
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 19, No. 2, June 2020 

DOI: http://dx.doi.org/10.1590/2179-10742020v19i2813 

Brazilian Microwave and Optoelectronics Society-SBMO received 24 Nov 2019; for review 28 Nov 2019; accepted 3 Mar 2020 

Brazilian Society of Electromagnetism-SBMag © 2020 SBMO/SBMag               ISSN 2179-1074 

 

177

Abstract – This work investigates an alternative numerical scheme 
for the solution of an exact formulation based on Geometrical 

Optics (GO) principles to synthesize offset dual reflector antennas. 
The technique is suited to solve a second-order nonlinear partial 
differential equation of the Monge-Ampère type as a boundary 

value problem. An iterative algorithm based on Newton’s method 
was developed, using axis-displaced confocal quadrics to locally 

represent the subreflector surface, thus enabling an analytical 
description of the partial derivatives within the formulation. Such 

approach reduces discretization errors, as exact expressions for the 
mapping function and its derivatives are analytically determined. 
To check the robustness of the methodology, an offset dual-

reflector Gregorian antenna was shaped to provide a Gaussian 
aperture field distribution with uniform phase within a 

superelliptical contour. The shaped surfaces were further 
interpolated by quintic pseudo-splines and analyzed by Physical 
Optics (PO) with equivalent edge currents to validate the synthesis 

procedure at 11,725 GHz. 
  

Index Terms— Offset dual-reflector antennas, geometrical optics (GO), 

Monge-Ampère equation, axis-displaced confocal quadrics.  

I. INTRODUCTION 

High efficiency, low sidelobes levels, and low cross-polarization are requirements desired in a wide 

variety of communication systems, as in satellite communications [1], radio astronomy, and radar [2]. 

An efficient way to achieve high performance is by shaping reflector antennas. In the 1970s and 

1980s, several papers presented exact formulations based on Geometrical Optics (GO) to shape offset 

single and dual reflectors [2]-[4]. The formalism led to second-order nonlinear partial differential 

equations of the Monge-Ampère type, which were derived by simultaneously imposing Snell’s Law 

and conservation of energy in the tube of reflected rays. Although the existence and uniqueness of the 

solution to the Monge-Ampère equation have not been mathematically proved, the equation can be 

numerically solved as a boundary value problem [2]-[4]. For instance, in [2] a finite-difference 

scheme associated with regular grids is employed to approximately deal with the derivatives. Then, an 
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iterative algorithm solves a linearized form of the Monge-Ampère equation [2], [5], [6].   

  

  

(a) (b) 

Fig. 1. Offset dual-reflector antennas: (a) Cassegrain and (b) Gregorian configurations.  

Although the shaping of offset reflectors is well established in the literature, recently Penchel et al. 

[7] presented a rigorous numerical solution for the shaping of a single offset reflector. Unlike [2], [5] 

and [6], which adopted iterative numerical procedures with finite differences to linearize the 

differential operator, [7] used axis displaced confocal quadrics to locally represent the offset reflector 

surface. Such approach reduced discretization errors associated to partial derivatives, since exact 

expressions of the mapping function and its derivatives were analytically determined in terms of the 

computed quadrics’ parameters.  

The present work explores and extends the methodology developed in [7] to shape offset dual-

reflector antennas (see Fig. 1). To reach its purpose, the work is organized as follows. In Section II the 

complex notation describing an optical ray direction is presented. In Section III the synthesis problem 

formulated in [2], [4] and its boundary conditions are discussed. Section IV presents the 

simplifications of the mapping function and the Monge Ampère equation, associated to the use of 

confocal quadrics to locally describe the subreflector’s surface. In Section V the numerical scheme 

used to solve the Monge-Ampère equation is explained. Finally, a case study is investigated in Section 

VI to validate the proposed shaping method. 

II. VECTOR DIRECTION IN COMPLEX COORDINATES 

The dual-reflector shaping investigated in this work is based on GO principles. When dealing with 

geometric surfaces, it is more appropriate to use stereographic projections to represent the directions 

of incident and reflected rays. This formalism permits to transform trigonometric expressions into 

polynomials expressions in the synthesis formulation and, consequently, some relations become 

explicit [8]. A unit vector  �̂ = þÿ⃗⃗⃗⃗  ⃗ can be parametrized by rectangular coordinates (ÿ, Ā) using the 
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stereographic projection of point ÿ from ý(0,0,1) in a point ÿ’ on the plane ÿ =  0 (see Figure 2). 

 

Fig. 2. Stereographic projection of a point P.  

The relation between the complex coordinate ÿ = ÿ + ÿĀ associated with ÿ’ and the spherical 

coordinates Ā and � of point ÿ is given by [8]: ÿ = cot (Ā2) ăÿ� (1) 

From (1), is straightforward to show that: eÿ�sin Ā =  2ÿ|ÿ|2 + 1 (2a) 

cosĀ =  |ÿ|2 2 1|ÿ|2 + 1 (2b) 

where |ÿ| is the modulus of ÿ. Consequently, a general vector  ÿ   with Cartesian components (ÿý, ÿþ, ÿÿ) can be represented as (ā, ÿÿ)  where ā is the complex number ā = ÿý + ÿ ÿþ. Using this 

representation, and from (2a) and (2b), the unit vector  �̂ = þÿ⃗⃗⃗⃗  ⃗ can be written with respect to its 

complex coordinate ÿ as �̂ =  ( 2ÿ|ÿ|2 + 1 , |ÿ|2 2 1|ÿ|2 + 1) (3) 

III. GO SYNTHESIS: PROBLEM DESCRIPTION 

The basic geometry of the dual-reflector GO synthesis is illustrated in Fig. 3, where only the local 

quadric surfaces are shown. A ray emanating from the source (feed) phase center þ (which is also the 

origin of the coordinate system) is reflected at the subreflector point ā and then at the main-reflector 

point Ă, passing through the aperture plane ÿ = Ă at point Ā afterwards. The directions of the optical 

path segments þā and āĂ are represented by  ÿ (ÿ) and  Ā (Ā), respectively, and parametrized by 

complex coordinates ÿ and Ā, respectively. Furthermore, the coordinates of Ā(Ā, Ă) at the aperture 

plane are parametrized by Ā = ý + ÿþ, where ý and þ are the Cartesians coordinates of Ā at plane 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 19, No. 2, June 2020 

DOI: http://dx.doi.org/10.1590/2179-10742020v19i2813 

Brazilian Microwave and Optoelectronics Society-SBMO received 24 Nov 2019; for review 28 Nov 2019; accepted 3 Mar 2020 

Brazilian Society of Electromagnetism-SBMag © 2020 SBMO/SBMag               ISSN 2179-1074 

 

180

ÿ =  Ă. In order to impose a uniform phase for the GO aperture field, all rays reflected from the main 

reflector must be parallel to the z-axis and, consequently, parallel to each other. 

 

 

Fig. 3. Ray geometry. 

A. The mapping ÿ → Ā 

As demonstrated in [3], Snell’s law at the subreflector point ā can be expressed as:  Āÿ = 1Ā 2 ÿ (4) 

where  Āÿ is the first-order derivative with respect to ÿ of an auxiliary real function Ā(ÿ, ÿ̅), which is 

obtained from the subreflector surface ÿ(ÿ, ÿ̅) and expressed as :  ăÿ = ÿ1 + |ÿ|2 (5) 

where ÿ̅ denotes the complex conjugate of ÿ. When a uniform-phase field is required at the aperture 

plane, the mapping between source ray direction ÿ and aperture point Ā is given by [2]: Ā =   ÿý + ý 2 2ăÿĀÿ  (6) 

where ý = Ă 2 Ă is the total optical path length from origin þ (the source point) to the plane ÿ = 0. 

Consequently, a general point ā at the subreflector surface is located by the vector [4]: ÿ = ăÿ(2ÿ, |ÿ|2 2 1) (7) 

Once the subreflector point ā is determined, the corresponding main-reflector point Ă is 

straightforwardly located by [2]: ÿ + Ā =  {Ā, |Ā|2 2 ý2 + 2ăÿ[ý(1 + |ÿ|2) 2 ÿ̅Ā 2 ÿĀ̅]2(ý 2 2ăÿ) } (8) 
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To study the energy transfer from source to aperture, one must compare elementary areas subtended 

by ray tubes crossing a unit-radius sphere centered at þ (feed phase center location) and then, after 

two reflections, crossing the aperture plane, yielding an equation of energy conservation as in [4]: ý(ÿ) �(Ā) =  (1 + |ÿ|2)24   ||Āÿ|2 2 |Āÿ̅|2| (9) 

where ý(ÿ) (watts/steradian) denotes the source radiated power density and �(Ā) (watts/unit area) is 

the power density flowing normally to the aperture plane. Both ý(ÿ) and �(Ā) are given functions for 

the GO shaping process. For instance, the source pattern ý(ÿ) can be tapered at the edge of the 

subreflector to reduce spillover losses, whereas the aperture power distribution �(Ā) can be set 

uniform to maximize the aperture directivity, or tapered at the aperture edge to reduce side-lobe levels 

in the aperture’s far-field radiation pattern.  

Furthermore, in (9) Āÿ and Āÿ̅ are partial derivatives of Ā  with respect to ÿ and ÿ̅, respectively. 

Such derivatives are readily obtained from (6).  Substituting Āÿ and Āÿ̅ into (9), one obtains the 

Monge-Ampère equation of elliptic (negative sign) or hyperbolic (positive sign) type in terms of Ā(ÿ) 

as [4]: |Āÿÿ 2 Āÿ2 |2 2 (Āÿÿ̅ 2 Ā)2 = ±þ ý(ÿ)�(Ā) 4(1 + |ÿ|2)2 (10) 

where 

Ā = 22ăÿ|1 + ÿĀÿ|2Ă + Ă 2 2ăÿ|ÿ|2  þ = ( |1 + ÿĀÿ|2Ă + Ă 2 2ăÿ|ÿ|2)2
 Āÿÿ is the second partial derivative of Ā with respect to ÿ and Āÿÿ̅  is the second partial derivative of Ā 

with respect to ÿ and its complex conjugate ÿ̅. 

B. Boundary conditions 

The Monge-Ampère equation (10) is to be solved as a boundary value problem. For that, we 

consider that the source at point þ radiates a conical tube of rays with a semi-vertex angle Ā� and axis 

tilted by Ā0 from the z-axis, as illustrated in Fig. 4. After both reflections, the rays intersect the 

aperture plane within a given aperture contour (Fig. 4). The boundary condition is obtained by 

enforcing the cone edge-ray directions coming from the source to map, after two reflections, into 

points at the given aperture contour. In the present work, such contour is defined as a superellipse, 

described by [5]: Ā(Ā, Ā̅) =  |Ā + Ā̅ 2 2Ā�2ÿ�ý |2� + |Ā 2 Ā̅ÿ2ÿ�þ |2�
 (11) 

where Ā� locates the aperture center lying at the ý axis. It is interesting to observe that for  � = 1 the 

contour becomes an ellipse with widths 2ÿ�ý and 2ÿ�þ, or a circle if ÿ�ý = ÿ�þ. For � → ∞  the contour 

becomes a rectangle with sides 2ÿ�ý and 2ÿ�þ. 
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Fig. 4. Geometry of synthesis problem for an offset dual reflector with uniform phase at the aperture. 

To impose the boundary condition in the present problem, we define a set of directions ÿ′ 
describing source rays at the periphery of the feed radiating cone. The relation between ÿ′ (i.e., 

direction with respect to the feed axis) and ÿ (same direction, but with respect to the principal 

coordinate system) is given by [2]:  ÿ′ = ÿ0ÿ + 1ÿ0 2 ÿ      ⇄     ÿ =  ÿ0ÿ′ 2 1ÿ0 + ÿ′  (12) 

where ÿ0 = cot (Ā0/2). Once the set of ÿ directions is determined, the corresponding aperture points Ā are calculated from (6) and forced to satisfy (11).  

IV. FORMULATION OF THE GO SHAPING PROCEDURE 

For the solution of the elliptical type of the Monge-Ampère equation (10), several iterative 

numerical methods have been employed, yielding a discrete representation of the reflector surfaces at 

a grid of points (or nodes). The first numerical technique applied in the solution of this problem [9] 

employed a 9-point cell finite-difference scheme to approximate the derivatives of Ā(ÿ) in (10). 

Alternatively, here we employ an axis-displaced confocal quadric (see Fig. 5) to locally represent the 

subreflector surface. Consequently, the surface derivatives in (10) can be analytically described in 

terms of the quadric’ parameters, avoiding the use of approximate finite differences in the numerical 

solution. 

 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 19, No. 2, June 2020 

DOI: http://dx.doi.org/10.1590/2179-10742020v19i2813 

Brazilian Microwave and Optoelectronics Society-SBMO received 24 Nov 2019; for review 28 Nov 2019; accepted 3 Mar 2020 

Brazilian Society of Electromagnetism-SBMag © 2020 SBMO/SBMag               ISSN 2179-1074 

 

183

 

Fig. 5. Local axis-displaced confocal quadric [7]. 

With its vertex fixed at a given point � at the subreflector surface, the expression of a 

confocal quadric surface (herein indexed by Ā, ā) can be written  in terms of the ÿ as in [7]: ÿĀ,āăÿ(ÿ) = (ÿ̅ + ÿ)ĀĀ,ā + ÿ(ÿ̅ 2 ÿ)āĀ,ā + (|ÿ|2 2 1)ĂĀ,ā 2 |ÿ|2 2 1 (13) 

where 

 ÿĀ,ā = 2ăĀ,āÿĀ,ā (14a) 

 ĀĀ,ā = ăĀ,ā sin āĀ,ā cos�Ā,ā (14b) 

 āĀ,ā = ăĀ,ā sin āĀ,ā sin�Ā,ā (14c) 

 ĂĀ,ā = ăĀ,ā cos āĀ,ā (14d) 

being ÿĀ,ā its semilatus rectum, ăĀ,ā its eccentricity, ÿĀ,ā the distance between þ and the quadric vertex �Ā,ā, and �Ā,ā and āĀ,ā the azimuth and elevation angles of the quadric axis, respectively (see Fig. 5). 

Once the local representation of the subreflector is known, the derivatives of Ā(ÿ, ÿ̅) in the vicinity of 

point �Ā,ā can be analytically expressed.  The first derivative of Ā with respect to ÿ is given by [7]:  Āÿ = 2 (ĂĀ,ā 2 1)ÿ̅Ā,ā + (ĀĀ,ā 2 ÿāĀ,ā)(ĂĀ,ā 2 1)|ÿĀ,ā|2 + (ĀĀ,ā 2 ÿāĀ,ā  )ÿĀ,ā + (ĀĀ,ā 2 ÿāĀ,ā)ÿ̅Ā,ā 2 ĂĀ,ā 2 1 (15) 

Substituting (13) and (15) into (6) ones obtains the mapping between the source-ray direction ÿĀ,ā and 

the corresponding aperture point location ĀĀ,ā: ĀĀ,ā =  2ÿĀ,ā + ý[(ĂĀ,ā + 1) 2 (ĀĀ,ā + ÿāĀ,ā)  ÿ̅Ā,ā](ĂĀ,ā 2 1) ÿ̅Ā,ā + (ĀĀ,ā 2 ÿāĀ,ā)  (16) 

One of the main advantages of using confocal quadrics to locally represent the subreflector surface, 

besides avoiding the use of finite differences in the numerical solution, is that |Āÿÿ 2 Āÿ2 | = 0 for a 

quadric [2],  yielding an important simplification of  the Monge-Ampère equation (10): 
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2(Āÿÿ̅ 2 Ā)2 = ±þ ý(ÿĀ,ā)�(ĀĀ,ā) 4(1 + |ÿĀ,ā|2)2 (17) 

where Ā and þ are rewritten as 

Ā = 2ăÿ|Āÿ|22ăÿ 2 ý  (18a) 

þ = |Āÿ|4(2ăÿ 2 ý)2 (18b) ăÿ and Āÿ are written as in (13) and (15), respectively, while the second derivative Āÿÿ̅ is obtained by 

deriving (15) with respect to ÿ̅ [10]: Āÿÿ̅ = ĀĀ,ā2 +  āĀ,ā2 + ĂĀ,ā2 2 1(ĂĀ,ā 2 1)|ÿĀ,ā|2 + (ĀĀ,ā 2 ÿāĀ,ā  )ÿĀ,ā + (ĀĀ,ā 2 ÿāĀ,ā)ÿ̅Ā,ā 2 ĂĀ,ā 2 1 (19) 

V. NUMERICAL PROCEDURE 

Although the numerical scheme described above is not associated with any specific grid type, here a 

polar grid is employed to solve the Monge-Ampère equation (17). The grid is built in terms of the 

spherical angles Ā’ and �’ (with respect to the feed z’-axis), which define the source-ray directions ÿ′ = cot(Ā′/2)ăÿ�′. At each node Ā, ā, the corresponding ÿĀ,ā′  is associated with angles Ā′Ā and �′ā, 

being Ā′Ā = Ā�(Ā/þ)� and �′ā = 2ÿā/ÿ, where Ā =  1, . . . , þ and ā = 1, . . . , ÿ index the grid rings 

and radials, respectively. The parameter ÿ controls the variation of the rings’ radii with respect to Ā′. 
If ÿ <  1, the distance between adjacent rings decreases with Ā, while for ÿ > 1 such distance 

increases. This strategy was adopted to minimize distortions on central and peripheral rings which 

emerge whenever a superellipse aperture contour is adopted [7]. Afterwards, the source-ray direction ÿĀ,ā with respect to the principal coordinate system is obtained from (12). 

To solve for the reflector shaping, an operator Γ[ĀĀ,ā] is defined at each inner grid node Ā, ā: Γ[ĀĀ,ā] =  (Āÿÿ̅ 2 Ā)2  ± þ ý(ÿĀ,ā)�(ĀĀ,ā) 4(1 + |ÿĀ,ā|2)2 (20) 

where ăÿ, Āÿ and Āÿÿ̅ are analytically defined as in (13), (15) and (19), respectively. The operator Γ[ĀĀ,ā] simply enforces the solution of (17) at each inner node Ā, ā by obliging Γ[ĀĀ,ā]  =  0. For the 

nodes at the grid border (i.e., Ā =  þ), the boundary condition is enforced by defining the 

corresponding operator Γ[Āý,ā] =  Γ� = |Āý,ā + Ā̅ý,ā 2 2Ā�2ÿ�ý |2� + |Āý,ā 2 Ā̅ý,āÿ2ÿ�þ |2� 2 1 (21) 

which obliges ÿý,ā to satisfy (11) whenever Γ[Āý,ā]  =  0. The application of (20) or (21) at each grid 

node leads to a system of þ ×  ÿ nonlinear equations in terms of Ā [Ā1,1, . . . , ĀĀ,ā , . . . , Āý,þ]. For the 

numerical solution of the system of nonlinear equations, Newton’s method has been employed [2], 
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[5], [6]. For the convergence and stability of the shaping technique, it is necessary an appropriate 

choice for the initial solution of the subreflector surface. In the present work, at all grid nodes, a single 

quadric is adopted as the initial solution, such that it produces an electric field with uniform phase at 

the aperture plane and its dimensions approximately specify the aperture contour. The algorithm 

converges when |Γ[ĀĀ,ā]|  <  � at all nodes, where � is a specified maximum value for the operator 

residues. 

The local quadric surface at each node Ā, ā is uniquely determined once the four parameters ÿĀā, ĀĀā, āĀā, and ĂĀā of (13) are calculated by imposing that the quadric matches the subreflector surface 

at the triangular 4-point cell around the grid node Ā, ā, as depicted in Figure 6. This leads to analytical 

expressions in terms of  ÿĀā, ĀĀā, āĀā, and ĂĀā for the operators at the 4-point cell. The initial condition 

is imposed at the center of the grid (Ā =  1) by forcing the subreflector central point to be at a 

prescribed constant location, which controls the subreflector size. The particular cases of 4-point cells 

at the grid center and border are illustrated in Figs. 7(a) and (b), respectively. 

 

 

 

(a) (b) 

Fig. 6. (a) Polar grid with triangular cells. (b) Triangular cell with four points [10]. 

   

  
(a) (b) 

Fig. 7. (a) Triangular cell for the first grid ring. (b) Triangular cell for the last grid ring [10]. 
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VI. CASE STUDY 

In this present case study, an offset dual reflector is designed to provide, within a superelliptical 

contour at the main-reflector aperture, a Gaussian power distribution �(Ā) represented by �(Ā) = �0ă−ÿĀ(Ā,Ā̅) (22) 

where the parameter ÿ was specified to provide 6 dB attenuation at the aperture boundary and the 

superellipse Ā(Ā, Ā̅) was defined as in (11). The superellipse was defined with �  =  1.6 and widths ÿ�ý  =  50 cm and ÿ�þ  =  63.2 cm. The aperture center was set over the ý axis with Ā� =  70 cm. 

The feed radiation was modeled as a raised cosine ý(ÿ) = ý0(cos Ā′)2Ā with � =  9  to provide 12.88 dB attenuation at the subreflector edge. The constants ý0  and �0 were specified such that the 

energy is conserved: ∫ ∫ ý0(cosĀ′)2Ā Āă� Ā′ĂĀ′Ā�0 Ă�′2ÿ
0 = ∫ ∫ �0ă−ÿĀ(Ā,Ā̅)ĀĂĀĂ�Ā(Ā,Ā̅)

0
2ÿ

0  (23) 

The feed cone has an offset angle Ā0  =  2120 and half-angle Ā�  =  320. Its field is vertically 

polarized. The distance from þ to the subreflector along the central ray of the polar grid was set to be ÿ0  =  35 cm and the constant ý was fixed with 200 cm. These specifications were chosen to avoid 

blockage and led to an offset antenna with Gregorian configuration, which results in a much more 

compact design [11], as illustrated in Fig. 9.  

The initial solution Ā(0) for the numerical synthesis procedure was a quadric surface with ÿ0  = 215.7641 cm, Ā0  =  0.228153, ā0  =  0.0 and Ă0  =  0.149907. These initial solution’s parameters 

were obtained imposing the feed cone angles Ā0 = 2120 and Ā�  =  320, together with  ÿ�ý  =  50 

cm and Ā� =  70 cm in (16). Being Ā(0) an appropriate surface which closely approximates the final 

solution, the synthesis procedure introduced few curvature changes upon the initial solution, resulting 

in a dual reflector system with low cross-polarization levels [5]. 

For the GO synthesis, it was employed a nonuniform polar grid, with ÿ =  0.7, þ = 12, and ÿ =54 to obtain Ā′Ā = Ā�(Ā/þ)� and �′ā = 2ÿā/ÿ, as illustrated in Fig. 8(a). To guarantee convergence 

of the numerical shaping procedure, the aperture perimeter was gradually deformed from a circle to 

the specified superelliptical contour. The synthesis procedure converged after 15 iterations with |Γ[L]|ÿ��Ā = 8.88282−18 for inner points and |Γ[L]|ÿ��Ā = 2.70163−13 at the aperture perimeter, 

where |Γ[L]|ÿ��Ā represents the mean difference between two successive solutions in the iterative 

process. 

The results of the synthesis are shown in Figs. 8(b), which illustrates the intersection of the rays 

with the aperture plane ýþ, and Fig. 9, which shows the shaped sub- and main-reflectors together with 

ray tracing at the symmetry plane þ =  0. It is noted that the main-reflector dimensions in x and y 

directions are equal to aperture specifications, which were properly satisfied in the design procedure. 

This shows the effectiveness of the imposed boundary conditions. Furthermore, the concentration of 

rays close to the aperture’s rim demonstrates the effectiveness of the reflector shaping in 
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redistributing power density over the main reflector aperture. As the feed illuminates the subreflector 

edge with a 12 dB attenuation, while a 6 dB attenuation was demanded at the aperture’s rim, the 

shaping procedure ended up concentrating rays close to the aperture’s rim in order to compensate for 

the larger feed edge attenuation. This result is a direct consequence of the effectiveness of the Monge-

Ampère equation. 

 

 

 
           (a)            (b) 

Fig. 8. Nonuniform polar grid representation (� =  �. �) of the ray directions at the (a) feed complex plane �’ and (b) 

aperture plane � =  ý +  �þ. 

 

Fig. 9. Shaped offset dual-reflector surfaces and ray tracing at the symmetry plane. 

In order to verify the achievement and usefulness of the proposed GO shaping technique, the 

surface points obtained by the synthesis were interpolated by quintic pseudo-splines [12], to obtain a 

smooth numerical representation of the reflectors’ surfaces, and the resulting shaped dual-reflector 
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antenna was analyzed by the Physical Optics (PO) method with equivalent edge currents [13]. The 

analysis was conducted at 11.725 GHz, which provides dimensions with, at least, 13.38 wavelengths 

for the subreflector surface, large enough to validate the GO principles adopted in the shaping 

procedure. The PO radiation patterns are shown in Figs. 10 and 11. Figure 10 presents the antenna 

radiation patterns at the principal planes � =  00 (the symmetry E-plane) and � =  900 (H-plane), 

whereas Figs. 11(a) and 11(b) illustrate the contour plots of the PO radiation patterns in the uv-plane 

for the principal polarization and cross-polarization, respectively. 

 

Fig. 10. Radiation patterns of the shaped offset dual reflectors at 11.725 GHz.  

  

           (a)           (b) 

Fig. 11. (a) Co-polar and (b) cross-polar radiation patterns in the uv-plane at 11.725 GHz. 
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From the results depicted in Fig. 10, it can be noted that the maximum directivity occurs at Ā = 00, as expected, with a value of 41.93 dBi. The first sidelobe level has an amplitude of 17.04 dBi on 

plane � =  00 and 25.03 dBi on plane � =  900, indicating an attenuation of 24.89 dB and 16.90 

dB, respectively, with respect to the main beam. The maximum cross-polarization levels are 34.00 

dBi and 5.10 dBi on planes E and H, respectively. The algorithm was able to design a dual-reflector 

antenna with high gain, low sidelobe levels, and low cross-polarization levels. These results 

corroborate the choices for a tapered source pattern ý(ÿ) at the edge of the subreflector to reduce 

spillover losses, an aperture power distribution �(Ā) tapered at the aperture edge to reduce side lobe-

levels and an initial solution Ā(0) close to the final one to reduce cross-polarization levels. And, as 

expected from Fig. 8(a), the far-field pattern has approximately an elliptical main-beam on the uv-

plane, which is narrower in the plane corresponding to the largest aperture dimension.  

VII. CONCLUSIONS 

The GO synthesis of dual-reflector antennas has been detailed examined by many authors [2], [5]. 

However, the present work investigated an alternative numerical scheme where the subreflector 

surface is locally described by axis-displaced confocal quadrics, allowing the analytical representation 

of the derivatives appearing in the Monge-Ampère equation and its subsequent simplification. Such 

analytical representation provides superior accuracy for the calculation of derivatives, which is not 

possible in previous techniques employing finite differences. This alternative approach was recently 

proposed in [7] to synthesize single offset reflectors and here the technique was extended to the 

synthesis of offset dual-reflector antennas.  

To illustrate the effectiveness of the present methodology, a case study was designed to provide 

Gaussian aperture power distribution with a superelliptical contour in a dual-reflector Gregorian 

configuration. Although not discussed in this work, the algorithm is also capable of handling 

Cassegrain configurations as well. The subsequent PO analysis presented an excellent agreement with 

the required GO specifications. The method proved to be fast and stable, achieving convergence with 

relatively few iterations. Due to the excellent performance of the present procedure in reducing 

discretization errors, the methodology may become a promising technique to establish numerical 

solutions of surface synthesis problems modeled by nonlinear Monge-Ampère equations, like those 

appearing in lens’s designs. 
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