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Resumo 

Neste trabalho, estudamos dois materiais que possuem empilhamento por 

camadas separados por ligações de Van der Walls, o Sulfeto de Germânio (GeS) e o Telureto 

de Antimônio (Sb4Te3). Utilizamos microscopia e espectroscopia de tunelamento 

(STM/STS) e espectroscopia de fotoemissão resolvida em ângulo (ARPES) para investigar 

as propriedades únicas desses dois materiais. 

O primeiro projeto consistiu no estudo da ferroeletricidade no plano da superfície 

do GeS utilizando STM/STS. Obtivemos um resultado experimental notável de fenômenos 

dependentes da espessura à temperatura ambiente, relacionados à fase ferroelétrica 

superficial induzida em nanocamadas de GeS. Utilizamos deposição em fase vapor para 

sintetizar nanoflakes de sulfeto de germânio em um substrato de grafite pirolítico altamente 

orientado (HOPG). Os nanoflakes com diferentes espessuras foram estudados usando 

STM/STS e modelados por meio de cálculos de teoria do funcional da densidade (DFT). A 

corrente de tunelamento foi alterada pela espessura do material. Observamos claramente um 

padrão de histerese, ao qual atribuímos um comportamento ferroelétrico bidimensional, 

consistente com as condições de polarização. Esse efeito aumenta à medida que o número 

de camadas é reduzido. 

O segundo projeto foi dedicado ao estudo da estrutura eletrônica do Sb4Te3, 

utilizando medidas de ARPES em alto resolução no material topológico Sb4Te3. Utilizando 

DFT combinado com medidas de ARPES, observamos que o comportamento topológico 

exibido por Sb2Te3 e Sb2 persiste, caracterizado por estados eletrônicos que surgem do 

acoplamento spin-órbita, warping hexagonal associado à simetria de inversão temporal e 

independência de energia de fótons nesses estados superficiais. Ao comparar os resultados 

com as bandas do bulk e da superfície, observamos estados eletrônicos confinados entre o 

Sb4Te3 bulk e a terminação em Sb2. A independência em energia de fótons desse estado 

indica confinamento ao longo da direção de empilhamento. 

Palavras-chave Ferroeletricidade, materiais lamelares, microscopia e 

espectroscopia de tunelamento de varredura (STM/STS), espectroscopia de fotoemissão 

resolvida em ângulo (ARPES), poços quânticos, warping hexagonal, materiais topológicos. 



 

 

   

 

Abstract 

 

 In this work we have studied different layered materials, Germanium Sulfide (GeS) and 

Antimony Telurite (Sb4Te3). We used scanning tunneling microscopy and spectroscopy 

(STM/STS) and angle-resolved photoemission spectroscopy (ARPES) to study the unique 

properties of these two materials.  

The first project was dedicated to the study of the surface in-plane ferroeletricity of GeS 

using STM/STS. We obtained a remarkable experimental STS evidence of thickness-dependent 

phenomena surface-induced ferroelectricity in germanium sulfide nano-flakes. We used vapor-

phase deposition to synthesize ultrathin nano-flakes on a highly oriented pyrolytic graphite 

substrate (HOPG). Nanostructures of variable thicknesses were studied using scanning 

tunneling microscopy and spectroscopy and the electronic structure was modelled using density 

functional theory (DFT) calculations. Tunneling current under negative-positive-negative 

biases was altered by the thickness of the material. We clearly observe a hysteresis pattern, 

which we attribute to a two-dimensional ferroelectric behavior, consistent with screening 

conditions of polarization charges. This effect increases as the number of layers is reduce.  

The second project was dedicated to the study of the electronic structure of Sb4Te3. We 

present HR-ARPES measurements conducted on this topological material. Using DFT 

combined with ARPES measurements, we observe that the topological behavior exhibited by 

Sb2Te3 and Sb2 persists, characterized by electronic states which emerge from spin-orbit 

coupling, hexagonal warping associated with time reversal symmetry and photon-energy 

independence in these surface states. By comparing the results with the calculated bulk and 

surface bands, we observe a confined electronic state between the bulk Sb4Te3 and the Sb2 

termination. The photon-energy independence of this state indicates confinement along the 

stacking direction.  

 

Keywords: Ferroelectricity, layered materials, scanning tunnelling microscopy (STM) and 

spectroscopy (STS), angle-resolved photonemission spectroscopy (ARPES), quantum well, 

hexagonal warping, topological materials. 
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1. Introduction 

 

This thesis concerns the study of the electronic properties of novel 2D materials. More 

specifically, we have chosen few-layer structures of the semiconductor Germanium Sulfide 

(GeS), and the topological material antimony telurite (Sb4Te3), built upon intercalation of 

Sb2Te3 and Sb2 layers. 

In recent years, layered materials exhibiting van der Waals interactions in their stacking 

configurations have attracted significant attention by the scientific community, due to their 

novel electronic properties and future technological application [1], [2], [3], [4]. These 

materials manifest diverse properties, such as enhanced surface electrical conductivity, 

electronic transitions, quantum well states, charge storage capabilities and ferroelectricity [5], 

[6], [7], [8]. These properties arise from alterations in their stacking patterns. These emergent 

properties hold the promise of the developments of novel device technologies [9], [10]. 

Germanium sulfide is a layered semiconductor with a crystal structure analogous to that 

of black phosphorus and SnS, and with a direct bandgap in the visible region (1.65 eV)[11], 

[12], [13]. The anisotropic crystal structure of GeS gives rise to anisotropy in the optoelectronic 

properties, such as polarized optical absorption [11], [12], [13], and photo-conductivity [14], as 

well as unusual electronic properties, including multiferroic behavior with coupled 

ferroelectricity and ferroelasticity [15], [16], [17]and potential applications in third-generation 

photovoltaics [18]. 

One important property of GeS is its low toxicity and environmental impact when 

compared with other semiconductors, e.g., those containing heavy metals such as cadmium or 

lead [19]. GeS nanowires have emerged as important semiconductor nanostructures and 

efficient light emitters with a tunable interlayer twist [20], [21]. GeS nanoribbons and 2D flakes 

also show potential in electronic and optoelectronic applications for telecommunication and 

computing, as visible-light photodetectors with high sensitivity and broad spectral response. It 

is also used as a photoabsorbers for use in solar energy conversion [21], [22], [23]. Similar to 

other 2D layered materials, GeS is expected to show thickness-dependent properties, i.e., 

phenomena in the ultra-thin limit, e.g., absorption dominated by tightly bound excitons with 

large binding energy (1 eV) [24], [25]. One thickness-dependent property that we observed in 
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our work was the dependence of the tunneling current upon the GeS thickness. Scanning 

tunneling spectroscopy, when combined with tunneling microscopy, is a powerful technique to 

assess the hysteretic electronic behavior correlated with the film structure [26], [27], [28], [29]. 

In the present work, we focus on this technique, and we demonstrate the existence of a 

thickness-dependent phenomenon in few-layer GeS associated with the tunneling current that 

can be ascribed to ferroelectric behavior. This is observed as a hysteretic loop when forward 

and backward biases are applied to the same region of the GeS flake, deposited on highly-

oriented pyrolytic graphite (HOPG). 

In this context, the recent discovery of ferroelectricity in two-dimensional van der Waals 

materials represents a unique opportunity to unveil this phenomenon in the ultrathin limit [6], 

[30], [31]. Ferroelectric materials have received significant attention due to the fundamental 

aspects of the physics involved in their behavior as well as to their switchable properties, which 

make them attractive in a variety of applications, including non-volatile memories and 

neuromorphic computing [32], [33], [34], [35], [36]. Achieving stable ferroelectricity in 

ultrathin films is particularly important, with technological implications in the miniaturization 

of sensors, memories and optoelectronic devices [37], [38]. However, the investigation of 

polarization effects in the surface structure and the detailed description of the hysteretic 

behavior are still a challenge. We characterized the GeS/HOPG heterostructure by STS 

measurements, and compared the spectra with first-principles calculations based on density 

functional theory, which allowed for the mapping of the density of states (DoS) both in the bulk 

and in the limit of low dimensionality.  

Topological materials have also been extensively studied due to their unique properties. 

For instance, these materials may be insulators in their bulk and conductors at the surface, and 

topological surface states are protected from backscattering. As a result, several studies have 

focused on the electronic behavior, aiming to apply them in novel devices. The incorporation 

of these materials into current electronics, however, requires a complete understanding of their 

properties under different conditions.  

The second study in this thesis is on the antimony tellurite family, specifically Sb4Te3, 

which exhibits a stacking arrangement comprising two quintuple-layers (QL) of Sb2Te3 and 

two bi-layers of Sb2 [39], [40]. Notably, Sb4Te3 consists of both a 3D topological insulator 

material (Sb2Te3) and a 2D topological insulator (Sb2), rendering it an intriguing subject for 
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investigation [41], [42]. Despite its potential, Sb4Te3 has remained relatively unexplored. This 

work aims to provide a comprehensive picture of this material for future device applications. 

We have synthesized Sb4Te3 using the Bridgman technique, following the established 

procedure outlined in the literature [40]. Upon successful synthesis, we characterized the 

material using Energy Dispersive Electron Spectroscopy (EDS) to verify the Sb/Te atomic ratio. 

Raman spectroscopy was employed to confirm the structural phase. Domains containing Sb4Te3 

and Sb2 were identified in our sample. By utilizing X-ray powder diffraction (XPD) and crystal 

truncation rod (CTR), we determined the percentage of each phase and the average presence of 

each surface termination. Combining these results with Scanning Tunneling Microscopy (STM) 

allowed us to confirm the presence of all possible surfaces. 

After this investigation, we conducted Angle-Resolved Photoemission Spectroscopy 

(ARPES) measurements to explore the electronic band properties of Sb4Te3. Firstly, we 

conducted ARPES measurements using a helium lamp to characterize the sample. HR-ARPES 

measurements were performed at Bloch Beamline of the Sweedish Syncrothon lighsource Max 

IV. Our ARPES observations revealed clear signatures indicative of topological behavior. The 

presence of surface states, as predicted by density functional theory calculations, displaying 

hexagonal warping, indicate the persistence of time-reversal symmetry in this material. 

Moreover, the absence of photon-energy dependence in these states confirmed their surface 

nature.  

The HR-ARPES results revealed two additional electronic bands distinct from the bulk 

and surface states. These bands exhibit the same energy dispersion along the Γ-M direction as 

reported for Sb2 quantum wells [43], [44], [45], [46]. We attributed these bands to an 

electronically confined states situated between the Sb4Te3 bulk and an additional Sb2 surface 

layer. In this scenario, Sb4Te3 acts as a potential barrier for this additional surface layer. This 

configuration creates a quantum well, confining electrons in the stacking direction. This 

localized behavior was further examined by varying the photon energy, revealing a localized 

in-plane behavior, as evidenced by the photon-energy independence.  

This thesis is organized into the following chapters: 

Chapter 2 provides an overview of the fundamental physics underlying the two main 

projects: topological materials and ferroelectricity. 
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Chapter 3 delves into the theoretical framework of density functional theory, laying the 

groundwork for understanding the computational methods employed throughout the thesis. 

Chapter 4 offers an in-depth explanation of the scanning tunneling 

microscopy/spectroscopy and angle-resolved photoemission spectroscopy techniques, which 

were pivotal in the experimental investigations conducted in this work. 

Chapter 5 presents the first project, focusing on the exploration of ferroelectricity at the 

2D limit of GeS using scanning tunneling spectroscopy technique. 

Chapter 6 details the second project, which involves the investigation of the topological 

material Sb4Te3. This chapter discusses the observations made through angle-resolved 

photoemission spectroscopy in conjunction with density functional theory, highlighting the 

topological states and quantum confined states within this material. 

Chapter 7 provides a comprehensive summary of the findings from both projects. 

Chapter 8 serves to elucidate the scientific contributions made throughout the duration 

of the PhD program. 
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2. Theoretical Foundation of Condensed Matter 

 

2.1 Semiconductors 

 

It is well known that condensed matter exhibits three basic electronic states, conducting 

(metallic), semiconducting and insulating. Metallic states are those where the Fermi level cut 

the valance and conduction band, as a consequence, electrons are free to move, which rise to a 

relatively high conductivity. When there is a gap between the valence and conduction bands 

the material can be semiconducting (for small gap) or an insulator (for large gap). 

Semiconductors can be formed by pure elements, such as silicon or germanium, or compounds 

such as gallium arsenide or cadmium selenide. In figure 1 we show the difference between these 

electronic states. 

 

Figure 1: Band model example show the different between a metal, an insulator and a 

semiconductor. 

Table 1 shows some examples of energy gaps of a few semiconductors’ materials. 
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Material Gap at 300K (eV) Classification 

Ge 0.66 Semiconductor 

Si 1.12 Semiconductor 

GaAs 1.42 Semiconductor 

C (Diamond) 5.47 Insulator 

SiO2 9.0 Insulator 

Si3O4 5.0 Insulator 

 

Table 1: Table with some examples of semiconductor and insulators materials [47]. 

 

Figure 2: Band structure of GaAs (left) and Si (right). The red lines show the energy gap in 

both cases. 

Figure 2 presents the band structure of two types of semiconductors: on the left, direct band gap 

(GaAs), and, on the right, an indirect gap semiconductor (Si). If the top of the valence band and 

the bottom of the conduction band are localized at the same k point, the gap is direct, if its is in 

a different k point, its is called indirect gap. Scanning tunneling spectroscopy direct measures 
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the local electronic density of states. Angle-resolved spectroscopy is able to determine the 

global band structure of a specific material. In figure 3 the connection between the density of 

states and the band structure is illustrated for Si. In essence, the density of states is a momentum 

integral of the electronic states for a given energy range. 

 

Figure 3: Electronic band structure of the single-layered SnSe based on PBE (blue dashed 

line) and HSE06 (red solid line) functionals and the corresponding density of states (DOS). 

The Fermi energy level is shift to 0 eV [48]. 

 

2.2 Physical Properties of Low Dimensional System 

 

Reducing the number of layers in a nanomaterial, often referred to as nanoscale thinning, 

can have various effects on its properties, behavior and applications. The specific outcomes 

depend on the type of material, its structure, and the intended application. We discuss below 

selected effects that are relevant to this thesis. 
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Quantum Confinement Effects: In nanomaterials, particularly two-dimensional 

structures like graphene or transition metal dichalcogenides (TMDs), quantum confinement 

effects arise due to the reduced dimensions of the material. As the number of layers decreases, 

the electronic band structure becomes quantized, leading to discrete energy levels. In 

semiconducting materials, this can result in the control of the band structure, impacting the 

electronic properties of the material. For example, in TMDs, a transition from an indirect to a 

direct bandgap may occur as the number of layers is reduced. Quantum confinement effects 

also play a crucial role in applications, such as in nanoelectronics, where precise control over 

electronic states is essential.[49] 

Enhanced Surface Effects: Reducing the number of layers in nanomaterials increases 

the significance of surface effects. At the nanoscale, a higher percentage of atoms reside near 

or at the surface, influencing the material's reactivity, catalytic activity and interactions with 

the environment. Surface-dominated properties, such as topological states, wettability and 

chemical reactivity, become more prominent. Heightened surface reactivity is exploited in 

catalysis, where nanocatalysts with optimized surface effects demonstrate enhanced activity. 

Additionally, in nanocomposites, the surface interactions play a pivotal role in determining the 

overall material properties [50], [51], [52]. 

Optical Properties: Thinning nanomaterials may affect their optical properties in 

significant ways. In 2D materials like graphene or TMDs, the number of layers directly impacts 

their absorption and emission spectra [53]. As the number of layers decreases, quantum 

confinement effects become more pronounced, leading to tunable optical properties. Quantum 

dots, semiconductor nanoparticles with size-dependent optical behaviors, exhibit changes in 

absorption and emission characteristics, as the number of layers is reduced. This tunability is 

exploited in applications such as sensors, imaging devices, and displays [54], [55]. 

Mechanical Properties: The mechanical properties of nanomaterials are strongly 

influenced by their thickness. Single-layer graphene, for example, exhibits remarkable strength, 

flexibility, and elasticity. Reducing the number of layers in other materials can affect their 

stiffness, strength, and flexibility, making them suitable for applications in nanocomposites, 

flexible electronics, and advanced materials requiring tailored mechanical properties. The 

enhanced mechanical properties at the nanoscale open avenues for the development of 

lightweight and high-strength materials [56], [57]. 
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Electronic Properties, Energy Storage and Transport: Electronic properties in 

nanomaterials, particularly those with layered structures, are intricately linked to the number of 

layers. Each layer contributes to the overall electrical behavior, and quantum effects come into 

play as dimensions are reduced. The tunability of electrical conductivity and semiconducting 

behavior by adjusting the number of layers is crucial for designing electronic devices, sensors, 

and other nanoelectronic applications. Also, it is reported that different materials become 

ferroeletric at the 2D limit. In the realm of energy storage and transport, nanomaterials play a 

pivotal role. By reducing the number of layers, the efficiency, conductivity, and overall 

performance of materials used in batteries, supercapacitors, and thermoelectric devices can be 

optimized. Tuning the nanomaterial structure allows for tailoring energy storage capacitors, 

charge/discharge rates, and thermal conductivity [58], [59], [60], [61], [62], [63], [64].  

Magnetic Properties: Materials with magnetic properties, such as thin films or 

nanoparticles, exhibit changes in behavior as the number of layers is reduced. In magnetic 

multilayers, the interlayer coupling between magnetic moments may vary, affecting the overall 

magnetic behavior. Understanding and controlling these magnetic properties are crucial for 

applications in data storage, sensors, and magnetic devices. Nanomaterials with tailored 

magnetic properties have already revolutionize information storage and sensing technologies 

[65], [66], [67]. 

Exploring these diverse aspects of nanomaterials as number of layers is reduced 

provides a comprehensive understanding of the unique properties and potential applications 

that arise in the nanoscale regime. Researchers and engineers can leverage this knowledge to 

design innovative nanomaterials for a wide range of technological applications. 

 

 

2.3 Topological Insulators 

 

2.3.1 Quantum Hall Effect 

 

Edwin Hall gave the first steps that led to the study of topological insulators in 1879 with 

the discovery of the Hall Effect [68]. Almost a century later, Klauss von Klitzing investigated 
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the Hall effect in samples with high electron mobility. They observed that, for a MOSFET with 

a large magnectic field applied, the Hall resistivity 𝜌𝐻 presents plateaus which are integer 

multiples of 
𝑒2

2
, as represented in figure 4 [69].   

The conductivity plateaus are due to Landau levels. Landau levels represent the formal 

solution for the expected classical behavior of a closed electrons orbits inside the material when 

a finite magnetic field is applied. However, at the edges of the material these orbits can not be 

closed, forming additional surface electron open trajectories. 

Figure 4: Longitudinal resistivity 𝜌𝑥𝑥 and transverse 𝜌𝐻 as a function of the applied magnetic 

field. For smaller magnetic field (𝐵 < 1𝑇), we perceive a proportionality between 𝐵 and the 

Hall resistance for 𝜌𝐻 = −
𝐵

𝑛𝑒
, as expected. When the magnetic field exceeds 2𝑇, a strange 

structure appears on the curve, which for higher fields extremes reveals itself as a staircase with 

steps of increasing height [70], [71]. 

These edge trajectories lead to electronic states that propagate along the material in only 

one direction. They have chirality but no quantized energy. Therefore, these states have no 

energy gap. They are metallic and can conduct electric current without being scattered by 

impurities. This Quantum Hall Effect (QHE) was the first observation of a state of matter that 

has energy gap in the bulk, but with a conducting state at the edge [32], [33]. 
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Figure 5: Electron orbit is broken at the surface giving rise to edge current [72]. 

 

2.3.2 Topology Concepts and Berry Phase 

 

One of the important concepts that is discussed in this section is Berry phase. It is born as 

a correction to the quantum adiabatic theorem and has a deep connection with the phenomenon 

of topological insulator. To show how this quantum phase arises in the adiabatic theorem, let 

us consider a Hamiltonian 𝐻[𝑹(𝑡)] parameterized by 𝑹 = (𝑅1(𝑡), 𝑅2(𝑡), … , 𝑅𝑛(𝑡)), where 

𝑅𝑖(𝑡) referes to the i-th state, such that it has at least on eigenvalue 𝐸𝑛[𝑹(𝑡)] associated with 

eigenfunction |Ψ𝑛[𝑹(𝑡)]⟩. By adiabatically varying the parameter 𝑅(𝑡) so that the system does 

not change its quantum state, the eigenstate can be written as [73]: 

                                                     |𝛹𝑛[𝑹(𝑡)]⟩′ = 𝑒𝑖𝜙𝑛(𝑡)|𝛹𝑛[𝑹(𝑡)]⟩,                                                  (1)  

where 𝜙𝑛(𝑡) is the phase that the state will get through this process. |𝛹𝑛[𝑹(𝑡)]⟩′ is the 

eigenfunction after the adiabatically variation. We can then write the following time-dependent 

Schrödinger equation for this state.  

                        𝑖ℏ
𝑑

𝑑𝑡
[𝑒𝑖𝜙𝑛(𝑡) |𝛹𝑛[𝑹(𝑡)]⟩] = 𝐻[𝑹(𝑡)]𝑒𝑖𝜙𝑛(𝑡) |𝛹𝑛[𝑹(𝑡)]⟩.                       (2)  

Then multiplying the entire expression 2 by the conjugate complex ⟨Ψ𝑛[𝑹(𝑡)]|𝑒−𝑖𝜙𝑛(𝑡) 

we have: 

  
𝑑

𝑑𝑡
𝜙𝑛(𝑡) = ⟨𝛹𝑛[𝑹(𝑡)]|𝑖𝛻𝑅|𝛹𝑛[𝑹(𝑡)]⟩

𝑑

𝑑𝑡
𝑹(𝑡) −

𝐸𝑛[𝑹(𝑡)]

ℏ
.                           (3) 

 Integrating both sides of the equation 3 in the interval 0 ≤ 𝑡′ ≤ 𝑡, we get: 
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Δ𝜙𝑛 = ∫ ⟨Ψ𝑛[𝑹(𝑡′)]|𝑖∇𝑅|Ψ𝑛[𝑹(𝑡′)]
𝑡

0

⟩
𝑑

𝑑𝑡′
𝑹(𝑡′)𝑑𝑡′ −

1

ℏ
∫ 𝐸𝑛[𝑹(𝑡′)]𝑑𝑡′

𝑡

0

, 

Δ𝜙𝑛 = ∫ ⟨Ψ𝑛[𝑹(𝑡′)]|𝑖∇𝑅|Ψ𝑛[𝑹(𝑡′)]
𝑹(𝑡)

𝑹(0)

⟩𝑑𝑹 −
1

ℏ
∫ 𝐸𝑛[𝑹(𝑡′)]𝑑𝑡′

𝑡

0

, 

𝛥𝜙𝑛 = ∫ 𝑨 𝑛(𝑹) ⋅ 𝑑𝑹
𝑹(𝑡)

𝑹(0)

−
1

ℏ
∫ 𝐸𝑛[𝑹(𝑡′)]𝑑𝑡′

𝑡

0

,                                     (4) 

 Note that are two distinct terms contributing to the variation of the complete phase of 

the system. The first term is called the geometric phase or also Berry phase, which will define 

as Φ𝛾, where 𝑨 𝑛(𝑹) = ⟨Ψ𝑛[𝑹(𝑡′)]|𝑖∇𝑅|Ψ𝑛[𝑹(𝑡′)]⟩ is know as the Berry connection of 

eigenstate 𝑛. The second term is called the dynamic phase. 

 It is interesting to note that 𝑨 𝑛(𝑹) is variant under gauge transformation, so it has no 

physical reality. But in analogy with electromagnetism, likewise that the potential vector 𝑨, 

which is a mathematical object, is related to the magnetic field 𝑩 = 𝛁 × 𝑨, we can define 

another quantity in terms of the connection of Berry that is invariably tailored. For this, let us 

now consider that the adiabatic process discussed earlier is cyclic along a path 𝛾, so equation 4 

becomes:  

𝛥𝜙𝑛 = ∮ 𝑨𝑛(𝑹) ⋅ 𝑑𝑹
𝛾

−
1

ℏ
∮ 𝐸𝑛[𝑹(𝑡′)]𝑑𝑡′

𝛾

=   ∮ 𝑨𝑛(𝑹) ⋅ 𝑑𝑹
𝛾

= 𝛷𝛾                 (5)  

 Here the dynamic phase becomes zero trivially. Now, involking Stokes theorem, we can 

transform the line integral of equation 5 into an integral of the surface Γ associated with the 

contour 𝛾, such as: 

𝛷𝛾 =   ∮ 𝑨𝑛(𝑹) ⋅ 𝑑𝑹
𝛾

= ∬ 𝜵𝑅 × 𝑨𝑛(𝑹) ⋅ 𝑑𝒔
𝛤

= ∬ 𝑭𝑛(𝑹) ⋅ 𝑑𝒔
𝛤

= 𝛷𝛤,            (6) 

where  𝑭𝑛(𝑹) = 𝛁𝑅 × 𝑨𝑛(𝑹) is know as the Berry curvature and is invariant under gauge 

transformations. We associate the Berry flux ΦΓ through the surface Γ with Berry phase Φ𝛾 in 

around the contour 𝛾. The curvature being gauge invariant has a physical reality extremely 

interesting that connects mathematics and physics in a very elegant way as we will see shortly. 

 The main reason that allows this connection is called Chern’s theorem [74], this theorem 

affims that the Berry flux ΦΓ across any two-dimensional manifold Γ is quantized by units of 

2𝜋, that means: 
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∬ 𝑭𝑛(𝑹) ⋅ 𝑑𝒔
𝛤

= 2𝜋𝐶 → 𝐶 =  
1

2𝜋
∬ 𝑭𝑛(𝑹) ⋅ 𝑑𝒔

𝛤

=  
𝛷𝛤

2𝜋
 ,                           (7) 

where 𝐶 ∈ 𝑍. We know the integer 𝐶 as the Chern number of surfaces Γ and it can be shown 

that this is the topological invariant associated with the variety of states  |Ψ𝑛[𝑹(𝑡′)]⟩ defined 

under this surface. 

 The importance of this invariant in Physics came in 1982, two years after the QHE 

experiments. Thouless, Khomoto, Nighingale and Nijs showed that the transverse conductivity 

of an QHE-like system can be written as [75], [76]: 

𝜎𝐻 =
𝑒2

ℏ
∑ [

1

2𝜋
∫ 𝑭𝑛(𝒌) ⋅ 𝑑𝒌

𝐵𝑍

]

𝑛

=
𝑒2

ℏ
∑ 𝐶𝑛

𝑛

,                                         (8) 

where the sum is performed under the occupied bands showed by the index 𝑛. Furthemore the 

authors also showed that the Berry curvature integral of equation 8 is non-zero, this implies that 

the system in question has 𝐶 ≠ 0 which makes it different from trivial insulating systems 

known until then, which would have 𝐶 = 0. It was also the first time that a connection between 

a completely geometric object derived from topology studies and a physical observable was 

made. For this reason, is also known the Chern number 𝐶 in the literature as the TKNN index, 

in honor of the four authors. 

 In order to clarify the difference between systems with invariants in different topologies, 

let us use a classic example. In figure 6 can be observed how it is possible to deform 

continuously and smoothly a mug on a donut. This deformation is possible because both 

varieties have the same number of “holes”, and we associate to them a topological invariant 

𝐶 = 1 known as genus, which is derived from the Gauss-Bonnet theorem [77] and classifies 

different surfaces by its topology. It is said that the mug and the donut to be a topologically 

equivalent. It would not be possible, for example, to deform a sphere, which has 𝐶 = 0, in the 

same donut as this would imply breaking its surface, which violates the softly deformation 

requirement. 

 It can apply this same idea of deformation in quantum mechanics when we talk about 

Hamiltonians. If we associate a so-called trivial insulator with a Hamiltonian 𝐻𝐴(𝜆) 

parametrized by 𝜆, and for a topological insulator a Hamiltonian 𝐻𝐵(𝜆), we will see in the next 

sub-section that it is not possible to perform an adiabatic transformation in 𝜆, which takes 𝐻𝐴(𝜆) 
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to 𝐻𝐵(𝜆) without a gap closure (or phase transitions), because both have different topological 

invariant values. 

 

Figure 6: Comparison between a cup and a donut as being equal in topological language  [78]. 

 

2.3.3 Spin Quantum Hall Effect or 2D Topological Insulators 

 

In 2004, a new state of matter, as well as the Quantum Hall Effect that also displays 

topological order, were discovered. This new state of matter was first predicted to occur in two-

dimensional (2D) quantum wells in 2006 [79], [80]. In 2007, it was observed experimentally in 

quantum wells of HgTe/CdTe [81]. 

All insulating states found in nature that preserve the symmetry of temporal 

inversion and have a non-degenerate ground state can be classified in two topologically distinct 

classes. We associate these classes with the topological invariante 𝑍2 (group of two integer 

elements 0 and 1, where 0 represents trivial insulator, like vacuum and 1 is non-trivial) [82]. 

The mechanism behind the 2D topological insulators is the strong spin-orbit 

coupling (SOC). It leads to a band inversion which breaks down the degeneracy of the atomic 

levels creating edge states that are spin polarized. 

To better understand this new topological state, consider systems with spin ½ 

particles. We denote (TR) for time reversal and (TRS) for time reversal symmetry. The time 

reversal operator Θ has the following properties: 
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𝛩†𝛩 = 1,                                                                        (9) 

𝛩†𝑟𝛩 = 𝑟,                                                                      (10) 

𝛩†�⃗�𝛩 = 𝛩†𝑚
𝑑𝑟

𝑑𝑡
𝛩 = −𝑚

𝑑𝑟

𝑑𝑡
,                                                (11) 

𝛩†�⃗⃗�𝛩 = 𝛩†(𝑟 × �⃗�)𝛩 = (𝑟 × −�⃗�) = −�⃗⃗�,                                      (12) 

where 𝑟, �⃗� and �⃗⃗� are the position, momentum and angular momentum, respectively. Trivially 

property of angular momentum expands to spin. Disregarding spin, the operator TR is simply 

the conjugation operator,  𝐾. Thus, if Ψ(𝑟, 𝑡) is a wavefunction, we have: 

𝛩†𝛹(𝑟, 𝑡)𝛩 = 𝛹∗(𝑟, 𝑡).                                                          (13) 

 Considering spin ½, the TR operator has to invert the spin, so it has the form Θ = −𝑖𝜎𝑖𝐾, 

where 𝜎𝑖 is the Pauli matrices, and it transforms as Θ†σ𝑖Θ = −σ𝑖. To have a time reversal 

symmetry is to be invariant by the operator Θ([𝐻, Θ]) = 0. Therefore, the Hamiltonian 

becomes: 

𝐻(−𝑘) = 𝛩𝐻(𝑘)𝛩−1.                                                          (14) 

 For any point (Γ𝑖) from Brillouin zone (BZ): 

−𝛤𝑖 = 𝛤𝑖 + 𝑛𝑖𝐺𝑖,                                                                 (15) 

where 𝑛 is 0 or 1 and �⃗� is a vector of reciprocal lattice. Then the system satisfies the condition 

𝐻(−Γ𝑖) = 𝐻(Γ𝑖) and, therefore, has time reversal symmetry, these points will always be 

degenerate, as they share the same self-energy. With a square lattice, there are 4 points that 

satisfy this condition. For a spin ½ system, this invariance implies that there are a pair number 

of degenerate states, this means that the bands cross. A pair of these bands is called Kramers 

pairs. Whenever there are these pairs and they are gap-separeted from other pairs, one can 

define a topological invariant associated [78], [82]. 

 Consider a band structure of the edge of a two-dimensional topological insulator as a 

function of a crystalline moment along the edge. As the system Hamiltonian is invariant under 

time reversal due to spin-orbit coupling, the Kramers theorem’s guarantees that, for certain 

points in the BZ, there will be states that are degenerates. As there are edge states, there will be 

points where these states will be degenerate, the states referring to the up and down spins will 

be equal at these points, called Dirac points [78], [82]. 
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 Spin Quantum Hall Effect (SQHE) can be seen as two copies of the QHE, where the 

states with opposite spins counter-propagate at the edge of the material. As in the QHE, in 

regions where the topological invariant changes, as at the interface between the SQHE and the 

vaccum, there are metallic states, seen in figure 7. 

Figure 7: SQHE edge states. In (a) interface between an SQHE that has 𝜈 = 1 and the 

conventional insulator 𝜈 = 1, where 𝜈 is the 𝑍2 topological invariant. There are metallic edge 

states that are spins polarized, particles with different up and down components of spin 

propagating in opposite directions, the two propagation “channels” being connected by the time 

reversal symmetry. In (b) a schematic of the band structure it shown where the material bulk 

and spin polarized edge metallic states are localized [78]. 

 Trivial conductors have electrons with spin up and down propagating in both directions 

and are fagile, since states are susceptible to Anderson localization, even in the presence of a 

weak disorder. In contrast to this, in SQHE edge states cannot be localized in the presence of a 

strong disorder because of the time reversal symmetry, as long as this impurity does not have a 

magnetic character [78], [82]. 
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2.3.4 3D Topological Insulators 

 

The three-dimensional topological insulators (3D-TIs) also present metallic surface 

states protected by time-reversal symmetry. The 𝐵𝑖1−𝑥𝑆𝑏𝑥 was the first material to exhibit a 

topological order of a 3D-TI. Subsequently, the second generation, composed by 𝐵𝑖2𝑆𝑒3, 

𝐵𝑖2𝑇𝑒3 and 𝑆𝑏2𝑇𝑒3, proved to be excellent 3D-TIs, figure 8. They exhibit strong spin-orbit 

couplings and have topological order at room temperature [39], [83]. 

Figure 8: Energy dispersion near the Γ point, polarization and helical texture of the spins on 

the surface of the 3D-TI. (a): Dispersion of a trivial insulating compound for comparison. (b)-

(d): Energy spectrum of the second-generation 3D-TI. Only a Dirac cone. (e): Polarization of 

the spins at the top of the surface of a 3D-TI [72].  

Similar to 𝐻𝑔𝑇𝑒/𝐶𝑑𝑇𝑒 quantum wells, the strong spin-orbit interacion induces a 

quantum mechanics phase transition in the above compounds, causing the band inversion at  Γ 

point. This occurs when the parameter 𝜆 in the term associated with the spin-orbit interaction 

of the Hamiltonian (𝜆�⃗⃗� ⋅ 𝑆, where �⃗⃗� and 𝑆 are the orbital and spin angular moments 

respectively) is greater than a critical value, 𝜆 > 𝜆𝑐. This process of parity inversion of 

electronic levels leads to a formation of massless Dirac fermion-like surface states in the 

compounds of second-generation [72], [83], [84]. 

 This (𝐵𝑖, 𝑆𝑏)2(𝑇𝑒, 𝑆𝑒)3 family has a rhombohedral crystal structure of 𝑅3̅𝑚 phase. The 

system has a unit cell of five atomic layers, which belong to three-layer groups, also containing 
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five atoms called Quintuple Layers (QLs), as seen in figure 9. The links between the QLs are 

very weak due to Van der Walls interactions. 

Figure 9: Crystal structure of Bi2Te3. On the right, rhombohedral unit cell and hexagonal 

conventional cell (bismuth atoms are represented in red, tellurium atoms in blue) [85]. 

 

2.3.5 Hexagonal Warping 

 

The 𝐵𝑖2𝑇𝑒3 has a snowflake-pattern at Fermi surface. This pattern is explained by 

a hexagonal warping term that appears in the surface Hamiltonian using the 𝒌 ⋅ 𝒑 theory. The 

strength of hexagonal warping is characterized by a single parameter, which is extracted from 

the size of the Fermi surface. Using the 𝒌 ⋅ 𝒑 theory, the lowest order in 𝑘 of the surface 

Hamiltonian is 𝐻0 = 𝑣𝐹(𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥), which describes an isotropic 2D Dirac fermion [86]. 

The form of 𝐻0 is strictly fixed by symmetry. The Fermi surface of 𝐻0 at any Fermi energy is 

a circle. However, the Fermi surface observed in Angle-resolved Photoemission Spectroscopy 

is noncircular, but snowflake-like [87]. This observation can be explained by higher orders 
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terms in 𝒌 ⋅ 𝒑 Hamiltonian 𝐻(𝒌) that breaks the emerging 𝑈(1) rotational symmetry of 𝐻0. 

The Hamiltonian up to third order in 𝒌 being invariant under time-reversal symmetry is: 

𝐻(𝒌) = 𝐸0(𝑘) + 𝑣𝒌(𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥) +
𝜆

2
(𝑘+

3 − 𝑘−
3 )𝜎𝑧 ,                          (16) 

where, 𝐸0 = 𝑘2/(2𝑚∗), 𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦 and 𝜎± = 𝜎𝑥 ± 𝑖𝜎𝑦. Where 𝑚∗ is the effective mass 

and 𝑣𝑘 is the particle velocity at a specific k point. The last term in (16), which is called 𝐻𝑤, is 

most important. Unlike the other terms, 𝐻𝑤 is only invariant under threefold rotation (as the 

𝐵𝑖2𝑇𝑒3 crystal structure does) and therefore is solely responsible for the hexagonal distortion 

of the otherwise circular Fermi surface [86]. The surface band dispersion of 𝐻(𝒌) is: 

𝐸±(𝒌) = 𝐸0(𝑘) ± √𝑣𝑘
2𝑘2 + 𝜆2𝑘6 𝑐𝑜𝑠2(3𝜃).                                        (17) 

Here 𝐸± denote the energy of upper and lower band, and 𝜃 is the azimuth angle of 

momentum 𝒌 with respect to the 𝑥 axis (Γ𝐾). Although the Hamiltonian 𝐻 is threefold 

invariant, the band structure is sixfold symmetric under 𝜃 → 𝜃 +
2𝜋

6
 because of time-reversal 

symmetry. Different values of 𝜆 change the shape from a circular-like (𝜆 = 0) to a snowflake-

like (𝜆 > 0), seen in figure 10.  

Figure 10: (a) Constant energy contour of 𝐻(𝒌). 𝑘𝑥 and 𝑘𝑦 axis are in the unit of √𝑣/𝜆. (b) 

Snowflake pattern of Bi2Te3 Fermi surface comparing the model with the ARPES experiment 

[88]. 
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2.4 Ferroeletricity 

 

Ferroelectric materials are frequently compared to their ferromagnetic counterparts to 

facilitate the understand of ferroelectricity. The sole analogy lies in the switching behavior. In 

ferromagnets, magnetization can be altered by an external magnetic field, while in ferroelectrics 

polarization can be modified by an external electric field. A critical criterion to define 

ferroelectricity is the existence of electronic charge polarization (spontaneous polarization ) 

induced within the unit cells of a material. Figure 11-(a) illustrates an exemple of spontaneous 

polarization in an oxide perovskite unit cell (ABO3), where A-site cations occupy the cube's 

corners, the B-site cation resides at the body center, and the oxygen ions are positioned at the 

face centers. 

 

Figure 11: (a) Schematics of the oxide perovskite unit cell (ABO3) and spontaneous 

polarization. Note that the A-site cations are not shown in the schematic on the right for a better 
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visual presentation. Note the displacement of the B atom. (b) Schematics of domains and 

domain walls[89].  

Below the Curie temperature (TC), the BO6 octahedron undergoes a natural distortion, 

causing the B-site cation to shift away from the high-symmetry position. This separation of 

cation and anion centers results in spontaneous polarization. The example in Figure 11 

illustrates the cubic (C) to tetragonal (T) phase transition. In the C phase, spontaneous 

polarization is prohibited, while in the T phase, spontaneous polarization occurs along the 001 

direction, indicating an upward vertical orientation of the BO6 octahedra, with the B-site cation 

shifting along this direction [89]. 

While multiple orientations are permited for spontaneous polarizations within a given 

phase, the practical transition of an established spontaneous polarization in an individual unit 

cell to an alternative direction remains predominant. In practice, the manipulation of 

ferroelectric polarization occurs through domains, primarily facilitated by the motion of domain 

walls. Figure 11-(b) schematically shows that a group of unit cells exhibiting spontaneous 

polarization in a congruent direction constitutes a domain. Within a given domain, the 

polarization direction is uniform, yet, in a crystalline structure, adjacent domains may exhibit 

polarizations oriented in different directions. The interface delineating two domains with 

disparate polarization orientations is termed a domain wall. Upon application of an external 

electric field, certain domains undergo reorientation, aligning themselfs in the direction of the 

electric field [89]. 

The extent of domain switching and domain wall motion depends upon the strength of 

the external electric field. Figure 12 presents a standard ferroelectric hysteresis loop (P–E loop) 

illustrating the relationship between the polarization of a ferroelectric material and the external 

electric field. In a non-polarized ferroelectric state, lacking a net polarization, domains are 

randomly oriented (point 0 in Figure 12). With the application of an electric field, domains 

begin to allign, and the greater the electric field, the more domains are allined  (0→1 in Figure 

12), culminating in saturation (point 1). At this stage, a majority of the domains have been 

permanently switched, leaving behind a remanent polarization (point 2) after the removal of the 

electric field (1→2). The remanent polarization can be erased by applying a negative electric 

field until the coercive field (2→3), restoring a zero net polarization (point 3). Further increase 

of the negative electric field (3→4) results in the attainment of saturation in the opposite 
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direction (point 4). The subsequent sequence (4→5→6) is a repetition along the other remanent 

polarization direction (point 5), reaching at the positive coercive field with yet another zero net 

polarization (point 6). The loop (1→6) replicates itself after the first cycle, and its shape is 

influenced by the frequency of the electric field as well as the material properties [89]. 

 

Figure 12: Example ferroelectric hysteresis loop (P–E loop). P is polarization [89]. 
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3 Density Function Theory (DFT) 

 

Among all the modern quantum theories that propose to treat problems of many 

bodies in a rigorous and efficient way, the Density Funcional Theory (DFT) is certainly one of 

the most important and popular, if the electron interactions are not strong inside the material. 

Featuring great versatility and flexibility, the DFT stands outin its huge range of applications, 

being used to study systems and physical properties such as superconductors [90], effects of 

including SOC [90], ionic liquids [91], properties of alloys [92], among others.  

Significant result of the DFT is its ability to determine the electronic density of a 

system which carries all the information of the ground state. Pierre Hohenberg and Walter Kohn 

[93] defined the bases of the theory using two fundamental theorems. 

 

3.1 The Many Body Problem 

 

The proper treatment of quantum systems requires the construction of an operator 

Hamiltonian, which will carry important information about the physics of the system in 

question. For a system composed of N interacing electrons (indicated by the indices 𝑖 and 𝑗) 

and 𝑀 atomic nuclei (indicated by 𝐴 and 𝐵), the Hamiltonian is given by: 

𝐻 = 𝑇𝑒 + 𝑇𝑛 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛 + 𝑉𝑒𝑛 .                                                (18) 

 The kinectic energy of electrons and nuclei are, respectively: 

𝑇𝑒 = − ∑
1

2𝑚
𝑃𝑖

2

𝑁

𝑖=1

,                   𝑇𝑛 = − ∑
1

2𝑀𝐴
𝑃𝐴

2

𝑀

𝐴=1

.                               (19)  

The Coulomb potentials of electron-electron repulsion, nuclei-nuclei repulsion and 

electron-nuclei repulsion are, respectively: 

𝑉𝑒𝑒 = − ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>1

𝑁

𝑖=1

, 𝑉𝑛𝑛 = ∑ ∑
𝑍𝐴𝑍𝐵

𝑟𝐴𝐵

𝑀

𝐵>𝐴

𝑀

𝐴=1

, 𝑉𝑒𝑛 = ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

𝑁

𝑖=1

               (20) 

 Given the above Hamiltonian, one can get the properties of the quantum system through 

the solution of the time-independent Schrödinger equation: 

𝐻𝛹(𝑟1, … , 𝑟𝑁 , �⃗⃗�1, … , �⃗⃗�𝑀) = 𝐸𝛹(𝑟1, … , 𝑟𝑁 , �⃗⃗�1, … , �⃗⃗�𝑀),                          (21)  
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where the vectors 𝑟𝑖 and �⃗⃗�𝐴 locate electrons and nuclei, respectively. 

 This formulation of the problem requires the determination of a function of 3(N+M) 

variables (not considering the spin degrees of freedom). As a way to reduce our problem, we 

can use a well-established approach to treat crystalline solids and molecules. It is called 𝐵𝑜𝑟𝑛 −

𝑂𝑝𝑝𝑒𝑛ℎ𝑒𝑖𝑚𝑒𝑟 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 [94], [95], which shows that we can treat the nuclear 

coordinates as slow variables. This is due to the large difference in mass between the massive 

nucleus and the electrons. We can decouple the motion of both and define the electronic 

Hamiltonian by: 

𝐻 = 𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉𝑒𝑥𝑡.                                                    (22) 

 The Kinect energy of nuclei 𝑇𝑛 is neglected within this approximation and the term 𝑉𝑛𝑚 

is a constant because the nuclei are fixed in space. In the last term of equation 22, 𝑉𝑒𝑥𝑡,  we 

included the electron-nucleus interactions and any other contributions of external fields. The 

eigenvalue corresponding to the above Hamiltoninan is the electronic energy. 

 

3.2    Functional Definition 

 

For an arbitrary function 𝑦 = 𝑓(𝑥), given a value (number) 𝑥, a mathematical object of 

this type returns another 𝑦 value (number), that is, a function is a kind of rule or map that takes 

one number into another number. Similarly for a functional, which is usually defined in the 

literature with the notation 𝐹[𝑥], the variable 𝑥 is actually a function, a functional is a map that 

takes a function in to a number. To illustrate this ideia, we can think of the following example: 

suppose a system which has an associated particle density 𝜌(𝒓), for such a system, we know 

that the total number of particles 𝑁 is given by: 

𝑁[𝜌(𝒓)] = ∫ 𝜌(𝒓)𝑑3𝑟,                                                          (23) 

which means that, given a particle density function, the functional returns a real number 𝑁.  
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3.3 Hohenberg-Kohn Theorems 

 

According to the theorems of Hohenberg and Kohn [93]the Schrödinger equation of 𝑁 

electrons, whose basic variable was the wavefunction with 3𝑁 degrees of freedom, can have as 

new variable, the electron density, with only 3 degrees of freedom. Two theorems are 

fundamentals to the density functional theory: 

 Theorem 1 – The external potential 𝑉𝑒𝑥𝑡 sensed by the electrons is a unique functional 

of the electron density 𝜌(𝑟). 

 Theorem 2 – The energy of ground state 𝐸0 is minimal for the density 𝜌0(𝑟) of the 

ground state. 

 Given the ground state electron density 𝜌0(𝑟), it is possible to calculate all the physical 

observables. Now we can write the energy as a functional of 𝜌(𝑟). 

𝐸[𝜌] = min
Ψ→𝜌

⟨Ψ|𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉𝑒𝑛 + 𝑉𝑛𝑛|Ψ⟩, 

𝐸[𝜌] = ⟨Ψ|𝑇𝑒 + 𝑉𝑒𝑒|Ψ⟩ + ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑3𝑟, 

𝐸[𝜌] = 𝐹[𝜌] + 𝑉𝑒𝑥𝑡[𝜌].                                                       (24) 

 To use these theorems, we have to get the analytic expressions of each functional 

described above. It is important to note that 𝐹[𝜌] = ⟨Ψ|𝑇𝑒 + 𝑉𝑒𝑒|Ψ⟩ is a universal functional 

and has the same form for any system. But, 𝑉𝑒𝑥𝑡[𝜌] = ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑3𝑟 depends on the 

geometry of the system. 

 

3.4 Kohn-Sham Equations 

 

To determine the energy as a functional of density, we will use the Kohn-Sham scheme 

[96], in which we map the system of interacting 𝑁 electrons in a system of 𝑁 non-interacting 

electrons with the same electron density. Writing the energy and all its operators as functionals 

of 𝜌, we have that: 

⟨𝛹|𝐻𝑒|𝛹⟩ → 𝐸(𝜌) = 𝑇[𝜌] + 𝑉𝑁𝑒[𝜌] + 𝑉𝑁𝑁[𝜌] + 𝑉𝑒𝑒[𝜌] = 𝑇[𝜌] + 𝑈[𝜌] + 𝑉𝑒𝑥𝑡[𝜌],   (25) 

where, 𝑈[𝜌] = 𝑉𝑒𝑒[𝜌] and 𝑉𝑒𝑥𝑡[𝜌] = 𝑉𝑁𝑒[𝜌] + 𝑉𝑁𝑁[𝜌]. 
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 So far everything is accurate (within the Born-Oppenheimer approximation). To have 

explicit formulas of the funcionals, we write the kinetic energy operator as follows: 

𝑇[𝜌] = 𝑇𝑠[𝜌] + 𝑇𝑐[𝜌] =
ℏ2

2𝑚
∑ ∫ �̅�𝑖(𝑟)𝛻2𝜙𝑖(𝑟)𝑑3𝑟

𝑁

𝑖

+ 𝑇𝑐[𝜌],                    (26) 

where 𝑇𝑠[𝜌] is the kinetic energy of a non-interacting system for which 𝜙𝑖(𝑟) are the one single-

particle orbitals. Here, 𝑇𝑠 is not an explicit functional of density, and 𝑇𝑐[𝜌] is a correlation term. 

In the same way, we write the potential energy in the form: 

𝑈[𝜌] = 𝑈𝐻[𝜌] + 𝑈𝑥[𝜌] = −
𝑒2

2(𝑟𝜋휀0)
∫ 𝑑3𝑟 ∫ 𝑑3𝑟′

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
+ 𝑈𝑥[𝜌],             (27) 

where, 𝑈𝐻[𝜌] is the term that describes the classical Couloumb interaction of the electronic 

cloud, described by Hartree’s theory. We can couple the exchange and correlation term on to 

unique functional, 𝐸𝑥𝑐[𝜌] = 𝑇𝑐[𝜌] + 𝑈𝑥[𝜌], kown as the exchange-corralation term. 

Combining the equations 24, 25, 26 and 27, we find that  

𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝑈𝐻[𝜌] + 𝑉𝑒𝑥𝑡[𝜌] + 𝐸𝑥𝑐[𝜌].                                     (28) 

 All contributions to exchange and correlation are included in the last term, 𝐸𝑥𝑐[𝜌]. 

According to the Variational theorem, taking the minimum of 𝐸[𝜌], with the constraint that the 

total number 𝑁 of particles is fixed, according to 𝑁 = ∫ 𝜌(𝑟)𝑑3𝑟, we may write: 

𝛿

𝛿𝜌(𝑟)
= [𝐸[𝜌] − 𝜇 (∫ 𝜌(𝑟)𝑑3𝑟 − 𝑁)] = 0.                                   (29) 

 Here, the problem is reformulated in terms of the Lagrange functional and the Lagrange 

multiplier 𝜇. Substituting 𝐸[𝜌] in expression 29 we get: 

𝛿𝐸[𝜌]

𝛿𝜌(𝑟)
=

𝛿𝑇𝑠[𝜌]

𝛿𝜌(𝑟)
+

𝛿𝑈𝐻[𝜌]

𝛿𝜌(𝑟)
+

𝛿𝑇𝑉𝑒𝑥𝑡[𝜌]

𝛿𝜌(𝑟)
+

𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌(𝑟)
= 𝜇, 

𝛿𝑇𝑠[𝜌]

𝛿𝜌(𝑟)
+ 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝐻(𝑟) + 𝑣𝑥𝑐(𝑟) = 𝜇.                                       (30) 

 The last three terms on the left side of equation 30 can be seen as potentials. The Kohn-

Sham ideia is to introduce an auxialiary set of single particles states 𝜙𝑖(𝑟), so that thi system 

generates the same electron density as the many-body wavefuncion. Given the potential 𝑣𝑠 =

𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝐻(𝑟) + 𝑣𝑥𝑐(𝑟), we get the same density as the problem of interest, where now it is 

enough to solve the equation 31 for the non-interacting electrons. 
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[−
ℏ2𝛻2

2𝑚
+ 𝑣𝑠(𝑟)] 𝜙𝑖(𝑟) = 𝑒𝑖𝜙𝑖(𝑟).                                                     (31) 

 So, we can reproduce the density 𝜌(𝑟) by the equation: 

𝜌(𝑟) = ∑ 𝑓𝑖|𝜙𝑖(𝑟)|2

𝑁

𝑖

,                                                          (32) 

where 𝑓𝑖 represent the orbital occupation. Remembering that 𝑣𝐻(𝑟) and 𝑣𝑥𝑐(𝑟) depend on 𝜌(𝑟), 

which depends on the orbital 𝜙𝑖(𝑟) which depends on 𝑣𝑠(𝑟), the problem has to be solved self-

consistently. Note that the Kohn-Sham equations takes the form: 

[−
ℏ2𝛻2

2𝑚
+ 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝑥𝑐(𝑟) +

𝑒2

4𝜋휀0
∫

𝜌(𝑟)

|𝑟 − 𝑟′|
𝑑3𝑟′ ] 𝜙𝑖(𝑟) = 𝑒𝑖𝜙𝑖(𝑟).            (33) 

 When multiply on the left by 𝜓𝑖
̅̅̅, integrating into space coordinate and summing over 

all the orbitals we have: 

∑ 𝑒𝑖

𝑁

𝑖

= 𝑇𝑠[𝜌] + ∫ 𝑣𝑒𝑥𝑡𝜌(𝑟)𝑑3𝑟 +
𝑒2

4𝜋휀0
∫ ∫

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑3𝑟′𝑑3𝑟 = ∫ 𝑣𝑥𝑐𝜌(𝑟)𝑑3𝑟.    (34) 

Comparing the equation 34 with 28, the total energy is: 

𝐸0 = ∑ 𝑒𝑖

𝑁

𝑖

−
𝑒2

8𝜋휀0
∫ ∫

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑3𝑟′𝑑3𝑟 − ∫ 𝑣𝑥𝑐𝜌0(𝑟)𝑑3𝑟 + 𝐸𝑥𝑐[𝜌0].           (35) 

Numerical solutions of the Kohn-Sham equations depend on the choice of 

approximation for the exchange-correlation functional which will be discussed in the next 

section. 
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Figure 13: Schematic of the self-consistent calculation. 
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3.5 Functional Approximations for Funcional 𝐸𝑥𝑐 

 

As mentioned earlier, because of the complex nature of 𝐸𝑥𝑐, it is necessary to construct 

sufficiently complete approximations so that it does not lose the information of important 

physical ingredients of the system. We are going to discuss some of the most used which can 

be found in the literature as the Local Spin Density Approximation (LSDA) and the Generalized 

Gradient Approximation (GGA). 

 

3.5.1 LSDA Aproximation 

 

The LSDA approximation is one of the simplest approximations we can use to handle 

the exchange-correlation functional in the DFT. The approach cousists in treating the electrons 

as a homogeneous gas, and in this limit the exchange-correlation functional has a strictly local 

character: it is assumed that for every point in space the exchange-correlation energy density is 

equal to that of a homogeneous electron gas with the same given density [93], so: 

𝐸𝑥𝑐
𝐿𝑆𝐷𝐴 = ∫ 𝜌(𝑟)휀𝑥𝑐

ℎ𝑜𝑚(𝜌↑(𝑟), 𝜌↓(𝑟))𝑑𝑟 = ∫ 𝜌(𝑟)[휀𝑥
ℎ𝑜𝑚 + 휀𝑐

ℎ𝑜𝑚]𝑑𝑟 ,            (36) 

where 𝜌↑(𝑟) and 𝜌↓(𝑟) are the electronic density for spin up and down respectively. The 

parameterization is based on Monte Carlo simulations [97]. 

 

3.5.2 GGA Aproximation 

 

The GGA approximation consists in assuming that the exchange-correlation functional 

depends not only on the density, but also on its gradient: 

𝐸𝑥𝑐
𝐺𝐺𝐴 = ∫ 𝜌(𝑟)휀𝑥𝑐

ℎ𝑜𝑚(𝜌↑(𝑟), 𝜌↓(𝑟), |∇𝜌↑(𝑟)|, |∇𝜌↓(𝑟)|, … )𝑑𝑟, 

𝐸𝑥𝑐
𝐺𝐺𝐴 = ∫ 𝜌(𝑟)휀𝑥

ℎ𝑜𝑚(𝜌(𝑟))𝐹𝑥𝑐(𝜌↑(𝑟), 𝜌↓(𝑟), |𝛻𝜌↑(𝑟)|, |𝛻𝜌↓(𝑟)|, … )𝑑𝑟,                        (37)  

where 𝐹𝑥𝑐 is dimensionless [98]. There are many propositions for the 𝐹𝑥𝑐 function in the 

literature. The most commom are the parameterizations B88, proposed by Becke [99], and PBE, 

proposed by Perdew, Burke and Enzerhof [100].  
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3.6 Pseudopotentials 

 

The concept of pseudopotential is extremely commom in DFT and brings many benefits 

to electronic structure calculations such as reduction of the number of functions in the basis set 

used for the construction of Hilbert space, reduction of the number of electrons in the system 

and inclusion of relativistic effects without the need to solve the Dirac equation. The ideia 

behind this concept is to replace the strong potential for interaction between nuclei and core 

electrons and its effects by an effective potential that acts only on valence electrons. 

Therefore, it replaces the external potential 𝑉𝑒𝑥𝑡 of the Kohn-Sham equantion 33 by a 

pseudopotential 𝑉𝑃𝑃[𝜌]. There are many ways to generate these pseudopotentials and this 

remains a topic of research to this day[101]. There are also many classifications in the literature, 

such as conserved norm[102], ultrasoft[103], among others.  

 

3.7 Periodic System and Bloch Theorem 

 

In solid state physics, we say that crystals are defined by a Bravais lattice and an atomic 

basis associated to each point of the lattice. The Bravais lattice is a system of infinite points 

with regular arrangement along space. The lattice is defined by the translational symmetry: 

given any two lattice points 𝑟 and 𝑟′, there will be a translation vector from one to the other, as 

shown in the following equation: 

𝑟 = 𝑟′ + �⃗⃗�𝑛,                �⃗⃗�𝑛 = ∑ 𝑙𝑛𝑖�⃗�𝑖

𝑖=1,2,3

,                                   (38) 

where 𝑙𝑛𝑖 are integer. Since the ions in a perfect crystal are periodically positioned, the potential 

has the same periodicity, that is: 

𝑉(𝑟 + �⃗⃗�𝑛) = 𝑉(�⃗⃗�).                                                           (39) 

 Even knowing that the electronic problem in a solid is, in principle, a problem of many 

electrons, with the Hamiltonian including electron-electron and electron-nuclei interactions,  

we may formulate the problem in terms of single-particle states acted on by a periodic potential: 
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[−
ℏ2𝛻2

2𝑚
+ 𝑣𝑠(𝑟)] 𝜙�⃗⃗�

(𝑟) = 𝑒𝑖𝜙�⃗⃗�
(𝑟).                                              (40) 

 Bloch’s theorem establishes that an eigenfuncion 𝜙�⃗⃗�(𝑟) of the electronic Hamiltonian 

must have the form of a plane wave times a function with the periodicity of the lattice: 

𝜙�⃗⃗�
(𝑟) = ∑𝑒𝑖�⃗⃗�⋅𝑟𝑢�⃗⃗�

(𝑟),         𝑢𝑛�⃗⃗�(𝑟 + �⃗⃗�𝑛) = 𝑢𝑛�⃗⃗�
(𝑟).                                   (41) 

 

3.8 Basis Functions 

 

3.8.1 Plane Wave Method 

 

The problem of solving the Schrödinger equation for periodic systems has been of 

interest since the beginning of quantum mechanics. A possible choice of basis set is based on 

plane waves. Using this scheme, the function 𝑢𝑛�⃗⃗�
(𝑟) can be expanded as plane waves 𝜙�⃗⃗�

(𝑟) =

∑ 𝐶�⃗⃗�+�⃗�𝑒𝑖(�⃗⃗�+�⃗�)⋅𝑟
�⃗� , in which �⃗�𝑚 = ∑ 𝑔𝑚𝑖 �⃗⃗�𝑖𝑖  are reciprocal lattice vector written in terms of the 

reciprocal vectors �⃗⃗�𝑖. Using equation 40 we have: 

[−
ℏ2𝛻2

2𝑚
+ 𝑣𝑠(𝑟)] ∑ 𝐶�⃗⃗�+�⃗�𝑒𝑖(�⃗⃗�+�⃗�)⋅𝑟

�⃗�

 = 𝑒𝑖 ∑ 𝐶�⃗⃗�+�⃗�𝑒𝑖(�⃗⃗�+�⃗�)⋅𝑟

�⃗�

.                           (42) 

 Now multiplying the equation 42 in the left by 𝑒−𝑖(�⃗⃗�+�⃗�)⋅𝑟 , introducing the expansion for 

the potential and integrating in the first Brillouin zone, we have: 

[−
ℏ2

2𝑚
(�⃗⃗� + �⃗�)

2
+ 𝑒𝑛�⃗⃗�] 𝐶�⃗⃗�+�⃗� + ∑ 𝑉

�⃗�−�⃗�′
𝑠 𝐶�⃗⃗�+�⃗�

�⃗�

= 0,                                (43) 

with the coefficients in the potential expansion given by: 

𝑉
�⃗�−�⃗�′
𝑠 = ∫ 𝑣𝑠𝑒𝑖(�⃗�−�⃗�′) ⋅𝑟𝑑𝑣.

𝐵𝑍

                                                     (44) 

 The plane wave basis set has some advantages, since the convergence of the calculation 

can be controlled with a single parameter, the number of plane waves. The parameter cutoff 

energy,  is given in electron-volt and is associated with the plane wave with the highest energy. 
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The calculation, therefore, includes all plane wave with kinetic energies less than the cutoff, 

which means |�⃗� + �⃗⃗�| < �⃗�𝑐𝑢𝑡, in which 𝐸𝑐𝑢𝑡 =
ℏ2

2𝑚
 𝐺𝑐𝑢𝑡

2 . 

  Quantum-Espresso (QE) [104] and Vienna Ab initio Simulation Package (VASP) [105] 

are open-source code which employs the plane wave method in the electronic structure 

calculations. Programmed in C and Fortran languages, its uses DFT as a base and the 

pseudopotential theory discussed here. 

 

3.8.2 Localized Basis Method 

 

Another scheme to describe Bloch functions is based on the choice of a localized basis 

set. This method is, for instance, implemented in the Spanish Iniciative for Electronic 

Simulations with Thousands of Atoms (SIESTA) [106]. It is one of the most used in theoretical 

description of nanostructures, since it is more suitable for large scale calculations. In this 

method, one be expands the eigenvalues of the electronic Hamitonian in functions of centered 

at each lattice site: 

𝜙𝑛�⃗⃗�
(𝑟) = ∑ 𝜔𝑛�⃗⃗�(𝑟 − �⃗⃗�𝑛)𝑒𝑖�⃗⃗�𝑛⋅�⃗⃗�

�⃗⃗�𝑛

,                                              (45) 

in which the function 𝜔𝑛�⃗⃗�(𝑟 − �⃗⃗�𝑛) are known as Wannier functions. A natural choice of 

localized basis set is the one formed by atomic orbitals. Therefore, the Wannier funcions may 

be written in terms of these functions as: 

𝜔𝑛�⃗⃗�(𝑟 − �⃗⃗�𝑛) = ∑ 𝐶𝑖𝜇(�⃗⃗�)𝜒

𝜇,𝛼

(𝑟 − 𝜏𝛼 − �⃗⃗�𝑛).                                    (46) 

Substituing into the Kohn-Sham Hamiltonian, we get: 

  ∑ [∑ 𝑒𝑖�⃗⃗�𝑛⋅�⃗⃗� (
ℏ2

2𝑚
𝛻2 + 𝑉𝑠(𝑟)) 𝜒(𝑟 − 𝜏𝛼 − �⃗⃗�𝑛)

�⃗⃗�𝑛

]

𝜇𝛼

𝐶𝑖𝜇(�⃗⃗�) 

= 𝑒𝑖(�⃗⃗�) ∑ ∑ 𝑒𝑖�⃗⃗�𝑛𝜒(𝑟 − 𝜏𝛼 − �⃗⃗�𝑛)𝐶𝑖𝜇(�⃗⃗�)

�⃗⃗�𝑛

.

𝜇𝛼

                                 (47) 

 Multiplying the equation 47 by a basis function �̅�(𝑟 − 𝜏𝛼) and integrating in real space, 

we have: 
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∑[𝐻𝜈𝜇(�⃗⃗�) − 𝑒𝑛�⃗⃗�𝑆𝜈𝜇(�⃗⃗�)]

𝑚𝜇

𝐶𝑖𝜇(�⃗⃗�) = 0,                                         (48) 

in which: 

𝐻𝜈𝜇(�⃗⃗�) = ∑ 𝑒𝑖�⃗⃗�𝑛⋅�⃗⃗� [∫ �̅�𝜈(𝑟 − 𝜏𝛼)𝐻𝐾𝑆𝜒𝜈(𝑟 − 𝜏𝛼 − �⃗⃗�𝑛)] 𝑑3𝑟 

�⃗⃗�𝑛,𝛼

, 

𝑆𝜈𝜇(�⃗⃗�) = ∑ 𝑒𝑖�⃗⃗�𝑛⋅�⃗⃗� [∫ �̅�𝜈(𝑟 − 𝜏𝛼)𝜒𝜈(𝑟 − 𝜏𝛼 − �⃗⃗�𝑛)] 𝑑3𝑟 

�⃗⃗�𝑛,𝛼

.                      (49) 

 Thus, we get the eigeinvalues and eigenvectors of equation 48. The advantages of the 

localized basis set rely on the fact of the simple physical interpretation within the Tight Binding 

scheme, and the need of a much smaller size (number of funcions) if compared to the plane 

wave case. 
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4 Experimental Techniques 

 

4.1 Scanning Tunneling Microscopy (STM) 

 

4.1.1 The Quantum Tunneling Effect 

 

Scanning tunneling microcopy and spectroscopy (STM/STS) are interesting techniques 

to investigate not only nanostructures of two-dimensional materials like graphene, but also 

other novel materials such as topological insulators and semiconductors. Roher and Binning 

invented the scanning tunneling microscope in 1981 [107]. This technique is based on the 

quantum phenomenon of tunneling and allows the imaging of atomic and molecular structures 

through the variation of the tunneling current between an atomically thin conducting tip and the 

investigated sample. Together with microscopy, tunneling spectroscopy is used to obtain 

information about the electronic density of states of the sample as a function of the electron 

energy, which is done locally [108].  

In quantum mechanics, the motion equation of an electron of mass 𝑚 and energy 𝐸 

subjected to a potential 𝑈(𝑧) can be describe by the Schrödinger equation, whose time 

independent form is, in one dimension [109], [110]: 

−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
𝜓(𝑧) + 𝑈(𝑧)𝜓(𝑧) = 𝐸𝜓.                                        (50)  

 Considering 𝑈(𝑧) as: 

𝑈(𝑧) = {
0,                  𝑧 ≤ 0                       
𝑈0 > 0,       0 ≤ 𝑧 ≤ 𝑎               
0,                  𝑧 ≥ 0                       

.                             (51) 

 The solution of equation 50 for each region will be: 

𝜓(𝑧) = {
𝐴1𝑒𝑖𝑘𝑧 + 𝐵1𝑒−𝑖𝑘𝑧,     𝑧 ≤ 0                                             
𝐶𝑒𝜅𝑧 + 𝐷𝑒𝜅𝑧,             0 ≤ 𝑧 ≤ 𝑎     ,                                

𝐴2𝑒𝑖𝑘𝑧 + 𝐵2𝑒−𝑖𝑘𝑧,      𝑧 ≥ 0                                              

(52) 
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for 𝐸 < 𝑈0, 𝑘 =
√2𝑚𝐸

ℏ
 and 𝜅 =

√2𝑚(𝑈0−𝐸)

ℏ
. For 𝑧 ≤ 0 and ≥ 𝑎 the solutions described above 

correspond to an electron moving with 𝑝 = ℏ𝑘. On the other hand, the great difference between 

classical and quantum theories lies on the region 0 ≤  𝑧 ≤ 𝑎. Since the electron wavefunction 

has a finite value near the potential barrier, there is a certain probability that the electron tunnels 

through the barrier, figure 14. This quantum mechanical phenomenon is known as tunneling. 

Figure 14: Representation of the wavefunction in quantum tunneling. 

 The constants 𝐴1, 𝐴2, 𝐵1 and 𝐵2 of the wavefunction in equations 52 can be determined 

by the continuity conditions of 𝜓(𝑧) and 
𝑑𝜓(𝑧)

𝑑𝑧
 for 𝑧 = 0 and 𝑧 = 𝑎. These constants give us 

information about the reflection and transmission coefficients, 𝑅 and 𝑇, respectively. In the 

matricial form, the realation among these constants for 𝑧 = 0 is [110]: 

[
1 1
𝑖𝑘 −𝑖𝑘

] [
𝐴1

𝐵1
] = [

1 1
𝜅 −𝜅

] [
𝐶
𝐷

],                                                 (53) 

and for 𝑧 = 𝑎: 

[
𝑒𝜅𝑎 𝑒−𝜅𝑎

𝜅𝑒𝜅𝑎 𝜅𝑒−𝜅𝑎] [
𝐶
𝐷

] = [ 𝑒𝑖𝑘𝑎 𝑒−𝑖𝑘𝑎

𝑖𝑘𝑒𝑖𝑘𝑎 𝑖𝑘𝑒−𝑖𝑘𝑎
] [

𝐴2

𝐵2
].                             (54) 

 The coefficients 𝑅 and 𝑇 can be obtained through the transference matrix 𝑃, which is 

defined as [110]: 

[
𝐴1

𝐵1
] = 𝑃 [

𝐴2

𝐵2
].                                                            (55) 

 Thus, the reflection and transmission coefficients are: 

𝑅 = |
𝐵1

𝐴1
|

2

= |
𝑃21

𝑃11
|

2

,                                                        (56) 

𝑇 = |
𝐴2

𝐴1
|

2

= |
𝑃22

𝑃11
|

2

,                                                        (57) 
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respectively, satisfying the condition 𝑅 + 𝑇 = 1. Explicitly, 𝑇 can be written as: 

𝑇 = [1 +
𝑈0(𝑠𝑖𝑛2 𝜅𝑎)

4𝐸(𝑈0 − 𝐸)
]

−1

.                                                     (58) 

 If 𝜅𝑎 ≫ 1, then 𝑇 can be simplified as: 

𝑇 = [
4𝐸(𝑈0 − 𝐸)

𝑈0
2 ] 𝑒−2𝜅𝑎.                                                     (59) 

 Analyzing this expression, one sees that the transmission depends exponentially on the 

width of the potential barrier 𝑎. This was experimentally observed by Binng et all [111] and is 

what makes possible imaging the surface of different materials with high resolution. 

  

4.1.2 Scanning Tunneling Microscope 

 

The scanning tunneling microscope was the first microscope to be developed in the 

family of Scanning Probe Microscope (SPM) types. G. Binning and H. Roher got the first image 

in 1981 at IBM Zurich [108], [111]. In 1986, these researchers received the Nobel Prize in 

Physics for this invention. One of the most fundamental problems in surface physics is the 

determination of its structure and the STM operating mode allows the determination of the real 

lattice of the material in three demensions, including non-periodic systems. This technique is 

the one with the best resolution in the SPM, properly allowing the acquisition images with 

atomic scale resolution. 

Figure 15: Schematic view of a STM microscope.  
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 The STM basically works like this, an atomically thin conducting tip, usually made of 

𝑊 or 𝑃𝑡 − 𝐼𝑟, is connected to piezoelectric motors in the 𝑥, 𝑦 and 𝑧 directions. These motors 

are made of piezoelectric materials, which can contract or expand depending on the application 

of a positive or negative bias voltage. This property makes this system able to scan the sample 

surface along the 𝑥 and 𝑦 directions, and also varies its 𝑧 position, figure 15.  

 Once the tip and the sample are sufficiently close, but not in ohmic contact, i.e., in 

tunneling condition, it is applied a bias voltage between these two objects, so that a tunneling 

current will flow through the system. Assuming that the STM tip is grounded, 𝑉 will be, 

therefore, the voltage applied to the sample. This means that if 𝑉 > 0, for instance, the electron 

will tunnel from the occupied states of the tip to the unoccupied states of the sample. The 

tunneling current will be amplified and through a feedback system, it will control the distance 

between the tip and the sample surface in order to maintain the tunneling current fixed (constant 

current operation mode).  If a tunneling current greater than the reference value is detected, the 

feedback system, connected to the piezoelectric motors, will drive the tip away from the sample 

surface, decreasing the tunneling current (remember that the transmission coefficient depends 

exponentially to the potential barrier width, which, in this case, is the tip-sample distance). 

Figure 16: Operation modes of a STM. On the left panel one sees a constant current mode in 

which the tunneling current is kept constant and the distance between the tip and the sample 

varies. On the right panel the constant height mode is presented. In this mode of operation, the 

distance between the tip and the sample is kept constant, and the tunneling current varies. 

The other option is when the tunneling current is smaller than the reference value, the 

piezoelectric motor will approach the STM tip towards the sample, increasing the tunneling 

current in order to keep it constant, see figure 16 on left panel. Because of this process, it will 

map the sample surface into topography images shown in a color-code that represents a 

combination between height and electronic variations, since the tunneling current also depends 
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on the sample density of states, as will be shown in the following section. In the constant height 

operation mode, it will fix the tip path during the entire sample surface scan. As a result, the 

tunneling current will vary according to the structure of the sample, figure 16 on right panel. 

 

4.2 Scanning Tunneling Spectroscopy (STS) 

 

We can construct the STM, as described in the article by J. Tersoff and D. R. Haman 

[112]. We are interested in the relationship between the tunneling current with the elements we 

know from theoretical simulations. The first order tunneling current in Bardeen formalism [113] 

is given by the equation: 

𝐼 =
2𝜋𝑒

ℏ
∑ 𝑓(𝐸𝜇)[1 − 𝑓(𝐸𝜈 + 𝑒𝑉)]|𝑃𝜇𝜈|

2
𝛿(𝐸𝜇 − 𝐸𝜈)

𝜇𝜈

,                   (60)  

where 𝑓(𝐸) is the Fermi Dirac function, 𝑉 is the bias voltage applied, 𝑃 𝜇𝜈 is the tunneling 

matrix between the states 𝜙𝜈 of the tip and 𝜙𝜇 of the surface. We realize that 𝜙𝜈 and 𝜙𝜇 are not 

eigenstates of the same Hamiltonian. At the limit of low voltages and low temperatures, we can 

assume: 

𝑓(𝐸𝜇)[1 − 𝑓(𝐸𝜈 + 𝑒𝑉)] = 𝐶𝛿(𝐸𝜇 − 𝐸𝐹),                                   (61) 

where 𝐶 is an unkown constant. Integrating over all energies, we have: 

𝐼 =
2𝜋𝑒2𝑉

ℏ
∑|𝑃𝜇𝜈|

2
𝛿(𝐸𝜇 − 𝐸𝐹)𝛿(𝐸𝜈 − 𝐸𝐹)

𝜇𝜈

.                                 (62) 

 If we make the limit where the tip is replaced by a point of spherical potential (non-

intrusive measure of the surface) the elements of the matrix have the form: 

𝐼 ∝ ∑|𝜓𝜇(𝑟0)|
2

𝛿(𝐸𝜇 − 𝐸𝐹)

𝜇

= 𝜌(𝑟0, 𝐸𝐹),                                    (63) 

where 𝑟0 is the tip position (point). We see the current is proportional to the Local Density of 

States (LDOS) on the Fermi energy, and also on the tip position. Qualitatively, these concepts 

can be understood as follows: once a bias voltage, a negative one, for instance, is applied 

between the STM tip and the sample, the electrons will flow from the occupied states of the 

sample to the unoccupied states of the tip (considering that the tip is grounded). As can be seen 

in the scheme shown in figure 17, the density of sates of the sample, differently from that of the 
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tip, which can be taken as approximately constant, in general may have specific states for well-

defined energies, which appaer as peaks, having different complex strucures that vary from 

sample to sample. Thus, the tunneling current will be mainly influenced by the sample DOS. 

Figure 17: Schematic view of the tunneling between the STM tip and the sample. A negative 

bias voltage is applied to the sample and consequently the electrons will tunnel from the 

occupied states of the sample to the unoccupied states of the tip. 

 The STS technique basically consists on measuring the tunneling current at a single 

point of the sample defined by the STM tip position, which is atomically sharp, as a function 

of the electron energy. Therefore, the tunneling current can be rewritten as:  

𝐼 ∝ ∫ 𝐿𝐷𝑂𝑆𝑡𝑖𝑝(𝐸𝐹
𝑇 + 𝜖)

𝑒𝑉

0

𝐿𝐷𝑂𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝐸𝐹
𝑆 − 𝑒𝑉 + 𝜖)𝑑𝜖,                   (64)  

where the DOS of the tip and the sample is replaced by the LDOS. The derivative of the 

tunneling current as a function of the bias voltage will be [109]:  

𝑑𝐼

𝑑𝑉
∝ 𝐿𝐷𝑂𝑆𝑇𝐼𝑃(𝐸𝐹

𝑇 + 𝑒𝑉)𝐿𝐷𝑂𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝐸𝐹
𝑆).                                (65) 

 Analyzing this expression, with the electrons tunneling from the occupied states of the 

sample to the unoccupied states of the tip at the energy 𝐸𝐹
𝑇 + 𝑒𝑉 and to the local density of 

states of the sample at the Fermi level 𝐸𝐹
𝑆. 

 Whether one can guarantee that the tip LDOS is approximally constant, then one can 

infer the sample LDOS (in fact, the tip LDOS, which depends on its material and its terminaton 

is not a constant, but in general it is a reasonable approximation). For a positibe bias, on the 

other hand, the derivative of the tunneling sample will be:   

𝑑𝐼

𝑑𝑉
∝ 𝐿𝐷𝑂𝑆𝑇𝐼𝑃(𝐸𝐹

𝑇)𝐿𝐷𝑂𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝐸𝐹
𝑆 + 𝑒𝑉).                                 (66) 
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 Thus, one sees from the expressions 65 and 66 that depeding on the signal of the bias 

voltage, the occupied or unoccupied states of the sample may be highlighted in the tunneling 

spectrum. Therefore, the tunneling spectrum, 
𝑑𝐼

𝑑𝑉
 or STS, give us information about the sample 

LDOS allowing the study of the electronic properties of different systems.  

 

4.3 Angle Resolved PhotoEmission Spectroscopy (ARPES) 

 

Angle-resolved photoemission spectroscopy (ARPES) stands as a major experimental 

technique in condensed matter physics, designed to unveil the intricate interplay of energies 

and momenta governing electrons within crystalline solids. Rooted in the principles of the 

photoelectric effect, ARPES involves the incidence of photons on a material's surface, 

liberating electrons in the process.  

Through the analysis of energy and momentum profiles of emitted electrons, ARPES 

reveals the shape and dispersion of energy bands, alongside the locations of band gaps and 

Fermi surfaces. This information yields insights into fundamental physical properties of 

materials, including electronic conductivity, surface effects, optical properties and magnetic 

properties of materials (using Spin-ARPES). Analyzing measured energy bands permits the 

investigation of band renormalization and effective mass relation. Lineshape analysis allows 

for the extraction of single-particle self-energy related to each band. ARPES is extensively 

employed in materials science and condensed matter physics, contributing to the development 

of novel materials for electronic and optoelectronic devices. Additionally, it finds utility in 

surface chemistry studies, enabling the exploration of molecular interactions with surfaces and 

the electronic structure of thin films and interfaces. 

 

4.3.1 Fundamentals 

 

In an ARPES experiment, electrons undergo detection through an electron analyzer, 

a device capable of focusing an incoming electron beam onto a slit. Subsequently, employing 

the potential lens effect, the beam is deflected in a semi-circle and directed towards a detector. 

This detector captures the electrons at various positions upon their kinetic energies. This initial 
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setup closely follows the principles of Photoemission Spectroscopy (PES), a technique utilized 

for determining the binding energies of electrons within a material through the measurement of 

photoelectric effect intensity. 

The distinct aspect of ARPES arises from the incorporation of an analyzer with 

angular acceptance in the slit and an area detector. This configuration enables the generation of 

an image representing the intensity of detected electrons as a function of both energy and angle. 

The angular component is intricately linked to the momentum of the electrons. However, it is 

imperative for the sample to be a single crystal with its alignment pre-determined through other 

methods. In ARPES, the detected intensity becomes associable with the electronic band 

structure of the material. Remarkably, the Fermi surface (FS) can be reconstructed through 

these measurements, shedding light on electronic properties of the studied material. 

Following photoemission, the generation of a hole within the solid occurs. 

Theoretically, the formation of this photohole and its association with ARPES can be elucidated 

through the spectral function, alternatively termed the one-electron removal function. 

Nonetheless, merely measuring the electronic spectral function and Fermi surface of the sample 

by ARPES may prove insufficient. To comprehend the origins and mechanisms governing 

diverse ground states in quantum materials requires a theoretical modeling as well. Such 

materials often exhibit strong electron correlations, electron-phonon coupling, and various 

complex phenomena. In this context, the full potential of ARPES necessitates the integration 

of theoretical models and calculations. 

 

 

 

4.3.1.1 The photoemission processes 

 

ARPES operates as a photon-in, electron-out technique, rooted in the principles of 

the photoelectric effect. Monochromatized light, characterized by energy ℎ𝜈 and falling within 

the vaccum ultraviolet spectrum, impinges upon the sample. An electron within the material 

absorbs this incident light. When the energy surpasses a work function 𝜙, the electron is 

emitted, and its kinetic energy can be expressed as in equation 67. This equation manifest the 

behavior of the photoelectric effect, 
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𝐸𝑘 = ℎ𝜈 − 𝜙.                                                                 (67) 

A more sophisticated theoretical description of the ARPES process incorporates the 

intricate many-body effects within the sample, which can be challenging to describe. 

Nonetheless, a comprehensive framework can be attained by employing quantum-mechanical 

perturbation theory to delineate the transition rate. In this regard, we contemplate a Hamiltonian 

that characterizes the electron within the solid along with the photon field, treating the latter as 

a weak time-dependent perturbation, 

𝐻 = 𝐻0 + 𝑉𝑖𝑛𝑡𝑒−𝑖𝜔𝑡,                                                          (68) 

where 𝐻0 is the unperturbed Hamiltonian with known eigein states and eigenvalues, and 𝑉𝑖𝑛𝑡 is 

the photon field factor, given by: 

𝑉𝑖𝑛𝑡 = −
𝑒

𝑚𝑐
𝑨 ⋅ 𝒑,                                                              (69) 

By introducing 𝑨 as the potential vector and 𝒑 = 𝑖ℏ𝛁 as the momentum operator, the 

expression for the photon field is derived under the consideration of a weak radiation field. This 

allows the elimination of the two-photon process term proportional to 𝑨𝟐, and a specific gauge 

choice is adopted to remove the scalar potential 𝜑: 𝛁 ⋅ 𝑨 = 0. 

The assessment of the transition rate from an initial state with 𝑁 electrons to a final state 

with 𝑁 electrons can be conducted using Fermi’s Golden Rule for a first-order perturbation, as 

delineated in equation 70 [114]. Here, Ψ𝑖
𝑁 represents the initial state, and Ψ𝑓

𝑁 the final 𝑁 

electron states. The first term captures the transition matrix elements from the initial to the final 

state, while the last term embodies the principle of energy conservation. In this context, the 

final state energy E𝑓
𝑁 equals the initial state energy E𝑖

𝑁 summed with the absorbed photon 

energy, 

𝜔𝑖→𝑓 =
2𝜋

ℏ
|⟨𝛹𝑓

𝑁|𝑉𝑖𝑛𝑡|𝛹𝐼
𝑁⟩|

2
𝛿(𝐸𝑓

𝑁 − 𝐸𝑖
𝑁 − ℎ𝜈).                           (70) 

To incorporate surface properties, which differ fundamentally from bulk properties, the 

crystal Hamiltonian 𝐻0 can become notably complex. Conceptualizing the photoemission 

process in this manner is referred to as the one-step model. An alternative model frequently 

employed to depict this process is the three-step model, as developed by Berglund and Spicer 

[115]. This model describes the photoemission process into three distinct and independent 

stages: bulk electron excitation through photon energy absorption, electron transport from bulk 
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to surface, and the release of the electron into the vacuum. The photoemission intensity is 

determined by the product of the probabilities of these three processes. 

The second term can be characterized phenomenologically by the mean free path of the 

electron based on internal scattering. It is linked to the penetration depth of the ARPES 

technique, as bulk electrons beyond the mean free path will struggle to reach the sample surface. 

The third term can be described by the material surface energy barrier known as the inner 

potential 𝑉0, comprising the work function 𝜙 and the difference 𝐸0 between the kinetic energy 

of an electron inside the crystal and in the vacuum. Therefore, all information concerning the 

electronic structure is embedded in the first term. 

Looking into the first step, ARPES intensity can be described by the transition rate from 

an initial to a final state, both with N electrons. However, the creation of the photohole 

introduces different Hamiltonians and eigenstates in the final state. To circumvent these 

complexities, the sudden approximation is employed. It involves considering that the electron 

departs from the surface immediately after excitation, allowing no time window for the 

relaxation process to interfere with the electron wavefunction. Consequently, instead of having 

an N-electron final state at the end of the first step, it will possess 𝑁 − 1 electron and a free 

electron with a wavefunction characterized by momentum 𝒌. The approximation is represented 

by equations 71, 

  |𝛹𝑖
𝑁⟩ ≈ 𝜙𝑖

𝒌|𝛹𝑖
𝑁−1⟩  

|𝛹𝑓
𝑁⟩ ≈ 𝜙𝑓

𝒌|𝛹𝑚
𝑁−1⟩

.                                                        (71) 

The final state, with 𝑁 − 1 electrons, can be excited to different eigenfunctions |Ψ𝑚
𝑁−1⟩, 

where 𝑚 represents a set of quantum numbers encompassing all potential excitations of the 

final state [116]. This occurs after the electron is removed and returns to the initial electronic 

state. Consequently, the total transmission probability is expressed as the sum over 𝑚, 

considering all feasible excited states. 

The initial state can be represented using the sudden approximation when contemplated 

within the Hartree-Fock framework. In this context, the total wave function can be articulated 

as a product of each electron wave function, signifying that, prior to absorbing the photon 

energy, the state can be factorized from the overall wave function. With this in mind, the 

transition matrix elements can be written as: 
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⟨Ψ𝑓
𝑁|𝑉𝑖𝑛𝑡|Ψ𝑖

𝑁⟩ = ∑⟨𝜙𝑓
𝒌Ψ𝑚

𝑁−1|𝑉𝑖𝑛𝑡|𝜙𝑖
𝒌Ψ𝑖

𝑁−1⟩

𝑚

, 

= ∑⟨𝜙𝑓
𝒌|𝑉𝑖𝑛𝑡|𝜙𝑖

𝒌⟩⟨Ψ𝑚
𝑁−1|Ψ𝑖

𝑁−1⟩

𝑚

,                                        

= ∑ 𝑀𝑖,𝑓
𝒌 𝐶𝑚,𝑖

𝑚

,                                                               (72) 

where 𝑀𝑖,𝑓
𝒌  is the one-electron transition matrix element and 𝐶𝑚,𝑖 is the 𝑁 − 1 electron state 

overlap integral. To calculate the total ARPES intensity, we need to integrate 𝜔𝑖→𝑓 for all 𝑖, 𝑗 

and it will be a function of the detected kinetic energy and momentum according to equation 

73, 

𝐼(𝒌, 𝐸𝑘) =
2𝜋

ℏ
∑ ∑|𝑀𝑖,𝑓

𝒌 |
2

|𝐶𝑚,𝑖|
2

𝛿(𝐸𝑘 + 𝐸𝑚
𝑁−1 − 𝐸𝑖

𝑁 − ℎ𝜈)

𝑖,𝑓𝑚

.                         (73) 

𝐸𝑘 is the energy for a specific k-point. In the absence of electron-electron interactions, 

the removal of one electron would have no impact on the initial state, resulting in a 

𝐶𝑚,𝑖 coefficient equal to 1 for 𝑚 = 𝑖 and zero otherwise. However, when considering electron 

interaction, the 𝐶𝑚,𝑖 coefficient encompasses a spectrum of weights influencing the 

photoemission intensity. Consequently, the one-electron spectral function can be precisely 

defined by equation 74. This term encompasses all pertinent information regarding the 

electronic structure of the sample, representing the initial phase of the three-step model, 

𝐴(𝒌, 𝐸𝑘) = ∑|𝐶𝑚,𝑖|
2

𝛿(𝐸𝑘 + 𝐸𝑚
𝑁−1 − 𝐸𝑖

𝑁 − ℎ𝜈)

𝑚

.                         (74) 

However, the consideration of temperature effects is absent in equation 73 for the 

ARPES intensity. A streamlined approach to incorporate these effects is to introduce a Fermi-

Dirac distribution function, denoted as 𝑓(𝐸, 𝑡) = (𝑒
𝐸

𝑘𝑏𝑇 + 1)
−1

, thereby yielding the prevalent 

expression for ARPES intensity: 

𝐼(𝒌, 𝐸) = 𝐼0(𝒌, 𝑨)𝐴(𝒌, 𝐸)𝑓(𝐸, 𝑇),                                        (75) 

with 𝐸 as the electron energy with respect to the Fermi level 𝐸𝑓 and 𝐼0(𝒌, 𝑨) ∝ ∑ |𝑀𝑖,𝑓
𝒌 |𝑖,𝑓

2
 as 

the transition matrix elements, which can be considered constant for a given geometry, but also 

affected by the polarization and orbital spatial dependencies. 
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It is imperative to emphasize that equation 75, representing the ARPES intensity, does 

not encompass experimental nuances such as finite energy and momentum resolution. While 

the model relies on the three-step model and sudden approximation of Fermi’s golden rule for 

the transition probabilities, its scope is somewhat constrained by necessary simplifications. 

Nevertheless, this model serves as a foundation for interpreting the significance of the resultant 

ARPES spectra. For a rigorous quantitative analysis, beyond phenomenological models, 

calculations grounded in the one-step model may be imperative to facilitate a precise 

comparison between theoretical predictions and experimental observations 

 

4.3.1.2 One-particle spectral function and self-energy 

 

The expression given by equation 74 for the spectral function implies that in a non-

interacting scenario (𝐶𝑚,𝑖 = 1 for 𝑚 = 𝑖 and 0 otherwise), the ARPES bands would manifest 

as perfectly sharp delta functions with no width. However, due to electron interactions, the 

actual ARPES spectra consistently exhibit characteristic broadening of the lines. In accordance 

to our formalism and under our approximation, addressing this broadening of band lines is best 

accomplished through the utilization of the Green function [117]. 

The spectral function defined in equation 74 is connected to the single-particle 

Green function by: 

𝐴(𝒌, 𝐸) = −
1

𝜋
𝐼𝑚(𝐺(𝒌, 𝐸)).                                              (76) 

Mathematically, the Green function is formally defined as the solution to an 

inhomogeneous linear differential equation, resulting in a 𝛿-type function. In a physical context, 

it serves to characterize the time-retarded response or propagation of an operator. The Green 

function can be expressed through an expansion of the operator eigenvalues. In the specific case 

of photoemission, the pertinent Green function is determined by the one-electron removal 

operator within the N-electron system previously elucidated. This Green function can be 

utilized to deduce the spectral function through an alternative method. Furthermore, to 

incorporate the effects of electron correlation, the Green function can be expressed in terms of 

the electron self-energy ∑(𝒌, 𝐸): 
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𝐺(𝒌, 𝐸) =
1

𝐸 − 𝜖𝒌 − ∑(𝒌, 𝐸)
,                                                 (77) 

where ∑(𝒌, 𝐸) is defined as having a real part ∑′(𝒌, 𝐸), related to the energy renormalization 

when compared with a non-interacting system, and an imaginary part ∑′′(𝒌, 𝐸), related to the 

photoemission lifetime [114]. 𝜖𝒌 is the electron band energy at a given 𝒌. From this, we can 

write the spectral function as: 

𝐴(𝒌, 𝐸) = −
1

𝜋
 

 𝛴′′

(𝐸 − 𝜖𝒌 − 𝛴′)2 − 𝛴′′2
 .                                        (78) 

In accordance with the principle of energy conservation, a detected photoelectron will 

possess energy equivalent to its band energy augmented by a self-energy factor, particularly 

when considering electron correlations. Furthermore, assuming that self-energy components 

remain constant, the spectral function will adopt the shape of a Lorentzian distribution, 

characterized by a full width at half maximum (FWHM) related to 2Σ′′ and a center at 𝜖𝒌 + Σ′. 

The analytical derivation of these self-energy components is intricate, and under certain 

experimental conditions, an estimation may be practical. However, the complexity of these 

components underscores the significance of the energy and momentum resolutions, which, 

though overlooked thus far, are paramount as the resolution capability for line width is 

inherently bound by the constraints of experimental resolution. 

To accommodate these factors and address temperature effects, it is imperative to multiply 

the spectral function by the Fermi-Dirac distribution, as per equation 73, and it convolves with 

a 2D Gaussian incorporating widths associated with energy and momentum resolutions. In 

experimental settings, obtaining the scattering rate Γ, linked to the imaginary part of the self-

energy Σ′′, requires the consideration of a renormalization factor Z [118], [119]: 

𝛤 = −2𝑍𝛴′′.                                                                     (79) 

 With this in mind, we can rewrite the spectral function in terms of Γ, which is directly 

associated to the experimental FWHM: 

𝐴(𝒌, 𝐸) =
1

𝜋
𝑍(𝒌, 𝐸)

𝛤(𝒌,𝐸)

2

(𝐸 − 𝜖𝒌
∗)2 + (

𝛤(𝒌,𝐸)

2
)

2 ,                          (80) 

where 𝜖𝒌
∗ is the renormalized particle dispersion. However, the experimental scattering rate may 

encompass contributions beyond those originating from single particles, including electron-
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phonon interactions and elastic scattering [118]. Elastic scattering by defects can be considered 

a constant background [120] within a semiclassical approximation. Alternatively, the elastic 

term dependence on 𝐸 can be estimated in relation to the band velocity, given by Γ𝑒𝑙(𝐸) =

Γ(0)𝑣(𝐸)

𝑣(0)
, where 𝐸 = 0 denotes the Fermi energy. 

 

4.3.1.3 Angle and momentum dependencies of photoemission processes 

 

The ARPES spectrum serves as an intensity map delineating momentum and binding energy 

concerning a specific sample orientation. Binding energy, denoted as 𝐸𝐵, is characterized by a 

shift in detected kinetic energy, aligning with the condition where Fermi energy (𝐸𝐹) coincides 

with 𝐸𝐵 equal to zero, as outlined in equation 81. In this conceptualization, 𝐸𝐵 represents the 

minimum energy requisite for extracting an electron from the material. 

 

𝐸𝑘 = ℎ𝜈 − 𝜙 − |𝐸𝐵|.                                                       (81) 
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Figure 18: (a) A schematic representation of an ARPES experiment with incident light of 

energy ℎ𝜈. The detector is positioned at a polar angle 𝜃 and azimuthal angle 𝜑. The electron 

momentum parallel to the sample surface projection is shown in the blue box. 𝒌 is the electron 

momentum inside the material, while 𝑲 is the electron momentum in the vaccum [121]. (b) 

ARPES measurement of Cu (111) showing the energy dispersion with respect to the electron 

momentum [122]. 

The momentum of an electron within the sample can be decomposed into parallel and 

perpendicular components, denoted as 𝒌 = 𝒌⊥ + 𝒌∥, where 𝒌⊥ = 𝒌𝑧 and 𝒌∥ = 𝒌𝑥 + 𝒌𝑦.  
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Momentum dependency is intricately linked to the detection angle. The momentum 

parallel to the sample surface remains conserved, facilitating the mapping of photoemission 

intensity concerning parallel momentum and the binding energy of the photoelectron. However, 

due to the discontinuity in the perpendicular direction within the medium, momentum 

conservation in that axis is not upheld. This can be observed in figure 18-(a). 

Utilizing the electronic dispersion equation for a free electron, 𝐸𝑘′ =
ℏ2𝑘′2

2𝑚
, which correlates 

kinetic energy with momentum in a vacuum, allows for the decomposition of electron 

momentum in vacuum, denoted as K, as expressed in equations 82, where k = |K|. 

𝐾𝑥 = 𝑘𝑥 = √
2𝑚𝐸𝑘

ℏ
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑

𝐾𝑦 = 𝑘𝑦 = √
2𝑚𝐸𝑘

ℏ
𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑

𝐾𝑧 = 𝑘𝑧 = √
2𝑚𝐸𝑘

ℏ
𝑐𝑜𝑠 𝜃           

 .                                       (82) 

Here, 𝜃 represents the polar angle, and 𝜑 corresponds to the azimuthal angle, as 

illustrated in figure 18-(a). The analyzer slit covers a 𝜃 interval, so when𝜑 = 0, the 𝑘𝑦 value 

remains constant, and the measurement is conducted along 𝑘𝑥. While the in-plane components 

are preserved, the perpendicular out-of-plane component is not conserved. The 𝑘𝑧 component 

can be inferred from energy conservation, as demonstrated in equation 83: the inner potential 

𝑉0 must be considered for the electron departing the material and being detected. 

𝐸𝑘 + 𝑉0 =
ℏ2

2𝑚
(𝑘⊥

2 + 𝑘∥
2)         

                               𝑘⊥
2 = (𝐸𝑘 + 𝑉0)

2𝑚

ℏ2
−

2𝑚

ℏ2
𝐸𝑘 sin2 𝜃 

𝑘⊥
2 =

√2𝑚(𝐸𝑘 𝑐𝑜𝑠2 𝜃 + 𝑉0)

ℏ
.                                         (83) 

 In figure 18-(b) it is showed the energy dispersion of Cu (111) measured by ARPES. 

Knowing the angle and the kinect energy of the photoemmited electron, it is possible to 

obtained the binding energy and the momentum, seen in equations 81 and 82. As a result, the 

band structure of the material is built, as observed in figure 18-(b). These results matched with 
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the theoretical prediction of the energy dispersion for Cu (111) (free electrons in a 2D electron 

gas). 

To characterize the entire 3D Brillouin zone, an ARPES experiment involves scanning 

at different angles to access varying 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 values, as described in equation 82 and 

illustrated in figure 19. By adjusting the tilt angle 𝜙, a range of 𝑘𝑥 values can be probed for 

𝑘𝑦 ≠ 0. For measurements along distinct high-symmetry directions, the azimuthal angle 𝜑 is 

altered. In the case of a sample with 4-fold rotational symmetry, each 90° rotation theoretically 

results in no discernible difference. Therefore, the only other high-symmetry rotation different 

from 0° would be 45°. Additionally, scans may be required with changes in the incoming energy 

hν to estimate the 𝑉0 value needed to identify 𝑘𝑧 for high-symmetry points in reciprocal space. 

Figure 19: The rotation degrees of freedom polar, tilt and azimuthal which are accessible with 

an IFW-cryo manipulator. The upper (lower) schematics show sequential rotations in real (for 

a horizontal slit in k) space. Adapted from [123]. 

 

4.3.2 Instrumentation 

 

The instrumentation required for ARPES measurements encompasses the X-ray source, 

the ultra-high vacuum environment housing the sample, and the electron analyzer, all of which 

will be explained further. Beyond the environment, the sample holder must possess positional 

and angular degrees of freedom to align the sample with respect to the photon beam and scan 

different 𝑘-space points. X-ray sources like helium lamp or a laser emit photons with energies 
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in the range of a few electron volts and this limits its use to the initial characterization of 

samples. On the other hand, the utilization of a synchrotron expands the experimental 

possibilities to conditions inaccessible to a conventional table-top ARPES setup.  

The energy tunability inherent in a synchrotron source allows for the exploration of 

different values of 𝑘𝑧 in the measured spectra. This feature is particularly valuable for 

elucidating the out-of-plane dispersion of the electronic structure. Precise identification of high-

symmetry points in reciprocal space necessitates some tuning. Moreover, higher energies are 

imperative to reach more distant points in reciprocal space, given that the absolute value of 𝑘 

is proportional to the square root of the photoelectron kinetic energy. 

Another advantage of employing a synchrotron facility lies in its high photon count, 

small beam as well as the possibility to control the photon polarization. This becomes crucial 

to dicern between bulk and surface states on the electronic band structure and for that we have 

used the Bloch beamline from MAX IV synchrotron (Lund, Swedeen) in this thesis. 

 

4.3.2.1 Vaccum and cryogenics 

 

In the realm of soft X-rays, maintaining ultra-high vacuum (UHV) conditions becomes 

imperative, as the presence of air can lead to the absorption and scattering of low-energy 

photons and chemical reactions with the sample. Consequently, in an ARPES configuration, all 

optical components, the sample, and the detection environment must operate under vacuum 

better than 5 × 10−10 mtorr. The manipulation of samples within the vacuum chamber requires 

a cryomanipulator for the sample holder. This device facilitates rotation and precise positioning 

of the sample within the cooling environment. For experiments conducted at low temperatures, 

many beamlines are equipped with liquid helium cryogenic systems, although liquid nitrogen 

can also be employed for achieving moderately low temperatures, 78K. 

Given the surface-sensitive nature of the photoemission process, due to its shallow 

penetration depth of a few angstroms, the sample must be cleaved inside the vacuum chamber 

to ensure high-quality measurements. This practice prevents oxidation and contamination of 

the measured surface. Cleaving methods vary; for certain Van der Waals materials, a simple 

scotch tape may suffice, breaking out-of-plane bonds and removing an entire layer of the sample 

to expose a fresh surface in the UHV environment.  
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Alternatively, crystal growth can occur within a preparation vacuum chamber from the 

outset, utilizing evaporation or sputtering techniques. Subsequently, the sample is transferred 

to the measurement chamber through an UHV transfer line. This sophisticated approach 

involves separated components with their vacuum pumps. While not universally supported by 

all facilities or setups, it is feasible in modern synchrotron beamlines. Maintenance of all 

vacuum components is paramount to ensure cleanliness and freedom from contaminants. 

Therefore, meticulous ARPES setup maintenance is critical for achieving and sustaining 

optimal operating conditions. 

 

4.3.2.2 Electron analyzer 

 

The electron analyzer, or spectrometer, takes the form of a hemispherical device with 

the capability to deflect incoming electrons in a curved trajectory, positioning them at different 

detection points based on their kinetic energies, see figure 20-(a). This deflection relies on the 

potential lens effect, where an electrostatic potential can focus the electron beam, akin to how 

a photon beam is influenced by an optical lens system. The operation of the electron analyzer 

unfolds in several steps: initially, an electrostatic lens system decelerates and focuses the 

electron beam onto the analyzer entrance slit. Subsequently, electrons passing through the 

entrance slit are deflected by the electric field in between two spherical hemispheres. Finally, 

the electrons pass through the exit slit and are detected, figure 20-(b). The spectrometer 

components are enclosed within UHV environment to prevent scattering and absorption from 

air particles. Moreover, the potential lens system is sensitive to magnetic field effects on 

electron trajectories, necessitating an ARPES environment ideally shielded from magnetic field 

influence. Following their emission from the sample, photoelectrons scatter in various 

directions. The acceptance angle for the spectrometer, defining the maximum 𝑘 range for the 

measured spectra, is determined by the slit width at the entrance of the electrostatic lens system 

and its distance from the sample. The electron lens system focuses the electron beam at the 

detector entrance, resolving the electrons by their angle around a certain 𝜃 about the sample 

normal.  
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This system also accelerates and decelerates the electrons, concentrating their kinetic 

energy around a designated value known as Pass Energy (𝐸𝑃), ultimately linked to the energy 

resolution. Additionally, slits are strategically placed between the potential lens to prevent 

vertical angular dispersion, ensuring that the angular dispersion occurs along the entrance slit 

direction (horizontal). This design ensures that all electrons enter the hemispherical analyzer at 

approximately the same vertical position, later to be separated by energy in this direction. 

Figure 20: (a) A schematic representation of a spherical electron analyzer with internal 

radius 𝑅1 and external radius 𝑅2. (b) An example of spectral function measured at the exit slit 

for graphene as a function of angle and energy is shown in the entrance slit image. From ref 

[123]. 

The hemispherical analyzer comprises two half-spheres with radius 𝑅1 and 𝑅2, maintained 

at a potential difference 𝑉. As the electron beam enters the space between both half-spheres, 

electrons with lower kinetic energy experience more deflection due to the potential, while those 

with greater kinetic energy describe a trajectory with a larger radius, hitting the exit slit closer 

to the outer sphere. In contrast, slower electrons hit the exit slit closer to the inner sphere. This 

process creates energy dispersion, as depicted in figure 20-(a). To achieve resolution in both 

angle and energy for electron detection, electrons with different angles but the same kinetic 

energy must travel along a plane perpendicular to the one resolving energy, as illustrated in 

figure 20-(b). After passing through the exit slit, electrons have their positions determined by 

their respective kinetic energy, striking a set of microchannel plates (MCP). Each MCP 

functions as an electron multiplier through secondary emission processes triggered by an 

electric field. Subsequently, the electrons strike a fluorescent phosphor screen, generating an 

equivalent photon beam that is detected by a charge-coupled device (CCD). 
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The electrons exhibit linear energy dispersion around the pass energy 𝐸𝑃; consequently, a 

higher 𝐸𝑃 results in increased final intensities, albeit with reduced energy resolution. This 

relationship is succinctly expressed in equation 84, where 𝜔 represents the entrance slit width, 

𝑅0 =
(𝑅1+𝑅2)

2
 denotes the mean radius between both spheres, and 𝛼 represents the acceptance 

angle. 

𝛥𝐸 = 𝐸𝑃 (
𝜔

𝑅0
+

𝛼2

4
).                                                     (84)  

The momentum resolution is intricately linked to the number of angle channels at the 

MCP and the acceptance angle. Opting for lower acceptance angles and a greater number of 

channels contributes to enhanced angle resolution in the final spectra, albeit at the expense of 

intensity. Therefore, continual technical advancements in electron analyzers are imperative to 

enhance the resolution, intensity, and overall feasibility of ARPES experiments. In this context, 

a pivotal characteristic of an electron analyzer is its intrinsic work function. Lowering the 

analyzer work function proves advantageous for investigating ARPES spectra at lower binding 

energies and facilitates efficient operation with laser sources, typically in the ultraviolet range. 

At the Bloch beamline, the DA30 electron analyzer from Scienta Omicron is employed. 

This analyzer utilizes deflecting lenses to capture electrons in an area perpendicular to the slit 

direction. This configuration allows for probing Fermi surface maps without any sample 

movement, mitigating issues such as prolonged collection times, intensity inconsistencies, and 

alignment challenges. However, it is worth noting that the probed Fermi surface exhibits a 

circular shape, in contrast to the square shape typically obtained when acquiring maps by 

adjusting the tilt angle. Consequently, certain features at higher momenta may be overlooked. 

The DA30 offers discrete options for pass energy (Ep) at 1, 2, 5, 10, 20, 50, 100, and 200 eV. 

Although this limits the tuning flexibility for energy resolution, electron counting, and binding 

energy range, it stands out as one of the analyzers with superior resolution.  
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5  Evidence of Thickness-dependent Surface 

Induced Ferroelectricity in Few-layer 

Germanium Sulfide obtained via Scanning 

Tunneling Spectroscopy    

 

In this section we will discuss the first project of this thesis, the observation of a 

thickness-depedent tunneling current up reducing the number of layers of Germanium Sulfide 

(GeS) nano flakes. Vapor-phase deposition was used to synthesize ultrathin germanium sulfide 

nano-flakes on a highly oriented pyrolytic graphite substrate. Nanostructures of variable 

thicknesses were characterized using scanning tunneling microscopy and spectroscopy. 

Tunneling currents under forward and backward biases were measured as a function of the 

nano-flake thickness. Remarkably, we clearly observe a hysteresis pattern, which we attribute 

to surface ferroelectric behavior, consistent with screening conditions of polarization charges. 

The effect increases as the number of layers is reduced. This experimental result may be directly 

applicable to miniaturized memory devices, given the two-dimensional nature of this effect. 

 

5.1 Introduction 

 

Ferroelectric materials have received significant attention due to the fundamental 

aspects of the physics involved in their behavior, as well as to their switchable properties, which 

make them attractive in a variety of applications, including non-volatile memories and 

neuromorphic computing [124], [125], [126], [127], [128]. For these reasons, achieving stable 

ferroelectricity in ultrathin films is particularly important, with technological applications in 

the miniaturization of sensors, memories and optoelectronic devices [129], [130]. However, the 

investigation of polarization effects in the surface structure and the detailed description of the 

hysteretic behavior are still a challenge. In this context, the recent discovery of ferroelectricity 
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in two-dimensional 2D van der Waals (vdW) materials represents a unique opportunity to 

unveil this phenomenon in the ultrathin limit [131], [132], [133]. 

A possible material to be used in novel devices is GeS, a group IV-VI layered 

monochalcogenide, whose ferroelectric behavior has been the subject of numerous studies, 

especially by means of electric response measurements. Scanning tunneling spectroscopy, 

when combined with tunneling microscopy, may be a powerful technique to assess the 

hysteretic electronic behavior correlated with the film structure [134], [135], [136], [137].  

In the present work, we focus on this technique, and we demonstrate the observation of 

a thickness-dependent phenomenon of ferroelectricity. Germanium sulfide nanoflakes were 

deposited on highly-oriented pyrolytic graphite (HOPG). We characterized the GeS/HOPG 

heterostructure by STM and STS measurements. STS spectra exhibit a pattern consistent which 

semiconductor such as GeS. These were compared with first-principles calculations based on 

the density functional theory. Remarkably, we observed hysterical loops in the tunnelling 

curves when forward and backward biases were applied.  

We ascribe this observation to thickness-dependent surface induced ferroelectricity of 

germanium sulfide flakes. The STM tip creates a strong local electric field, which is able to 

switch the polarization of the topmost GeS layer. This effect results in a hysteretic behavior, 

which increases monotonically as the film thickness decreases. 

 

5.1 Germanium Sulfite (GeS) 

 

Germanium Sulfide is a p-type semiconductor with orthorhombic layered crystalline 

structure. It has strong covalent bonding within the layer and weak van der Walls interactions 

between adjacent layers. This facilitates the growth of 2D nanostructures in these systems.  The 

band gap for GeS has been reported to be in range of 1.55-1.65eV [138]. These values match 

the desired absortion range for an efficient photovoltaic material. Besides optoeletronic 

applications, GeS nanosctrucutures also exhibited excellent lithium storage properties [139]. 

However, only limited studies have been published on GeS nanostrucutures compared to others 

IV-VI semiconductiors such as lead or tin-based chalcogenides.  

The GeS unit cell is composed by 8 atoms, 4 Germanium (Ge) atoms and 4 Sulfur (S) 

atoms. These atoms form a A-B stacking composed by two layers, see figure 21-(a). Due the 
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in-plane distribution of G and S atoms in each layer, a non-zero polarization vector along b-

direction is founded in this material. Each of these two layers have this polarization vectors in 

the opposite direction, figure 21-(b). This fact makes the bulk an antiferroeletric material, but 

as we approach to the 2D limit, the residual polarization vector from the top most layer becomes 

more evident making this material a ferroeletric. 

Figure 21: (a) Orthorombic structure of Germanium sulfide. Ge and S atoms are represented 

by black and yellow atoms, respectively. (b) The charge distribution from upper and lower 

layers that compose the unit cell. Both have a non-zero polarization vector in opposite b-

direction. 

 

5.2 Growth and Characterization 

 

In our experiment, we obtained GeS crystals by mixing the two elements in a 

stoichiometric ratio, using 0.3g of 99.999% pure germanium powder and 0.14g of 99.99% pure 

sulfur powder. Both materials were put into a quartz tube. The tube was evacuated, sealed and 

heated to 1000°C for four days. The characterization of GeS crystals was achieved by X-ray 

powder diffraction (XRPD) and energy dispersive electron spectroscopy (EDS). For the X-ray 

diffraction analysis, a focused monochromatic sub-millimeter beam (𝜆 = 0.154nm, Cu K-

alpha1) was employed. Powder diffraction analysis was performed by using the MAUD [140] 
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software which was used to analyse the phases of the GeS sample. Fitting results confirmed the 

desired Pnma phase of GeS, see figure 22 left pannel. XRPD measurements were carried out in 

a Panalytical Empyrean system, equipped with a two-dimensional detector and a Cu K-alpha 

source (LabCri-UFMG). Samples were finely grinded and measured in the range from 4° to 

150°. The region with strongest peaks was then analyzed throughout the Maud Rietveld 

package using reference crystallographic data for GeS crystal. 

Figure 22: Left panel - X-ray power diffraction pattern of GeS sample. The blue dots are the 

experimental data and the red line is the fit using MAUD software for GeS Pnma phase. Right 

panel - Energy dispersive spectroscopy of GeS crystal. 

EDS was performed on several spots of the sample surface and the result showed an 

atomic ratio between S and Ge of approximately (49.96±0.01)% and (50.04±0.02)%, see figure 

22 right pannel. The spectrum aquired in different regions is shown in table2. 

Element Region 1  Region 2 Region 3 Region 4 Region 5 Region 6 

S 48.88 (%) 49.18 (%) 49.40 (%) 49.46 (%) 51.88 (%) 48.32 (%) 

Ge 50.95 (%) 49.49 (%) 50.18 (%) 50.54 (%) 49.04 (%) 49.68 (%) 

Table 2: Atomic ratio of Germanium and Sulfur at different regions of the crystal, as obtained 

by EDS. 

To obtain GeS nano-flakes, we used physical vapor deposition (PVD) to transport a 

small portion of the powder material onto a few highly oriented pyrolytic graphite substrates 

(see figure 23-(a)). The process involved the use of a quartz tube (internal diameter of 400 mm), 

connected to a roughing pump, with a temperature gradient from 500°C down to 250°C. A total 

of 28.2 mg of GeS material was placed at the frontal part of the furnace at 430°C and HOPG 

substrates were placed 7-12 cm from the GeS source, at approximately 320°C. We used a carrier 

gas mixture of argon (20 sccm) and hydrogen (H2, 10 sccm). Pressure was maintained at    
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2 × 10−1 mbar. After the PVD procedure, orthorhombically-shaped GeS flakes were 

successfully obtained as we expected for the Pnma phase (see figure 23-(b)).  

Figure 23: (a) Schematic image of PVD process. (b) Optical microscopy image of GeS flakes 

on HOPG. (c) Micro Raman spectrum from GeS flakes. (d) Micro X-Ray diffraction pattern 

from GeS flakes, blue dashed lines correspond to 00L HOPG X-ray peaks and red dashed lines 

to GeS Pnma ones. (e) SAED pattern of a GeS nanoflake indicating the orthorhombic Pnma 

phase. (f) HRTEM showing the atomic displacement of GeS nanoflake. 

In order to confirm that the phase of the material after deposition remained the same, 

Raman spectroscopy was employed to confirm the purity of the germanium sulfide flakes. 

Raman measurements were performed using a Witec alpha300 RA instrument with a 
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wavelength of 𝜆𝑙𝑎𝑠𝑒𝑟 =  532nm. A 1800g/mm grating was used, and the laser power was 

maintained at 100μW. Characteristic peaks for germanium sulfide, consistent with those 

reported in the literature, were obtained (figure 23-(c)) [141].  

We conducted micro-X-ray diffraction measurements at the EMA Beamline of the 

Brazilian Synchrotron Light Source (Sirius). A Huber 6-circle diffractometer was used with a 

20x20 micrometer beam and a wavelength of 0.13041 nm (see figure 23-(d)). The diffraction 

pattern revealed the presence of GeS, HOPG and aluminium (sample holder) peaks, these peaks 

values is depicted in table 3. Since the X-ray transmission throughout 100nm of GeS and 500nm 

of HOPG is of 98% and 75%, respectively, two peaks from the aluminium sample holder were 

also observed [142].  

Structure Phase hkl Position 

(2𝜃) 

Relativity 

Intensity 

Structure 

Factor 

GeS Pnma 002 14.1 9.4 20.7 

GeS Pnma 110 26.65 35.5 78.8 

GeS Pnma 111 27.74 40.4 87 

GeS Pnma 004 28.52 100 139.5 

GeS Pnma 021 34.56 15 68.1 

      

HOPG P63mc 002 22.15 100 17.3 

HOPG P63mc 004 45.19 7.2 10 

      

Al Fm-3m 111 31.86 35.8 100 

Al Fm-3m 200 37.02 49 34 

Table 3: X-Ray experimental peaks relating the information of structure, phase, HKL indices, 

relative intensity and structure factor for GeS, HOPG and Aluminum. The relative intensities 

and structure factors for each structure were calculated individually. 

In order to investigate the local crystal structure of the material, Transmission Electron 

Microscopy (TEM) and Selected Area Electron Diffraction (SAED) measurements were carried 

out on a 200 kV LaB6 -Tecnai G2-20 microscope (FEI-Thermofischer Scientifics). The TEM 

sample was prepared by gently scraping the surface of the GeS film deposited onto HOPG 

substrates. The resulting residue was dispersed in isopropyl alcohol and dipped onto a 300-
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mesh holey carbon TEM Copper grid (2SPI Suplies). The low magnification image of the edge 

of a small flake of the GeS film fixed onto the carbon film of the TEM grid is presented in figure 

24-(b). An optical image of a GeS flake is depicted in figure 24-(a).  

Figure 24: (a) Optical image of a GeS flake. (b) The low magnification image of the edge of a 

small flake of the GeS film fixed onto the carbon film of the TEM grid. 

Figure 25: (a) Atomic structure of the GeS Pnma phase. (b) STM atomic resolution of our GeS 

sample. STM image with sensitivity to atomic stripes was taken using  𝐼𝑇 = 500𝑝𝐴 and 𝑉 +

2𝑉,with a measurement field of view of 4nm x 4nm. (c) Surface topography profile obtained in 

(b). 
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Figure 23-(e) show the SAED for the GeS nano flake shown in panel (f). This diffraction pattern 

is related to an orthorhombic crystal structure. In the HRTEM of Figure 23-(f), acquired for one 

GeS nanoflake, it is possible to observe the atomic arrangement of different layers. In order to 

identify the crystallographic structure, the electron diffraction pattern was indexed using the 

Diftools Script Package[143] for Gatan Digital Micrograph™ software. Lattice spacings in 

HRTEM images were also determined using Gatan Digital Micrograph software. The 

experimental electron diffraction patterns and HRTEM analyses are consistent with the GeS 

orthorhombic phase (a = 0.363 nm, b=0.429 nm e c= 1.042 nm). 

Atomically-resolved STM measurements were performed to confirm that our GeS 

flakes are in the Pnma phase. The experimental lattice parameters found using the STM aligns 

with the expected for GeS, see figure 25. 

 

5.3 Scanning Tunneling Microscopy/Spectroscopy Study 

 

To investigate our GeS ultra-thin flakes, we employed an Omicron VT-STM scanning 

tunneling microscope/spectroscope operating at 1.7 × 10−10𝑚𝑏𝑎𝑟 at room temperature. Since 

GeS is a semiconductor with a bandgap of approximately 1.6eV, HOPG played a dual role in 

our experimental setup. It both enabled the creation of an electrically closed circuit, necessary 

to measure the tunneling current, and also modified the DoS of thin layers of GeS inside the 

band gap, allowing us to analyze the behavior of electrons within the gap. 

In figure 26-(a), an STM image reveals two stacked flakes, both greater than 50 nm in height 

(approximately 50-unit cells), exhibiting bulk behavior. We performed several scanning 

tunneling spectroscopy measurements to investigate the electronic behavior of bulk GeS.  To 

obtain a typical STS curve, 30 STS measurements were taken into consideration to better ensure 

the reliability of our results. STS measurements were performed using a lock-in amplifier 

Stanford Research Systems SR-810, operating at 2904Hz. STS spectra were extracted from the 

amplifier which was set with an amplitude of 100mV, phase 154,78°, time constant of 30mV 

and 24dB. 
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Figure 26: (a) Upper - STM image of stacked GeS flakes (area of 2.5 × 2.5𝜇𝑚2, 𝐼𝑇 = 800𝑝𝐴 

and 𝑉𝑇𝑖𝑝 = −2𝑉); Lower - average STS measurement. (b) Upper - STM image of a GeS 

nanoflake (area of 80 × 80𝑛𝑚², 𝐼𝑇 = 500𝑝𝐴 and 𝑉𝑇𝑖𝑝 = −1𝑉); Lower - average STS 

measurement, showing the electronic behavior a GeS nanoflake. 

Figure 27: Comparison of scanning tunneling spectroscopy measurements of GeS (upper left), 

HOPG (upper right), the sum of both (lower left) and GeS flake on HOPG with a calculated 

density of states of 4 monolayers of GeS on HOPG (lower right). 



74 

 

   

 

To investigate the density of states of few-layer flakes, we performed several STS 

measurements on each flake. The STM image of figure 26-(b) displays a 2nm thick nanoflake. 

The dI/dV curve nearly matches the predicted shape of a GeS/HOPG system (figure 28). The 

comparison between GeS and HOPG STS spectra with DFT DoS is shown in figure 27. 

 

5.4 DFT Calculations 

 

For a better understanding of the properties of GeS nano-flakes, we performed DFT 

calculations. Firstly, we calculated the bulk properties of GeS using DFT to compare them with 

STS spectra. We then investigated how the low dimensionality changes the electronic behavior 

of atomically thin GeS flakes. Additionally, we modeled the GeS/HOPG junction to observe 

changes in the electronic density of states that correspond to our STS measurements. Our DFT 

implementation is based on the SIESTA program. It makes use of a numerical basis set formed 

by pseudoatomic orbitals, which includes, in our calculations, two functions for each valence 

state plus polarization orbitals, the so-called DZP scheme. The exchange-correlation functional 

is built within the Generalized Gradient Approximation (GGA) in the Perdew–Burke–

Ernzerhof (PBE) parametrization [100]. The PBE scheme rendered lattice constants for GeS 

(a=4.32 Å, b=3.73 Å and c= 10.64 Å) in good agreement with the experimental results (4.299, 

3.646, 10.481 Å for a, b and c, respectively). Test calculations with a van der Waals functional 

(in the DRSLL parametrization introduced by Dion et al) showed a very close agreement with 

the PBE result for the DOS in the heterostructure calculation. However, we found larger in-

plane lattice parameters for the GeS structure (a=4.58 Å and b=3.77 Å).   

Other important parameters are the mesh cutoff, which defines the real-space grid, and 

the k-grid mesh, which gives the sampling of Brillouin zone. The former was set to 350 Ry, 

and, for the latter, we employed the Monkhorst-Pack scheme defining grids of 20x20x20 and 

20x20x1 for bulk and slab calculations, respectively. We imposed periodic boundary 

conditions, with vacuum regions large enough (~15 Å) to prevent interactions between periodic 

images in the slab cases. The geometries were considered relaxed when the maximum force 

component in any atom was less than 10 meV Å−1. The crystal structure of GeS is defined by 
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a primitive cell comprising four Ge and four S atoms, arranged in two distinct layers which 

interact through van der Waals forces. 

Figure 28: Geometric model of a GeS/HOPG junction used in our calculations for the case of 

a bilayer GeS. The HOPG is represented in our model with a four-layer graphene in an AB 

stacking. (b) The density of states for stacked GeS with the number of layers ranging from one 

to four. Bulk calculation is shown as reference. In the insert figure, the blue solid and black 

dashed curves are the PBE and HSE0 calculations for monolayer, respectively. (c)-(f): 

Electronic density of states DoS of (c) HOPG and its junction with (d) a monolayer of GeS, (e) 

a bilayer and (f) a trilayer. 
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The bulk bandgap is direct and located at the Γ point. Its value, within our PBE scheme, is 

1.18 eV. As a model to theoretically characterize this system, we considered a GeS 

orthorhombic 2x1 supercell with one to four GeS layers placed on top of a four-layer graphene 

in a Bernal (AB) stacking comprising a total of 48 carbon atoms, as shown in figure 28-(a). We 

determined the evolution of the electronic structure of GeS with the number of layers varying 

from one to four.  

The result is depicted in figure 28-(b) in a sequence of DOS plots, along with the bulk 

case that is reproduced as a reference. The bandgap clearly decreases with the number of layers, 

going from 1.90 eV (one layer) to 1.35 eV (four layers). These values, as well-known in GGA-

PBE calculations, underestimate the bandgaps. The inset in Fig. 28-(b) shows the comparison 

of the DOS for a monolayer GeS when evaluated with the PBE (blue solid curve) and hybrid 

functionals (HSE0) (black dashed curve). Both calculations were conducted with the VASP 

package [144], [145]. The bandgad increases to 2.23 eV in the HSE approach, as expected. Our 

work focuses on few-layer GeS deposited onto a HOPG substrate. The HOPG DOS, shown in 

figure 28-(c), features the expected V-shape close to Fermi level. When the two systems are 

brought together, forming the heterostructure, there is a small charge transfer from graphite to 

the closest GeS layer, resulting in the DOS curves presented in figures 28-(d)-(f) for one to 

three GeS layers, respectively.  We shall directly compare these curves with the results of our 

STS measurements 

 

5.5 Nanoflake Electronic Stability 

 

In figures 29-(a) and 29-(b), the lower panels depict topographic STM measurements of 

both bulk and a nano-flake of GeS, respectively. Each topographic image contains a marked 

area in which STS measurements were carried out.  A qualitative comparison of the topography 

and the corresponding electronic response of bulk and few-layer GeS is shown in figure 4. First, 

we present STM images showing the topography of GeS bulk (29-a-i) and a nanoflake (29-b-

i). To better understanding the electronic response for each sample, a scan of a zoomed-in area 

was also performed (figures 29-a-ii and 29-b-ii). From these images, it is possible to observe a 

difference in the surface topography. The bulk exhibits an irregular surface, whereas the nano-
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flake is more uniform, probably due to the deposition procedure. Using STS scans, these 

zoomed-in regions can reveal their local density of states stability and doping behavior. 

Figure 29: (a) From bottom to top: STM image of the surface of bulk GeS in a 6𝜇m x 6 𝜇m 

scans (𝐼𝑇 = 800𝑝𝐴 and 𝑉𝑇𝑖𝑝 = −2𝑉); STM image of a zoom-in are indicated in the lower STM 

image; Doping map obtained from a series of STS spectra; Map of the integral of the 

experimental dI-dV curve from -1.0V to 1.0V (see text) (b) Identical sequence of maps for a 

nanoflake of 800nm x 800nm, (𝐼𝑇 = 500𝑝𝐴 and 𝑉𝑇𝑖𝑝 = −1𝑉). For Nano-Flake, notice the more 

uniform surface also with fewer fluctuations in the electronic density of states.  

The maps, shown in figures 29-a-iii and 29-b-iii, were produced from STS 

measurements at each sample position. They are related to the doping for bulk and nano-flake, 

respectively. The doping type was calculated using the difference between the conduction band 

energy and valence band energy values. P-type (n-type) behavior was ascribed to regions where 

this difference is positive (negative). Our results show that the doping of few-layer nano-flakes 

is more uniform, with a dominant p-type doping and a reduced surface fraction with n-type 
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behavior. It is known that GeS has intrinsic p-type doping, which is also the case for most of 

the nano-flake surface [146]. 

The second type of map (shown in figures 29-a-iv and 29-b-iv) is the integral of the 

dI/dV curves from -1.0V to 1.0V for each scanned surface point. This map reveals how the 

local density of states changes at the surface of the flakes. Higher values indicate the presence 

of a larger number of electronic states within this voltage range, pointing to a semi-metallic 

behavior. Lower values indicate a reduced number of electronic states, i.e., a more 

semiconducting behavior, typical of GeS. Interestingly, we observed that the few-layer 

nanoflake presents improved LDOS stability when compared to the bulk, possibly due to 

stacking flaws introduced during the growth of the material. In such lamellar stacking, GeS 

bulk is more susceptible to defects as growth proceeds, as evidenced by the color variation. 

To investigate the electronic response, for each case, dI/dV curves in these surfaces were 

acquired using automatic grid scans with 64 x 64 points over areas previously measured with 

STM. Particularly for the STS maps a minimum of 4 STM images were previously recorded 

with identical results to avoid tip or surface changes before STS measurements. Finally, the 

STM microscope collected 20 STS spectra per point and average values were plotted. 

 

5.6 Thickness-dependent Tunneling Current 

 

Figure 30 shows STM images of several flakes with varying thicknesses ranging from 

5 to 20 nm with the dI/dV curve for each flake. For each flake we performed a series of STS 

spectra and take the average to observe the electronic behaviour for different thickness over the 

HOPG subtract. Such averages are shown in the lower panels of figure 5. Comparing with the 

DFT calculations in figure 28-(c)-(e) it is possible to observe that the HOPG influences the GeS 

gap measurement, inducing a non-zero slope for positive bias values in reduced GeS flake 

thickness.  

Through STS measurements at distinct locations on a nanoflake, we identified 

differences in the current-voltage (I-V) curve when the bias was cycled in a negative to positive 

or a positive to negative sequence. By varying the voltage from negative to positive values and, 
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after a 1s interval, a positive to negative current scan, the graph exhibits a different result. This 

phenomenon was more noticeable for flakes with reduced thicknesses.  

 

Figure 30: STM images of GeS flakes (upper panels), with the corresponding dI-dV curves 

(lower panels) at the same location (white dot). All STM images were obtained with 𝐼𝑇 =

500𝑝𝐴 and 𝑉𝑇𝑖𝑝 = −1𝑉. This series of STM and STS results was measured in flakes with 

different thicknesses of (a) 5nm; (b) 8nm; (c) 10 nm; (d) 20nm. The scale bar is respectively: 

100nm ,100nm, 200nm and 200nm. 

Figure 31: Germanium sulfide I-V curves for different cycles in the same spot at 2-nm thicker 

nanoflake. The color map is related to the number of cycles. 
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We have observed that for a series of measurements cycling between these bias values 

(usually from 20 to 100 cycles), closed loops are clearly observed, see figure 31. This suggests 

that the observed closed loops are the result of ferroelectric ordering at the surface.  

Figure 32: (a) A sequence of I-V curves measured for different GeS flakes. In this graph, 

forward and backward currents for each thickness are combined at the same curve (with the 

same color). (b) The energy associated with the inner area for negative and positive bias values 

in (a). 
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In figure 32-(a) we present STS measurements for flakes of different thicknesses in a 

larger voltage range. One observes that, for -6V to +6V back to -6V loops, a pure hysteretic 

behavior can be identified, and the effect is, again, more pronounced for thinner flakes. These 

curves in fig. 32-(a) may be used to calculate a lower limit for the electric field energy in GeS 

flakes. The STS spectra were obtained using 200 points with T-raster of 200ms. The time 

between the end of forward and begin of backward current was set to be 1s. This energy density 

can be experimentally estimated from our STS measurements using the relation: 

𝑢 =
𝑈

𝐴
=

𝛥𝑡

𝐴
∫ (𝐼𝐹 − 𝐼𝐵)𝑑𝑉′

𝑉

0

,                                                   (85) 

 

where Δ𝑡 is the sweeping time of the I-V curve (usually a few seconds), 𝐼𝐹 is the forward current 

and 𝐼𝐵 is the backward current. This result is expressed in 
𝑚𝐽

𝜇𝑚2 units and it is depicted in fig. 32-

(b). One observes that the energy density decreases monotonically, starting with a 2 nm-thick 

flake and reaching a minimum value for 20nm-thick flakes. 

 In order to exclude the possibility of charge accumulation, which would induce a 

response with different currents along forward and backward STS scans, we have conducted 

additional Kelvin Probe Force Microscopy (KPFM) measurements on our flakes using a 

Nanosurf Flex-AFM with the Nanosurf C3000 controller. Such charging effect is unexpected 

in our case for thin layers (thin GeS flakes) on top of a conductive substrate under applied bias, 

since charge leaking through the HOPG substrate is probably dominant. 

Nevertheless, if a given flake has misoriented regions (out of crystalline stacking 

registry) or surface oxide, a minor effect of charge accumulation may take place and must be 

investigated. In KPFM, both the second derivative of the local capacitance and the surface 

potential can be monitored, providing images in which distinct contrasts in the same flake 

would point out to charge trapping. We have then measured KPFM in single-pass mode using 

a Multi75E-G tip, image-size of 1 × 1 𝜇𝑚2 and fast axis scanning time of 5s. Applied biases 

from -8V to 8V were used and the specific range of 2V to 6V is depicted in fig. 33.  

The in-phase tip potential variation for distinct applied bias values is shown in figures 

33-(a) -(c), whereas figures 33-(d)-(f) show the out-of-phase (lock-in filtered) bias. In all panels 

a thin GeS flake 12 nm thick is observed at the center of each image. These signals are a measure 

of the second derivative of the local capacitance and the electric surface potential force, 
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respectively. For the sake of comparison, monolayers of planar molecules in HOPG exhibit 

potential (color code) scales ranging up to hundreds of mV for applied biases of the order of 

2V [147]. Hence, in both KPFM channels one observes variations of tip potential that are 100 

times lower than the bias applied to the AFM tip (similar results are retrieved for negative bias 

values). In figures 33-(a)-(c), the observed potential at the flake is nearly zero, whereas the 

potential in figures 33-(d)-(f) remains in the order of 1mV. These results indicate that this flake 

is not charged due to tip potential. 

 

Figure 33: KPFM measurements of a nanoflake with 12nm height. (a)-(c) shows the tip voltage 

variation for different tip voltage values. (d)-(f) shows the surface potential for different tip 

voltage values 



83 

 

   

 

Considering that STS results are dominated by surface effects, we proceed to a 

phenomenological description of ferroelectric surface domains in GeS flakes.  The integral of 

the tunneling current curves varies for forward and backward biases. The difference between 

the integrals is directly proportional to the energy employed to maintain the polarization against 

the electric field of the tip. Therefore, a physical model can be sketched to explain the behavior 

of our STS spectra with respect to the polarization field within GeS nanoflakes [148].  

 

Figure 34:  A schematic representation of the experiment, the resulting tunnelling and surface 

currents are shown in panels (a) for negative tip bias and (b) positive bias. 

A representation of the experiment is shown in figure 34. Whereas STS measurements 

directly impose a tunneling current from the tip to the surface, inducing an out-of-plane electric 

field, in-plane currents are also induced, as shown in STM works in the literature [149]. 

However, the measurement is sensitive to changes in surface polarization along the in-plane 

direction.  

The tunneling current is composed by electrons, which tunnel from tip to sample or 

vice-versa. Each of these configurations depends on the sign of the tip potential. When applying 

a bias to the tip, an electric field with two components, parallel and perpendicular to the material 

surface, appears. 

The parallel component plays a major role in our system, changing the in-plane 

polarization. We now discuss the possible mechanism behind the observed in-plane 

ferroelectricity in GeS. This problem has been addressed in recent reports [148], [150], [151], 

and the general idea is that the phenomenology may arise from atomic distortions induced by 

the external field. To recap, the difference in electronegativities between Ge and Se is 

responsible for a net polarization in a single GeS layer, as suggested by the dipole orientations 
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indicated in figure 35-(a). For an even number of layers (or in the bulk), centrosymmetric 

implies antiferroelectricity. This situation is depicted schematically in figure 35-(b). The 

situation changes upon application of an electric field, which may induce atomic displacements, 

as indicated in figure 35-(c). 

The resulting restructuring has the effect of reorienting the dipoles in the upper layer - 

the surface becomes polarized, retaining its polarization even when the field is decreased to 

zero. By reversing the electric field, the mechanism acts again in the upper layers, reversing the 

polarization through similar atomic distortions. The net result is the surface in-plane 

ferroelectricity observed in our experiments. 

 

Figure 35: (a) Schematic figure of the electric dipole for the lower layer in the a-b plane. The 

blue arrows represent the electric dipole formed by Ge (black spheres) and S (yellow spheres) 
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atoms. The red arrow represents the vectorial sum of blue arrows. In (b) the two layers (lower 

and upper) that compose the GeS unit cell are shown. Each of these layers has an opposite 

polarization vector along the b direction. In (c) the scheme of a structural transition induced by 

parallel electric fields of the STM tip is shown. Blue and red ellipses indicate the change of the 

bound configuration. A sketched representation of the domain boundaries for different 

polarization domains induced by the STM tip. 

 

5.7 Conclusions 

 

In summary, we have successfully synthesized and characterized few-nanometer-thick 

germanium sulfide deposited on a HOPG substrate. Our main result is the description of a 

surface-induced polarization effect through scanning tunneling spectroscopy at room 

temperature, which is interpreted in terms of a ferroelectric behavior. The observed hysteretic 

phenomenology is consistent with a physical mechanism based on in-plane atomic 

displacements induced by the external electric field. 
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6 Co-existence of surface electronic confinement 

and topological signatures in Sb4Te3 

 

The second project of this thesis is dedicated to study the electronic properies of the 

topological layered material Sb4Te3. This material consists of a composite stacking of two 

distinct topological materials: the 3D topological insulator Sb2Te3 and the 2D topological 

insulator Sb2. Our Angle-Resolved Photoemission Spectroscopy measurements combined with 

density functional theory reveal that the topological behavior exhibited by Sb2Te3 and Sb2 

persists, characterized by electronic states emerging from spin-orbit coupling, hexagonal 

warping associated with time reversal symmetry and photon-energy independence in these 

surface states. By comparing results with the complete bulk and surface bands, we observe 

parabolic states associated with the existence of stacking faults. The photon-energy 

independence of this state indicates confinement along the stacking direction. Our findings shed 

light on the unique electronic states and topological properties emerging in Sb4Te3. 

 

6.1 Introduction 

 

In recent years, materials exhibiting van der Waals interactions in their stacking 

configurations have attracted significant attention from the scientific community due to their 

novel electronic properties and future technological applications [152], [153], [154], [155]. 

These materials manifest diverse properties, such as enhanced surface electrical conductivity, 

quantum well states, charge storage capabilities and ferroelectricity [156], [157], [158], [159], 

[160], [161]. Some of these properties may arise (or be modulated) from alterations in their 

stacking patterns, holding the promise of novel developments in device technologies [162], 

[163]. 

Our focus in this study is the Antimony Tellurite family, specifically Sb4Te3, which 

exhibits a stacking arrangement comprising two quintuple-layers (QL) of Sb2Te3 and two bi-

layers of Sb2 [164]. Notably, Sb4Te3 consists of both a 3D topological insulator material 

(Sb2Te3) and a 2D topological insulator (Sb2), rendering it an intriguing subject for investigation 
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[165], [166]. Despite its potential, Sb4Te3 has remained relatively unexplored. The structure of 

Sb4Te3 comprises a complex stacking arrangement denoted as AA’B’ABB’C’BCC’A’C, where 

ABC and A’B’C’ correspond to the stacking sequences of Sb2 bilayers (BL) and Sb2Te3 

quintuple layers (QL) respectively. This stacking configuration is illustrated in figure 36, with 

the conventional unit cell outlined within the black rectangle. 

Figure 36: Left: Atomic structure of Sb4Te3, illustrating the stacking configuration along with 

the respective heights of each layer and Van der Waals distances. Center: Stacking of Sb2Te3. 

Right: Stacking of Sb2. 

Utilizing X-ray powder diffraction and crystal truncation rod (CTR) scattering, we 

determined the occupancy of each phase in surface termination, respectively. Combining these 

results with STM allowed us to confirm the presence of all possible surfaces. 

We conducted ARPES measurements to explore the electronic band properties. Firstly, 

we conducted ARPES measurements using a helium lamp to characterize the sample and further 

we performed high-resolution (HR-ARPES) measurements using synchrotron radiation with a 

micrometer-sized spot and low temperature. Remarkably, our ARPES observations revealed 

clear signatures that are fingerprints of topological behavior. The presence of surface states, as 
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confirmed through DFT calculations, displaying hexagonal warping indicates the persistence 

of time-reversal symmetry. Moreover, the absence of photon-energy dependence in these states 

confirms their surface nature.  

The HR-ARPES results revealed two additional electronic bands distinct from the bulk and 

surface states. These bands exhibited the same energy dispersion along the Γ-M direction as 

reported for Sb2 quantum wells [167], [168], [169]. We attributed these bands to an 

electronically confined state situated in additional Sb2 surface [170]. This localization behavior 

was further examined by varying the photon energy, revealing a localized in-plane behavior, as 

evidenced by the photon-energy independence. 

 

6.2 Growth and Characterization 

 

We have synthesized Sb4Te3 using the Bridgman technique, following an established 

procedure outlined in the literature [164]. The Sb4Te3 crystal was obtained using Bridgman 

technique by mixing the Sb and Te elements in a stoichiometric ratio, using 0.55g of 99.999% 

pure antimony powder and 0.44g of 99.99% pure tellurium powder. Both materials were put 

into a quartz tube. The tube was evacuated, sealed and heated to 800°C for four days and then 

cooled to 500ºC for 36hrs. Sb4Te3 crystals were freshly cleaved in-situ before the ARPES and 

STM measurements presented in this work. 

Figure 37: (a) Energy dispersive spectra and (b) Raman spectroscopy of our Sb4Te3 sample. 

 Upon successful synthesis, we characterized the material using EDS to verify the Sb/Te 

atomic ratio, figure 37-(a). Raman spectroscopy was employed to confirm the structural phase, 
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figure37-(b). Both Raman and EDS measurements were taken on the same equipment of the 

first project. 

 

6.2.1 Scanning Tunelling Microscopy 

 

To investigate the surface morphology resulting from these various terminations, we 

conducted STM measurements. In the STM images, as shown in Figure 38-(a-b), we observe 

the material surface with distinct steps, which arise from different regions of Sb4Te3 and Sb2.  

For both images, a topographic profile was extracted along the white line. In Figures 

38-(c-d), the profiles for Figures 38-(a-b) are respectively depicted. It is possible to discern all 

terminations: Sb2 with 0.38 nm, Sb2-Sb2 with 0.77 nm, Sb2Te3 with 1.06 nm, and Sb2Te3-Sb2Te3 

with 2.12 nm. In Figure 38-(d), the profile taken from Figure 38-(b) reveals several steps with 

the same height value. For this condition, a Sb2 domain was identified as depicted below. 

For a more comprehensive analysis of the surface, we checked step heights from several 

STM measurements. A histogram was constructed to evaluate the relative percentage of each 

termination and is shown in Figure 38-(e). For all four terminations, height values within ±0.2 

nm of the main value for a specific termination were considered. The histogram reveals that the 

majority of the surface is terminated with Sb2, which could be expected given the coexistence 

of Sb4Te3 and Sb2 phases. 

The distribution of terminations obtained is as follows: 18.7% Sb2, 58.0% Sb2- Sb2, 

17.0% Sb2Te3, and 6.3% Sb2Te3-Sb2Te3. The observed domain sizes range from approximately 

50-200 nm. This information is crucial, as it allows us to anticipate the convolution of the 

ARPES beam spot across different terminations. A thorough understanding of these surface 

features is pivotal for a comprehensive characterization of the material's electronic properties. 

In figure 38-(f) a scheme of the possible surface terminations for Sb4Te3 is depicted. STM 

measurements was collected on Omicron VT-STM scanning tunneling 

microscope/spectroscope operating at 1.7 × 10−10 mbar at room temperature. 
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Figure 38: STM images of different regions on our sample. In (a) Sb4Te3 region and (b) Sb2 

region. Distinct steps created by different terminations are observed. Both images were 

acquired with a tunneling current of 500 pA and a tip bias of 1V. The black scale bars measure 

150 and 200 nm, respectively. (c) The topography profile along the white line in (a) reveals 

height values in agreement with the Sb4Te3 possible terminations. A comparison with these 

terminations is depicted below. The blue rectangles represent the Sb2 BL termination, and the 

red rectangles the Sb2Te3 QL termination. (d) The topography profile along the white line in 

(b). (e) A histogram of all height values found in different regions of our sample. The blue bars 

are associated with Sb2 termination, and the red bars with Sb2Te3 terminations. (f) Schematic 

of Sb4Te3 stacking configuration showing the possible surface terminations.  
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6.2.2 Crystal Truncation Rod 

 

A correlation between surface and bulk composition can be drawn by measuring powder 

X-ray diffraction (bulk sensitive) and Crystal Truncation Rod (CTR) scattering (surface 

sensitive).  Fig.39-(a) shows XPD measurements and fits associated to crystal phases from 

crystallographic databases while Fig.39-(b) shows a CTR acquired along the (00L) direction 

and fits changing the surface composition. 

One observes in Fig.38-(a) that the XPD profile is easily described as a combination of 

Sb4Te3 (71%) and Sb2 (29%) obtained using MAUD software [140]. This measurement is 

representative of the bulk composition and phases in the sample. The two major phases needed 

to fit the data are displayed (red and blue curves for Sb4Te3 and Sb2, respectively). Additional 

phases (Pure Te and other SbnTem-type phases), which correspond to less than 1%, were not 

included in the fit. Peak intensity differences arise from sample texture and cannot be fitted by 

any additional phase. 

In order to access the most relevant surface terminations, CTR measurements were 

performed at EMA beamline of the Brazilian Synchrotron Light Laboratory Sirius (Campinas). 

We looked for possible surface stabilization in which the composition differs from the bulk 

XPD result. CTR measurements were simulated using the formalism introduced by Robinson 

et. al [171]. In this model, the CTR intensity is related to the roughness (σ), absorption (β) and 

out-of-plane lattice parameter (c) and expressed as a function of the momentum transfer vector 

q along the (00L) direction as: 

𝐴𝐶𝑇𝑅 =
𝐴0

1 − 𝑒𝑖𝑞𝑐𝑒𝛽
[

(1 − 𝜎)2

1 + 𝜎2 − 2𝜎 𝑐𝑜𝑠 𝑞𝑐
]

1

2

.                                       (86) 

The sample studied here was modeled as bulk Sb4Te3. Surface layers, which can be Sb2 

BL or Sb2Te3 QL, exhibit distinct electronic density profiles, giving rise to asymmetries in the 

diffuse diffraction signal in the measured CTR range. Combinations of these surface layers 

were modeled separately, with their atomic stack described as a list of atoms and coordinates, 

interfering with the diffraction intensity due to modified scattering amplitudes. Such effect is 

expressed in equation (87), where N is the number of atomic layers along the surface normal 

direction at the simulated surface, 𝑍𝑗 is the atomic number for each atom stacked above the bulk 

Sb4Te3, 𝑓𝑗(𝑞)  is the atomic scattering factor of the atomic layer 𝑗 and 𝑟𝑗  is the atomic layer 
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position with respect to the first crystalline layer above the bulk crystal termination (fixed at 

𝑟 = 0 here), 

             𝐴𝑙𝑎𝑦𝑒𝑟𝑠 = 𝐴1 ∑ 𝑍𝑗𝑓𝑗(𝑞)𝑒𝑖𝒒⋅𝒓𝑗

𝑁

𝑗=1

.                                            (87) 

Figure 39: (a) X-ray powder diffraction measurements (dots) and fits (lines) obtained from 

Rietveld refinement of our bulk (ground to powder) crystal, showing major contributions from 

Sb4Te3 and Sb2 phases (71% and 29%, respectively). (b) X-ray crystal truncation rod scattering 

measurements (dots) and simulations (lines) for the two most relevant surface terminations: a 

double Sb2 surface layer (blue) and a single Sb4Te3 layer (red). The best combination of four 

surface terminations (discussed in the text) lead to the orange curve. 
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Finally, the measured intensity is obtained as the square of the sum of the intensities of 

equations (86) and (87), as depicted in equation (88), 

𝐼 = |𝐴𝐶𝑇𝑅 + 𝐴𝑙𝑎𝑦𝑒𝑟𝑠|
2

,                                                      (88) 

where 𝐴𝐶𝑇𝑅 accounts for the bulk Sb4Te3 crystal and 𝐴𝑙𝑎𝑦𝑒𝑟𝑠 represents the surface atomic stack. 

XPD measurements were carried out in a Panalytical Empyrean system, equipped with 

a two-dimensional detector and a Cu K-alpha source (LabCri-UFMG). Samples were finely 

grinded and measured in the range from 4° to 150°. The region with strongest peaks was then 

analyzed throughout the Maud Rietveld package using reference crystallographic data for Sb2 

and Sb4Te3 crystals.  CTR measurements along the (00L) direction were carried out at the 

EMA beamline of the Sirius synchrotron (Campinas, Brazil). The beamline is equipped with a 

6-circle diffractometer and a Pilatus 300K detector. We have used a 9.6 keV monochromatic 

beam focused by KB mirrors to a 20 x 20 𝜇𝑚2 spot at the sample position. Sb4Te3 crystals with 

a well determined surface, with a plane facet perpendicular to the (001) direction was freshly 

cleaved and aligned with the X-ray beam. The beam was moved laterally by hundreds of 

microns and the (00L) CTR was measured 4 times, yielding similar results. 

Surface layers are modified using distinct stackings of Sb2Te3 and Sb2. In particular, the 

CTR data has been fitted with a combination of four distinct surface terminations: (i) Sb2 - Sb2, 

with 2 Sb2 BL at the surface; (ii) Sb2 - Sb2 - Sb2Te3 with a single Sb2Te3 QL at the surface; (iii) 

Sb2Te3 - Sb2Te3 - Sb2 with a single Sb2 BL at the surface and; (iv) Sb2 - Sb2Te3 - Sb2Te3 with a 

double QL at the surface. The list provided above is ordered as a function of the layer stack 

relevance to the CTR fit. Fig. 39-(b) shows the simulated CTR profile for terminations (i) and 

(ii). In order to obtain the fit depicted by the orange curve (the closest to the characteristics of 

our measured profile) we combined the following surface fractions: 43% of Sb2 double BL 

termination, 26% of single Sb2Te3 QL termination, and 17.5% and 13.5% of the surface 

terminate in Sb2 BL and Sb2Te3 double QL, respectively. It is important to state that all out-of-

plane (c-axis) lattice parameters used for surface simulations were increased by 1% with respect 

to bulk values. Such amount holds for both Sb2 and Sb2Te3 surface layers.  

A closer look to the results discussed above indicates that 60% of the surface is occupied 

with an Sb2 BL termination (1 or 2 bilayers) while 40% ends up in Sb2Te3 quintuple layers. 

Since the synchrotron X-ray CTR spot illuminates an area similar to the ARPES spot size, we 
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believe these numbers are representative to what is observed using the latter technique. 

STM/STS data are clearly more local and may present some deviation from these values. 

 

6.3 ARPES Measurements of Sb4Te3 

 

We conducted a series of HR-ARPES measurements at the Bloch beamline of MAX-IV 

Laboratory to explore in more details the electronic band structure of Sb4Te3. First, 

measurements were carried out using a photon beam size of 16×9 μm², with photon energy of 

73 eV at a temperature of 19 K.  

The bulk structure of Sb4Te3 calculated using DFT is depicted in Figure 40-(a). The bulk 

has a trigonal unit cell with the stacking along the (111) direction. We can observe 3 relative 

gaps at the Γ point below the Fermi level ranging from -0.1 eV to -0.2 8eV, -0.3 eV to -0.55 eV 

and -0.6 eV to -0.95 eV. Looking at the energy range from 0 eV to -1 eV of the bulk band 

structure, it is possible to observe an electronic state at the L point, but no electronic states at 

the S0 point. By projecting the bulk reciprocal space at the surface, the bulk L position 

corresponds to the M point in the surface reciprocal space. Correspondingly, the bulk S0 point 

corresponds to the surface K point.  

Comparing the ARPES spectra with the band structure, we can identify the spectrum in 

the momentum direction along M-Γ-M (Figure 40-(b)) and the corresponding spectrum along 

the K-Γ-K (Figure 40-(c)). In both cases, comparing the spectra with the theoretical band 

structure, it is possible to observe two V-shaped bulk bands at the Γ point, with binding energies 

of 0.3eV and 0.8 eV. 

ARPES measurements were collected at two synchrotron beamlines. The 

characterization was performed at the SAPE end-station at SIRIUS (Campinas, Brazil) on a 

SPECS PHOIBOS 150 spectrometer. The sample was kept at 80 K in an ultra-high vacuum 

chamber with pressure better than 2 × 10−10 mbar.  

The high-resolution ARPES data were acquired at the HR-ARPES end-station of the 

Bloch beamline, at MAX IV Laboratory (Lund, Sweden). The end-stsation is equipped with a 

Scienta DA30-L analyzer and a 6-axis cryo-manipulator. The sample was kept at 18 K using a 

He cryostat coupled to a low-vibration closed-cycle cooling engine, Stinger from Coldedge. 
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Figure 40: (a) Calculated bulk electronic band structure of Sb4Te3. By projecting the bulk 

reciprocal space at the surface, the bulk L position corresponds to the M point in the surface 

reciprocal space. Correspondingly, the bulk S0 point corresponds to the surface K point. ARPES 

measurements of Sb4Te3 at 19 K with a photon energy of 73 eV at (b) M-Γ-M direction and (c) 

K-Γ-K direction.  

 

6.3.1 Topological Signatures from Surface States  

 

The fact that Sb4Te3 consists of a stack of two different topological insulators suggests 

that it can exhibit complex topological properties. Other materials with similar structures 

possessing topological order have been reported in the literature [172], [173], [174]. 

Topological materials exhibit specific features such as hexagonal warping (due to the 

preservation of time reversal symmetry) and surface states originating from spin-orbit coupling 
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which leads to a lack of dependence of the surface bands on photon energy and the creation of 

topological surface states (TSS) [88], [166], [175]. These signatures are observed in Sb4Te3. 

The electronic structure of Sb4Te3 for Sb2 terminations is then calculated. Figure 41-(a) 

illustrates the two possible configurations of the surface termination with Sb2. We first 

performed DFT calculations to determine the band structure of Sb4Te3 with the Sb2Te3-Sb2 

termination. The computational details will be at the end of this chapter. To elucidate the role 

of spin-orbit coupling, we computed this band structure both without spin-orbit coupling, 

shown in Figure 41-(b), and with spin-orbit coupling, depicted in Figure 41-(c).  

Figure 41: (a) Schematics of the two different Sb2 terminations of Sb4Te3. The electronic band 

structure for the Sb2 BL termination is presented without (b) and with spin-orbit coupling (c). 

The blue line is a surface state that emerges from the spin orbit coupling, where a Dirac cone is 

evident at -0.1 eV. The red lines are other surfaces states. These ARPES measurements were 

conducted at 73 eV. In (d), a cut at 𝑘𝑥 = 0.0 �̇�−1 is depicted, revealing the topological surface 

state indicated by the white dashed line. The red dashed line represents the value of 𝑘𝑥 =

−0.37 �̇�−1  where this TSS intersects the Fermi level. In (e), a cut at 𝑘𝑦 = 0.0 �̇�−1 is presented. 

In (f), the Fermi surface exhibits a snowflake pattern for the TSS. 

In Figure 41-(c), we present both the bulk bands (in black) as well as the topological 

surface state (blue lines), and other surface states (red lines). Although through ARPES we do 

not have direct access to the Γ point for this band, DFT calculations allow us to discern its 
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topological nature. It is apparent that a state with a Dirac cone appears at 0.1 eV below the 

Fermi level, illustrated as the blue line in Figure 41-(c). Such behavior is commonly observed 

in topological systems. By comparing this band structure with the bulk one, we note that this 

state arises due to the disruption of periodicity at the surface and the SOC interaction. 

Now, we compare DFT calculations with our ARPES measurements. The first 

observation is that the calculated Fermi level is slightly higher than observed in the data. 

Consequently, the Dirac cone predicted in Figure 41-(c) is not evident in the ARPES data, as 

shown in Figures 41-(d-e). However, a remaining feature of the Dirac band is observed. In 

Figure 41-(d), we present a cut at kx = 0.0 Ȧ−1 representing the M-Γ-M path. By comparing 

the band dispersion along this path with the calculations, we clearly observe the topological 

surface state originating from the Fermi level, touching the M point at around 0.42 eV. 

Figure 42: (a) Schematic representation of the two different Sb4Te3 terminations in Sb2Te3. 

The electronic band structure for the Sb2-Sb2Te3 termination is presented without (b) and with 

(c) spin-orbit coupling. The red and green lines are surface states that emerge from the spin-

orbit coupling. Two Dirac cones appear at the Γ point. ARPES measurements conducted at 18.8 

eV. In (d), a cut for 𝑘𝑦 = 0.0 �̇�−1 is depicted, revealing the topological surface state indicated 

by the white dashed line. In (e), a cut for 𝑘𝑥 = 0.0 �̇�−1 is presented. In (f), the constant energy 

contours for 𝐸𝐵 = 0.62 eV exhibits a snowflake pattern for the TSS as well. 
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Topological surface states emerge from spin-orbit coupling, requiring the preservation 

of time reversal symmetry. This preservation, together with the reduced surface symmetry of 

the crystal, results in a sixfold symmetrical pattern, giving rise to a snowflake shape [88]. This 

is called hexagonal warping, indicating the strength of the spin-orbit coupling. The observed 

TSS band intersects the Fermi level, indeed creating a snowflake-like pattern on the Fermi 

surface, as illustrated in Figure 41-(f). Using the equation 17 for a fixed energy, we fitted these 

data using the model described in equation 89, 

1 = 𝐴√𝑘2 + 𝜆2𝑘6𝑐𝑜𝑠2(3𝜃),                                                        (89) 

where 𝐴 is a measure of the 𝑘𝑥 − 𝑘𝑦 plane size, 𝑘 is the electron crystalline momentum in 

modulus, λ is a hexagonal warping parameter, and θ is the azimuth angle with respect to the Γ-

K direction. Using equation 89 to fit the free parameters, we obtained 𝜆 = 38.23 �̇�² and 𝐴 =

1.74 �̇� for the topological surface states in Figure 41-(f).  

 A different scenario emerges when Sb4Te3 terminates in Sb2Te3, as depicted in Figure 

42-(a). We calculated the band structure for both possibilities and surface states appear in 

similar regions. For short, we discuss the case involving the Sb2-Sb2Te3 termination. Upon 

comparing the calculations without spin-orbit coupling, shown in Figure 42-(b), and with spin-

orbit coupling, which is depicted in Figure 42-(c), surface states become evident. These states 

are represented in the figure by green and red lines. The TSS exhibits a Dirac cone at the Γ 

point, located at -0.56 eV. It is crucial to note that, for Sb4Te3 bulk, there exists a relative gap 

at the Γ point ranging from -0.38 eV to -0.58 eV. 

 The TSS band manifests within this relative band gap, establishing a connection 

between the upper and lower bulk bands. This can be observed in the ARPES data collected 

with a photon energy of 18.8 eV, as shown in Figure 42-(d-e). A distinctive Dirac cone emerges 

at binding energy of 0.60 eV, delineated by the dashed white line. Upon comparison with the 

band structure, this observed cone aligns precisely with the energy level (0.32 eV) where the 

upper bulk bands reach their lower energy values, as indicated by dashed black lines. This 

alignment demonstrates excellent agreement with the band structure from DFT calculations. 

Despite the presence of mixed bulk bands and TSS, this distinctive behavior effectively each 

band. 

To confirm the correlation of this band with a strong spin-orbit coupling, a cut at a 

binding energy of 0.62 eV is depicted in Figure 42-(f). We observe both a snowflake pattern as 
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well as a circular pattern at the Γ point. Both the snowflake and circular patterns stem from the 

same TSS state. Using equation 89 to fit this pattern, we found 𝜆 = 32.63 �̇�² and 𝐴 = 4.22�̇�  

for the topological surface states in Figure 42-(f).   

Figure 43: Constant energy contours at different binding energies showing the transformation 

of the circular pattern from the Dirac cone to a snowflake pattern. The cuts in energy are: 0.62 

eV, 0.55 eV, 0.45 eV, 0.35 eV and 0.28 eV. The HR-ARPES photon energy is 18.8 eV 

This snowflake pattern is a result of the hexagonal warping, signifying a strong spin-

orbit coupling. The circular pattern corresponds to the Dirac cone. To track the evolution of this 



100 

 

   

 

band in the Brillouin zone, we performed multiple constant energy contours (CEC), observing 

the transformation from the circular pattern of the Dirac cone to the snowflake pattern, as shown 

in Figure 43. 

From an energy level of 0.62 eV, the circular pattern at the Γ point, indicative of the 

Dirac cone, becomes discernible. With a decrease in energy, this circular pattern progressively 

moves away from the Γ point, as observed in the CEC at 0.45 eV. Upon reaching its lower 

energy values, 𝐸𝑏 = 0.28 eV, the circular shape transforms into a hexagonal pattern. 

Figure 44: Band structure of Sb4Te3 terminated in (a) Sb2-Sb2 and (b) Sb2Te3-Sb2Te3. The red 

lines are surface states in both cases. The blue and green lines are topological surface states. 
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For higher binding energy values, the persistence of the hexagonal shape is noticed. An 

examination of the band structure derived from both DFT and ARPES measurements reveals 

the presence of both Dirac cone and the remaining band for these energy values. The Dirac cone 

is modified into a circular shape (near the Γ point), while the residual band adopts a hexagonal 

one (further away from the Γ point). 

The calculated band structure of the termination with two Sb2 BL’s and two Sb2Te3 

QL’s is shown in figure 44. In this case, the same TSS’s appears, but with additional surface 

states that are not associated with topological order. 

Through ARPES measurements, the distinction between localized states, such as surface 

or confined states, and delocalized states (bulk states) can be drawn. This determination is 

carried out by varying the photon energy to access the perpendicular component of the electron 

momentum. For states localized in the c-axis direction, the perpendicular component remains 

delocalized, indicating its independence from photon energy. ARPES measurements were 

systematically conducted using different photon energies. In Figure 45 we show measurements 

for 67 eV, 71 eV and 76 eV. Analysis of these measurements reveals that the topological surface 

states stemming from both Sb2 and Sb2Te3 terminations, denoted by white dashed lines, exhibit 

no variation in momentum and binding energy with photon energy. Such behavior indicates 

that these are topological surface states. 

Figure 45: ARPES measurements for differents photon energy values: (a) 67 eV, (b) 71 eV 

and (c) 76 eV. The white dashed lines are topological surface states and the red dashed lines 

are quantum well states. 

An additional observation from Figure 45 can be drawn from two bands, marked by red 

dashed lines, which exhibit minimal variation across different photon energies. This behavior 

implies that these states are localized in the c-direction. It is noteworthy that they are not 
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observed in DFT calculations across all four terminations of Sb4Te3. The next section is 

dedicated to elucidate their origin. 

 

 

6.3.2 Confined Electronic States 

 

In Figure 40-(b), two distinct bands emerge at the M point at approximately 0.8 eV and 

1.4 eV. Remarkably, as shown in Figure 45, the positions of these bands remain unaffected 

upon  photon energy changes, indicating a localized behavior along the c-direction (the stacking 

direction of Sb4Te3). Our X-ray and STM results reveal the existence of domains comprising 

both Sb4Te3 and Sb2 within the sample. The ARPES beam spot size is sufficiently large to 

encompass these distinct domains, rendering ARPES measurements a sum of signals from these 

domains. 

Figure 46: (a) ARPES data treated by the curvature method for the M-Γ-M direction, with two 

black dashed lines representing quantum well states. (b) Calculated band structure of 5 layers 

of Sb2 showing the quantum well states. (c) Model to explain the quantum well formed by 

Sb4Te3, Sb2 and vaccum. (d) Energy dispersion around the M point showing the surface state 

and two quantum well states (for n =1 and n=2). (e) Photon energy dependence of these states 

for n=1 and n=2 from (d). 
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 Figure 47: Band strucure of diferent staking configuratios of Sb2: (a) 1 layer, (b) 2 layers, (c) 

3 layers, (d) 4 layers, (e) 5 layers, (f) 6 layers, (g) 7 layers, (h) 8 layers, (i) 10 layers and (j) 

bulk. 
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Upon closer inspection of the ARPES data along the Γ–M direction, and employing the 

curvature method for enhanced visualization [176], the two bands (depicted by black dashed 

lines in Figure 46-(a)) become apparent. Notably, these bands exhibit an energy dispersion 

similar to that reported in the literature for Sb2 quantum wells [167], [168], [169], [177].  

In fact, the parabolic dispersion at M point is characteristic of few-layer Sb2 for over 

five layers, as shown in the the band structure presented in Figure 46-(b) for the five-layer case. 

Also, this can be clearly verified in the results of a series of calculations presented in Figure 47, 

in which we show the evolution of the parabolic bands with the number of Sb2 layers. This 

indicates that, most probably, our sample contains stacking faults produced during the growth 

process, which allows us to ascribe these two electronic states to confined electrons in a few-

layer antimony system that may exist above Sb4Te3. 

A refined analysis at the M point allows the distinction of the surface state arising from 

the Sb2 termination and the two states emanating from the quantum well, as shown in Figure 

46-(d). The intensity of the quantum well band is notably enhanced at 𝑘∥ = ±0.37�̇�−1 and at a 

binding energy of 0.35 eV. Several factors, such as matrix elements or higher electron 

concentration at this specific energy and momentum could account for this phenomenon. It is 

well-known that antimony has an anisotropic spin-orbit coupling which leads to a difference 

for positive and negative electronic momenta [178]. 

To explore the localized behavior of the confined state, a series of HR-ARPES 

measurements was conducted varying the photon energy from 66 to 80 eV. Given that this 

quantum well is confined within the 𝑘𝑥 − 𝑘𝑦 plane, the parallel momentum component must 

remain constant. Consequently, a broad range of perpendicular momentum component values 

can satisfy this condition. In real space, the quantum well state is confined along the c direction. 

This property leads to a non-dependence on photon energy of this electronic band. Specifically 

focusing on the states corresponding to quantum numbers n=1 and n=2, their response to 

variations in photon energy is shown in Figure 46-(e). Notably, minimal variations of these 

states with respect to photon energy are seen, confirming the localized nature of these electronic 

states. 

We use the Quantum ESPRESSO software package to perform DFT calculations [179]. 

The calculationsutilize the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation 
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(GGA) of the exchange-correlation potential [180], with fully-relativistic effects included in 

the pseudopotential to account for spin-orbit coupling effects. A plane wave cutoff of 50 Ry 

was used for wavefunctions, and a 5-mRy of smearing (using the Marzari and Vanderbilt’s 

scheme) was employed to numerically smooth out the metallicoccupation of the electronic 

states [181]. For Sb4Te3, thhe k-grid used for the bulk primitive unit cell is 18x18x18, while 

thesurface calculations employ a 14x14x1 k-grid using a slab supercell geometry and increasing 

the c component with 18 �̇� to simulate the vaccum [182]. We studied the Sb2-termination using 

a slab with 42 atoms of bulk Sb4Te3 plus 2 atoms of Sb2 layer and 4 atoms for BL Sb2, while 

the Sb2Te3-termination using a slab with 42 atoms of bulk Sb4Te3 plus 5 atoms of one QL and 

10 atoms for two QL. For Sb2, thhe k-grid used for the bulk primitive unit cell is 16x16x16, 

while the calculations with different staking employ a 12x12x1 k-grid and increasing the c 

component with 18 �̇� to simulate the vaccum. We relaxed the structures with spin-orbit effects 

included. 

 

6.4 Conclusion 

 

In summary, we have carried out an ARPES experiment to study the topological 

material Sb4Te3. Due to its layered structure and composition of two distinct topological 

insulator materials, it exhibits several topological bands which depend on the surface 

termination. Despite being a metal, it exhibits topological signatures due to the stacking of two 

distinct topological insulators. We identified two topological surface states associated with the 

Sb2 termination and the Sb2Te3 termination, respectively. Although only one of these states is 

visible as it lies below the Fermi level, both possess a Dirac cone. To confirm their topological 

nature, we observed a snowflake pattern arising from hexagonal warping, indicating the 

preservation of time reversal symmetry. This phenomenon suggests a strong spin-orbit 

coupling, which is the key to the topological nature of Sb4Te3. Series of ARPES measurements 

revealed an invariance upon photon energy change, confirming the surface state nature of these 

topological surface states. 

Using HR-ARPES measurements, we observed two additional electronic bands 

associated to confined states within a quantum well. Prior studies have indicated that layers of 

antimony (111) can host quantum well states with specific in-plane band dispersion, a 
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characteristic we also observed in our measurements. The presence of an Sb2 termination at the 

surface indicates the formation of a quantum well in the stacking direction. This configuration 

results in the parabolic electronic states, as observed in our ARPES measurements. 
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7. Summary and Outlooks  

 

 In this thesis, a combination of different experiental techniques combined with density 

functional theory were used to investigate the structural and electronic properties of two layered 

materials: GeS and Sb4Te3. 

 In summary, the first project presented focused on unveiling the surface in-plane 

ferroelectricity of ultrathin germanium sulfide nano-flakes. Utilizing vapor-phase deposition, 

we synthesized nano-flakes with varying thicknesses on a highly oriented pyrolytic graphite 

substrate. A comprehensive investigation employing scanning tunneling microscopy and 

spectroscopy, complemented by density functional theory calculations, revealed a compelling 

thickness-dependent tunneling current phenomenon at room temperature. A distinctive 

hysteresis pattern emerged, indicative of two-dimensional ferroelectric behavior associated 

with the screening conditions of polarization charges. Notably, this effect becomes more 

pronounced as the number of layers decreases. The observed behavior holds great promise for 

applications in miniaturized memory devices, highlighting the unique two-dimensional nature 

of this phenomenon. 

 The second project involves the study of the electronic structure of the topological 

material Sb4Te3. High-resolution angle-resolved photoemission spectroscopy combined with 

density functional theory calculations was employed to investigate the topological behavior of 

Sb4Te3. The study uncovered electronic states arising from spin-orbit coupling, hexagonal 

warping associated with time reversal symmetry, and no dependency upon photon-energy 

variation which is characteristic of surface states. Through a comparison with complete bulk 

and surface bands, we identified a confined electronic state between bulk Sb4Te3 and the Sb2 

termination, exhibiting photon-energy independence indicative of confinement along the 

stacking direction. Additionally, our findings revealed parabolic states associated with stacking 

faults, enhancing our comprehension of the unique electronic states and topological properties 

of Sb4Te3. 

Looking ahead, these projects open avenues for future research. For Project 1, further 

exploration could involve practical applications of GeS's ferroelectric behavior in memory 

devices and taking advantage of its two-dimensional character. In Project 2, potential research 

directions include investigating the tunability of electronic states in Sb4Te3 for applications in 
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quantum computing and emerging technologies. The insights gained from these projects 

underscore the importance of continued exploration in the field of advanced materials and their 

transformative impact on diverse technological domains. 
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During my PhD, I develop different libraries to treat data for DFT, STM/STS and 

ARPES. Following contains a list with all libraires developed. All libraries can be found in my 

Github,  https://github.com/rafinhareis.  

 

pyQE -Library for data treatment of QUANTUM EXPRESSO files 

 

ststools - Library for visualization and data treatment of STM images and STS curves of 

OMICRON and NANOSURF microscopes. 

 

vads – Visualization ARPES data for Sirius. Library for data treatment of ARPES from SIRIUS 

Syncrothon Light Souce. 

 

 

 

 

https://github.com/rafinhareis
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