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Resumo
Este trabalho traz um método de análise classificatória baseado nos espectros vibracionais
Raman de 38 quinonas e estruturas relacionadas, ordenando e classificando espectralmente
os compostos. Os sistemas moleculares são relevantes para processos químicos e biológicos,
com aplicações em farmacologia, toxicologia e medicina. A estratégia classificatória usa uma
combinação de análise de componentes principais com métodos de agrupamento k-means.
Tanto as simulações teóricas como os dados experimentais são analisados, estabelecendo
assim as suas características espectrais, relacionadas com as suas estruturas e propriedades
químicas. O protocolo introduzido aqui deve ser amplamente aplicável em outros sistemas
moleculares e de estado sólido, servindo de base para um protocolo de estudo de materiais
fundamentado em espectroscopia Raman e aprendizado de máquina.

Palavras-chave: Espectroscopia Raman, Estrutura Vibracional, Quinonas, PCA, K-means,
Aprendizado de Máquina.



Abstract
This work brings a classificatory analysis method based on the vibrational Raman spectra
of 38 quinones and related structures, spectrally ordering and classifying the compounds.
The molecular systems are relevant for chemical and biological processes, with applications
in pharmacology, toxicology and medicine. The classificatory strategy uses a combination
of principal component analysis with k-Means clustering methods. Both theoretical simu-
lations and experimental data are analysed, thus establishing their spectral characteristics,
as related to their chemical structures and properties. The protocol introduced here should
be broadly applicable in other molecular and solid state systems, providing a strucured
protocol form materials study based in Raman spectroscopy and machine learning.

Keywords: Raman spectroscopy, Vibrational Structure, Quinones, PCA, K-means, Ma-
chine Learning..
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1 Introduction

Quinones are organic aromatic compounds that can be found in nature or syn-
thesized. In nature, quinones can be found in chemical and biological processes, such as
breath chain and photosynthesis [1–4]. Structurally, in the most simple form, quinones
show two carbonyl residues, separated by vinyl groups within a ring (figure 1(a) left) or
adjacent to each other (figure 1(a) right). Quinone compounds can sustain benzene (ben-
zoquinone), naphthalene (naphthoquinone), anthracene (anthraquinone) ring structures,
and similar [5, 6]. Quinones can also be used as a precursor for the synthesis of several
derivative molecular systems, such as phenazines. Phenazines are organic, heterocyclic,
nytrogenous aromatic compounds, also called as dibenzo[b,e]pyrazine [7]. Figure 1 (b)
shows the most basic forms of a phenazine. The phenazines analysed in this work were
synthesized from quinones [8]. It is possible to find these quinones and phenazines grouped
with many other structures forming more complex molecules, as described in this work.

N

N
O

O

O
O

a) b)

Figure 1 – Most basic forms of a) quinone [para-benzoquinone(left) and ortho-benzoquinone(right)] and
b) phenazine chemical structures.

In the last decades the study of the electronic [9] and chemical [10] properties of
quinones has led to interesting results, especially in their applications in pharmacology,
toxicology and medicine [1, 11, 12] with remarkably known antitumor [13–15], antimalarial
[16,17], trypanocidal [18–20] and leishmanicidal [21] potential activity. Phenazines also have
been widely explored in biology [7,22], where we can mention Barry et al. [23] investigations
of its potential against tuberculosis disease and Cezairliyan et al. [24] identification of
phenazines capable of killing nematodes. Most recently, Jardim et al. [8] reported on the
synthesis of specific quinones and phenazines compounds for the development of new drugs
against tuberculosis.

The vibrational modes of the p-benzoquinone molecule were firstly reported by
Stammreich and Forneris, followed by the investigation of the polarization dependence
of its Raman spectrum [25]. Durnick and Wait [26] published the investigation of the
fundamental Raman active vibrations in phenazines using a He-Ne laser, along with some
infrared active modes investigation. Stenman and Räsänen [27] investigated the symmetry
as well as the Raman active modes of solid state 1,4-naphthoquinone. Delarmelina et
al. [28] published a complete theoretical and experimental investigation of lapachol, α- and
β-lapachone Raman and infrared spectra. In addition, studies using time-resolved resonant
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Raman spectroscopy [29], characterization via resonant Raman of quinones co-factors in
solution [30,31], in enzymatic catalysis [32], and surface-enhanced Raman spectroscopy
(SERS) investigation [33] can be found in the literature.

As mentioned, Raman Spectroscopy provides detailed information about the compo-
sition and structure for molecules and other materials [34–36]. Its vibrational fingerprinting
empowers researchers, enabling breakthroughs in fields from nanotechnology [37] to phar-
maceuticals (as cited above), as well as the study of other optical phenomen [38,39]. The
invaluable insights gained through Raman Spectroscopy shape our understanding and
drive innovation in material characterization. In this work we analyse the Raman spectra
(both theoretical and experimental) of 38 quinones and derivative structures, some, to
our knowledge, never characterized before using Raman spectroscopy. The relevance of
comparing both simulated and experimental data in this analysis is that, when established
that these data properly correlate, one can perform the analysis and predictions according
with the information provided by the simulated data, avoiding the influence of experimental
details.

Considering the complex vibrational structure, we make use Principal Component
Analysis (PCA) and K-means Clustering [40–44] to analyse the data. These methods have
been widely used in the last decades in material science, biology and chemistry to improve
the extracting of information from data analysis in broader, automatic, fast, and efficient
ways. The complexity of the data we analysed here is due to the number of analized
compounts (38) and the number of vibrational Raman active modes, which goes up to 207
modes for the most complex analysed structure.

Therefore, here we bring an in depth study and the proposal of a classificatory
analysis method using the combination of PCA with K-means clustering statistical learning
methods, applied to the vibrational spectra of these 38 quinones and related structures
from Raman spectroscopy. The analysis was initially performed to the simmulation data,
which is free from experimental artefacts, and further compared to related experimental
data, showing compatible results. Our contribution is, therefore, twofold: (i) we present
new data and analysis related to these relevant organic aromatic compounds, the quinones
e phenazines; (ii) we propose a methodology for Raman spectral analysis that might
contribute for big data protocols such as the development of material´s genome initiative
[45].
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2 Theoretical background

2.1 Aspects of Raman spectroscopy

The phenomenon of light scattering can be divided in elastic or Rayleigh scattering,
where light is scattered with the same energy of the incident light, and the inelastic
scattering or Raman scattering, where a sample is excited by a beam of monochromatic
light, and the interaction between the photons of that beam with the molecules’ modes
of vibration (or phonons for solid-state materials) of the sample causes the energy of the
scattered light to be shifted, due to energy exchange between light and matter [46].

Figure 2 represents the transition of an electron from the fundamental state to a
virtual excited state and its decaying process to the fundamental electronic state, after
being excited by an incident photon from a light beam. Besides the electronic levels,
there are the vibrational energy levels of the material. Figure 2 represents three possible
outcomes of this process of excitation: a) represents the electron decaying back to its
fundamental state, with no vibrational energy level variation in the material, and no shift
in the energy of the scattered photon, which is the Rayleigh scattering; in b) the electron
decays to the fundamental electronic state with a higher vibrational energy in the material
(from n = 0 to n = 1), so that the scattered photon have less energy than before the
interaction, which is called Stokes Raman scattering. c) shows the anti-Stokes Raman
scattering, where the electron decays to the fundamental state, with a lower vibration
energy level (n = 1 to n = 0) in the material, and the scattered photon has more energy
after the interaction [36]. It is useful to mention that, for solid state, the vibrational levels
are represented by energy bands, and the vibrational modes are usually named phonons.

Vibrational
energy states

Excited electronic state

Fundamental electronic state

Virtual
energy state

a) b) c)

n =0
n=1
n=2

Figure 2 – Representative diagram of light scattering. a) shows the elastic Rayleigh scattering, b) shows
the Raman Stokes scattering and c) shows the Raman anti-Stokes scattering [36].
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The classical approach that explains the Rayleigh and the Raman scattering phe-
nomenon can be defined considering light as represented by the electric field E⃗ interacting
with the material, and inducing a modulation in its diplole momentum P⃗ [46], as shown
in the expression 2.1.

P⃗ = αE⃗, (2.1)

where α is the electronic polarizability. Since an electromagnetic wave with frequency ω0

have its intensity (E) oscilating in time, E = E0 cos(ω0t) and we can write the induced
polarization as:

E = E0 cos(ω0t),

P = αE0 cos(ω0t). (2.2)

Within the material, the polarizability α usually depends on the generalized coordinate Q
of a vibrational mode

Q = Q0 cos(ωqt), (2.3)

where Q0 is the vibrational amplitude and ωq is the molecule vibration frequency. For a
small amplitude of vibration, we can assume that α is a linear function of Q. So we can
expand it in a Taylor series such as

α(Q) = α0 +
(
∂α

∂Q

) ∣∣∣∣∣∣
Q=0

Q+O2, (2.4)

and the terms of second or higher order can be disregarded. Applying 2.4 in 2.2 it follows:

P = α0E0 cos(ω0t) +
(
∂α

∂Q

) ∣∣∣∣∣∣
Q=0

Q0E0 cos(ω0t) cos(ωqt). (2.5)

we can use the relation 2 cos(a) cos(b) = cos(a+ b) + cos(a− b), to obtain:

P = α0E0 cosω0t+ 1
2

(
∂α

∂Q

) ∣∣∣∣∣∣
Q=0

Q0E0{cos[(ω0 + ωq)t] + cos[(ω0 − ωq)t]}. (2.6)

Here, the first term have the frequency of the elastic scattering (Rayleigh), and the other
terms represent, respectively, the anti-Stokes, with resulting frequency (ω0 + ωq), and the
Stokes, with frequency (ω0 − ωq). The Raman scattering occurs when ∂α

∂Q
̸= 0.

The registered data of the Raman scattering is represented by the Raman spectrum,
which is exemplified in figure 3, where we can notice the Rayleigh scattering in the center
(the 0cm−1 Raman shift), which has to be blocked by a notch filter due to its intensity.
The bands in the left and right hand of the figure represent the anti-Stokes and the Stokes
energy bands, respectively. Each Stokes/anti-Stokes peaks represent a vibrational mode,
related to a specific Raman shift.
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Figure 3 – Representative model of Raman spectrum. At the center of the spectrum is located the energy
band related to the Rayleigh scattering, and the left and right bands, respectively refers to
the anti-Stokes and Stokes Raman scattering energy bands. This image was based in the
referecne [47]

2.1.1 Density Funcional Theory (DFT) formalism for the simulations of Vi-
brational Spectra

In the present section we bring a brief discussion about the formalism behind
these simulations, the Density Functional Theory (DFT). Since DFT formalism is not the
main scope of this work, is not our intention to define the method itself, and we let some
references along the text for further details and definitions as we bring the main aspects
of DFT considered to obtain the simulational results for this work.

The widely known Schrödinger’s equation [48] is the base of quantum mechanics
and can be represented as:

Hψ = Eψ. (2.7)

This equation provides a description of the electronic structure of a molecule or a solid
material sample [46, 48, 49]. In DFT, the total energy E is treated as a function of the
electronic density ρ as the basic variable. The objective of using the DFT is then to
minimize the energy in relation to the electronic densities [50], as stated by Hohenberg and
Kohn [51] in their two following theorems that served as base for the DFT formulations:
1. The external potential over the electrons is a functional of the electronic density; 2.
The energy of the fundamental state is minimized if and only if, the electronic density
is the exact density to the fundamental state. Based on these theorems, the electronic
Hamiltonian for a systems of M nuclei and N electrons can be defined as:
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Ĥ = −
N∑
i

1
2∇2

i −
M∑
A

N∑
i

ZA

|RA − ri|
+

N∑
i<j

N∑
j

1
|ri − rj|

(2.8)

where i and j are indices that represent the electrons of the system, A represents the
atomic nuclei, ri and RA represent the positions of the electron i and the atomic nuclei A,
and ZA is the atomic number of the atom A [52–54]. The Hamiltonian operator is defined
by the kinectic energy operator (first term, represented by T̂ ), the external potential
operator (second term, V̂ext), which refers to the position and charges of the electrons, the
electron-electron repulsion (third term, V̂e). We can rewrite the external potential like:

ν(ri) =
M∑
A

ZA

|RA − ri|
V̂ext =

N∑
i

ν(ri), (2.9)

where ν(ri) is the nuclear attraction potential energy functional for an electron in a r

position and Ψ0 is the solution function for the Hamiltonian at the funtamental state. The
gound-state electronic density is then, defined as:

ρ0(r) =
∫
ψ∗

0(r1, . . . , rn)
N∑
i

δ(r − ri)ψ0(r1, . . . , rn)dr1 . . . drn, (2.10)

so that we can write:

⟨Ψ0|
N∑
i

ν(ri) |Ψ0⟩ =
∫
ψ∗

0(r1, . . . , rn)
N∑
i

ν(ri)ψ0(r1, . . . , rn)dr1 . . . drn

=
∫
ψ∗

0(r1, . . . , rn)
N∑
i

δ(rp − ri)ν(rp)ψ0(r1, . . . , rn)dr1 . . . drndrp

=
∫
ρ0(r)ν(r)dr (2.11)

where ψ0(r1, . . . , rn) is the solution of the Hamiltonian already mentioned above for the
case of the fundamental state. Considering the separation of the external potential, the
total energy of the system is, then:

E0 = ⟨Ψ0| Ĥ |Ψ0⟩ = ⟨Ψ0| T̂ + V̂e + V̂ext |Ψ0⟩

= ⟨Ψ0| T̂ + V̂e |Ψ0⟩ +
∫
ρ0(r)ν(r)dr. (2.12)

So, according to the Hohenberg and Kohn theorems, it is possible to calculate all properties
of the system, without the necessicy of having determinated the wave function, by knowing
the electronic density at the fundamental state. However, the theorems do not guide us
to the calculation of E0 from the density ρ0, neither to calculate ρ0 without determining
the wave function. The Khon-shan formalism [55] offered a method to calculate E0 and ρ0
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exactly if the used functionals are exact. In DFT, we still use approximated functionals to
obtain approximated results.

In this work, as we shall see in section 3.2, we used the funcional M06 − 2x [56],
which is classified as a meta-GGA (meta-Generalized Gradient Approximation) functional.
Meta-GGA functionals derive from GGA functionals [57,58], which are functionals that
are derived from both, the electronic density and its gradient (how fast the density varies
locally in the system). The meta-GGA functionals consider additionally the local kinectic
energy density, allowing it to treat different chemical bonds more accuratelly than GGA
functionals. The M06 − 2x functional is used in the computational analysis of organic
modecules, providing good results to thermodynamic properties, and so, it is expected the
same for vibrational properties.

To optimize the structure, it was used the basis set 6−31+G(2d, p), which describe
the using of 6 gaussians to describe the behavior of the core electrons, and 3 and 1 gaussians
fo describe the valence electrons [59], plus the addition of diffuse functions (the "+" signal
in the representation of the basis set) to enhance the accuracy in the calculation of the
electrons behavior [60].

2.2 Quinones and derivate molecular systems

This section was based in the analogous section found in the work cited in the refer-
ence [61], since this present work was developed at the same period and with collaboration
with the authors of the mentioned work.

The basic structure, origin and roles of quinones were already presented in the
Introduction of this work, and, as already mentioned, their molecular structure can sustain
different nuclei structures, which are illustrated in figure 4, respectivelly for the examples
of a benzene ring (a)), naphthalene (b)), anthracene (c)) and phenanthrene (d)).

O

O

a)

O

O

b)
O

O

c)

OO

d)
Figure 4 – Schematic representation of some nuclei for quinones. a) Benzoquinone, b) Naphthoquinone,

c) Anthraquinone and d) Phenanthroquinone.

Because of their different nuclei structures and properties, quinones can be used as
a precursor for the synthesis of several derivative molecular systems, such as phenazines.
Phenazines are organic, heterocyclic, nytrogenous aromatic compounds, also called as
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dibenzo[b,e]pyrazine [7]. Figure 1 (b) shows the most basic forms of a phenazine. Since
phenazines analysed in this work were synthesized from quinones [8], we keep our discussion
centered in the properties of quinones, but in the introduction chapter, and table B we
have some references for further details about the mentioned phenazines in our study.
In the samples studied in this work, it is possible to find these quinones and phenazines
grouped with many other structures forming more complex molecules, as described along
the text.

Considering the wide role that quinones play in nature, we can begin mentioning as
example the ubiquinone, which is a benzoquinoidal class molecule, also known as Coenzyme
Q10, and which structure is illustrated in figure 5. They are present in all of the main
tissues of the human body and it is also used as medication for, e. g., heart diseases [62],
since it acts as an electron carrier in the mitochondrial breath electron transport chain.

O

O

H3CO

H3CO H
10

Figure 5 – Chemical structure of the Ubiquinone, also known as Coenzime Q10.

Another molecule that we can bring in this section, which shows a naphthoquinoidal
nucleus, is the vitamin K, and it exists in two versions: K1, also called phylloquinone,
and mostly found in plants, and K2, also called menaquinone, and found synthesized by
some kinds of bacteria [63]. These structures are presented below in figure 6. It is useful
to mention that vitamin K is important for the biological activity of blood coagulation
and bone metabolism.

O

O

a)
O

O

b)
Figure 6 – chemical sctructures of a) Vitamin K1 and b) Vitamin K2.
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One last example that we can mention here, among a whole family of possible
quinones either found in nature or sinthesized, is the Lapachol compound, which is shown
in figure 7. Lapachol is a naphtoquinoidal molecule that can be extracted from trees that
belong to the Tabebuia family (e.g. Brazilian Ipê). It is known as having high potential
on biologial activity, being investigated in antitumor [64], anti-inflammatory [65] and
antifungi [66] scientific research, among others [67]. Still in its biological activities, Lapachol
can be used to obtain the β-lapachone molecule, which has been highly investigated due
to its pharmacological activity in anti-tumor applications.

O

O

OH

Figure 7 – Chemical structure of the Lapachol molecule.

Lastly, quinones are highly reactive molecules, which chemical oxidative properties
allow interaction with biological samples, acting in the electronic transference in bioreduc-
tion. In the last decades, the study of the electronic [9] and chemical [10] properties of
quinones has led to interesting results, especially in their applications in pharmacology,
toxicology and medicine [1, 11,12] with remarkably known antitumor [13–15], antimalar-
ial [16, 17], trypanocidal [18–20] and leishmanicidal [21] potential activity. Phenazines also
have been widely explored in biology [7,22], where we can mention Barry et al. [23] investi-
gations of its potential against tuberculosis disease and Cezairliyan et al. [24] identification
of phenazines capable of killing nematodes. Most recently, Jardim et al. [8] reported on
the synthesis of specific quinones and phenazines compounds for the development of new
drugs against tuberculosis.

2.3 Computational data processing

The Statistical Learning techniques can be divided in three different kinds of
algorithms: supervised, unsupervised and reinforcement learning [68,69]. These three kinds
differ basically in how the statistical algorithm will be trained. For example, supervised
learning algorithms deals usually with labeled data for training, with a predefined target
variable of the dataset, unsupervised learning algorithms are oftenly found being used to
process unlabeled data, and reinforcement learning algorithms work by interacting with the
environment of the data analysis by means of errors or rewards: a chosen variable can vary
according to the expected performance in the process of learning, guiding the model to the
better accuracy. In this work, we use an unsupervised learning algorithm to classify data.
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As mentioned previously, the machine will deal with data without any guidance, without,
in principle, any necessary previous notion of classification or the dependency of a specific
target variable. It is then put into an assignment of understanding patterns and behaviors
of the data and then give the outcome. There are many examples of unsupervised learning
algorithms available in the literature [69,70], and as we discuss in the following sections,
in this work we use clustering (k-eans) and dimensionality reduction algorithms (Principal
Component Analysis) for Raman data classification.

2.3.1 Principal Component Analysis (PCA)

Given a problem in an initial n-dimensional space, one may find it necessary to
represent a set of points as a best-fit regression into a specific, lower dimensional space.
In order to make the processing (and/or the work) easier, keeping the most significant
properties of the data set is maintained, the so-called Dimensionality Reduction [71–73]
can be used, and we shall explore in this section the Principal Component Analysis (PCA)
algorithm. The main Idea behind PCA is to convert a set of correlated variables into
uncorrelated components (these are the principal components), such that these components
are ordered by the value of each of their respective variance, as we shall see in the discussion
bellow.

Consider that we have a set of n points in a p-dimensional space, represented by a
matrix Xn×p, the question here is how can we reduce this set into a q-dimensional space
such that q ≤ p, as we keep the main information of this set. The main objective of PCA
is to define a projection of these points into the best fit regression lines and find the
directions that maximizes the variances of the projected points into it [73, 74]. So, we can
consider a vector x⃗ of p random variables, as we are interested in the variances of these
variables, and a vector α⃗1 of p constants α11, α12, ..., α1p that define a linear funcion

α⃗1
T x⃗ = α11x1 + α12x2 + · · · + α1pxp =

p∑
j=1

α1jxj, (2.13)

having maximum variance, in relation of the elements of x⃗. The next step is to
define analogous linear functions α⃗2

T x⃗, α⃗3
T x⃗, · · · , α⃗q

T x⃗, independent from each other,
these being the "best fitting" linear regressions of the data set, for less than or each of the
dimensions involved. It is hoped that most of the variation in x⃗ is accounted for by only a
few of these α⃗q

T x⃗ functions, which is known as being the Principal Components of the
data set.

A simple case, when p = 2, is illustrated in the figures 8 and 9. Figure 8 shows a
set of data on two correlated variables x1 and x2, with the application of the functions
that define the best fitting line. Figure 9 shows the result in terms of the transformation
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in PC1 and PC2. In these, it is possible to notice that the variance in PC1 is higher than
the variance in PC2.

Ortogonal line
("2nd component")

B
x 2

x1

Best fit 
regression line

("1st component")

Figure 8 – Randomly plotted points to illustrate how PCA works. The dashed lines is merely an example
of regression which serves as a reference to define the samples space, from which we construct
the two Principal Components of the dataset. From it we obtain the "direction of variance"
of the whole data involved in the analysis.

PC 2

PC 1

Figure 9 – Representation of the points projected in the new "PC space" when p = 2, as it can be noticed
from Figure 8.

The PCs can be found considering that x⃗ has a known covariance matrix Σ. It is a
ijth dimensional matrix which diagonal (i = j) elements are the variance of ith element
of x⃗, and the non-diagonal (i ̸= j) elements are the covariance between the ith and jth
elements of x⃗. Defining the qth PC as zq = α⃗q

T x⃗, where α⃗q represents the eingenvectors of
Σ, which corresponds to the qth largest eigenvalue λq and α⃗q is chosen to have unit length
(α⃗q

T α⃗q = 1), so that

var(zq) = var(α⃗q
T x⃗) = λq, (2.14)
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where λ1 > λ2 > · · · > λq.
We shall define these relations in the next paragraphs, according with the references

[73,75,76]. Considering the first PC, α⃗1
T x⃗, as the vector α⃗1 maximized the expression

var(α⃗1
T x⃗) = α⃗1

T Σα⃗1. (2.15)

Here we need to consider such a constraint for normalization, so that we garantee
the maximum of the expression to be achieved. We then consider α⃗1

T α⃗1 = 1, and use the
technique of Lagrange multipliers, in other words, we intent to maximize:

α⃗1
T Σα⃗1 − λ(α⃗1

T α⃗1 − 1), (2.16)

here, for this case, λ represents a Lagrange multiplier. If we apply a differentiation over
α⃗1, we have

Σα⃗1 − λα⃗1 = 0;

(Σ − λIp)α⃗1 = 0,
(2.17)

where Ip represents a p× p identity matrix. We then have λ being and eigenvalue of Σ
and α⃗1 being the corresponding eigenvector. The quantity to be maximized is, then

α⃗1
T Σα⃗1 = α⃗1

Tλα⃗1 = λα⃗1
T α⃗1 = λ, (2.18)

so that λ must be as large as possible, and α⃗1 has to be the eigenvector corresponding to
the largest eigenvalue of Σ, and so

var(α⃗1
T x⃗) = α⃗1

T Σα⃗1 = λ1, (2.19)

is the largest eigenvalue.
For the second PC, α⃗2

T x⃗ is searched for maximizing the expression α⃗2
T Σα⃗2, and

can be obtained by considering the covariance between α⃗2
T x⃗ and α⃗1

T x⃗, which is zero, once
they are uncorrelated. But we also have that

cov(α⃗1
T x⃗, α⃗2

T x⃗) = α⃗1
T Σα⃗2 = α⃗2

T Σα⃗1 = α⃗2
Tλ1α⃗1 = λ1α⃗2

T α⃗1 = λ1α⃗1
T α⃗2 = 0. (2.20)

Any of these equations could be used to explore the zero covariance between α⃗2
T x⃗

and α⃗1
T x⃗, but we shall explore the expression α⃗1

T α⃗2 = 0 for simplicity. Remembering
the constraint of normalization as used before for α⃗1, we have that the quantity to be
maximized is

α⃗2
T Σα⃗2 − λ(α⃗2

T α⃗2 − 1) − ϕα⃗2
T α⃗1 (2.21)
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where λ and ϕ are Lagrange multipliers. Differentiating in respect to α⃗2 and multiplying,
by the left, the resulting equation by α⃗1

T yields

Σα⃗2 − λα⃗2 − ϕα⃗1 = 0;

α⃗1
T Σα⃗2 − λα⃗1

T α⃗2 − ϕα⃗1
T α⃗1 = 0,

(2.22)

with the constraint α⃗1
T α⃗1 = 1, and the first two terms being zero, yields ϕ = 0. So again

we have

Σα⃗2 − λα⃗2 = 0;

(Σ − λIp)α⃗2 = 0,
(2.23)

with λ being and eigenvalue of Σ and α⃗2 being the corresponding eigenvector.
Once again, we have, similarly, α⃗2

T Σα⃗2 = λ, with λ being as large as possible,
but now assuming that Σ does not produce repeated eigenvalues, so it could violate the
constraints of independence between the vectors α⃗q, λ ̸= λ1, so that λ must be the second
highest eigenvalue of Σ in this case.

The analogous can be demonstrated for λ3, λ4, · · · , λp and for the vectors of coeffi-
cients, and, by consequence, for the other pth PCs, remembering equation 2.14

Although the most challenging part of this procedure is to precisely interpret the
Principal Components (PCs), we can say that in this work the values obtained in the PCA
calculation will give us the coordinates in the samples space, guiding us to the relative
distance between the analyzed samples, which gives us the notion of "how much different
or similar" they can be among each other in function of their relative distances. We shall
discuss further details in the section 3.2.2.

2.3.2 k-means clustering

In general, clustering algorithms intend to define, from the character of the dataset,
the best division (by labeling) of groups of points. In the case of k-means clustering, it is
made by the calculation of "cluster centroids" which are the arithmetic mean of the points
that belongs to each cluster, with each point being closer to its own cluster centroid than
to the centroid of any other cluster [77–79].

Mathematically, the k-means clustering can be defined based on the Sum of
Squares(SSQ) criterion [78, 79], and can be described as follows: Given a set of n data
points x1, · · · , xn in the space Rp and a k-particioned set C = (C1, · · · , Ck). The discrete
version of the SSQ criterion is defined as:

gn(C) :=
k∑

i=1

∑
ℓ∈Ci

∥xℓ − xCi
∥2 → min

C
, (2.24)
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with xCi
representing the centroid of the points xℓ which belongs to Ci, and we look for a

k-partition of the set O with minimum criterion value as in 2.24. We can use the equivalent
form of 2.24 for two parameters,

gn(C,Z) :=
k∑

i=1

∑
k∈Ci

∥xℓ − zi∥2 → min
C,Z

, (2.25)

where the minimization problem is relationed to all the systems Z = (z1, · · · , zn), which
result come from the following theorem:
Theorem 3.1:
(i) For any fixed k-partition C, the criterion 2.24 is partially minimized in relation to Z by
the sistem of class centroids Z∗ = (xC1 , · · · , xCk

) =: Z(C):

gn(C,Z) ≥ gn(C,Z∗) :=
k∑

i=1

∑
k∈Ci

∥xℓ − xCi
∥2 = gn(C) ∀ Z, (2.26)

(ii) For any fixed prototype system Z the criterion gn(C) is partially minimized in relation
to C by any minimum-distance partition C∗ =: C(Z) induced by Z, i.e. with classes given
by C∗

i := {ℓ ∈ O | d(xℓ, zi) = minj=1,...,kd(xℓ, zi)}, where d(x, z) = ∥x− z∥2 is the squared
Eucliedean distances

gn(C,Z) ≥ gn(C∗,Z) :=
n∑

ℓ=1
min
C,Z

{∥x− z∥2} ∀ C. (2.27)

In simple words, the k-means method is set to find an optimum k-partition by
iterating the partial minimization steps from the Theorem 3.1. It proceeds as shown bellow:
t = 0: Begin with an arbitrary prototype system Z(0) = (z(0)

1 , . . . , z
(0)
k ).

t → t+ 1:
(i) Minimize the criterion gn(C,Z(t)) relationed to the k-partition C, determining a
minimum-distance partition C(t+1) := C(Z(t)). In other words, assign each register to the
nearest group mean according to the measure of the square distance.
(ii) Minimize the criterion gn(C(t+1),Z) relationed to Z, calculating the system of class
centroids Z(t+1) := Z(C(t+ 1)). This set the new mean of the group, based on the
attribution of the registers.

The method converges when when the attribution of registers into groups does not
change.

The k-means algorithm searches for a predefined number of clusters, and once the
centroids are identified, the different clusters are separated by "mute coloured labels" for
each group of points, with the colours being not related with any direct characteristics
from the points themselves. This process can be seen on figure 10 where in the left side
there is a random plot of points, which can be easily seen that there is something close
to three different clusters. After the running of the algorithm, asking it to search three
clusters of points, in the right side of the figure 10, it is possible to notice the labeling of



Chapter 2. Theoretical background 24

three clusters, marked by the coloured labels, as well as the cluster centroids, which are
represented by the crossed red circles.

It is useful to say that there is not a unique way of choosing the number of clusters
for the algorithm to find: it can depend on the context in which the dataset is being
analyzed. Some can even make use of heuristic methods, like the so-called "elbow method",
that uses the relation between the number of clusters and the behavior of the mean errors
to find the best number of clusters your algorithm can be asked to calculate.

b )a )

C l u s t e r  3

C l u s t e r  2C l u s t e r  1

Figure 10 – Example of how the clustering algorythm works. The clusters are defined by the different
colors in the scatter plot. The colors are merelly "mute labels" and do not have anything
to do with some kind of property of the analyzed data. The red crossed circles in the
figure illustrate the calculated centroyd of the clusters, which serve as reference to compute
the split of the points in well-defined clusters, as well as the involved errors of standart
deviations, if necessary.

In this work we present the k-means clustering technique combined with the result-
ing plot of the PCA calculation our dataset gives us as result: We apply the PCA algorithm
over the numerical Raman data of the simulations, followed by a three-dimensional plot
with the three first PCs in order to obseve the distributions of the points which represent
the samples, and apply a k-means cluster algorithms to investigate the grouping of the
points according to their statistical interpretation of the algorithm. The ordering process,
and the spectral reconstructions at the first principál component shall be discussed later
in the Methodology section.
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3 Methodology

3.1 Experimental details

3.1.1 Samples

The samples were obtained in collaboration with the da Silva Júnior Group -
Organic and Medicinal chemistry [80] laboratory, at Departamento de Química da Univer-
sidade Federal de Minas Gerais, and the Apendix B brings the names of the compounds,
chemical formulas, chemical structure representation for a single molecule and, most im-
portantly, the references for how the 38 analyzed compounds (see Table B) were obtained.

The compounds were in a solid, microscopic, powder-like state, varying between
crystalline and amorphous aspects (in some cases, both aspects could be found in the same
sample) as shown in the figure 11 for the compound (1) (see Appendix B for compounds
identification). In the middle image b) in the picture, when zooming in this captured
region, it was possible to observe the formation of groups of small needle-like crystals,
which Raman spectrum would vary according with the orientation of the sample.

a) b) c)
Figure 11 – General picture of the morphologies found in compound (1). It is possible to find some

amorphous appearace in a) and c), and b) shows the most crystalline aspect in the sample.

The studied compounds proved to be stable, but also sensitive to the laser power:
for most of the samples, values such as 4.0 mW in a 633 nm laser wavelenght, were suficient
to burn the region enlighted(more information in section 3.1.2). We also had to be careful
when choosing the wavelenghts available in the apparatus, since for the 488 nm and 532
nm wavelenghts, small variations in the laser power could go from no suficient signal to a
sample burning at the laser spot and neighborhood.
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3.1.2 Raman Spectrocopy Measurements

In order to collect the Raman spectra of the samples, we used a WiTec Alpha 300
RA confocal Raman spectroscope, as shown in the figure 12.

Figure 12 – Central module microscope apparatus from the Witec Confocal Raman spectrometer, where
the samples were measured.

The apparatus had available three possible laser lines: 457nm, 523nm and 633mn.
For the measuring of the compounds presented in this work, we used the 633nm He-Ne
line. The 633nm He-Ne laser sent in this spectroscope is linearly polarized, and both the
laser-to-microscope and microscope-to-spectrometer coupling are made with optical fibers.
The optics, including the gratings of the spectrometer, are polarization dependent, and
the system configuration is chosen to maximize the system´s optical efficiency.

The backscattered Raman signals were collected by a 10 times/0.25 NA Zeiss EC
Epiplan objective lens with accumulation time of 30 seconds, sent to a back-illuminated
Charged-Coupled Device (CCD), located after a 600 g/mm, BLZ=500 nm grating. The
laser power was adjusted to 4.0 mW as measured by at the sample location. In total, a
set of 38 compounds were measured (see figure 16 in section 4.1), including quinones and
derivative compounds. Since these molecules have aromatic rings in their structures, it was
possible to observe a wide line of luminescence in the spectra of most of the compounds,
generating a baseline in the Raman spectrum, which was removed in the data treatment
with the Project FOUR 4.1 WiTec software.
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3.2 Computational Methods Applications

3.2.1 Simulational data

This section explains the fundamental aspects of the vibrational simulations of the
molecules, developed by Prof. Helio F. dos Santos, from Núcleo de Estudos em Química
Computacional (NEQC) at Chemistry Department of the Universidade Federal de Juíz de
Fora (UFJF).

The structure optimization and vibrational analysis were carried out in the gas
phase. In general, the calculated molecules are rigid; however, for those with a flexible
side chain, the conformation was defined by rotating the side chain in order to minimize
steric contacts.

As a theoretical study, the first step is to optimize the molecular geometry of the
studied systems, which in this case was made via the Density Functional Theory (DFT)
method. In DFT, the energy of a molecular system is considered as a function of the
electronic density in order to describe the many-body phenomena within a formalism of
a single particle. The molecular geometries were optimized via DFT using the m062x
functional and 6 − 31 +G(2d, p) basis-set. The Raman spectra were calculated within the
harmonic approximation considering a single molecule, in vacuum, for each compound.
For the Raman intensities, was used the equation [81–84]:

IR
i = C(ν0 − νi)4ν−1

i B−1
i Si, (3.1)

where ν0 is the laser excitation frequency, νi and Si the calculated frequency (in cm−1)
and Raman scattering activity (in Å4 amu−1) for each normal mode. The constant C
was set to be 10−12 and Bi=1 [81,82], this last one is a temperature factor that accounts
for the contribution from excited vibrational modes. The calculations were performed
using Gaussian 09® software, from which the output files containing the frequencies are
visualized in the GaussView® software. Figure 13 illustrates the interface of the GausView
software for the molecule of Benzoquinone.

Finally, in order to simulate the Raman spectra, a Lorentzian function was fitted
to the calculated values of frequencies and intensities. Scaling factors were not used for
frequencies in this first analysis, but it was considered in our methodological analysis to
compare with the measured Raman spectra.
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Figure 13 – Interface of the GaussView Software, where is shown the output for the analysis of the
benzoquinone molecule (compound (1)) with the Table of calculated vibrational modes,
the simulated Raman spectrum and the 3-dimensional animation (with the displacement
vectors) of the molecule for each selected mode from the table.

3.2.2 Reduction of the dimensionality(PCA)

Here the details of the reduction of data dimensionality using Principal Component
Analysis (PCA) will be presented. In the process of dimensionality reduction, the number
of dimensions (components) that our data set will have at the end of the process, will be
equal to the minimum between the number of compounds (the rows of the input data
frame) and the number of features (columns of the input data frame). For the simulated
Raman spectra, the input data frame is a matrix of 37 rows by 4001 columns, as for the
experimental data, in which the input data frame will have 37 rows and 977 columns. In
both cases, the PCA Scores matrix, which contains the PCA components, will be a square
matrix of 37x37, as illustrated by figure 14 below for the case of the simulated data:

A37x4001
PCA

Algorithm { C37x37

D37x4001

(PCA Scores Matrix)

(PCA Loadings Matrix)

Figure 14 – Schematic illustration of how the PCA works when applied in a data frame (matrix). The
scores matrix represents the positions of the points of the data in the new coordinate system,
and the loadings matrix brings the weights for each original variable when calculating the
principal component.

Before running our data into PCA algorithm it is first necessary to scale the data
in order to make all samples and features be in the same scaling criteria. The scaling



Chapter 3. Methodology 29

process we used standardizes the features by removing the mean and scaling them to unit
variance, by using the StandardScaler library from scikit-learn. We then performed the
PCA algorithm from which we selected the three first components, which were plotted
it in a three dimensional diagram, and from which we could observe the varioational
simmilarities between the compounds in space. The variance of these three components is
illustrated below on figure 15. Here we can see that these three components correspond to
70.3% of the total variance.
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Figure 15 – Explained variance of the three first PCs considered in our analysis. The first PC corresponds
to almost a half of the total variance, and the three first correspond to an amount of 70.3%
of the total variance.

The compound (38) had the most complex chemical structure of all the compounds
(also in terms of its vibrational spectrum, simulated and experimental), so, the processes
of scaling and and PCA calculation were being compromised due to the complexity of its
data, so the best solution were to remove the compound (38) from the Scaling and PCA
calculation processes. The treatment on this compound shall be discussed in the PCA
reconstruction section.

3.2.3 Choosing and finding the K Clusters

As discussed in the section 2.3.2, the way one can choose the number of clusters for
the algorithm to find will depend on the context in where the problem is. In our case we
do have compounds with structural similarities and differences that can be noticed by eye.
It was possible to estimate that we had between 6 and 8 groups with different aspects,
combined with the interpretation of the resulting PCA plot (if analyzed separately before
the running of the k-means algorithm). Then, we tested the K-means algorithm for 6, 7
and 8 clusters, and we found more suitable to keep a total of 7 clusters for the algorithm
to find, according with the chemical structural aspects of the samples and the dispersion of
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the points in the PCA plot. The algorithm was applied the dataframe containing the three
selected PCA coordinates. Since the k-means follows an euclidean method of distancing
for the calculation of the centroids , and considering that PCA respects the (already
mentioned) variance hierarchy among its components, we multiplied the each considered
PC (which were represented by the columns of the matrix) by its respective variance
before applying the k-means algorithm, considering the 37 samples scaled for the PCA
calculations. The result of the clustering would reflect into a new, numeric column in the
PC matrix which we called the "labels", from which, each number would correspond into a
color code in the PCA plot. We shall see the final coloured plot in the results discussion
section 4.

3.2.4 Spectral Ordering

One of our intentions in this work was to develop a method to analyse the compounds
also in terms of their chemical structure complexities, and since PCA and K-means showed
a good behavior in terms of the grouping in three-dimensional space, we decided to
investigate how the samples would order from the most simple structure to the most
complex. When running the PCA with all 38 spectra, we find compound (38) to be too far
away from all the others, as already mentioned, compromising the metrics and variational
calculations. In order to investigate the behavior of the other 37 compounds, which where
closer to each other, in relation to the distance of the compound (38), we considered
compound (38) as the most different and executed PCA again excluding compound (38)
and considering it the last in the ordering process. The spectral ordering for the other 37
samples were then calculated by an Euclidean-based metric calculation, considering as the
three-dimensional coordinates, the three first principal components in the PCA, weighted
by their respective variance, as follows:

d =
√
PC1var(x37 − xj)2 + PC2var(y37 − yj)2 + PC3var(z37 − zj)2,

j = 36, 35, 34, ..., 1, (3.2)

where x stands for the PC1 axis, y for PC2 axis, z for the PC3 axis, and j stands for each
of the samples in decrescent order, from 1 to 36, all calculated with respect to the most
distant sample in this case, which is sample 37.
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3.2.5 Spectral reconstructions at the first principal component

Once obtained the disposal of the samples spectra points in the PCA space, we
decided to investigate their relative positioning in terms of their variation from a spectrum
to another. To do this, we use the data referent to the 3 PCs we considered in our PCA plot,
by selecting three first columns from the scores matrix (represented by C ′

37×3), multiplying
them by the three first rows of the Loadings matrix (represented by D′

3×4001), and applying
an inverse transformation of scaling in the resulting matrix, which we call Rc37×4001, as
shown bellow:

C ′i
37×1 ·D′i

1×4001 = Rci
37×4001, i = 1, 2, 3. (3.3)

We have as a result three matrices of 37 rows by 4001 columns, representing the
reconstruction of the Raman Spectra at each of the three Principal Components, each row
representing one of the 37 considered samples (remember that we disregarded compound
(38)), and each columns being a Raman spectrum point. Plotting each of these rows shall
give us the variational behavior of the spectra in relation to each of the three Principal
components, and show which band of the Raman spectra most contributed to the sample
to be in that position at the three-dimensional PCA space.
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4 Results and discussion

4.1 Experimentally measured Raman spectra of the 38 compounds

Figure 16 shows their experimental Raman spectra in the region between 40 and
1800 cm−1. Spectra (1”) and (5”) relates to, respectively, the amorphous character of
compound (1), and the spectrum compound (5) with the light polarized to the largest
crystal axis (90° rotation from spectrum (5)). The compounds are ordered based on the
degree of complexity of their Raman spectra, according to Principal Component Analysis
(PCA), as discussed here.
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Figure 16 – Raman spectra of the compounds (see Table 1 in appendix B for names) in the spectral
region between 40 and 1800 cm−1. Also shown are the compounds’ photo-image obtained
through a microscope (10x objective). (1”) and (5”) show the spectra of, respectively, the
amorphous character of compound (1), and the spectrum of 90° rotation of compound (5)
with respect to the larger crystal axes.
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4.2 Comparison Between the simulated and measured spectra

In order to check the accuracy of the simulational results of the vibrational spectra,
we made a detailed study comparing the simulated vibrational spectra with the obtained
experimentaly. The experimental data onde has influence from other optical phenomena
like luminescence, creating a baseline in the spectrum. Futhermore, samples instabilities
cause loss of signal, ethalon fringes appear due to the grating of the spectrometer, etc,
influencing the signal quality. Figure 17 shows the comparison between the measured and
simulated Raman spectra for the compounds (1), (5), (4) and (24).
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Figure 17 – Experimental (black line) and calculated (red line) Raman spectra for the molecules (1),
(5), (4) and (24) (see table B in the appendix B). Some specific vibrational modes are
highlighted for some spectral regions to illustrate the type of vibration for different frequency
ranges.

By comparing the predicted high frequency region (>1000 cm−1) profile with
experimental, we see that the calculated frequencies are overestimated due to the use of
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harmonic approximation, making the calculated spectra to look wider than the measured
data. A multiplication factor of 0.95 [85] was applied to the frequency scale in order to
make the highest frequency bands (above 3000 cm−1) graphically aligned, such that the
simulated and experimental spectra could fit each other reasonably. In the region below
100 cm−1 (Fig. 17) strong peaks are experimentally observed. Some normal modes are
also calculated in this region, assigned to out-of-plane vibration of the entire molecule,
as shown in Fig. 17 for the molecule (24), for the vibrational modes 54.25 and 80.67
cm−1, respectively. These modes have very small Raman scattering activity, but high
Raman intensity due the low frequencies (see Eq. 1). The analysis of these vibrational
modes represented in Fig. 17 and assignment must be done with care. Some molecules
from the set studied here (1,4-benzoquinone, naftoquinone, lausone, among others) showed
intense bands in this low frequency region, which is not predicted theoretically, because
while theory considers only a single molecule (as already discussed) in vacuum, the real
compounds are in a solid phase, some with a well defined crystalline character.

In Fig. 17 it is possible to notice that the more complex the chemical structures of
the compounds are, the more complex is the measured and calculated Raman spectra, and
it is possible to notice that the experimental data does not show all the modes activated
by the laser, due to the mentioned phenomena at the begining of this section. As the
number of scatterers increases, more susceptible to luminescence phenomena the samples
are, such that, when subtracting the baseline of the experimental spectra, the peaks of
some regions shall be lost. This loss os information is better noticeable when looking for
the vibrational modes in the region arround 3000 cm−1, when comparing samples (1) and
(24) experimental spectra, one can notice that for the former, it is easy to see the peak in
3056 cm−1, as for the latter, almost none of the peaks arround 3000 cm−1 can be seen.

4.3 Discussing the Principal Components

4.3.1 Ordering of the Samples Through the PCA Scores

To order the spectra according to spectral complexity, we applied PCA for processing
the similarity among the 37 simulated Raman spectra data, and the K-means clustering
classification method in order to partition the clusters observed in the PCA. The first three
principal components (PC1, PC2 and PC3) accounting for 70.25% of the total spectral
variance(PC1: 46, 88%; PC2: 15, 55%; PC3: 7, 82%)(see figure 15), are shown in figure 18,
each point representing one of the 37 spectra, collored accoding to the K-means clustering
labeling output. From these images it is already possible to notice the formation of small
clusters of points, even without considering the collored labels. Compound (38) was not
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considered in this analysis due to a signicantly larger distance from the others, interfering
in the understanding of the plot by grouping too closely all the other 37 data points. (38)
appears further away along the same PC-direction as compound (37). We defined then 7
clusters (or 8, including sample(38)) to better describe the similarities and differences
among the samples.
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Figure 18 – PCA scores plots relative to the theoretical spectra of compounds (1) to (37). a) Three-
dimensional (3D) scatter plot of the three first Principal Components (PCs) (70.3% of the
total variance). The 2D plots are shown in b), c) and d) to give a better notion about the
relative distances between the compounds. The distances between points were calculated as
a weighted norm relative to the most isolated (in this case, (37)).

As we mentioned in the section 3.2, the PCA algorithm had as input, for the
simulated data a 38x3800 dimensional matrix, where 38 is the number of compounds and
3800 is the number of points in one spectrum, one point per cm−1. For the experimental
data, similarly we utilized a 38x977 dimensional matrix, where 977 is the number of
experimental spectral Raman data, one point per 2.1 cm−1 on average within the 40-1800
cm−1 spectral range. In the process of comparing both data sets, we checked that the
difference between both pitches did not interfere in the PCA output data.

Figure 19 shows the Raman spectra of the 38 compounds, both (a) the simulated
and (b) the experimental data in a heat map (see figure 16 for each experimental data
separately). From this figure is possible to observe the general behavior of the Raman
Peaks that define the spectrum of each sample, and how the spectra complexity evolves as
does the molecule complexity. The spectra are ordered, from bottom to top, according to
increased spectral complexity, as defined by the PCA ordering trained with the simulated
data. Figure 19(b) shows the same ordering of (a) applied in the experimental data by
hand to show the behavior in experimental Raman spectra. The ordedring of experimental
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data that results from the application of the PCA model and the ordering in 3.2 and the
comparison with the simulated data will be shown in figure 20.
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Figure 19 – Heat scale plot for the Raman spectra of the 38 compounds. Each horizontal line corresponds
to one Raman Spectrum. a) Simulated Raman spectra in the region between 0 and 3800
cm−1. b) Experimental Raman spectra in the region between 40 and 1800 cm−1. In b),
the region above 1800 cm−1 was removed due to the presence of Etalon fringes.

Figure 20(a) plots the PCA compounds ordering of the simulated versus the experi-
mental data, showing that the simulated data is a considerably consistent representation of
the experimental data, so that analyses and predictions can be made here according to the
information provided by the simulated data. The relevance of polarization configuration
dependence is shown in figure 20(b), where the polarization scattering geometry of samples
1, 4, 5 and 24, which are samples with macroscopic crystalline aspect, were modified (see
caption). Figure 20(c) shows the plot of the PCA-based theoretical spectral ordering on
the X axis, and on the Y axis the respective number of atoms N, and will be moreee
discussed in the section 4.3.3.

4.3.2 Spectral reconstructions at the first principal component

Figure 21 shows the reconstructions of the Raman spectra of some samples in PC1,
using the methodology applied by Campos, et al [41]. From a) to f) three examples are
displayed, representing the center and the two extremes of each cluster partition. For each
partition, the Raman spectra of the selected samples (above), and their reconstructions
in PC1 plot (below) are shown. These composition plots give the weights of the Raman
modes that mostly contributed for the PC1 variance (and, consequently, the distancing
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Figure 20 – a) Plot of the PCA compounds ordering of the simulated versus experimental data. Com-
pound numbers on top of each data point and cluster colors indicating the K-means
partitioning are based on the simulated data analysis. The red dashed line represents a
figurative perfect match between theoretical and experimental orderings. b) Plot of the PCA
compounds ordering of the simulated versus experimental data for 90° rotation of some
of the samples (circled numbers). c) Plotting the PCA-based theoretical spectral ordering
versus the respective number of atoms N.

between the points in figure 18) individually for each sample.
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Figure 21 – a) to h): Raman spectra (top) and Raman spectra reconstructions in PC1 (bottom) of
selected samples. Each curve stands for one sample, as displayed in the legends. At the
bottom plot of a) and c) the main vibrational modes with larger variance are indicated
("bnd." stands for bending, and "strch." means stretching). Partition h) (bottom) shows the
prediction of the spectral composition to compound (38) using the PCA parameterized to
the other 37.

Between the dashed red lines in each plot are the most characteristic modes of
quinoidal compounds (top) [30–32] and the analogue PCA composition regions with the
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most expressive variations (bottom) between the samples: mostly, the C-H bendings, C=C
and/or C=O stretchings, as well as the association between those vibrational modes. In
figure 22, we bring some visual examples of the vibrational modes in the range between
1700 cm−1 and 1900 cm−1 for the samples (1) (1723.52 cm−1), (25) (1702.63 cm−1), (35)
(1725.56 cm−1) and (38) (1826.70 cm−1). The main vibrational modes associated with
the regions of higher variation are labeled in a) and c) in figure 21. From figure 21 it is
possible to realize that the general variance of the molecular vibrations within one cluster
partition is similar, changing most significantly from one partition to another.

(1) (25)

1723.52 cm-1 1702.63 cm-1

(38)

1826.70 cm-1

(35)

1725.56 cm-1

Figure 22 – Visual examples of the vibrational modes in the range between 1700 cm−1 and 1900 cm−1

for the samples (1), (25), (35) and (38). The relative vibrational modes are labeled for
each respective sample.

4.3.3 Ordering and clustering interpretation

Figure 23 shows the molecular structures for the 38 quinoidal and derivative
molecular systems, ordered according to the spectra-based PCA. The more complex the
chemical structure is, the more complex will be the Raman spectrum (compare figures 19
and 23).

One important aspect defining the complexity of the Raman spectra is the number
of atoms N, which defines the number of vibrational modes as 3N-6. This aspect is explored
in figure 20(c), where we plotted the PCA-based theoretical spectral ordering on the X axis,
and on the Y axis the respective number of atoms N. The data points follow roughly the
diagonal (dashed line), indicating the relevance of N (or the equivalent 3N-6) on defining
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Figure 23 – Schematic organization of how the molecules grouped together in according to the PCA
relative distances. The grouping boxes follow the same color-code used in figure 3. The
dashed brown box refers to the compound number (38), disregarded in figure 18.

the spectral complexity, as expected, and is supported by figure 19(a). However, the data
spread from the dashed line shows that the spectral PCA depends not only on the number
of vibrational modes, but also on their specific Raman cross sections and frequencies,
which depend on the type of elements and their location in the molecular structure. For
example, the spectral ordering within the cluster of spectra from 1 to 9, or the clustering
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of larger molecules, such as the ones related to spectra from 25 to 37, cannot be explained
only by N.

The first cluster (purple box) is composed by the simplest structures, namely,
p-benzoquinones and p-naphthoquinones, with single atoms or small substitutions (for
instance Cl, Br, I, OH, ONa or CH3) bonded to the main benzo- or naphthoquinone
structure. In the second cluster (black box) are found the first o-quinones of the whole
set of samples ((12), (13), (14)), and the molecules have substitutions larger than the
first cluster, with aromatic ring substituents or a long open chain, like for sample (16).
The third (blue box) cluster shows the set of quinones with longer and more complex
pattern of substitutions, being mainly characterized by the presence of sequential aromatic
substituents or by the presence of nitrogen atoms in the substitutions. Notice that the
samples being “ortho-quinone” or “para-quinone” do not represent a determinant factor
for the ordering/classification considering their vibrational characteristics.

The fourth (gray box) and the fifth (yellow box) clusters are characterized by
phenazines with more complex substituents. Open chains of aliphatic compounds (Alkanes)
or aromatic sequences are found. These two clusters are very close to each other in the
PCA scores (see figure 18). Compound (29), for example, which contains triazole ring
and substituted phenyl as all compounds in group 5, falls into group 4 according to the
K-means analysis. From the mathematical point of view, the ordering is dictated by PC1,
which has the highest variance (notice the PC1 ordering of samples (28) and (29), for
example). From the physical-chemistry point of view, the fifth cluster is characterized
mainly by the presence of a bromine atom in the aromatic chain substituents and by an
aromatic ring bonded in the triazole, and these structural aspects should be responsible
for the actually obtained clustering. The sixth (green box) cluster is characterized by the
group of alkynes substituents, with the complexity defined by the size of the structure
that ends the bond of the aromatic ring, the last one being a carbonyl bonded in the
aromatic ring. Sample (37), characterized by the tosyl substituent, illustrated in figure 24,
is by itself the seventh (red box) cluster. The bodipy substituent characterizes the eighth
(brown box) cluster, with sample (38) (see figure 22) being the most complex structure,
with the larger bonded structure, relatively to the other molecules.
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Figure 24 – Three-dimensional representation of the sample (37). The Tosyl substituent, represented by
a TS in the structure represents a more complex structure containing a sulfur atom bonded
by two oxygem atoms and to a benzene ring, ending the structure with a CH3 bond.
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5 Conclusions

In this study, 38 samples of different quinoidal compounds and derivative molecular
systems were measured via back scattering confocal Raman spectroscopy and simulated
via DFT and molecular dynamics under harmonic approximation.

Our algorithm was able to compute the ordering of the Raman spectra (and so
the structures) based on the variace in the regions related mostly to the C-H bendings,
C-C and C=X stretching (X = C, O or N) vibrational modes, with the higher weight
relative to the C-H bending and C=X stretching from the quinoidal or phenazinic nuclei
structures (C-H and C=X modes) and sustituents (C-H modes) (exception for the cases of
the sixth-cluster (green box) samples (34), (35) and (36), where there was the presence
of an alkyne (C≡C), which was not present in any other sample). The obtained ordering
was found to be relative not only to the size (number of atoms) of the chemical structure,
but also to how the aromatic substitutions are bonded to the main structure. The analysis
of the first principal compontent (PC1) shows that the spectral distribution in the PC1
weights are similar within a same K-means partition, changing significantly when compared
to the spectral composition distribution among clusters.

Therefore, we demonstrate that PCA and K-means clustering Raman-based analysis
can be utilized to structurally order and classify molecular systems. Interestingly, we found
in the literature information that indicates a link between the clusters divisions and
biological/pharmacological aspects of some of the samples, like the antifungi activity for
the samples (3), (4) and (5) [86] from the purple cluster in figs. 18 and 23 and HIV-1
inhibition activity for the samples (10), (11) and (15) [87] (black cluster in figs. 18
and 23), indicating that the method utilized here might be a way of grouping and/or
selecting similar compounds not only by its physical/spectroscopic characteristics, but
also biological/pharmacological applications.

Finally, the method discussed here should not be applicable only to molecules,
but also to other amorphous or crystalline solids. In this sense, it is important to stress
that with the advance of lasers and detectors, Raman spectroscopy is gaining importance
very rapidly (see Figure 25) [88]. Furthermore, the development of theoretical techniques
has triggered new and large amount of theoretical Raman data, within the materials
genome initiative [45]. For example, Taghizadeh et al. [89] created the “Computational
2D Materials Database (C2DB)” based on calculated Raman spectra of 733 different
two-dimensional systems. In this perspective, the method introduced here might be very
helpful for the analysis of greater amounts of vibrational and spectral data in physical
chemistry, useful in the concept of accelerated discovery of novel materials with specific
functionalities.
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Figure 25 – Accumulative number of Raman papers in the literature. The data are built based on the
Scopus database using the following search expressions in the “keyword, title, or abstract”
fields (date of search, September 17, 2020): RAMAN: “Raman spectr*” OR “Raman
microsc*” OR “Raman scat*”.



49

Bibliography

[1] Bolton, Judy L, Michael A Trush, Trevor M Penning, Glenn Dryhurst e Terrence
J Monks: Role of quinones in toxicology. Chem. Res. in Tox., 13(3):135–160, 2000.
Citado 2 vezes nas páginas 10 e 18.

[2] Ghosheh, Omar A, Abdulghani A Houdi e Peter A Crooks: High performance
liquid chromatographic analysis of the pharmacologically active quinones and related
compounds in the oil of the black seed (Nigella sativa L.). Journal of Pharmaceutical
and Biomedical Analysis, 19(5):757–762, 1999. Citado na página 10.

[3] Castro, Frederico Augusto Vieira, Diana Mariani, Anita Dolly Panek, Elis Cris-
tina Araújo Eleutherio e Marcos Dias Pereira: Cytotoxicity mechanism of two
naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PloS One,
3(12):e3999, 2008. Citado na página 10.

[4] Sousa, Eliane Teixeira, Wilson A Lopes e Jailson B de Andrade: Fontes, formação,
reatividade e determinação de quinonas na atmosfera. Química Nova, 39(4):486–495,
2016. Citado na página 10.

[5] Dantas-Pereira, Luíza, Edézio F Cunha-Junior, Valter V Andrade-Neto, John F
Bower, Guilherme AM Jardim, Eufrânio N da Silva Júnior, Eduardo C Torres-Santos
e Rubem FS Menna-Barreto: Naphthoquinones and Derivatives for Chemotherapy:
Perspectives and Limitations of their Anti-trypanosomatids Activities. Current
Pharmaceutical Design, 27:1807–1824, 2021. Citado na página 10.

[6] Lucas, Nanci C de, Aurélio BB Ferreira e José Carlos Netto-Ferreira: Fotoquímica de
naftoquinonas. Revista Virtual de Química, 7(1):403–463, 2015. Citado na página
10.

[7] Chaudhary, Ankita e Jitender M Khurana: Synthetic routes for phenazines: an
overview. Research on Chemical Intermediates, 44(2):1045–1083, 2018. Citado 3
vezes nas páginas 10, 17 e 18.

[8] Jardim, Guilherme AM, Eduardo HG Cruz, Wagner O Valença, Jarbas M Resende,
Bernardo L Rodrigues, Daniela F Ramos, Ronaldo N Oliveira, Pedro EA Silva e
Eufrânio N da Silva Júnior: On the search for potential antimycobacterial drugs:
synthesis of naphthoquinoidal, phenazinic and 1, 2, 3-triazolic compounds and evalu-
ation against Mycobacterium tuberculosis. Journal of the Brazilian Chemical Society,
26(5):1013–1027, 2015. Citado 6 vezes nas páginas 10, 17, 18, 68, 69 e 70.



Bibliography 50

[9] Sidman, Jerome W: Electronic States of p-Benzoquinone1. Journal of the American
Chemical Society, 78(11):2363–2367, 1956. Citado 2 vezes nas páginas 10 e 18.

[10] Eckert, Timothy S e Thomas C Bruice: Chemical properties of phenanthrolinequinones
and the mechanism of amine oxidation by o-quinones of medium redox potentials.
Journal of the American Chemical Society, 105(13):4431–4441, 1983. Citado 2 vezes
nas páginas 10 e 18.

[11] Silva, Milton N da, Vítor F Ferreira e Maria Cecília BV Souza: Um panorama atual
da química e da farmacologia de naftoquinonas, com ênfase na beta-lapachona e
derivados. Química Nova, 26(3):407–416, 2003. Citado 2 vezes nas páginas 10 e 18.

[12] Rötig, Agnès, Julie Mollet, Marlene Rio e Arnold Munnich: Infantile and pediatric
quinone deficiency diseases. Mitochondrion, 7:S112–S121, 2007. Citado 2 vezes nas
páginas 10 e 18.

[13] Ribeiro, Magno R, Pablo P Souza, L DM Ferreira, Sharlene L Pereira, Ingrid
da S Martins, Rosangela de A Epifanio, Leticia V Costa-Lotufo, Paula C Jimenez,
Claudia Pessoa, Manoel O de Moraes et al.: Natural Furano Naphtoquinones from La-
pachol: Hydroxyiso-β-Lapachone, Stenocarpoquinone-B and Avicequinone-C. Letters
in Organic Chemistry, 8(5):347–351, 2011. Citado 2 vezes nas páginas 10 e 18.

[14] Costa-Lotufo, Leticia V, Raquel C Montenegro, Ana Paula NN Alves, Socorro Va-
nesca F Madeira, Cláudia Pessoa, Maria Elisabete A Moraes e Manoel Odorico
Moraes: A contribuição dos produtos naturais como fonte de novos fármacos anti-
câncer: estudos no Laboratório Nacional de Oncologia Experimental da Universidade
Federal do Ceará. Revista Virtual de Química, 2(1):47–58, 2010. Citado 2 vezes nas
páginas 10 e 18.

[15] Lu, Jin Jian, Jiao Lin Bao, Guo Sheng Wu, Wen Shan Xu, Ming Qing Huang, Xiu
Ping Chen e Yi Tao Wang: Quinones derived from plant secondary metabolites as
anti-cancer agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current
Medicinal Chemistry-Anti-Cancer Agents), 13(3):456–463, 2013. Citado 2 vezes nas
páginas 10 e 18.

[16] Wan, Yieh Ping, Thomas H Porter e Karl Folkers: Antimalarial quinones for prophyla-
xis based on a rationale of inhibition of electron transfer in Plasmodium. Proceedings
of the National Academy of Sciences, 71(3):952–956, 1974. Citado 2 vezes nas
páginas 10 e 18.

[17] Carr, Gavin, Emily R Derbyshire, Eric Caldera, Cameron R Currie e Jon Clardy:
Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudono-
cardia sp. Journal of natural products, 75(10):1806–1809, 2012. Citado 2 vezes nas
páginas 10 e 18.



Bibliography 51

[18] Pinto, AV, RFS Menna-Barreto, SL De Castro et al.: Naphthoquinones isolated from
Tabebuia: a review about the synthesis of heterocyclic derivatives, screening against
Trypanosoma cruzi and correlation structure-trypanocidal activity. Phytomedicines,
páginas 109–127, 2007. Citado 2 vezes nas páginas 10 e 18.

[19] Silva Júnior, Eufrânio N, Maria Aline BF Moura, Antonio V Pinto, Maria do
Carmo FR Pinto, Maria Cecília BV Souza, Ana J Araújo, Claudia Pessoa, Letícia V
Costa-Lotufo, Raquel C Montenegro, Manoel Odorico de Moraes et al.: Cytotoxic,
trypanocidal activities and physicochemical parameters of nor-2-lapachone-based 1, 2,
3-triazoles. Journal of the Brazilian Chemical Society, 20(4):635–643, 2009. Citado
2 vezes nas páginas 10 e 18.

[20] Silva Junior, Eufranio N, Isadora MM Melo, Emilay BT Diogo, Verenice A Costa, José
D Souza Filho, Wagner O Valença, Celso A Camara, Ronaldo N de Oliveira, Alexan-
dre S de Araujo, Flávio S Emery et al.: On the search for potential anti-Trypanosoma
cruzi drugs: Synthesis and biological evaluation of 2-hydroxy-3-methylamino and
1, 2, 3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions.
European Journal of Medicinal Chemistry, 52:304–312, 2012. Citado 2 vezes nas
páginas 10 e 18.

[21] Guimarães, Tiago T, FR Maria do Carmo, Juliane S Lanza, Maria N Melo, L
Rubens, Isadora MM de Melo, Emilay BT Diogo, Vitor F Ferreira, Celso A Camara,
Wagner O Valença et al.: Potent naphthoquinones against antimony-sensitive and-
resistant Leishmania parasites: Synthesis of novel α-and nor-α-lapachone-based 1,
2, 3-triazoles by copper-catalyzed azide–alkyne cycloaddition. European Journal of
Medicinal Chemistry, 63:523–530, 2013. Citado 2 vezes nas páginas 10 e 18.

[22] Laursen, Jane Buus e John Nielsen: Phenazine natural products: biosynthesis, synthe-
tic analogues, and biological activity. Chemical Reviews, 104(3):1663–1686, 2004.
Citado 2 vezes nas páginas 10 e 18.

[23] Barry, VINCENT C, JG Belton, Michael L Conalty, Joan M Den-steny, Deirdre
W Edward, JF O’sulli-van, Dermot Twomey, Frank Winder et al.: A new series of
phenazines (rimino-compounds) with high antituberculosis activity. Nature, 179:1013–
15, 1957. Citado 2 vezes nas páginas 10 e 18.

[24] Cezairliyan, Brent, Nawaporn Vinayavekhin, Daniel Grenfell-Lee, Grace J Yuen,
Alan Saghatelian e Frederick M Ausubel: Identification of Pseudomonas aeruginosa
phenazines that kill Caenorhabditis elegans. PLoS Pathog, 9(1):e1003101, 2013.
Citado 2 vezes nas páginas 10 e 18.

[25] Stammreich, H e Th Teixeira Sans: Molecular vibrations of quinones. IV. Raman
spectra of p-benzoquinone and its centrosymmetrically substituted isotopic derivatives



Bibliography 52

and assignment of observed frequencies. The Journal of Chemical Physics, 42(3):920–
931, 1965. Citado na página 10.

[26] Durnick, Thomas J e Samuel C Wait Jr: Vibrational spectra and assignments for
phenazine. Journal of Molecular Spectroscopy, 42(2):211–226, 1972. Citado na
página 10.

[27] Stenman, Folke e Jaakko Räsänen: On the vibrational spectrum of 1, 4-
naphthoquinone. Spectrochimica Acta Part A: Molecular Spectroscopy, 29(2):405–410,
1973. Citado na página 10.

[28] Delarmelina, Maicon, Glaucio B Ferreira, Vitor F Ferreira e Jose W de M Carneiro:
Vibrational spectroscopy of lapachol, α-and β-lapachone: Theoretical and experimental
elucidation of the Raman and infrared spectra. Vibrational Spectroscopy, 86:311–323,
2016. Citado na página 10.

[29] Sahoo, Sangram Keshari, Siva Umapathy e Anthony W Parker: Time-resolved reso-
nance Raman spectroscopy: Exploring reactive intermediates. Applied Spectroscopy,
65(10):1087–1115, 2011. Citado na página 11.

[30] Wang, Sophie X, Nobuhumi Nakamura, Minae Mure, Judith P Klinman e Joann
Sanders-Loehr: Characterization of the native lysine tyrosylquinone cofactor in lysyl
oxidase by Raman spectroscopy. Journal of Biological Chemistry, 272(46):28841–
28844, 1997. Citado 2 vezes nas páginas 11 e 42.

[31] Backes, Gabriele, Victor L Davidson, Fienke Huitema, Johannis A Duine e Jo-
ann Sanders-Loehr: Characterization of the tryptophan-derived quinone cofactor
of methylamine dehydrogenase by resonance Raman spectroscopy. Biochemistry,
30(38):9201–9210, 1991. Citado 2 vezes nas páginas 11 e 42.

[32] Moenne-Loccoz, Pierre, Nobuhumi Nakamura, Vincent Steinebach, Johannis A
Duine, Minae Mure, Judith P Klinman e Joann Sanders-Loehr: Characterization
of the topa quinone cofactor in amine oxidase from Escherichia coli by resonance
Raman spectroscopy. Biochemistry, 34(21):7020–7026, 1995. Citado 2 vezes nas
páginas 11 e 42.

[33] Umadevi, M, A Ramasubbu, P Vanelle e V Ramakrishnan: Spectral investigations
on 2-methyl-1, 4-naphthoquinone: solvent effects, host–guest interactions and SERS.
Journal of Raman Spectroscopy, 34(2):112–120, 2003. Citado na página 11.

[34] Dieringer, Jon A, Adam D McFarland, Nilam C Shah, Douglas A Stuart, Alyson
V Whitney, Chanda R Yonzon, Matthew A Young, Xiaoyu Zhang e Richard P
Van Duyne: Introductory lecture surface enhanced Raman spectroscopy: new materials,



Bibliography 53

concepts, characterization tools, and applications. Faraday discussions, 132:9–26,
2006. Citado na página 11.

[35] Knight, Diane S e William B White: Characterization of diamond films by Raman
spectroscopy. Journal of Materials Research, 4(2):385–393, 1989. Citado na página
11.

[36] Jorio, Ado, M Dresselhaus, Riichiro Saito e GF Dresselhaus: Raman Spectroscopy in
Graphene Related Systems. Spectroscopy, 2013. Citado 2 vezes nas páginas 11 e 12.

[37] Yılmaz, Deniz, Beyza Nur Günaydın e Meral Yüce: Nanotechnology in food and
water security: On-site detection of agricultural pollutants through surface-enhanced
Raman spectroscopy. Emergent Materials, 5(1):105–132, 2022. Citado na página 11.

[38] Gadelha, Andreij C, Douglas AA Ohlberg, Cassiano Rabelo, Eliel GS Neto, Thiago
L Vasconcelos, João L Campos, Jessica S Lemos, Vinícius Ornelas, Daniel Miranda,
Rafael Nadas et al.: Localization of lattice dynamics in low-angle twisted bilayer
graphene. Nature, 590(7846):405–409, 2021. Citado na página 11.

[39] Saraiva, André, Filomeno S de Aguiar Júnior, Reinaldo de Melo e Souza, Arthur
Patrocínio Pena, Carlos H Monken, Marcelo F Santos, Belita Koiller e Ado Jorio:
Photonic counterparts of cooper pairs. Physical review letters, 119(19):193603, 2017.
Citado na página 11.

[40] Bonnier, Franck e HJ Byrne: Understanding the molecular information contained in
principal component analysis of vibrational spectra of biological systems. Analyst,
137(2):322–332, 2012. Citado na página 11.

[41] Campos, João Luiz Elias, Hudson Miranda, Cassiano Rabelo, Emil Sandoz-Rosado,
Sugandha Pandey, Juha Riikonen, Abraham G Cano-Marquez e Ado Jorio: Applica-
tions of Raman spectroscopy in graphene-related materials and the development of
parameterized PCA for large-scale data analysis. Journal of Raman Spectroscopy,
49(1):54–65, 2018. Citado 2 vezes nas páginas 11 e 40.

[42] Ye, Zhengmao, Yongmao Ye, Habib Mohamadian, Pradeep Bhattacharya e Kai Kang:
Fuzzy filtering and fuzzy K-means clustering on biomedical sample characterization.
Em Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005.,
páginas 90–95. IEEE, 2005. Citado na página 11.

[43] Holliday, John D, Sarah L Rodgers, Peter Willett, Min You Chen, Mahdi Mahfouf,
Kevin Lawson e Graham Mullier: Clustering files of chemical structures using the
fuzzy k-means clustering method. Journal of Chemical Information and Computer
Sciences, 44(3):894–902, 2004. Citado na página 11.



Bibliography 54

[44] Junlin, Li e Fu Hongguang: Molecular dynamics-like data clustering approach. Pattern
Recognition, 44(8):1721–1737, 2011. Citado na página 11.

[45] de Pablo, Juan J., Barbara Jones, Cora Lind Kovacs, Vidvuds Ozolins e Arthur
P. Ramirez: The Materials Genome Initiative, the interplay of experiment, the-
ory and computation. Current Opinion in Solid State and Materials Science,
18(2):99–117, 2014, ISSN 1359-0286. https://www.sciencedirect.com/science/
article/pii/S1359028614000060. Citado 2 vezes nas páginas 11 e 47.

[46] Sala, Oswaldo: Fundamentos da espectroscopia Raman e no infravermelho. Unesp,
1996. Citado 3 vezes nas páginas 12, 13 e 14.

[47] Fonseca, Lucas Lafetá Prates da: Propriedades ópticas não-lineares de terceira ordem
em materiais bidimensionais. 2017. Citado na página 14.

[48] Zettili, Nouredine: Quantum mechanics: concepts and applications, 2003. Citado na
página 14.

[49] Ballentine, Leslie E: Quantum mechanics: a modern development. World Scientific
Publishing Company, 2014. Citado na página 14.

[50] Morgon, Nelson H e Kaline Rabelo Coutinho: Métodos de química teórica e modelagem
molecular. 2007. Citado na página 14.

[51] Hohenberg, Pierre e Walter Kohn: Inhomogeneous electron gas. Physical review,
136(3B):B864, 1964. Citado na página 14.

[52] Levine, Ira N, Daryle H Busch e Harrison Shull: Quantum chemistry, volume 6.
Pearson Prentice Hall Upper Saddle River, NJ, 2009. Citado na página 15.

[53] Morgon, Nelson H e Kaline Rabelo Coutinho: Métodos de química teórica e modelagem
molecular. 2007. Citado na página 15.

[54] Cramer, Christopher J: Essentials of computational chemistry: theories and models.
John Wiley & Sons, 2013. Citado na página 15.

[55] Kohn, Walter e Lu Jeu Sham: Self-consistent equations including exchange and
correlation effects. Physical review, 140(4A):A1133, 1965. Citado na página 15.

[56] Zhao, Yan e Donald G Truhlar: The M06 suite of density functionals for main group
thermochemistry, thermochemical kinetics, noncovalent interactions, excited states,
and transition elements: two new functionals and systematic testing of four M06-class
functionals and 12 other functionals. Theoretical chemistry accounts, 120:215–241,
2008. Citado na página 16.

https://www.sciencedirect.com/science/article/pii/S1359028614000060
https://www.sciencedirect.com/science/article/pii/S1359028614000060


Bibliography 55

[57] Simón, Luis e Jonathan M Goodman: How reliable are DFT transition structures?
Comparison of GGA, hybrid-meta-GGA and meta-GGA functionals. Organic &
biomolecular chemistry, 9(3):689–700, 2011. Citado na página 16.

[58] Zhao, Yan e Donald G Truhlar: A density functional that accounts for medium-range
correlation energies in organic chemistry. Organic letters, 8(25):5753–5755, 2006.
Citado na página 16.

[59] Hehre, Warren J, Robert Ditchfield e John A Pople: Self—consistent molecular
orbital methods. XII. Further extensions of Gaussian—type basis sets for use in
molecular orbital studies of organic molecules. The Journal of Chemical Physics,
56(5):2257–2261, 1972. Citado na página 16.

[60] Clark, Timothy, Jayaraman Chandrasekhar, Günther W Spitznagel e Paul Von Ragué
Schleyer: Efficient diffuse function-augmented basis sets for anion calculations. III.
The 3-21+ G basis set for first-row elements, Li–F. Journal of Computational
Chemistry, 4(3):294–301, 1983. Citado na página 16.

[61] Almeida, Renata Gomes de: Aplicação de métodos sintéticos via catálise com sais de
cobre(I) e nanotubos de carbono decorados com nanopartículas de rutênio para síntese
de novos compostos antitumorais. Tese de Doutoramento, Universidade Federal de
Minas Gerais, 2022. Citado na página 16.

[62] Overvad, K, B Diamant, L Holm, G Hølmer, SA Mortensen e S Stender: Coenzyme
Q10 in health and disease. European Journal of Clinical Nutrition, 53(10):764–770,
1999. Citado na página 17.

[63] Weber, Peter: Vitamin K and bone health. Nutrition, 17(10):880–887, 2001. Citado
na página 17.

[64] Araújo, Evani L, João Rui B Alencar e Pedro J Rolim Neto: Lapachol: segurança e
eficácia na terapêutica. Revista Brasileira de Farmacognosia, 12:57–59, 2002. Citado
na página 18.

[65] Müller, Klaus, Andreas Sellmer e Wolfgang Wiegrebe: Potential antipsoriatic agents:
lapacho compounds as potent inhibitors of HaCaT cell growth. Journal of Natural
Products, 62(8):1134–1136, 1999. Citado na página 18.

[66] Eyong, Kenneth Oben, Gabriel Ngosong Folefoc, Victor Kuete, Veronique Penlap
Beng, Karsten Krohn, Hidayat Hussain, Augustin Ephram Nkengfack, Michael Saeftel,
Salem Ramadan Sarite e Achim Hoerauf: Newbouldiaquinone A: A naphthoquinone–
anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial
agent from Newbouldia laevis. Phytochemistry, 67(6):605–609, 2006. Citado na
página 18.



Bibliography 56

[67] Fernandes, MC, EN Da Silva, AV Pinto, SL De Castro e RFS Menna-Barreto: A novel
triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of
mitosis in Trypanosoma cruzi. Parasitology, 139(1):26–36, 2012. Citado na página
18.

[68] Mitchell, Tom M e Machine Learning: Mcgraw-hill science. Engineering/Math, 1:27,
1997. Citado na página 18.

[69] James, Gareth, Daniela Witten, Trevor Hastie e Robert Tibshirani: An introduction
to statistical learning, volume 112. Springer, 2013. Citado 2 vezes nas páginas 18
e 19.

[70] Geron, Aurelien: Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow. OReilly Media, Inc., 2022. Citado na página 19.

[71] James, Gareth, Daniela Witten, Trevor Hastie e Robert Tibshirani: An introduction
to statistical learning, volume 112. Springer, 2013. Citado na página 19.

[72] Hastie, Trevor, Robert Tibshirani e Jerome Friedman: The elements of statistical
learning. Springer Series in Statistics. Springer, 1a edição, julho 2003. Citado na
página 19.

[73] Jolliffe, Ian T: Principal component analysis for special types of data. Springer, 2002.
Citado 2 vezes nas páginas 19 e 21.

[74] Berrar, Daniel P, Werner Dubitzky, Martin Granzow et al.: A practical approach to
microarray data analysis. Springer, 2003. Citado na página 19.

[75] Wen, Shaokai: Application of principal component analysis to decision support system.
Tese de Doutoramento, Oklahoma State University, 1997. Citado na página 21.

[76] Alani, Ahmed Sami Abdulghafour: Principal component analysis in statistics. Tese de
Doutoramento, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi
(DAÜ), 2014. Citado na página 21.

[77] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot e E. Duchesnay: Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011. Citado 2 vezes
nas páginas 22 e 62.

[78] Bruce, Peter e Andrew Bruce: Practical statistics for data scientists. O’Reilly Media,
junho 2017. Citado na página 22.



Bibliography 57

[79] Bock, Hans Hermann: Clustering Methods: A History of k-Means Algorithms. Em
Selected Contributions in Data Analysis and Classification, páginas 161–172. Sprin-
ger Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-73560-1_15.
Citado na página 22.

[80] Eufrânio Da Silva Júnior Research Group. https://www.eufraniolab.com. Ac-
cessed: 209-03-15. Citado na página 25.

[81] Polavarapu, Prasad L: Ab initio vibrational Raman and Raman optical activity
spectra. Journal of Physical Chemistry, 94(21):8106–8112, 1990. Citado na página
27.

[82] Michalska, Danuta e Rafał Wysokiński: The prediction of Raman spectra of pla-
tinum(II) anticancer drugs by density functional theory. Chemical Physics Let-
ters, 403(1):211–217, 2005, ISSN 0009-2614. https://www.sciencedirect.com/
science/article/pii/S0009261404020664. Citado na página 27.

[83] Wysokiński, Rafał, Katarzyna Hernik, Roman Szostak e Danuta Michalska: Electronic
structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential
cisplatin analogue: DFT and experimental study. Chemical Physics, 333(1):37–
48, 2007, ISSN 0301-0104. https://www.sciencedirect.com/science/article/
pii/S0301010407000055. Citado na página 27.

[84] Santos, Hélio F dos, Wagner B de Almeida, Amélia MG Do Val e Afonso C Guimarães:
Espectro infravermelho e análise conformacional do composto 3-fenil-2-oxo-1, 2, 3-
oxatiazolidina. Química Nova, 22(5):732–736, 1999. Citado na página 27.

[85] Ünal, Yener, Wassim Nassif, Burak Can Özaydin e Koray Sayin: Scale factor data-
base for the vibration frequencies calculated in M06-2X, one of the DFT methods.
Vibrational Spectroscopy, 112:103189, 2021. Citado na página 38.

[86] Tandon, Vishnu K., Rakeshwar B. Chhor, Ravindra V. Singh, Sanjay Rai e Dhar-
mendra B. Yadav: Design, synthesis and evaluation of novel 1,4-naphthoquinone
derivatives as antifungal and anticancer agents. Bioorganic & Medicinal Chemistry
Letters, 14(5):1079–1083, 2004, ISSN 0960-894X. https://www.sciencedirect.
com/science/article/pii/S0960894X04000277. Citado na página 47.

[87] Ilina, TV, EA Semenova, TR Pronyaeva, AG Pokrovskii, IV Nechepurenko, EE
Shults, OI Andreeva, SN Kochetkov e GA Tolstikov: Inhibition of HIV-1 reverse
transcriptase by aryl-substituted naphto-and anthraquinones. 382(1):56–59, 2002.
Citado na página 47.

[88] Costa, Márcia Dias Diniz et al.: Desenvolvimento de instrumentação científica em
nanotecnologia: inferências para nanoespectroscopia Raman a partir de Technology

https://doi.org/10.1007/978-3-540-73560-1_15
https://www.eufraniolab.com
https://www.sciencedirect.com/science/article/pii/S0009261404020664
https://www.sciencedirect.com/science/article/pii/S0009261404020664
https://www.sciencedirect.com/science/article/pii/S0301010407000055
https://www.sciencedirect.com/science/article/pii/S0301010407000055
https://www.sciencedirect.com/science/article/pii/S0960894X04000277
https://www.sciencedirect.com/science/article/pii/S0960894X04000277


Bibliography 58

Roadmapping retrospectivo adaptado de duas tecnologias consolidadas. 2021. Citado
na página 47.

[89] Taghizadeh, Alireza, Ulrik Leffers, Thomas G Pedersen e Kristian S Thygesen: A
library of ab initio Raman spectra for automated identification of 2D materials.
Nature Communications, 11(1):1–10, 2020. Citado na página 47.

[90] Lin, Yangming, Zigeng Liu, Yiming Niu, Bingsen Zhang, Qing Lu, Shuchang Wu,
Gabriele Centi, Siglinda Perathoner, Saskia Heumann, Linhui Yu e Dang Sheng
Su: Highly Efficient Metal-Free Nitrogen-Doped Nanocarbons with Unexpected Active
Sites for Aerobic Catalytic Reactions. ACS Nano, 13(12):13995–14004, 2019. https:
//doi.org/10.1021/acsnano.9b05856, PMID: 31765120. Citado na página 65.

[91] Jardim, Guilherme A.M., Thaissa L. Silva, Marilia O.F. Goulart, Carlos A. de Simone,
Juliana M.C. Barbosa, Kelly Salomão, Solange L. de Castro, John F. Bower e Eufrâ-
nio N. da Silva Júnior: Rhodium-catalyzed C-H bond activation for the synthesis of
quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electroche-
mical studies of functionalized quinones. European Journal of Medicinal Chemistry,
136:406–419, 2017, ISSN 0223-5234. https://www.sciencedirect.com/science/
article/pii/S0223523417303720. Citado na página 65.

[92] de Carvalho, Renato L., Guilherme A. M. Jardim, Augusto C. C. Santos, Ma-
ria H. Araujo, Willian X. C. Oliveira, Ana Cristina S. Bombaça, Rubem F. S.
Menna-Barreto, Elumalai Gopi, Edmond Gravel, Eric Doris e Eufrânio N. da
Silva Júnior: Combination of Aryl Diselenides/Hydrogen Peroxide and Carbon-
Nanotube/Rhodium Nanohybrids for Naphthol Oxidation: An Efficient Route
towards Trypanocidal Quinones. Chemistry – A European Journal, 24(57):15227–
15235, 2018. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/
10.1002/chem.201802773. Citado na página 65.

[93] Jardim, Guilherme A. M., Eufrânio N. da Silva Júnior e John F. Bower: Overcoming
naphthoquinone deactivation: rhodium-catalyzed C-5 selective C–H iodination as
a gateway to functionalized derivatives. Chem. Sci., 7:3780–3784, 2016. http:
//dx.doi.org/10.1039/C6SC00302H. Citado na página 65.

[94] Silva, Raphael S.F., Elaine M. Costa, Úrsula L.T. Trindade, Daniel V. Teixeira,
Maria de Carmo F.R. Pinto, Gustavo L. Santos, Valeria R.S. Malta, Carlos Alberto
De Simone, Antonio Ventura Pinto e Solange L. de Castro: Synthesis of naphthofu-
ranquinones with activity against Trypanosoma cruzi. European Journal of Medicinal
Chemistry, 41(4):526–530, 2006, ISSN 0223-5234. https://www.sciencedirect.
com/science/article/pii/S0223523406000304. Citado na página 65.

https://doi.org/10.1021/acsnano.9b05856
https://doi.org/10.1021/acsnano.9b05856
https://www.sciencedirect.com/science/article/pii/S0223523417303720
https://www.sciencedirect.com/science/article/pii/S0223523417303720
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201802773
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201802773
http://dx.doi.org/10.1039/C6SC00302H
http://dx.doi.org/10.1039/C6SC00302H
https://www.sciencedirect.com/science/article/pii/S0223523406000304
https://www.sciencedirect.com/science/article/pii/S0223523406000304


Bibliography 59

[95] Jardim, Guilherme A. M., Daisy J. B. Lima, Wagner O. Valença, Daisy J. B. Lima,
Bruno C. Cavalcanti, Claudia Pessoa, Jamal Rafique, Antonio L. Braga, Claus Jacob,
Eufrânio N. Da Silva Júnior e Eduardo H. G. Da Cruz: Synthesis of Selenium-
Quinone Hybrid Compounds with Potential Antitumor Activity via Rh-Catalyzed
C-H Bond Activation and Click Reactions. Molecules, 23(1), 2018, ISSN 1420-3049.
https://www.mdpi.com/1420-3049/23/1/83. Citado 2 vezes nas páginas 66 e 67.

[96] Salas, Cristian, Ricardo A. Tapia, Karina Ciudad, Verónica Armstrong, Myriam
Orellana, Ulrike Kemmerling, Jorge Ferreira, Juan Diego Maya e Antonio Mo-
rello: Trypanosoma cruzi: Activities of lapachol and α- and β-lapachone derivati-
ves against epimastigote and trypomastigote forms. Bioorganic & Medicinal Che-
mistry, 16(2):668–674, 2008, ISSN 0968-0896. https://www.sciencedirect.com/
science/article/pii/S0968089607009066. Citado na página 66.

[97] Silva Júnior, Eufrânio N. da, Clara F. de Deus, Bruno C. Cavalcanti, Cláudia
Pessoa, Letícia V. Costa-Lotufo, Raquel C. Montenegro, Manoel O. de Moraes,
Maria do Carmo F. R. Pinto, Carlos A. de Simone, Vitor F. Ferreira, Marilia O. F.
Goulart, Carlos Kleber Z. Andrade e Antônio V. Pinto: 3-Arylamino and 3-Alkoxy-
nor-β-lapachone Derivatives: Synthesis and Cytotoxicity against Cancer Cell Lines.
Journal of Medicinal Chemistry, 53(1):504–508, 2010. https://doi.org/10.1021/
jm900865m, PMID: 19947600. Citado na página 66.

[98] da Silva, Eufrânio N., Rubem F.S. Menna-Barreto, Maria do Carmo F.R. Pinto,
Raphael S.F. Silva, Daniel V. Teixeira, Maria Cecília B.V. de Souza, Carlos Al-
berto De Simone, Solange L. De Castro, Vitor F. Ferreira e Antônio V. Pinto:
Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Try-
panosoma cruzi. European Journal of Medicinal Chemistry, 43(8):1774–1780,
2008, ISSN 0223-5234. https://www.sciencedirect.com/science/article/

pii/S0223523407003984. Citado na página 66.

[99] Miyaki, Komei e Nisaburo Ikeda: antibacterial Properties of 2 and 2,3-Substituted
1, 4-Naphthoquinones, - Dithiophenyl-1, 4-n2phthoquinone and of Mercapto-1,4-
naphthoquinone III. Dimorphism of 2, 3 Infrared Spectra Derivertives. YAKUGAKU
ZASSHI, 73(9):964–968, 1953. Citado na página 66.

[100] Jardim, Guilherme A. M., Wallace J. Reis, Matheus F. Ribeiro, Flaviano M. Ot-
toni, Ricardo J. Alves, Thaissa L. Silva, Marilia O. F. Goulart, Antonio L. Braga,
Rubem F. S. Menna-Barreto, Kelly Salomão, Solange L. de Castro e Eufrânio N.
da Silva Júnior: On the investigation of hybrid quinones: synthesis, electrochemical
studies and evaluation of trypanocidal activity. RSC Adv., 5:78047–78060, 2015.
http://dx.doi.org/10.1039/C5RA16213K. Citado 2 vezes nas páginas 67 e 68.

https://www.mdpi.com/1420-3049/23/1/83
https://www.sciencedirect.com/science/article/pii/S0968089607009066
https://www.sciencedirect.com/science/article/pii/S0968089607009066
https://doi.org/10.1021/jm900865m
https://doi.org/10.1021/jm900865m
https://www.sciencedirect.com/science/article/pii/S0223523407003984
https://www.sciencedirect.com/science/article/pii/S0223523407003984
http://dx.doi.org/10.1039/C5RA16213K


Bibliography 60

[101] Bahia, Samara Ben B. B., Wallace J. Reis, Guilherme A. M. Jardim, Francielly T.
Souto, Carlos A. de Simone, Claudia C. Gatto, Rubem F. S. Menna-Barreto, Solange
L. de Castro, Bruno C. Cavalcanti, Claudia Pessoa, Maria H. Araujo e Eufrânio
N. da Silva Júnior: Molecular hybridization as a powerful tool towards multitarget
quinoidal systems: synthesis, trypanocidal and antitumor activities of naphthoquinone-
based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3-triazoles. Med. Chem.
Commun., 7:1555–1563, 2016. http://dx.doi.org/10.1039/C6MD00216A. Citado
2 vezes nas páginas 67 e 68.

[102] da Cruz, Eduardo H.G., Molly A. Silvers, Guilherme A.M. Jardim, Jarbas M. Re-
sende, Bruno C. Cavalcanti, Igor S. Bomfim, Claudia Pessoa, Carlos A. de Simone,
Giancarlo V. Botteselle, Antonio L. Braga, Divya K. Nair, Irishi N.N. Namboothiri,
David A. Boothman e Eufrânio N. da Silva Júnior: Synthesis and antitumor ac-
tivity of selenium-containing quinone-based triazoles possessing two redox centres,
and their mechanistic insights. European Journal of Medicinal Chemistry, 122:1–
16, 2016, ISSN 0223-5234. https://www.sciencedirect.com/science/article/
pii/S0223523416304974. Citado 2 vezes nas páginas 67 e 68.

[103] da Silva Júnior, Eufrânio N., Maria Cecília B.V. de Souza, Antônio V. Pinto, Ma-
ria do Carmo F.R. Pinto, Marilia O.F. Goulart, Francisco W.A. Barros, Claudia
Pessoa, Letícia V. Costa-Lotufo, Raquel C. Montenegro, Manoel O. de Moraes
e Vitor F. Ferreira: Synthesis and potent antitumor activity of new arylamino
derivatives of nor-β-lapachone and nor-α-lapachone. Bioorganic & Medicinal Chemis-
try, 15(22):7035–7041, 2007, ISSN 0968-0896. https://www.sciencedirect.com/
science/article/pii/S0968089607006608. Citado na página 67.

[104] Baiju, Thekke V., Renata G. Almeida, Sudheesh T. Sivanandan, Carlos A. de Simone,
Lucas M. Brito, Bruno C. Cavalcanti, Claudia Pessoa, Irishi N.N. Namboothiri e
Eufrânio N. da Silva Júnior: Quinonoid compounds via reactions of lawsone and
2-aminonaphthoquinone with α-bromonitroalkenes and nitroallylic acetates: Structural
diversity by C-ring modification and cytotoxic evaluation against cancer cells. Euro-
pean Journal of Medicinal Chemistry, 151:686–704, 2018, ISSN 0223-5234. https://
www.sciencedirect.com/science/article/pii/S0223523418303222. Citado
na página 68.

[105] Valença, Wagner O., Thekke V. Baiju, Fernanda G. Brito, Maria H. Araujo, Clau-
dia Pessoa, Bruno C. Cavalcanti, Carlos A. de Simone, Claus Jacob, Irishi N. N.
Namboothiri e Eufrânio N. da Silva Júnior: Synthesis of Quinone-Based N-Sulfonyl-
1,2,3-triazoles: Chemical Reactivity of Rh(II) Azavinyl Carbenes and Antitumor
Activity. ChemistrySelect, 2(16):4301–4308, 2017. https://chemistry-europe.

http://dx.doi.org/10.1039/C6MD00216A
https://www.sciencedirect.com/science/article/pii/S0223523416304974
https://www.sciencedirect.com/science/article/pii/S0223523416304974
https://www.sciencedirect.com/science/article/pii/S0968089607006608
https://www.sciencedirect.com/science/article/pii/S0968089607006608
https://www.sciencedirect.com/science/article/pii/S0223523418303222
https://www.sciencedirect.com/science/article/pii/S0223523418303222
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700885
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700885
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700885


Bibliography 61

onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700885. Citado 2 vezes
nas páginas 68 e 70.

[106] Almeida, Renata G., Wagner O. Valença, Luísa G. Rosa, Carlos A. de Simone,
Solange L. de Castro, Juliana M. C. Barbosa, Daniel P. Pinheiro, Carlos R. K.
Paier, Guilherme G. C. de Carvalho, Claudia Pessoa, Marilia O. F. Goulart, Ammar
Kharma e Eufrânio N. da Silva Júnior: Synthesis of quinone imine and sulphur-
containing compounds with antitumor and trypanocidal activities: redox and biological
implications. RSC Med. Chem., 11:1145–1160, 2020. http://dx.doi.org/10.1039/
D0MD00072H. Citado na página 70.

[107] Gontijo, Talita B., Rossimiriam P. de Freitas, Flavio S. Emery, Leandro F. Pe-
drosa, José B. Vieira Neto, Bruno C. Cavalcanti, Claudia Pessoa, Aaron King,
Fabio de Moliner, Marc Vendrell e Eufrânio N. da Silva Júnior: On the synthe-
sis of quinone-based BODIPY hybrids: New insights on antitumor activity and
mechanism of action in cancer cells. Bioorganic & Medicinal Chemistry Let-
ters, 27(18):4446–4456, 2017, ISSN 0960-894X. https://www.sciencedirect.com/
science/article/pii/S0960894X17307941. Citado na página 71.

https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700885
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700885
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201700885
http://dx.doi.org/10.1039/D0MD00072H
http://dx.doi.org/10.1039/D0MD00072H
https://www.sciencedirect.com/science/article/pii/S0960894X17307941
https://www.sciencedirect.com/science/article/pii/S0960894X17307941


62

APPENDIX A – PCA and K-means
clustering Application

In this work, we apply de PCA method in our data set using the Python Library
Scikit-Learn [77] through the following importing command:

from sklearn.decomposition import PCA ,

and by naming an instance PCA() from the PCA library, fitting and transforming your
target data:

pca = PCA()

pca.fit(target_data)

pca.transform(target_data ).

The scikit-learn PCA uses Singular Value Decomposition to reduce de dimensionality
of the target data set. In simple words, it is to say that it transforms the data as the
following equation:

X = USV T (A.1)

where U is an m × n matrix, S is an n × n diagonal matrix, and VT is also an n × n

matrix. The Matrix SVT is usually called the loadings matrix, and the matrix U is called
the scores matrix of the decomposed data set. One can access the score and the loadings
matrices, respectively, by the commands:

loadings_matrix = pca.transform(target_data)

scores_matrix = pca.components_

where you can see the dispersion of your data points in a 3-dimensional space by plotting
the 3 first columns of the scores matrix.

The k-means clustering method is also part of the Scikit-Learn library and can be
imported through the following command:

from sklearn.cluster import KMeans ,

as in mentioned in the PCA algorithm, we need also to name an instance, where we need
to set the number of clusters que algorithm have to search for:



APPENDIX A. PCA and K-means clustering Application 63

kmeans = KMeans(n_clusters=K)

kmeans.fit(target_data ).

in our work, it was sufficient to only ".f it" the target data in order to produce a numpy
array with the labels for our clustered data. One can call the labels array by the command:

target_data_labels = kmeans.labels_
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APPENDIX B – Table of the studied
molecules
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Table 1 – Sample numbers, names, chemical structures, chemical formulas and reference methods of how
the compounds were obtained.

Compound Name
Chemical
Formula

Obtained
through

1

O

O

1,4-Benzoquinone

C6H4O2 Commercially

2

O

O

2-methylcyclohexa-2,5-diene-1,4-dione

C7H6O2 Ref. 90

3

O

O

Cl

Cl

2,3-dichloronaphthalene-1,4-dione

C10H4Cl2O2 Ref. 91

4

O

O

Br

Br

2,3-dibromonaphthalene-1,4-dione

C10H4Br2O2 Ref. 91

5

O

O

naphthalene-1,4-dione

C11H8O2 Ref. 92

6

O

O

I

5-iodonaphthalene-1,4-dione

C10H5IO2 Ref. 93

7

O

O

ONa

sodium 1,4-dioxo-1,4-dihydronaphthalen-2-olate

C10H5NaO3 Ref. 94

8

O

O

2-methylnaphthalene-1,4-dione

C11H8O2 Commercially

9

O

O

OH

2-hydroxynaphthalene-1,4-dione

C10H6O3 Commercially

Continued on next page
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Table 1 – continued from previous page

Compound Name
Chemical
Formula

Obtained
through

10

O

O

N3

O

2-(azidomethyl)-3-
methoxynaphthalene-1,4-dione

C12H9N3O3 Ref. 95

11

O

O

O

2,2-dimethyl-3,4-dihydro-2H -
benzo[g]chromene-5,10-dione

C15H14O3 Ref. 96

12 O

O
O

OH

3-hydroxy-2,2-dimethyl-2,3-
dihydronaphtho[1,2-b]furan-4,5-dione

C14H12O4 Ref. 97

13

O
O

O

2,2-dimethyl-3,4-dihydro-2H -
benzo[h]chromene-5,6-dione

C15H14O3 Ref. 96

14 O

O
O

N3

3-azido-2,2-dimethyl-2,3-
dihydronaphtho[1,2-b]furan-4,5-dione

C14H11N3O3 Ref. 98

15

O

O

S

Br
OCH3

2-bromo-3-((3-methoxyphenyl)thio)-
naphthalene-1,4-dione

C17H11BrO3S Ref. 99

16

O

O

OH

2-hydroxy-3-(3-methylbut-2-en-1-
yl)naphthalene-1,4-dione

C15H14O3 Commercially

Continued on next page
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Table 1 – continued from previous page

Compound Name
Chemical
Formula

Obtained
through

17
O

O
O

N
N N

S

2,2-dimethyl-3-(4-((phenylthio)methyl)-
1H -1,2,3-triazol-1-yl)-2,3-

dihydronaphtho[1,2-b]furan-4,5-dione

C23H19N3O3S Refs. 100–102

18

O

O
O

N
N N Se Cl

2-((4-(((4-chlorophenyl)selanyl)methyl)-
1H -1,2,3-triazol-1-yl)methyl)-3-
methoxynaphthalene-1,4-dione

C21H16ClN3O3Se Ref. 95

19
O

O
O

N
N N

Se

S

2,2-dimethyl-3-(4-((thiophen-2-
ylselanyl)methyl)-1H -1,2,3-triazol-1- yl)-2,3-

dihydronaphtho[1,2-b]furan-4,5-dione

C21H17N3O3SSe Refs. 100–102

20 O

O
O

H
N

NO2

2,2-dimethyl-3-((3-nitrophenyl)amino)-2,3-
dihydronaphtho[1,2-b]furan-4,5-dione

C20H16N2O5 Ref. 103

21 O

O
O

N
N N

Se

F

3-(4-(((4-fluorophenyl)selanyl)methyl)-
1H -1,2,3-triazol-1-yl)-2,2-dimethyl-2,3-
dihydronaphtho[1,2-b]furan-4,5-dione

C23H18FN3O3Se Refs. 100–102

Continued on next page
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Table 1 – continued from previous page

Compound Name
Chemical
Formula

Obtained
through

22
O

O
O

N
N N

Se

2,2-dimethyl-3-(4-((phenylselanyl)methyl)-
1H -1,2,3-triazol-1-yl)-2,3-

dihydronaphtho[1,2-b]furan-4,5-dione

C23H19N3O3Se Refs. 100–102

23

O

O

O

3-(naphthalen-1-yl)naphtho[2,3-b]furan-4,9-dione

C22H12O3 Ref. 104

24 O

O
O

N
N N

Se

Cl

3-(4-(((4-chlorophenyl)selanyl)methyl)-
1H -1,2,3-triazol-1-yl)-2,2-dimethyl-2,3-
dihydronaphtho[1,2-b]furan-4,5-dione

C23H18ClN3O3Se Refs. 100–102

25

O

O

H
N

I

2-((4-iodophenyl)amino)naphthalene-1,4-dione

C16H10INO2 Ref. 105

26

N
N

O
N

N N

2,2-dimethyl-1-(4-propyl-
1H -1,2,3-triazol-1-yl)-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

C25H23N5O Ref. 8

27

N
N

O
N

N N

2,2-dimethyl-1-(4-pentyl-
1H -1,2,3-triazol-1-yl)-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

C27H27N5O Ref. 8

Continued on next page
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Table 1 – continued from previous page

Compound Name
Chemical
Formula

Obtained
through

28
N

N

O
N

N N

1-(4-hexyl-1H -1,2,3-triazol-1-yl)-2,2-dimethyl-
1,2-dihydrobenzo[a]furo[2,3-c]phenazine

C28H29N5O Ref. 8

29

N
N

O
N

N N

F

1-(4-(4-fluorophenyl)-1H -
1,2,3-triazol-1-yl)-2,2-dimethyl-1,2-
dihydrobenzo[a]furo[2,3-c]phenazine

C28H20FN5O Ref. 8

30

N
N

N N
N

Br

O Br

(1S,2R)-2-bromo-1-(4-(4-bromophenyl)-
1H -1,2,3-triazol-1-yl)-3,3-dimethyl-2,3-

dihydro-1H -benzo[a]pyrano[2,3-c]phenazine

C29H21Br2N5O Ref. 8

31

N
N

N N
N

CH3

O Br

(1S,2R)-2-bromo-3,3-dimethyl-1-(4-(p-tolyl)-
1H -1,2,3-triazol-1-yl)-2,3-

dihydro-1H -benzo[a]pyrano[2,3-c]phenazine

C30H24BrN5O Ref. 8

32

N
N

N N
N

OCH3

O Br

(1S,2R)-2-bromo-1-(4-(4-methoxyphenyl)-
1H -1,2,3-triazol-1-yl)-3,3-dimethyl-2,3-

dihydro-1H -benzo[a]pyrano[2,3-c]phenazine

C30H24BrN5O2 Ref. 8

Continued on next page
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Table 1 – continued from previous page

Compound Name
Chemical
Formula

Obtained
through

33

N
N

O
N

N N

OCH3

1-(4-(4-methoxyphenyl)-1H -
1,2,3-triazol-1-yl)-2,2-dimethyl-1,2-
dihydrobenzo[a]furo[2,3-c]phenazine

C29H23N5O2 Ref. 8

34

O

N

O

F

(E)-4-((4-fluorophenyl)imino)-2-(prop-2-yn-1-
yloxy)naphthalen-1(4H )-one

C19H12FN5O2 Ref. 106

35

O

N

O

I

(E)-4-((4-iodophenyl)imino)-2-(prop-2-yn-1-
yloxy)naphthalen-1(4H )-one

C19H12INO2 Ref. 106

36

O

N

O

O

(E)-4-((4-acetylphenyl)imino)-2-(prop-2-yn-1-
yloxy)naphthalen-1(4H )-one

C21H15NO3 Ref. 106

37

O

O

H
N NTs

N -((1E,2E)-3-((1,4-dioxo-1,4-dihydronaphthalen-2-
yl)amino)allylidene)-4-methylbenzenesulfonamide

C20H16N2O4S Ref. 105

Continued on next page
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Table 1 – continued from previous page

Compound Name
Chemical
Formula

Obtained
through

38

O
O

O N

N
N

NH
N

BN

Cl F F

4-(4-(((7-chloro-5,5-difluoro-10-phenyl-
5H -4l4,5l4-dipyrrolo[1,2-c:2’,1’-f ][1,3,2]diazaborinin-

3-yl)amino)methyl)-1H -1,2,3-triazol-1-yl)-2,2-
dimethyl-3,4-dihydro-2H -benzo[g]chromene-5,10-dione

C33H26BClF2N6O3 Ref. 107
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