning of a drone’s trajectory aims to optimize a set of require-

ments, preserving the air traffic topology. Inductively, if we divide a trajectory T in n

sub-trajectories τ0, . . . , τn, all sub trajectory τ follows this hypothesis. In other words, a

node’s trajectory is optimal if all the sub-trajectories are also optimal.
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Based on this hypothesis, we design an IoD-based Spatio-temporal Inference At-

tack (IoD-STIA) that selects a group of queries Q′ through the processing of a trajectory

TA in which its spatio-temporal coordinates must correspond to the coordinates of the

real queries Qr ⊂ Q. In other words, the attacker tries to infer the actual drone positions

assuming that they represent the optimal trajectory among all the possibilities. Algo-

rithm 7 describes IoD-STIA. As input, it requires the topological graph G, the generated

system’s queries Q, an integer threshold n that limits the number of generated trajecto-

ries in each iteration, and an optimization function f . In this study, we consider as f

the standard deviation of the drone’s average speed along the sub-trajectories. however,

other functions can be considered, and our proposal is not limited nor dependent on this

function.

Algorithm 7: IoD-STIA
Input : G, Q, f , n
Output: Q′

1 Theap ← initialize an empty heap

2 Qclusters ← process ordered clusters of Q based on Q.t
3 for cluster ∈ Qclusters do
4 if |Theap| = 0 then

5 for query ∈ cluster do
6 Theap .insert(⟨query⟩, f(query))

7 else
8 T ′

heap ← initialize an empty heap

9 for τ ∈ Theap do

10 for query ∈ cluster do
11 τ ′ ← ⟨τ, query⟩
12 T ′

heap .insert(τ
′, f(τ ′))

13 Theap ← n first elements of T ′
heap

14 Q′ ← the first element of Theap

The attack works as follows. Firstly, we initialize an empty heap of trajectories

Theap that stores the generated trajectories (Line 1). After, the queries are grouped in a

sequence of clusters Qclusters , ordered by the query’s timestamp t (Line 2). Each cluster

will contribute to a single coordinate in the optimal trajectory. Hence, it is necessary to

process each sub-trajectory candidate along with these clusters (Lines 3–13).

At the beginning of the first iteration, there are no generated sub-trajectories.

Thus, each query that belongs to the first cluster is taken as the first trajectory point,

ordering them by f (Lines 4–6). For all the other clusters (Lines 7–13), the sub trajec-

tories from Theap are combined with each query of the current cluster and inserted in an

auxiliary heap Theap , also following the optimization function f (Lines 9–12). As these

combinations represent a geometric progression, only the n best trajectories are kept along
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Table 4.7: Recent studies related to dummy-based LPPMs

Ref. Network Generation Method Architecture

[137] Cellular - Caching-aware dummy selection Client-side

[139] General - Probabilistic generative model Client-side

[138] Cellular - Spatiotemporal correlation filtering Client-side

[82] VANETs - Circle-based region TTP

[83] Cellular - Decoy queries Client-side

[84] General - Plausible dummies Client-side

[85] General - Attribute-aware dummies TTP

Ours IoD - Topology-based TTP

the process (Line 13). After all the cluster processing, the first element of Theap has the

optimal trajectory coordinates, representing the inference carried by the IoD-STIA.

4.4.2 Related Studies

Over the years, several dummy-based methods have been proposed, considering

their environmental characteristics and constraints. In Cellular Networks, the strategies

explored human user behavior. The dummies were generated considering regions with

similar query frequency by users, addressing a query caching [137]; a filtering technique

exploring time reachability and direction similarity of users’ movements [138]; and the

imitation of real user mobility patterns being generated at the same time as the actual

query [83]. Due to the absence of a trusted entity in Cellular networks, all the studies

used the Client-side architecture, where the node generates the dummies by itself and

communicates with the LBS directly. The TTP architecture has been used when the

environment has constraints regarding energy, communication, or computational cost. In

VANETs, for instance, Arif et al. [82] proposed a circle-based dummy generation allied

with an anonymizer as TTP, transferring this process from the cars to a trusted party.

Some studies investigated the dummy-generation methods being applied to mobile

networks in general. Hence, these methods are based on common characteristics of mobile

behavior. For instance, generating the dummy queries through a probabilistic mobility

model using a real trace dataset [139]; considering an optimal mobility trajectory over the

time [84]; and exploring the variability of query attributes rather than the localization,

only [85].

These related studies pointed out that dummy-based strategies have been adapted

over the years according to the environmental characteristics and nodes’ mobility patterns,

always aiming to be resilient in facing different location-based attacks. Nonetheless, there



4.4. TDG 108

is no study that investigates this mechanism in the IoD paradigm. Considering that the

mechanism will generate many queries and send them through a communication channel,

it can lead to a high traffic flow.

Although some proposed generation strategies can easily fit in IoD, this issue is

a barrier. The high mobility dynamics and the available airspace are also constraints to

generating concise dummy queries. As previously discussed, a drone is able to fly over

well-defined airways with boundaries, direction, and other features, such as speed limit.

Besides the airways, the drone can freely fly over specific PoIs, expressed through the

nodes. These factors pose a complex mobility behavior, leveraging the design of enhanced

LPPMs that need to handle these challenges.

4.4.3 Design of TDG

The Topology-based Dummy Generation (TDG), as the name suggests, is mainly

based on the IoD topology to generate dummy queries, regardless of the presence of the

nearest drones. In this approach, we combine different concepts from well-established

mechanisms: the neighborhood random movements and the generation over circle-based

regions [82].

Figure 4.12 illustrates the TDG concept. A current drone (black drone) will al-

ways have previous and subsequent topological points nprev and nsubs , respectively (blue

circles). Thus, the dummy query positions (blue drones) can be generated over their ad-

jacent airways segments (green segments). However, in sparse scenarios, these adjacent

points can be far away from each other, easing inference attacks since the dummies can

be placed sparsely [140]. To handle this issue, we consider a spherical region with a radius

r whose goal is to restrict the dummies’ distance from the actual position.

Algorithm 8 formally defines TDG. Here, we assume that given a drone d, a ZSP

Z manages the d’s path planning ρd, providing information about the airways topology

through a graph G = (V,E). Furthermore, the algorithm requires as input the restriction

radius r; the required k-anonymity level k; the drone’s identifier id and location ld; the

timestamp t; and the required query information qinfo.

Initially, the mechanism initializes the adjacent airways set Eadj as an empty set

(Line 1) and assigns the real drone’s query to the output queries set Q (Line 2). After,

it obtains the closer points nprev and nsubs based on the current drone’s location ld and

the topological graph G (Line 3). The next step consists of selecting the adjacent airways

to place the dummies. Thus, the adjacent edges of both nprev (Lines 4–5) and nsubs

(Lines 6–7) are selected.
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Figure 4.12: Topology-based dummy generation concept

Source: Elaborated by the author

Algorithm 8: TDG
Input : G, R, k, id, ld, t, qinfo
Output: Q

1 Eadj ← ∅
2 Q← {⟨id, t, ld, qinfo⟩}
3 nprev , nsubs ← closerPoints(G, ld)
4 for v ∈ G.adjacents(nprev) do
5 Eadj ← Eadj ∪ {⟨nprev , v⟩}
6 for v ∈ G.adjacents(nsubs) do
7 Eadj ← Eadj ∪ {⟨nsubs , v⟩}
8 while |Q| ≤ k do
9 ⟨n1, n2⟩ ← choose a random tuple from Eadj

10 distance ←∞
11 while R < distance do
12 ldummy ← choose a random coordinate between the line segment of ⟨n1, n2⟩
13 distance ← calcDistance(ld, ldummy )

14 Q← Q ∪ {⟨id, t, ldummy , qinfo⟩}

Finally, the mechanism generates the dummy queries until the k level is satisfied

(Lines 8–14). By randomly choosing an adjacent airway (Line 9), the dummy location

ldummy is selected, meeting the radius constraint (Lines 11–13). Given that we can con-

sider the airway as a line segment over a 3D space, TDG randomly selects ldummy from

this segment (Line 12), which will compose a new dummy query (Line 14).

▶ Time Complexity Analysis : TDG has a time complexity cost also related to IoD
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topology, as we described as follows. Firstly, it is important to note that TDG has several

set-based operations. We assume that the mechanism implements the well-known optimal

elementary set operation algorithms, whose costs are Θ(1). It is necessary to check all

edges E to calculate the closer points of a location ld (Line 3), leading to a cost Θ(|E|).
Moreover, the building of adjacent airways set S occurs through the iteration of adjacent

sets. Given that G is a directed graph and implements these sets with linear lists, each

iteration process has time complexity O(|E|). The dummy queries generation (Lines 8–

14) iterates for k times, where its inner operations have Θ(1) cost. Thus, the iteration

complexity is Θ(k). Hence, the time complexity T (TDG) is given by Equation 4.16.

T (TDG) = 2Θ(1) + Θ(|E|) + 2O(|E|) + Θ(k)

=O(max{|E|, k})
(4.16)

4.4.4 Simulation Setup and Performance Evaluation

With TDG, we focus on analyzing the environments where the applications are

strictly related to the drone’s location privacy. For instance, an application where a

drone can monitor the grounded traffic flow, requiring periodically contextual informa-

tion to an LBS, demanding the drone’s location. Hence, the dummy-based mechanisms

must be aware of the drone’s flyable airspace rather than third-party users. Hence, in the

performance evaluation, we consider an urban scenario where the drones have well-defined

path plannings managed by the ZSPs. They communicate with an LBS whenever there

is a location request involved. The communication architecture used with the LBS is

independent of the drone application module, which is a decision of the network infras-

tructure.

We perform simulations using the IoDSim. Table 4.8 shows a list of relevant simu-

lation parameters. We design an urban environment that reflects a region of Manhattan,

NY, considering a single airspace zone where the flyable airspace follows the grounded

roads in two different altitudes. Since our mechanism focuses on sparse scenarios, we

place fifteen drones with different path plannings over the environment. They move with

a speed varying from 5 to 10m/s and a Gauss-Markov mobility pattern.

Regarding the communication model, IoD nodes have the same protocols and radio

configurations, using TCP, AODV, and CSMA/CA. The radio operates following the

standard 802.11n with modulation mode of 1×1 20MHz, having a maximum throughput

of 72.2Mbps. Besides the communication model, we vary both the k-anonymity level

and the TDG radius to evaluate how these factors impact location privacy. For each
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Table 4.8: Simulation parameters regarding the TDG performance evaluation

Parameter Value
k-anonymity {4, 5, 6, 7, 8, 9, 10}
TDG radius {50, 100, 150, 200, 250}
Communication model {Client-server, TTP}
#Drones 15
Drone speed 5–10m/s
Mobility pattern Gauss-Markov
Environment boundaries 900 × 1100 × 200m3

#Airways 2 (100m and 150m)
ZSPs 1
Simulation time 10 minutes

combination, we conducted 35 experiments considering 35 different simulation seeds to

obtain statistical validation and variation with 95% of a confidence interval, totaling 2450

distinct experiments.

▶ Metrics: We consider four different metrics to evaluate the proposed solution. The

first one brings a communication channel analysis. The other three evaluate the provided

location privacy through the IoD-STIA point of view.

• Number of packets: it summarizes the number of generated packets from a given

network source to a given destination. With this metric, we can analyze and identify

what IoD nodes consume the most in the communication channel;

• Real drone location discovery accuracy (RDLDA): this metric measures the

IoD-STIA success in terms of correctly associated queries. Let Q′ = ⟨q′0, . . . , q′n⟩
be the inferred group of queries by IoD-STIA, where n is the number of sequential

queries of Q′. Let Q = ⟨qr0 , . . . , qrn⟩ be the group of queries that corresponds to the

drone’s real queries. RDLDA can be calculated as follows:

RDLDA =

∑n
i=1

{
1, q′i = qri
0, otherwise

n

• Real trajectory time discovery rate (RTTDR): it measures for how long the

IoD-STIA can infer the drone’s real trajectory, given the total drone’s flight time

t. Given two consecutive queries q′i and q′i+1, the real trajectory can be inferred if

these queries correspond to qri and qri+1
, respectively. RTTDR can be calculated as

follows.

RTTDR =

∑n
i=1

{
q′i+1.t− q′i.t, q

′
i = qri ∧ q′i+1 = qri+1

0, otherwise

t
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Figure 4.13: Network traffic comparison regarding TDG performance evaluation

Source: Elaborated by the author

• Distance rate per trajectory point (DRTP): as important as to measure the

drone’s discovery is to know how distance difference IoD-STIA misses the correct

location. We can evaluate this aspect through the similarity between trajectories.

DRTP highlights this aspect taking into account a distance rate per trajectory point,

based on the TDG radius r. It is calculated as follows.

DRTP =

(
f(Q,Q′)

n

)
/r

We consider as f the Dynamic Time Warping (DTW). It is a proper approach to

calculate these trajectories’ distances, since Q and Q′ lead to trajectories with the

same length and spatio-temporal coordinates at the same time [141].

4.4.5 Results and Discussion

Here we highlight the performance of TDG considering Client-server and TTP

communication models, and the provided location privacy facing the IoD-STIA. Further-

more, for the majority of the experiments, the interval errors are less than 1%, being not

represented in the charts.

▶ Network Traffic Analysis: The communication channel usage is directly related

to the drone’s SWaP constraints since the RF-based transmission consumes the drone’s

battery. Thus, the proposed mechanisms must use the wireless channel as little as possible.
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Figure 4.14: Location privacy results regarding TDG performance evaluation

Source: Elaborated by the author

Figure 4.13 shows a network traffic comparison between both Client-server and TTP

communication models for each k-anonymity level. The packets are analyzed in two main

groups: control packets, related to flight and path planning messages; and TDG packets,

related to the dummy-based mechanism.

As the simulations are replays with the same path planning for the same k value

and seed, the number of control packets remains the same for all k-anonymity levels. On

the other hand, the k level implies the number of generated dummy queries. Hence, the

number of TDG packets increases whereas k also increases. In the Client-server model,

this raise is slightly greater due to the request for topological information, generating

more messages between the drones and the ZSP.

Due to the communication model’s characteristics, there is no traffic between some

components. In the client-server model, since drones communicate directly with the LBS,

there are no exchanged packets between the LBS and the ZSP. In the TTP, in turn, the

drones do not send the dummies to LBS directly since the ZSP is responsible for this task.

This leads us to the main difference between the models. We can observe a promi-

nent communication between the drones and the LBS in the Client-Server model, which

occurs through the available IoD wireless channel. In the TTP model, this prominence

occurs between the LBS and the ZSP. This communication occurs through a wired chan-

nel since the ZSP commonly represents a grounded station. In any case, they will not use

the same wireless channel shared by the drones.

▶ Location Privacy Analysis: the location privacy provided by a dummy-based

LPPM commonly reflects three main aspects: the location information disclosure leverage

by an attack, the time that the adversary does not infer the correct information, and the

location information distance error. Here, they are evaluated through RDLDA, RTTDR,

and DRTP, respectively. Figure 4.14 shows the obtained results for these three metrics.

It is important to state that they are attack-centered metrics, in other words, it measures

the IoD-STIA success.

As we can note, all metrics pointed out that the drone’s real queries had more
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privacy when we configured TDG with a lower radius value and a high k-anonymity level.

RDLDA and RTTDR presented similar results, although they measured different aspects.

In RDLDA with R = 50m and k = 10, specifically, the attacker discovered less than 25%

of the real drone’s location during the time.

This same configuration provided the best result for RTTDR when the adversary

inferred the drone’s trajectory correctly less than 10% of the time. We also can note

that for all configurations the attacker could not infer the real drone’s trajectory more

than 50% of the time. It highlighted the high location protection provided by TDG to

potentially avoid trajectory-based attacks.

In the DRTP chart, higher rates indicated better location privacy since the trajec-

tory distance was higher between the inferred and the real trajectory. Thus, this metric

reinforced that constrained radius and higher k-anonymity levels provided better location

privacy. However, DRTP pointed out that this distance was less than 40% of the config-

ured radius, per trajectory point. Considering the best scenario, the DRTP was near 35%

of the configured radius, more precisely, less than 20m of the real drone’s position.

▶ General Discussion: In summary, the experiments revealed that TDG could pro-

vide proper location privacy in the IoD environment, reducing the wireless communication

channel utilization. Its application can be helpful in sparse scenarios since the proposed

dummy generation method focuses on topology characteristics regardless of the presence

of near drones.

TTP was the best-evaluated communication model to apply the TDG in the IoD

paradigm. With this model, it is possible to reduce the wireless communication channel

usage and mitigate the SWaP limitations, mainly the battery consumption. Regarding the

location privacy analysis, TDG provided a high protection level facing IoD-STIA, whereas

the configured generation radius was lower and the k-anonymity level was higher. More

precisely, for a radius r = 50m, the performance was truly better than the other ones,

indicating that the proximity among the real and dummy queries increased the difficulty

of an adversary to infer the optimal trajectory.

However, the evaluation also revealed a major shortcoming: considering the applied

radius, the average distance error between the real and the inferred drone’s location was

small. It means that although IoD-STIA did not discover a significant amount of drone

location and its trajectory, the inferred trajectory was not far from the real one. This issue

poses new interesting challenges to further investigate, such as how the airways topology

allied with the drones’ trajectories affect these distances.
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4.5 IoDAPM: An RL Approach for Dynamic

Assignment of LPPMs

In the previous sections, we proposed t-MixDrones, MixRide, and TDG. Although

all of them presented suitable levels of protection in terms of location privacy, they were

designed for specific scenarios. Therefore, we can assume that no mechanism can be

considered a “silver bullet” for addressing optimal location privacy. The high location

privacy level commonly leads to a lack of QoS, such as high energy consumption and flight

delay. Therefore, some research questions arise: (i) Which factors influence the LPPM

effectiveness? (ii) How LPPMs affect the QoS of the network? (iii) How can the network

assign the most suitable LPPM from a pool, considering the prevailing circumstances?

RL approaches represent suitable strategies to deal with these challenges, enhanc-

ing the knowledge about the dynamic behavior of a mobile network [142]. Also, these

approaches can improve decision-making capabilities and adaptability in complex and

dynamic environments. RL has been widely applied in different domains, ITSs and rec-

ommendation systems [143].

Considering these aspects, we propose IoDAPM, an RL-based approach for the

Dynamic Assignment of Protection Mechanisms in IoD. IoDAPM aims to improve the

QoS provided by the network from the optimization of a transition model from the rewards

obtained by previous assignments made in the network, considering the environmental

conditions. The approach considers the ZSPs of each aerial zone as distributed agents

that enhance a local RL-based model, which is updated globally periodically.

Specifically, we apply IoDAPM to assign dynamically our proposed LPPMs: t-

MixDrones, MixRide, and TDG. However, our approach is not limited to these mecha-

nisms in such a way that other further mechanisms can be considered. Furthermore, it is

important to state that IoDAPM is not a LPPM, but an approach to select and apply the

best mechanism given the environment conditions. Hence, the design of IoDAPM does

not follow the proposed framework (Section 3.4).

In this section, we: discuss the fundamental aspects involved with RL approaches;

formally define IoDAPM; present the performance evaluation of IoDAPM; and discuss

the obtained results.
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Table 4.9: Categorization of the IoD environment conditions

Condition Categories

Drones’ density
– drones per aerial zone < Drate (sparse)
– drones per aerial zone ≥ Drate (dense)

Battery level
– level < 25% (low)
– level < 50% (medium)
– level ≥ 50% (sufficient)

Delay
– forecast < 5% (on time)
– forecast < 15% (acceptable)
– forecast ≥ 15% (delayed)

Other networks (public buses)
– available
– not available

4.5.1 Fundamental Aspects

RL consists of ML techniques in which agents interact with the environment to take

actions that maximize a reward [143]. RL strategies can be applied to solve the assignment

problems since it has some exploratory characteristics: the referred optimization delves

into the interaction with the environment for better decision-making, considering a series

of characteristics, starting from an unexplored scenario [144]. Formally, RL is modeled as

a Markov decision process, composing a tuple (S,AT ,R,P , γ) such that S represents all

the possible states of the agent, AT is the set of actions to take, R is the reward function,

P represents the transition probability between states, and γ is a discount factor [144].

Moreover, the transition probability can follow a policy π such that π is optimized over

time, aiming to maximize its cumulative rewards over time [142].

Besides location privacy, the proposed LPPMs cover different aspects. For instance,

MixRid overcomes the energy issues of t-MixDrones. TDG, in turn, focuses on sparse

environments considering the number of drones. It indicates that no ideal LPPM can

provide optimal location privacy in any situation. Indeed, the mechanisms can provide

enhanced levels of location privacy in different network conditions but also decrease other

aspects, for instance, energy efficiency and causing delays. Table 4.9 categorizes the

environmental conditions observed when these mechanisms were applied. It is important

to state that these categories refer to a group of potential values for each condition. We

discuss each one from a network point of view.

• Drones density: as in other mobile networks, the number of nodes (in this case,

the drones) can severely affect the mechanisms, mainly the ones based on the k-

anonymity principle. MixRide and t-MixDrones depend on a dense network to

perform properly since their main concept delves into at least k nodes to be applied;

• Battery level: SWaP limitations still are a critical challenge in IoD. Therefore,
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the usage of a given LPPM must consider the current battery level of the involved

drones. For instance, t-MixDrones leads the drones to perform maneuvers to change

their altitude, expending more energy than expected;

• Delay: likewise, drones must preserve a certain level of QoS regarding delay. Emer-

gency services do not tolerate delays in the planned flight. Hence, LPPMs that can

cause a delay in the drone’s flight – such as MixRide – may be applied only when

the provided service is delay-tolerant.

• Conditions from other networks: although this condition is driven by the par-

ticular design of a given mechanism, the conditions of 3rd-party networks can affect

the LPPM performance. As discussed, MixRide collaborates with grounded public

transportation, and consequently, the provided privacy level depends on the public

transportation conditions.

4.5.2 Design of IoDAPM

Based on the previous discussion, deciding which LPPM is the best approach

to address an optimum location privacy level in a given environment is a noteworthy

challenge. This problem can be defined as follows. Let us consider an IoD network

with a navigation model G and a set of nodes N . Also, let us consider a set LPPM of

available LPPMs to apply in the network. The dynamic assignment of IoD-based LPPM

problem consists of assigning a mechanism m ∈ LPPM over N given a set of conditions C
extracted from the network considering a time interval ∆t in such a way that m provides

the highest privacy level ∀m ∈ LPPM , considering a set of metricsM.

IoDAPM aims to solve the aforementioned problem. Its design has three parts.

First, we define the main components of the approach. The two subsequent parts are

related to the LPPM assignment step, and the global model update step, respectively.

Figure 4.15 presents the concept of IoDAPM. It follows the traditional interface of RL

models [143], consisting of the agent and environment entities, mediated by an interpreter

gathering the environmental conditions. As the conditions can vary for different aerial

zones, the proposed approach is applied over each aerial zone individually. Given the

assignment of an available LPPM (action role) decided by the ZSPs of a given aerial zone

(agent role), the IoD cloud system (interpreter role) observes the addressed privacy levels

to define the reward and address the new state.
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Figure 4.15: IoDAPM concept
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Source: Elaborated by the author

▶ Formal definition: It is important to state that although the approach is valid

for the whole IoD network as well as the environment, the definitions are centered on a

given aerial zone az ∈ AZ. Besides the common notation, we represent subsets with the

following notation: given a set X , Xy represents a subset of X . The agent is a subset

Zz ⊂ Z such that every ZSP z ∈ Zz is responsible for managing az. The environment

corresponds to the entire region covered by az, embracing the network conditions of this

region. The cloud system CS represents the interpreter, responsible for gathering the

privacy levels and calculating the reward of the action taken, considering the reward

function (Eq. 4.19).

The action actively consists of assigning an LPPM given the environmental condi-

tions. Hence, the set of actions AT ct is composed of a single action α, representing the

assignment. The Conditions refer to a set of environmental characteristics that can affect

the performance of a given LPPM. Formally, C represents the set of conditions such that

∀c ∈ C, c can assume a discrete value from a group of condition categories, as presented

in Table 4.9.

The set of possible states S corresponds to all tuples coming from the combination

of LPPM ×Cc, such that Cc is the set of all possible tuples considering the combinations

of the observed environmental conditions C0 × C1 × · · · × Cn, such that n is the number

of categories of the environmental conditions. For instance, considering Table 4.9, there

are four different categories. A possible tuple from Cc can be (“sparse”, “low”, “on time”,

“available”), which in turn can be combined with “TDG” to compose a valid tuple in S.
Furthermore, IoDAPM considers the provided QoS as a function, measured by a

set of metrics M and a set of weights W , |M| = |W|. Hence, the QoS provided by the

network at a time interval ∆t is defined by the following equation.

QoS(∆t) =

|M|∑
i=0

wimi(∆t), wi ∈ W ,mi ∈M (4.17)
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▶ Policy: representing the states S through the previous combinations can lead to

a higher number of possible states, representing a high-dimensional problem [144]. For

instance, considering the three related IoD-based mechanisms and all the possible cat-

egories of each environmental condition (Table 4.9), the RL approach has 108 possible

states. However, given the observed environmental conditions, the possible transitioning

states are constrained by combining the LPPMS with these conditions. For instance, let

us suppose the tuple obsConds=(“sparse”, “low”, “on time”, “available”) as representing

the observed conditions. The next state snext ∈ S will be obligatorily (“TDG”, obsConds),

(“MixRide”, obsConds), or (“t-MixDrones”, obsConds). Therefore, the agent addresses

a next state snext respecting the policy π defined as follows:

π = snext,∃snext ∈ Sobs,Sobs ⊂ S and Sobs = LPPM × obsConds (4.18)

In other words, the next state is always assigned randomly from a set of |LPPM |
possibilities, reflecting the last observed conditions of the environment. Although this

assignment occurs randomly, it follows a transition probability and a reward model defined

by a learning model, discussed as follows.

▶ Reward: a key aspect of RL-based approaches is measuring how good the action

taken by the agent was. This measurement varies according to the approach, considering

the particularities of the problem to be solved. In IoDAPM, the reward is stored in a

matrix R with dimensions |S| × |S|. Let us assume (i, j) as the index of R related to

the last action taken, ∆t as the time interval related to this action in the aerial zone, and

∆t−1 the time interval of the predecessor action taken. A function calcReward calculates

the reward related to this action, being formally defined in Eq. 4.19.

calcReward(i, j,∆t,∆t−1) = R(i, j) + (QoS(∆t)−QoS(∆t−1)) (4.19)

The reward is based on the difference in QoS between the two last actions taken.

If the previous provides a QoS level worse than the one provided by the predecessor, it

is a punishment, decreasing the last attributed reward value. Otherwise, the action has

enhanced the network, improving the associated reward.

▶ Transition Probability: the transition probability refers to a model represented

by a matrix P with the same dimension as R such that P(i, j) is the probability from the

agent transitioning from the state si to sj, such that si, sj ∈ S and i, j are indexes related

to these states. IoDAPM enhances this model based on the knowledge acquired from

the environment. Therefore, the attribution of transition probabilities has two distinct

phases: the initialization step, corresponding to the baseline model; and the enhancement

step, updating P based on the conditions and the provided QoS.
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Algorithm 9: Calc-Transition-Prob
Input : P,R, ilast, jlast, Ilast

1 lastProb ← P(ilast, jlast)
2 P(ilast, jlast)← max(0,min(1, lastProb + (R(ilast, jlast)* lastProb)))
3 remainedProb ← (P(ilast, jlast)− lastProb)/|LPPM |
4 for (i,j) ∈ Ilast do
5 if (i, j) ̸= (ilast, jlast) then
6 P(i, j)← max(0, P(i, j)− remainedProb)

Output: P

In the initialization step, the main idea is to initialize equally the probability of

transitions from a given sort of condition tuples and the available mechanisms to assign.

Let us assume P0 as the initial transition probability model. Considering the policy π,

the transition from a state si to a state sj has |LPPM | possibilities. Hence, it is intuitive
that ∀(i, j) of P0, P0(i, j) = 1

|LPPM | .

The enhancement step aims to optimize P so that the transition probabilities

adapt to the QoS observed over time based on previously taken actions. Therefore, this

step occurs periodically, being processed before the agent takes a new action. Let us

assume (ilast, jlast) as the matrix index of the last transition taken by IoDJAPM, and Ilast
a set containing the states’ indexes that could be reached in the last assignment. The

enhancement step is given by Algorithm 9.

An important aspect of Algorithm 9 is the need to update the transition probabili-

ties of a selected group of elements instead of the whole matrix, referring to the constrained

set of possible transitioning states. There are two cases covered in the enhancement: (i)

the update of the transition whose index refers to the last transition taken (Lines 1–3);

and (ii) the probability updates of the remaining states that could be assigned but were

not taken (Lines 4–6). The updated probability of the last transition is calculated by

summing the multiplication of the associated reward by its current probability. If the

reward is a punishment, the probability is decreased. To keep the transition probabil-

ities concise, the value is constrained in the interval [0,1] (Lines 1–2). Since this new

probability affects the remained states in the group, they are adjusted with the remained

probability(Line 3), being equally distributed over the other states that could be reached

(Lines 4–6).

▶ Time Complexity Analysis : Algorithm 9 is dominated by matrix update itera-

tions, in terms of time complexity. From Line 1 to 3, we have basic operations whose

data are gathered from the matrices R and P , corresponding to a complexity of O(1).
From Line 4 to 6 occurs the transition probability matrix update, leading to a complexity

of O(|S|2). However, in practice, the updating is bounded by the states that could be

reached in the assignment, corresponding to Θ(|LPPM |) since the possible transitions

are guided by the number of mechanisms to assign.
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Algorithm 10: Assign-LPPM
Input : LPPM, obsConds,S, scurr,P,∆t−1

Output: S,R, snew
1 ∆t ← currentTime() - the end time of ∆t−1

2 i, j ← get the related index of scurr considering S and R
3 lastConds← extract the last conditions, associated with scurr
4 R(i, j)← calcReward(i, j,∆t,∆t−1) ▷ Eq. 4.19
5 Slast ← LPPM × lastConds
6 Ilast ← generate a set containing the indexes in S that correspond to the states of Slast
7 Calc-Transition-Prob(P,R, i, j, Ilast) ▷ Alg. 9
8 Supdt ← LPPM × obsConds
9 snew ← apply π over Supdt ▷ Eq. 4.18

▶ Dynamic assignment of LPPM strategy: Algorithm 10 describes the IoDAPM

assignment performed in the CS of each region. It is activated each time a new set of

environmental conditions is observed in the aerial zone. It requires, as input, the set of

LPPMs, the tuple obsConds representing the observed conditions of the environment,

the current state scurr, and the last observed time interval ∆t−1. As output, the algo-

rithm provides the updated matrices of transition probability S and reward R, and the

attribution of a new state.

Initially, the algorithm calculates the time interval considering the last assignment

(Line 1) and gets the index of the current state considering the model of the matrices

R and S (Line 2). Also, the environmental conditions of the last assignment are taken

(Line 3). With these data, the reward of the current state is updated, following Eq. 4.19

(Line 4). After, the algorithm proceeds with the update of the transition probability

matrix S following Algorithm 9 (Lines 5-7). It is important to note that these updates

always “look back” to the impact of the last mechanism assignment. With both matrices

R and S updated, the algorithm finally calculates the new assignment, following the

policy π, as defined in Eq. 4.18 (Line 9). The new current state is communicated to all

ZSPs of the aerial zone, which in turn must update the mechanism applied in the region.

▶Time Complexity Analysis : Algorithm 10 presents several constant operations

(Lines 1, 3–5, 8, 9) whose complexity is O(1). Likewise Algorithm 9, matrix iterations

in S, R, and P dominate the time complexity (Lines 2, 6, 7), also leading to O(|S|2).
However, in practice, the related base stations compute just a small part of the matrices,

being also Θ(|LPPM |).

▶ Global model update strategy: Algorithm 10 generates different models for the

matrices R and S since each aerial zone can be considered an individual agent. Therefore,

aerial zones can benefit from an enhanced model processed and shared globally, increasing

location privacy in all regions as they share the same communication channel.

We design an update strategy that merges the models from different aerial regions,



4.5. IoDAPM: An RL Approach for Dynamic Assignment of LPPMs 122

Algorithm 11: Update-Models
Input : Sz,Rz, LPPM, obsConds
Output: Sbest,Rbest

1 Sbest,Rbest ← empty matrices with dimensions of Sz,Rz

2 Iconds ← group the indexes of Rz considering the distinct combinations of
LPPM × obsConds

3 for each group of Iconds do
4 bestReward ← 0
5 bestRegion ← ∅
6 for each R of Rz do
7 sumReward ←

∑
(i,j)∈group |R(i, j)—

8 if sumReward ≥ bestReward then
9 bestReward ← sumReward

10 bestRegion ← region az associated with R
11 update Sbest,Rbest in the indexes of group with the values from S,R associated

with bestRegion

extracting the best rewards of each one to compose an enhanced model. Algorithm 11

describes this strategy. It requires as input the probability transition and reward matrices

of all aerial zones (Sz and Rz, respectively), the set of LPPMs, and the tuple of observed

conditions obsConds. As output, the algorithm provides the best models Sbest and Rbest.

The main idea of the strategy is to discover what aerial zone has the best reward so

far for each group of transitions. Hence, the algorithm initializes the best models as empty

matrices (Line 1) and groups the matrix indices considering these groups of transitions

(Line 2). After, the evaluation of each group of transitions begins (Lines 3-11). The

reward matrices Rz of the aerial zones are analyzed one by one (Lines 6-10) such that the

matrix with the greatest reward (absolute value) sum is taken as the best region for the

group. This strategy is based on the premise that the highest rewards (or punishments)

contribute more effectively to the learning model. After evaluating all the matrices, the

algorithm updates the values of the generated best matrices in the indices related to the

given group (Line 11). After, both Sbest and Rbest must be sent to the cloud system of all

the aerial zones in such a way they replace the local models.

▶ Time Complexity Analysis : differing from the previous algorithms, Algorithm 11

computes the entire related matrices (Line 1), leading to a time complexity of O(|S|2).
The iteration block (Lines 3–11) goes through each group of conditions, leading to a

complexity of Θ(|LPPM |× |C|). Considering that |S| = |LPPM |× |C|, the initialization
of the matrices is dominant in terms of time complexity. Therefore, the time complexity

of Algorithm 11 is O(|S|2).
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Figure 4.16: Simulated environment regarding IoDAPM performance evaluation
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Source: Elaborated by the author

4.5.3 Simulation Setup and Performance Evaluation

To analyze the performance of IoDAPM, we carry out a performance evaluation

comparing it with the three related LPPMs applied individually: TDG, t-MixDrones, and

MixRide. With this evaluation, our main goal is to compare the performance of the ap-

proaches considering the provided QoS and the aspects that affect it, namely: the location

privacy level, the drone’s energy consumption, and the potential flight delay. However,

IoDJAPM is not limited nor dependent on these aspects, and other arrangements can be

considered.

As discussed, the problem tackled in this study has an exploratory behavior. Hence,

simulations of the IoD environment are a suitable way to carry out this evaluation, ex-

ploring the different network conditions as much as possible. To perform the simulations,

we use IoDSim. The performance of IoDAPM is directly related to the exploration of the

environment and, therefore, to the observation of different network conditions. Hence, it is

intuitive that both reward and transition probabilities models demand constant improve-

ment until they represent proper models to provide a suitable QoS. Bearing these aspects

in mind, we divide our evaluation into two fronts: (i) we carry out a training phase of

IoDAPM, aiming to obtain enhanced models; and (ii) the comparative evaluation between

the mechanisms.
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Table 4.10: IoDAPM Setup

Parameter Value

LPPMs {tMix, MixR, TDG}
Env. Conditions According to Table 4.9

Set of metricsM {Crate, TMA, TDR, PCR}
Set of weights W {0.1, 0.4, 0.25, 0.25}
Initial state {TDG, sparse, sufficient, on time, not available}

▶ Simulation Setup: we consider a simulated environment where drones perform a

general urban mission service, communicating with each other and ZSPs. Drones have an

associated path planning, defined before they start flying. We model the region of Ottawa

downtown (Canada) as the urban environment, covering an area of about 18 km2, illus-

trated in Figure 4.16. In this scenario, we consider three different aerial zones (highlighted

by different colors). Each aerial zone has four ZSPs to manage both the communication

and navigation services. There are two available altitudes to fly: 50 and 100m. Due to

privacy concerns, the shared airways are logically deployed parallel to the ground road-

ways [2, 5]. To support MixRide, we simulate the city’s bus routes provided by the OC

Transpo company2.

We consider 100 drones flying over the environment. They are randomly spread

over the aerial zones, varying their initial position in each simulation. Also, they fly

following defined path plannings, guided by the ZSPs. The mobility pattern is based on

Gauss-Markov with an average speed varying from 5 to 10m/s. Their energy consumption

model follows the drone MD4-300, whose expected time flight is about 45minutes [20].

There are 18 buses available such that they follow three different routes related to the

Ottawa downtown region (routes 56, 14, and 6). Regarding the communication model,

IoD nodes have the same protocols and radio configurations, using TCP, AODV, and

CSMA/CA. The radio operates following the standard 802.11n with modulation mode of

1× 1 20MHz, having a maximum throughput of 72.2Mbps.

Regarding the LPPMs, t-MixDrones deploys four Mix Zones per aerial zone and

has a k-anonymity set as 4, while in MixRide is 3 (defining the maximum number of

rides per bus). Also, MixRide is set with configuration C2, balancing both the delay and

power consumption. All mechanisms are set with a coverage radius of 250m. Besides

the presented setup, each LPPM follows the configuration with its best performance,

according to the performance evaluation presented in this chapter for each mechanism,

accordingly.

Table 4.10 shows the setup of IoDAPM for the training phase and the comparative

evaluation. Besides the three related LPPMs and the conditions defined in Table 4.9, we

set the following arrangement as the initial state of IoDAPM for all aerial zones: we take

2Available at: https://www.octranspo.com/en/plan-your-trip/travel-tools/developers/

https://www.octranspo.com/en/plan-your-trip/travel-tools/developers/
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Figure 4.17: Average Quality of Service (QoS) per aerial zone in the training phase

Source: Elaborated by the author

TDG as the initial mechanism since it does not depend on a minimum number of drones

in the nearby region to apply, sparse drones’ density, sufficient battery, trips on time, and

not available public buses.

▶ Metrics: the metrics used to calculate the QoS are divided into location privacy-

related and general drone service aspects. These metrics are already defined in the pre-

vious sections, being: Crate, TMA), TDR, and PCR. The applied weights aim to priori-

tize equally the two fronts of metrics. Regarding the weights of location privacy-related

metrics, TMA has a greater weight than (Crate) because it represents the success of an

attacker, indicating a lack of location privacy, indeed.

4.5.4 Results and Discussion

This section presents the results of both the IoDAPM training phase and the

comparative evaluation. We discuss the evaluation insights, highlighting the advantages

and challenges faced by IoDAPM.

▶ IoDAPM training phase: starting from the setup presented in Table 4.10 and

with the initialization models R0 and P0, we carried out the training phase of IoDAPM.

Each iteration had a simulation time of 3 hours, and the best models of an episode e were

the input models for the iteration e + 1. The stopping criteria consider two aspects: a

maximum number of 1000 episodes, or a QoS convergence in the last 100 episodes. In the

latter, we assume the convergence when the standard deviation σ(QoS) > 1.

Figure 4.17 presents the QoS average per aerial zone and the entire network. The

gray vertical bars indicate the interval error since each value corresponds to the average

of each simulation (3 hours). The training stopped due to the QoS convergence after 237

episodes. Starting from a QoS of about 65% in each zone, the models were improved,
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Figure 4.18: Cumulative rate of observed conditions per episode

Source: Elaborated by the author

addressing a QoS average of 88.35% in the last episode. Considering that drones have an

inherent power consumption and the potential success of an attacker to track the drone’s

trace (even at a minimum level), the addressed QoS pointed out that both the resulting

R and P models are robust enough to assign LPPMs dynamically in IoD.

One of the main advantages of the training phase is the exploration of new observed

conditions, presented in Figure 4.18. We note rapid, observable conditions increasing in

the first quarter of episodes. Comparing this aspect with the curve of QoS of each aerial

zone (Figure 4.17, it is significant that a continuous “adaptation” of the models such that

they were handling the new observed conditions. When the discovery of new observed

conditions stabilizes, IoDAPM can enhance the models thoroughly. The ascending curve

of QoS can note this aspect until their convergence in the last quarter of episodes.

▶ Comparative evaluation: considering the enhanced models from the training step,

we perform a comparative evaluation between IoDAPM and the related LPPMs. We

carried out 35 distinct simulations with different path planning for drones, where they

perform missions for 3 hours. These simulations were replicated for each compared mech-

anism, totaling 140 simulations.

Figure 4.19 presents the results of the simulations considering five different metrics:

the QoS, calculated according to Eq. 4.17 (Figure 4.19a); Crate (Figure 4.19b); TMA

(Figure 4.19c); PCR (Figure 4.19d); and TDR (Figure 4.19e). We extend our concept

of QoS to the related LPPMs in such a way that this metric is also calculated following

the former metrics applied with the corresponding weights (Table 4.10). In these charts,

each value corresponds to the observable metric level in the past 15 minutes, considering

the average of the 35 simulations. For instance, the QoS value at 60min in Figure 4.19a

corresponds to the obtained QoS average from 45 to 60min. We also present the rate

of active drones over time, considering all the aerial zones (Figure 4.19f). This rate

grows until half of the simulation time and then starts to decrease (drones closer to

the destination are forced to land). With this behavior, a wide range of conditions are
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Figure 4.19: Results of each considered metric of the comparative evaluation

(a) QoS (b) Crate

(c) TMA (d) PCR

(e) TDR (f) Active drones rate

Source: Elaborated by the author

observed in the same simulation, enhancing the proposed evaluation.

The results highlight a key advantage of IoDAPM: the approach provides the high-

est QoS level regardless of the environmental conditions. Except for an anomaly noted

during the time interval from 120 to 135minutes, IoDAPM outperforms all the compared

mechanisms, addressing a QoS higher than 85%. Although the compared mechanisms

present a QoS near 82% in most situations, none of them has a prevalence, varying its

performance according to the network conditions. We can note that this variation is

stronger at the beginning and the end of the simulation, where the number of active
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drones is growing and decreasing faster, which promotes a very dynamic environment.

Considering the other metrics individually, IoDAPM presents a “stable” behavior.

While the compared mechanisms vary significantly over time, IoDAPM prevails with a

smooth curve. For instance, MixRide has a lower coverage rate in the first half of simula-

tions because drones are sparse in the beginning, and the conditions to apply the ride are

not satisfied. The coverage increases significantly in the second half when the drones can

take the ride. However, the associated delay also increases since the bus generally moves

slower than drones. Similar behavior occurs with TDG regarding the TMA. Although

TDG provides a broader Crate, its protection is strictly related to the airways topology,

varying significantly depending on the region the drone requests the dummy queries. Re-

garding t-MixDrones, the PCR increases at the end of the simulation when the number

of drones decreases. Observing this result in detail, the high PCR occurred due to the

remaining drones having a low battery charge. As t-MixDrones requires additional ma-

neuvers, the battery level (which was already low) ended up draining more, following the

established energy model [20].

Although IoDAPM presented suitable levels of QoS, some challenges emerged. We

can note a significant decrease in the time interval from 120 to 135minutes, which was

caused by a lower Crate and higher TMA. Observing the IoDAPM behavior accurately

at this time, the approach had assigned TDG as the mechanism in the majority of sim-

ulations, which was a reasonable assignment since the number of drones was decreasing.

However, the drones did not request dummy queries at the time interval, leading to the

presented results. Another anomaly refers to the PCR level from 45 to 75minutes, being

caused by successive airway changes of t-MixDrones assignments. Nonetheless, it did not

affect the QoS in general. Therefore, new enhancements must be planned in future work

to mitigate these situations.

4.6 Case Study: Impact of Remote ID Rule in the

Drone’s Location Privacy

While drones began to be used in several areas, there was also a significant in-

crease in their unauthorized use. The FAA reported 2,595 unauthorized drone operations

over the United States territory in 2021, representing an increase of 59% compared to

2020 [145]. Concerning these issues, the FAA published the Remote ID, a rule dedicated

to UAVs [91]. Any drone with a Remote ID must broadcast its sensitive information while

operating over the airspace [91]. Hence, authority devices can monitor the airspace, and,
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in case of accidents or unauthorized access, the authorities can take reasonable measures.

This rule was discussed in detail in Section 3.2.7. Furthermore, other drones can be aware

of their neighborhood. The deployment of Remote ID is already underway in the United

States [145], where all drone pilots required to register their UAS must operate their air-

craft following the rule beginning in September of 2023. Also, drone manufacturers must

comply with the requirements in their devices until September 2022.

Although the primary goal of Remote ID is to provide a safer environment for the

drones, this rule can be a threat to drone’s privacy. In the final rule of Remote ID, the

drone’s personal information must be broadcast as clear text. Any device with the Remote

ID module can receive the data. From an attacker’s point of view, Remote ID allows a

malicious entity to obtain enhanced knowledge about the drones since the attacker has a

device with the Remote ID broadcast module. Location-based attacks, for instance, can

gather a drone’s location information and apply some techniques to obtain knowledge of

the drones’ mobility patterns and, therefore, about their location and identity. Besides

revealing these data, some attacks try to track the full (or a part of) node’s trajectory [9].

When we look at the IoD envisioned scenario, the Remote ID deployment represents the

sharing of sensitive data not only from drones, but also from the provided services, from

companies, and even from the users of these services.

With this case study, our main goal is to technically demonstrate that Remote ID

is a threat to the drone’s location privacy in the IoD environment. Also, we aim to analyze

if existent protection mechanisms for IoD can be designed as an extension of the Remote

ID to provide an adequate level of location privacy. To address this goal, we simulate an

IoD environment with eavesdroppers spread over the ground intercepting the Remote ID

messages. We perform a location-based attack through these collected data, tracking the

drone’s trajectory.

Our contributions are threefold:

▶ We design a location-based attack considering the Remote ID message specifi-

cation, focusing on tracking the drone’s trajectory;

▶ Through extensive simulations, we technically demonstrate that Remote ID is

a serious threat to the drone’s location privacy in the IoD, where more than 90% of the

drone’s trajectory can be tracked;

▶ We also demonstrate that existing mechanisms can enhance the standard Remote

ID protocol, mitigating the attack success and providing a better level of location privacy

for drones. Specifically, this study analyzes the ARID [146] and t-MixDrones (defined in

Section 4.2.6) protection strategies.
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4.6.1 Related Proposals

As Remote ID is a recent specification, few studies investigated this new rule.

Furthermore, most of them examined different technologies to deploy the Remote ID.

For instance, LoRaWAN [147], Bluetooth and WiFi [148], and Globally Unique Flight

Identifier (GUFI) [149]. Regarding security and privacy, Tedeschi et al. [146] proposed a

pseudonym-generation strategy, ARID, which aims to enable a drone to generate Remote

ID messages that can be verified only by legitimate authorities. The drone’s pseudonym

changes for any message due to dependence on the timestamp data. Although the au-

thors discussed that their solution could provide partial protection against location-based

attacks, they did not present formal proof in this regard.

The LPPMs proposed in this dissertation, although did not focus on the Remote

ID rule, have the potential to enhance the FAA proposal. For instance, t-MixDrones can

be applied together with Remote ID or ARID [146], representing a potential enhancement.

In this case study, we integrate t-MixDrones and ARID [146]. Our goal is to mitigate the

attacker’s success, providing a better level of location privacy for IoD compared to the

standard Remote ID protocol.

4.6.2 Design of Remote ID Location-based Attack

In this section, we design a location-based attack focusing on the Remote ID pro-

tocol. Firstly, we define some assumptions related to the considered application scenario:

▶ The mobile network infrastructure follows an IoD paradigm where the flyable

airspace is represented as a graph G = (V,E), as discussed in Section 2.2;

▶ Zone Service Providers (ZSPs) control the airspace, giving fair and shared access

to drones;

▶ Drones fly over the defined airways G.E strictly. Furthermore, every drone has

a path planning when flying, with a well-defined destination point. Also, both the takeoff

and landing must occur on a node v ∈ G.V ;

▶ All the IoD nodes have a built-in standard remote ID module, enabling them

to send and receive these messages. We assume a dedicated RF spectrum to broadcast

them, differing from the one used for managing the IoD network;

Given the assumptions mentioned above, we can formalize some supplemental el-

ements involved in this environment:
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Figure 4.20: Concept of the designed Remote ID Location-based Attack
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▶ MRID is the set of Remote ID messages broadcast in the environment. ∀m ∈
MRID , m contains all the related data of a standard message;

▶ MA is the set of Remote ID messages eavesdropped by A such that MA ⊆
MRID ;

▶ Each involved drone d broadcasts a message m following a time interval ∆t , such

that ∆t ≤ 1 second. Also, the built-in Remote ID module has a predefined transmission

range r, described in meters;

▶ The adversaries A have a background knowledge K about the IoD topology (e.g.,

how the airways are spread and how many altitudes are available to fly) since the airways

follow the terrestrial roads, mostly;

The main goal of each adversary α ∈ A is to eavesdrop on the Remote ID messages

from the drones, sharing them with all the attackers. Hence,MA represents a spatiotem-

poral dataset of the drones’ information. This dataset is the input to the location-based

attack, defined in the next section.

To track a given drone’s trajectory, we design a location-based attack definition

based on the assumption that, given a source and a destination, the drone will fly following

the shortest path between these points (introduced firstly in Section 4.2.1).

▶ Let us consider a drone d ∈ D, a setMAd representing the eavesdropped mes-

sages related to d, and CM a sequence of spatio-temporal coordinates fromMAd , sorted by

the timestamp of each message m ∈MAd . Also, let us consider a function F (cs, cd, G,Γ)

such that F calculates the shortest path Pshortest between two coordinates cs and cd,

based on a set of metrics Γ over the G topology. The aggregation of each shortest path

Pshortest generated by the application of F over all coordinate pairs ⟨ci, ci+1 ⟩ from CM
represents the d’s tracking trajectory Ptrack .

In other words, for each subsequent pair of messages ⟨m1,m2⟩ eavesdropped from

a drone, the attack assumes that the drone flew following the shortest path from the

broadcast of m1 until the broadcast of m2. This is a very reasonable assumption if we

consider that drones have SWaP (Size, Weight, and Power) limitations.

Considering the Remote ID final’s rule, the drone’s location is a trivial task to an
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attacker because the drone broadcasts this data as plaintext [91]. On the other hand,

with anonymization-based mechanisms, the drone’s location is harder to track as their

identities change over time. In both cases, the complete tracking of the drone’s trajectory

depends on three factors: the broadcast frequency; the message’s transmission range; and

the strategic positioning of the eavesdroppers.

Apart from all these aspects, we design a location-based attack whose input data

are the Remote ID messages. This attack occurs in real time, instantly processing the

messages and tracking the locations. Figure 4.20 depicts its concept. Different eaves-

droppers, distributed over strategic locations in the environment, gather the Remote ID

messages broadcast by drones. These messages are sent to a unified system that stores

them in a queueMA, sorted by the time mark. The tracking stage begins from the UA

ID and location message field, where the attacker tries to associate the message with an

existent trajectory profile.

Algorithm 12 describes the tracking step of our designed attack, being called to

process every message m ∈ MA. Also, the algorithm requires as input the topological

airways graph G and the set of trajectory profiles T . Each profile has a sequence of

waypoints P that represent the profile trajectory, a velocity value v related to the UA

velocity data of the last Remote ID message associated with the profile, and a time mark

t. We consider an error ϵ related to the velocity variance to define the best profile for m.

Initially, the algorithm verifies if there is some trajectory profile τ already associ-

ated with the ID described inm (Line 4). The affirmative case indicates no anonymization

mechanism is applied in the current Remote ID messages, which means that the protocol

follows the final rule’s proposal from FAA [91]. In this case, the algorithm calculates the

shortest path from the current last waypoint of the trajectory to the message’s location

data, considering the airways topology (Line 7). Thus, the processed path becomes a part

of the trajectory (Line 8).

On the other hand, the applied Remote ID protocol can be an enhanced version,

for instance, using the ARID anonymization protocol [146]. In this case, the drone’s ID

will change constantly. Nonetheless, our attack tries to track the trajectories even in

these cases. The attacker verifies the current profiles that generate the shortest path to

the m’s location and evaluates its influence on the predicted travel velocity of the path

(Lines 9–27). Hence, this step is independent of anonymization techniques.

This procedure occurs as follows. For each existent profile (Lines 13–27), the

shortest path is calculated (Lines 14–15). It is possible to obtain the average velocity ∆v

to fly over the path, given both the associated time mark of the message tM and the time

mark of the last added trajectory location τ.t (Line 16). Likewise, it is possible to obtain

the deviation of ∆v from the expected average speed, used here as a reference value to

define the best trajectory profile for m (Line 17).

After, the algorithm verifies two conditions. First, if the average velocity belongs
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Algorithm 12: RemoteID-Tracking

Input : m, G, T , ϵ
Output: T

1 tM ← time mark from m
2 vM ← drone’s velocity data of m
3 locM ← drone’s location information of m
4 τ ← verify if m.ID is associated with a profile τ ∈ T
5 if τ ̸= null then
6 src ← last waypoint of τ.P
7 path ← shortest-path(src, locM , G)
8 insert path at the end of τ.P

9 else
10 bestMatch ← null

11 bestDeviation ← ∞
12 bestPath ← ⟨⟩
13 for τ ∈ T do
14 src ← last waypoint of τ.P
15 path, distance ← shortest-path(src, locM , G)
16 ∆v ← distance / (tM − τ.t)
17 deviation ← |∆v−avg(τ.v, vM )|
18 if (∆v ∈ [min(τ.v, vM)− ϵ; max(τ.v, vM) + ϵ]) ∧ (deviation <

bestDeviation) then
19 bestMatch ← τ
20 bestDeviation ← deviation
21 bestPath ← path

22 if bestMatch = null then
23 bestMatch ← create a new trajectory profile in T
24 assign m.ID, locM , and vM to bestMatch

25 else
26 insert bestPath at the end of bestMatch.P
27 bestMatch.v ← vM

to the interval defined by the speeds described in m and τ , added to the error ϵ. If ∆v

is outside the interval, it indicates that a drone should fly too fast or too slow from the

last associated waypoint to the m’s location, not corresponding to the trajectory pattern.

Second, if the deviation is less than the current best deviation (Line 18). If both conditions

are true, the trajectory profile τ becomes the best candidate for m (Lines 19-21).

After verifying all the profiles, the shortest path is added to the best candidate

profile (Lines 25-27). If any trajectory meets the conditions, then there is a possibility

the message m was the first eavesdropped from a drone not yet known for the attack. In

this case, a new trajectory profile is created and associated with m’s data (Lines 22–24).

▶ Time Complexity Analysis : Let us assume that a hashing data structure can

store the IDs associated with the profiles, taking a constant time to store and access the

data. The algorithm’s workflow divides into the cases when the ID is known (Lines 5–8)
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or when all the trajectories will be assessed (Lines 10–27).

In the first case, attribution tasks takeO(1), and the path insertion takesO(|path|),
considering a data structure with a pointer to its last element. However, this case is

dominated by the shortest-path operation. For instance, if we use the Dijkstra shortest

path algorithm, the time complexity is O(|E|+ |V | log |V |).
Regarding the second case, the operations are similar, with attribution tasks,

math-based operations, and assignments following a constant time complexity. Also, the

shortest-path function has the same time complexity as previously discussed. However,

this function can be processed for all the profile trajectories in the worst case. Then, this

case dominates the first one. Hence, the time complexity of Algorithm 12 is given by:

T (RemoteID-Tracking) =O(|T ||E|+ |T ||V | log |V |) (4.20)

4.6.3 Simulation Setup and Performance Evaluation

This section presents the definitions regarding our experimental evaluation. Our

intention is not just to investigate to what level the Remote ID represents a threat to

the IoD location privacy but also if existent privacy-based protocols allied with Remote

ID can enhance this aspect. Besides the Remote ID final rule, we evaluate two other

privacy-based protocols: the ARID [146], and a collaborative protocol of ARID and t-

MixDrones. We consider these mechanisms for two reasons: (i) ARID is proposed as an

enhanced solution of Remote ID, but its location privacy protection was not evaluated

in its original proposal; and (ii) t-MixDrones is a LPPM for dense scenarios in IoD,

presenting proper levels of location privacy. All of them are briefly described as follows.

▶ Remote ID : we implement the Remote ID message following the final rule defined

by FAA [91]. An application to broadcast and receive the data are available in all the

drones, ZSPs, and eavesdroppers in the simulated environment;

▶ ARID [146]: we also implement a version of this protocol, generating Remote

ID messages that change the drone’s identity for each broadcast message;

▶ ARID [146] + t-MixDrones : As discussed, t-MixDrones can enhance location

privacy by changing the drone’s airway altitude as a mixing factor besides besides its iden-

tity. Hence, we implement a collaborative version of ARID and t-MixDrones, where the

first manages the drone’s re-anonymization and the second “mixes” the airway altitude.

▶ Metrics: Our analysis occurs through the actual drone’s trajectory and the corre-

sponding trajectory tracked by the attack. However, it is intuitive that the eavesdroppers
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Figure 4.21: Example of trajectory analysis comparing the actual drone’s trajectory and
the tracked by the Remote ID-based attack
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can not cover the environment entirely. Also, the tracked trajectory can not correspond

with the actual drone’s trajectory in its entirety, having some sub-trajectories tracked

incorrectly.

Figure 4.21 shows an example of our analysis regarding a trajectory tracking anal-

ysis. This example has a top view of an excerpt of an urban scenario, where the available

airspace is denoted by the dark gray regions, and the topological waypoints by the black

circles. Although it seems like the trajectory is on the ground, it is at an elevated alti-

tude. Two eavesdroppers (E1 and E2) are in strategic positions, denoted by the dotted

red circles.

Figure 4.21a presents an example of an actual drone’s trajectory, while Figure 4.21b

illustrates the corresponding tracked one. As we note, the attack can track just a piece

of the complete drone’s trajectory due to the eavesdroppers’ position coverage. Thus,

we consider three different trajectories: the complete trajectory, named CTraj ; the sub-

trajectory of CTraj delimited by the first and last waypoints gathered by the eavesdrop-

pers, named DTraj ; and the attack’s tracked trajectory, named TTraj.

In this case, the two last waypoints do not belong to DTraj, representing a sub-

trajectory out of tracking (SubOT) (light blue line in Figure 4.21c). Furthermore, the

green segments match when comparing the drone, and the tracked trajectory, representing

a sub-trajectory tracked correctly (SubTC ). Pink segments, in turn, are tracked by the

attack, but they are not in the actual trajectory, representing a sub-trajectory tracked

incorrectly (SubTI). Finally, yellow segments belong to the drone’s trajectory but not to

the tracked circuit, meaning a sub-trajectory not tracked (SubNT) (SubNT ).

Given this notation, we define the following metrics:

▶ Complete Trajectory Matching Rate (CTMR): it represents the rate of
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Table 4.11: Remote ID Case Study: Simulation Parameters

Parameter Value

General Parameters

Simulation time 30 minutes
Environment boundaries 3.8× 10.5× 0.25 km3

Airways Altitudes (100 , 150 , 200 and 250m)
#Drones 50
Drone speed uniform 8–12m/s
Mobility pattern Gauss-Markov
# Eavesdroppers {5, 6, 7, 8, 9, 10}
Protocols {RemoteID, ARID, ARID+tMixD}

Remote ID Parameters

Broadcast Frequency 1 sec
Communication Range 400m

t-MixDrones Parameters

#Mix Zones 4
Mix Zones coverage radius 250m
Pchange 0.8
k-anonymity 2

SubTC compared to CTraj. It is formally defined as:

CTMR =
|SubTC|
|CTraj|

▶ Delimited Trajectory Matching Rate (DTMR): similar to CMTR, this

metric restricts the evaluation to DTraj. It is formally defined as:

DTMR =
|SubTC|
|DTraj|

▶ Waypoint Segments Tracked Correctly Rate (STCR): it calculates the

rate of SubTC in the tracked trajectory TTraj. This metric is defined as:

STCR =
|SubTC|
|TTraj|

▶ Waypoint Segments Tracked Incorrectly Rate (STIR): this metric is sim-

ilar to STCR but considers the SubTI. This metric is defined as:

STIR =
|SubTI|
|TTraj|

▶ Application Scenario and Simulation Setup: We conducted extensive simula-

tions to evaluate the protocols mentioned above using the IoDSim. Table 4.11 summarizes

a list of relevant parameters of our simulation. We design a topological airspace of an

urban environment following the terrestrial roads of a part of Manhattan Island, NY, with
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four available airway altitudes. We spread 50 drones over the environment, where they

perform their flights with speeds varying between 8 and 12m/s for 30 minutes.

These drones have well-defined path plannings with a range of scheduled trips.

When a drone finishes a planned trip, it starts the next one right away. The Remote ID

messages are broadcast by the drones every 1 sec with a communication range of 400m.

We vary the number of eavesdroppers from 5 to 10, spreading them strategically over the

environment. For each combination of eavesdroppers × protocol, we executed 30 simu-

lations with different seeds, totaling 540 experiments, reinforcing our results’ robustness

and statistical validation with a 95% confidence interval. These results appear in the next

section.

4.6.4 Results and Discussion

This section presents the results obtained from our extensive simulations. Fig-

ure 4.22 highlights these results, where each line corresponds to the number of eaves-

droppers, and each column corresponds to a protocol. Each result represents the average

of the 30 experiments related to each configuration. As the interval errors are less than

1% for all the experiments, they are not on the charts. It is important to note that the

metrics are attack-centered, i.e., the greater the result, the more successful the attack,

and the less the location privacy.

▶ Complete Trajectory Matching Rate (CTMR): The CTMR indicates the at-

tack’s success in the environment, considering the entire drone’s trajectory. The orange

bars represent this metric in the charts. We note that the attack has a higher CTMR

for the Remote ID protocol. Indeed, when the Remote ID is applied, the attack can

track more than the double waypoint segments compared to the other two protocols in all

scenarios. With 10 eavesdroppers, the attack can track more than 60% of the trajectory,

while this value remains around 20% with ARID and ARID+t-MixDrones.

We can also note that the CTMR increases as the number of eavesdroppers in-

creases for Remote ID. On the other hand, this increase is much lower compared to the

other two protocols. While with Remote ID the rate increases around 50% from 5 to

10 eavesdroppers, the rate has an increase of less than 5% for the others. It reveals

the importance of anonymization protocols to provide location privacy. Even with more

eavesdroppers, tracking remains difficult. Also, these insights indicate that Remote ID is

much more susceptible to location-based attacks.

Nonetheless, these rates are far from a relevant threat regarding drone tracking,



4.6. Case Study: Impact of Remote ID Rule in the Drone’s Location Privacy 138

Figure 4.22: Case study results of the evaluated metrics for each combination of number
of eavesdroppers × protocol

(a) 5 eavesdroppers: remoteID (b) ARID (c) ARID+t-MixDrones

(d) 6 eavesdroppers: remoteID (e) ARID (f) ARID+t-MixDrones

(g) 7 eavesdroppers: remoteID (h) ARID (i) ARID+t-MixDrones

(j) 8 eavesdroppers: remoteID (k) ARID (l) ARID+t-MixDrones

(m) 9 eavesdroppers: re-
moteID (n) ARID (o) ARID+t-MixDrones

(p) 10 eavesdroppers: re-
moteID (q) ARID (r) ARID+t-MixDrones

Source: Elaborated by the author

leading to other attacks, such as hijacking. It can be directly related to the insufficient
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number of eavesdroppers over the environment. Indeed, the experiments have one eaves-

dropper per 3.9 km2, considering the max number of them.

Concerning the message’s broadcast communication range of 400m, the airspace is

not entirely covered. Also, the eavesdropper’s position can affect the attack performance.

All in all, these aspects must be further investigated.

▶ Delimited Trajectory Matching Rate (DTMR): DTMR provides an accurate

overview of the attack’s success since it compares the tracked trajectory to the drone’s

trajectory delimited by the first and last waypoints gathered by the eavesdroppers. This

metric is represented by the blue bar in the charts.

Likewise, in CTMR, the attack has an outstanding success facing the Remote ID.

For all eavesdroppers, the attack can track more than 90% of the drone’s trajectory,

while the performance for ARID and ARID+t-MixDrones varies between 60–75% and

38–60%, respectively. These aspects reinforce that Remote ID can not provide a proper

level of location privacy in which a considerable portion of its trajectory can be inferred

by malicious entities equipped with a Remote ID module.

Analyzing CTMR and DTMR together, we can note a significant increase mainly

for Remote ID and ARID. However, when ARID and MixDrones are cooperating, the at-

tack has constrained success, mainly for a small number of eavesdroppers. This enhanced

protection can be related to the change of the drone’s altitude performed by t-MixDrones.

As there are few eavesdroppers, processing the shortest path between the gathered way-

points involves a greater distance, which is difficult to infer correctly where an altitude

change occurred.

▶ Waypoint Segments Tracked Correctly Rate (STCR), and Waypoint Seg-

ments Tracked Incorrectly Rate (STIR): We discuss the results of both STCR and

STIR together as they are complementary metrics. The green bars represent STCR, while

the red bars represent STIR rates. Likewise, in the former two metrics, the attack has

a higher STCR with Remote ID when compared to the other two mechanisms. For all

the experiments with Remote ID, the attack generates a trajectory with more than 90%

of waypoint segments equal to the delimited drone’s trajectory. Analyzing the gener-

ated trajectories thoroughly, we can note that incorrect waypoint segments are generated

mainly when the possible paths, given a source and destination waypoints, have a similar

distance or when these waypoints are considerably distant, increasing the possible paths.

Also, we can observe that the STCR follows a similar rate to the DTMR of the

related experiment. This relation shows a similarity between the trajectories, where the

number of incorrect waypoint segments is close to the segments not tracked (considering

the delimited drone’s trajectory). Nonetheless, this relation of similarity demands further

research, where we can apply metrics of trajectory similarity.
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▶ General Discussion: This experimental evaluation demonstrated that Remote ID is

a threat to the drone’s location privacy. Undoubtedly, the accurate tracking of more than

90% of the drone’s delimited trajectory (considering the one delimited by the first and

last waypoints gathered by the eavesdroppers) is a high-risk factor for location privacy

in an IoD environment. From the low to a high number of eavesdroppers, the success

of the applied attack is always evident. Even considering that the attack cannot track

a substantial part of the drone’s complete trajectory (as demonstrated by the CTMR

metric), there is no guarantee of protection from the Remote ID since there is a direct

dependence on the strategic positioning of the eavesdroppers.

We also demonstrate that existent LPPMs can enhance the location privacy level

of the IoD when treated as an extension of the standard Remote ID. In this case study,

ARID [146] and t-MixDrones proved to protect the drone’s identity and location informa-

tion. They considerably hamper the attack’s success through successive anonymizations

of the UA ID field in the Remote ID’s message and in-flight maneuvers, such as mixing

the drone’s altitude.

In a nutshell, we strongly affirm that Remote ID needs the implementation of

strategies that value the privacy of your information, such as location. As technically

demonstrated in this study, it is possible to achieve this requirement using existing LPPMs

without harming the FAA’s initial objectives in airspace monitoring.

4.7 Chapter Remarks

This chapter presented our contributions in the research field of Location Pri-

vacy Protection Mechanisms for the IoD. We designed three novel LPPMs, namely, t-

MixDrones, MixRide, and TDG. The two first mechanisms are based on the Mix Zones

concept. The performance evaluation pointed out that they can ensure suitable levels

of location privacy for environments with a dense number of drones when compared to

traditional MZ-based mechanisms. However, we noted that t-MixDrones increased the

drone’s battery consumption, which justifies the design of MixRide since this latter is an

energy-aware approach. TDG, in turn, is designed for sparse environments, regardless of

the number of drones. We demonstrated that the presence of airways, inherent to IoD,

makes the existing dummy-based approaches ineffective in this environment, justifying

the designing of TDG. The proposed mechanism also addressed suitable levels of loca-

tion privacy, preserving both the identity and localization of drones when shared with

3rd-parties services.

Therefore, we are able to answer the research questions of this dissertation consid-
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ering the design of LPPMs for IoD:

▶ Can the existing Location Privacy Protection Mechanisms provide

the same protection level to IoD environments when compared to traditional

mobile networks?

Answer: Considering MZ and dummy-based LPPMs, they can not. As discussed

in this chapter, the particular characteristics of the IoD environment pose several short-

comings to the application of these existing mechanisms in such a way that the provided

location privacy can not ensure a suitable security level for drones.

▶ Is it possible to adapt these existing LPPMs to enhance the protection

level provided to a given IoD environment?

Answer: Yes, it is possible. Through extensive performance evaluation, the three

proposed LPPMs demonstrated they can provide a suitable level of location privacy for

IoD, considering the specific environment conditions they are related.

We also proposed in this chapter the IoDAPM, an RL-based strategy to assign

dynamic the proposed LPPMs in the IoD, given the heterogeneous conditions observed in

the environment. IoDAPM is a robust and useful approach to deploy in IoD since there

is no “silver bullet” regarding the LPPM coverage for IoD, where each one has its pros

and cons. Through an extensive performance evaluation, we demonstrate that IoDAPM

can extract the best of their advantages, assigning the best one periodically, enhancing

the provided QoS for the related services.

Furthermore, we presented a case study regarding the importance of location pri-

vacy in the IoD context, and how the existing governmental policies must be in accordance

with these principles. We technically demonstrated through the design of a location-based

attack that the Remote ID rule, proposed by the FAA, is a threat to the drone’s loca-

tion privacy considering its final proposal. To tackle this issue, we proposed an enhanced

design of Remote ID, incorporating different privacy-related mechanisms in its model.

Last but not least, we identified some challenges related to this research field.

Summarily, there is a critical trade-off between the energy efficiency and the associated trip

delay of drones, which can affect the provided QoS deeply. This challenge is highlighted

by t-MixDrones and MixRide, mainly by the latter in its configuration tuning analysis.

Furthermore, the TDG performance evaluation revealed a shortcoming regarding dummy-

based mechanisms for airway-oriented IoD environments: the actual location of the drone,

while preserved, does not cause a significant disruption to an adversary due to geographic

airway limitations. Although IoDAPM is able to mitigate these issues, new approaches

shall be investigated to overcome these challenges.
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Chapter 5

Design of Anti-Jamming

Mechanisms for IoD

This chapter presents our contributions regarding the design of anti-jamming mechanisms

for IoD. From a discussion about how restricted flyable airspace affects UAVs path plan-

ning, we design an Anti-Jamming mechanism, named IoD-JAPM, to mitigate the effects

of JA in the IoD environment. The design of this mechanism is also guided by the pro-

posed framework to overcome the performance of the existing approaches, being applied

in different situations.

This chapter is organized as follows. Section 5.1 brings an introduction and moti-

vation discussing why current strategies do not meet the IoD characteristics, mainly the

flyable space constrained by airways. Section 5.2 presents the application scenario and

threat model. Next, Section 5.3 discusses the related studies, highlighting how Iod-JAPM

can overcome the opened challenges. The formal modeling of the proposed mechanism is

presented in Section 5.4. In Section 5.5, we describe the simulation setup and performance

evaluation. We analyze the obtained results in Section 5.6. Lastly, Section 5.7 brings the

chapter remarks.

5.1 Introduction

In the former chapters, we discuss how location-based attacks can affect the IoD

environment, mainly regarding the drone’s location privacy. However, other attacks can

affect directly this privacy aspect without discovering the drone’s location through the

analysis of a group of queries. One of these attacks is Jamming Attack (JA), introduced

in Section 3.1.4. JA represents a severe risk in IoD because availability is a paramount

requirement in this network. There are some effective countermeasures against JA in

terrestrial mobile networks (discussed in Section 3.2.3). However, they are ineffective in

IoD because they can not appropriately handle LoS-induced security issues [51].
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Once a drone has its availability affected, it can present an unusual behavior, such

as landing at inappropriate places, leading to other attacks, such as hijacking. In some

situations, an airway can have all its flyable airspace affected by a JA, making the drones

that fly over there incommunicable [88, 150]. These issues can also affect the trajectory

of drones, leading to a revised path planning.

The relation between JA and the drone trajectory has been widely discussed in

UAV-based networks [44, 51, 88, 89, 90, 150, 151, 152, 153], but those studies consider

the airspace free to fly. In contrast, one of the most prominent characteristics of IoD is

the presence of airways, allowing drones to fly over constrained airspace. Recent studies

consider IoD organizing airspace through airways, demonstrating their importance for

adequately managing the flight of drones [154, 155]. Since the airways limit this flyable

airspace, current solutions can not be applied directly to IoD.

Bearing these challenges in mind, we investigate the impact of JA on drone path

planning and, therefore, its trajectory. From that, and considering the proposed frame-

work to guide the design of PMs, we designed the IoD-JAPM, an airway-aware protection

strategy against JA on the IoD. The mechanism ranges from analyzing the airway’s avail-

ability to reformulating the drone path planning. IoD-JAPM embraces a method to isolate

a region affected by a JA in the IoD, considering the airway topology; a strategy to avoid

a jamming signal in an affected region without violating the flight restrictions imposed by

the airway; and another strategy to mitigate the impact of the reformulated drone path

planning when its final destination belongs to a region affected by the JA. This strategy

considers the presence of vertiports in the environment.

5.2 Application Scenario and Threat Model

Figure 5.1 illustrates the IoD environment as an envisioned ITS scenario, where the

blue segments are the flyable airways. As we can note, they are parallel to the grounded

roads. Furthermore, these environment has PoIs, such as vertiports and delivery pick-up

regions (represented by the dashed blue circles). Drones use dedicated airways to access

these PoIs. As discussed, the topology can be modeled as a graph G in which, given two

intersection nodes, a directional edge indicates how a drone can fly between the nodes.

Regarding the threat model, we consider that a set of attackers A can perform a

JA as a denial of service, affecting the nodes’ availability in the environment. The attack

occurs when adversaries interfere in the communication between a set of network nodes by

flooding the network communication channels, occupying a part of (or the whole) band-

width. Hence, the nodes can not use the network because the communication channel is
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Figure 5.1: IoD environment as an ITS
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Source: Elaborated by the author

always occupied. Multiple stationary adversaries can be distributed over the environment.

They will perform the attack considering the best configuration for them.

A given adversary can perform short-term and long-term attacks. An attacker also

can not perform a JA. Thus, given an attacker α ∈ A and a time interval ∆t whose initial

time is t0 and the last time is tn, these attacks can be characterized as the following:

• Absence of JA:
∑n

k=0 Jk = 0;

• Long-term JA: ∀k ∈ ⟨0, n⟩ : Jk ̸= 0, meaning the attack remains over all ∆t;

• Short-term JA: given a time threshold ti,
∑i

k=0 Jk = 0 and
∑n

k=i+1 Jk ̸= 0, or vice-

versa. It means, the attack is performed in a short period of time. The subsequent

occurrence of this attack indicates the adversary is performing intermittent JA.

5.3 Related Studies

In recent years, JA has been investigated in the context of the UAV-based network

as a threat and security mechanism [156]. Specifically, some studies focused on analyzing

how JA interferes with the drone trajectory. The majority of these proposals consider a

grounded and stationary jammer.

Wang et al. [151] discussed how JA affects the UAV’s trajectory, investigating a sce-

nario where the UAVs communicate with grounded nodes suffering a jamming signal from

a stationary source. They formulated this challenge as an optimization problem, designing
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Figure 5.2: Example of how JA affect drone trajectory in IoD

Source: Elaborated by the author

a trajectory planning method to optimize the drone’s position in the airspace dynami-

cally, applying the concept of slack variables. Although they addressed optimal results for

a single adversary, the solution generates sub-optimal results for multiple jammers. Wu

et al. [51, 152] expanded this context by exploring the QoS involved in considering the

communication throughput and delay with grounded nodes, whose location guides the

UAV trajectory. They proposed two-block coordinate descent (BCD) based algorithms

to solve it sub-optimally, which improved significantly different QoS requirement levels.

Gao et al. [44] enhanced this model by using secondary transmitters. Duo et al. [150]

proposed a similar solution but considered a scenario where drones collect data from a

Wireless Sensor Network (WSN).

Some studies investigated the impact of JA in other networks integrating drones

as a relay communication node, such as VANETs [89, 153]. They model an anti-jamming

game in which the UAV decides whether or not to relay the grounded vehicle’s message to

a Road Side Unit (RSU). Recently, intelligent anti-jamming mechanisms for UAV-based

networks considered machine learning-based strategies. Sedjelmaci et al. [90] proposed a

reinforcement learning-based approach that handles cyber-attacks, including JA. Mowla et

al. [88] designed a distributed mechanism based on Federated and Reinforcement Learning

for FANETs, discussing that a distributed approach can cover several challenges of UAV-

based networks, for instance, the Size, Weight, and Power (SWaP) limitations.

It is noteworthy that JA has been widely investigated in the UAV context. On the

one hand, all these studies assume that drones can fly freely over airspace. On the other

hand, drones have limited airspace to fly in IoD. Given that a particular region is affected

by JA, a drone flying over there will be under attack. Considering the airway bound-

aries, the drone may not have a possible trajectory to avoid the attack regardless of the

strategy adopted. In a previous study [157], we investigated these challenges, providing

a baseline anti-jamming mechanism for IoD that reformulate the drone’s path planning
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Figure 5.3: The proposed IoD-JAPM workflow
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aiming to avoid aerial regions affected by JA. In a nutshell, the proposed mechanism

identifies and isolates a region affected by JA, reformulating the path planning of drones.

Although it provided adequate protection to the drones against JA, it also revealed that

constrained airway topologies tend to hamper the provided protection. Moreover, when-

ever the number of jammers increases, there is an increment in the flight distance. Also,

the mechanism can not handle situations when the drone destination belongs to a region

suffering an active JA. All these issues represent challenges to investigate.

Fig. 5.2 illustrates an example of a grounded adversary performing a JA over the

IoD. The blue segments represent the airways, the red region represents the range of

the performed JA, and the dashed line represents the drone trajectory. Considering the

current solutions, for instance, the trajectory optimization proposed by Wu et al. [51], the

drone trajectory will deviate, aiming to optimize its transmit power and the minimum

delay considering the initial path planning. As we note, this deviation (orange dashed

lines) can lead the drone to invade other airways not initially in its flight plan. Also, the

deviation can lead to extra power consumption. These aspects pose severe risks to the

availability and integrity of other drones since both collisions and power issues can occur,

representing open challenges.

Given this perspective, we design IoD-JAPM, an enhanced mechanism to mitigate

the JA in the IoD. We present the mechanism design in the next section.
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5.4 Design of IoD-JAPM

Fig. 5.3 illustrates the main steps of IoD-JAPM. Our approach is a distributed

system in which drones and ZSPs operate cooperatively to avoid an ongoing JA. This

attack was previously identified by some well-known jamming detection techniques [158].

As these detection techniques perform properly for UAV-based networks regardless of the

airways topology, IoD-JAPM is not limited nor dependent on these methods.

IoD-JAPM has three main steps:

▶ Airway Analysis: in the first step, a drone in the region affected by a JA stops

and elevates its altitude aiming to find a re-connection with a ZSP. If the drone can re-

establish communication, there is an available altitude at which JA can be avoided. This

approach is based on the available aerial space between two parallel airways and the LoS

communication between the ZSPs and the drones, which are particular characteristics of

the IoD. We formally describe this step in Section 5.4.1.

▶ Hazard Region (HR) Discovery: if the communication can not be re-

established, we move to the second step, where the IoD cloud system must discover

all the affected areas, representing the Hazard Region. We formally describe this step in

Section 5.4.2.

▶ Path Planning Generation: Once the HR is discovered, the IoD cloud system

generates novel path plannings for the affected drones, avoiding the HR. However, this

reformulation can not be addressed when the drone destination is inside the HR. In this

case, IoD-JAPM selects the nearest available vertiport as a new destination, providing a

“waiting area” for the affected drone. We formally describe this step in Section 5.4.3.

Before defining the IoD-JAPM in detail, we formalize the main elements involved

in this design (beyond the elements previously defined). They are described as follows.

• PP is the set of path plannings defined for each d ∈ D;

• V is the set of vertiports over the environment;

• τ is an interference signal over the communication channel, representing the JA

properly. This signal stems from a subset A′ ⊂ A.

As discussed, we propose IoD-JAPM to overcome the lack of current solutions for

the IoD environment, focusing on the drone trajectory through the airways. Therefore,

our focus is to design a mechanism that allows the network to recover promptly when an

attack is previously detected. Thus, we take the following these assumptions:

• IoD nodes can detect a JA’s occurrence following some detection strategies found in

the literature [88, 159, 160]. Our mechanism is not limited nor dependent on these
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Figure 5.4: Delimitation of unused aerial space between two parallel airways with different
altitudes
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detection strategies, being applied one step forward when the attack is already

detected;

• A given adversary will always perform the attack through the best configuration,

considering his goals. The adversary can perform a continuous JA regardless of

the power consumption of the jamming device. Furthermore, the JA can be driven

either to affect the communication between the nodes or to the GPS signals;

• Once a given drone is affected by the attack, it can lose communication with the

ZSP. In this case, the drone generally hovers or returns to the last point of a valid

communication. If any anti-jamming strategy is taken, the network facilitates other

attacks, such as purposeful hijacking;

5.4.1 Airway Analysis

As presented in Fig. 5.3, once the network detects the occurrence of a JA, the IoD-

JAPM first step consists of a drone verifying if it is possible to establish communication

with a ZSP node z still inside the airway in the affected region. Considering that in

our system model, the attack occurs from the ground, τ strength decreases as the drone

altitude increases.
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Figure 5.5: Airway analysis step of IoD-JAPM performed by a drone
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Source: Elaborated by the author

Hence, the main idea in this step is to move the drone to a higher altitude aiming

to re-establish communication with a ZSP z. However, the airways have a constrained

region to flight, including a maximum altitude. Nonetheless, once an airway segment

β is placed, other segments should not intersect β in lower or higher altitudes unless

through the insertion of an intersection node [5]. An exception occurs when β has similar

airway segments defined through different altitudes, as depicted in Figure 5.4. Given

these assumptions, a drone d flying over an affected airway segment β has a safe altitude

range to fly, ranging from its current position to a maximum altitude α. This maximum

altitude can be previously defined by the ZSP when a drone requests access to the airspace,

considering two main aspects: a safe distance from a parallel high-altitude airway segment

when it exists; and the drone SWaP constraints. Hence, the drone can try to re-establish

the connection with the ZSP over unused airspace, as illustrated in Figure 5.4.

Formally, the airway analysis step embraces both the drone and ZSP systems.

Hence, we define two algorithms for this step. Algorithm 13 is a drone-centered method.

Algorithm 14, in turn, is the ZSP-centered procedure.

▶ Drone-centered Approach: Algorithm 13 formally describes the airway analysis

carried out by a given drone. Figure 5.5 illustrates this central concept. As input, it

requires the pre-defined maximum altitude α, the information of the ZSP z, and the time

intervals ∆tack and ∆tschedule , representing an acknowledge and schedule time intervals,

respectively.

Initially, the drone tries to communicate with z, sending a Hello message, verify-

ing whether the communication still works (Line 1). If, after a time interval ∆tack , there

is no ACK from z, the drone assumes that the communication is lost, initializing the com-

munication attempts on higher altitudes (Lines 2-9), as illustrated in Figure 5.5a. Based

on the current drone altitude (Line 3), it adjusts its trajectory planning if its current alti-

tude does not reach α (Line 5). After, the drone schedules a new communication attempt
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Algorithm 13: Drone-Airway-Analysis
Input : α, z,∆tack ,∆tschedule

1 send a Hello message to z and wait a time interval ∆tack for an ACK answer
2 if There is no ACK from z then
3 αcurrent ← current drone altitude
4 if αcurrent ≤ α then
5 Adjust the navigation vectors towards α
6 tnext ← ∆tschedule+ the current system time
7 schedule a call to Drone-Airway-Analysis on tnext
8 else
9 go back to the previous checkpoint // All attempts to communicate fail

10 else
11 send a Free-JA message to z informing αcurrent
12 Adjust back the navigation vectors toward the current checkpoint

based on the time interval ∆tschedule (Line 6). Suppose the current altitude reaches α

(Lines 8-9). In that case, all attempts fail. The ZSP will need to take additional action,

isolating the affected region and reformulating the drone path planning, as described in

the following subsection. In this case, the drone returns to the last checkpoint where

communication occurred.

However, suppose the drone receives the ACK from z (Lines 11-12). In that case,

the communication is re-established, indicating that a given drone flying over the current

altitude αcurrent is not affected by the JA, as demonstrated in Figure 5.5b. In this case,

the drone sends a Free-JA message to z, informing the current altitude and adjusting its

trajectory to the present checkpoint according to its path planning.

Since z receives the new altitude, it will update this information regarding the

affected airway segment and spread it to the drones whose path planning contains the

affected segment. Figure 5.5c shows this case, in which the airway with green color

represents the affected airway with the new altitude. As these procedures consist of

update-based messages, they are not described in detail throughout the algorithms.

▶ Time Complexity Analysis : in this analysis, we focus on the time complexity

of the procedures inherent to the drone system. Therefore, this analysis does not cover

“inter-node” procedures (Lines 1 and 11). In summary, Algorithm 13 consists of direct

assignments to primitive data structures inherent to the drone system (Lines 3, 5, 6, 7, 9,

12). Hence, the time complexity of Algorithm 13 is given by Equation 5.1:

T (Drone-Airway-Analysis) = Θ(1) (5.1)

▶ ZSP-Centered Approach: Bearing that drones can not re-establish communication

with the ZSP even after analyzing other altitudes, a given ZSP z monitors the drone

location update. Thus, the IoD cloud system can take other actions to avoid the JA

(defined in the following sections). Algorithm 14 describes the ZSP monitoring. Besides
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Algorithm 14: ZSP-Check-Drone-Upd
Input : α,Qupd ,DJA

1 dupd ← extract element of the top from Qupd
2 if dupd did not update its location when expected then

3 if dupd /∈ DJA then

4 DJA ← DJA ∪ dupd
5 llast ← get last location update of dupd
6 t← predict the time that dupd will reach α from llast
7 insert dupd in Qupd with priority t

8 schedule a call to ZSP-Verify-Drone-Update at t

9 else
10 lpredict ← predict the dupd’s location if it had updated its location

11 Cloud-Calc-Hazard-Region(lpredict )

the maximum altitude α, the algorithm requires as input a priority queue Qupd and a

set DJA. Qupd stores the information of drones ordered by the next expected location

update time. DJA stores drones trying to find an altitude free from JA. The recurring

drones’ location update messages fed the data structures inherent to the IoD management

system.

Initially, the mechanism takes dupd (that would have updated its position) from

Qupd (Line 1). If dupd did not update its location at the current time, it could indicate

a possible communication loss due to the JA (Lines 2-11). However, it is necessary to

consider the time interval the drone potentially takes to reach α. Hence, the algorithm

verifies if dupd already belongs to DJA (Line 3). The negative case corresponds to the

first time dupd has not updated its location. Therefore, the mechanism includes it in DJA

(Line 4) and predicts the expended time t to reach the altitude α, based on the dupd ’s

last location update (Lines 5-6). The dupd is re-inserted in Qupd , now with the priority t

(Line 7). Finally, the mechanism schedules a call to this procedure at the time t, aiming

to verify if a new altitude was discovered during this time (Line 8).

In the affirmative case, dupd has failed to find an available altitude to re-establish

the communication, in which the IoD cloud system must take additional countermeasures

to avoid JA (Lines 10-11), as described in Fig. 5.3. Thus, the mechanism predicts the

location of dupd if it had updated its position, and passes this information as input to

Algorithm 15, responsible for identifying the Hazard Region (HR), leading us to the next

step of IoD-JAPM.

▶ Time Complexity Analysis : to conduct this analysis, we consider that the element

of the top of Qupd did not update its location when expected, representing the worst case.

Also, let us consider a heap data structure for Qupd . The extraction of the top element

takes O(log n) (Line 1). Considering that the drone dupd does not belong to DJA (Lines 3

to 8), both the set union and the llast assignments have a constant time complexity O(1)
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(Lines 4 and 5). On the other hand, the priority queue insertion of Line 7 takes O(log n),
dominating this conditional. If the drone already belongs to DJA, the drone location

prediction (Line 10) and the calling for Algorithm 15 also take O(1). Hence, the time

complexity of Algorithm 14 is given by Equation 5.2:

T (ZSP-Check-Drone-Upd) = 2O(log n) +O(1)

= O(log n)
(5.2)

5.4.2 Hazard Region

If the drones fail to identify an altitude free from JA, the next step consists of

isolating the affected region, named Hazard Region (HR). Considering the defined graph

representation, a given location l is part of an airway line segment delimited by ⟨w1, w2⟩ ∈
G.E, such that the direction vector is ⃗w1w2. Hence, to delimit the HR, the system

considers three different cases, described as follows.

1. The ⟨w1, w2⟩ ∈ G.E that l belongs must be part of HR;

2. ∀⟨u1, u2⟩ ∈ G.E, if ⟨u1, u2⟩ is inside a spherical HR with radius r from the l’s

geographic coordinates, then it must be part of HR;

3. ∀⟨u1, u2⟩ ∈ HR, ∀⟨v, u1⟩ ∈ G.E, if the node v has u1 as the unique adjacent node,

then ⟨v, u1⟩ must be part of HR. In other words, airway segments that reach an

already affected segment and have no other airway segment to follow also must be

part of HR;

Algorithm 15 defines these cases. It gives as output a subgraph GHR ⊂ G that

represents the HR. Initially, GHR is initialized empty (Line 1). After, all G edges are

visited (Lines 2-6) to verify whether the airway segment is close enough to l considering

the radius r. In the affirmative case, the segment is included in the HR (Lines 4-6). As

the distance between l and its airway is near 0 (and less than r), this step considers cases

(1) and (2). With the initial HR established, the system focuses on verifying if there are

remained airway segments that have no other airway segment to follow - case (3). Thus,

we define a subgraph Grmnd ⊂ G whose edges do not already belong to HR (Line 7). If

there is an airway segment ⟨u, v⟩ ∈ Grmnd that goes to the HR with any other airway to

follow, it reaches a node v ∈ Grmnd .V whose outdegree is 0. It is always true since the

affected airway segments are in GHR.
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Algorithm 15: Cloud-Calc-HR
Input : l
Output: GHR

1 GHR ← ∅
2 foreach ⟨w1, w2⟩ ∈ G.E do
3 dist← calculate the distance from l to the line segment ⟨w1, w2⟩
4 if dist ≤ r then
5 GHR.V ← GHR.V ∪ {w1, w2}
6 GHR.E ← GHR.E ∪ {⟨w1, w2⟩}
7 Grmnd ← G−GHR
8 while (∃v ∈ Grmnd.V, outdegree(v) = 0) ∧ (v ∈ GHR) do
9 while ∃ ⟨u, v⟩ ∈ Grmnd.E do

10 GHR.E ← GHR.E ∪ {⟨u, v⟩}
11 Grmnd .E ← Grmnd .E − {⟨u, v⟩}
12 GHR.V ← GHR.V ∪ {v}
13 Grmnd .V ← Grmnd .V − {v}
14 Cloud-Reformulate-PP(GHR)

Another case can occur when the IoD airway topology has sink nodes that repre-

sent, for instance, a drone company garage. To avoid this case, it is necessary to verify

if the node v ∈ GHR (Lines 8-13). When these conditions are satisfied, every airway

segment that goes to v is added to GHR and removed from Grmnd (Lines 9-11). At the

end of this iteration, the incidence list of v will be empty. Thus, v is added to GHR and

removed from Grmnd (Lines 12-13). When there are no more nodes with outdegree equals

0, the HR is completely discovered and can be used to identify the drones needing a path

planning reformulation (Line 14).

▶ Time Complexity Analysis : the initialization of the HR as an empty set (Line 1)

has Θ(1) complexity. The loop from Line 2 to 7 iterates over all edges of G, performing

constant mathematical operations (Line 3) and set operations (Lines 5 and 6). All of them

have O(1) complexity. Hence, the loop is Θ(|G.E|). The deployment of the remained

graph Grmnd occurs through set operations (Line 7), i.e., it is Θ(1).

The remained part of the algorithm consists of two nested loops (Lines 8 to 13).

Considering an aggregate analysis, these loops will iterate over the edges, in the worst

case. Hence, the complexity is O(|G.E|). Lastly, a call to Algorithm 16 is described in

the next section. Equation 5.3 gives the time complexity of Algorithm 15:

T (Cloud-Calc-HR) = Θ(1) + Θ(|G.E|) +O(|G.E|)

= Θ(|G.E|)
(5.3)



5.4. Design of IoD-JAPM 154

5.4.3 Path Planning Reformulation

Algorithm 16 describes the reformulation of the path planning performed in the

IoD cloud system. It consists of identifying if, given a path planning p ∈ P , there are

airways into the HR that the drone p.d will fly until the end of its trip. In the affirmative

case, the system generates a new one and communicates it to the drone. Furthermore,

if the drone destination point is not reachable anymore, the system tries to redirect the

destination to a vertiport until the jamming source is actively countered.

As input, it receives the HR graph representation provided by Algorithm 15. To

reformulate the path planning, we calculate first what airways are not affected by the HR

(Line 1). Then, the mechanism verifies each path planning p ∈ P to identify if it will

demand a reformulation. There are two auxiliary nodes, u and v, representing the last

geographic point before the current path enters HR and the first geographic point after

leaving HR. They are both initialized as null pointers (Line 3). Also, we initialize as false

a flag regarding the need to designate a vertiport as a destination point to the drone, in

the case it is not possible to generate a new path (Line 4).

Similarly, an auxiliary path paux records the reformulated path planning. It is

initialized with the same attributes as p except the path planning, which is given until

the current airway that the drone is flying, indicated by the order attribute (Line 5).

After, IoD-JAPM verifies each airway segment e ∈ p.G′.E ′ from the current drone airway

to the last one (Lines 6-22). If the verified e is in the HR (Lines 7-9), it is necessary to

check if it is the first segment inside the HR, which means that u points to null. In this

case, u receives the origin node of e (Lines 8-9).

When e does not belong to HR (Lines 10-22), we need to consider two different

situations regarding the previous edges: they are outside the HR, which means that e

follows a “free HR path”; or part of them is in the HR. In the first case, e is added to the

path in paux (Lines 11–12). Otherwise, the origin point e.w1 is the first point outside HR

associated with v (Line 14). Therefore, given points u and v, the minimum path planning

over Gavail is calculated (Line 15). If there is an available path Enew , it is added to the

new course (Lines 16-18). As an HR segment is processed and replaced, both u and v

are set to null (Line 19). However, if the algorithm does not return any path, there is

no alternative path to the drone. Thus, the system must process if there is an available

vertiport where the drone can hold on until the jamming source is countered actively

(Lines 20-21). After processing the airway segments of p, the system must certify if the

last segment is not inside the HR. It can be verified through u, which must be null. If

the segment is inside the HR (Lines 23-24), there is no alternative path to finish the trip.

Likewise, in the case of Lines 20-21, it is necessary to evaluate if there is an available

vertiport.
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Algorithm 16: Cloud-Rfrmlt-PP
Input : GHR

1 Gavail ← G−GHR
2 foreach p ∈ P do
3 u, v ← null
4 needsVertiport ← false
5 paux ← ⟨p.d, p.G′.E′

⟨0..p.airway.order ⟩, p.airway⟩
6 for e ∈ p.G′.E′ such that p.airway.order ≤ e.order < |p.G′.E′| do
7 if e ∈ GHR.E then
8 if u = null then
9 u← e.w1

10 else
11 if u = null then
12 paux .G

′.E′ ← paux .G
′.E′ ∪ e

13 else
14 v ← e.w1

15 dist, Enew ← Dijkstra(Gavail , u, v)
16 if Enew ̸= ∅ then
17 paux .G

′.E′ ← paux .G
′.E′ ∪ Enew

18 paux .G
′.E′ ← paux .G

′.E′ ∪ e
19 u, v ← null

20 else
21 needsVertiport ← true
22 break loop

23 if u ̸= null then
24 needsVertiport ← true
25 if needsVertiport then
26 source ← last node of paux.G

′.E′

27 closest ← null
28 pathbest ← null
29 distshort ←∞
30 foreach vp ∈ V do
31 if vp is not full then
32 lvp ← vp location
33 dist, path ← Dijkstra(Gavail , source, lvp)
34 if dist < distshort then
35 closest ← vp
36 distshort ← dist

37 if closest ̸= null then
38 paux .G

′.E′ ← paux .G
′.E′∪ pathbest

39 else
40 send a message to p.d informing that there is no available path to fly

41 if paux.G
′.E′ − p.G′.E′ ̸= ∅ then

42 p← paux
43 ZSP-Drone-PP-Updt(p)

If one of the two above conditions occurs, the algorithm chooses the best vertiport

for the drone (Lines 25–40). Summarily, we calculate the shortest path from the drone
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to each vertiport (since it has a “slot” to shelter the drone), selecting the one with the

shortest distance (Lines 26–38). If there is no available vertiport, the cloud system emits

a message to the drone informing that there is no available path to fly (Line 40). In this

case, the drone service provider must take an external action unrelated to our mechanism.

Finally, if the path was affected in one or more segments, the current course is replaced

by the new one and submitted to the nearest ZSP to p.d, informing the drone about the

update (Lines 41-43).

▶ Time Complexity Analysis : this algorithm has a series of simple assignments and

variable initializations (Lines 3, 4, 5, 9, 12, 14, 17–19, 21, 24, 26–29, 32, 35–36, 38, 42), we

state all of them as O(1). The main part of Algorithm 16 iterates over the defined |d| path
plannings (Lines 2–40). This iteration has an inner loop going through all the edges of the

path planning in the worst case (Lines 6–22). Also, the size of edges in the path planning

is limited to |G.E|, although it hardly happens in practical terms. Inside this inner loop,

the Dijkstra call of Line 15 dominates the entire time complexity of the loop in the worst

case. Hence, the inner loop has a time complexity of O(|G.E|(|G.V |+ |G.E| log |G.V |)).
As the airways topology of IoD is always a connected graph [5], |G.E| ≥ |G.V |. Therefore,
this time complexity can be reduced to O(|G.E|2 log |G.V |).

Besides this inner loop, the vertiport processing (Lines 25–40) has significant

time complexity. This task iterates over all the vertiports, which is limited by |G.V |.
Nonetheless, it hardly happens in real scenarios since it would mean that all the avail-

able points would be vertipoints. In this iteration, another Dijkstra algorithm dominates

the time complexity. Hence, the iteration has a time complexity of O(|G.V |(|G.V | +
|G.E| log |G.V |)) = O(|G.V |(|G.E| log |G.V |)).

Given this discussion, Equation 5.4 presents the time complexity of Algorithm 16:

T (Cloud-Rfrmlt-PP) = |d|(|G.E|2 log |G.V |

+ |G.V |(|G.E| log |G.V |))

= |d|(|G.E|2 log |G.V |)

(5.4)

Although Algorithm 16 presents a theoretical quadratic time complexity, it does

not occur in practice since the path planning has several edges significantly less than the

whole topological graph.
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5.5 Simulation Setup and Performance Evaluation

We conduct an experimental evaluation through simulations to investigate the

following aspects: (i) how JA affects drone mobility in the IoD environment; and (ii) how

IoD-JAPM contributes to overcoming the challenges considering existing anti-jamming

mechanisms. In this section, we present the evaluated scenario, the simulation parameters,

and the metrics.

5.5.1 Compared Approaches

We consider four approaches to evaluate the proposed mechanism. We divide them

into a scenario without JA (representing an optimum regarding the drone trajectory) and

three scenarios where different solutions mitigate the JA.

▶ Free-JA: In this approach, there is no JA underway. Drones will communicate and

move as much as possible following the airways. This approach represents an “optimum”

scenario in terms of flight time and power consumption.

▶ Baseline mechanism [157]: This approach focuses on our previous mechanism

to detect and mitigate a long-term JA, performed by a malicious entity on the ground,

keeping stationary mobility.

▶ Joint Optimization Approach [51]: An important aspect when analyzing the

robustness of IoDJAPM is to compare our solution with a state-of-the-art method. How-

ever, these methods consider the airspace as free-to-fly, differing from our assumptions.

Thus, we need to consider an approach as similar as possible to evaluate a fair comparison.

Bearing this in mind, we consider the approach proposed by Wu et al. [51], denoted as

“Joint”. The proposed method aims to optimize jointly the communication throughput

and the UAV’s mobility. The UAVs also move towards well-defined locations: the tar-

geted grounded nodes. Considering our proposed scenario, they can be taken as terrestrial

waypoints of the UAV’s trajectory.

Nonetheless, the main difference between the approaches is airspace navigability.

Hence, we adapt the proposal of Wu et al. [51] so that the drone trajectory remains inside

the airway’s boundary radius and, in a JA situation, the “unused airspace” (as described

in Figure 5.4).
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We define new constraints regarding the mobility capability of the UAV to meet

this adaptation, presented in Equations 5.5, 5.6, and 5.7.

Mindist(qu[i], β) ≤ r (5.5)

qu[i]
z ≤ α (5.6)

distance(qu[i],w) ≤ distance(qu[i− 1],w) (5.7)

In Equation 5.5 we define that the minimum distance between the position qu of

a given drone u at the moment i and a given line segment of an airway β must be less or

equal to a radius r. In other words, the calculated position must be inside the boundaries

of the airway β. In Equation 5.6 we define that the calculated altitude (corresponding

to the z-axis on the Euclidean system) must be less or equal to the maximum available

altitude α.

Since the proposal [51] aims to jointly optimize the drone trajectory and the

throughput with a targeted node, the calculated positions tend to approximate drones

to the ZSP instead of the defined waypoint. To avoid this case, we define in Equation 5.7

that the distance between the calculated position of the drone and the waypoint w must

be less than the previous distance. Thus, we ensure that the drone moves toward the

waypoint instead of the ZSP. All these constraints are valid and applicable to all the

assumptions, equations, and algorithms presented by Wu et al. [51].

▶ IoDJAPM: This approach is similar to Baseline, but the network operates with

IoD-JAPM to mitigate the JA impact. Hence, it is possible to compare the performance of

IoDJAPM with both the former approaches, namely Baseline and Joint [51] methods.

5.5.2 Simulation Parameters

We consider two distinct airway topologies, T1 and T2, summarized in Table 5.1.

T1 is a robust infrastructure where drones have parallel airways and different flying paths,

designed following a piece of the roadside’s structure in Manhattan Island, NY. In turn, T2

is a constrained infrastructure, where drones have limited paths to fly at a single available

altitude. This topology follows a piece of the roadside structure of San Francisco, CA.

Also, T1 has two available vertiports with a double capacity as the single vertiport of T2.
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Table 5.1: Topology Attributes

Attr. T1 T2

Region Size 3 × 3 × 0.3 km3 4 × 2 × 0.1 km3

#available altitudes 3 1
#Airway nodes (total) 402 60
#Airway segments (total) 997 98
#Vertiports 2 1
Vertiport capacity 4 2

We performed the simulations using the IoDSim. Table 5.2 shows a list of sim-

ulation parameters, mainly regarding the environmental nodes. These parameters are

defined considering a realistic scenario with a reasonable time for an attacker to perform

JA [51]. Likewise, the distributed system can detect and act against the attack.

We evaluate the scenarios with one and two jammers. In both cases, the first

jammer has a low interference signal range, affecting only the airway at the lower altitude.

The second jammer, in turn, has a wide interference range, performing a JA over all the

parallel airways of an affected region.

Each simulation has 20 minutes. We set 25 drones following a Gauss-Markov

mobility pattern with speeds varying from 5 to 10m/s. The Gauss-Markov model is

configured with an angle α = 0.75 over the navigation vectors. Thus, a given drone flying

toward an aerial waypoint has small deviations in its flight, simulating potential weather

conditions in the environment, such as the wind performance. We spread four ZSPs

on the ground communicating with both the drones and the cloud system. Regarding

communication, the protocols and radio configuration are the same for all nodes. The

designed framework considers UDP, AODV, and CSMA/CA as the transport, routing,

and MAC protocols, respectively. The radio has an APSK modulation, a frequency of

2.4GHz, and a transmission power of 220mW. The SNIR threshold is set as 4 dB.

For each combination of scenario× topology× number of jammers (except for Free-

JA with Jammers), we conducted 35 experiments with distinct seeds and path planning of

drones, leading to results with a confidence interval (CI) of 95%. The Jammer and ZSPs

positions were the same for all replications. Hence, each experiment reflects a different

drone mobility scenario over the same attackers’ positions.

5.5.3 Metrics

We consider four metrics to measure how JA affects the drone path planning,

focusing on the topological airways affected by the JA, the number and type of affected
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Table 5.2: Simulation Parameters

Parameter Value

Scenarios Free, Baseline, Joint, IoDJAPM

#Jammers {1,2}
Topologies {T1, T2}
Simulation time 20minutes

Drone speed Uniform [5–10]m/s

Mobility pattern Gauss-Markov (α = 0.7)

#Drones 25

Jammer’s mobility Grounded, Stationary

Jammer’s behavior Long-term attack

#ZSPs 4

ZSP update check interval 1 s

ZSP Update check threshold 5

Transport Protocol UDP

Routing Protocol AODV

MAC Protocol CSMA/CA

Radio’s Modulation APSK

Radio’s Frequency 2.4GHz

Radio’s Bandwidth 2MHz

Radio’s Transmission Power 220mW

SNIR threshold 4 dB

Convergence threshold µ (Joint[51]) 10−3

planning, the increasing flight distance, and the increasing power consumption. They are

described as follows.

▶ Hazard Region Rate (HRR): HRR measures how large the HR is compared to the

topological graph. Equation 5.8 formally describes how to calculate HRR, where GHR is

the graph corresponding to the HR and G is the topological airway graph of the network.

HRR =
|GHR.E|
|G.E|

(5.8)

▶ Drones with Affected Path Planning Rate (DAPPR): This metric indicates

the rate of drones whose path planning was affected at least once due to JA compared

to the total number of drones. We consider affected path plannings those routes that

need to be reformulated, redirected to a vertiport, or those that could not proceed to a

final destination. Hence, it does not embrace the flights that could proceed after a suc-

cessful airway analysis. Formally, Equation 5.9 defines DAPPR. |Daffected| represents the
total number of drones with an affected path planning, such that the ones reformulated,

redirected to a vertiport, or that could not proceed to the final destination.

DAPPR =
|Daffected|
|D|

(5.9)
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▶ Increasing Flight Distance Rate (IFDR): IFDR calculates the relationship be-

tween the total distance of the Free-JA scenario and the corresponding path planning in

the scenarios with an anti-jamming mechanism. Equation 5.10 defines IFDR, where PPo

is the original path, PPc is the corresponding path in the Baseline or IoD-JAPM scenario,

and dist() is a function that calculates the total distance of a given path.

IFDR =
dist(PPc)

dist(PPo)
(5.10)

▶ Increasing Power Consumption Rate (IPCR): Similar to IFDR, this met-

ric compares the relation between the original and the corresponding reformulated path

planning in terms of power consumption. Equation 5.11 describes IPCR, where Eo is the

power consumption of the drone considering the Free-JA scenario, and Er is the power

consumption of the corresponding drone with the reformulated path planning.

IPCR =
Er
Eo

(5.11)

5.6 Results and Analysis

This section presents the results obtained through the simulations. We discuss

each metric’s results thoroughly, describing how IoD-JAPM mitigates the impact of JA,

promoting a safer IoD environment. For all results, the interval errors are less than 1

measure unit. Therefore, they are not represented in the charts.

▶ HRR Analysis: Understanding the dimension and how HR affects airspace is the

first door to analyzing the impact of JA over the IoD. Figure 5.6 shows the calculated

HR for T1 (Figure 5.6a) and T2 (Figure 5.6b), considering the region of the two jammers.

Regarding Figure 5.6a, the overlapped airways are out of scale compared to the other

elements to facilitate the visualization. Also, the grounded elements (ZSPs and the region

over the JA) are represented together with the lower airway.

Elements with red color refer to the first jammer (the one with less “jamming

power”), and the purple color refers to the second jammer. Hence, the red circle indicates

the region over the active JA from the first jammer, while the purple circle refers to the

JA from the second jammer. Considering that these circles illustrate only a slice of the

jammed region on the illustration plan, we provide a vertical visualization of these regions,

which explains why the second jammer can affect all three altitudes of T1. Likewise, the

red and purple airway segments correspond to the HR calculated following Algorithm 15.
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Figure 5.6: The typical Hazard Region calculated in each topology over all the airways

150m

200m
150m

200m

12
5m

20
0m

150m

200m

100m

100m

100m

(a) Hazard Region of the topology T1

100m

12
5m

100m

20
0m

100m

(b) Hazard Region of the topology T2

Source: Elaborated by the author

Figure 5.7 presents the results of HRR, giving a numerical meaning to the topolog-

ical representations. The lower the HRR, the lower the impact on the IoD environment.

The robustness of the topology is a determining factor in the HR coverage over the envi-

ronment. Even reaching the three parallel altitudes, the HR caused by the two jammers
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Figure 5.7: Results of Hazard Region Rate regarding IoD-JAPM performance evaluation
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acting together over T1 is less than the HR over T2 caused by a single jammer. Indeed,

the parallel airways of T1 provide a drone with several ways to avoid JA, as reflected

in the HRR. Furthermore, even though the HRR of T2 does not appear to be such a

high rate initially, it significantly restricts the airspace for drones, impacting their path

planning directly. In the following sections, we discuss these aspects in detail.

▶ DAPPR Analysis: The DAPPR metric gives a profile of the trajectories in each

evaluated configuration. Figure 5.8 presents these results for the evaluated approaches:

baseline in Figure 5.8a, the Joint approach [51] in Figure 5.8b, and IoD-JAPM in Fig-

ure 5.8c. Each cell represents the DAPPR of a given type of path planning (lines) affected

in a given configuration (columns). The last line presents the sum of the rates of the

configuration rates: the less the total DAPPR, the less the impact of JA over the IoD

environment.

The total rate of affected path planning highlights that IoD-JAPM can mitigate

the impact of JA at a higher level than the baseline and Joint [51] approaches. For the

scenarios with one jammer, IoD-JAPM prevented all drones from being attacked during

all experiments. Compared with the baseline mechanism, the rate is higher than 90% on

average for the topology T2. These aspects reveal how vital the altitude analysis step is,

even considering a restricted topology.

Observing the results related to the presence of two jammers, IoD-JAPM overcame

the Joint approach [51], especially in Topology T2. Nonetheless, Figure 5.8b shows the

limitations of the Joint approach [51] in a restricted scenario with well-defined airways.

In this case, the flights were canceled because the drone position must remain in a range

based on the drone maximum speed. Therefore, the mechanism can not find a possible

trajectory without violating the imposed constraints [51]. Indeed, for the ttopology T2,

with two jammers, almost 75% of the drones suffered from this issue, on average. As
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Figure 5.8: Results of Drones with Affected Path Planning Rate regarding IoD-JAPM
performance evaluation

(a) Baseline mechanism (b) Joint approach [51]

(c) IoD-JAPM

Source: Elaborated by the author

presented in Figure 5.6b, the jamming range of the second jammer in T2 is stronger than

the first one, which can explain the obtained results.

Also, the use of vertiports mitigates the impact of JA, avoiding the cancellation

of a significant portion of path planning compared to the baseline. For the topology T1,

it was not necessary to cancel any path planning, while for T2 there was a decrease of

25% from the corresponding scenario with the baseline mechanism. This aspect is strictly

related to the robustness of the topology. While in T1, there are two available vertiports

(which can assist four drones each), T2 has only one vertiport (assisting two drones only).

Indeed, in most experiments regarding T2 with two jammers, the vertiport was full in

most experiments.

Therefore, these results reveal a fundamental challenge: even with IoD-JAPM

showing adequate protection against JA, the topology of the airways is still a risk factor

to be considered in IoD. When such a topology has few available paths for the drone flight

and does not offer a reasonable number of available flight altitudes, attackers with greater
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Figure 5.9: Results of Increasing Flight Distance Rate regarding IoD-JAPM performance
evaluation
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Source: Elaborated by the author

Figure 5.10: Results of Increasing Power Consumption Rate regarding IoD-JAPM perfor-
mance evaluation

IoDJAPMBaseline Joint

Source: Elaborated by the author

interference power can significantly impact the drone trajectory and, consequently, the

provided service.

▶ IFDR Analysis: As we discussed previously, drones have SWaP limitations, being

essential to assess factors that can lead to the excessive expenditure of these resources.

One of these factors is the increasing flight distance caused by applying the anti-jamming

mechanisms measured by the IFDR. The less the IFDR, the less the impact on the IoD.
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Figure 5.9 summarizes the obtained results regarding this metric.

IoD-JAPM overcomes the baseline mechanism in all scenarios. Indeed, IoD-JAPM

has an increase significantly less than the baseline and a similar rate compared to the Joint

approach in scenarios with one jammer. In these cases, the slight increase occurs due to

the altitude analysis step of IoD-JAPM, in which the drone performs minor deviations

from its original path, as presented in Figure 5.5. As there is no other reformulation, this

is the only kind of increase.

Analyzing the results of Topology T2 with two jammers, IoD-JAPM increased twice

the flight distance compared to the Joint approach [51]. This behavior occurs mainly

because there is no reformulation of path planning on the Joint approach. Therefore,

the trajectory deviations are restricted to the maneuvers performed by the drones to

optimize the throughput with the ZSP communication. Indeed, if we analyze this result

allied with the DAPPR (Figure 5.8), IoD-JAPM still is the best mechanism against JA

since it cancels fewer flights than the Joint approach, reformulating a considerable amount

of them as well as sending drones to vertiports.

Still considering the results of DAPPR, the altitude analysis performed by IoD-

JAPM explains the better results obtained. The rate of reformulated path planning is

always less than the baseline mechanism. Even so, some path plannings reformulated

by the baseline mechanism did not change when IoD-JAPM was applied but proceeded

normally because the altitude analysis was successful.

Furthermore, we can note an outlier in the results of T2 of the baseline mechanism:

the IFDR of one jammer was higher than two jammers, going in the opposite direction

than expected. Analyzing the results carefully, we note that it occurs due to the decrease

of reformulated path plannings from one jammer to the scenario with two jammers. A

significant portion of flights was canceled when two jammers were in the environment,

as presented in Figure 5.8a. Some of these flights were reformulated in the presence of a

single jammer. This reformulation allows the drone to cross the entire environment since

the second jammer region is on the opposite side. Therefore, these trajectories contribute

significantly to the increasing distance, but they do not appear in the scenario with two

jammers since they are canceled.

▶ IPCR Analysis: Figure 5.10 presents the results of IPCR. The less the IPCR, the

less the impact on the IoD, specifically, on the drone battery efficiency. In summary,

IPCR is interlaced with the results of IFDR. We can note a similar pattern in the bar

results, comparing the charts in Figures 5.9 and 5.10. These patterns can be identified

because the movement of the drone propellers affects energy consumption more than the

transmission and reception of wireless messages [135]. Hence, the higher the IFDR, the

higher the IPCR.

Likewise discussed in the previous results, IoD-JAPM overcomes the baseline mech-
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anism in all scenarios, with discrete increasing power consumption for scenarios with one

jammer. Nonetheless, the IPCR is higher than 50% in T2 with two jammers. Although

the rate of reformulated path planning is not higher (about 20% on average), the flights

redirected to vertiports sustain a significant power consumption.

Comparing IoD-JAPM with the Joint approach [51], the results follow the same

behavior presented in IFDR, which can be explained by the same reasons. Although the

power consumption of IoD-JAPM is considerably higher in the more restricted scenario,

the DAPPR must be taken into account, where IoD-JAPM overcame the Joint Approach

in all scenarios.

These aspects reinforce the challenge imposed by restricted topologies. Even with

IoD-JAPM, the lack of available pathways directly impacts on the distance that drones fly

to complete their itinerary and, therefore, the power consumption. To mitigate these fac-

tors, vertiports can be placed in strategic regions to cover the airspace optimally. However,

this placement involves several aspects since they are commonly deployed in buildings or

dedicated areas. All in all, new studies must be conducted to investigate it properly.

▶ General Discussion: The drone traffic control through well-defined airways is

undoubtedly fundamental to IoD. With the constantly growing of drone-based services, it

is mandatory that a network authority manages and controls the drone flight, imposing

flyable boundaries. Although the concept of airways promotes several advantages, it

represents a risk to avoiding JA, severely affecting drone performance.

In a nutshell, the obtained results pointed out a deep relation between the impact

of JA on the drone path planning and the robustness of the airway topology. The more

restricted the topology, the more impact JA causes in the IoD: the drone trajectory

deviates considerably compared to its original path, increasing the flight distance and

power consumption.

IoD-JAPM can mitigate this impact, overcoming our baseline mechanism in all

scenarios considering the evaluated metrics. Indeed, IoD-JAPM significantly decreases

the number of affected path plannings (mainly those canceled due to the region affected

by JA), the increasing flight distance, and the power consumption of the reformulated

path plannings.

Regarding the approaches designed primarily for airspace “free-to-fly”, the per-

formed drone maneuvers can outperform IoD-JAPM regarding the flight distance and

power consumption in scenarios with restricted topology. Nonetheless, these approaches

can not provide a valid trajectory when the jamming signal is strong, as pointed out by

our comparative evaluation with the Joint approach [51].

Restricted airway topology against robust jammers represents a profound challenge

that must be investigated further. Even with the application of proper anti-jamming

mechanisms, an IoD airway topology with few available aerial pathways and few parallel
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altitudes is affected by strong jammers severely. Depending on the strategic position of

these attackers, the protection mechanism (e.g., IoD-JAPM) can not mitigate the attack

correctly, and, therefore, the network can be compromised, affecting the drone flight.

As cars can wait on the roadsides when an accident occurs, drones may have a

proper place to stay until the network recovers from the attack. Vertiports are proper

PoIs to serve as waiting regions. However, they must be placed to optimize access and

drone allocation, involving several factors. Hence, the vertiports coverage and placement

are open challenges to investigate further.

5.7 Chapter Remarks

In this chapter, we presented our contributions regarding anti-jamming mechanisms

for IoD. We investigated the impact of JA on drone path planning, and, therefore, the

drone trajectory on the IoD. We discussed thoroughly that existing solutions could not

adequately meet one of the main IoD characteristics: drone traffic control through well-

defined airways, where the drones fly over constrained airspace.

Hence, we proposed the IoD-JAPM, an airway-aware protection mechanism against

JA on the IoD. This mechanism can mitigate the JA impact by searching for an available

altitude to communicate with the ZSP without JA interference. To address it, our solu-

tion takes advantage of the unused airspace between two or more parallel altitudes over

different airways without violating the airways boundaries, avoiding collisions with other

drones or obstacles (e.g., buildings). Also, IoD-JAPM redirects the drones to vertiports

when generating a new path planning is not possible due to JA, keeping the drone safe

until the attack is adequately neutralized.

We conducted a performance evaluation through simulations, comparing IoD-

JAPM with a baseline solution and an adapted existent approach [51] that considers

the airspace free to fly. We considered environments with different airway topologies and

a different number of jammers performing attacks. IoD-JAPM overcomes the baseline

solution in all scenarios, mitigating the effects of JA over the path plannings, causing

few reformulations or cancellations. Furthermore, IoD-JAPM causes a slight increase in

the drone’s original flight distance, leading to better power consumption management.

Compared to the “free-to-fly” approach [51], IoD-JAPM presented a similar increase in

flight distance and power consumption for robust topology. In constrained scenarios, IoD-

JAPM is outperformed in these characteristics, which is an expected behavior since the

“free-to-fly” approach does not reformulate path planning. This issue directly impacts

the drone trajectory in environments with high jamming signals, where the method can
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not process a valid trajectory deviation, leading to several flight cancellations. Thus, our

evaluation reinforces that these approaches can not fit properly with the deployment of

IoD environments following well-defined airways.

Therefore, we are able to answer the research questions of this dissertation consid-

ering the design of anti-jamming mechanisms for IoD:

▶ Can the existing anti-jamming mechanisms provide the same protec-

tion level to IoD environments when compared to traditional mobile networks?

Answer: Taking into account IoD environments with the presence of well-defined

airways, they can not. As discussed in this chapter, airways pose boundaries to the full

application of the existing strategies, in such a way that the provided protection can

not ensure a suitable security level for drones in terms of the completeness of their path

planning.

▶ Is it possible to adapt these existing anti-jamming mechanisms to

enhance the protection level provided to a given IoD environment?

Answer: Yes, it is possible. We demonstrated that well-known JA detection

strategies must be integrated with novel reformulating path planning techniques, as oc-

curs in IoD-JAPM. The extensive performance evaluation highlighted that the proposed

mechanism can provide a suitable level of protection against JA, mitigating its effects on

drone path planning.

Also, the results reveal novel challenges in this field. IoD environments with re-

stricted airway topology (i.e., few available pathways and few parallel altitudes to fly)

can be severely impacted by JA, even with the application of IoD-JAPM. This impact

is related to the strategic position of the attacker. An interesting way to mitigate this

impact is to model strategies for the optimal deployment of vertiports. In this strategy,

the vertiports are deployed in points to optimize the environment coverage and the drone

flight distance.

In future directions, we plan to explore the opportunities and investigate the cur-

rent challenges, summarized as follows.

• Design novel strategies to optimize the deployment of vertiports and energy-related

constraints, for instance, based on ML approaches;

• Study the computational, financial, and legal factors to deploy IoD environments

with robust airway topology;

• Apply the mechanism in a variety of topologies to evaluate the provided protection

in a broader scope;

• Apply and evaluate IoD-JAPM in real drone-based mobile environments.
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Chapter 6

Design of Automatic Drone

Detection Strategies for IoD

This chapter presents the contributions regarding the design of ADD strategies, specifi-

cally, the study about the use of a drone’s propeller acoustic signal as an input source, and

the introduction of the dissimilarity concept to detect unknown UAV signals, resulting in

a smart strategy to detect drone’s through rhythmic-based features and a new detection

mechanism, named DissIdent. These contributions correspond to initial findings regard-

ing the use of rhythm properties, and the detection through dissimilarity techniques,

respectively. Hence, they make room for future research in this direction.

Section 6.1 brings an introduction and the motivations regarding the design of

novel ADD strategies, highlighting the current challenges. We present the application

scenario and threat model in Section 6.2. The related studies are discussed in Section 6.3.

Our first related contribution, the design of a smart rhythm-based strategy, is presented in

Section 6.4 in which we formally model the strategy, carry out a performance evaluation,

and discuss the related results. Likewise, we present our second related contribution,

the DissIdent approach, in Section 6.5, including its formal definition, the performance

evaluation, and the related results. Lastly, section 6.6 presents the chapter remarks,

in which we summarize our main findings and discuss some directions to improve the

investigated research fronts.

6.1 Introduction

As discussed in Section 3.2.4, Automatic Drone Detection (ADD) is the task of

correctly detecting the presence of a drone given a set of environmental features. Moreover,

identification is a task that can be stemming from the detection. Identification can lead

to detailed information about a detected drone, such as its model, size, weight, and

speed [92]. ADD can protect IoD nodes from unauthorized/unknown entities, being a



6.1. Introduction 171

silent and supportive mechanism for other PMs (e.g., anti-jamming). Therefore, the

investigation of both tasks represents fundamental aspects to ensure security and privacy

in the IoD environment.

Over the last few years, ADD has been improved with the exploration of smart

approaches integrated with traditional technologies and methods, such as the use of Deep

Learning algorithms [92, 93, 161]. Acoustic-based features have been widely applied in

these strategies, but they are mostly based on well-known aspects, such as Doppler and

frequency-related signatures [92]. However, there is room for the investigation of other

acoustic-related characteristics. Rhythm-based descriptors are powerful features extracted

from audio-based signals that express rhythmic properties, being useful in different tasks,

e.g., music and movie genre classification [162]. The drone’s propellers produce a promi-

nent sound in the environment. Also, different drone models have different propeller

engines, presenting specific working behavior [1]. Therefore, this signal can be explored

through rhythmic properties.

Although the current AI-based strategies address a suitable accuracy, the detec-

tion is dependable on known data. In other words, the approaches can properly detect

authorized drones since they have a pool of samples from the expected categorization, but

they fail to detect unknown entities and even distinguish different unauthorized UAVs.

From the IoD network point of view, grouping unknown UAVs can enhance the knowl-

edge about the environment since they can represent malicious drones, being valuable

information for defining strategies to avoid them.

Clustering models can handle this challenge. They group the observed data based

on their similarities given a measuring space and do not require a pool of data labeled

a priori, grouping them dynamically [163]. However, large-scale datasets represent a

challenge to the application of traditional clustering methods due to their computational

complexity as well the potential high dimensionality of the data [163].

Also, the uncertainty regarding different unauthorized drones can lead to a large

multi-class problem, being unfeasible by these traditional methods. Recently, dissimi-

larity techniques presented relevant results for independent-class problems. The dissimi-

larity concept is a classification-centered approach based on the (dis)similarities between

patterns to distinguish one from the other, grouping unknown elements [164]. This ap-

proach can identify patterns from different features, such as acoustic and RF-based signals.

Hence, this approach is a proper alternative to handle these challenges.

In this chapter, we introduce to new front of studies regarding ADD applied to the

IoD environment:

• The first front is the investigation of rhythmic-based acoustic features for ADD

tasks, extracted from the drone’s propeller sound. To analyze and validate our in-

vestigation, we conduct a case study considering different rhythm-based descriptors,

using the public and freely available dataset of drone and non-drone acoustic signals;
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• The second front investigates dissimilarity techniques for the detection of unknown

signals in IoD environment. Therefore, we propose DissIdent, a dissimilarity-based

approach for detecting unknown UAVs in the airspace. This solution can identify

patterns from different features through a smart workflow involving ML and clus-

tering concepts. We design an architecture that can distinguish patterns from input

signals, grouping unknown elements regardless of the data dimensionality. Also,

we formally define how to represent a given UAV-based feature in the dissimilarity

space. Through extensive experiments, we demonstrate that DissIdent can overcome

both supervised-based and clustering models regarding the detection and identifica-

tion of known and unknown signals in the airspace, mitigating the trade-off between

the tractability and accuracy of multi-class problems.

6.2 Application Scenario and Threat Model

Summarily, any IoD-related environment is a proper recipient to the deployment

of ADD strategies, specifically, the DissIdent approach. For instance, drones will provide

services to the population to improve people’s lives (e.g., drone delivery). Thus, it may

be common to see a flow of drones in the city’s sky. Therefore, it will be necessary

to use mechanisms to detect rogue and unauthorized drones. Different areas, such as

airports, government buildings, and private companies may require the identification of

unauthorized drones. Likewise, the industry shall require ADD mechanisms to keep its

environment safe and free from malicious aerial entities.

The threats faced by ADD are more general than the ones presented in the pre-

vious chapters since ADD can primarily counter a wide range of attacks, as presented

in Table 3.4. Nonetheless, we assume that a potential attack is underway when a set of

unknown drones are flying in regulated airspace. We describe the related threat model as

follows.

• The set of adversaries A is divided into two groups: a set of ground malicious

entities Aground ⊂ A; and a set of aerial entities Aair ⊂ A. Aground embraces

the human/cyber tools that control the aerial entities Aair. This second group, in

turn, is composed of drones flying over the airspace;

• The adversaries Aair can perform two types of attack: passive attacks, such as EA;

or active attacks, such as SA. Therefore, this model relates to mobile threats over

the air;
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• The devices related to Aair fly through an opportunistic behavior, focusing on

performing the intended attack over a set of targets, generally authorized drones in

the network. Once it is completed, they land. Thus, the window size to detect these

threats can be small;

Although the IoD network can potentially detect and counter these threats by

other mechanisms (e.g., based on authorization protocols or anti-jamming techniques),

our focus delves into the primary detection of unknown entities in the airspace despite of

what are their intentions, or even what kind of behavior they present. In other words, we

consider the proposed ADD strategy as a “first barrier” to warn the whole network about

a potential threat.

6.3 Related Studies

A seminal study of automated-based drone identification was presented by Moses

et al. [165], in which they proposed a lightweight radar system for small UAVs, differenti-

ating the drones through Doppler signatures. This system was attached to a monitoring

drone, allowing an “in-flight” drone identification instead of a stationary, one. A well-

explored phenomenon to detect drones is RF. Considering the advent of 5G communica-

tion, Solomitckii et al. [166] investigated the exploitation of 5G millimeter-wave signals,

exploring the frequency and bandwidth. Nemer et al. [93] explored RF signals identifying

and detecting UAVs through a hierarchical Machine Learning method.

Acoustic signals are also an explored phenomenon to detect drones smartly. Yang

et al. [167] accomplished a solution for Direction of Arrival (DOA) problem considering

the acoustic harmonic drones’ signals, integrating the model with a real-life drone track-

ing platform. Kolamunna et al. [92] proposed the DronePrint, a detection framework

that uses drone acoustic signatures. Mandal et al. [168] modeled a low-cost system for

detecting and classifying drones using five acoustic descriptors: Mel frequency cepstral

coefficients, euclidean-based distance spectrogram, chromagram, spectral contrast, and

tonal centroids. For classification, the SVM classifier was also used. There is also no

information on the dataset’s availability in the study. Al-Emadi et al. [169] introduced a

public and freely available dataset of acoustic signals of drones and non-drones. In the

study, the audios are processed as visual representations of the spectrogram and used

as input data for three different modeled Deep Neural Networks: a CNN, RNN, and a

CRNN. The classifications were carried out on two approaches: a binary classification

to detect if the acoustic signal was or was not a drone; and a multiclass classification to
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consider the audio as not being from a drone, or being a “Bebop” or “Mambo” model

drone.

Differing from the aforementioned studies, Unlu et al. [170] designed a drone de-

tection system based on the drone’s captured images. Several shape descriptors were

extracted from the pictures and modeled to a Neural Network to classify them. An image

database of drones and birds was considered, in which the system was able to differ from

these two categories. Recently, the study of Sciancalepore et al. [26] presented the PiNCH,

a framework for drone detection that combines different network traffic information with

machine learning classic algorithms, such as Random Forest. This study considers traf-

fic analysis as its primary method to accomplish the detection. Svanstrom et al. [171]

proposed a framework to detect drones based mainly on thermal signatures captured by

thermal cameras, supported by GPS and radar signals.

As we can note, none of them explores the hypothesis of the drone’s acoustic

signature having rhythmic properties. Hence, our proposal pursuits to empower drone

identification through rhythmic acoustic features, exploring and extending the field of

possible characteristics to be extracted from the acoustic signals of drones. Furthermore,

although these approaches considered realistic sources as non-drone/non-authorized sig-

nals, they did not follow up with this categorization in the testing phase. In other words,

they fail in the identification task of unknown nodes. Nonetheless, the airspace is suscep-

tible to a plethora of external signals, mainly in urban scenarios, where unknown drones

can be detected.

Clustering models can tackle this issue. These strategies are well-applied in noisy

and large datasets [163]. Some algorithms addressed good performance in terms of detec-

tion of outliers and independence of the order in which the strategy receives the data as

input. The literature points out three strategies considering this context [163]: Density-

Based Spatial Clustering of Applications with Noise (DBSCAN); Ordering Points To

Identify the Clustering Structure (OPTICS); and the Balanced Iterative Reducing and

Clustering using Hierarchies (BIRCH).

Signals coming from authorized drones certainly will be near each other considering

a given representation space. Likewise, signals from unknown entities are potentially far

from the latter group, representing outliers, or even closer to each other if they come from

the same unknown source. Although they are not commonly applied in UAV detection,

they represent a proper solution to identify both known and unknown signals. However,

signals coming from different sources over the airspace can lead to a problem with high

dimensionality, representing a challenge to clustering models [163].

DissIdent can overcome these challenges by embracing both classification and clus-

tering strategies. Our approach takes advantage of the dissimilarity concept, distinguish-

ing the input signals through a smart identification workflow using learning classification

models and clustering techniques.
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6.4 Design of a Smart Rhythm-Based Strategy for

ADD

Each drone device model is singular with a unique hardware configuration, and,

consequently, it generates individual acoustic signals based on its propellers and motors

performance. Informally, we can assume that each drone has its own “rhythm of flight”.

Bearing this in mind, we investigate the following hypothesis: The acoustic signal gener-

ated by different drone flights has distinct rhythmic properties that can improve the drone

identification task.

In this section, we propose a new methodology based on rhythmic features for

ADD, extracted from the drone’s flight acoustic signals. Figure 6.1 shows the proposed

scheme. From the acoustic signal of a sample, we extract rhythm-based features. Aiming

to combine these features with descriptors from a different nature, we also generate the

audio’s spectrogram, extracting a visual-based descriptor. These features are then com-

bined themselves and also with the visual descriptor. After, they are given as input to

a DNN classifier. The methodology allows for two types of feature combinations: early

fusion (before given as input to the classifier) or late fusion (combines the classifier results

with different features), detailed further.

We evaluate three different decision approaches, described as follows.

• The decision is taken considering the classification results of a rhythmic descriptor,

solely;

• The decision is taken considering the classification results of an early fusion config-

uration, which can be composed of both rhythmic and visual descriptors;

• The decision is taken combining different classification results – coming from the

previous approaches – and submitting them to a late fusion rule, which will generate

the final decision.

6.4.1 Feature Extraction

In different fields, rhythmic features are commonly combined with descriptors from

a different “nature”, mainly visual features. For instance, Mangolin et al. [162] have

explored the multi-modality of acoustic and visual features. The proposed methodology
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Figure 6.1: Proposed rhythm-based ADD methodology

Source: Elaborated by the author

is mainly composed of rhythmic features, however, we also consider visual features to

verify the classification enhancement provided by a multi-modal system.

▶ Rhythm-based Features: they are a well-explored field of acoustic descriptors,

extracting rhythmic properties from audio data, being initially explored in music genre

classification. Over the years, their use was expanded to different tasks, e.g., movie genre

classification [162], animal species [172], and age and gender identification [173]. The

most prominent features in this field are presented as follows.

• Rhythm Pattern (RP) is an acoustic descriptor processed in two stages for each

acoustic band. It is based on extracting sensitive frequencies to the human acoustic

system based on rhythm [173]. The input audio signal is pre-processed through a

single channel compression to calculate this descriptor, taking a consecutive group of

six-second excerpts according to the current processing position. Next, each audio

excerpt is conditioned to several transformations in the first stage, such as Fast

Fourier Transform (FFT) and Bark Scale clustering, until the Sone representation.

FFT is applied once again, followed by a weight modulation and a gradient filter in

the second stage. Finally, a vector descriptor composed of 1440 values is generated

based on the processed excerpts’ median values;

• Rhythm Histogram (RH) is a rhythm-based acoustic descriptor in which the sum

of acoustic bands produces a histogram of rhythmic energy [172]. The process is

similar to RP until the Bark Scale step. After, the frequencies lower than 10 Hz
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are summed up and allocated in a histogram. This descriptor generates a vector

descriptor composed of 60 values, calculated through the average of each excerpt;

• Statistical Spectrum Descriptor (SSD) is an acoustic descriptor based on rhythm.

Additionally, it has the potential to capture information related to different acoustic

tones [173]. In a nutshell, the extraction process is also similar to RP. Various

statistical moments are processed after applying the Bark Scale, such as mean,

median, variance, skewness, kurtosis, min, and max value. As output, it is generated

a vector descriptor composed of 168 values.

▶ Visual Features: Motivated by the results presented in Mangolin et al. [162], here

work with Location Binary Patterns (LBP). It is a visual descriptor that seeks to sum-

marize the pixel value patterns considering a given neighborhood. Thus, the descriptor

starts from the premise that such patterns describe an image texture that can character-

ize patterns in images of the same class. Aiming to explore and evaluate the potential

benefits of fusion among different descriptors (discussed in Section 6.4.2), in this study,

we process an LBP descriptor, extracted from spectrum images of the audio signals, con-

sidering eight neighbors and two radii, which leads to a vector descriptor composed of 59

values.

6.4.2 Classification Model and Multimodality Definitions

We use as our classification model a DNN. It is a feed-forward artificial neural

network with three hidden layers. It is important to mention that problems of drone

identification will always need to deal with data imbalance [169]. This problem appears

when the number of objects known for one class (e.g., drones) is much smaller than the

number of objects in the second class (e.g., non-drones). For classifiers to reach good levels

of accuracy in imbalanced problems, it is usually necessary to use sampling techniques,

which can be undersampling the majority class or oversampling the minority class.

Fusion techniques consist of combining different descriptors and predictions to

enhance the classification. These techniques can be grouped into two categories: early

fusion and late fusion. Early fusion is based on the assumption that different descriptors

can be combined to improve the classification of a given problem. This study intends

to perform early fusion between acoustic and visual descriptors, using a specific classifier

for this combination. Late fusion techniques, in turn, are based on the combination of

predictions from different classifiers to address the final decision. This type of fusion can
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Table 6.1: Early and late fusion configurations of the proposed rhythm-based strategy for
ADD

Early Fusion Late FusionDescriptor /
Configuration EF1 EF2 EF3 LF1 LF2 LF3 LF4

RH ✓ ✓ ✓ ✓ ✓
RP ✓ ✓
SSD ✓ ✓
LBP ✓ ✓
EF1 - - - ✓ ✓ ✓
EF2 - - - ✓ ✓
EF3 - - - ✓ ✓ ✓

be performed using different combination rules, such as sum, product, maximum, and

minimum [173].

Table 6.1 presents the considered configurations of early and late fusion. A check

mark indicates the presence of the line descriptor (or configuration) in the column con-

figuration. For instance, LBP is part of early fusion configurations EF1 and EF2. The

result of EF1 classification, in turn, is applied as input for final classification in late fusion

configurations LF1, LF2, and LF3. The hyphen mark means options that are not con-

sidered. In a nutshell, EF1 and EF2 attempt to improve our classification by combining

visual and acoustic features. EF3, in turn, is a well-explored acoustic early fusion that

commonly pointed out a high level of classification [173]. In the late fusion configurations,

we combine and apply fusion rules considering the predictions provided by different early

fusion configurations. Moreover, for LF1 and LF2, we also combine the prediction of RH

descriptor solely, since different studies in the literature indicated that this descriptor

could increase the identification rate in different contexts [162, 173].

6.4.3 Setup and Performance Evaluation

We implemented in Python version 3.5 the proposed methodology. We generated

our classification models through the pre-built library provided by the scikit-learn 1 ma-

chine learning framework. The classification scripts and the data related to fold division

and descriptors are available on a public website2. This section describes the baseline

dataset, the classification setup, and the description of the carried-out parameter tuning

toward a better DNN classification model.

1https://scikit-learn.org/stable/
2https://sites.google.com/view/rhythmofdrones
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Table 6.2: Folds distribution regarding training and testing of the proposed rhythm-based
strategy for ADD

Fold Non-Drone Bebop Mambo

Training Set

Validation 1 266 133 133
Validation 2 266 133 133
Validation 3 266 133 133
Validation 4 266 133 133

Testing Set (Balanced)

Classification 1 266 133 133

Testing Set (Non-balanced)

Classification 2 9308 133 133

▶ Dataset: We tested our methodology using a public drone acoustic signal dataset [169].

On this dataset, there are 10,372 audio samples characterized as “non-drone” and 1,332

audio samples from drones, divided into two models: “Bebop” and “Mambo”. Both used

drone models are from the manufacturer Parrot3, belonging to the quadcopter type, i.e.,

they have four propellers and motors. In general, the Mambo drone has a shorter flight

range, being about 10m against Bebop’s 15m. The speed reached by Bebop reaches

16m/s while Mambo reaches only 8m/s. In addition, Mambo is also physically smaller

than Bebop. Although Mambo is a drone with fewer resources, it has a camera and

gyroscope, differentiating itself from Bebop in that it does not have GPS.

The characteristics related to engine, speed, and weight can make a difference in

each of these models’ sound, making it possible to identify them. Note that the number

of non-drone audio samples is almost eight times greater than drone samples, causing an

imbalance of data and hampering an equal distribution into folds. Al-Emadi et al. [169]

pointed out that non-balanced classes can develop classification models with over-fitting.

Hence, we use an under-sampling on the non-drone samples set to deal with this issue.

However, if we consider real-world IoD environments, ADD classification models will

handle many non-drone audio signals compared to drone audio signals.

▶ Classification Setup: In this study, we evaluate two types of classification: (i)

binary, classifying the audio signal as a non-drone or drone; and (ii) multiclass, classify-

ing the audio signal as a non-drone, “Mambo drone”, or “Bebop drone”. Furthermore,

class imbalance of audio sample categories can challenge drone identification. Hence, we

perform an undersampling of the majority class. The dataset keeps several non-drone

equivalents to the number of drones for training, having a wholly balanced dataset.

To ensure diversity and statistical validation of our model, we apply the stratified k-

fold cross-validation technique [173]. The audio data coming from the dataset is divided

equally into k folds, consistently accounting for and preserving the class distribution.

3https://www.parrot.com/en/drones
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Table 6.3: Final configuration of parameter tuning and the corresponding accuracy of the
proposed rhythm-based strategy for ADD

Solv. Actv Learn. Iter. Hidden Size Descrip. Accur. Stdv.

Adam RELU invscaling 500 (200,200,200)
SSD 0.9534 ±0.0070
SSD 0.9915 ±0.0009
RH 0.9967 ±0.0015

During the k-fold cross-validation process, k − 1 folds are considered to train and model

and a fifth to validate the model learned. This process is repeated k times, and the results

reported correspond to the average over all iterations. We use the k = 4 for tuning the

values of the networks and use out-of-sample data to test the results, i.e., we consider a

sample that was not used during the cross-validation procedure.

The out-of-sample testing is performed over two different scenarios: the balanced

and unbalanced test sets (see Table 6.2). The unbalanced dataset is generated by returning

the non-drone examples from the balanced dataset to the test set. Note that this simulates

a scenario much closer to reality. Each fold has 266 non-drone samples, 133 Bebop, and

133 Mambo drone samples for training and parameter tuning validation. We perform the

class balance similar to the seminal study [169] (50% for non-drone, 25% for Bebop, and

25% for Mambo). In the out-of-sample testing, the balanced dataset contains exactly

the same number of samples, while in the unbalanced testing, the non-drone sample is

increased from 266 to 9,308.

The validation folds (1 to 4) refer to the samples applied to train the DNN model

following a 4-fold cross-validation technique for all classification scenarios: binary, mul-

ticlass, balanced, and non-balanced. Of course, for the binary classification, Bebop and

Mambo are considered unique classes. The testing folds are discriminated in two classi-

fication sets: for the balanced scenario, the fold has 266 samples of the non-drone class;

nonetheless, in the non-balanced scenario, there are 9,308 non-drone samples, embracing

the ones of the balanced scenario including the remaining samples of the dataset.

▶ Parameter Tuning: Before testing the proposed methodology in out-of-sample

data, we performed a parameter tuning of the DNN network. We use the 4-fold cross-

validation to perform the parameter tuning according to the training and testing balanced

set with binary classification. As a metric, we consider the DNN accuracy, which provides

the pure success classification rate, considering the balanced dataset. The parameter

tuning methodology is defined as follows: tuning (i) the hidden layer size; (ii) the max-

imum number of iterations; (iii) the learning rate; (iv) the activation function; and (v)

the solver. In this tuning, we use Approach 1 to perform the classification, considering

the three rhythm-based descriptors.

Parameter tuning is an extensive procedure, demanding a series of evaluations and
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Table 6.4: Binary classification results for balanced and unbalanced data regarding the
performance evaluation of the proposed rhythm-based strategy for ADD

Balanced Classes Unbalanced Classes
Fusion F1-score F1-score

Input Rule Accuracy Macro Micro Accuracy Macro Micro

Baseline[169] - 0.9638 ± 0.0069 0.9590 ± 0.780 - - - -

SSD - 0.9426 ± 0.004 0.9426 ± 0.004 0.9426 ± 0.004 0.9557 ± 0.004 0.7598 ± 0.012 0.9557 ± 0.004
RP - 0.9840 ± 0.004 0.9840 ± 0.004 0.9840 ± 0.004 0.9896 ± 0.001 0.9170 ± 0.004 0.9896 ± 0.001
RH - 0.9981 ± 0.002 0.9981 ± 0.002 0.9981 ± 0.002 0.9969 ± 0.001 0.9733 ± 0.004 0.9969 ± 0.001
EF1 - 0.9971 ± 0.002 0.9971 ± 0.002 0.9971 ± 0.002 0.9977 ± 0.001 0.9800 ± 0.006 0.9977 ± 0.001
EF2 - 0.9736 ± 0.004 0.9736 ± 0.004 0.9736 ± 0.004 0.9792 ± 0.0028 0.8560 ± 0.013 0.9792 ± 0.002
EF3 - 0.9750 ± 0.004 0.9750 ± 0.004 0.9750 ± 0.004 0.9786 ± 0.0022 0.8526 ± 0.010 0.9786 ± 0.002
LF1 Max 0.9985 ± 0.002 0.9985 ± 0.002 0.9985 ± 0.002 0.9977 ± 0.001 0.9802 ± 0.004 0.9977 ± 0.001
LF1 Min 0.9985 ± 0.002 0.9985 ± 0.002 0.9985 ± 0.002 0.9977 ± 0.001 0.9802 ± 0.004 0.9977 ± 0.001
LF1 Sum 0.9985 ± 0.002 0.9985 ± 0.002 0.9985 ± 0.002 0.9977 ± 0.001 0.9802 ± 0.004 0.9977 ± 0.001
LF1 Product 0.9985 ± 0.002 0.9985 ± 0.002 0.9985 ± 0.002 0.9977 ± 0.001 0.9802 ± 0.004 0.9977 ± 0.001
LF2 Max 0.9938 ± 0.005 0.9938 ± 0.005 0.9938 ± 0.005 0.9958 ± 0.002 0.9642 ± 0.014 0.9958 ± 0.001
LF2 Min 0.9938 ± 0.005 0.9938 ± 0.005 0.9938 ± 0.005 0.9958 ± 0.002 0.9642 ± 0.014 0.9958 ± 0.001
LF2 Sum 0.9943 ± 0.004 0.9943 ± 0.004 0.9943 ± 0.004 0.9965 ± 0.001 0.9684 ± 0.010 0.9965 ± 0.001
LF2 Product 0.9948 ± 0.005 0.9948 ± 0.005 0.9948 ± 0.005 0.9963 ± 0.002 0.9684 ± 0.013 0.9963 ± 0.001

analyses. Due to the limited space, we present in Table 6.3 the final configuration of

the carried parameter tuning and the accuracy results for the three descriptors. If we

consider the study of Al-Emadi et al. [169], which is our baseline, the best accuracy rate

for binary classification is 0.9638 ± 0.69. It means that we have achieved better results

than the baseline in this phase, considering SSD and RH descriptors solely. However, an

out-of-sample experiment will be performed to test the generalization of the model.

6.4.4 Results and Discussion

This section discusses the results addressed by different descriptors and fusion tech-

niques. All scenarios follow the classification models developed with the best parameters

found during the tuning process, described in Table 6.3. We present binary and multiclass

classification results, considering the balanced and non-balanced scenarios. We evaluate

the classifications using two traditional metrics: accuracy and F1-score, to support our

discussion.

The F1-score is the geometric mean of the precision and recall metrics and is

appropriate when there is a class imbalance. For the multiclass scenario, We present

both the macro and micro F1 measures. While the first is a non-weighted average for the

F1-values for each class, the micro F1 calculates metrics globally by counting the total

true positives, false negatives, and false positives, and hence accounts for class imbalance.

The accuracy results presented are the average of the four classification models (one from

each fold) created during tuning when applied to the out-of-sample data.
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Table 6.5: Best confusion matrix of binary classification for balanced classes regarding
the performance evaluation of the proposed rhythm-based strategy for ADD (LF1 – max
rule).

Expected / Predicted Non-Drone Drone

Non-Drone 266 0

Drone 0 266

▶ Binary Classification: Here, we present and discuss the results of binary classifi-

cation for balanced and non-balanced data. To make comparisons and discussions easier,

they are summarized in Table 6.4. On the left side, we have the results of balanced data,

and on the right side the ones of non-balanced data.

Regarding the classification considering the same number of samples per class,

the results of LF1 –regardless of the fusion rule – reach the best classification accuracy

compared to other variations. However, all descriptors and fusion rules obtain measures of

accuracy and F1-score higher than 94%. If we do not consider the approaches with the SSD

descriptor, the results are all higher than 97%, being better than the ones presented in Al-

Emadi et al. [169]. Another essential aspect to note is that RH gives a high accuracy rate

without using any fusion technique. This aspect also occurred in other related studies [172,

173], reinforcing the premise that RH catches sensible acoustic patterns based on the

human auditory system.

Regarding unbalanced data, once again, LF1 reaches the best accuracy values

considering all fusion rules. Except for SSD, the descriptors and fusion rules obtained

accuracy values higher than 97%. Focusing on F1-Score, except for SSD, EF2, and EF3,

the rates are always higher than 90%, showing the classifier captures the patterns of the

drone class as well as the patterns from the non-drone class. Notice that we do not report

the results for the baseline in this scenario, as the authors in [169] do not account for

unbalanced cases, solving a simpler and less realistic problem.

Table 6.6 presents the best confusion matrix of one of the best results obtained,

LF1 – max rule, as occurred in the classification scenario with the balanced dataset.

Recall that the model that generated this result was chosen considering the best accuracy

in the validation set. Observe that to perform the non-balanced binary classification, we

did not retrain the classifiers but simply reproduced the out-of-sample data in a more

realistic scenario, where 2.78% of the data belong to the drone class and the remainder

to the non-drone class.

▶ Multiclass Classification: In this section, we present and discuss the results of

multiclass classification for balanced and non-balanced data. In this case, the classification

problem considers three classes: Non-Drone, Bebop, and Mambo, the latter two drone

classes. The results are presented in Table 6.7. On the left side, we have the results of
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Table 6.6: Best confusion matrix of binary classification with unbalanced classes regarding
the performance evaluation of the proposed rhythm-based strategy for ADD (LF1 – max
rule).

Expected / Predicted Non-Drone Drone

Non-Drone 9289 17

Drone 0 266

Table 6.7: Multiclass classification results for the balanced and unbalanced datasets re-
garding the performance evaluation of the proposed rhythm-based strategy for ADD

Balanced Classes Unbalanced Classes
Fusion F1-score F1-score

Input Rule Accuracy Macro Micro Accuracy Macro Micro

Baseline [169] - 0.9229 ± 0.012 0.9260 ± 1.320 - - - -
SSD - 0.9163 ± 0.012 0.9111 ± 0.014 0.9163 ± 0.012 0.9487 ± 0.0147 0.6879 ± 0.045 0.9487 ± 0.014
RP - 0.9262 ± 0.002 0.9077 ± 0.002 0.9262 ± 0.002 0.9818 ± 0.0046 0.8084 ± 0.024 0.9818 ± 0.004
RH - 0.9017 ± 0.006 0.9733 ± 0.008 0.9017 ± 0.006 0.9909 ± 0.0002 0.8394 ± 0.023 0.9909 ± 0.002
EF1 - 0.9055 ± 0.014 0.8776 ± 0.013 0.9055 ± 0.014 0.9861 ± 0.0122 0.8206 ± 0.079 0.9861 ± 0.012
EF2 - 0.9459 ± 0.011 0.9394 ± 0.011 0.9459 ± 0.010 0.9594 ± 0.0123 0.7435 ± 0.037 0.9594 ± 0.012
EF3 - 0.9426 ± 0.009 0.9351 ± 0.009 0.9426 ± 0.009 0.9657 ± 0.0196 0.7585 ± 0.073 0.9657 ± 0.019
LF3 Max 0.9539 ± 0.002 0.9417 ± 0.004 0.9539 ± 0.001 0.9984 ± 0.0040 0.9078 ± 0.036 0.9934 ± 0.004
LF3 Min 0.9591 ± 0.005 0.9480 ± 0.007 0.9591 ± 0.005 0.9935 ± 0.0046 0.9131 ± 0.035 0.9936 ± 0.004
LF3 Sum 0.9558 ± 0.002 0.9443 ± 0.004 0.9558 ± 0.002 0.9936 ± 0.0046 0.9108 ± 0.036 0.9936 ± 0.004
LF3 Product 0.9591 ± 0.004 0.9480 ± 0.006 0.9591 ± 0.003 0.9937 ± 0.0047 0.9137 ± 0.036 0.9937 ± 0.004
LF4 Max 0.9501 ± 0.007 0.9437 ± 0.009 0.9501 ± 0.007 0.9675 ± 0.0079 0.7635 ± 0.036 0.9675 ± 0.007
LF4 Min 0.9501 ± 0.007 0.9434 ± 0.009 0.9501 ± 0.007 0.9674 ± 0.0079 0.7640 ± 0.034 0.9674 ± 0.007
LF4 Sum 0.9501 ± 0.007 0.9437 ± 0.009 0.9501 ± 0.007 0.9674 ± 0.0080 0.7634 ± 0.036 0.9674 ± 0.008
LF4 Product 0.9501 ± 0.007 0.9436 ± 0.009 0.9501 ± 0.007 0.9675 ± 0.0078 0.7647 ± 0.033 0.9675 ± 0.007

balanced data, and on the right side, unbalanced data.

Regarding balanced data, although the late fusion technique LF3 presents the

best results in binary classification, this approach significantly improves the accuracy

rate in the multiclass scenario compared to early fusion and descriptors solely. In this

scenario, LF3 with min and product rules reach the best accuracy, with values higher

than 95%. Furthermore, observing all fusion rules applied with late fusion approaches

(LF3 and LF4), we note that the accuracy is always higher than 95%, reinforcing that the

late fusion combination of rhythm-based descriptors is a suitable approach to multiclass

classification in this dataset.

Table 6.8 shows the confusion matrix obtained by the classification model with

the best accuracy results in the validation set, LF3 - Product Rule. All classes have

high precision, mainly in the identification task of non-drones, with 99.62%. Besides, the

identification of drones also has high precision, with fewer mistakes for the Mambo class

(1.87% of misclassifications). We also note that it is more difficult for the classification

model to identify the Bebop drone correctly.

Regarding unbalanced data, LF3 with Sum rule obtains the best accuracy: 0.9984.

The other LF3 rules also reach an accuracy rate greater than 99%. However, given the

class unbalance, in this scenario the f-measure is a more appropriate measure to evaluate.

For both Macro and Micro F1-scores, LF3 also presents the highest rates, with rates

greater than 90% (Macro) and 99% (Micro). We also can note that the remaining F1
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Table 6.8: Confusion matrix for multiclass classification with balanced classes regarding
the performance evaluation of the proposed rhythm-based strategy for ADD (LF3 – prod-
uct rule).

Expected / Predicted Non-Drone Bebop Mambo

Non-Drone 265 0 1

Bebop 0 119 14

Mambo 1 4 128

Table 6.9: Confusion matrix for multiclass classification of unbalanced data regarding
the performance evaluation of the proposed rhythm-based strategy for ADD (LF3 – max
rule).

Expected / Predicted Non-Drone Bebop Mambo

Non-Drone 9293 2 11

Bebop 0 128 5

Mambo 6 13 114

Macros address rates are lower than 85%. This aspect can be explained due to the

fact that this metric does not take into account the imbalanced scenario. This issue is

solved using F1 Micro, which considers data imbalance. Table 6.9 shows the confusion

matrix of the LF3 – max rule. Again, the classification models trained with the balanced

data were reused in the out-of-sample data, which included more non-drone instances to

simulate a real scenario. Here, the class distribution was 97.22% for non-drone, 1.39%

for Bebop, and 1.39% for Mambo. Once more, in the unbalanced classification scenario,

only the number of instances of the non-drone class increased. Thus, when comparing the

confusion matrices of the best balanced (Table 6.8) and non-balanced (Table 6.9) results,

it appears that the errors refer to classifying instances of the type non-drone erroneously

as a drone.

▶ Overall Comparison: Table 6.10 shows the best accuracy results of Al-Emadi et

al. [169] and our study. We use only the balanced results for a fair comparison since

Al-Emadi et al. [169] do not present results for non-balanced scenarios. As discussed,

we perform the class balance in the same way as this baseline study. Table 6.11 shows

the comparison between the two best results from our study and Al-Emadi et al. [169]

considering the macro F1-score. Once again, we present better results of the f-score and

with a lower variance. As we can note, there is an enhancement in terms of accuracy

for both binary and multiclass classification, being 3.47% and 2.97%, respectively. Note

that in classification problems, the higher the accuracy, the more challenging to improve

classification results. Hence, this is indeed a significant improvement. Also, note that the

standard deviation results are very low, also showing statistical validity in our findings.
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Table 6.10: Comparison of the baseline and our proposal – Best accuracy rate for binary
and multiclass classification in balanced data scenarios.

Input Al-Emadi et al. [169] Our Study

Binary 0.9638 ± 0.0069 0.9985 ± 0.0024

Multiclass 0.9294 ± 0.0118 0.9591 ± 0.0038

Table 6.11: Comparison of accuracy and F1-score between the baseline and our proposal.

Input Accuracy F1-Score

Al-Emadi et al. [169] 0.9294 ± 0.0118 0.9263 ± 0.0132

Our Study (LF3 - Min) 0.9591 ± 0.0050 0.9480 ± 0.0070

Our Study (LF3 - Prod.) 0.9591 ± 0.0038 0.9480 ± 0.0060

▶ General Discussion: In a nutshell, rhythmic-based descriptors allied with fusion

techniques empower ADD, useful in different tasks, including those related to malicious

attacks. Our classification model improved 3.47% the baseline binary classification, in

which we addressed 0.9985 of accuracy rate using the early fusion technique. For mul-

ticlass classification, we improved the baseline model by 2.97%, reaching an accuracy of

0.9591 through the late fusion technique with min and product rules. Furthermore, con-

sidering that in real-world drone-based networks, ADD tasks will handle a higher number

of non-drone acoustic signals, we carried out experiments in unbalanced data scenarios.

We addressed accuracy and Macro F1-score of 98.02% with late fusion techniques in bi-

nary classification. In multiclass classification, the model addressed a Macro F1-score of

91.37%.

6.5 Design of DissIdent

DissIdent is a dissimilarity-based and distributed approach for identifying unknown

UAVs in the airspace. The approach works as a distributed mechanism, where the coop-

eration between drones and ZSPs is a key-enabling task to address high-level detection.

Two subsequent tasks compose the architecture of DissIdent: the deployment and moni-

toring phases. The deployment phase is supported by learning models, while both learning

and clustering techniques embrace the monitoring phase. Before presenting this architec-

ture, we discuss the dissimilarity concepts and how to transform an input signal from the

airspace to the dissimilarity space, which is a fundamental concept in our proposal.
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6.5.1 Dissimilarity Representation

Dissimilarity refers to a function of proximity between two observed samples [164],

transitioning from the feature set to the dissimilarity set. In this latter, each element rep-

resents a distance between the samples instead of the processed feature value. One of the

main advantages of the dissimilarity approach is to reduce a very large classification prob-

lem to a binary problem. This technique emerged as a suitable solution to address both

large multi and independent-class problems, mapping them to binary problems through

dichotomy transformations [164]. Compared to feature-based classifiers [92, 174], it mit-

igates the trade-off between the tractability and accuracy of large multi-class problems,

providing similar results at a reasonable processing time, mainly in clustering tasks.

Let us consider a set of IoD signal inputs SI and a set of feature vectors FV .
Also, let us consider a feature vector FV i ∈ FV , i ∈ SI, representing the data processed

from SI following a given descriptor d. Let Eucij be the dissimilarity vector between two

feature vectors FV i,FVj, i, j ∈ SI, calculated according to Eq. 6.1. Eucij represents

the Euclidean distance between the feature vectors, denoting a transformation from the

feature to the dissimilarity space [164].

Eucij = |FV i[k]−FVj[k]|∀k ∈ FV i (6.1)

Eucij is a suitable input to a supervised-based model because it keeps a concise

relation between any two feature vectors, represented with the same dimension of these

features. Hence, it must have an associated dissimilarity class Cd(Eucij): x⊕ or x⊖,

defined according to Eq. 6.2, where Cf represents the class regarding the feature space.

Cd(Eucij) =

{
x⊕ if Cf (FV i) = Cf (FVj)

x⊖ otherwise
(6.2)

Dissimilarity classes apply to binary classification models in the training and test-

ing steps. They are discussed below.

▶ Dissimilarity for Training Models: Dissimilarity classes represent a classification

model’s input data for well-known input signals. Fig. 6.2a shows the workflow of how

to use dissimilarity towards training it. From the feature vectors, we generate reference

subsets whose elements are combined to create dissimilarity vectors. These vectors are the

input for training the classification model. An important aspect is that the generation

of dissimilarity vectors follows a combinatorial order of the number of feature vectors

from different feature classes. However, the input training size can be unfeasible for n

sufficiently large. Thus, we consider a maximum value t of samples to deploy n reference

subsets R1, . . . , Rn ⊂ FV .
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Figure 6.2: Dissimilarity representation workflow
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We compute the training set T providing a balanced number of positive and neg-

ative samples as follows: we process the dissimilarity of feature vectors from the same R,

resulting in
(
τ
2

)
samples of x⊕; next we generate the same number of x⊖ samples comput-

ing the dissimilarity between each feature vector of R with a vector from another reference

subset, randomly chosen. It gives a training set T with 2n
(
τ
2

)
samples.

▶ Classification Model Representation: Fig. 6.2b depicts the dissimilarity used to

detect unauthorized UAVs. Let us consider a feature vector FVu generated from a signal

to be classified. In this case, the main goal is to know if FVu is similar to some known

category set or dissimilar to all, representing a new category in this system. To address this

goal, we generate n different dissimilarity vectors, computing the dissimilarity between

FVu and one feature vector (randomly chosen) from each reference subset R1, . . . , Rn.

Next, we submit these vectors toM, getting the binary classification.

The prediction output of each dissimilarity vector provides information about the

unknown input signal. If the predictions for all vectors are x⊖, then the input signal

corresponds to an unknown class. In this case, the model creates a new subset Ru with

FVu as an element. On the other hand, if the classifier predicts one or more dissimilarity

vectors as x⊕, the input signal comes from a known entity in the network. In this case,

the class Cf (FVu) will correspond to the same class of the paired vector of R from the

dissimilarity vector with x⊕ classification with higher prediction.

Considering the airspace, both the propeller’s sound and the RF-based signals

from authorized drones can serve as input signals for training dissimilarity models. Thus,

robust classification models can be deployed a priori in the authorized UAVs to perform

the identification cooperatively. Apart from that, the environmental signals (coming from
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Figure 6.3: DissIdent approach: Deployment Phase
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both authorized and unknown sources) can be submitted to these classification models,

and then, a global cloud system can decide the presence of an unknown drone.

6.5.2 DissIdent Deployment Phase

Figure 6.3 illustrates the DissIdent architecture regarding the Deployment Phase.

Before starting to perform the identification tasks, the authorized drones need a trained

classification model based on their data. Hence, the deployment phase must follow the

dissimilarity representation workflow.

Therefore, to deploy the classification model, DissIdent requires the feature vec-

tors FV1, . . . ,FVn from n authorized entities in the environment. We consider both

acoustic and RF-based features in this study. From pre-collected data of the authorized

drone, a centralized Cloud System (CS) can generate the reference subsets R0, . . . ,Rn,

and the dissimilarity vectors. Hence, a classification model can be trained following some

well-defined learning model, such as Multi-Layer Perceptron (MLP) and Support-Vector

Machines (SVM). Nonetheless, DissIdent is not dependent nor limited by any feature vec-

tor representation or learning techniques, and different arrangements can be considered.

We assume that this training step is an offline task, occurring before the beginning of a

DaaS application.
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With the trained classification model, the CS transmits both the models and the

reference subsets to the ZSPs. They transmit these data to the drones in their controlling

region through the communication channel. After that, the IoD nodes can start to identify

the potential intruders cooperatively.

6.5.3 Monitoring Phase

Authorized drones and the ZSPs perform the monitoring of the environment. In

this phase, we assume that a given drone constantly beaconing in the network, updating

its location to a ZSP [5]. Thus, in this beaconing, the UAV can inform when it detects an

unknown signal. With the data from the ZSPs and drones, the CS processes and makes

the final decision about the presence of an unknown drone. This phase involves two main

tasks, described in the following.

▶ Node’s Monitoring: The node’s monitoring follows the dissimilarity workflow for

unknown data (previously presented in Fig. 6.2b). Initially, a given node generates a

feature vector from the input signal. After, for each reference subset, DissIdent processes

the dissimilarity test samples, being classified by a pre-trained model. If the classification

of at least one reference set addresses a greater positive prediction rate, the input signal

is associated with the class with the higher positive prediction rate. If this class is related

to samples from an unknown entity detected previously, a warning is sent to the CS

considering a time interval ∆t. Similarly, if no reference set addresses a positive prediction

rate, the signal can come from a new unknown entity, and the CS must also be warned.

However, the warning is sent immediately since it can represent an entity not yet identified.

▶ Decision Protocol: Since the classification models can not provide 100% efficacy,

the final decision about detecting an unknown UAV must consider as many nodes as

possible. Hence, DissIdent has a CS decision protocol (Algorithm 17) that gathers the

warnings transmitted by the nodes during a given time interval, evaluating them into

clusters to make a final decision.

Algorithm 17 formally describes the decision protocol. It requires as input the

transmitted warning set WARN , the reference sets R, and two numerical values ρ and

τ , indicating a distance radius and a number of elements, respectively. Initially, the

warnings are grouped according to the ZSPs that transmit them (Line 1). For each

group, the warnings are also separated into two groups: the ones related to the detection
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of new unknown signals (WARN⊖) (Line 4) and the ones associated with the detection

of an existent cluster (WARN⊕) (Line 5).

After, DissIdent applies the decision over these groups. The decision process is

presented as a distinct function for better visualization (Lines 13–27). Given the group

of identifications, the first step is to filter the warnings from drone nodes (Line 14). If

there is no warning coming from drone nodes (Lines 15–20), the warning comes from a

ZSP node. In this case, it is necessary to verify if there are at least Nnear drones near the

ZSP, considering a distance radius ρ that could also identify the potential unknown signal

(Line 16). The detection of an unknown signal is a false positive if there are not enough

drones (Lines 18–19). Otherwise, the unknown drone presence is confirmed (Line 17).

On the other hand, if there are drones that warn about a potential unknown signal

(Lines 21–27), DissIdent establishes a 3-dimensional perimeter considering the position

of these drones (Line 22), verifying the number of drones Ninside inside this perimeter

(Line 23). The idea is: if there are drones inside the region and they do not warn about

the unknown signal, the warning can be a false positive. If more drones detect the issue

than Ninside (Line 24), then it is confirmed. Otherwise, it is taken as a false positive.

Based on the decisions, the algorithm takes different actions regarding WARN⊖

andWARN⊕. If the identification of a new unknown entity (WARN⊖ group) is confirmed,

DissIdent creates a new reference set Rnew containing the feature vectors related to this

group, representing a new cluster. This information is sent to all the nodes (Lines 7–8).

For WARN⊕, the related reference set of the existent unknown drone is updated with the

provided sample features (Lines 10–11).

▶ Time Complexity Analysis : The grouping of warning messages (Line 1) occurs

in a linear time Θ(|WARN |) using set operations. The decision protocol occurs for each

group of warnings, constrained in the worst case by the number of ZSPs in the network

O(|ZSPs|) (loop of Lines 2–11). The gathering of drones’ updated information (Line 3)

has a time complexity of the number of drones, in the worst case O(|D|). The deployment

of sets WARN⊕ and WARN⊖ (Lines 4–5) have both a linear time complexity based on

the number of elements of WARNzsp. The subsequent steps (Lines 6–11) depend on the

Decision function. In a nutshell, the time complexity of this function is dominated by

operations that iterate over the total number of drones in the worst case. Thus, Decision

has a time complexity of O(|D|). Considering that the size of WARN depends on the

number of ZSPs and that the size of WARNzsp is constrained by the number of drones,

the time complexity of Algorithm 17 is related to the number of ZSPs and drones directly,

as presented by Equation 6.3.

T (Decision-Protocol) =Θ(|WARN |) +O(|ZSPs|(|D|+ |WARNzsp|))

=O(|ZSPs||D|)
(6.3)
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Algorithm 17: Decision-Protocol
Input : WARN , R, ρ, τ

1 WARNgroup ← group the elements of WARN by the ZSPs
2 foreach WARNzsp of WARNgroup do
3 Dzsp ← get the updated information of the drones flying over the zsp’s airspace
4 WARN⊖ ← get the elements of WARNzsp pointed as unknown entities
5 WARN⊕ ← get the elements of WARNzsp pointed as belonging to an existent

cluster
6 if Decision(WARN⊖, Dzsp, ρ, τ) then
7 Rnew ← create a new reference set for the unknown signal, with the feature

vectors provided by WARN⊖
8 send Rnew to all authorized nodes

9 if Decision(WARN⊕, Dzsp, ρ, τ) then
10 Ri ← get the reference set from R related to the existent cluster of the element

in WARN⊕
11 Update Ri with the feature samples provided by WARN⊕

12 Function Decision(W , D, ρ, τ):
13 Dwarn ← filter the elements of W that are drones
14 if Dwarn = ∅ then
15 N near ← calculate the number of drones of Dzsp near to zsp considering a

radius ρ
16 if Nnear ≤ τ then
17 return true
18 else
19 return false

20 else
21 Perimwarn ← process a 3-dimensional perimeter considering the drones of

Dwarn
22 N inside ← calculate no. of drones of Dzsp inside Perimwarn
23 if Ninside ≤ |Dwarn| then
24 return true
25 else
26 return false

6.5.4 Simulation Setup and Performance Evaluation

Using IoDSim, we simulate a robust IoD network infrastructure [5] in a region of

Manhattan Island, NY, where fifty authorized drones from five different models (Parrot

AR 2.0, Parrot Mambo, DJI Inspiron 1 Pro, DJI Matrice 100, and DJI Matrice 600)

fly and monitor the environment for thirty minutes. We consider eight non-authorized

drones from two models (DJI Phantom 3 and DJI Phantom 4) representing the unknown

entities. Twenty-four different ZSPs manage the airspace and monitor the environment.

Regarding the input signals, we consider acoustic and RF-based samples from the

five types of authorized drones and the two unauthorized types. These data come from
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three different datasets: (i) MPACT RF-based dataset [175]; (ii) DroneRF [176]; and (iii)

the UAV acoustic-based dataset [169]. During the simulation experiments, these data are

linked with the related drones.

▶ Features and Classification Models: Regarding the acoustic-based signals, we

apply the use of rhythmic-based features (presented in Section 6.4). As previously dis-

cussed, these features can provide an empowered representation of the drones’ sound,

providing higher identification rates. For the RF-based signals, we extract fifteen statis-

tical features (e.g., kurtosis and entropy) [177]. The generation of these features from

the input signals follows the guidelines described in these studies, adopted here as base-

lines [174, 177]. From the features, we generate the related dissimilarity vectors and,

consequently, the training set for the classification models, as depicted in Fig. 6.2a.

The deployed classification models also follow strategies designed in the baseline

studies. Thus, our experiments have two distinct classification models. Regarding the

acoustic signals, we use the DNN modeled in Section 6.4, also conducting the referred

parameter tuning, but with the features in the dissimilarity space. Our final parameteri-

zation addresses the same configuration as presented in Section 6.4. Likewise, we use an

SVM model to classify the RF-based signals [177].

▶ Compared Approaches: We analyze the robustness of DissIdent comparing its per-

formance with supervised-based techniques and clustering strategies. Regarding the first

group, we consider a DNN-based UAV detection model designed specifically for acoustic-

based signals considering rhythm-based features, and an SVM model [177] designed to

detect drones from RF signals. As clustering models, we consider the three strategies

discussed previously: DBSCAN, OPTICS, and BIRCH. We apply these clustering mod-

els for both acoustic and RF-based signals, distinctively. Hence, we compare DissIdent

with eight different models, labeled as follows: DNN, SVM, DBSCAN-AC, DBSCAN-RF,

OPTICS-AC, OPTICS-RF, BIRCH-AC, and BIRCH-RF. For the clustering approaches,

labels ending with “AC” and “RF” refer to the use of acoustic and RF signals as data

input, respectively.

We present in the following the general information regarding the configuration of

each evaluated approach.

• DissIdent setup: Any authorized nodes in the IoD act as monitoring actors to

DissIdent. As the sound of the drone’s propellers can cause a very loud noise in the

system (without the possibility of filtering), drones are responsible for monitoring

only the RF signals. ZSPs, in turn, perform these tasks for both acoustic and RF

signals. Hence, this setup highlights DissIdent as a multi-modal approach. Aiming

to investigate the impact of the decision protocol of DissIdent, we configure the
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Table 6.12: Summarization of the results regarding the accuracy obtained by each ap-
proach

Approach
Signal Input Accuracy of Known Signals (%) Accuracy of Unknown Signals (%)
Acoust. RF General AR Beb Insp1 Mat100 Mat600 General Phant3 Phant4

SVM ✓ 98.84±0.2 91.35±0.8 93.86±0.7 95.95±0.9 95.38±0.8 93.24±0.5 90.33±0.4 - -
DNN ✓ 98.26±0.4 92.28±0.4 95.20±0.3 90.07±0.4 93.20±0.3 90.40±0.4 92.62±0.9 - -

DBSCAN-AC ✓ 97.69±0.9 93.57±1.3 89.52±1.0 90.84±1.2 81.72±1.8 95.58±1.2 81.71±1.9 80.51±1.1 78.26±2.5
DBSCAN-RF ✓ 97.56±0.9 92.55±1.4 87.23±1.2 91.22±1.1 78.54±1.1 94.40±1.4 79.84±1.9 79.30±2.0 74.84±2.3
OPTICS-AC ✓ 96.37±1.3 90.80±2.1 91.94±2.2 93.89±1.9 92.92±1.5 88.18±1.9 79.49±1.9 76.84±1.9 77.57±1.8
OPTICS-RF ✓ 96.46±0.9 87.84±1.0 91.26±1.2 94.06±1.0 92.17±1.4 78.35±1.4 77.78±2.5 72.75±2.9 76.22±2.8
BIRCH-AC ✓ 95.76±1.3 88.87±0.3 81.64±0.9 81.70±0.1 77.89±1.8 84.40±0.9 79.57±0.5 75.72±0.9 76.89±1.1
BIRCH-RF ✓ 95.90±2.1 87.30±0.3 79.72±0.9 77.98±0.3 76.59±1.4 85.89±0.8 76.78±2.3 69.48±4.3 77.49±1.9
DissId-1 ✓ ✓ 99.60±0.2 91.89±1.8 90.30±1.3 90.87±1.2 93.20±0.9 94.38±1.1 87.63±0.1 87.66±0.1 85.46±0.4
DissId-60 ✓ ✓ 99.63±0.3 94.05±0.2 91.71±1.1 91.52±1.5 94.31±1.4 94.93±0.9 94.69±0.6 93.24±0.7 93.02±0.8

approach with two different time intervals ∆t: 1 second, and 60 seconds. They are

labeled as DissId-1 and DissId-60, respectively;

• Supervised-based techniques setup: We tune both the SVM and DNN models follow-

ing the parameter tuning described in the referred related studies [174, 177]. The

models were trained considering distinct categories for each authorized drone model,

and one category for unknown signals, totaling six categories;

• Clustering models setup: As discussed, the related clustering models have no aware-

ness of the categorization of the input signal in terms of each drone model. There-

fore, we tune each clustering model with input data from authorized drones, rep-

resenting a model defined a priori, following a process similar to the DissIdent De-

ployment Phase (Section 6.5.2). As the considered feature descriptors build a signal

representation with a considerable range of values, we perform a data dimensional

reduction, mapping the input feature into a three-dimensional representation.

6.5.5 Results and Discussion

This section presents the results of the experimental evaluation. They correspond

to the average of 30 simulations for each approach, with 95% interval confidence. We

divide the discussion in (a) an analysis regarding the general detection of known and

unknown signals; and (b) an analysis regarding the effective identification of signals,

focusing on the distinction between different UAV models from the unknown signals.

Table 6.12 supports our analysis, summarizing the accuracy regarding both UAV

detection and identification. Results marked in bold with a dark gray background corre-

spond to the best accuracy average. Results with a light gray background also correspond

to the best accuracy but considering the interval error. Also, we detail these results in

Figures 6.4, 6.5, and 6.6, where confusion matrices indicate the average hit rate for each
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Figure 6.4: Confusion Matrix regarding the results of supervised-based approaches for
UAV identification

Unknown

Unknown

(a) SVM model for RF signals

Unknown

Unknown

(b) DNN model for acoustic signals

Source: Elaborated by the author

Figure 6.5: Confusion Matrix regarding the results of DissIdent UAV identification for
each configuration

(a) DissIdent Identification, ∆t = 1 sec

H
its (%

)

(b) DissIdent Identification, ∆t = 60 secs

Source: Elaborated by the author

pairwise of UAV models. Given that the supervised models can not distinguish the two

unknown models, they classify the related signal inputs as “unknown”. For the Cluster-

ing and DissIdent approaches, besides the referred unknown drones’ models, the matrices

have a mismatching column. It occurs when the approach identifies an authorized node

as unknown or when an additional cluster is generated, fragmenting the clusters and

increasing their expected amount.

▶ UAV Detection Analysis: DissIdent overcame all the compared approaches re-

garding the detection task, as highlighted in Table 6.12 specifically in both columns labeled

as “General”. Although the approaches addressed a high accuracy in identifying known

signals (all of them with averages higher than 95%) DissIdent configurations addressed
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an average of about 99% of correct detection.

Observing the detection of unknown signals, DissIdent with ∆t = 60 sec addressed

almost 95% of accuracy, while the supervised-based models addressed about 90 and 92%.

On the other hand, clustering approaches did not address proper rates of detection for

unknown signals, in which the best average accuracy was about 81% for DBSCAN with

acoustic signals. These low accuracy rates can be caused due to the data dimensional

reduction. However, a thorough analysis must be carried out to evaluate its influence.

Furthermore, these results pointed out two important insights about DissIdent.

Firstly, the transformation from the feature to the dissimilarity space did not cause a

loss of information for the training/classification model as well for the deployment of the

reference subsets. Indeed, they promoted a slight enhancement in the detection of known

signals and a significant improvement regarding unknown signals detection. Secondly,

the DissIdent approach whose time interval ∆t is 60 seconds showed up as a better con-

figuration to detect unknown signals. This result indicates a better deployment of the

reference subsets, being able to gather more environmental information before building

and releasing the subsets to the drones.

▶ UAV Identification Analysis: Here, we analyze the performance of the approaches

regarding the correct identification of drone models, considering the five authorized drone

models and the two unauthorized ones. As the supervised-based models can not distin-

guish the two unauthorized models, the discussion involving the identification of unknown

signals refers to the clustering and DissIdent approaches, only.

As occurred in the detection task, DissIdent approaches addressed identification

rates higher than 90% for all the authorized models. However, the supervised-based mod-

els also addressed high rates, overcoming DissIdent in some situations. For instance, the

SVM model addressed an accuracy higher than 95% for Inspiron1 and Mat100 models

while DissIdent with ∆t = 60 sec addressed an accuracy of about 91.5 and 94.3, respec-

tively. Nonetheless, considering the interval error, the results are closer.

Observing the confusion matrices presented in Figures 6.4 and 6.5, we can note

that the supervised-based models have a slight confusion in the AR, Bebop, and Inspiron1

models and almost no confusion for the remained ones. On the other hand, DissIdent

wrongly classified the models more evenly, yet still slightly. This characteristic turned over

between authorized models and the unknown signals. In this case, DissIdent approaches

had almost no misclassifications while the supervised-based models addressed a slight

confusion.

Clustering approaches, in turn, presented a higher confusion between both autho-

rized models and unknown signals. as presented in Figure 6.6. Regarding the classification

of the unknown signals, we can observe that DBSCAN and OPTICS performed a mis-

matching higher than 10% for acoustic signals and higher than 6% for RF signals. On
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Figure 6.6: Confusion Matrix regarding the results of the Clustering approaches

(a) DBSCAN for acoustic signals (b) DBSCAN for RF signals

(c) OPTICS for acoustic signals (d) OPTICS for RF signals

(e) BIRCH for acoustic signals (f) BIRCH for RF signals

Source: Elaborated by the author



6.5. Design of DissIdent 197

Figure 6.7: Results of clusters distribution for each clustering technique

Source: Elaborated by the author

the other hand, BIRCH had a minor mismatching, but a higher confusion with autho-

rized nodes. Nonetheless, DissIdent overcame all the clustering approaches regarding the

identification task, mainly for the unknown signals where the generated confusion was

significantly lower, leading to better accuracy.

The number of generated clusters can better explain the lower performance of clus-

tering approaches. Figure 6.7 presents this information considering all the experiments.

Compared to DissIdent, clustering approaches produced a higher number of clusters,

mainly OPTICS and BIRCH. Furthermore, these approaches had a significant variance

over the simulations while DissIdent kept concise. Considering that the expected number

of clusters was 7 (one for each drone model), DissIdent with ∆t = 60 seconds increased

this number the double at most, while some clustering approaches produced six times

more clusters, such as OPTICS.

Hence, we can observe that the high number of clusters leads to the fragmentation

of the identified data, hampering the accuracy rate. As discussed in the UAV detection

analysis, the deployment of the reference subsets plays a fundamental role in address-

ing significant rates of identification for unknown signals, reinforcing the robustness of

DissIdent.
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6.6 Chapter Remarks

In this chapter, we introduced new research fronts related to ADD strategies,

proposing two new techniques: a smart strategy to detect drones using rhythmic-based

features, extracted from the drone’s propeller sound; and DissIdent, a dissimilarity-based

approach for identifying unknown UAVs in the airspace. This latter applied the first pro-

posed contribution and was able to deal with critical challenges faced by the current ADD

techniques, such as the detection and identification of unknown drones in the airspace.

From a discussion about how to represent the input signal features as dissimilarity

vectors, we designed DissIdent as a multi-modal strategy. We conducted an experimental

evaluation comparing DissIdent with supervised-based and clustering approaches. Dis-

sIdent overcame all the compared approaches in the detection task, addressing accuracy

rates of about 99% on average for known signals and 94% for unknown signals. Regarding

the identification of unknown signals, DissIdent also presented the highest rates, identi-

fying correctly more than 93% of unauthorized drones, and also grouping them correctly.

The results also highlighted that the transformation from the feature to the dissim-

ilarity space did not cause loss of information for the training/classification model as well

for the deployment of the reference subsets, promoting an enhancement in the detection

of known signals and a significant improvement regarding the unknown signals detection.

Furthermore, the deployment and management of the reference subsets represented an

important step in DissIdent’s performance, where keeping higher time intervals to spread

the reference subsets leads to better results, as we observed configuring DissIdent with

time intervals of one second and one minute.

Considering that ADD strategies are dedicated to UAV-based networks, the re-

search questions of this dissertation are not applicable in this case. Nonetheless, Dis-

sIdent enhances the existing strategies, being empowered by the smart strategy using

rhythmic-based features.

6.6.1 New Research Directions for ADD

In Section 6.3 we presented existing strategies to perform ADD, including different

sources to extract features and computational methods to properly detect both known and

unknown drones over the airspace. From that, we introduced the extraction of rhythm-

based features from the drone’s propeller and the DissIdent proposal. However, other

tasks are inherent to an enhanced ADD, representing open challenges in this field. In
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a nutshell, signal pre-processing and DNN-related dissimilarity techniques from other

research areas can be investigated for ADD, which are discussed as follows.

In signal pre-processing, signal denoising is a fundamental step before the fea-

ture extraction. For acoustic signals, specifically, some studies applied ML techniques

to mitigate the noise effect, generating a clear sound to be processed by related classi-

fiers [178]. Similarly, different methods can be applied to clear RF signals from environ-

mental noise [179]. These strategies represent feasible approaches to be applied in an IoD

environment, enhancing the pre-processing of incoming signals of ADD tasks.

Furthermore, our results highlighted that DissIdent can be considered a robust

approach to the detection and identification of both known and unknown UAVs in the

airspace. Nonetheless, other dissimilarity-based techniques have been designed and ap-

plied in other areas of knowledge, such as music classification and Natural Language

Processing (NLP) [180, 181].

Deep Neural Networks (DNNs) represent a set of models with suitable performance

in this regard [181]. For instance, Long Short-Term Memory (LSTM) networks can learn

data dependencies used for anomaly detection to ensure security for a given system [182].

Siamese Neural Networks are projected to handle (dis)similarity properties of data [183].

In a nutshell, a Siamese Network is composed of two identical neural networks capable of

learning the hidden representation of an input vector. They work parallelly and compare

their outputs at the end. The generated output can be considered the semantic similarity

between the projected representation of the two input vectors [183]. Likewise, transformer-

based models are successfully applied in context-aware tasks (e.g. NLP) that demand fast

processing and response, being more efficient than traditional DNNs, such as LSTMs [184].

Moreover, transformers do not require labeled data to train the referred models, meeting

the characteristics of ADD for unknown data. All these techniques can be widely explored

in future research to enhance ADD.
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Chapter 7

Conclusion and Future Work

This chapter presents the final remarks of this dissertation as well as the future work to

guide the investigation of further research. Therefore, Section 7.1 presents our concluding

remarks, summarizing the contributions addressed with this dissertation. Last but not

least, Section 7.2 presents future research directions based on the challenges highlighted

in this dissertation.

7.1 Concluding Remarks

This dissertation studied the design of Protection Mechanisms for the Internet of

Drones (IoD) paradigm, considering the particular characteristics of this environment.

As an ignition point, we surveyed the current IoD research field regarding security and

privacy aspects. We categorized the major groups of IoD-related attacks and protection

mechanisms that can mitigate these threats. However, as IoD is a recent research field

considering it as a robust mobile network, the protection mechanisms could potentially not

meet the IoD characteristics and whether they can offer the same protection level or even

be applied. This main challenge led us to the main research question of this dissertation:

Can these existing protection mechanisms provide a proper level of security/privacy in

IoD environments?

Aiming to guide this study, we propose a framework to guide the design of new

protection mechanisms focusing on IoD. Overall, our contributions are grouped on three

fronts: the design of Location Privacy Protection Mechanisms; the design of Anti-Jamming

mechanisms; and the design of Automatic Drone Detection strategies. All the mechanisms

are IoD-centered strategies such that they provide enhanced levels of security/privacy in

this environment.

We designed three novel LPPMs. Two of them, namely t-MixDrones and MixRide,

were based on the MZ concept, a well-known group of LPPMs in traditional mobile

networks, such as VANETs. Through extensive performance evaluation, we demonstrated



7.1. Concluding Remarks 201

that they overcame existing approaches in terms of location privacy considering dense IoD

scenarios. Furthermore, MixRide can provide a better energy consumption compared to

t-MixDrones since this mechanism promotes collaboration with ground vehicles, assigning

real-time rides, saving the drones’ energy while they can change their pseudonyms. The

third proposed LPPM was TDG, based on a dummy-query strategy. This mechanism

presented suitable levels of location privacy for sparse scenarios in IoD. Concluding this

front, we also proposed IoDAPM, an RL-based approach for the dynamic assignment

of LPPMs in IoD. IoDAPM emerged as a fundamental strategy to be deployed in IoD

networks since the mechanism can apply the best mechanism given a set of environmental

conditions, taking advantage of the best scenarios of each proposed LPPM, enhancing the

provided QoS in this network.

In the second front, we designed the IoD-JAPM, an Anti-Jamming mechanism that

considers the reformulation of drone path planning to avoid aerial regions compromised

by the occurrence of a JA. We conducted an extensive performance evaluation comparing

our proposal with existing strategies. This evaluation highlighted our assumption that

IoD is a unique scenario. Summarily, the existing strategies can not handle properly the

boundaries imposed by the airways inherent to IoD, failing to provide suitable security

aspects to the drones. With IoD-JAPM, we could overcome these shortcomings.

In the third front, we enhance significantly the field of ADD strategies. The main

challenge handled by our contributions was the lack of suitable strategies that can de-

tect and identify unknown drones in the airspace just considering environmental sources,

without a previous knowledge of these entities. Therefore, our main contribution was

the DissIdent strategy, a distributed system that can detect and group unknown drones

using ML and clustering techniques. DissIdent represents a novel category of ADD since

they introduced the application of the dissimilarity concept in this field. Furthermore,

we enhanced the performance of DissIdent through the investigation and application of

rhythmic-based features processed from the sound generated by the drone’s propeller.

Through extensive performance evaluation, we demonstrated the robustness and valida-

tion of the proposed techniques.

In conclusion, all the proposed mechanisms and strategies presented a unanimous

answer to the research questions raised in this dissertation: the existing protection mech-

anisms (considering the investigated research fronts) can not provide the same protection

level of security/privacy to IoD environments when compared to traditional mobile net-

works. This answer justifies the need for the design of novel protection mechanisms in

such a way they can be an adaptation of the existing ones, or even totally new strategies,

designed from scratch.
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7.2 Research Directions

The proposal of new protection mechanisms for IoD makes room for the observance

of new challenges, properly described in the final remarks of each chapter. Therefore, these

challenges point towards new research directions in the IoD security/privacy field. These

directions are summarized as follows.

• Study of the remained fronts of existing PMs : although we explored three fronts

in this dissertation, other mechanisms shall be investigated, as presented in Sec-

tion 3.2. The conduction of new studies of Anti-Spoofing and Cryptographic-based

mechanisms can lead to a better understanding regarding the impact of SA and HA

over IoD and how to mitigate them properly. Specifically, the presence of airways

represents an interesting aspect to exploit by these attacks, and therefore, how to

counter the potential exploitation of this aspect.

• Study of utility preservation for anonymized data: in the information privacy con-

text, data utility consists of upholding data semantics while applying privacy-

preserving techniques. It involves finding a balance between protecting nodes’

sensitive information and sustaining their meaningfulness for analysis or applica-

tion [185]. The design of LPPMs was the major research front of this dissertation,

therefore, data utility aspects shall be further investigated. Considering that the

drone’s trajectory and identity might be modified by the proposed LPPMs, evaluat-

ing how these modifications affect the information semantics by network authorities

is a valuable research direction.

• Study of QoS provisioning : the design of the proposed mechanisms revealed trade-

offs between the level of security/privacy and the provided QoS considering a given

task. For instance, the application of MixRide, although can ensure location privacy,

leads to flight delays due to the assigned ride. IoDAPM addressed suitable results

to mitigate the trade-off effect, but this strategy is designed for LPPMs. Therefore,

the design of smart strategies to optimize the inherent trade-off in a broader scope,

considering the environmental conditions and different mechanisms, is a trending

research area for a comprehensive investigation.

• Enhancement of ADD through dissimilarity-related techniques: as discussed in sec-

tion 6.6.1, DissIdent is a first effort in applying the dissimilarity concept towards the

detection and identification of unknown signals in IoD. However, related techniques

from different research areas must be investigated in the ADD, such as LSTMs,

Transformers, and Siamese Networks. Furthermore, there is room for the improve-

ment of signal pre-processing tasks, mainly the ones related to noise reduction.
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Considering the heterogeneous IoD environment, the quality of the incoming sig-

nal is a fundamental requirement to a proper detection and identification of the

environmental elements.

• Design of collaborative and smart protection mechanisms for IoD: in this disserta-

tion, we extensively discussed that each proposed mechanism addressed good results

in specific conditions, countering different threats. Intuitively, deploying all these

mechanisms together in a real-world IoD network will potentially overload the sys-

tem, mainly because drones have SWaP limitations. Therefore, the application of

protection mechanisms should occur based on the network needs. These challenges

open a vast research field area, where the design of a symbiotic ecosystem of pro-

tection mechanisms for IoD whose activation may occur through the collaborative

decision taken by the distributed network nodes.

• Deployment and evaluation with testbed and real-world IoD infrastructures : all the

performance evaluations related to this dissertation were carried out through sim-

ulations, which is a proper strategy to obtain experimental insights about the per-

formance of the proposed strategies. Nonetheless, the designed mechanisms shall

migrate from the experimental field to the practical scope, through the experimen-

tation with testbed and, therefore, in real-world IoD infrastructures. As a matter of

fact, the lack of real-world infrastructure for IoD is a current issue, not only related

to security/privacy concerns. Thus, it is necessary to establish partnerships between

academia and industry to deploy robust IoD networks, embracing the airspace as

an ITS and, hence, leveraging to the next generation of mobile networks.
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