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Resumo
Esta dissertação de mestrado examina os áxions solares, focando-se na sua base teórica,
mecanismos de produção e métodos de detecção. Inicialmente propostos como solução para
o problema CP das interações fortes e possíveis candidatos à matéria escura, os áxions
potencialmente desempenham um papel fundamental na física de partículas e astrofísica.
A exploração teórica esclarece a fundação da cromodinâmica quântica dos áxions e suas
características únicas. Passando para a produção, a tese investiga vários mecanismos
que contribuem para a geração de áxions solares. A seção subsequente aprofunda os
métodos experimentais para a detecção de áxions, examinando os desafios e avanços neste
campo. Este trabalho fornece uma síntese atualizada dos fundamentos teóricos, produção
e estratégias de detecção dos áxions solares.

Palavras-chave: Áxions, Áxions Solares, Helioscope, Efeito Primakoff, problema CP
forte, física de partículas.



Abstract
This master thesis examines solar axions, focusing on their theoretical framework, produc-
tion mechanisms, and detection methods. Initially proposed as solutions to the strong
CP problem and potential candidates for dark matter, axions potentially play a key role
in particle physics and astrophysics. The theoretical exploration elucidates the quantum
chromodynamics foundation of axions and their unique characteristics. Shifting to produc-
tion, the thesis investigates various mechanisms contributing to solar axion generation,
such as the ABC processes and the Primakoff conversion. The subsequent section delves
into experimental methods for axion detection, such as axion helioscopes and underground
detectors, examining the challenges and advancements in this field. This work provides an
up-to-date synthesis of solar axions’ theoretical foundations, production, and detection
strategies.

Keywords: Axions, Solar Axions, Helioscope, Primakoff Effect, Strong CP probblem,
Particle Physics.
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1 Introduction

The Standard Model (SM) of particle physics is a triumph of human intellect,
providing a comprehensive framework to understand the fundamental building units of
our universe and the forces that govern their interactions. The SM is very succesfull at
explaining and describing numerous phenomens of the nature, which include:

• Electrowek Unification: Sheldon Glashow [1], Abdus Salam [2], and Steven
Weinberg [3] independently proposed the unification of electromagnetic and weak
nuclear forces into a single theoretical framework. They were awarded the 1979
Physics Nobel Prize.

• Prediction and Discovery of the Higgs Boson: The Higgs mechanism, proposed
by Peter Higgs [4, 5] and others in the 1960s, was a crucial element in the SM. The
Large Hadron Collider (LHC) at CERN [6] successfully discovered the Higgs boson
in 2012, providing experimental evidence for the mechanism responsible for giving
mass to fundamental particles.

• Accurate Prediction of Particle Properties: The SM accurately predicts var-
ious properties of particles to an extraordinary level of precision. Experimental
measurements have consistently validated these predictions, confirming the model’s
accuracy.

• Quantum Chromodynamics (QCD): The theory of QCD, which is part of the
SM, successfully describes the strong nuclear force that binds quarks into protons,
neutrons, and other hadrons. QCD has been extensively tested through experiments
and plays a crucial role in our understanding of the behavior of quarks and gluons.

• Precision Tests of Quantum Electrodynamics (QED): The SM incorporates
QED, the theory of electromagnetic interactions. Experiments testing QED predic-
tions, such as the anomalous magnetic dipole moment of the electron, have confirmed
the accuracy of this aspect of the model.

• Consistency with Cosmic Microwave Background (CMB): The SM’s pre-
dictions for the early universe, including the behavior of particles in the primordial
plasma, align with observations of the Cosmic Microwave Background, providing
further support for its validity.

Yet, as with any intellectual endeavor, the Standard Model is not without its
enigmas and unresolved mysteries. Such puzzles include:
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• Nature of Dark Matter: The SM does not account for dark matter (DM), which
makes up approximately 27% of the universe’s mass-energy content. The existence
and properties of dark matter remain elusive, prompting searches for new particles
and interactions beyond those described by the SM.

• Neutrino Masses and Mixing: The Standard Model assumes massless neutrinos,
contrary to experimental evidence indicating that neutrinos have non-zero masses
and undergo flavor oscillations. The origin of neutrino masses and the nature of
neutrino mixing are a very strong research field.

• Baryon Asymmetry of the Universe: The observed asymmetry between matter
and antimatter (baryon asymmetry) in the universe is not adequately explained by
the SM. Understanding the mechanisms responsible for generating this asymmetry,
potentially involving processes like baryogenesis, remains an open question.

• Quantum Gravity: The SM does not incorporate gravity, as described by general
relativity. Developing a consistent quantum theory of gravity and reconciling it with
the principles of quantum mechanics is a major challenge, pointing toward the need
for a more unified theory of fundamental forces.

• Cosmic Inflation: The SM does not provide a mechanism for cosmic inflation,
the rapid expansion of the universe in its early stages. Explaining the origins and
dynamics of inflation requires extending our understanding beyond the Standard
Model (BSM).

• The Hierarchy Problem: The hierarchy problem in particle physics is the signifi-
cant contrast in energy scales between the gravitational and the weak nuclear forces.
The mass of the Higgs boson is affected by quantum corrections that involve very
high energy scales, such corrections could make its mass much larger than observed.
This large discrepancy, spanning 16 orders of magnitude, requires fine-tuning in the
SM.

• Flavor Problem: The origin and pattern of fermion masses and mixing angles
(flavor structure) in the SM are not fully understood. Explaining the hierarchical
structure of quark and lepton masses and the observed mixing patterns is an ongoing
challenge.

• Strong CP Problem: While the strong CP problem is intimately related to the
SM, it remains unsolved within its framework. The problem involves explaining why
the combination of charge conjugation and parity (CP) symmetry violation in QCD
is extremely small.



Chapter 1. Introduction 12

This master thesis embarks on a compelling exploration into the heart of a persistent puzzle
that has thus far resisted a satisfactory resolution, yet promises intriguing consequences
— the Strong CP problem.

Within this work, we jump on a journey through the axion theory, tracing its
origins to the problems that precipitated its proposal. Our focus centers on solar axions —
those generated by the Sun — their production, and the mechanisms for their detection.
An intriguing historical note is that the term axion was given to this hypothetical particle
by Frank Wilczek, inspired by a famous detergent, signifying its virtue in cleansing the
Standard Model of its strong CP stain [7].

The initial chapters meticulously delineate the problems that led to the axion
proposal. Beginning with the U(1) problem and its resolution, we navigate through the
consequences of symmetry breaking, addressing the nature of the U(1)A symmetry in
QCD. Subsequently, we confront the Strong CP problem, emphasizing its most favorable
resolution — the Peccei-Quinn (PQ) mechanism. This leads to the introduction of the axion,
and we delve into its properties and dynamics. The subsequent exploration extends to
prominent axion models, ranging from the initially proposed PQWW model to the notable
KSVZ and DFSZ models. Our primary interest lies in comprehending and calculating axion
couplings to SM matter, especially to photons, electrons, and nucleons. With these tools
in hand, we elucidate axion production mechanisms within the solar interior, detailing
the calculation of the total solar axion flux. Finally, we explore contemporary detection
mechanisms, with a special focus on axion helioscopes — an exceptionally promising
avenue for solar axion detection.

As following chapters reveals, the axion is very weakly interacting. As a consequence,
their production mechanisms in the early Universe are non-thermal. Consequently, these
axions are produced with extremely small velocity dispersion and are very cold dark
matter (DM), which align seamlessly with the needs of ΛCDM model. However, at the
same time, this leads to primordial axions having a really small energy threshold. Notably,
solar axions, peaking in the few keV range at production, emerge as an accessible probe
of the theory, prompting our exclusive focus on this intriguing subset.

To maintain clarity, this work confines the term axion to refer specifically to the
QCD axion. In instances involving other axion-like particles (ALPs), the term ALPs will
be employed, ensuring a clear distinction. ALPs encompass any pseudo-Nambu-Goldstone
(pNG) boson with low mass and very weak couplings originating from spontaneous
symmetry breaking at very high energy scales. The one ALP that solves the strong CP
(charge-parity) problem by the PQ mechanism is the QCD axion. Unlike axions, ALPs
do not derive their masses from QCD effects and, in general, lack a connection to the
PQ mechanism. For QCD axions, the relation mafa ∼ mπfπ holds, whereas this quantity
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mafa may vary for other ALPs.

Over the past two decades, the community’s efforts and size have steadily grown,
with recent years witnessing a flourishing phase. This surge is attributable to advancements
in theoretical and phenomenological aspects of axions, elucidating their roles in astro-
physics and cosmology, thereby motivating and guiding detection efforts. Concurrently,
advancements in detection technologies allow the exploration of unexplored territories
beyond existing constraints. The absence of positive detections of supersymmetry (SUSY)
particles at the Large Hadron Collider (LHC) and Weakly Interactive Massive Particles
(WIMPs) in underground detectors has heightened interest in axions.

Furthermore, the PQ mechanism can be seamlessly embedded in well-known BSM
frameworks such as SUSY [8], Grand Unified Theories (GUTs) [9] and most notably it is
built in string theory in a model-independent way [10,11]. Also, the discovery of axions
would signify the identification of a new energy scale in particle physics.
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2 U(1) problem and its solution

2.1 U(1) problem
In this section, we will delve into the origin of the U(1) problem [12], also recognized

as the missing meson problem. Here we aim to comprehend how the quark mass term
breaks the chiral U(2)L×U(2)R symmetry and explore the consequences of this breakdown.

In the real world, there are 6 flavors of quarks, among which the up and down
quarks are the lightest of them, with masses of mu = 2.16+0.49

−0.26 MeV and md = 4.67+0.48
−0.17

MeV [13], respectively. These masses are significantly smaller than the scale of quantum
chromodynamics (QCD), denoted as ΛQCD ≈ 332 ± 17 MeV [14]. Initially, we assume
that the up and down quarks are massless. The mass of the strange quark, ms = 93.4+8.6

−3.4

MeV [13], is also relatively smaller than ΛQCD, allowing us, in certain contexts, to treat it
as massless as well, although this assumption is less justified compared to the case of the
up and down quarks.

If we focus on hadron physics below the 1 GeV threshold, we can safely neglect the
3 heaviest quarks, the charm, bottom and top quarks, with masses of mc = 1.27± 0.02
GeV, mb = 4.18+0.03

−0.02 GeV and mt = 172.69 ± 0.30 GeV respectively [13] . For the time
being, we will also exclude the strange quark from our analysis. Limiting our focus to two
flavors of quarks simplifies the calculations and incorporating the strange quark later on
will not pose any problem. Let us consider then, QCD with only 2 flavors of massless
quarks. In this context, we have the left-handed Weyl field χαi, where α = 1, 2, 3 represents
the color index of the fundamental or 3 representation, and i = 1, 2 is the flavor index,
with i = 1 denoting the up quark and i = 2 denoting the down quark. Additionally,
we have the left-handed Weyl field ξαī, where α = 1, 2, 3 represents the color index of
the antifundamental or 3̄ representation, and ī = 1, 2 is the flavor index, with ī = 1
corresponding to the anti-up quark and ī = 2 corresponding to the anti-down quark.

With these considerations, the QCD lagrangian is expressed as follows

L = iχ†αiσ̄µ(Dµ) β
α χβi + iξ†

αī
σ̄µ(D̄µ)αβξβī −

1
4G

aµνGa
µν , (2.1)

where Dµ = ∂µ − igT aAaµ and D̄µ = ∂µ − igT̄ aAaµ are the covariant derivatives, with
(T̄ a)αβ = −(T a) α

β . Here the T a are the SU(2) symmetry generators, T a = 1
2σ

a and:

σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 , (2.2)
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and the Pauli 4-vector σ̄µ is defined as

σ̄µ = (I,−~σ) , (2.3)

where ~σ = σ1x̂1 + σ2x̂2 + σ3x̂3.

In addition to the SU(3) color gauge symmetry, this lagrangian also possesses
a global U(2) × U(2) flavor symmetry. Specifically, L remains invariant under these
transformations

χαi → L j
i χαj ,

ξαī → (R∗)ī j̄ξαj̄ ,
(2.4)

where L and R∗ are independent 2× 2 unitary matrices, which can also be represented as
L = eiθLT and R∗ = eiθRT . Applying (2.4) to (2.1), we find that

L′ = i(L j
i )†χ†αjσ̄µ(Dµ) β

α L
j
i χβj + i[(R∗)ī j̄]†ξ

†
αj̄
σ̄µ(D̄µ)αβ(R∗)ī j̄ξβj̄ −

1
4G

aµνGa
µν , (2.5)

L and R∗ being unitary matrices satisfy the conditions L†L = 1 and R∗†R∗ = 1, ensuring
the invariance of the lagrangian. Alternatively, this invariance can be understood by
recognizing that any arbitrary rotation of θL or θR is cancelled out by its conjugate
counterpart.

We can express the QCD lagrangian in terms of Dirac fields, as Dirac fields
inherently consist of both a left-handed and right-handed component

L = iΨ /DΨ− 1
4G

aµνGa
µν , (2.6)

where

ΨD =
ψL
ψR

→ Ψαi =
χαi
ξ†
αī

 . (2.7)

Equation (2.4) becomes
PLΨαi → L j

i PLΨαi ,

PRΨαi → R j̄
ī
PRΨαi ,

(2.8)

where PL,R = 1
2(1 ∓ γ5) are the projection operators. Consequently, the global flavor

symmetry is commonly referred to as U(2)L × U(2)R, and since it is a symmetry that
distinguishes the left- and right-handed components of a Dirac field, it is chiral.

We can decompose U(2)L × U(2)R into SU(2)L × SU(2)R × U(1)L × U(1)R. This
decomposition can be further expressed in terms of axial and vectorial terms, where the
vectorial term arises when R and L are equal, and the axial term occurs when the R and L
are not equal. Consequently, we arrive at SU(2)V × SU(2)A×U(1)V ×U(1)A. Here U(1)V
represents the vectorial U(1) symmetry corresponding to L = R = e−iαI, and U(1)A is
the axial U(1) symmetry corresponding to L = R∗ = eiαI. However, it will become clear
later on that the apparent U(1)A symmetry is, in fact, anomalous and thus not a real
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symmetry of QCD. Therefore, the non-anomalous global flavor symmetry is, in reality,
SU(2)V × SU(2)A × U(1)V .

According to Noether’s Theorem (A), every continuous symmetry corresponds to a
conserved charge. In the context of U(1) vectorial symmetry, the corresponding conserved
charge is the quark number, representing the difference between the number of quarks and
the number of antiquarks. The quark number constitutes one-third of the baryon number.
In hadron physics, baryon number holds significant importance as the classification of
hadrons relies on their baryon numbers. Baryons, such as protons and neutrons, possess a
baryon number equal to 1 and are color singlets, meaning they remain unchanged under
any color gauge transformation. In contrast mesons, like pions, possess a baryon number
of 0 as they are color singlet bound states comprising a quark-antiquark pair.

Understanding the role of SU(2)V × SU(2)A symmetry is a nuanced process. First,
it is essential to recognize that this symmetry comprises two SU(2) components: one
vectorial, treating left and right components equally, and one axial, which is chiral in nature.
Next, examining experimental evidences from nature, we find no indication supporting a
hadron classification system that distinguishes between left- and right-handed components.
Besides, experiments demonstrate that hadrons appear to be classified by only one SU(2)
symmetry group [15]. Thereby, in order to be consistent with experimental observation,
SU(2)V × SU(2)A invariance is only possible if the axial generators are spontaneously
broken. Consequently, the remaining SU(2) symmetry group’s classification is of the
vectorial kind, and its corresponding conserved charge is referred to as isotopic spin or,
more commonly, isospin.

The proton and neutron together form a doublet (fundamental representation) of
SU(2)V , while the pions (π±,0) constitute a triplet (adjoint representation) of SU(2)V . Due
to being in the adjoint representation, pions are expected to mediate interactions between
the proton and neutron [16]. This triplet structure of pions arises from the breakdown of
SU(2)A. Since SU(n) has n2 − 1 symmetry generators, SU(2) has three generators.When
these generators are spontaneously broken, as described by the Nambu-Goldstone (NG)
Theorem, three NG bosons emerge. However, because the up and down quarks are not
precisely massless, the symmetries involved are not exact. Therefore, isospin, which is also
violated by electromagnetism (EM), is not an exact symmetry. In this context, the pions
can be described as pseudo-Nambu-Goldstone (pseudo-NG) bosons.

In order to spontaneously break the axial part of SU(2)V × SU(2)A, some operator
that transforms nontrivially under this group (not a singlet) must acquire a nonzero vacuum
expectation value (VEV). However, to preserve Lorentz and color SU(3) invariance, this
operator must be a Lorentz scalar and a color singlet. Since there is no fundamental scalar
field in pure QCD that could acquire a nonzero VEV, composite fields become necessary.
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Note that there is no Higgs field in pure QCD. The simplest candidate for this purpose is
a quark-antiquark condensate χaαiξαj̄a = Ψ̄αj̄PLΨαi, where a is an undotted spinor index.
Assuming this, we have

〈0|χaαiξαj̄a |0〉 = −v3δ j̄
i , (2.9)

where v is a paramater with mass dimension, and its specific value depends on the chosen
renormalization scheme. The v3 arises from the fact that fermionic fields are of mass
dimension 3/2 in the four-dimensional lagrangian. This condensate effectively breaks
the axial generators while preserving the vector generators of SU(2)L × SU(2)R. This
phenomenom becomes evident when applying (2.4) in (2.9), revealing the symmetry
transformations in the resulting expression

〈0|χaαiξαj̄a |0〉 → 〈0|L k
i χ

a
αk(R∗)

j̄
n̄ξ

αn̄
a |0〉 ,

→ L k
i (R∗)j̄n̄ 〈0|χaαkξαn̄a |0〉 ,

→ L k
i (R∗)j̄n̄(−v3δ n̄

k ) ,

→ −v3(LR†) j̄
i .

(2.10)

Indeed, the mechanism through which the condensate operates becomes clear when
considering how it violates SU(2)L×SU(2)R. The ability to perform independent arbitrary
transformations on our left- and right-handed fields is no longer viable due to the presence
of the condensate. To maintain the form of (2.9), the only viable option is set L = R,
leading to LR† = 1, which fulfills the condition for the vectorial part of SU(2)V × SU(2)A.
Consequently, SU(2)V (and also U(1)V ) remains unbroken in this scenario.

It is worth noting that if the U(1)A symmetry group had not been disregarded
due to the anomaly, the theory would have three broken generators from SU(2)A and
one broken generator from U(1)A. Consequently, another NG boson, specifically another
meson called π9, would be expected to emerge. This meson, just like the other ones is
mass bound by the theory. However, this additional meson has never been observed, giving
rise to a missing meson problem. This discrepancy between theoretical expectations and
experimental observations is the so called U(1) problem.

In a future section, we will delve into the complexities of its resolution, including
the intricacies of the phenomenon known as the chiral anomaly.

2.2 Effective lagrangian for the NG-bosons
It is crucial to emphasize that the expression (2.9) is nonperturbative. This

nonperturbative nature arises from the fact that, for chiral QCD with vanishing quark
masses, there exists no tree-level potential that could lead to the vacuum expectation
value (VEV) of 〈0|χaαiξαj̄a |0〉. Consequently, fermionic condensates like this are produced
by nonperturbative physics.
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Another perspective to grasp this is by considering that 〈0|χaαiξαj̄a |0〉 is a dimen-
sional quantity (where v is a paramater with mass dimension, as discussed earilier), and the
only scale in our theory is the ΛQCD, which is defined at a point where perturbative physics
is not applicable [15]. Therefore, any observable dependant on this scale is inherently
linked to nonperturbative phenomena. As a result, we anticipate that v ∼ ΛQCD, and
ΛQCD establishes the scale for the masses of all hadrons that are not pseudo-NG bosons,
including protons and neutrons. The masses of protons and neutrons are very similiar,
where mp = 938.27208816 ± 0.00000029 MeV and mn = 939.56542052 ± 0.00000054
MeV [13], respectively. Remember that ΛQCD ≈ 332± 17 MeV [14].

Now, we will construct a low-energy effective lagrangian [17], commonly referred to
as the chiral lagrangian, for the pions (the three pseudo-Nambu-Goldstone bosons), and
derive their masses. This can be done as follows: we allow the orientation in flavor space
of the vacuum expectation value (VEV) of the condensate to vary slowly as a function of
spacetime. Consequently, the expression (2.9) transforms into:

〈0|χaαiξαj̄a |0〉 = −v3U j̄
i (x) . (2.11)

U(x) is a spacetime dependent unitary matrix, represented as

U(x) = exp[2iπa(x)T a/fπ] , (2.12)

where T a = σa

2 are the generators of SU(2) symmetry group, πa(x) are the three real
scalar fields to be identified with the pions, and fπ is the pion decay constant. fπ is a
parameter with mass dimension, and its experimentally measured value is 130.41± 0.21
MeV [18]. At first, for simplicity, we will not consider the U(1)A NG boson. Later on, we
can easily add it by hand. Additionally, we require the condition detU(x) = 1.

U(x) is conceived as a low-energy effective field, and its lagrangian should be the
most general one consistent with SU(2)L × SU(2)R symmetry. Under a general transfor-
mation of this group, U(x) transforms as follows:

U(x)→ LU(x)R† , (2.13)

the terms in the U(x) lagrangian (chiral lagrangian) can be organized based on the number
of derivatives they contain. Since UU † = 1 (a consequence of its unitarity), there are no
terms with no derivatives. The lagrangian includes one term with two derivatives, which
takes the form:

Leff = −1
4f

2
π Tr

[
∂µU †∂µU

]
. (2.14)

Expanding U(x) in inverse powers of fπ in (2.12), we obtain:

Firstly, we can express the exponential function in terms of its Taylor series
expansion:

ex = 1 + x+ x2

2! + x3

3! + ... , (2.15)
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applying this taylor series expansion to (2.12), we get:

U(x) = 1 + 2iπd(x)T d
fπ

+ 1
2!

(
2iπd(x)T d

fπ

)2

+ 1
3!

(
2iπd(x)T d

fπ

)3

+O(f−4
π ) ,

= 1 + 2iπd(x)T d
fπ

− 2πd(x)πe(x)T dT e
f 2
π

− 4iπd(x)πe(x)πf (x)T cT dT e
3f 3

π

+O(f−4
π ) .

(2.16)

Indeed, to calculate (2.14), it is also necessary to have the expansion for the hermitian
conjugate. Therefore, the expansion for the hermitian conjugate of U(x) is given by:

U †(x) = 1−2iπa(x)T a
fπ

−2πa(x)πb(x)T aT b
f 2
π

+4iπa(x)πb(x)πc(x)T aT bT c
3f 3

π

+O(f−4
π ) . (2.17)

Certainly, we can now substitute (2.16) and (2.17) into (2.14). To keep the calculations
clear, let’s first focus on evaluating the derivative terms separately, considering terms up
to O(f−4

π ) when they are multiplied and omitting the dependence of x in U and πa:

∂µU † = −2i(∂µπa)T a
fπ

− 2
[
(∂µπa)πb + πa(∂µπb)

] T aT b
f 2
π

+ 4i
3
[
∂µπaπbπc + πa∂µπbπc + πaπb∂µπc

] T aT bT c
f 3
π

,

(2.18)

∂µU = 2i(∂µπd)T d
fπ

− 2
[
(∂µπd)πe + πd(∂µπe)

] T dT e
f 2
π

− 4i
3
[
∂µπ

dπeπf + πd∂µπ
eπf + πdπe∂µπ

f
] T dT eT f

f 3
π

.

(2.19)

Using these derivative terms, we can express the chiral lagrangian. For clarity, let’s divide
each term:

Note that the trace of the sum is equivalent to the sum of the traces, i.e.,
Tr[x+ y + z] = Tr[x] + Tr[y] + Tr[z].

L1 = −1
4f

2
π Tr

[(
−2i(∂µπa)T a

fπ

)(
2i(∂µπd)T d

fπ

)]
,

= −Tr
[
(∂µπa)T a(∂µπd)T d

]
,

= −Tr
[
T aT d

]
∂µπa∂µπ

d ,

= −1
2δ

ad∂µπa∂µπ
d ,

= −1
2∂

µπa∂µπ
a ,

(2.20)

to arrive at this result, we utilized the property of Pauli matrices Tr
[
T aT b

]
= 1

22 Tr
[
σaσb

]
=

1
2δ
ab. Additionally, the cross-terms are analysed separately for clarity:

L2 = −1
4f

2
π Tr

[(
−2i(∂µπa)T a

fπ

)(
−2

[
(∂µπd)πe + πd(∂µπe)

] T dT e
f 2
π

)

+
(
−2

[
(∂µπa)πb + πa(∂µπb)

] T aT b
f 2
π

)(
2i(∂µπd)T d

fπ

)]
,

(2.21)
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The first term of the sum simplifies to

L21 = −1
4f

2
π Tr

[(
−2i(∂µπa)T a

fπ

)(
−2

[
(∂µπd)πe + πd(∂µπe)

] T dT e
f 2
π

)]
,

= −1
4f

2
π

(
4i
f 3
π

)
Tr
[
(∂µπaT a)

([
(∂µπd)πe + πd(∂µπe)

]
T dT e

)]
,

= − i

fπ
Tr
[
T aT dT e

] (
∂µπa∂µπ

dπe + ∂µπaπd∂µπ
e
)
,

= − i

fπ

1
4εade

(
∂µπa∂µπ

dπe + ∂µπaπd∂µπ
e
)
.

(2.22)

The second term of the sum simplifies to

L22 = −1
4f

2
π Tr

[(
−2[(∂µπa)πb + πa(∂µπb)]T

aT b

f 2
π

)(
2i(∂µπd)T d

fπ

)]
,

= −1
4f

2
π

(
−4i
f 3
π

)
Tr
[(

[(∂µπa)πb + πa(∂µπb)]T aT b
) (

(∂µπd)T d
)]

,

= i

fπ
Tr
[
T aT bT d

]
(∂µπaπb∂µπd + πa∂µπb∂µπ

d) ,

= i

fπ

1
4εabd(∂

µπaπb∂µπ
d + πa∂µπb∂µπ

d) ,

(2.23)

where we have utilized the property of Pauli matrices Tr
[
T aT bT c

]
= 1

4εabc. We can then
change the Levi-Civita indices to α, β, γ so that both terms can be combined, leading to

L2 = i

4fπεαβγ
[
∂µπαπβ∂µπ

γ + πα∂µπβ∂µπ
γ − ∂µπα∂µπβπγ − ∂µπαπβ∂µπγ

]
,

= i

4fπεαβγ
[
πα∂µπβ∂µπ

γ − ∂µπα∂µπβπγ
]
,

= i

4fπεαβγ
[
πα∂µπβ∂µπ

γ − πγ∂µπα∂µπβ
]

= 0 ,

(2.24)

which evaluates to zero due to the anti-symmetric nature of the Levi-Civita tensor. Taking
the first term to demonstrate, we get:

εαβγπ
α∂µπβ∂µπ

γ = εαγβπ
α∂µπγ∂µπ

β ,

= εαγβπ
α∂µπ

β∂µπγ ,

= εαγβπ
α∂µπβ∂µπ

γ ,

= −εαβγπα∂µπβ∂µπγ ,

= 0 .

(2.25)
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Now, for the third term, we have:

L3 = −1
4f

2
π Tr

[(
−2

[
(∂µπa)πb + πa(∂µπb)

] T aT b
f 2
π

)
(
−2

[
(∂µπd)πe + πd(∂µπe)

] T dT e
f 2
π

)]
,

= −1
4f

2
π

4
f 4
π

Tr
[
T aT bT dT e

] [
(∂µπa)πb + πa(∂µπb)

] [
(∂µπd)πe + πd(∂µπe)

]
,

= − 1
8f 2

π

(δabδde − δadδbe + δaeδbd)

×
[(
∂µπaπb + πa∂µπb

) (
∂µπ

dπe + πd∂µπ
e
)]

,

(2.26)

where we have utilized the property of the Pauli matrices Tr
[
T aT bT dT e

]
= 1

8(δabδde −
δadδbe + δaeδbd). The rest of the calculation proceeds as follows:

L3 = − 1
8f 2

π

[(∂µπa)πa + πa(∂µπa)]
[
(∂µπd)πd + πd(∂µπd)

]
+ 1

8f 2
π

[
(∂µπa)πb + πa(∂µπb)

] [
(∂µπa)πb + πa(∂µπb)

]
− 1

8f 2
π

[
(∂µπa)πb + πa(∂µπb)

] [
(∂µπb)πa + πb(∂µπa)

]
,

= − 1
8f 2

π

[2πa(∂µπa)]
[
(2πd(∂µπd)

]
+ 1

8f 2
π

[
πb(∂µπa) + πa(∂µπb)

] [
πb(∂µπa) + πa(∂µπb)

]
− 1

8f 2
π

[
πb(∂µπa) + πa(∂µπb)

] [
πa(∂µπb) + πb(∂µπa)

]
,

= − 1
8f 2

π

[
4πaπd∂µπa∂µπd

]
= − 1

2f 2
π

[
πaπd∂µπa∂µπ

d
]
.

(2.27)

The last 2 terms are symmetrical, only the indices are different, so we are going to calculate
one and multiply the result by a factor of 2. The last term reads:

L4 = −1
4f

2
π Tr

[
4i
3
[
∂µπaπbπc + πa∂µπbπc + πaπb∂µπc

] T aT bT c
f 3
π

2i(∂µπd)T d
fπ

]
, (2.28)

similarly to the third term we utilize the property of Pauli matrices Tr
[
T aT bT cT d

]
=

1
8(δabδcd − δacδbd + δadδbc) and the calculation goes as follows:

L4 = −1
4f

2
π

−8
3f 4

π

Tr
[(
∂µπaπbπc + πa∂µπbπc + πaπb∂µπc

)
T aT bT c(∂µπd)T d

]
,

= 2
3f 2

π

Tr
[
T aT bT cT d

] (
∂µπaπbπc + πa∂µπbπc + πaπb∂µπc

)
(∂µπd) ,

= 1
12f 2

π

(δabδcd − δacδbd + δadδbc)
(
πbπc∂µπa∂µπ

d + πaπc∂µπb∂µπ
d

+πaπb∂µπc∂µπd
)
.

(2.29)
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Note that similarly to the third term of the lagrangian, the last 2 terms of deltas cancel
each other, leaving us with only the first term, so we find:

L4 = 1
12f 2

π

(δabδcd)
(
πbπc∂µπa∂µπ

d + πaπc∂µπb∂µπ
d + πaπb∂µπc∂µπ

d
)
,

= 1
12f 2

π

(πaπc∂µπa∂µπc + πaπc∂µπa∂µπ
c + πaπa∂µπc∂µπ

c) ,

= 1
12f 2

π

(πaπa∂µπc∂µπc + 2πaπc∂µπa∂µπc) ,

(2.30)

Combining all terms together, we find (remember that we must multiply the last term by
2 and that the indices are mute):

Leff = L1 + L2 + L3 + 2L4 ,

= −1
2∂

µπa∂µπ
a + 0− 1

2f 2
π

(
πaπb∂µπa∂µπ

b
)

+ 1
6f 2

π

(
πaπa∂µπb∂µπ

b + 2πaπb∂µπa∂µπb
)
,

= −1
2∂

µπa∂µπ
a + 1

6f 2
π

(
πaπa∂µπb∂µπ

b + 2πaπb∂µπa∂µπb − 3πaπb∂µπa∂µπb
)
.

(2.31)

Finally, we reach the final result for the effective lagrangian:

Leff = −1
2∂

µπa∂µπ
a + 1

6f
−2
π

(
πaπa∂µπb∂µπ

b − πaπb∂µπb∂µπa
)

+ ... . (2.32)

Indeed, the pion fields exhibit interactions as described by (2.14). These interactions give
rise to Feynman vertices, which contain factors of momenta divided by the pion decay
constant, denoted as p2

fπ
. This plays a fundamental role in understanding the dynamics of

pion interactions in low-energy processes.

Now, let’s consider the effects of including the small masses for the up and down
quarks. With this new consideration, we need to add a new term to our QCD lagrangian
(2.1). The most general term we can add is:

Lmass = −ξαj̄M i
j̄ χαi + h.c. ,

= −M i
j̄ χαiξ

αj̄ + h.c. ,

= −Tr[Mχαξ
α] + h.c. ,

(2.33)

whereM is an arbitrary complex 2×2 matrix, and h.c. denotes the hermitian conjugate. By
performing a suitable SU(2)L × SU(2)R transformation, M can be diagonalized, resulting
in positive real entries mu and md representing the up and down masses respectively:

M =
mu 0

0 md

 e−iθ/2 . (2.34)

It is important to note that the overall phase factor θ cannot be eliminated without
resorting to a prohibited U(1)A transformation. Furthermore, θ carries significant physical
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implications, with experimental observations constraining its value to |θ| . 10−10 [19–21].
We will delve deeper into the intricacies of this θ term in the Strong CP problem chapter.
However, for the purpose of our current discussion, we will adopt the phenomenological
approach of setting θ to zero.

Next, we will replace χαξα in (2.33) with its spacetime dependent VEV as depicted
in (2.11). This substitution gives rise to a term in the chiral lagrangian that accounts for
the effects of quark masses:

Lmass = −Tr[Mχαξ
α] + h.c. ,

= −Tr
[
M(−v3U(x))

]
+ h.c. ,

= v3 Tr[MU ] + h.c. ,

= v3 Tr
[
MU +M †U †

]
.

(2.35)

Note that when θ = 0, M and M † are the same matrix. Considering that M transforms
under SU(2)L×SU(2)R as M → RML† while U → LUR†, the expression TrMU remains
formally invariant under this group of symmetry. Consequently, we demand that all terms
in the chiral lagrangian exhibit this formal invariance under SU(2)L × SU(2)R.

Expanding Lmass in a similar manner as we did for (2.14) and considering M = M †,
we obtain:

Lmass = v3 Tr
[
M(U + U †)

]
,

= v3 Tr
[
M

(
1 + 2iπa(x)T a

fπ
− 2πa(x)πb(x)T aT b

f 2
π

+O(f−3
π )

+1− 2iπa(x)T a
fπ

− 2πa(x)πb(x)T aT b
f 2
π

+O(f−3
π )

)]
,

= v3 Tr
[
M

(
2− 4πaπbT aT b

f 2
π

+O(f−3
π )

)]
,

= v3 Tr 2M − 4v
3

f 2
π

Tr
[
MT aT b

]
πaπb +O(f−3

π ) ,

(2.36)

omitting constant terms in the lagrangian, so that v3 Tr 2M vanishes, we obtain:

Lmass = −4v
3

f 2
π

Tr
[
MT aT b

]
πaπb +O(f−3

π ) ,

= −2v
3

f 2
π

Tr
[
M
{
T a, T b

}]
πaπb +O(f−3

π ) ,

= −2v
3

f 2
π

Tr
[
M

1
2δ

abI
]
πaπb +O(f−3

π ) ,

(2.37)

to arrive at this expression, we utilized the relation
{
T a, T b

}
= 1

2δ
ab. Continuing the
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calculation, we obtain:

Lmass = −v
3

f 2
π

Tr [M ] πaπa +O(f−3
π ) ,

= −v
3

f 2
π

Tr [M ] πaπa +O(f−3
π ) ,

= −v
3

f 2
π

(mu +md)πaπa +O(f−3
π ) .

(2.38)

Upon considering (2.37), it becomes evident that all three pions share the same mass, a
value dictated by the Gell-Mann-Oakes-Renner relation [22]:

m2
π = 2(mu +md)

v3

f 2
π

. (2.39)

It is important to note that both quark masses and v3 are dependent on the chosen
renormalization scheme. However, their product remains invariant across schemes. As
mentioned earlier, also due to EM interactions, isospin is not an exact symmetry. This is
evident in the slightly elevated mass of charged pions (π±) in comparison to neutral pions
π0, as confirmed in [13].

This framework can be readily expanded to include the strange quark. Despite
being heavier than the up and down quarks, the strange quark remains pertinent to
hadron physics below 1 GeV.

With the inclusion of the strange quark, the theory now encompasses three flavors
of quarks, necessitating an adaptation of our symmetry framework. Previously, with two
flavors, we worked within the framework of U(2)L×U(2)R. However, with the introduction
of the strange quark, the symmetry is extended to U(3)L × U(3)R. Analogous to the
previous case, this can be decomposed into SU(3)L × U(1)L × SU(3)R × U(1)R, which
further decomposes to SU(3)V × U(1)V × SU(3)A × U(1)A.

Similar to our previous scenario, SU(3)A must undergo spontaneous breaking.
However, with the inclusion of the strange quark, there are now eight generators (32 − 1),
implying the existence of eight NG-bosons, a significant increase from the previous three.
If we consider the spontaneous breaking of U(1)A symmetry as well, the number of
NG-bosons rises to nine. While the mass term in the lagrangian remains applicable, we
need to replace the generators and revisit certain steps, as some SU(2) relations used in
the previous derivation are no longer valid in this expanded context. Additionally, we
can readily incorporate the breakdown of U(1)A in the framework as well. With these
considerations in mind, we arrive at:

Lmass = −4v
3

f 2
π

Tr
[
Mλaλb

]
πaπb +−4v

3

f 2
9

Tr[M ]π9π9... , (2.40)
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where λa are the SU(3) generators, which are given by the Gell-Mann matrices:

λ1 =


0 1 0
1 0 0
0 0 0

 , λ2 =


0 −i 0
i 0 0
0 0 0

 , λ3 =


1 0 0
0 −1 0
0 0 0

 ,

λ4 =


0 0 1
0 0 0
1 0 0

 , λ5 =


0 0 −i
0 0 0
i 0 0

 ,

λ6 =


0 0 0
0 0 1
0 1 0

 , λ7 =


0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 ,

(2.41)

and f9 is the π9 decay constant. Another approach to grasp the distinction between the
NG bosons arising from SU(3) and U(1) axial symmetries is to examine the composition
of mesons. Each meson is formed by a quark-antiquark pair, where the quarks belong to
the fundamental or 3 representation , and the antiquarks come from the anti-fundamental
or 3 representation. Consequently, the meson structure can be described as follows:

3⊗ 3 = 8⊕ 1 . (2.42)

Mesons resulting from the SU(3)A symmetry breakdown assemble into an octet, all sharing
the same decay constant fπ. In contrast, the meson emerging from U(1)A symmetry
breakdown constitutes a singlet with its specific decay constant f9.

The matrix M now incorporates a new diagonal entry to account for the presence
of the strange quark and is defined as:

M =


mu 0 0
0 md 0
0 0 ms

 e−iθ/2 . (2.43)

To calculate the meson masses, we define a new matrix:

Π = πaλa

fπ
= 1

2fπ


π0 + 1√

3η
√

2π+ √
2K+

√
2π− −π0 + 1√

3η
√

2K0
√

2K−
√

2 K0 −2√
3η

 , (2.44)

substituting this into (2.40), we obtain:

Lmass = −4v3 Tr
{
MΠ2

}
− 4v3 Tr

{
M(π9)2

f 2
9

}
,

= −4v3 Tr
{
MΠ2 + M(π9)2

f 2
9

} (2.45)
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to compute the mass term, we start by finding MΠ2. Since we are interested only in the
main diagonal when taking the trace, and we ignore the phase on M , we obtain:

MΠ2 + M(π9)2

f 2
9

= 1
4f 2

π


mu 0 0
0 md 0
0 0 ms

 diag
(π0 + 1√

3
η

)2

+ 2π+π−

+2K+K− , 2π+π− +
(
−π0 + 1√

3
η

)2

+ 2K0K
0
, 2K−K+ + 2K0

K0 + 4
3η

2



+ 1
4f 2

9


mu 0 0
0 md 0
0 0 ms

 diag
[
(π9)2, (π9)2, (π9)2

]
.

(2.46)

Upon making the product and taking the trace, we find:

Lmass = −v
3

f 2
π

[
2(mu +md)π+π− + 2(mu +ms)K+K−

]

− v3

f 2
π

2(md +ms)K
0
K0 +mu

(
1√
3
η + π0 + fπ

f9
π9
)2


− v3

f 2
π

md

(
1√
3
η − π0 + fπ

f9
π9
)2

+ 4
3ms

(
η + fπ

f9
π9
) .

(2.47)

Finally, the masses of the nine Nambu-Goldstone bosons are as follows:
Firstly, we have the charged NG bosons:

m2
π± = 2v

3

f 2
π

(mu +md) ,

m2
K± = 2v

3

f 2
π

(mu +ms) ,

m2
K

0
K0 = 2v

3

f 2
π

(md +ms) .

(2.48)

Now, for the neutral NG bosons, to simplify the calculation, we set mu = md = m << ms.
With this consideration, we obtain:

m2
π0 = 4mv3

f 2
π

,

m2
η = 8

3ms
v3

f 2
π

(
1 + 3

4
f 2
π

f 2
9

)
,

m2
π9 = 9f 2

π/f
2
9

4 + 3f 2
π/f

2
9
m2
π0 .

(2.49)

It is evident from (2.49) that if we set f9 → 0, then the maximum value for the mass of
the ninth meson is mπ9 =

√
3mπ0 . Consequently, the mass of the ninth meson is bound to

the mass of the neutral pion. However, again, the issue arises from the fact that the π9

meson does not seem to exist in nature; no experimental observation has ever confirmed
its presence. This discrepancy is known as the U(1) problem.



Chapter 2. U(1) problem and its solution 27

2.3 U(1)A anomaly
In this section, we delve further into the U(1) axial symmetry and its anomalous

nature. As previously discussed, if U(1) axial were a true symmetry of QCD, our theory
would lack a crucial meson component, given rise to the U(1) problem. This is because the
symmetry must be spontaneously broken, giving rise to an expected Nambu-Goldstone
(NG) boson. To address this issue, it becomes essential to demonstrate that U(1) axial is
not, in fact, a genuine symmetry of our theory.

The most straightforward approach to illustrate this anomalous nature is to start
with a U(1) gauge theory featuring massless Dirac fields. The lagrangian for such a theory
is given by:

L = iΨ /DΨ− 1
4F

µνFµν , (2.50)

where /D = γµDµ, and Dµ = ∂µ − igAµ. Note that this lagrangian bears resemblance to
the QCD lagrangian with massless quarks, expressed in terms of the Dirac fields in (2.6).
This lagrangian maintains invariance under a global symmetry, wherein our Dirac fields
undergo transformations with the same phase as:

Ψ→ e−iαγ5Ψ

Ψ→ Ψe−iαγ5 .
(2.51)

This global symmetry is our symmetry of interest and it is called axial U(1) symmetry.
Calculating the Noether current associated with it we can see why this symmetry is called
axial. The associated Noether current is defined by (A.17):

jµa ≡ −
[
Lgµρ −

∂L
∂ [∂µφ]∂ρφ

]
δxρ

δωa
− ∂L
∂[∂µφ]

δφ

δωa
, (2.52)

since there is no variation in the spacetime variables, the current simplifies to:

jµa = − ∂L
∂[∂µφ]

δφ

δωa
. (2.53)

This simplification can be directly adapted for our specific case, resulting in:

jµA = ∂L
∂(∂µΨ)

dΨ
dα . (2.54)

Applying our global U(1) transformation to (2.50) and subsequently substituting it into
(2.54), we obtain:

∂L
∂(∂µΨ)

dΨ
dα = ∂

∂(∂µΨ)

[
iΨ /DΨ− 1

4F
µνFµν

] d
dα

(
e−iαγ5Ψ

)
,

= ∂

∂(∂µΨ)

[
iΨγµ(∂µ − igAµ)Ψ− 1

4F
µνFµν

]
(−iγ5Ψ) ,

= ∂

∂(∂µΨ)
[
iΨγµ∂µΨ

]
(−iγ5Ψ) ,

= (iΨγµ)(−iγ5Ψ) ,

= Ψ(x)γµγ5Ψ(x) .

(2.55)
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This current represents an axial vector because its spatial component is odd under
parity transformation. Because of this axial nature, our global symmetry is termed
axial U(1) symmetry. It’s important to mention that we have only explicitly shown the
transformations for the terms that are somehow affected by this transformation. Overall,
the transformations on the fields are going to be canceled out, essentially introducing
mess in the calculations without affecting the final results.

Using Noether’s Theorem, we expect ∂µjµA = 0. However, we will find that the
axial current exhibits an anomalous divergence:

∂µj
µ
A(x) = − g2

16π2 e
µνρσ Tr [FµνFρσ] . (2.56)

One might question the origin of this anomaly. It can be traced back to the functional
measure of the fermion field, which, in general, is not gauge invariant.

We will derive (2.56) directly from the path integral using the Fujikawa method [23],
and demonstrate its exactness. Initially, we will focus on the path integral over the Dirac
field, treating the gauge field as a fixed background to be integrated later in our calculations.
This approach leads to the following vacuum-to-vacuum transition amplitude:

Z(A) ≡
∫
DΨDΨ eiS(A) , (2.57)

where S(A) is the Dirac action, defined by:

S(A) ≡
∫
d4x Ψi /DΨ . (2.58)

We can evaluate (2.57) as a functional determinant:

Z(A) = det
(
i /D
)
, (2.59)

this equation requires some form of regularization, which will be addressed later. Now,
let’s transform our axial U(1) parameter α into a spacetime dependent parameter α(x).
With this modification, our transformation takes the form:

Ψ→ e−iα(x)γ5Ψ ,

Ψ→ Ψe−iα(x)γ5 .
(2.60)

This transformation on the Dirac fields induces a corresponding transformation in the
Dirac action and in the integration variables given in (2.57). Analyzing first how it affects
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the Dirac action:

S ′(A) =
∫
d4x Ψe−iα(x)γ5i /De−iα(x)γ5Ψ ,

=
∫
d4x Ψe−iα(x)γ5iγµ (∂µ − igAµ) e−iα(x)γ5Ψ ,

=
∫
d4x Ψe−iα(x)γ5iγµ

[
∂µ
(
e−iα(x)γ5Ψ

)
− igAµe−iα(x)γ5Ψ

]
,

=
∫
d4x Ψe−iα(x)γ5iγµ

[(
∂µe

−iα(x)γ5
)

Ψ + e−iα(x)γ5∂µΨ− igAµe−iα(x)γ5Ψ
]
,

=
∫
d4x Ψiγµ [(−i∂µα(x)γ5) Ψ + ∂µΨ− igAµΨ] ,

=
∫
d4x Ψiγµ [−iγ5∂µα(x)Ψ + (∂µ − igAµ) Ψ] ,

=
∫
d4x Ψi /DΨ +

∫
d4x Ψγµγ5Ψ∂µα(x) ,

= S(A) +
∫
d4x jµA∂µα(x) .

(2.61)

By integrating the second integral by parts, we can express it as:

S(A)→ S(A)−
∫
d4x α(x)∂µjµA . (2.62)

Finally, we obtain:
δS = −

∫
d4x α(x)∂µjµA . (2.63)

In classical physics, to maintain the invariance of the action, ∂µjµA = 0, which implies
that the axial current is conserved, and the axial U(1) symmetry is a genuine symmetry
of our theory. However, in quantum mechanics, the axial current is not conserved. This
was discovered by Adler, Bardeen, Bell, and Jackiw [24–27] through the analysis of the
triangle diagram, where an incoming chiral current interacts with two outgoing gluons
mediated by three fermions forming a triangle loop.

jµA ∝ γµγ5

Figure 1 – Anomaly diagram

Fujikawa reinterpreted this phenomenon as a modification in (2.57) under a chiral
transformation. To derive (2.56), it is essential to analyze the nature of this modification
and how it occurs.

First, let’s assume that DΨDΨ is invariant under axial U(1) transformation. If
this assumption is correct, we have:

Z ′(A) =
∫
DΨDΨ eiS(A)e−i

∫
d4x α(x)∂µjµA , (2.64)
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which must be equal to the original expressions for Z(A). This would imply that ∂µjµA = 0
holds for quantum mechanics. However, the change in the measure DΨDΨ under a
axial U(1) transformation must be analysed thoroughly. The change in our variables is
implemented by a functional matrix defined by [15]:

J(x, y) = δ4(x− y)e−iα(x)γ5 . (2.65)

In a scenario where the path integral is over commuting variables (e.g., bosonic
fields), we would obtain a Jacobian factor of det(J) for each of our transformations.
However, in our case, we are integrating over fermionic fields (non-commuting variables).
Consequently, we get a Jacobian factor of det(J)−1 for each of our transformations instead
of det(J). Since we have two transformations, we obtain:

DΨDΨ→ (det J)−2DΨDΨ . (2.66)

This implies that our crucial quantity Z(A) under a U(1) transformation is, in fact,

Z ′(A) =
∫
DΨDΨ (det J)−2eiS(A)e−i

∫
d4x α(x)∂µjµA . (2.67)

Here, we can use certain identities to calculate det J . First we have:

det eA = eTr[A] , (2.68)

for any square matrix A. If we denote our Jacobian as J ≡ eA, we can express:

det J = eTr[ln J ] (2.69)

Utilizing these identities, we obtain:

(det J)−2 = exp
[
2i
∫
d4x α(x) Tr

[
δ4(x− x)γ5

]]
, (2.70)

where the trace is taken over both spin and group indices. Similar to (2.59), a form of
regularization is required in this case as well.

One method to regularize this expression is by replacing the delta function with a
Gaussian. However, for the regularization to be consistent with our theory, the Gaussian
must be gauge invariant, and our regularization scheme must be compatible with (2.59).
Taking these considerations into account, we make the following replacement [15]:

δ4(x− y)→ e(i /Dx)2/M2
δ4(x− y) , (2.71)

where M is the regulator mass that we take to infinity at the end the calculations.

To evaluate (2.71), we express the delta function as a Fourier integral:

e(i /Dx)2/M2
δ4(x− y) =

∫ ∞
−∞

d4k

(2π)4 e
(i /Dx)2/M2

eik(x−y) . (2.72)
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Here, we can rewrite the Fourier integral more intelligently using the following identity:

f(∂)eikx = eikxf(∂ + ik) , (2.73)

in our case, we have f(∂) = eiγ
µDµ , so the identity becomes:

e(i /Dx)2/M2
eik(x−y) = eik(x−y)e[iγµ(Dµ+ik)]2 , (2.74)

thus, we find:
∫ ∞
−∞

d4k

(2π)4 e
(i /Dx)2/M2

eik(x−y) =
∫ ∞
−∞

d4k

(2π)4 e
ik(x−y)e(i /D−/k)2/M2

. (2.75)

If we continue to explore this expression, we can rewrite the far right exponential argument
as:

(i /D − /k)2 = /k
2 − i

{
/D, /k

}
− /D2

, (2.76)

where −i
{
/D, /k

}
= −i /D/k − i/k /D = −2i /D/k, since

[
/D, /k

]
= 0.

Continuing, we have:

(i /D − /k)2 = −k2 − i{γµ, γν}kµDν − γµγνDµDν ,

= −k2 − i(−2gµνI4)kµDν − (−gµν − 2iSµν)DµDν ,

= −k2 + 2ikνDν +D2 + 2iSµνDµDν ,

= −k2 + 2ik · D +D2 + 2iSµνDµDν ,

(2.77)

here we used (note that the metric here is (-,+,+,+)):

Sµν ≡ i

2γ
µγν ,

γµγν = 1
2 [{γµ, γν}+ [γµ, γν ]] = −gµν − 2iSµν ,

/k/k = kµkνγµγν ,

= kµkν
1
2 [{γµ, γν}+ [γµ, γν ]] ,

= kµkν
1
2{γµ, γν} ,

= kµkν(−gµν) = −k2 .

(2.78)

In the term 2iSµνDµDν , we can utilize the antisymmetry of Sµν to make the following
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substitution:

SµνDµDν = 1
2 [SµνDµDν + SνµDνDµ] ,

= Sµν

2 [DµDν −DνDµ] ,

= Sµν

2 [Dµ,Dν ] ,

= Sµν

2 [∂µ − igAµ, ∂ν − igAν ] ,

= Sµν

2
[
∂µ∂ν − ∂µ(igAν)− igAµ∂ν − g2AµAν

−∂ν∂µ + ∂ν(igAµ) + igAν∂µ + g2AνAµ
]
,

= Sµν

2 [−ig∂µAν − igAν∂µ − igAµ∂ν + ig∂νAµ + igAµ∂ν + igAν∂µ] ,

= Sµν

2 [−ig∂µAν + ig∂νAµ] ,

= Sµν

2 [−ig(∂µAν − ∂νAµ)] ,

= Sµν

2 [−igFµν ] ,

(2.79)

where Fµν = ∂µAν − ∂νAµ. Applying this result to (2.77), we obtain:

(i /D − /k)2 = −k2 + 2ik · D +D2 + gSµνFµν . (2.80)

Finally, applying this to (2.75), we find:

δ4(x− y)→
∫ ∞
−∞

d4k

(2π)4 e
ik(x−y)e(i /D−/k)2/M2

,

=
∫ ∞
−∞

d4k

(2π)4 e
ik(x−y) exp

[
−k2 + 2ik · D +D2 + gSµνFµν

M2

]
.

(2.81)

Next, let’s rescale k by M (k →Mk), yielding∫ ∞
−∞

d4(Mk)
(2π)4 eik(x−y) exp

[
−M2k2 + 2i(Mk) · D +D2 + gSµνFµν

M2

]
,

= M4
∫ ∞
−∞

d4k

(2π)4 e
ik(x−y)e−k

2 exp
[

2ik · D
M

+ D
2

M2 + gSµνFµν
M2

]
.

(2.82)

Note that, in (2.70), the delta function is δ4(x− x), which is:

δ4(x− x)→M4
∫ ∞
−∞

d4k

(2π)4 e
−k2 exp

[
2ik · D
M

+ D
2

M2 + gSµνFµν
M2

]
. (2.83)

Therefore, substituting this rescaled expression into the trace of (2.70), we have:

Tr
[
δ4(x− x)γ5

]
→M4

∫ ∞
−∞

d4k

(2π)4 e
−k2

× Tr
[
exp

[
2ik · D
M

+ D
2

M2 + gSµνFµν
M2

]
γ5

]
.

(2.84)
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Now, let’s expand the exponential in (2.84) in terms of M up to O(M−4). Since, there is a
factor M4 multiplying the integral, these contributions do not vanish as we take M →∞:

exp
[

2ik · D
M

+ D
2

M2 + gSµνFµν
M2

]
= 1 + 2ik · D

M
+ D

2

M2 + gSµνFµν
M2

+ 1
2

(
2ik · D
M

+ D
2

M2 + gSµνFµν
M2

)2

.

(2.85)

The trace over spin indices will vanish unless there are four or more gamma matrices
multiplying γ5. This property arises from the properties of γ5 :

Tr[γ5] = Tr[γµγνγ5] = 0 ,

Tr[γµγνγργσγ5] = −4iεµνρσ ,
(2.86)

where εµνρσ is the Levi-civita symbol. With these considerations, the only non-zero
contribution from our expansion is of the form:

(gSµνFµν)2

2M4 .

Therefore, we have:

Tr
[
δ4(x− x)γ5

]
→ 1

2g
2
∫ ∞
−∞

d4k

(2π)4 e
−k2 Tr [FµνFρσ] Tr [SµνSρσγ5] , (2.87)

using the definition of Sµν , we have:

Tr[SµνSρσγ5] = Tr
[
i

2γ
µγν

i

2γ
ργσγ5

]
,

= −1
4 Tr[γµγνγργσγ5] ,

= −1
4(−4iεµνρσ) ,

= iεµνρσ .

(2.88)

Finally, we find:

Tr
[
δ4(x− x)γ5

]
→ 1

2g
2
∫ ∞
−∞

d4k

(2π)4 e
−k2(iεµνρσ) Tr[FµνFρσ] . (2.89)

At this point, we analytically continue to Euclidean space, introducing a factor of i. Then,
upon solving our four Gaussian integrals, each contributes a factor of π1/2, we obtain a
total factor of (π1/2)4 = π2. Taking these considerations into account, we end up with:

Tr
[
δ4(x− x)γ5

]
→ − g2

32π2 ε
µνρσ Tr[FµνFρσ] . (2.90)

Now, we can apply these results to our original equation (2.70), leading to:

(det J)−2 = exp
[
− ig2

16π2

∫
d4x α(x)εµνρσ Tr[Fµν(x)Fρσ(x)]

]
. (2.91)
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Finally, substituting this result in (2.67), we obtain::

Z ′(A) =
∫
DΨDΨ eiS(A)

× exp
[
−i
∫
d4x α(x)

(
g2

16π2 ε
µνρσ Tr[Fµν(x)Fρσ(x)] + ∂µj

µ
A(x)

)]
,

(2.92)

which must be equal to the original Z(A) in (2.57). This is because Z(A) is a fundamental
quantity in every Quantum Field Theory (QFT); it represents the vacuum-to-vacuum
transition amplitude and, as such, cannot be affected by either a real or an anomalous
symmetry of the theory.

We can clearly see in (2.92) that our associated Noether current has the same
divergence as stated in (2.56):

∂µj
µ
A = − g2

16π2 ε
µνρσ Tr [FµνFρσ] . (2.93)

Because our derivation did not rely on an expansion in powers of g, our result is exact; there
are no higher-order corrections. This result is known as the Adler-Bardeen theorem [28].
The significance of this result lies in its fundamental role in the U(1) problem. Our
discussion has revolved around the axial U(1) transformation and whether it is a true
or false symmetry of our theory. If U(1) is a true symmetry, it must be spontaneously
broken, leading to a missing meson in our experimental results. On the other hand, if U(1)
is not a true symmetry, the U(1) problem is solved.

Now, with the expression for the divergence of the associated Noether current of
our U(1) transformation, if this expression turns out to be a non-zero contributing term
to the action, we have resolved the U(1) problem.

Looking at (2.63), we can see that the chiral anomaly affects the action in the
following way:

δS = −α
∫
d4x ∂µj

µ
A ,

= αg2

16π2 e
µνρσ

∫
d4x Tr [FµνFρσ] .

(2.94)

Notice that α is a constant again. At first glance, this might seem to prove that U(1)
axial is not a true symmetry. However, a thorough analysis is still needed because we can
rewrite:

g2

16π2 e
µνρσ Tr [FµνFρσ] = g2

4π2 e
µνρσ∂µ Tr

[
Aν∂ρAσ −

2
3igAνAρAσ

]
,

= g2

4π2∂µW
µ ,

(2.95)

where,
W µ = eµνρσ Tr

[
Aν∂ρAσ −

2
3igAνAρAσ

]
. (2.96)
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Applying this in (2.94), we have:

δS = αg2

4π2

∫
d4x ∂µW

µ . (2.97)

Now, the variation of the action results in a pure surface integral, and one might think
that

∫
d4x ∂µW

µ = 0. However, in a gauge theory, Gerard ’t Hooft [29] proved that this
is not true. Gerard ’t Hooft did significant work on understanding the QCD vacuum
structure and instantons. He discussed this topic in his paper titled "Symmetry Breaking
through Bell-Jackiw Anomalies" [29]. In this paper, he addressed the axial U(1) anomaly
and its implications in the context of QCD. In the next section, we will delve deeper to
understand the intricacies of the QCD vacuum structure.

2.4 QCD vacuum structure
To elucidate ’t Hooft’s resolution of the U(1) problem, it is imperative to delve

into the realms of instantons and θ-vacua. Our journey begins within the framework of
SU(2) gauge theory, focusing solely on the gauge fields. It is crucial to recall that within
this theory, a gauge transformation assumes the specific form:

Aµ → UAµU
† + i

g
U∂µU

† , (2.98)

where g is the gauge coupling. The condition F a
µν = 0 represents the classical field

configuration corresponding to the ground (vacuum) state. This condition implies that
Aµ is zero at vacuum state, which further implies that, at vacuum state, it is a gauge
transformation of zero:

Aµ → AaµT
a = U(0)U † + i

g
U∂µU

† ,

= i

g
U∂µU

†
(2.99)

where T a are the SU(2) symmetry generators, and U is a 2× 2 unitary matrix that is a
function of spacetime.

By focusing exclusively on time-independent gauge transformations, we consider
U as a function of spatial coordinates, denoted as U(~x), which allows us to establish a
temporal gauge condition A0 = 0. We then impose a boundary condition, where U(~x)
approaches a specific constant matrix as |~x| → ∞. This boundary condition effectively
introduces a spatial point at infinity, where U attains a definite value. In essence, this
mapping of spatial infinity to the vacuum of our theory signifies that the topology of
the spatial boundary is intricately linked with the topology of the space of vacuum field
configurations. Consequently, both the spatial geometry and the vacuum state exhibit the
topology of a three-sphere, denoted as S3.
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The field configurations determined by U(~x) are categorized by an integral quantity
known as the winding number, denoted as n. This winding number characterizes the
mapping in such a way that it counts how many times we wind the vacuum sphere for
every full wind around the spatial sphere. Notably, a negative winding number implies
that the vacuum winding occurs in the opposite direction compared to the spatial winding.

To understand this phenomenon, it’s essential to recognize that any SU(2) matrix
U can be expressed as follows:

U = a0 + i~a · ~σ , (2.100)

where aµ ≡ (a0,~a) ∈ R, and the constraint aµaµ = 1 defines a point in S3, known
as the vacuum three-sphere. In our specific scenario, the matrix U(~x) serves as a map
that connects points on the spatial three-sphere to corresponding points on the vacuum
three-sphere.

Similar to our treatment of the vacuum three-sphere, we find it convenient to
characterize the spatial three-sphere using a Euclidean four-vector denoted as zµ ≡ (z0, ~z),
satisfying the unit length condition zµzµ = 1. Through stereographic projection, we can
establish a clear relationship between zµ and ~x [15]. This construction allows us to:

ẑ = ~z

|~z|
= x̂ ,

|~z| = 2r
1 + r2 ,

z0 = 1− r2

1 + r2 ,

r = |~x| .

(2.101)

We can now construct a specific example of a map from the spatial S3 to the
vacuum S3 with a winding number n by aligning the polar angles of aµ with those of zµ
and setting the azimuthal angle of aµ to be n times the azimuthal angle of zµ. Here, the
polar angles vary within the range 0→ π, and the azimuthal angles span from 0→ 2π.

The winding number of a given smooth map U(x) can be expressed as [15]:

n = − 1
24π2

∫
d3x εijk Tr

[
(U∂iU †)(U∂jU †)(U∂kU †)

]
, (2.102)

which is invariant under change of variables, a property ensured by the cancellation of the
Jacobian determinant J(d3x) with J(∂1∂2∂3).

Now, a fundamental question arises: are these vacuum configurations gauge equiv-
alent? In other words, do they correspond to a single degenerate quantum vacuum state,
or are there multiple quantum vacuum states distinguished by the winding number?
To answer this question, it is essential to investigate whether the winding number is a
topologically invariant quantity. This requires examining its behavior under infinitesimal
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deformations. If the winding number, denoted as n, proves to be a topological invariant,
the theory encompasses more than one quantum vacuum state, each distinguished by n.
On the other hand, if n fails to be a topological invariant, the theory possesses only a
single quantum vacuum state.

Initially, let’s contemplate an infinitesimal deformation of U , represented by U →
U + δU . To assess the impact of this deformation on (2.102), it becomes necessary to know
δU † and δ(U∂kU †). Notably, due to the unitary nature of U(x), we deduce δ(U †U) = 0.
As a consequence of this property, we obtain:

δ(U †U)U † = (δU †U + U †δU)U † ,

= δU †UU † + U †δUU † ,

= δU † + U †δUU † = 0 .

(2.103)

From this obtained expression, we find:

δU † = −U †δUU † . (2.104)

Hence, we can calculate δ(U∂kU †):

δ(U∂kU †) = δU∂kU
† + U∂kδU

† ,

= δU∂kU
† − U∂k(U †δUU †) ,

= δU∂kU
† − U∂kU †δUU † − UU †∂kδUU † − UU †δU∂kU † ,

= δU∂kU
† − U∂kU †δUU † − UU †∂kδUU † − δU∂kU † ,

= −U∂kU †δUU † − UU †∂kδUU † ,

= −U(∂kU †δU + U †∂kδU)U † ,

= −U∂k(U †δU)U † .

(2.105)

Since δ(U∂iU †) and δ(U∂jU †) contribute the same manner as δ(U∂kU †), it suffices to
consider only the latter term when multiplying the total variation by 3. Thus, the variation
in the winding number can be expressed as follows:

δn = − 1
24π2

∫
d3x εijkδTr

[
(U∂iU †)(U∂jU †)(U∂kU †)

]
,

= − 3
24π2

∫
d3x εijk Tr

[
(U∂iU †)(U∂jU †)δ(U∂kU †)

]
.

(2.106)

Continuing the calculations and integrating by parts, we find:

δn = + 3
24π2

∫
d3x εijk Tr

[
(U∂iU †)(U∂jU †)U∂k(U †δU)U †

]
,

= + 3
24π2

∫
d3x εijk Tr

[
(∂iU †)(U∂jU †)U∂k(U †δU)

]
,

= + 3
24π2

∫
d3x εijk Tr

[
∂k
(
(∂iU †)(U∂jU †)UU †δU

)
−∂k

(
(∂iU †)(U∂jU †)U

)
U †δU

]
,

(2.107)
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In reaching the last line, we employed the cyclical property of traces and applied the
chain rule. Now, integrating by parts allows us to eliminate the terms with two derivatives
acting on a single U , which vanish upon contraction with εijk. Furthermore, the surface
term becomes zero due to δU = 0 at the boundary. Consequently, the remaining terms
are:

δn = 3
24π2

∫
d3x εijk Tr

[
(∂iU †)(∂kU)(∂jU †)δU

+(∂iU †)(U∂jU †)(∂kUU †)δU
]
,

(2.108)

we can rewrite:

∂j(UU †) = ∂jUU
† + U∂jU

† = 0→ U∂jU
† = −∂jUU † ,

∂k(UU †) = ∂kUU
† + U∂kU

† = 0→ ∂kUU
† = −U∂kU † ,

(2.109)

and apply on (2.108), we obtain:

δn = 3
24π2

∫
d3x εijk Tr

[
(∂iU †)(∂kU)(∂jU †)δU

+(∂iU †)(−∂jUU †)(−U∂kU †)δU
]
,

= 3
24π2

∫
d3x εijk Tr

[
(∂iU †)(∂kU)(∂jU †)δU

+(∂iU †)(∂jU)(∂kU †)δU
]
.

(2.110)

Due to the symmetry under j ↔ k, this expression vanishes upon contraction with the
Levi-Civita tensor εijk. Consequently, we conclude that:

δn = 0 . (2.111)

Hence, the winding number n is indeed a topological invariant. Therefore, as mentioned
earlier, the theory encompasses an infinite number of distinct quantum vacuum states,
each labeled by n, and these states are separated by energy barriers.

Another perspective to comprehend this phenomenon is as follows: suppose Ũ(~x)
and U(~x) cannot be smoothly deformed into each other. Both vector potentials Ãµ and
Aµ are gauge transformations of zero, necessitating F̃µν and Fµν to vanish. However, any
attempt to smoothly deform Ãµ into Aµ requires passing through vector potentials that
are not gauge transformations of zero. Consequently, F ′µν 6= 0, implying nonzero energy.
This discrepancy creates an energy barrier between the field configurations Ãµ and Aµ,
establishing them as distinct quantum vacuum states.

Thus far, we have established that SU(2) gauge theory exhibits an infinite set of
vacuum states distinguished by an integer n (winding number) and separated by energy
barriers. The next crucial inquiry is whether our field can transition between these distinct
vacuum states and, if so, whether this transition can occur with a finite amount of energy.
To explore this question, we initiate our analysis with the tunneling amplitude between
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two vacuum states |n〉 and |n′〉, where n and n′ represent their respective winding numbers.
This amplitude is expressed as:

〈n′|H |n〉 ∼ e−S , (2.112)

where S is the Euclidean action corresponding to a classical field solution that mediates
between the two distinct field configurations. In scalar field theory, where the solution is
independent of ~x, the action scales with the volume of space. Consequently, at spatial
infinity, the tunneling amplitude vanishes. However, in the context of our SU(2) gauge
theory, constructing a classical solution to the Euclidean field equations becomes more
intricate. We need a solution that mediates between vacuum states characterized by
different winding numbers while maintaining an action that remains fixed (depending
solely on the difference between the winding numbers) and finite even in the infinite-volume
limit.

To demonstrate that 〈n′|H |n〉 depends solely on n′ − n, we perform a gauge
transformation Uk, characterized by a winding number k. The action of Uk(x) on a field
configuration with winding number n transforms it into a configuration with winding
number n+ k. This transformation occurs because the product of a map with winding
number n and another map with winding number k is equivalent to a single map with
winding number n+ k. To prove this, it is more convenient to analyze maps that go from
S1 → S1:

If we consider two maps: Un(φ) with winding number n and Uk(φ) with winding
number k. We deform Un(φ) to equal one for 0 < φ < π and Uk(φ) to equal one for
π < φ < 2π. The winding numbers for both configurations are then:

n = i

2π

∫ π

0
dφ Un∂φU

†
n ,

k = i

2π

∫ 2π

π
dφ Uk∂φU

†
k .

(2.113)

It is straightforward to observe that if Un goes to 1 from 0 to π, then ∂φU †n = 0 within the
same region. The same applies for Uk in its respective region, leading to ∂φU †k = 0 from
π to 2π. Consequently, they do not contribute to the integral in their respective region.
However, when we make the product UnUk, it equals Uk from 0 to π and Un from π to 2π.
Therefore, when integrating the winding number for UnUk, we obtain k from 0 to π and n
from π to 2π, resulting in a combined winding number of n+ k.

In quantum theory, the gauge transformation is implemented by the unitary
operator Uk. Having established the property outlined above, we obtain:

Uk |n〉 = |n+ k〉 . (2.114)
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On the contrary, the Yang-Mills Hamiltonian, constructed from field strengths, must
remain invariant under time-independent gauge transformations. Hence,

UkHU †k = H . (2.115)

Now, equipped with these tools, we can analyze the impact of this gauge transformation
on the tunneling amplitude〈n′|H |n〉. As Uk is unitary, we can introduce identities inside
the bracket using I = U †kUk. Utilizing (2.114) and (2.115), we obtain

〈n′|H |n〉 = 〈n′| U †kUkHU
†
kUk |n〉 ,

= 〈n′| U †kHUk |n〉 ,

= 〈n′ + k|H |n+ k〉 .

(2.116)

Finally, we can conclude that the tunneling amplitude depends solely on n′ − n.

As the tunneling amplitude 〈n′|H |n〉 = f(n′ − n) ∼ e−S, θ-vacua of the following
form are eigenstates of the Hamiltonian:

|θ〉 =
+∞∑

n=−∞
e−inθ |n〉 . (2.117)

We can observe this by analyzing 〈n′|H |θ〉. If |θ〉 are eigenstates of H, then we have
〈n′|H |θ〉 = 〈n′|θ〉Eθ, where Eθ are the eigenvalues. Therefore, we have:

〈n′|H |θ〉 =
∑
n

e−inθ 〈n′|H |n〉 ,

=
∑
n

e−inθf(n′ − n) ,

=
∑
m

e−i(m+n′)θf(−m) ,

= e−in
′θ
∑
m

e−imθf(−m) ,

= 〈n′|θ〉Eθ ,

(2.118)

where we have replaced the summation variable n with n′ +m. We find the eigenvalues
Eθ to be:

Eθ =
∑
m

e−imθf(−m) . (2.119)

If we use Euler’s formula on (2.119), we obtain:

Eθ =
∑
m

e−imθf(−m) ,

=
∑
m

(cosmθ − i sinmθ) f(−m) ,

=
∑
m

cosmθf(−m) ,

(2.120)

note that the eigenvalues only take real values. Therefore, we have concluded that θ-vacua
are eigenstates of H, and the energies must be a periodic, even function of θ. Moreover,
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the eigenvalues of H should scale with the spatial volume V . In dimensional grounds, we
obtain:

H |θ〉 = V Λ4

QCDf(θ) |θ〉 , (2.121)

where ΛQCD is the scale at which the gauge coupling becomes strong. As established
earlier, f(θ) must possess the following properties:

f(θ + 2π) = f(θ) ,

f(−θ) = f(θ) .
(2.122)

Even though we have demonstrated that the energy of the θ-vacuum is proportional to
cos θ, we retain the freedom to add a constant to the Hamiltonian, ensuring that the state
with θ = 0 corresponds to zero energy. Consequently, it is anticipated that f(θ) attains its
minimum at θ = 0. It is crucial to emphasize that the topological properties of the gauge
fields remain independent of the value of the coupling constant. Therefore, this analysis is
applicable across all energy scales.

Now, let’s delve into the solutions of the Euclidean field equations:
At euclidean time x0 = −T , we set the vectorial field to:

Aµ(~x) = i

g
U−(~x)∂µU †−(~x) , (2.123)

where U−(~x) has winding number n−. Similarly, at x0 = +T , we set:

Aµ(~x) = i

g
U+(~x)∂µU †+(~x) , (2.124)

where U+(~x) has winding number n+. We further impose the following boundary condition:
for |~x| = R and −T ≤ x0 ≤ +T , we set Aµ = 0, which is equivalent to ∂µU † = 0. This
condition implies that U(~x) converges to a constant matrix at |~x| = R. Note that, as
required by the problem, T and R will be taken to infinity at the end of the calculations.

In the preceding paragraph, we specified U(x) on a cylindrical boundary in 4-
dimensional spacetime (2). This boundary topologically forms a 3-sphere, aligning with
the problem’s context, validating our previous conclusions. Consequently, the winding
number of the map on this 3-sphere is n+ − n−.

We can observe this using a similar reasoning as before when we saw that the
product of two maps with different winding numbers results in a map with a winding
number equal to the sum of the individual winding numbers. Utilizing (2.102), we deduce
that the boundary walls do not contribute since ∂µU † = 0 there. However, each of the
caps of the cylinder will contribute with their respective winding numbers. At this point,
it might seem like we obtain a winding number equal to n+ + n−. However, it’s crucial to
pay attention to the orientation of the caps. The orientation of the lower cap is reversed
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Figure 2 – The boundary in Euclidean spacetime [15]

compared to the upper cap, causing the lower cap to contribute −n− instead of just n−.
Consequently, our resulting map has a winding number of n+ − n−.

Finally, as we take T,R→∞, we consider the boundary to be a 3-sphere at

ρ ≡ (xµxµ)1/2 =∞ . (2.125)

On this boundary, we have a map U(x̂), where x̂ = xµ
ρ
. As discussed earlier, U(x̂) has

winding number n = n+ − n−.

Now, the subsequent step involves constructing a Bogomolny bound on the Eu-
clidean Yang-Mills action for a field that adheres to the boundary condition we have just
established. We begin with the Yang-Mills action:

S = 1
2

∫
d4x Tr[F µνFµν ] , (2.126)

where the field strength tensor is given by:

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (2.127)

The boundary condition requires:

lim
ρ→∞

Aµ(x) = i

g
U(x̂)∂µU †(x̂) . (2.128)

In order to integrate (2.102) in this context, we begin by defining the angles of the 3-sphere:
polar angles χ and ψ, and azimuthal angle φ, via

x̂µ = (sinχ sinψ cosφ, sinχ sinψ sinφ, sinχ cosψ, cosφ) . (2.129)

Now, let’s express n in terms of these angles:

n = −1
24π2

∫ π

0
dχ

∫ π

0
dψ

∫ 2π

0
dφ εαβγ Tr

[
(U∂αU †)(U∂βU †)(U∂γU †)

]
, (2.130)
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where α, β, γ run over χ, ψ, φ, and εχψφ = +1. We can rewrite this expression as a surface
integral over a surface at infinity in four dimension Euclidean spacetime

n = 1
24π2

∫
dSµ ε

µνστ Tr
[
(U∂νU †)(U∂σU †)(U∂τU †)

]
, (2.131)

where ε1234 = +1, and the minus sign disappears when we make the change of variables.
Now, utilizing (2.128), we can express this integral in terms of the vector potentials by
setting U∂νU † = −igAν

n = 1
24π2

∫
dSµ ε

µνστ Tr
[
(U∂νU †)(U∂σU †)(U∂τU †)

]
,

= 1
24π2

∫
dSµ ε

µνστ Tr[(−igAν)(−igAσ)(−igAτ )] ,

= −i
3g3

24π2

∫
dSµ ε

µνστ Tr[AνAσAτ ] ,

= ig3

24π2

∫
dSµ ε

µνστ Tr[AνAσAτ ] .

(2.132)

By defining the Chern-Simons current, we can further express this as a volume integral:

JµCS ≡ 2εµνστ Tr
[
AνFστ + 2

3igAνAσAτ
]
, (2.133)

we can easily understand why this is possible, as on the surface at infinity, Aµ is a gauge
transformation of zero, leading to Fµν vanishing. Therefore, we can express the winding
number n as:

n = g2

32π2

∫
dSµ J

µ
CS , (2.134)

applying Gauss’s theorem, we obtain:

n = g2

32π2

∫
d4x ∂µJ

µ
CS . (2.135)

The Chern-Simons current is not gauge invariant; however, the relative coefficient of its
two terms has been chosen in such a way that its divergence becomes gauge invariant.
Hence, there is no inconsistency in the results. To demonstrate this, let’s calculate its
divergence:

∂µJ
µ
CS = εµνστ Tr[FµνFστ ] ,

= 2 Tr
[
F̃ µνFµν

]
,

(2.136)

where F̃ µν = 1
2ε
µνστFστ is the dual field strength tensor. Hence, we get:

n = g2

16π2

∫
d4x Tr

[
F̃ µνFµν

]
. (2.137)

At this point, we have n expressed as a four-dimensional volume integral of a gauge
invariant quantity. Now, we can construct the Bogomolny bound. We start with the fact
that

F̃ µνF̃µν = F µνFµν , (2.138)
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thus, we find by using Tr[AB] = Tr[BA]:

1
2 Tr

[
F̃ µν ± Fµν

]2
= 1

2 Tr
[
F̃ µνF̃µν ± F̃ µνFµν ± FµνF̃ µν + F µνFµν

]
,

= 1
2 Tr

[
2F µνFµν ± 2F̃ µνFµν

]
,

= Tr[F µνFµν ]± Tr
[
F̃ µνFµν

]
,

(2.139)

which is nonnegative. Consequently, we have:∫
d4x Tr[F µνFµν ] ≥ |

∫
d4x Tr

[
F̃ µνFµν

]
| . (2.140)

The left-hand side of this equation is twice the Euclidean Yang-Mills action, as evident
from (2.126), while the right-hand side involves a portion of the expression derived for the
winding number (2.137). Finally, we arrive at the following conclusion:

S ≥ 8π2|n|
g2 . (2.141)

This provides us with the minimum value of the Yang-Mills Euclidean action for a solution
to the Euclidean field equations, which mediates between a vacuum state with winding
number n− at x0 = −∞ and a vacuum state with winding number n+ at x0 = +∞. For
n+ − n− = 1, this solution is referred to as an instanton. As demonstrated above, the
instanton is localized within all four Euclidean dimensions. For n+−n− = −1, the solution
is the anti-instanton.

For cases where |n+ − n−| ≥ 1, the solution is a dilute gas of |n+ − n−| instantons
or anti-instantons distributed throughout Euclidean spacetime.

We can saturate the bound in (2.141) if and only if we, by (2.140), make:

F̃µν = (sign n)Fµν . (2.142)

Therefore, we obtain:
S = 8π2|n|

g2 . (2.143)

Furthermore, it is evident that for the instanton solution, the action is given by

S = 8π2

g2 , (2.144)

and
F̃µν = Fµν (2.145)

In conclusion, we have demonstrated that the field can transition between these
vacuum states, achieving this interpolation with a finite amount of energy through the
instanton solution. While constructing this proof, our focus was on utilizing the θ-vacua to
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describe the theory’s vacuum states. However, we did not delve deeply into understanding
the significance of the θ parameter.

To shed light on this, let’s consider the Euclidean path integral with the same
boundary conditions. We begin with a vacuum state characterized by n− at x0 = −∞ and
transition to a vacuum state with n+ at x0 = +∞. As established earlier, the transition
amplitude 〈n+|H |n−〉 solely depends on the difference between the winding numbers.
Consequently, only field configurations with a winding number of n+ − n− contribute to
the path integral. Therefore, the path integral can be expressed as follows:

Zn+←n−(J) =
∫
dAn+−n− e

−S+JA , (2.146)

where
JA =

∫
d4x Tr[JµAµ] . (2.147)

Now, suppose we initiate the process with a θ-vacuum state characterized by n− and
conclude with a θ′-vacuum state characterized by n+. Utilizing equation (2.117), we can
express this transition as follows:

Zθ′←θ(J) =
∑
n−,n+

ei(n+θ′−n−θ)Zn+←n−(J) , (2.148)

let, as previously used, n+ − n− = n, so that n+θ
′ − n−θ = n−(θ′ − θ) + nθ′, we obtain:

Zθ′←θ(J) =
∑
n−,n+

ei(n−(θ′−θ)+nθ′)
∫
dAn e

−S+JA ,

=
∑
n−

ein−(θ′−θ)∑
n

einθ
′
∫
dAn e

−S+JA ,

= δ(θ′ − θ)
∑
n

einθ
′
∫
dAn e

−S+JA ,

=
∑
n

einθ
∫
dAn e

−S+JA .

(2.149)

Next, we combine the sum over n and the integral over An, into an integral over all A.
Also, utilizing (2.137), we find:

Zθ(J) =
∫
dA exp

[∫
d4x Tr

[
−1

2F
µνFµν + ig2θ

16π2 F̃
µνFµν + JµAµ

]]
. (2.150)

The vacuum angle θ appears as the coefficient of an additional term in the Yang-Mills
lagrangian. To transition to Minkowski space, we substitute x0 = it. Since the new term
contains one derivative with respect to x0, it picks up a factor of −i. Combining these
considerations, we obtain:

Zθ(J) =
∫
dA exp

[
i
∫
d4x Tr

[
−1

2F
µνFµν −

g2θ

16π2 F̃
µνFµν + JµAµ

]]
. (2.151)

The additional term is gauge invariant, Lorentz invariant, Hermitian, and possesses a
dimensionless coefficient. In principle, we could have included this term when initially



Chapter 2. U(1) problem and its solution 46

formulating Yang-Mills theory. However, since it is a total divergence, it was omitted.
Despite being a total divergence, we have demonstrated that it does have a significant
impact on the physics of the problem.

At this stage, the ability to transition between different vacua with distinct winding
numbers via instantons leads us to crucial conclusions regarding the U(1) problem. Firstly,
we establish a direct connection between the new term in the lagrangian and the term
derived in the chiral anomaly section. In the latter, we demonstrated that for the U(1)
axial symmetry to be a genuine symmetry of the QCD lagrangian, the variation of the
action in equation (2.94) must be zero. However, our analysis involving instantons revealed
that despite the term being a total divergence (and thus expected to integrate to zero), it
significantly influences the physics of the problem.

This connection becomes evident when reintroducing the massless quark fields
into the theory. By incorporating the results of this section into equation (2.50), we gain
deeper insights into the interplay between the U(1) problem, chiral anomalies, and the
behavior of massless quarks within the QCD framework.

L = iΨ /DΨ− 1
4G

aµνGa
µν −

g2θ

32π2 G̃
aµνGa

µν . (2.152)

The path integral for this theory is

Z =
∫
DADΨDΨ̄

× exp
[
i
∫
d4x

[
iΨ /DΨ− 1

4G
aµνGa

µν −
g2θ

32π2 G̃
aµνGa

µν + JaµAaµ

]]
.

(2.153)

From (2.94) and employing the definition of the dual field strength tensor, we know that
a U(1)A transformation modifies the integration measure by a factor of

DΨDΨ→ exp
[
−i
∫
d4x

g2α

16π2 G̃
aµνGa

µν

]
DΨDΨ , (2.154)

and we find:

Z =
∫
DADΨDΨ

× exp
[
i
∫
d4x

[
iΨ /DΨ− 1

4G
aµνGa

µν −
g2(θ + 2α)

32π2 G̃aµνGa
µν + JaµAaµ

]]
.

(2.155)

Hence, we observe that the impact of the U(1)A transformation is to shift the value of
the vacuum angle from θ to θ + 2α. As mentioned earlier, the vacuum angle influences
the physics, leading to the realization that the U(1) axial symmetry cannot be a genuine
symmetry of QCD. Consequently, the long-standing U(1) problem no longer persists.

The second significant implication is that the QCD Lagrangian incorporates a new
term, thereby affecting the physics. Within this term, a new parameter θ emerges. The
consequences of this parameter will be explored in the Strong CP Problem chapter.



47

3 Strong CP problem and its solution

As mentioned earlier, the QCD Lagrangian has a new term, θ, which exerts a
notable influence on the dynamics of strong interactions. Specifically, it leads to the
violation of both P and CP symmetries and induces an electric dipole moment (EDM) in
the neutron. Notably, while CP violation is theoretically expected through the θ term,
experimental observations indicate that CP is conserved and |θ| . 10−10 [19–21]. This
fine-tuning of the vacuum angle θ is recognized as the strong CP problem.

3.1 Neutron electric dipole moment (nEDM)
The electric dipole moment (EDM) is the measure of the electric charge sepa-

ration within a system, such as a molecule, an atom or, in certain instances like ours,
subatomic particles. It is classically defined as the product of the charge magnitude and
the displacement vector between the positive and negative charges, standing as one of the
fundamental properties characterizing charged particles.

In the case of a neutron, being a neutral particle with zero net charge might raise
the question of how it could possess an EDM. The key lies in recognizing that the neutron
is not a fundamental particle but rather a composite particle composed of quarks, which
carry fractional electric charges. Consequently, even though the neutron itself has a net
charge of zero, it exhibits an electric charge distribution within its composite structure.

The neutron EDM (nEDM) is, thus, the measure of the separation of the charges
within the neutron, offering a fundamental measure that can provide insights into beyond
standard model (BSM) physics. The computation of the nEDM involves a blend of
theoretical and experimental techniques, presenting an ongoing challenge for physicists.

The main insight that the nEDM provides is the establishment of one of the 26 free
paramaters within the Standard Model (SM). Its measured valued, dn = (0.0 + 1.1stat +
0.2sys)× 10−26 e.cm [30], imposes a stringent constraint on the θ parameter, requiring it
to be exceedingly small, specifically θ < 10−10. The challenge arises from the absence of a
fundamental justification within the SM for θ parameter to be this small.

One might argue that this CP violation from the nEDM could potencially arise
from the weak interactions, as it is already CP violating in the SM. However, the level
of CP violation achievable through weak interactions is |dn| ≈ 10−32 e.cm [31], which
is many orders of magnitude smaller than the experimental limit. Therefore, additional
contributions are essential to account for the observed experimental results.
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While the detailed derivation of the QCD effective theory for hadrons lies beyond
the scope of our current discussion, we can employ it as a tool to compute the nEDM.
Within this framework, the CP-violating process involves contributions from the following
diagrams:

n p n

γ

π+π+

n p n

γ

π+π+

Figure 3 – Diagrams contributing to the nEDM. The CP violating vertex is denoted with
a cross.

The diagrams above contribute to an amplitude of the form

M = −2iD(q2)ε∗µ(q)u′s(p′)Sµνqνiγ5us(p) , (3.1)

where q = p′ − p and D(q2) represents the nEDM. In the q → 0 limit, this corresponds to
a term within the effective lagrangian of

L = D(0)FµνnSµνiγ5n . (3.2)

To account for iγ5, we employ:

Sµνiγ5 = −1
2e

µνρσSρσ , (3.3)

which leads to
L = −D(0)F̃µνnSµνn . (3.4)

It results in a contribution of D(0) to the nEDM. To compute this amplitude, we require
the vertices, which we obtain from the theory as [15]:

LπNN = −i
√

2
(
gAmN

fπ

)
(π+pγ5n+ π−nγ5p) ,

LθπNN = −
√

2
(
θc+m̃

fπ

)
(π+pn+ π−np) ,

(3.5)

where m̃ = mumd
mu+md

is the reduced mass of the up and down quarks, gA = 1.27 is the axial
vector coupling, and c+ = 1.7 is a coefficient that appears in the effective lagrangian. The
amplitude for (4) then reads:

iM =
(1
i

)3
(ie)

(√
2gAmN

fπ

)(
−i
√

2θc+m̃

fπ

)
ε∗µ

×
∫ Λ

0

d4l

(2π)4
(2lµ)u′[(−/l − /p+mN)γ5 + γ5(−/l − /p+mN)]u
[(l + p)2 +m2

N ][(l + 1
2q)2 +m2

π][(l − 1
2q)2 +m2

π] ,
(3.6)
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p l + 1
2(p+ p′) p′

q

l − 1
2ql + 1

2q

Figure 4 – Momenta labeled diagram

where Λ ∼ 4πfπ is the ultraviolet cutoff in the effective theory, p = 1
2(p′ + p). Now we can

use {γµ, γ5} = 0 to simplify the spinor factors in the numerator. With these considerations,
it is easy to see that the slashed terms vanish, resulting in the simplification of the
amplitude to:

M =
(

2eθgAc+mNm̃

f 2
π

)
ε∗µ

×
∫ Λ

0

d4l

(2π)4
(2lµ)(2mNu

′γ5u)
[(l + p)2 +m2

N ][(l + 1
2q)2 +m2

π][(l − 1
2q)2 +m2

π] .
(3.7)

Next, we observe that, due to the properties of spinors, the term u′γ5u vanishes when
p′ = p. Consequently, it must be of order O(q), allowing us to set q = 0 everywhere else.
Considering p >> l, we can further simplify by setting:

(l + p)2 +m2
N = l2 + l · (p′ + p) + 1

4(p′ + p)2 +m2
N ,

= 2l · p+ p2 +m2
N ,

= 2l · p−m2
N +m2

N ,

= 2l · p .

(3.8)

Substituting on the main relation, we obtain:

M =
(

4eθgAc+mNm̃

f 2
π

)
ε∗µ

∫ Λ

0

d4l

(2π)4
(lµ)(mNu

′γ5u)
(l · p)(l2 +m2

π)2 , (3.9)

integrating over the direction of l results in

lµ

p · l
→ pµ

p2 = − pµ

m2
N

, (3.10)

which leads us to:

M = −
(

4eθgAc+m̃

f 2
π

)
ε∗µ

∫ Λ

0

d4l

(2π)4
(pµ)(u′γ5u)
(l2 +m2

π)2 . (3.11)

Next, we utilize the Gordon identity [32]:

u′(p′)[(p′ + p)µ − 2iSµν(p′ − p)ν ]γ5u(p) = 0 . (3.12)



Chapter 3. Strong CP problem and its solution 50

To derive the Gordon identity, we begin with

γµ/p = 1
2
{
γµ, /p

}
+ 1

2
[
γµ, /p

]
= −pµ − 2iSµνpν ,

/p
′γµ = 1

2
{
γµ, /p

}
− 1

2
[
γµ, /p

]
= −p′µ + 2iSµνp′ν ,

(3.13)

adding both expressions, we obtain:

γµ/p+ /p
′γµ = −pµ − p′µ − 2iSµνpν + 2iSµνp′ν . (3.14)

Now, we multiply on the right by γ5 and sandwich the expression between spinors

u′(p′)[γµ/p+ /p
′γµ]γ5u(p) = u′(p′)[−pµ − p′µ − 2iSµνpν + 2iSµνp′ν ]γ5u(p) . (3.15)

Using the Dirac equation:
u′(p′)(/p′ +mN) = 0 , (3.16)

we find

u′(p′)[γµ/p−mNγ
µ]γ5u(p) = −u′(p′)[pµ + p′µ + 2iSµν(pν − p′ν)]γ5u(p) . (3.17)

Focusing on the left side of the previous equation, we utilize the property {γµ, γ5} = 0
and the Dirac equation to express

u′(p′)[γµ/p−mNγ
µ]γ5u(p) = u′(p′)[γµpνγνγ5 −mNγ

µγ5]u(p) ,

= u′(p′)[−γµγ5pνγ
ν −mNγ

µγ5]u(p) ,

= u′(p′)[−γµγ5/p−mNγ
µγ5]u(p) ,

= u′(p′)[mNγ
µγ5 −mNγ

µγ5]u(p) ,

= 0 .

(3.18)

Finally, we reached the Gordon identity expression:

u′(p′)[(p′ + p)µ − 2iSµν(p′ − p)ν ]γ5u(p) = 0 . (3.19)

In the case under consideration, this expression becomes:

u′(p′)[2pµ − 2iSµνqν ]γ5u(p) = 0 , (3.20)

which leads to
pµu′(p′)γ5u(p) = u′(p′)Sµνqνiγ5u(p) . (3.21)

Finally, applying the last equation to the transition amplitude, we obtain:

M = −
(

4eθgAc+m̃

f 2
π

)
ε∗µu

′Sµνqνiγ5u
∫ Λ

0

d4l

(2π)4
1

(l2 +m2
π)2 . (3.22)
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In the limit as mπ → 0, the integral exhibits divergence at small l, giving rise to a chiral
log. Upon performing a Wick rotation, the integral evaluates to:∫ Λ

0

d4l

(2π)4
1

(l2 +m2
π)2 = i

16π2 ln Λ2

m2
π

. (3.23)

The ultimate transition amplitude finally becomes:

M = −2i
(
eθgAc+m̃

8π2f 2
π

ln Λ2

m2
π

)
ε∗µu

′Sµνqνiγ5u . (3.24)

By comparing this result with (3.1), we can deduce that the neutron Electric Dipole
Moment (nEDM) is:

dn = eθgAc+m̃

8π2f 2
π

[
ln Λ2

m2
π

+O(1)
]
. (3.25)

Substituting the constant values (gA = 1.27, c+ = 1.7, m̃ = 1.2 MeV), we find:

dn = 3.2× 10−16θ e.cm . (3.26)

As mentioned earlier, the experimental measure is dn = (0.0 + 1.1stat + 0.2sys)× 10−26 e.cm
[30]. Consequently, the θ parameter acquires an upper bound of

|θ| < 0.4× 10−10 . (3.27)

3.2 Solution of the Strong CP problem
Introducing an additional chiral symmetry presents a compelling solution to the

strong CP problem, effectively rotating the θ-vacua away. Two prominent suggestions
have been proposed for this chiral symmetry:

i) The assertion that the up quark possesses no mass [33] (contradicted by [34]).

ii) The proposition that the Standard Model (SM) incorporates an extra global
U(1) chiral symmetry [35,36].

This study focuses on exploring the Peccei-Quinn approach to addressing the
strong CP problem. The forthcoming section will demonstrate that CP invariance in
Quantum Chromodynamics (QCD) naturally arises when at least one quark flavor obtains
its mass through a Yukawa coupling to a scalar field with a non-zero vacuum expectation
value (VEV). Additionally, the lagrangian must possess a U(1) symmetry involving all
Yukawa couplings. ’t Hooft’s work establishes that the parameter θ defines the selection
of vacuum from an infinite array of distinct and generally inequivalent vacua, signifying
that each θ represents a potential true vacuum.

In the scenario where all fermions coupling with the non-Abelian gauge field are
massless, each θ yields an equivalent theory. This equivalence arises because the U(1)A
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transformation shifts θ → θ+2α, and since the value of θ can be altered by a simple change
in the integration variable within the path integral, we must infer that the vacuum-to-
vacuum transition amplitude Z does not depend on θ. This assertion, however, contradicts
our earlier conclusion regarding the U(1) problem. The crucial question arises: How do we
reconcile this apparent contradiction with the previous conclusion that instanton-mediated
tunneling amplitudes make the vacuum energy density dependent on θ? The answer lies
in the integration over the quark field in

Z =
∫
DADΨDΨ̄ exp

[
i
∫
d4x

[
iΨ /DΨ− 1

4G
aµνGa

µν −
g2θ

32π2 G̃
aµνGa

µν

]]
, (3.28)

we obtain:
Z =

∫
DAn det

(
i /D
)
eSYM einθ , (3.29)

where SYM is the Yang-Mills actions and n is the winding number. From 3.29, it becomes
evident that Z would be independent of θ only in the absence of contributions from gauge
fields with nonzero winding number. This condition holds true if the determinant of the
operator det

(
i /D
)
vanishes for gauge fields with a nonzero winding number.

However, in our pursuit of theories involving massive quarks, we need to introduce
a mass term for the quarks. The mass term to be incorporated is expressed as follows:

Lmass = −mχξ −m∗ξ†χ† , (3.30)

expressing it in terms of the Dirac field Ψ, defined as:

Ψ =
χ
ξ†

 , (3.31)

and allowing the mass to be complex, denoted as m = |m|eiφ, the mass term becomes:

Lmass = −|m|Ψe−iφγ5Ψ . (3.32)

Now, under the U(1)A transformation, the phase φ changes to φ+ 2α. Simultaneously, θ
changes by the same parameter, ensuring that φ − θ remains unchanged. Equivalently,
the product me−iθ is also invariant, as demonstrated by:

me−iθ = |m|eiφe−iθ ,

= |m|ei(φ−θ) .
(3.33)

Consequently, the path integral does exhibit dependence on me−iθ but not on θ
and φ individually. Thus, one can define inequivalent theories that share the same mass
term but have various choices of θ. This reconciliation of conclusions from the previous
section establishes that there is no straightforward solution to the strong CP problem. A
simple U(1) transformation cannot merely shift the θ parameter away.
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The crucial question then arises: under what conditions does a theory like QCD
describe a world such as the one in which we live, which is absent of strong CP and P
violations? Only theories in which θ → 0 after all fermion masses have been rendered real
through an appropriate U(1) transformation yield a CP- and P-invariant theory of strong
interactions. To address this issue, the Peccei-Quinn mechanism [35,36] will be presented.

3.2.1 The Peccei-Quinn mechanism

The Peccei-Quinn solution posits that LSM must exhibit a new chiral U(1) invari-
ance, where alterations in θ are equivalent to changes in the definitions of the various fields
within LSM and bear no physical consequences. Such a theory is effectively equivalent to
a θ = 0 theory, consequently lacking strong P and CP violation.

To attain this, consider theories in which at least one fermion flavor obtains its mass
from a Yukawa coupling to a color-singlet scalar field with a nonzero vacuum expectation
value (VEV). The effective potential for the scalar fields is θ-dependent and does not
share the same symmetry as the scalar polynomial U(φ) appearing in the forthcoming
L. In practical terms, this implies that the minimum of the potential corresponds to a
specific choice of phases for the various scalar VEVs. These phases manifest in the fermion
mass terms and are consistently arranged such that, upon making all fermion masses real
through U(1)A rotations of the fermion fields, the resulting θ is zero.

To illustrate this mechanism, we will employ a toy model for strong interactions. In
this simplified model, we consider only one flavor of fermion and one color-singlet complex
scalar field. This simplification is justified since introducing additional fermion flavors and
scalar multiplets will not alter the ensuing results. The lagrangian for such a toy model is
presented below, with the note that we are working in Euclidean space.

LE = −1
4F

a
µνF

a
µν + iΨ /DΨ

+ Ψ
[
Gφ

(1 + γ5

2

)
+G∗φ∗

(1− γ5

2

)]
Ψ

− |∂µφ|2 − µ2|φ|2 − h|φ|4 ,

(3.34)

where (1 ± γ5)/2 = PR/L, and with µ2 < 0, the lagrangian is formally invariant under
U(1)A transformation, which induces changes as follows:

Ψ→ eiηγ5Ψ ,

φ→ e−2iηφ .
(3.35)

Additionally, the condition µ2 < 0 ensures that the potential takes on the requisite form
for spontaneous symmetry breaking to occur.



Chapter 3. Strong CP problem and its solution 54

Nevertheless, this theory still exhibits the previously discussed chiral anomaly,
which redefines θ to θ − 2η, resulting in an effective lagrangian given by:

Leff = LE + iθ
g2

32π2F
a
µνF̃

a
µν , (3.36)

this leads to the following effective action:

Seff =
∫
d4x LE + inθ , (3.37)

where n is the winding number defined by

n = g2

32π2

∫
d4x F a

µνF̃
a
µν . (3.38)

To demonstrate that these theories conserve P and CP, a specific condition is required:

∆ = arg(eiθG 〈φ〉) = 0 . (3.39)

This condition is fulfilled when µ2 > 0, ensuring that φ possesses a vanishing vacuum
expectation value (VEV). However, our interest lies in scalar fields with a non-zero VEV.
In such cases, the condition translates to requiring that the fermion mass G 〈φ〉 be real
when the fields are defined, leading to θ = 0.

To establish the satisfaction of (3.39), we examine the generating functional of the
scalar Green’s functions:

Zθ(J, J∗) =
∑
n

∫
(dAµ)n eiθn

∫
dΨ

∫
dΨ

∫
dφ

∫
dφ∗ exp[LE + Jφ+ J∗φ∗] . (3.40)

The scalar VEV is, then, defined as:

1
Zθ

δZθ
δJ

∣∣∣∣∣
J=J∗=0

≡ 〈φ〉 = λeiβ , (3.41)

where λ and β are real constants.
The generating functional (3.40) can be rewritten as:

Zθ(J, J∗) =
∑
n

∫
(dAµ)n eiθn

∫
dΨ

∫
dΨ

∫
dφ

∫
dφ∗ exp

[∫
d4x L(φφ∗)

]
× exp

[
−1

4FF + iΨ /DΨ
]

exp
[∫

d4x Ψ (GφPR +G∗φ∗PL) Ψ
]

× exp
[∫

d4x Jφ+ J∗φ∗
]
,

=
∑
n

∫
(dAµ)n eiθn

∫
dΨ

∫
dΨ

∫
dφ

∫
dφ∗ exp

[∫
d4x L(φφ∗)

]

× exp
[
−1

4FF + iΨ /DΨ
]∑
k,m

1
k!m!

[∫
d4x ΨGφPRΨ

]k
×
[∫

d4x′ ΨG∗φ∗PLΨ
]m

exp
[∫

d4x Jφ+ J∗φ∗
]
,

(3.42)
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where L(φφ∗) is the complex scalar lagrangian defined by:

L(φφ∗) = ∂µφ
∗∂µφ−m2φ∗φ . (3.43)

In this expression, the terms depending on both fermion and scalar fields were expanded
using the identity:

ex =
∑
k

xk

k! , (3.44)

applied to the present case:

exp
[∫

d4x Ψ (GφPR +G∗φ∗PL) Ψ
]

= e
∫
d4x ΨGφPRΨe

∫
d4y ΨG∗φ∗PLΨ ,

=
∑
k,m

[
∫
d4x ΨGφPRΨ]k

k!
[
∫
d4y ΨG∗φ∗PLΨ]m

m! .
(3.45)

Considering the argument from the instanton section, it is crucial to note that transitions
between vacua are only possible when the winding numbers are different and integers.
Therefore, in each n sector, only the terms with k−m = n will contribute to the generating
functional [37].

With this consideration, the integration of the vector and fermion fields can be
performed. For this purpose, the following notation is used:

Zθ(J, J∗) =
∑
n

∫
(dAµ)n eiθn

∫
dΨ

∫
dΨ

∫
dφ

∫
dφ∗ exp

[∫
d4x L(φφ∗)

]

× exp
[
−1

4FF + iΨ /DΨ
]∑
m

1
(m+ n)!m!

[∫
d4x ΨGφPRΨ

]m+n

×
[∫

d4y ΨG∗φ∗PLΨ
]m

exp
[∫

d4x Jφ+ J∗φ∗
]
,

=
∑
n

∫
dφ

∫
dφ∗ eiθn exp

[∫
d4x L(φφ∗)

]
exp

[∫
d4x Jφ+ J∗φ∗

]
×
∫

(dAµ)n
∫
dΨ

∫
dΨ exp

[
−1

4FF + iΨ /DΨ
]

×
∑
m

1
(m+ n)!m!

[∫
d4x Gφ

(
ΨPRΨ

)]m+n [∫
d4y G∗φ∗

(
ΨPLΨ

)]m
,

=
∑
n

∫
dφ

∫
dφ∗ eiθn exp

[∫
d4x L(φφ∗)

]
exp

[∫
d4x Jφ+ J∗φ∗

]
×
∫

(dAµ)n
∫
dΨ

∫
dΨ exp

[
−1

4FF + iΨ /DΨ
]

×
∑
m

1
(m+ n)!m!

m+n∏
a=1

m∏
b=1

∫
d4xa Gφa

(
ΨaPRΨa

) ∫
d4yb G

∗φ∗b
(
ΨbPLΨb

)
.

(3.46)

Note that the removal of the term eiθn from the integral over the vector field is possible
because the integration is over vector fields with a specific winding number n. Therefore,
for each specific winding number, eiθn is not dependent on the Aµ’s.
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Also, it’s important to emphasize that this last step is only possible because the
integral as a whole is included in the exponentiation. To illustrate, consider the following
example:[∫

d4x ΨGφPRΨ
]z

=
[∫

d4x1 Ψ1Gφ1PRΨ1

] [∫
d4x2 Ψ2Gφ2PRΨ2

]
... ,

=
z∏
i=1

∫
d4xi ΨiGφiPRΨi .

(3.47)

Integrating (3.46) over the vector and fermion fields, we can rewrite it as follows:

Zθ(J, J∗) =
∑
n

∫
dφ

∫
dφ∗ eiθn exp

[∫
d4x L(φφ∗)

]
exp

[∫
d4x Jφ+ J∗φ∗

]
∑
m

m+n∏
a=1

m∏
b=1

∫
d4xa [Gφ(xa)]

∫
d4yb [G∗φ∗(yb)]

Cn
m(xa, yb)

m!(m+ n)! ,

≡
∑
n

∫
dφ

∫
dφ∗ eiθnAn(φφ∗)(Gφ)n exp

[∫
d4x Jφ+ J∗φ∗

]
.

(3.48)

Note that: ∑
m

m+n∏
a=1

m∏
b=1

∫
d4xa [Gφ(xa)]

∫
d4yb [G∗φ∗(yb)] = (Gφ)n , (3.49)

we can think that each product after integration of (Gφ)(G∗φ∗) = 1 until a, b = m, then
we are left only with (Gφ) for the n extra multiplications. Also, we have:

An(φφ∗) = exp
[∫

d4x L(φφ∗)
]∑
m

m+n∏
a=1

m∏
b=1

∫
d4xa

∫
d4yb

Cn
m(xa, yb)

m!(m+ n)! . (3.50)

Even though we cannot determine the specific form of the coefficients Cn
m, we know two

important properties:

1) They are real, because Cn
m are integrals over bilinear forms of fermion fields.

2) They satisfy the relation

Cn
m(xa, yb) = C−nm (yb, xa) . (3.51)

This comes from the instantons’ properties and is easier to understand if we consider a
tunneling process from point xa with winding number k to point yb with winding number
m. This process has energy dictated by n = k −m, and we can make the same process
but exchange the start and finish, resulting in a process from yb with m and xa with k,
which gives us a −n = m− k energy. Using this result leads to the following property:

A−q(φφ∗) = A∗q(φφ∗) . (3.52)



Chapter 3. Strong CP problem and its solution 57

Making use of (3.52) in (3.48), we express:
∞∑

n=−∞
eiθnAn(φφ∗)(Gφ)n =

∞∑
n=−∞

An(φφ∗)(Geiθφ)n ,

= A0(φφ∗) +
−1∑

n=−∞
An(φφ∗)(Geiθφ)n +

∞∑
n=1

An(φφ∗)(Geiθφ)n ,

= A0(φφ∗) +
∞∑
n′=1

A−n′(φφ∗)(Geiθφ)−n′ +
∞∑
n=1

An(φφ∗)(Geiθφ)n ,

= A0(φφ∗) +
∞∑
n=1

A∗n(φφ∗)(G∗e−iθφ∗)n +
∞∑
n=1

An(φφ∗)(Geiθφ)n ,

(3.53)

this leads us to:

Zθ(J, J∗) =
∫
dφ

∫
dφ∗

[
A0(φφ∗) +

∞∑
n=1

An(φφ∗)(Geiθφ)n

+A∗n(φφ∗)(G∗e−iθφ∗)n
]
× exp

[∫
d4x Jφ+ J∗φ∗

]
.

(3.54)

Now we must employ some complex algebra to derive the CP and P conserving condition
(3.39). Remember the CP condition reads:

∆ = arg(eiθG 〈φ〉) = 0 . (3.55)

Note that in (3.54) there are terms that resemble this condition. Therefore, we are now
going to explore these terms to see if we can reach the desired condition. We begin with:

An(φφ∗)(Geiθφ)n + A∗n(φφ∗)(G∗e−iθφ∗)n = 2 ReAn(Geiθφ)n , (3.56)

next, we separate the product into two parts:

Z1 ≡ An ,

Z2 ≡ Geiθφ .
(3.57)

We can write Z2 as a general complex number in the form of:

Z2 = |G||φ||eiθ|eiχ ,

= |G||φ|eiχ ,
(3.58)

where χ is the angle between the positive real axis and the line joining the origin and Z2,
and is defined by:

χ ≡ arg(eiθGφ) . (3.59)

Note that analyzing χ with respect to the φ VEV leads to the CP and P conserving
condition. To understand how this condition is incorporated into the generating functional,
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we proceed with the calculations from (3.56)

ReAn(Geiθφ)n = Re[Z1Z
n
2 ] ,

= Re[|Z1||Z2|nei(ξ+nχ)] ,

= |Z1||Z2|n cos (ξ + nχ) ,

= |Z1||Z2|n [cos ξ cosnχ− sin ξ sinnχ] ,

= Re[Z1]|Gφ|n cosnχ− Im[Z1]|Gφ|n sinnχ ,

= Re[An]|Gφ|n cosnχ− Im[An]|Gφ|n sinnχ .

(3.60)

Now, we can substitute this into (3.54) and obtain:

Zθ(J, J∗) =
∫
dφ

∫
dφ∗

[
A0(φφ∗) + 2

∞∑
n=1

Re[An]|Gφ|n cosnχ

− Im[An]|Gφ|n sinnχ
]

exp
[∫

d4x Jφ+ J∗φ∗
]
.

(3.61)

At this point, we make a change of variables

φ = eiβ(λ+ ρ+ iσ) , (3.62)

where ρ and σ are real scalar fields with vanishing VEVs. With these considerations, we
find:

Zθ(J, J∗) =
∫
dρ

∫
dσ

[
A0(ρ, σ2) + 2

∞∑
n=1

Re[An]|G(λ+ ρ+ iσ)|n cosnχ

− Im[An]|G(λ+ ρ+ iσ)|n sinnχ
]

× exp
[∫

d4x Jeiβ(λ+ ρ+ iσ) + J∗e−iβ(λ+ ρ− iσ)
]
,

=
∫
dρ

∫
dσ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosnχ−Gn(ρ, σ2) sinnχ
]

× exp
[∫

d4x Jeiβ(λ+ ρ+ iσ) + J∗e−iβ(λ+ ρ− iσ)
]
,

(3.63)

where Fn and Gn are given by:

Fn = Re[An]|G(λ+ ρ+ iσ)|n ,

Gn = Im[An]|G(λ+ ρ+ iσ)|n .
(3.64)

Finally, we assess the previous result in the φ VEV regime, where the parameter χ
precisely represents the CP and P conserving condition ∆ as defined in (3.39). Additionally,
we enforce the constraints on the scalar fields ρ and σ, where 〈ρ〉 = 0 and 〈σ〉 = 0. We
also incorporate the definition of the φ VEV as given in (3.41). With all these conditions
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taken into account, we obtain:

〈φ〉 = 1
Zθ

δZθ
δJ

∣∣∣∣∣
J=J∗=0

,

= 1
Zθ

δ

δJ

∫
dρ

∫
dσ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆−Gn(ρ, σ2) sinn∆
]

× exp
[∫

d4x Jeiβ(λ+ ρ+ iσ) + J∗e−iβ(λ+ ρ− iσ)
]∣∣∣∣∣
J=J∗=0

,

= 1
Zθ

∫
dρ

∫
dσ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆−Gn(ρ, σ2) sinn∆
]

× (eiβ(λ+ ρ+ iσ)) ,

= λeiβ .

(3.65)

It’s important to note that the portion of the product proportional to λ sreadily satisfies
this equation. However, simultaneously, it establishes conditions for the ρ and λ VEVs to
ensure compliance with the imposed constraints. The condition for the ρ VEV is given by:

0 = 1
Zθ

∫
dρ

∫
dσ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆−Gn(ρ, σ2) sinn∆
]
ρeiβ ,

=
∫
dρ

∫
dσ ρ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆−Gn(ρ, σ2) sinn∆
]
,

=
∫
dρ

∫
dσ ρ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆
]
,

= 〈ρ〉 .

(3.66)

We exclusively focus on the Fn component since ρ is a real term in the variable change we
implemented. Similarly, the condition for the σ VEV is expressed as follows (notably, σ
incorporates an i factor, thus combining with Gn):

0 =
∫
dρ

∫
dσ iσeiβ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆−Gn(ρ, σ2) sinn∆
]
,

=
∫
dρ

∫
dσ iσ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆−Gn(ρ, σ2) sinn∆
]
,

=
∫
dρ

∫
dσ σ

∞∑
n=1

Gn(ρ, σ2) sinn∆ ,

= 〈σ〉 .

(3.67)

Combining both expressions to present the conditions more explicitly, we have:

〈ρ〉 =
∫
dρ

∫
dσ ρ

[
A0(ρ, σ2) + 2

∞∑
n=1

Fn(ρ, σ2) cosn∆
]

= 0 ,

〈σ〉 =
∫
dρ

∫
dσ σ

∞∑
n=1

Gn(ρ, σ2) sinn∆ = 0 .
(3.68)
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Finally, we can compare these conditions with the CP and P condition for ∆ in (3.39).
These conditions will be satisfied only for ∆ = 0, π, and these are stationary points of the
scalar potential. To determine which is the true minimum, we must examine the potential
itself, a task we cannot perform with the generality of the previous argument. However,
in the leading-order approximation, we find that the minimum indeed occurs at ∆ = 0,
resulting in a CP-conserving theory [35,36].

In this section, we have demonstrated that, in the absence of an additional U(1)
chiral symmetry (referred to as U(1) Peccei-Quinn) at the lagrangian level, we cannot
construct a theory for strong interactions where all fermion masses are real, and the
CP-violating θ parameter is zero. It is important to note that this new U(1)PQ chiral
symmetry is distinct from the U(1) chiral symmetry we previously established as not
being a true symmetry of the theory. Additionally, we imposed that the new U(1)PQ is
spontaneously broken by instantons (subject to the same anomaly condition), leading to
the emergence of a new Nambu-Goldstone (NG) boson. Certainly, it does not lead to the
same strong coupled and mass bound NG boson of the U(1) problem.

While the scalar fields we are dealing with do not directly interact with instantons,
their interaction occurs only at the quantum level through the coupling (proportional to
G) they have with quarks. Consequently, the particle that emerges from this mechanism
is anticipated to be a very light pseudo-Nambu-Goldstone (pNG) boson, named the axion
by Franz Wilczek and Steven Weinberg [38,39]. In the subsequent chapter, we will delve
into the properties and dynamics of axions, exploring the most prominent axion models.
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4 Axion

4.1 Axion fundamentals
As illustrated earlier, the new U(1) Peccei-Quinn (PQ) symmetry eliminates the

CP-violating parameter θ by introducing a dynamical CP-conserving field (a(x)) - the
axion. Under a PQ transformation, this field changes as:

a(x)→ a(x) + αfa , (4.1)

where fa is the axion decay constant, associated with the breaking of U(1)PQ, and
α = −θ/ξ. To maintain U(1)PQ invariance within the Standard Model, the LSM must
be extended to include the axion’s interactions. The lagrangian for this interaction is
expressed as:

LTOTAL = LSM + θ
g2
s

32π2G
µν
b G̃bµν −

1
2∂µa∂

µa+LInt[∂µa/fa,Ψ] + ξ
a

fa

g2
s

32π2G
µν
b G̃bµν . (4.2)

Here, the last term is designed to ensure the vanishing of the CP-invariant term after a
PQ transformation. Additionally, it introduces a chiral anomaly for the U(1)PQ current:

∂µj
µ
PQ = ξ

g2
s

32π2G
µν
b G̃bµν . (4.3)

Moreover, this term serves as an effective potential for the axion field, which, as previously
derived, exhibits a minimum at 〈a〉 = −θfa/ξ〈

∂Veff
∂a

〉
= − ξ

fa

g2
s

32π2

〈
Gµν
b G̃bµν

〉 ∣∣∣∣∣
〈a〉=− θ

ξ
fa

= 0 . (4.4)

It’s worth noting that the Lagrangian can now be expressed in terms of aphys = a− 〈a〉,
eliminating the CP-violating term. The expansion of the effective potential around the
minimum yields the axion mass:

m2
a =

〈
∂2Veff
∂a2

〉
= − ξ

fa

g2
s

32π2
∂

∂a

〈
Gµν
b G̃bµν

〉 ∣∣∣∣∣
〈a〉=− θ

ξ
fa

. (4.5)

4.2 Peccei-Quinn-Weinberg-Wilczek (PQWW) axion
In the original PQ model, the symmetry breaking coincided with the electroweak

(EW) breaking parameter vSM = 246.22 GeV [13], implying fa = vSM. However, it is not
a requirement of the axion theory; in principle, fa can take any value. For instance, if
the axion decay constant is much larger than the EW scale (fa � vSM), then the axion
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becomes very light, weakly coupled, and exceptionally long-lived [40]. Naturally, if fa were
much smaller than the EW scale, the axion would strongly couple with Standard Model
(SM) matter, leading to its detection or exclusion. However, the theory does not prescribe
a fixed value for fa. Despite the PQWW axion being long ago excluded by experiment [41],
it remains useful to first derive the properties of the PQWW axion and then generalize it,
as more modern models share the same theoretical basis.

To maintain U(1)PQ invariance within the SM, two Higgs fields are introduced to
absorb independent chiral transformations of the u and d quarks, as well as leptons. The
relevant Yukawa terms involving these new fields are given by:

LYukawa = ΓuijQLiΦ1uRj + ΓdijQLiΦ2dRj + ΓlijLLiΦ2lRj + h.c . (4.6)

The axion serves as the common phase field in Φ1 and Φ2. Defining x ≡ v2/v1 and
vSM =

√
v2

1 + v2
2, the two Higgs fields can be expressed as:

Φ1 = v1√
2
eiax/vSM

1
0

 ,

Φ2 = v2√
2
eia/xvSM

0
1

 .

(4.7)

It’s important to note that the x transitions from the numerator in the exponential of
the first field to the denominator in the exponential of the second field. The Yukawa
lagrangian is symmetric under the U(1)PQ transformation specified as:

a→ a+ αvSM ,

uRj → e−iαxuRj ,

dRj → e−iα/xdRj ,

lRj → e−iα/xlRj ,

(4.8)

the last 3 can be written as infinitesimal transformations as:

uRj → (1− iαx)uRj ,

dRj → (1− iα/x)dRj ,

lRj → (1− iα/x)lRj .

(4.9)
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This symmetry can be readily verified by applying the transformation to (4.6)

L′Yukawa = ΓuijQLi

v1√
2
ei(a+αvSM)x/vSM

1
0

 e−iαxuRj
+ ΓdijQLi

v2√
2
ei(a+αvSM)/xvSM

0
1

 e−iα/xdRj
+ ΓlijLLi

v2√
2
ei(a+αvSM)/xvSM

0
1

 e−iα/xlRj + h.c ,

= ΓuijQLiΦ1e
iαvSMx/vSMe−iαxuRj + ΓdijQLiΦ2e

iαvSM/xvSMe−iα/xdRj

+ ΓlijLLiΦ2e
iαvSM/xvSMe−iα/xlRj + h.c ,

= ΓuijQLiΦ1uRj + ΓdijQLiΦ2dRj + ΓlijLLiΦ2lRj + h.c ,

= LYukawa .

(4.10)

We will focus on the quark components. The symmetry current for U(1)PQ is calculated
using the general equation for conserved currents (A.17) [42]:

jµa = −
[
Lgµρ −

∂L
∂[∂µΦ]∂ρΦ

]
δxρ

δωa
− ∂L
∂[∂µΦ]

δΦ
δωa

, (4.11)

where ωa is the transformation parameter and Φ represents any field that is affected by
the transformation. Since we are dealing with a gauge symmetry, there is no variation in
the space-time variable, and therefore, the first term vanishes, simplifying the calculation.
In our case, the calculation proceeds as follows:

jµPQ = − ∂L
∂[∂µa]

δa

δα
−
∑
i

∂L
∂[∂µuiR]

δuiR
δα
−
∑
i

∂L
∂[∂µdiR]

δdiR
δα

. (4.12)

The lagrangian needed for this calculation is the U(1)PQ-invariant SM lagrangian with
Yukawa terms. However, due to the structure of the current equation, only the kinetic
terms are required. These terms involve the axion and up and down quarks, given by:

Lkinetic = −1
2∂µa∂

µa+ iuiR/∂uiR + idiR/∂diR . (4.13)

Calculating each field separately for clarity. The axion term is:

∂L
∂[∂µa] = −∂µa ,

δa

δα
= δ(a+ αvSM)

δα
= vSM .

(4.14)

The up quark term is:
∂L

∂[∂µu] = ∂[iu/∂u]
∂[∂µu] = iuγµ ,

δu

δα
= δ[(1− iαx)u]

δα
= −ixu .

(4.15)
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The down quark term is:
∂L

∂[∂µd] = ∂[id/∂d]
∂[∂µd] = idγµ ,

δd

δα
= δ[(1− iα/x)d]

δα
= − i

x
d .

(4.16)

Putting it all together, we have:

jµPQ = − ∂L
∂[∂µa]

δa

δα
−
∑
i

∂L
∂[∂µuiR]

δuiR
δα
−
∑
i

∂L
∂[∂µdiR]

δdiR
δα

,

= −(−vSM∂µa)− (
∑
i

xuiRγ
µuiR)− (

∑
i

1
x
diRγ

µdiR) ,

= vSM∂µa− x
∑
i

uiRγ
µuiR −

1
x

∑
i

diRγ
µdiR .

(4.17)

The anomaly coefficient ξ in (4.2) is identified as

ξ = N

2

(
x+ 1

x

)
≡ Ng

(
x+ 1

x

)
, (4.18)

N is more explicitly defined in (4.48). To compute the axion mass ma, it is beneficial to
separate the effects of interactions with the light quarks from the rest. These interactions
can be inferred from the theory by constructing an appropriate chiral effective lagrangian,
while the effects of heavy quarks can be accounted for through their contribution to the
current chiral anomaly.

As done in the U(1) problem chapter, for two light quarks, one introduces a 2× 2
matrix of Nambu-Goldstone fields:

Σ = exp
(
i
~τ · ~π + η

fπ

)
. (4.19)

The meson sector of the light quark theory, ignoring the Yukawa interactions, is embodied
in the U(2)V×U(2)A invariant effective lagrangian, the same as the one discussed in the
U(1) problem chapter. Therefore, we will not delve into the details here.

The chiral lagrangian is written as:

Lchiral = −f
2
π

4 Tr
[
∂µΣ∂µΣ†

]
, (4.20)

we must add U(2)V×U(2)A breaking terms to (4.20), which function similarly to the
U(1)PQ invariant Yukawa interaction for the up and down quarks. With this consideration,
we have:

Lmass = 1
2(fπm0

π)2 Tr
[
ΣAM + (ΣAM)†

]
, (4.21)

where

A =
e−iax/vSM 0

0 e−ia/xvSM

 ,

M =
 mu
mu+md

0
0 md

mu+md

 .

(4.22)
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Note the resemblance of equations (2.35)(2.34). Also note that the invariance of Lmass

under PQ symmetry requires:

Σ→ Σ
eiαx 0

0 eiα/x

 . (4.23)

However, this mass lagrangian does not capture the complete physics associated with the
breakdown of U(2)A. In fact, the quadratic terms in the mass lagrangian involving neutral
fields are given by:

L(2)
mass = − (m0

π)2

2(mu +md)

mu

(
π0 + η − xfπ

vSM
a

)2

+md

(
η − π0 − fπ

xvSM
a

)2
 , (4.24)

which results in:
m2
η

m2
π

= md

mu

≈ 1.6 , (4.25)

which contradicts experiment. This discrepancy with experimental observations becomes
apparent when considering the most recent data from [13], where mη = 547.862± 0.017
MeV, m±π = 139.57039± 0.00018 MeV, and m0

π = 134.9768± 0.0005 MeV. This results in
a ratio of

m2
η

m2
π±

= 15.41 . (4.26)

If Lmass was the sole factor, we would essentially be reformulating the U(1) problem in a
different theoretical language, using the effective lagrangian approach. Furthermore, the
axion in this specific context remains massless. This underscores the need for additional
considerations or modifications within the theoretical framework to align with experimental
observations.

The solution to this issue involves incorporating an additional mass term into the
effective lagrangian that accounts for the anomalies in both U(1)A and U(1)PQ symmetries.
This term is expressed as follows [40]:

Lanomaly = −
(m0

η)2

2

[
η + fπ

vSM

(Ng − 1)(x+ 1/x)
2 a

]2

, (4.27)

where
(m0

η)2 ≈ m2
η � m2

π . (4.28)

This addition not only provides the correct mass for the η but also produces a mass for
the axion.

The coefficient attached to the axion field in (4.27) signifies the relative strength of
the couplings of the axion and η to the field strengths GG̃ due to the anomalies in U(1)PQ
and U(1)A. It may raise the question of why this ratio is proportional to (Ng − 1) rather
than solely Ng, which would make this ratio proportional to the anomaly coefficient ξ.
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The reason for this lies in the fact that the mass lagrangian already encompasses the light
quark interactions of axions. Therefore, without the −1 factor, these interactions would
be included twice. This way, only the heavy quarks’ contribution to the PQ anomaly is
considered in the anomaly lagrangian.

Diagonalizing the quadratic terms in the mass and anomaly lagrangians provides
us with both the axion mass and the parameters for axion-pion and axion-η mixing for
the PQ model.

It is convenient to define

ma = mπ
fπ
vSM

√
mumd

mu +md

≈ 25 keV . (4.29)

One finds
ma = λmma , (4.30)

ξaπ = λ3
fπ
vSM

, (4.31)

ξaη = λ0
fπ
vSM

, (4.32)

where
λm = Ng

(
x+ 1

x

)
,

λ3 = 1
2

[(
x− 1

x

)
−Ng

(
x+ 1

x

)
md −mu

mu +md

]
,

λ0 = 1
2(1−Ng)

(
x+ 1

x

)
.

(4.33)

In addition to these three parameters, every axion model is characterized by how it couples
to ordinary matter, especially the axion coupling to two photons, the coupling to electrons,
and the coupling to nucleons. The lagrangian that describes the axion-photon interaction
is:

Laγγ = α

4πgaγγ
aphys
fa

F µνF̃µν , (4.34)

where gaγγ is the coupling of this interaction. We are going to find it for the PQ model.
The gaγγ follows from the electromagnetic anomaly of the PQ current, which is analogous
to (4.3):

∂µj
µ
PQ = α

4πξγFµνF̃
µν , (4.35)

where ξγ receives contributions from both quarks and leptons, and we obtain:

ξγ = Ng

[
3
(2

3

)2
x+

[
3
(1

3

)2
+ (−1)2

]
1
x

]
,

= 4
3Ng

(
x+ 1

x

)
.

(4.36)
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As done previously, we must remove the light quark contribution of the axion in the
anomaly. In doing so, we find:

ξeffγ = 4
3Ng

(
x+ 1

x

)
− 4

3x−
1
3

1
x
, (4.37)

and adding back the contribution arising from the coupling of the π0 and η to two photons
via axion-pion and axion-η mixing λ3 + 5

3λ0, we get:

gaγγ = 4
3Ng

(
x+ 1

x

)
− 4

3x−
1
3

1
x

+ λ3 + 5
3λ0 ,

= 4
3Ng

(
x+ 1

x

)
− 4

3x−
1
3

1
x

+ 1
2

[(
x− 1

x

)
−Ng

(
x+ 1

x

)
md −mu

mu +md

]
+ 5

3

[1
2(1−Ng)

(
x+ 1

x

)]
,

= 4
3Ng

(
x+ 1

x

)
− 1

2

[
Ng

(
x+ 1

x

)
md −mu

mu +md

]
− 5

3

[1
2Ng

(
x+ 1

x

)]
− 4

3x−
1
3

1
x

+ 1
2

(
x− 1

x

)
+ 5

3

[1
2

(
x+ 1

x

)]
,

=
(8

6 −
5
6

)
Ng

(
x+ 1

x

)
− 1

2

[
Ng

(
x+ 1

x

)
md −mu

mu +md

]
+ −8 + 3 + 5

6 x+ −2− 3 + 5
6

1
x
,

= 1
2Ng

(
x+ 1

x

)(
1− md −mu

mu +md

)
,

= 1
2Ng

(
x+ 1

x

)(
mu +md −md +mu

mu +md

)
,

= 1
2Ng

(
x+ 1

x

)( 2mu

mu +md

)
,

= Ng

(
x+ 1

x

)(
mu

mu +md

)
.

(4.38)

Writing it separately for clarity, we find the axion-photon coupling to be:

gaγγ = Ng

(
x+ 1

x

)(
mu

mu +md

)
. (4.39)

In fact, the original PQ model, with fa = vSM, was ruled out by experiment long ago. For
example, the branching ratio measurement of K+ → π+ + a obtained at the Japanese
National Laboratory for High Energy Physics (KEK) [43] had a theoretical estimate
of [41]:

BR(K+ → π+ + a) ≈ 3× 10−5λ0 = 3× 10−5
(
x+ 1

x

)2
, (4.40)

which significantly exceeded the bounds measured at KEK:

BR(K+ → π+ + invisible) ≤ 3.8× 10−8 . (4.41)

This, however, does not exclude models in which fa is much greater than the electroweak
scale vSM; these models are known as invisible axion models.
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4.3 Invisible axion models
The distinct feature of invisible axion models is the introduction of new scalar

fields that carry PQ charge but are SU(2)×U(1) singlets. Consequently, the VEVs of these
fields can have a much larger scale than the one set by the weak interactions.

Two most famous types of models have been proposed:

1. The Kim [44] and Shifman, Vainshtein, Zakharov [45], known as the KSVZ
model, introduces a scalar field σ with fa = 〈σ〉 � vSM and a super heavy quark Q with
mQ ≈ fa as the only field carrying PQ charge.

2. The Dine, Fischler, Srednicki [46] and Zhitnisky [47], known as the DFSZ model,
introduces to the original PQ model a scalar field φ that carries PQ charge, and the axion
decay constant is fa = 〈φ〉 � vSM. However, this new scalar is not the only field that
carries PQ charge; ordinary quarks, leptons, and Higgs fields also carry it.

Initially, we will construct a generic invisible axion model and then explore the
specific features of the KSVZ and DFSZ models.

The key element in any axion model is the PQ symmetry. PQ symmetry is global
and remains valid only at the classical level, it also must be affected by a color anomaly.
Additionally, it may or may not exhibit an electromagnetic (EM) anomaly.

This symmetry gives rise to a current expressed as follows:

∂µj
µ
PQ = Ng2

16π2 (GG̃) + Ee2

16π2 (FF̃ ) . (4.42)

Here,
(GG̃) = 1

2ε
µνστGb

µνG
b
στ , (4.43)

where Gb
µν is the color field strength, and

(FF̃ ) = 1
2ε

µνστFµνFστ = −4 ~E · ~B , (4.44)

in Heaviside-Lorentz units, with Fµν denoting the field strength of the EM interactions.
The current will be normalized with the condition that N is an integer distinct from zero.
If color triality is correlated with electric charge in the standard manner for all fermions
undergoing non-trivial transformations under PQ, then E must be one-third of an integer,
though it can also be zero.

To explicitly normalize the current, we begin by representing all fermion fields as
left-handed, two-component Weyl spinors ψ, each belonging to a specific representation of
SU(3)C×U(1)EM. We assign a PQ charge Xi to each fermion field ψi, choosing these Xi

values to be integers with the least common denominator of 1 [48]. The lagrangian for
these fermion fields incorporates Yukawa couplings to the PQ complex scalar field φ in
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the form:
L ⊃ λnijφnψiψj + κnijφ

†
nψiψj + h.c . (4.45)

If λnij 6= 0 for specific values of n, i, and j, then φn is assigned a PQ charge Zn = −Xi−Xj .
Conversely, if κnij 6= 0, then Zn = Xi +Xj. The corresponding PQ current is expressed
as:

jPQµ =
∑
n

1
i
Znφ

†
n

↔
∂µφn +

∑
i

Xiψ
†
iσµψi , (4.46)

where σµ is the Pauli 4-vector defined as:

σµ = (I, ~σ) . (4.47)

The anomaly coefficients N and E can be expressed as follows:

N =
∑
i

XiT (Ri) ,

E =
∑
i

XiQ
2
iD(Ri) ,

(4.48)

where T (Ri) is the index of SU(3)C representation of ψi, with tabulated values available in
[49](for example, T (3) = 1/2,T (8) = 3). D(Ri) denotes the dimension of the representation
(e.g, D(3) = 3), and Qi is the electric charge of ψi. Given that the number of color triplets
must equal the number of anti-triplets, N is necessarily an integer.

A noteworthy observation is that in any Grand Unified Theory (GUT) where color
and electromagnetism are embedded in the same manner as in Georgi-Glashow SU(5), N
and E exhibit a relation [50]:

E

N
= 8

3 (GUT) . (4.49)

Performing a PQ transformation of the form:

φn → eiZnαφn ,

ψi → eiXiαψi ,
(4.50)

where the transformation is periodic in α with a period of 2π, induces a change in the
QCD vacuum angle:

θ → θ + 2Nα , (4.51)

where N is the anomaly coefficient present in (4.42). Consequently, the PQ symmetry
is explicitly broken, as different values of θ correspond to distinct physics. An unbroken
Z(2N) subgroup is identified, corresponding to α = 2πn/2N , where it can be readily
observed that the vacuum angle remains invariant, with n = 0, 1, ..., 2N − 1.

Spontaneous breaking of the PQ symmetry is a crucial requirement. If this symmetry
breaking is achieved through the vacuum expectation values (VEVs) of the new scalar field
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φn, we can determine the axion decay constant fa in terms of these VEVs. We express φn
as:

φn = 2−1/2(Vn + ρn)eiχn/Vn , (4.52)

where Vn is the VEV of φn, and ρn and χn are fields. The mass of ρn is on the order of√
λVn, where λ is a coupling in the Higgs potentials. Consequently, we neglect the ρn field

in our analysis. With these considerations, the PQ current takes the form:

jPQµ =
∑
n

1
i
Znφ

†
n

↔
∂µφn +

∑
i

Xiψ
†
iσµψi ,

=
∑
n

1
i
Znφ

†
n∂µφn −

1
i
Zn∂µφ

†
nφn +

∑
i

Xiψ
†
iσµψi ,

=
∑
n

1
i
Znφ

†
nφn

i

Vn
∂µχn −

1
i
Zn
−i
Vn
∂µχnφ

†
nφn +

∑
i

Xiψ
†
iσµψi ,

=
∑
n

Zn

(
V 2
n

2

)
1
Vn
∂µχn + Zn

1
Vn
∂µχn

(
V 2
n

2

)
+
∑
i

Xiψ
†
iσµψi ,

=
∑
n

ZnVn∂µχn +
∑
i

Xiψ
†
iσµψi .

(4.53)

The axion field, denoted as a, is defined by the expression:

a = f−1
a

∑
n

ZnVnχn , (4.54)

where the axion decay constant is determined by:

f 2
a =

∑
m

Z2
nV

2
n . (4.55)

The PQ current becomes:

jPQµ = fa∂µa+
∑
i

Xiψ
†
i~σ

µψi . (4.56)

Under the PQ transformation described in (4.50), the axion field undergoes the following
change:

a→ a+ faα . (4.57)

Neglecting explicit breaking, this implies that the current can annihilate a Goldstone
boson with the following amplitude:

〈0| jPQµ (k) |a(k)〉 = fakµe
ikx . (4.58)

The expression can be easily obtained through a Fourier transformation on the axion field.
The normalization of the axion state |a(k)〉 is given by:

〈a(k′)|a(k)〉 = (2π)32k0δ3(~k − ~k′) , (4.59)
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with this normalization, the current, denoted as:

j3
µ = 1

2
(
uγµγ5u− dγµγ5d

)
, (4.60)

satisfies the relation:
〈0| j3

µ(x)
∣∣∣π0(k)

〉
= fπkµe

ikx , (4.61)

with fπ = 130.41± 0.21 MeV [18].

The PQ charges are intentionally selected to be orthogonal, meaning they are
uncorrelated, with all anomaly-free, conserved charges—whether they are gauged or
ungauged, spontaneously broken or unbroken. The normalization scheme specified in
(4.42) sets the framework for this choice of PQ charges. This particular selection is unique,
and it is also assumed that, in addition to the axion, there are no other Nambu-Goldstone
bosons present.

The spontaneous breaking of the PQ symmetry may lead to the spontaneous
breaking of some or all of the Z(2N) subgroup of U(1)PQ that is not explicitly broken [51,52].
However, it is also possible that the spontaneous breaking does not affect any part of this
subgroup. The spontaneous breaking of Z(2N), even if only partial, poses a theoretical
challenge. This is because the broken generators of this subgroup are not incorporated into
a gauged group like U(1)PQ [53]. As a result, there emerges a discrete set of degenerate,
inequivalent vacuum states, potentially leading to a cosmological domain wall problem [51].

Now, with a well-defined PQ current, the next step in this generic model involves
computing the mass of the axion. To achieve this, current algebra is employed, and an
axion current is defined as:

jaµ = jPQµ −N(1 + z + w)−1[uγµγ5u+ zdγµγ5d+ wsγµγ5s] , (4.62)

where z, w are arbitrary numbers [54]. Notably, this current incorporates the form of the
current that annihilates/creates a Goldstone boson, as seen in (4.60). The axion current
satisfies:

∂µjaµ = Ne2

16π2 (FF̃ )EM
[
E

N
− 2

3
4 + z + w

1 + z + w

]
− 2N

1 + z + w
[muuiγ5u+ zmddiγ5d+ wmssiγ5s] ,

(4.63)

the first term originates from (4.42). To derive the second term, the Dirac equation is
applied:

(i/∂ −m)ψ = 0 ,

ψ(i/∂ +m) = 0 ,
(4.64)
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utilizing the anticommutation of the gamma matrices {γµ, γ5} = 0, the calculation proceeds
as follows:

∂µja(2nd)
µ = −∂µ

[
N

1 + z + w
[uγµγ5u+ zdγµγ5d+ wsγµγ5s]

]
,

= − N

1 + z + w
[∂µuγµγ5u+ uγµγ5∂

µu+ z∂µdγµγ5d+ zdγµγ5∂
µd

+ w∂µsγµγ5s+ wsγµγ5∂
µs] ,

= − N

1 + z + w
[/∂uγ5u− uγ5γµ∂

µu+ z /∂dγ5d− zdγ5γµ∂
µd

+ w/∂sγ5s− wsγ5γµ∂
µs] ,

= − N

1 + z + w
[/∂uγ5u− uγ5/∂u+ z /∂dγ5d− zdγ5/∂d

+ w/∂sγ5s− wsγ5/∂s] ,

= − N

1 + z + w
[(imuu)γ5u− uγ5(−imuu) + z(imdd)γ5d− zdγ5(−imdd)

+ w(imss)γ5s− wsγ5(−imss)] ,

= − N

1 + z + w
[2muuiγ5u+ 2zmddiγ5d+ 2wmssiγ5s] ,

= − 2N
1 + z + w

[muuiγ5u+ zmddiγ5d+ wmssiγ5s] .

(4.65)

The axion current can be compared to the pion current (4.60), where

∂µj3
µ = e2

16π2 (FF̃ )EM +muuiγ5u−mddiγ5d, (4.66)

this observation suggests that the axion current jaµ shares the same divergence structure
as the ordinary pion current. Consequently, it is reasonable to perform standard current
algebra manipulations with the axion current.

Since z and w are arbitrary numbers, we can conveniently choose them as z =
mu/md and w = mu/ms to eliminate the off-diagonal terms in Dashen’s Formula [55] for
the mass-squared matrix of a, π0, and η. Dashen’s Formula for this case is given by [56]:

(m2)12 = 1
f1f2

〈0|
[
Q1

5,
[
Q2

5,L
]]
|0〉 , (4.67)

where Q1,2
5 are the generators of the chiral symmetries.

The axion mass, then, is given by:

ma = fπmπ

fa/N

[
4z

(1 + z + w)(1 + z)

]1/2

,

= (1.2× 105eV)
(

1012GeV
fa/N

)
,

(4.68)

where the numeric values for z and w were obtained from [13].
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4.4 Axion coupling to photons
The results from the previous section imply the possibility of writing an effective

lagrangian for the interaction between axions and photons:

Leff = −1
2∂µa∂

µa− 1
2m

2
aa

2 + 1
2( ~E2 − ~B2) + αNC

πfa
a ~E · ~B , (4.69)

where
α = e2

4π ,

(FF̃ ) = −4 ~E · ~B ,

C = E

N
− 2

3
4 + z + w

1 + z + w
= E

N
− 1.92 ≈ 0.75 (GUT) .

(4.70)

Note that Leff involves N only in ratios E/N and fa/N .

An important feature of this result is that any axion in any standard Grand Unified
Theory (GUT) has a specified coupling to photons. Specifically, the coefficient of a ~E · ~B,
which represents the coupling of axions to two photons, has a model-independent value in
units of the axion mass:

gaγγ = αNC

πfa
≈ (1.45× 10−15 GeV−1)(ma/10−15 eV) . (4.71)

4.5 Tree-level coupling to electrons
To compute gae at classical level, it is necessary to modify the axion current to

account for the spontaneous breakdown of the electroweak symmetry SU(2)L×U(1)Y .

Care must be taken to define the axion in a way that it does not mix with the
Nambu-Goldstone (NG) boson that becomes the longitudinal Z0 boson. This NG field,
denoted as y, is given by:

y = v−1
SM
∑
n

YnVnχn , (4.72)

where the NG boson decay constant f is:

v2
SM =

∑
n

Y 2
n V

2
n = (246 GeV)2 , (4.73)

and Yn are the hypercharges of φn. The constraint Yn = ±1 in (4.72) and(4.73) is imposed
to ensure the validity of the relation between the W and Z bosons, mW = mZ cos θW ,
where θW is the Weinberg angle.

To ensure that the new axion field a′ does not overlap with y, we define a′ as:

a′ = a−
[
(favSM)−1∑

n

ZnYnV
2
n

]
y , (4.74)
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where a is given by (4.54). This expression can be simplified through algebraic manipula-
tions:

a′ = f−1
a

∑
n

ZnVnχn −
[
(favSM)−1∑

m

ZmYmV
2
m

]
y ,

= f−1
a

∑
n

ZnVnχn −
[
(favSM)−1∑

m

ZmYmV
2
m

]
v−1
SM
∑
n

YnVnχn ,

= f−1
a

∑
n

ZnVnχn − f−1
a

∑
n

[
v−2
SM
∑
m

ZmYmV
2
m

]
YnVnχn ,

= f−1
a

∑
n

[
Zn −

(
v−2
SM
∑
m

ZmYmV
2
m

)
Yn

]
Vnχn ,

= f−1
a

∑
n

Z ′nVnχn ,

(4.75)

where we introduce the definition:

Z ′n ≡ Zn −
[
v−2
SM
∑
m

ZmYmV
2
m

]
Yn . (4.76)

Therefore, as demonstrated earlier, the new axion field is expressed as:

a′ = f−1
a

∑
n

Z ′nVnχn . (4.77)

Associated with this change in the a field is a corresponding adjustment in the axion
decay constant fa. However, as this change is tied to vSM and considering that fa � vSM,
it can be safely neglected. It is also imperative to modify the PQ charges assigned to
fermions Xi to X ′i to maintain the properties of the axion current divergence. For instance,
consider the electron e−; if the left-handed e− has a PQ charge Xe, this charge must be
modified to:

X ′e = Xe −
1
2

[
v−2
SM
∑
m

ZmYmV
2
m

]
, (4.78)

where Ye = −1 and Z ′e = −2X ′e for the Higgs field coupling to the left-handed e− were
used to derive this expression. A similar formula applies to the PQ charge of any charged
lepton or down quark. As for the up quark, the modification is given by:

Z ′u = Zu + 1
2

[
v−2
SM
∑
m

ZmYmV
2
m

]
. (4.79)

With these new considerations, (4.56) transforms into:

j′PQµ = fa∂µa
′ +

∑
i

X ′iψiγµγ5ψi + ... , (4.80)

where the sum in i extends over every charged lepton (e,µ, τ) and every SM quark
(u, d, s, c, b, t). The indication of extra terms accounts for possible contributions of neutrinos
and any other fermions, including supermassive ones.
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The computation of the axion-electron coupling, gae, from (4.80) involves first
considering the current divergence. Given the validity of the PQ symmetry at the classical
level, the expression becomes:

∂µj′PQµ = fa∂
µ∂µa

′ +X ′e∂
µ(eγµγ5e) + ... ,

= fa�a
′ + 2X ′emeeiγ5e+ ... ,

= 0 ,

(4.81)

where the Dirac equation was employed to derive the second line of the second term. This
equation leads directly to:

−�a′ = 2X ′e(me/fa)aeiγ5e+ ... . (4.82)

Hence, we find that the effective lagrangian for the axion-electron interaction incorporates
the term

L ⊃ 2X ′e(me/fa)aeiγ5e . (4.83)

Consequently, the coefficient of aeiγ5e represents the axion-electron coupling:

gae = 2X ′e(me/fa) , (4.84)

which, unlike gaγγ , due to the presence of X ′e, is model dependent. It is worth noting that
gae involves solely fa and not the fraction fa/N with the anomaly coefficient N . Now,
we can proceed to evaluate the coupling in the two distinct invisible axion models under
consideration—the KSVZ and DFSZ models.

In the KSVZ model, conventional quarks, leptons, or a Higgs field carrying PQ
charge are absent. Consequently, the electron PQ charge within this model is given by:

X ′e = 0 (KSVZ) . (4.85)

However, despite the absence of direct coupling to electrons, the axion in the KSVZ model
exhibits a radiatively induced gae at the 1-loop (quantum) level, a topic we will delve
into later. This implies that, within the KSVZ framework, the axion-electron coupling
is inherently suppressed when compared to models where the tree-level contribution is
non-zero.

In the DFSZ model, where Xe = +1 and N = 6 for three generations, two scalar
fields, φu and φd, contribute to the y field. Specifically, φu has Zu = −2 and Yu = +1,
while φd has Zd = −2 and Yd = −1. Additionally, a crucial relationship is established:
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v2
SM = V 2

u + V 2
d . Therefore, we can determine X ′e as follows:

X ′e = Xe −
1
2

[
v−2
SM
∑
m

ZmYmV
2
m

]
,

= 1− 1
2v
−2
SMZuYuV

2
u −

1
2v
−2
SMZdYdV

2
d ,

= 1− 1
2v
−2
SM(−2)(+1)V 2

u −
1
2v
−2
SM(−2)(−1)V 2

d ,

= 1 + v−2
SMV

2
u − v−2

SMV
2
d ,

= 1 + V 2
u

V 2
u + V 2

d

− V 2
d

V 2
u + V 2

d

,

= V 2
u + V 2

d + V 2
u − V 2

d

V 2
u + V 2

d

,

= 2 V 2
u

V 2
u + V 2

d

,

= 2 V
2
u

v2
SM

.

(4.86)

Parametrizing cos β = Vu/vSM, the effective coupling becomes:

gae = 4 cos2 β
me

fa
(DFSZ) . (4.87)

To facilitate a more straightforward comparison with gaγγ, introducing the factor N = 6
to the coupling yields:

gae = 2
3 cos2 β

meN

fa
(DFSZ) . (4.88)

The model, however, does not prescribe the value of β. It is reasonable to conjecture that
Vu > Vd given the significantly larger masses of up quarks compared to down quarks in
the second and third generations. This inference leads us to:

2 cos2 β > 1 . (4.89)

4.6 One-loop induced coupling to electrons
As mentioned earlier, despite X ′e = 0 and the absence of a tree-level coupling

in the KSVZ model, there persists a one-loop level contribution to gae arising from the
interaction depicted in Figure 5.

To calculate this diagram, we must initially derive the axion-photon vertex, which
is proportional to the axion-photon coupling gaγγ. We commence with the interaction
term from (4.69):

Lint = gaγγa ~E · ~B . (4.90)

However, in this form, deriving the vertex is not feasible. To proceed, it is necessary to
express it in terms of the gauge fields Aµ. Utilizing the relation (4.70), we obtain:

Lint = −1
4gaγγaF

µνF̃µν . (4.91)
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e− e−

a

Figure 5 – 1-loop contribution to gae

The next step involves explicitly expressing the gauge fields in the field strength tensor,
yielding:

F µν = ∂µAν − ∂νAµ ,

F̃µν = 1
2εµνρσF

ρσ = 1
2εµνρσ(∂ρAσ − ∂σAρ) .

(4.92)

This brings us to the multiplication of field strengths, resulting in:

F µνF̃µν = 1
2εµνρσ(∂µAν − ∂νAµ)(∂ρAσ − ∂σAρ) . (4.93)

Here, we take the explicit route to obtain the result of the multiplication:

F µνF̃µν = 1
2εµνρσ(∂µAν − ∂νAµ)(∂ρAσ − ∂σAρ) ,

= 1
2εµνρσ(∂µAν∂ρAσ − ∂µAν∂σAρ − ∂νAµ∂ρAσ + ∂νAµ∂σAρ) ,

(4.94)

next, we apply the chain rule in each term individually, for example:

∂µ(Aν∂ρAσ) = ∂µAν∂ρAσ + Aν∂µ∂ρAσ, (4.95)

which leads us to:
∂µAν∂ρAσ = −Aν∂µ∂ρAσ + S.T. , (4.96)

where S.T. denotes a surface term taken to be 0 when integrated. With this, the multipli-
cation reads:

F µνF̃µν = 1
2εµνρσ(−Aν∂µ∂ρAσ + Aν∂µ∂σAρ + Aµ∂ν∂ρAσ − Aµ∂ν∂σAρ) ,

= 1
2εµνρσ(−Aν∂µ(∂ρAσ − ∂σAρ) + Aµ∂ν(∂ρAσ − ∂σAρ)) ,

= 1
2εµνρσ(−Aν∂µF ρσ + Aµ∂νF ρσ) ,

= 1
2εµνρσ(Aµ∂ν − Aν∂µ)F ρσ .

(4.97)

Here, we express the term in the parenthesis as:

Aµ∂ν − Aν∂µ = (δµαδνβ − δναδ
µ
β)Aα∂β , (4.98)
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and utilize the property of the Levi-Civita tensor in Minkowski space:

εµνγδεαβγδ = −2(δµαδνβ − δναδ
µ
β) , (4.99)

yielding:
Aµ∂ν − Aν∂µ = −1

2ε
µνγδεαβγδA

α∂β . (4.100)

With this term, we proceed with the previous calculation:

F µνF̃µν = −1
4εµνρσε

µνγδεαβγδA
α∂βF ρσ , (4.101)

now, using the same reversed Levi-Civita property, we get:

F µνF̃µν = 1
2(δγρδδσ − δδρδγσ)εαβγδAα∂βF ρσ ,

= 1
2(εαβρσ − εαβσρ)Aα∂βF ρσ ,

= εαβρσA
α∂βF ρσ .

(4.102)

Next, let’s focus on the ∂βF ρσ part:

∂βF ρσ = ∂β(∂ρAσ − ∂σAρ) ,

= ∂β(δργδσδ − δσγ δ
ρ
δ )∂γAδ ,

= ∂β(−1
2ε

ρσξχερσξχ)∂γAδ ,

= −1
2ε

ρσξχερσξχ∂
β∂γAδ .

(4.103)

Continuing, we obtain:

F µνF̃µν = −1
2εαβρσε

ρσξχερσξχA
α∂β∂γAδ ,

= (δξαδ
χ
β − δχαδ

ξ
β)ερσξχAα∂β∂γAδ ,

= (εγδαβ − εγδβα)Aα∂β∂γAδ ,

= 2εγδαβAα∂β∂γAδ .

(4.104)

Here, we rewrite it in terms of µνρσ indexes and apply the chain rule to get:

F µνF̃µν = −2εµνρσ∂µAν∂ρAσ . (4.105)

Finally, the interaction lagrangian (4.91) can be expressed as:

iLint = i

2gaγγεµνρσa∂
µAν∂ρAσ . (4.106)

To derive the vertex, we apply a technique presented in Chapter 4 of Quigg’s textbook [57],
where we first express the interaction lagrangian in momentum space:

a(x)→ a(k)eikx ,

Aµ(x)→ Aµ(q)eiqx ,
(4.107)
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this transformation yields:

iLint →
i

2gaγγεµνρσa(iqµ1Aν)(iqρ2Aσ)ei(k+q1+q2)x ,

→ − i2gaγγεµνρσaq
µ
1 q

ρ
2A

νAσ ,
(4.108)

next, we derive the interaction Lagrangian in terms of the fields:

δ2(AνAσ)
δAαδAβ

= δ

δAα
(δνβAσ + Aνδσβ) ,

= δνβδ
σ
α + δναδ

σ
β

(4.109)

δ3

δaδAαδAβ
(iLint) = − i2gaγγεµνρσq

µ
1 q

ρ
2(δνβδσα + δναδ

σ
β) ,

= −igaγγεµβραqµ1 qρ2 .
(4.110)

This is already a valid expression for the axion-photon vertex. However, we can write
it in terms of the symmetric and anti-symmetric parts of qµ1 qρ2 and combine it with the
anti-symmetry of the Levi-Civita tensor to eliminate the symmetric part. Besides, as the
indices β, α are mute, we can change it to the standard µ, ν, ρ, σ of the levi-Civita. With
these considerations, we finally obtain:

−igaγγεµνρσqµ1 q
ρ
2 = −igaγγεµνρσ

[1
2(qµ1 qρ2 + qρ1q

µ
2 ) + 1

2(qµ1 qρ2 − qρ1qµ2 )
]
,

= − i2gaγγεµνρσ(qµ1 qρ2 − qρ1qµ2 ) .
(4.111)

We can make a slight change in the indices so that the contracted ones are the last 2 in
the Levi-Civita tensor, thus:

a

νµ

k

q2

q1
= − i2gaγγεµνρσ(qρ1qσ2 − qσ1 q

ρ
2) . (4.112)

To generate the diagram depicted in (5), it is essential to couple it to two electron-photon
vertices, as illustrated in (6).

Finally, the transition amplitude is expressed as:

iM = u(p3)(−ieγβ)i /p2 +me

p2
2 −m2

e + iε
(−ieγα)

(
igµα
q2

1

)(
igνβ
q2

2

)
(
− i2gaγγεµνρσ(qρ1qσ2 − qσ1 q

ρ
2)
)
u(p1) ,

(4.113)
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Figure 6 – electron-photon vertices

which needs to be integrated over the virtual electron momentum p2. We can rewrite the
transition amplitude as:

iM = e2

2 u(p3)
∫ d4p2

(2π)4

γν(/p2 +me)γµgaγγεµνρσ(qρ1qσ2 − qσ1 q
ρ
2)

[p2
2 −m2

e + iε][q2
1 + iε][q2

2 + iε] u(p1) . (4.114)

Now, utilizing the momentum conservation of each vertex, we express the integral in terms
of p2, with the momentum relations given by:

k = q1 + q2 ,

q1 = p2 − p1 ,

q2 = p3 − p2 .

(4.115)

First, we substitute the terms in the denominator:

iM = e2

2 u(p3)
∫ d4p2

(2π)4

γν(/p2 +me)γµgaγγεµνρσ(qρ1qσ2 − qσ1 q
ρ
2)

[p2
2 −m2

e + iε][(p2 − p1)2 + iε][(p3 − p2)2 + iε]u(p1) . (4.116)

Our aim is to simplify the integral to make it more manageable. We start by introducing
the Feynman parameters:

1
ABC

= 2
∫ 1

0
dxdydz δ(x+ y + z − 1) 1

[xA+ yB + zC]3 , (4.117)

where A,B and C are the terms in the denominator:

A = p2
2 −m2

e + iε ,

B = (p2 − p1)2 + iε ,

C = (p3 − p2)2 + iε .

(4.118)

The denominator becomes:

xA+ yB + zC = x(p2
2 −m2

e + iε) + y((p2 − p1)2 + iε) + z((p3 − p2)2 + iε) ,

= (x+ y + z)p2
2 − xm2

e − 2yp2p1 + yp2
1 + zp2

3 − 2zp3p2

+ (x+ y + z)iε ,

= p2
2 − 2yp2p1 − 2zp3p2 + yp2

1 + zp2
3 − xm2

e + iε ,

(4.119)

we can further simplify using the relation:

(p2 − yp1 − zp3)2 = p2
2 − 2yp2p1 − 2zp2p3 + 2yzp1p3 + y2p2

1 + z2p2
3 . (4.120)
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Comparing it to (4.119), we get:

xA+ yB + zC = (p2 − yp1 − zp3)2 −∆ + iε (4.121)

where
∆ = (x+ z)yp2

1 + (x+ y)zp2
3 − 2yzp1p3 + xm2

e . (4.122)

Now it is possible to use some momentum relations to rewrite ∆. The following relations
hold:

p2
3 = m2

e ,

p2
1 = m2

e ,

p1 = p3 − k ,

p3k = −p
2
1

2 +m2
e ,

(4.123)

we find:

∆ = (x+ z)yp2
1 + (x+ y)zp2

3 − 2yzp1p3 + xm2
e ,

= (x+ z)ym2
e + (x+ y)zm2

e − 2yz(p3 − k)p3 + xm2
e ,

= (1− y)ym2
e + (1− z)zm2

e − 2yzp2
3 + 2yzp3k + xm2

e ,

= (1− y)ym2
e + (1− z)zm2

e − 2yzm2
e + 2yz

(
−p

2
1

2 +m2
e

)
+ xm2

e ,

= (1− y)ym2
e + (1− z)zm2

e − 2yzm2
e − yzm2

e + 2yzm2
e + xm2

e ,

= (1− y)ym2
e + (1− z)zm2

e − yzm2
e + xm2

e ,

= m2
e[(1− y)y + (1− z)z − yz + x] ,

= m2
e[(1− y − z)y + (1− z)z + x] ,

= m2
e[xy + (1− z)z + x] ,

= m2
e[(1 + y)x+ (1− z)z] .

(4.124)

We can also effectuate a shift in the momentum p2 using the following expression:

pµ2 → pµ2 − yp
µ
1 − zp

µ
3 . (4.125)

Consequently, we express the denominator as:

xA+ yB + zC = (p2
2 −∆ + iε) . (4.126)

In conclusion, we determine:
1

ABC
= 2

∫ 1

0
dxdydz δ(x+ y + z − 1) 1

(p2
2 −∆ + iε)3 , (4.127)

which, in turn, leads us to the following transition amplitude:

iM = e2u(p3)
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
∫ d4p2

(2π)4

γν(/p2 +me)γµgaγγεµνρσ(qρ1qσ2 − qσ1 q
ρ
2)

(p2
2 −∆ + iε)3 u(p1) ,

(4.128)
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where ∆ = m2
e[(1 + y)x+ (1− z)z].

Now, our focus shifts to the numerator, denoted as:

N = u(p3)γν(/p2 +me)γµgaγγεµνρσ(qρ1qσ2 − qσ1 q
ρ
2)u(p1) . (4.129)

To initiate the analysis, we substitute the photon momenta q1 and q2 utilizing (4.115),
resulting in:

qρ1q
σ
2 − qσ1 q

ρ
2 = pρ2p

σ
3 − p

ρ
2p
σ
2 − p

ρ
1p
σ
3 + pρ1p

σ
2

− pσ2p
ρ
3 + pσ2p

ρ
2 + pσ1p

ρ
3 − pσ1p

ρ
2 ,

(4.130)

it is essential to note that these terms are contracted with the Levi-Civita tensor. Conse-
quently, any symmetric term becomes zero due to the anti-symmetric characteristic of the
Levi-Civita. Given this consideration, the product is:

εµνρσ(qρ1qσ2 − qσ1 q
ρ
2) = εµνρσ[(pρ1pσ2 − pσ1p

ρ
2) + (pρ2pσ3 − pσ2p

ρ
3)− (pρ1pσ3 − pσ1p

ρ
3)] . (4.131)

Following this, we apply the same momentum shift executed in the denominator, where:

pµ2 → pµ2 − yp
µ
1 − zp

µ
3 , (4.132)

this transformation yields (for clarity, the Levi-Civita symbol will be omitted):

(qρ1qσ2 − qσ1 q
ρ
2) = [pρ1(pσ2 − ypσ1 − zpσ3 )− pσ1 (pρ2 − ypρ1 − zpρ3)]

+ [(pρ2 − ypρ1 − zpρ3)pσ3 − (pσ2 − ypσ1 − zpσ3 )pρ3]

− [pσ1p
ρ
3 − p

ρ
1p
σ
3 ] ,

= [pρ1pσ2 − yp
ρ
1p
σ
1 − zp

ρ
1p
σ
3 − pσ1p

ρ
2 + ypσ1p

ρ
1 + zpσ1p

ρ
3]

+ [pρ2pσ3 − yp
ρ
1p
σ
3 − zp

ρ
3p
σ
3 − pσ2p

ρ
3 + ypσ1p

ρ
3 + zpσ3p

ρ
3]

− [pσ1p
ρ
3 − p

ρ
1p
σ
3 ] ,

= [(pρ1pσ2 − pσ1p
ρ
2)− y(pρ1pσ1 − pσ1p

ρ
1)− z(pρ1pσ3 − pσ1p

ρ
3)]

+ [(pρ2pσ3 − pσ2p
ρ
3)− y(pρ1pσ3 − pσ1p

ρ
3)− z(pρ3pσ3 − pσ3p

ρ
3)]

− [pσ1p
ρ
3 − p

ρ
1p
σ
3 ] ,

= (pρ1pσ2 − pσ1p
ρ
2)− y(pρ1pσ1 − pσ1p

ρ
1)− (1 + y + z)(pρ1pσ3 − pσ1p

ρ
3)

+ (pρ2pσ3 − pσ2p
ρ
3)− z(pρ3pσ3 − pσ3p

ρ
3) ,

(4.133)

once again, recognizing that symmetric terms can be canceled, and incorporating the
constraint δ(x+ y + z − 1), the expression simplifies to:

(qρ1qσ2 − qσ1 q
ρ
2) = (pρ1pσ2 − pσ1p

ρ
2) + (pρ2pσ3 − pσ2p

ρ
3) + (x− 2)(pρ1pσ3 − pσ1p

ρ
3) . (4.134)

Substituting this into the numerator expression, we obtain:

N = u(p3)γν(/p2 − y/p1 − z/p3 +me)γµgaγγ
× εµνρσ[(pρ1pσ2 − pσ1p

ρ
2) + (pρ2pσ3 − pσ2p

ρ
3) + (x− 2)(pρ1pσ3 − pσ1p

ρ
3)]u(p1) .

(4.135)
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We will now employ an algebraic manipulation involving the Levi-Civita tensor, a technique
also found in Quigg’s book in Appendix B [57]:

γ5γσ = i

3!εµνρσγ
µγνγρ , (4.136)

this relation can be logically extended to:

γ5γσγρ = 4i
3! εµνρσγ

µγν , (4.137)

and further expressed as:
εµνρσγ

µγν = −3
2iγ5γσγρ . (4.138)

Substituting the derived expression into (4.135), we arrive at:

N = −3
2gaγγu(p3)(/p2 − y/p1 − z/p3 +me)iγ5γσγρ

× [(pρ1pσ2 − pσ1p
ρ
2) + (pρ2pσ3 − pσ2p

ρ
3) + (x− 2)(pρ1pσ3 − pσ1p

ρ
3)]u(p1) .

(4.139)

Now, considering terms with at least two occurrences of p2, as any odd number of p2 will
integrate to zero and focusing solely on terms that can exhibit logarithmic divergence, we
simplify the expression:

N = −3
2gaγγu(p3)/p2iγ5γσγρ[(pρ1pσ2 − pσ1p

ρ
2) + (pρ2pσ3 − pσ2p

ρ
3)]u(p1) ,

= −3
2gaγγu(p3)/p2iγ5[(/p2/p1 − /p1/p2) + (/p3/p2 − /p2/p3)]u(p1) .

(4.140)

To further simplify the numerator, we utilize a set of relations given by:

/p/p = p2 ,

/pu(p) = mu(p) ,

u(p)/p = u(p)m ,

/p1/p2 = 2pµ1p2µ − /p2/p1 ,

{γ5, γµ} = 0 .

(4.141)

Therefore, the first term becomes:

N1 = −3
2gaγγu(p3)/p2iγ5/p2/p1u(p1) ,

= −3
2gaγγu(p3)/p2iγ5/p2meu(p1) ,

= 3
2megaγγu(p3)/p2/p2iγ5u(p1) ,

= 3
2megaγγu(p3)p2

2iγ5u(p1) .

(4.142)
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The second term becomes:

N2 = 3
2gaγγu(p3)/p2iγ5/p1/p2u(p1) ,

= 3
2gaγγu(p3)/p2iγ5(2pµ1p2µ − /p2/p1)u(p1) ,

= 3
2gaγγu(p3)/p2iγ52pµ1p2µu(p1)− 3

2gaγγu(p3)/p2iγ5/p2/p1u(p1)

= 3gaγγu(p3)γβp2βiγ5p
µ
1p2µu(p1) + 3

2megaγγu(p3)p2
2iγ5u(p1) ,

= 3gaγγu(p3)γβiγ5p
µ
1p2βp2µu(p1) + 3

2megaγγu(p3)p2
2iγ5u(p1) .

(4.143)

The third term becomes:

N3 = −3
2gaγγu(p3)/p2iγ5/p3/p2u(p1) ,

= −3
2gaγγu(p3)/p2/p3/p2iγ5u(p1) ,

= −3
2gaγγu(p3)(2pµ2p3µ − /p3/p2)/p2iγ5u(p1) ,

= −3gaγγu(p3)pµ2p3µ/p2iγ5u(p1) + 3
2gaγγu(p3)/p3/p2/p2iγ5u(p1) ,

= −3gaγγu(p3)pµ2p3µγβp
β
2 iγ5u(p1) + 3

2gaγγu(p3)mep
2
2iγ5u(p1) ,

= −3gaγγu(p3)γβiγ5p3µp
µ
2p

β
2u(p1) + 3

2megaγγu(p3)p2
2iγ5u(p1) .

(4.144)

The fourth term becomes

N4 = 3
2gaγγu(p3)/p2iγ5/p2/p3u(p1) ,

= 3
2gaγγu(p3)/p2/p2/p3iγ5u(p1) ,

= 3
2gaγγu(p3)p2

2/p3iγ5u(p1) ,

= 3
2gaγγu(p3)/p3p

2
2iγ5u(p1) ,

= 3
2gaγγu(p3)mep

2
2iγ5u(p1) ,

= 3
2megaγγu(p3)p2

2iγ5u(p1) .

(4.145)

Combining the terms N1, N2, N3, and N4 in the numerator N = N1 +N2 +N3 +N4, we
arrive at:

N = 3
2megaγγu(p3)p2

2iγ5u(p1) + 3gaγγu(p3)γβiγ5p
µ
1p2βp2µu(p1)

+ 3
2megaγγu(p3)p2

2iγ5u(p1)− 3gaγγu(p3)γβiγ5p3µp
µ
2p

β
2u(p1)

+ 3
2megaγγu(p3)p2

2iγ5u(p1) + 3
2megaγγu(p3)p2

2iγ5u(p1) ,

= 6megaγγu(p3)p2
2iγ5u(p1)

+ 3gaγγu(p3)(γβiγ5p
µ
1p2βp2µ − γβiγ5p3µp

µ
2p

β
2 )u(p1) .

(4.146)
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Finally, substituting this numerator into 4.128 yields:

iM = 6e2megaγγu(p3)
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
∫ d4p2

(2π)4
p2

2
(p2

2 −∆ + iε)3 iγ5u(p1)

+ 3e2gaγγu(p3)
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
∫ d4p2

(2π)4
(γβpµ1p2βp2µ − γβp3µp

µ
2p

β
2 )

(p2
2 −∆ + iε)3 iγ5u(p1) .

(4.147)

Given the symmetry of the second term in p1 and p3, it integrates to zero, simplifying the
expression to:

iM = 6e2megaγγu(p3)
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
∫ d4p2

(2π)4
p2

2
(p2

2 −∆ + iε)3 iγ5u(p1) .
(4.148)

Now, the focus shifts to solving the integral over the free internal momentum using
dimensional regularization. We start with the following integral:

∫ d4p2

(2π)4
p2

2
(p2

2 −∆ + iε)3 , (4.149)

and perform a Wick rotation on it [58]:
∫ d4p2

(2π)4
p2

2
(p2

2 −∆ + iε)3 = − i

16π4

∫
dΩ4

∫
dp2E p3

2E
p2

2E
(p2

2E + ∆)3 ,

= − i

8π2

∫
dp2E

p5
2E

(p2
2E + ∆)3 ,

(4.150)

where
∫
dΩ4 = 2π2 is the integration over the solid angle in 4 dimensions. Next, we

integrate using substitution and renormalize introducing a cutoff, yielding:

− i

8π2

∫ Λ

me
dp2E

p5
2E

(p2
2E + ∆)3 = − i

8π2

∫ Λ2

m2
e

du

2p2E
p2E

u2

(u+ ∆)3 ,

= − i

16π2

∫ Λ2

m2
e

du
u2

(u+ ∆)3 ,

(4.151)

where u = p2
2E. It is important to note that the cutoff integral does not start at zero but

rather at the electron mass. Additionally, we use an arbitrary cutoff for now; later, when
we substitute the expression for gaγγ , we will establish the exact cutoffs. This arises from
our decision to integrate over the internal virtual electron momentum.



Chapter 4. Axion 86

Continuing with the integration, we make another substitution v = u+ ∆:

− i

16π2

∫ Λ2

m2
e

du
u2

(u+ ∆)3 = − i

16π2

∫ Λ2+∆

m2
e+∆

dv
(v −∆)2

v3 ,

= − i

16π2

∫ Λ2+∆

m2
e+∆

dv
v2 − 2∆v + ∆2

v3 ,

= − i

16π2

∫ Λ2+∆

m2
e+∆

dv

(
1
v
− 2∆

v2 + ∆2

v3

)
,

= − i

16π2

ln v
∣∣∣∣∣
Λ2+∆

m2
e+∆
− 2∆v−1

−1

∣∣∣∣∣
Λ2+∆

m2
e+∆

+ ∆2v
−2

−2

∣∣∣∣∣
Λ2+∆

m2
e+∆

 ,

= − i

16π2

[
ln
(

Λ2 + ∆
m2
e + ∆

)
+
(

2∆
Λ2 + ∆ −

2∆
m2
e + ∆

)

−∆2

2

(
1

(Λ2 + ∆)2 −
1

(m2
e + ∆)2

)]
.

(4.152)

Since we are interested in the logarithmic part of the diagram, we obtain:

iM = 6e2megaγγu(p3)
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
∫ d4p2

(2π)4
p2

2
(p2

2 −∆ + iε)3 iγ5u(p1) ,

= 6e2megaγγu(p3)
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
[
− i

16π2 ln
(

Λ2 + ∆
m2
e + ∆

)]
iγ5u(p1) ,

= −3ie2megaγγ
8π2 u(p3)

∫ 1

0
dxdydz δ(x+ y + z − 1) ln

(
Λ2 + ∆
m2
e + ∆

)
iγ5u(p1) .

(4.153)

Now, it is convenient to substitute the arbitrary cutoff and use the definition of gaγγ given
by:

gaγγ = αNC

πfa
= αN

πfa

[
E

N
− 2

3
4 + z′ + w′

1 + z′ + w′

]
, (4.154)

where z′ is used to avoid confusion with the integration variable z. Note that E
N

represents
the part associated with QED, while 2

3
4+z′+w′
1+z′+w′ represents the part associated with QCD.

As a result, the QED part is cutoff at a scale of order fa, and the QCD part is cutoff
at the QCD confinement scale ΛQCD. This is because for loop momenta larger than
ΛQCD, the effects of the color anomaly become negligible. Therefore, in this regime, we
should describe the axion with the PQ current of (4.56) instead of (4.62). The transition
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amplitude is then:

iM = −3ie2megaγγ
8π2 u(p3)

∫ 1

0
dxdydz δ(x+ y + z − 1) ln

(
Λ2 + ∆
m2
e + ∆

)
iγ5u(p1) ,

= −3iα2meNC

2π2fa
u(p3)

∫ 1

0
dxdydz δ(x+ y + z − 1) ln

(
Λ2 + ∆
m2
e + ∆

)
iγ5u(p1) ,

= −3iα2Nme

2π2fa
u(p3)

∫ 1

0
dxdydz δ(x+ y + z − 1)

[
E

N
ln
(
f 2
a + ∆
m2
e + ∆

)

−2
3

4 + z′ + w′

1 + z′ + w′
ln
(

Λ2
QCD + ∆
m2
e + ∆

)]
iγ5u(p1) .

(4.155)

Now, let’s recover the definition of ∆ so that we can integrate over x, y and z:

∆ = m2
e[(1 + y)x+ (1− z)z] , (4.156)

comparing ∆, which is proportional to the squared electron mass, to the cut-offs that we
used (fa,ΛQCD), where in the invisible axion models fa � vSM = 246.22 GeV [13] and
ΛQCD ∼ 1 GeV, we can make the approximation f 2

a + ∆ ≈ f 2
a and Λ2

QCD + ∆ ≈ Λ2
QCD.

With these approximations, we find:

iM = −3iα2Nme

2π2fa
u(p3)

∫ 1

0
dxdydz δ(x+ y + z − 1)

[
E

N
ln
(

f 2
a

m2
e + ∆

)

−2
3

4 + z′ + w′

1 + z′ + w′
ln
(

Λ2
QCD

m2
e + ∆

)]
iγ5u(p1) .

(4.157)

We can also rewrite the logarithmic terms more intelligently as follows:

ln
(

f 2
a

m2
e + ∆

)
= ln

(
f 2
a

m2
e +m2

e[(1 + y)x+ (1− z)z]

)
,

= ln
(

f 2
a

m2
e[(1 + y)x+ (1− z)z + 1]

)
,

= ln
(
f 2
a

m2
e

1
[(1 + y)x+ (1− z)z + 1]

)
,

= ln
(
f 2
a

m2
e

)
+ ln

(
1

[(1 + y)x+ (1− z)z + 1]

)
,

= 2 ln
(
fa
me

)
+ ln(1)− ln [(1 + y)x+ (1− z)z + 1] ,

= 2 ln
(
fa
me

)
− ln [(1 + y)x+ (1− z)z + 1] ,

(4.158)

this rewriting is analogous for the ΛQCD term. For clarity, let’s focus on the integration of
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the first term:

E

N

∫ 1

0
dxdydz δ(x+ y + z − 1)

[
2 ln

(
fa
me

)
− ln [(1 + y)x+ (1− z)z + 1]

]

=E

N

∫ 1

0
dxdy

[
2 ln

(
fa
me

)
− ln [(1 + y)x+ (1− (1− x− y))(1− x− y) + 1]

]
,

=E

N

∫ 1

0
dxdy

[
2 ln

(
fa
me

)
− ln [x+ xy + (x+ y)(1− x− y) + 1]

]
,

=E

N

∫ 1

0
dxdy

[
2 ln

(
fa
me

)
− ln

[
x+ xy + x+ y − x2 − xy − xy − y2 + 1

]]
,

=E

N

∫ 1

0
dxdy

[
2 ln

(
fa
me

)
− ln

[
−x2 − y2 − xy + 2x+ y + 1

]]
,

(4.159)

since the integration is from 0 to 1, it is clear that the second log term is negligible in
comparison to the other. Therefore, we get:

2E
N

[
ln
(
fa
me

)] ∫ 1

0
dxdy = 2E

N

[
ln
(
fa
me

)] ∫ 1

0
dx

∫ 1−x

0
dy ,

= 2E
N

[
ln
(
fa
me

)] ∫ 1

0
dx y

∣∣∣∣∣
1−x

0
,

= 2E
N

[
ln
(
fa
me

)] ∫ 1

0
dx 1− x ,

= 2E
N

[
ln
(
fa
me

)]x∣∣∣∣∣
1

0
− x2

2

∣∣∣∣∣
1

0

 ,

= 2E
N

[
ln
(
fa
me

)](
1− 1

2

)
,

= E

N
ln
(
fa
me

)
,

(4.160)

Finally, including both cutoff logs, we reach the final result:

iM = −3iα2Nme

2π2fa
u(p3)

[
E

N
ln fa
me

− 2
3

4 + z + w

1 + z + w
ln ΛQCD

me

]
iγ5u(p1) , (4.161)

Note that we have returned to the original z, w notation, since the integration over x, y, z
is already performed.

The divergent part of the diagram corresponds to a term in the low-energy effective
lagrangian:

L ⊃ 3α2Nme

2π2fa

[
E

N
ln fa
me

− 2
3

4 + z + w

1 + z + w
ln Λ
me

]
aeiγ5e , (4.162)

this expression is valid only for on-shell electrons.

gae = 3α2Nme

2π2fa

[
E

N
ln fa
me

− 2
3

4 + z + w

1 + z + w
ln Λ
me

]
(4.163)
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Numerically, for fa ≈ 1012 GeV, Λ = 1 GeV, E/N = 8/3 and N = 1, it corresponds
to

|X ′e| = 10−3 , (4.164)

in (4.83).

4.7 Coupling to nucleons
Consider the axion current given by (4.62) but in a form where the axion does not

mix with the NG boson y:

ja
′

µ = j′PQµ −N(1 + z + w)−1(uγµγ5u+ zdγµγ5d+ wsγµγ5s) , (4.165)

where j′PQµ is defined in (4.80). Explicitly writing this expression, we obtain:

ja
′

µ = fa∂µa
′ +

∑
i

X ′iψiγµγ5ψi

−N(1 + z + w)−1(uγµγ5u+ zdγµγ5d+ wsγµγ5s) ,

= fa∂µa
′ +X ′uuγµγ5u+X ′ddγµγ5d+X ′ssγµγ5s

−N(1 + z + w)−1(uγµγ5u+ zdγµγ5d+ wsγµγ5s) ,

= fa∂µa
′ +

(
X ′u −

N

1 + z + w

)
uγµγ5u+

(
X ′d − z

N

1 + z + w

)
dγµγ5d

+
(
X ′s − w

N

1 + z + w

)
sγµγ5s .

(4.166)

Given that the coupling is to nucleons and not any strange quark-composed baryon, it is
reasonable to eliminate the last term above. This simplifies the expression to:

ja
′

µ = fa∂µa
′ +

(
X ′u −

N

1 + z + w

)
uγµγ5u+

(
X ′d − z

N

1 + z + w

)
dγµγ5d . (4.167)

Now, let’s express it in terms of the isoscalar and isovector components, j0
µ and j3

µ, defined
as:

j0
µ = 1

2uγµγ5u+ 1
2dγµγ5d ,

j3
µ = 1

2uγµγ5u−
1
2dγµγ5d .

(4.168)

The process unfolds as follows:

ja
′

µ = fa∂µa
′ +

(
X ′u −

N

1 + z + w

)
(j0
µ + j3

µ) +
(
X ′d − z

N

1 + z + w

)
(j0
µ − j3

µ) ,

= fa∂µa
′ +

(
X ′u −

N

1 + z + w

)
j0
µ +

(
X ′d − z

N

1 + z + w

)
j0
µ

+
(
X ′u −

N

1 + z + w

)
j3
µ −

(
X ′d − z

N

1 + z + w

)
j3
µ ,

= fa∂µa
′ +

(
X ′u +X ′d −

1 + z

1 + z + w
N
)
j0
µ +

(
X ′u −X ′d −

1− z
1 + z + w

N
)
j3
µ .

(4.169)
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To translate these coefficients of j0
µ and j3

µ into the couplings, one must utilize the
Goldberger-Treiman relation [59]:

F (0) = −mN

2π2

√
2gπNNgA

J

1 + (g2
πNN

/4π)(2J/π) , (4.170)

where J is the following integral:

J =
∫ ∞

0
dk

k2

(k2 +m2
N)3/2 cosφ(k) exp

{
2
π

∫ ∞
0

dk′ k′φ(k′)
(

1
k′2 − k2 −

1
k′2 −m2

N

)}
,

(4.171)
where the specific details are not crucial for our purposes, as a more modern notation for
this relation is available [60]:

gAπNNmN = fagaNN . (4.172)

This relation connects four phenomenological/non-perturbative QCD+axion constants:
the pion-nucleon axial coupling gAπNN , the nucleon mass mN , the axion decay constant
fa, and gaNN , the axion-nucleon coupling.

First, let’s define the nucleon doublet as:

N =
p
n

 . (4.173)

The effective lagrangian Leff is given by:

L ⊃ aN(g0 + g3τ3)iγ5N , (4.174)

where τ3 is a Pauli matrix in isospin space, and the coefficients g0 and g3 are given by:

g0 =
(
X ′u +X ′d −

1 + z

1 + z + w
N
)

(−gA0πNN)(mN/fa) ,

g3 =
(
X ′u −X ′d −

1− z
1 + z + w

N
)

(−gA3πNN)(mN/fa) ,
(4.175)

where gA3πNN is the axial isovector pion-nucleon coupling, which is experimentally mea-
sured to be −1.25 and quark models arguments [61] suggest gA0πNN = 3

5gA3πNN .

The axion-nucleon coupling is given by:

gaNN = g0 + g3τ3 . (4.176)

In the KSVZ model, where no regular Standard Model particle has PQ charge (X ′u =
X ′d = 0), the axion still exhibits a substantial coupling to nucleons. In the DFSZ model,
we have N = 6, X ′u +X ′d = 2, and X ′u −X ′d = 2 cos 2β, which also results in a substantial
coupling to nucleons.
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5 Solar Axion Production

Now that we have established the two crucial parameters governing axion pro-
duction, namely gae and gaγγ, we are prepared to delve into the examination of axion
production. Our primary focus will be on elucidating the Sun’s role as a potent source of
axions.

Acquiring a precise understanding of the solar axion flux is crucial for any experi-
ment with the goal of detecting solar axions. This knowledge is paramount in designing
experiments that are not only sensitive but also finely tuned to detect solar axion particles.

The fundamental concept revolves around stars being powerful sources of weakly
interacting particles, such as neutrinos, gravitons, hypothetical axions, and other new
particles that can be produced by nuclear reactions or by thermal processes in the stellar
interior. Even when this particle flux cannot be directly measured, the properties of
stars would undergo changes if they were to lose too much energy into a new channel.
Additionally, this excess of energy loss would directly impact stellar evolution. This
“energy-loss argument” has been extensively employed to constrain a diverse array of
particle properties. In our case, we focus on the resulting constraints for invisible axions,
and these constraints are summarized in Table.1.

Couplings bounds
Coupling Bound Observable
gaγγ < 0.65 × 10−10 GeV−1

(95% C.L.)
HB/RG stars in 39 GCs [62]

gae < 2.6× 10−13 (95% C.L.) WD cooling + RGB tip M5 +
HB/RG in GCs [63]

gap < 0.9× 10−9 SN1987A ν-pulse duration [64]
gan < 0.8× 10−9 Neutron star cooling [65]
gan < 0.5× 10−9 CAS A NS cooling [63,66]
gaγN < 3× 10−9 GeV−2 SN1987A ν-pulse duration [67]

Table 1 – Main astrophysical bounds on ALPs coupled to photons, electrons, protons and
neutrons. HB (Horizontal Branch) and RG (Red Giant) bounds are valid for
masses ma . 10 keV, WD (White Dwarf) for ma . 1 keV, SN (Solar Neutrino)
and NS (Neutron Star) require ma . 1 MeV [68].
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Figure 7 – Primakoff Conversion [72]

5.1 Axion production from gaγγ

5.1.1 Axion-photon oscillation

One of the pivotal processes in axion production is the axion-photon oscillation,
commonly referred to as Primakoff conversion. In this mechanism, a photon undergoes
conversion into an axion, a phenomenon facilitated by the presence of a strong external
magnetic field.

The Primakoff conversion is governed by the axion-two-photon coupling, denoted
as gaγγ . This process takes precedence in hadronic axion models, such as the KSVZ model,
where the axion-electron coupling gae is absent at the tree-level. Due to this characteristic
and its simplicity as a mode of axion production, Primakoff conversion historically emerged
as the foremost process and has been extensively explored in previous studies (see, for
example, [69–71]).

This process is represented by the Feynman diagram shown in Figure 7. To initiate
the investigation of this mechanism, we start with the axion-photon effective lagrangian
previously employed in this work:

Laγγ = −1
4FµνF

µν + 1
2∂µa∂

µa− 1
2m

2
aa

2 − 1
4gaγγaFµνF̃

µν . (5.1)

To calculate the oscillation probability, we begin by deriving the classical equations of
motion for the axion and vector fields:

∂Laγγ
∂a

− ∂µ
∂Laγγ
∂(∂µa) = 0 ,

∂Laγγ
∂Aν

− ∂µ
∂Laγγ
∂(∂µAν)

= 0 .
(5.2)

Solving these equations yields:

(∂µ∂µ +m2
a)a = −1

4gaγγFµνF̃
µν = gaγγ ~E · ~B , (5.3)

∂µF
µν = −gaγγF̃ µν∂µa , (5.4)

where ~E is the electric field generated by the photon, and ~B is the external magnetic field
oriented in the ŷ direction, i.e., ~B = Bŷ.
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Considering that the photon is polarized in the ŷ direction and propagates in the ẑ
direction, the total magnetic field is a combination of the photon’s magnetic field and the
external magnetic field. Thus, the dual field strength tensor can be expressed as [73,74]:

F̃ µν =


0 −Bx −(By +Bext) −Bz

Bx 0 Ez −Ey
(By +Bext) −Ez 0 Ex

Bz Ey −Ex 0

 . (5.5)

If we consider Bext to be much stronger than the photon magnetic field, the
expression in (5.5) can be approximated as [75–78]:

F̃ µν =


0 0 −B 0
0 0 0 0
B 0 0 0
0 0 0 0

 , (5.6)

where the external magnetic field Bext is simply denoted as B for clarity. Expressing the
electric field in terms of the vector potential ~E = −∂ ~A

∂t
and considering the established

direction for the external magnetic field, (5.3) becomes:

(∂µ∂µ +m2
a)a = −gaγγB

∂Ay
∂t

. (5.7)

Now, using (5.6), it is evident that the only non-zero component is F̃ 02. Therefore, the
right-hand side of (5.4) becomes −gaγγB ∂a

∂t
.

On the other hand, for ν = 2, the left-hand side of (5.4) is ∂µF µ2, where F µ2 =
∂µA2 − ∂2Aµ. Using the Coulomb gauge, ∂µAµ = 0, we obtain:

∂µF
µ2 = ∂µ(∂µA2 − ∂2Aµ) ,

= ∂µ∂
µA2 .

(5.8)

Thus, (5.4) can be expressed as:

∂µ∂
µAy = gaγγB

∂a

∂t
. (5.9)

Equations (5.7) and (5.9) describe the behavior of the axion and of the potencial vector
on the inside of the system.

Given that the photon’s propagation direction aligns with ẑ and the magnetic
field variations exhibit higher-order magnitudes compared to the photon wavelength, the
solutions to these equations adopt a specific form [75–78]

~A(z, t) = Ax(z, t)x̂+ Ay(z, t)ŷ , (5.10)
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a(z, t) = a(z)ei(kz−ωt) , (5.11)

where,
Ax(z, t) = A⊥(z)ei(kz−ωt) , (5.12)

Ay(z, t) = A‖(z)ei(kz−ωt) , (5.13)

depicting the components of ~A that are parallel and perpendicular to the external magnetic
field, k is the wave vector, and ω is the wave frequency.

Substituting (5.11) and (5.13) into (5.7), we arrive at the following coupled equa-
tions:

(∂µ∂µ +m2
a)a(z)ei(kz−ωt) = −gaγγB

∂A‖(z)ei(kz−ωt)
∂t

,

(−ω2 − ∂2
z +m2

a)a(z)ei(kz−ωt) = igaγγωBA‖(z)ei(kz−ωt) ,
(5.14)

leading to the derived equation:

(ω2 + ∂2
z −m2

a)a(z, t) + igaγγωBAy(z, t) = 0 . (5.15)

Applying a similar procedure as in (5.9), we obtain:

(ω2 + ∂2
z )Ay(z, t)− igaγγωBa(z, t) = 0 , (5.16)

both equations (5.15) and (5.16) can be compactly expressed as:(ω2 + ∂2
z )I +

 0 −igaγγωB
igaγγωB −m2

a

Ay(z, t)
a(z, t)

 = 0 . (5.17)

Establishing w2 + ∂2
z = (ω + i∂z)(ω − i∂z), and utilizing the expression

(ω − i∂z)
Ay(z, t)
a(z, t)

 = (ω + k)
A‖(z)
a(z)

 ∼= 2ω
A‖(z)
a(z)

 , (5.18)

where we made the approximation ω + k ∼= 2ω [75], we can apply it to (5.17):2ω(ω + i∂z)I +
 0 −igaγγωB
igaγγωB −m2

a

A‖(z)
a(z)

 = 0 , (5.19)

which further simplifies to:i∂zI +
 ω −1

2igaγγB
1
2igaγγB ω − m2

a

2ω

A‖(z)
a(z, )

 = 0 . (5.20)

This yields a Schrödinger-like equation for a wave-function represented as:

|Ψ(z)〉 =
A‖(z)
a(z, )

 , (5.21)
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which evolves over a distance z through the evolution operator U(z), described by the
equation:

|Ψ(z)〉 = U(z) |ψ(0)〉 , (5.22)

where |ψ(0)〉 is the initial state of the photon, U(z) = eiKz, and K is given by:

K =
 ω −1

2igaγγB
1
2igaγγB ω − m2

a

2ω

 . (5.23)

With equation (5.20) at our disposal, we can compute the photon-to-axion oscillation
probability using the expression:

Pγ→a = 〈Ψ(z)|a〉 〈a|Ψ(z)〉 . (5.24)

Given that the initial photon state is represented by |ψ(0)〉 =
∣∣∣A‖〉, such that |Ψ(z)〉 =

U(z)
∣∣∣A‖〉, (5.24) can be expressed as:

Pγ→a = | 〈a|U(z)
∣∣∣A‖〉 |2 . (5.25)

To determine the probability, we need the evolution operator in terms of the eigenstates∣∣∣A‖〉 and |a〉. This involves obtaining the eigenvalues and eigenstates of the K matrix
(5.23) by diagonalizing it. The procedure begins with solving the characteristic equation:

det |K − λI| = 0 , (5.26)

where λ are the eigenvalues of K. This leads to the following:

det
 ω − λ −1

2igaγγB
1
2igaγγB ω − m2

a

2ω − λ


= (ω − λ)

(
ω − m2

a

2ω − λ
)
−
(1

2igaγγB
)(
−1

2igaγγB
)
,

= ω2 − ωm
2
a

2ω − ωλ− ωλ+ m2
a

2ω λ+ λ2 − 1
4g

2
aγγB

2 ,

= λ2 − 2ωλ+ m2
a

2ω λ+ ω2 − m2
a

2 −
1
4g

2
aγγB

2 ,

= λ2 + λ

(
m2
a

2ω − 2ω
)

+ ω2 − m2
a

2 −
1
4g

2
aγγB

2 .

= 0

(5.27)

Now, we solve the quadratic equation for λ, and the solution is:

∆ =
(
m2
a

2ω − 2ω
)2

− 4(1)
(
ω2 − m2

a

2 −
1
4g

2
aγγB

2
)
,

= m4
a

4ω2 − 2m2
a

2ω
2ω + 4ω2 − 4ω2 + 2m2

a + g2
aγγB

2 ,

= m4
a

4ω2 + g2
aγγB

2 ,

(5.28)
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Let’s redefine ∆ for convenience as:

∆′ = 4ω2∆ ,

= m4
a + 4ω2g2

aγγB
2 .

(5.29)

Solving it for λ gives us:

λ± =
−
(
m2
a

2ω − 2ω
)
±
√

∆′
2ω

2 ,

= ω − m2
a

4ω ±
√

∆′
4ω .

(5.30)

After calculating the previous determinant and solving the characteristic equation, we
find the eigenvalues of K which are given by:

λ± = ω − m2
a

4ω ±
√

∆′
4ω . (5.31)

Now, let’s proceed to find the corresponding eigenstates:

• For λ+ = ω − m2
a

4ω +
√

∆′
4ωω − ω + m2

a

4ω +
√

∆′
4ω −1

2igaγγB
1
2igaγγB ω − m2

a

2ω − ω + m2
a

4ω +
√

∆′
4ω

∣∣∣A‖〉
|a〉

 =
0

0

 ,

m2
a

4ω +
√

∆′
4ω −1

2igaγγB
1
2igaγγB −m2

a

4ω +
√

∆′
4ω

∣∣∣A‖〉
|a〉

 =
0

0

 ,

(5.32)

which gives us two equations:(
m2
a

4ω +
√

∆′
4ω

) ∣∣∣A‖〉− 1
2igaγγB |a〉 = 0 ,

1
2igaγγ

∣∣∣A‖〉+
(
−m

2
a

4ω +
√

∆′
4ω

)
|a〉 = 0 ,

(5.33)

multiplying both by 4ω gives:(
m2
a +
√

∆′
) ∣∣∣A‖〉− 2iωgaγγB |a〉 = 0 ,

2iωgaγγ
∣∣∣A‖〉+

(
−m2

a +
√

∆′
)
|a〉 = 0 .

(5.34)

• For λ− = ω − m2
a

4ω −
√

∆′
4ω , similarly we find:(

m2
a −
√

∆′
) ∣∣∣A‖〉− 2iωgaγγB |a〉 = 0 ,

2iωgaγγ
∣∣∣A‖〉+

(
−m2

a −
√

∆′
)
|a〉 = 0 .

(5.35)

We obtain the non-normalized eigenvectors as:

|λ+〉 =
(
m2
a +
√

∆′
) ∣∣∣A‖〉+ 2iωgaγγB |a〉 ,

|λ−〉 =
(
m2
a −
√

∆′
) ∣∣∣A‖〉+ 2iωgaγγB |a〉 ,

(5.36)
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The normalization proceeds as follows, taking into account the complex nature of the
vectors:

|| |λ+〉 || =
[
(m2

a +
√

∆′)2 + (−2ωgaγγB)2
]1/2

,

=
[
m4
a + 2m2

a

√
∆′ + ∆′ + 4ω2g2

aγγB
2
]1/2

,

=
[
m4
a + 2m2

a

√
∆′ + ∆′ + ∆′ −m4

a

]1/2
,

=
[
2
(
∆′ +m2

a

√
∆′
)]1/2

,

(5.37)

note that we used (5.29) in the third line. The normalization for |λ−〉 is analogous.
Therefore, we finally have the normalized eigenvectors:

|λ+〉 = 1[
2
(
∆′ +m2

a

√
∆′
)]1/2 [(m2

a +
√

∆′
) ∣∣∣A‖〉+ 2iωgaγγB |a〉

]
,

|λ−〉 = 1[
2
(
∆′ −m2

a

√
∆′
)]1/2 [(m2

a −
√

∆′
) ∣∣∣A‖〉+ 2iωgaγγB |a〉

]
,

(5.38)

which correspond to the eigenvectors that compose the matrix that diagonalizes K.

Recognizing that the evolution operator is diagonal in this basis, we can express it
in terms of the eigenstates of the matrix K as:

U(z) = eiKz = eiKz(|λ+〉 〈λ+|+ |λ−〉 〈λ−|) ,

= eiλ+z |λ+〉 〈λ+|+ eiλ−z |λ−〉 〈λ−| ,
(5.39)

where we used the fact that |λ+〉 〈λ+|+ |λ−〉 〈λ−| = 1 and K |λ±〉 = λ± |λ±〉.

Substituting (5.38) into (5.39), the operator can be expressed as:

U(z) = eiλ+z

2
(
∆′ +m2

a

√
∆′
) [(m2

a +
√

∆′)2
∣∣∣A‖〉 〈A‖∣∣∣

− 2iωgaγγB(m2
a +
√

∆′)
∣∣∣A‖〉 〈a|

+2iωgaγγB(m2
a +
√

∆′) |a〉
〈
A‖
∣∣∣+ 4ω2g2

aγγB
2 |a〉 〈a|

]
+ eiλ−z

2
(
∆′ −m2

a

√
∆′
) [(m2

a −
√

∆′)2
∣∣∣A‖〉 〈A‖∣∣∣

− 2iωgaγγB(m2
a −
√

∆′)
∣∣∣A‖〉 〈a|

+2iωgaγγB(m2
a −
√

∆′) |a〉
〈
A‖
∣∣∣+ 4ω2g2

aγγB
2 |a〉 〈a|

]
,

(5.40)

thus, the oscillation probability given in (5.25) becomes (note that
∣∣∣A‖〉 and |a〉 are
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orthogonal):

Pγ→a = | 〈a|U(z)
∣∣∣A‖〉 |2 ,

=

∣∣∣∣∣∣ eiλ+z

2
(
∆′ +m2

a

√
∆′
)2iωgaγγB(m2

a +
√

∆′)

+ eiλ−z

2
(
∆′ −m2

a

√
∆′
)2iωgaγγB(m2

a −
√

∆′)

∣∣∣∣∣∣
2

,

= ω2g2
aγγB

2
∣∣∣∣∣ 1√

∆′

[(
m2
a +
√

∆′√
∆′ +m2

a

)
eiλ+z +

(
m2
a −
√

∆′√
∆′ −m2

a

)
eiλ−z

]∣∣∣∣∣
2

,

=
ω2g2

aγγB
2

∆′
∣∣∣eiλ+z − eiλ−z

∣∣∣2 ,

=
2ω2g2

aγγB
2

∆′ [1− cos [(λ+ − λ−)z]] ,

=
4ω2g2

aγγB
2

∆′ sin2
[ (

λ+ − λ−
2

)
z

]
.

(5.41)

Using (5.31), we have:

λ+ − λ− =
√

∆′
2ω , (5.42)

thus, the oscillation probability becomes:

Pγ→a =
4ω2g2

aγγB
2

∆′ sin2
(√

∆′
4ω z

)
, (5.43)

which can be further rewritten using the definition of ∆′ = m4
a + 4ω2g2

aγγB
2, leading to:

Pγ→a =
4ω2g2

aγγB
2

m4
a + 4ω2g2

aγγB
2 sin2


√
m4
a + 4ω2g2

aγγB
2

4ω z

 ,

=
(

m4
a

4ω2g2
aγγB

2 + 1
)−1

sin2

gaγγBz
2

(
m4
a

4ω2g2
aγγB

2 + 1
)1/2

 ,

(5.44)

in such a way that for m2
a

2ωgaγγB � 1, an approximation that deals with the fact that the
external magnetic field is much stronger than the parameters of the fields a and ~A, the
term

(
m4
a

4ω2g2
aγγB

2 + 1
)
∼ 1. Thus, the oscillation probability can be approximated as:

Pγ→a ∼= sin2
(
gaγγB

2 z
)
. (5.45)

Given the significant suppression of axion production via gaγγ compared to production via
gae (see Fig.13), our focus lies in approximating the oscillation using experimental param-
eters. Helioscopes, being the foremost detection technique for solar axions, often provide
these parameters. For instance, assuming the axion-photon coupling is approximately
gaγγ ∼ 10−13 GeV−1, the external magnetic field of order B ∼ 10 T and the path distance
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of order z ∼ 15 m, which are values commonly present in axion detection experiments like
helioscopes and haloscopes [79–84], we can further approximate with sin θ ∼ θ and find:

Pγ→a =
g2
aγγB

2

4 z2 . (5.46)

Note that the probability depends on the axion-photon coupling, the intensity of the
external magnetic field, and the path distance submerged in the magnetic field.

5.2 Axion production from gae

The axion-electron coupling, distinct from the axion-two-photons coupling, governs
a series of reactions, which hold significant importance and completely overshadow the
Primakoff flux in non-hadronic models like the DFSZ. Among these, the most notable
are the ABC reactions: Atomic axio-recombination [85–87] and Atomic axio-deexcitation,
axio-Bremsstrahlung in electron-Ion [70, 88, 89] or electron-electron collisions [70] and
Compton scattering [90–92]. These reactions play a dominant role in the solar axion flux
in non-hadronic models such as the DFSZ.

As mentioned earlier, the historical emphasis on the Primakoff reaction can be
attributed in part to the formidable challenge posed by the comprehensive calculation of
contributions to the ABC reactions. Unlike the Primakoff effect, the solar composition
now emerges as a crucial factor influencing the axion flux, adding more complexity to the
calculations.

Initially, it might seem evident that e− + I and e−e− bremsstrahlung processes
dominate the flux from gae, given that hydrogen constitutes 74% and helium 24% of the
photospheric mass fraction of the Sun [93]. This conclusion is supported by previous
studies [70], emphasizing the prevalence of these processes over others. Additionally, the
A processes are primarily relevant for metallic ions, which are much less abundant than
hydrogen, helium, and electrons [93].

However, a 1986 study by Dimopoulos [86] revealed that axio-recombination cross-
sections are, in fact, much larger than those for Compton scattering and bremsstrahlung,
partially compensating for the lower abundance of metal ions. Initial estimates, nonetheless,
deemed the axio-recombination flux to be largely subdominant [86]. A subsequent work
by Pospelov [87] highlighted that the axio-recombination had been underestimated by
a factor of 1/2. This indicates that there were indications of an underestimation of the
axio-recombination flux, and, furthermore, axio-deexcitation had not even been considered
at that time.

Confronting this challenge, Redondo [72] took on the task of reevaluating the A
processes flux of solar axions, providing a new estimate for the total solar axion flux. In
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the following pages, we will delve into the logic and physics employed by Redondo in this
endeavor.

The calculation of the A processes, axio-deexcitation and recombination, which
are the atomic reactions, involves a comprehensive understanding of the energy levels
and occupation probabilities of numerous atomic states for each nucleus inside the Sun,
and then computing cross-sections and transition probabilities. This is a whole field of
research in astrophysics, considering analogous processes for photons. Directly addressing
this problem may seem like a Herculean task.

Redondo’s paper, however, provides immense value by asserting that this monu-
mental effort is not necessary. Instead, he demonstrates that we already possess all the
necessary ingredients to calculate the total solar axion flux. These crucial ingredients
include:

• Analogous Cross Section: The spin-averaged differential cross section for axion
emission in an atomic transition is proportional to the photon analogous cross-section
in the same transition. This establishes a direct relation between axion and photon
production rates as functions of energy (ω):

ΓPa (ω) ∝ ΓPγ (ω) , (5.47)

where ΓP (ω) are the production rates.

• Detailed Balance in Thermal Equilibrium: In a plasma in thermal equilibrium,
the rates of photon absorption (ΓAγ ) and production (ΓPγ ) are related by detailed
balance.

• Photon Absorption Coefficients: Extensively researched due to their central role
in stellar evolution and plasma diagnosis, photon absorption coefficients (radiative
opacities) have available libraries of monochromatic opacities for various nuclei
across a wide range of temperatures and densities. These opacities facilitate the
understanding of photon behavior in different astrophysical environments.

The procedural sequence unfolds as follows:

1. Calculate Photon Absorption Rates: Employ the data from the radiative
opacity libraries to compute photon absorption rates for any specific location within
the Sun. This step provides insights into how photons are absorbed at different
depths and temperatures.
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2. Determine Photon Production Rates: With the correlated relation between
photon production and absorption, extract the photon production rates as a function
of energy.

3. Apply Proportionality to Axion Production Rates: Exploit the proportion-
ality relationship between photon and axion production rates. This allows the
derivation of axion production rates based on the established photon production
rates.

4. Obtain Axion Flux: Through the above steps, calculate the axion flux—quantifying
the abundance of axions produced within the Sun.

The next section delves deeper into the theoretical framework that underpins each
of these logical steps, offering a more comprehensive understanding of the entire process.

5.2.1 Calculating ABC process from radiative opacities

In this section, we delve into the theoretical framework enabling us to leverage
monochromatic opacities for the calculation of the total ABC axion flux. Our exploration
commences with the interaction lagrangians governing the interactions of axions and
photons with electrons:

Laee = gae
∂µa

2me

ψeγ
µγ5ψe ≡ −igaeaψeγ5ψe ,

Lγee = eAµψeγ
µψe ,

(5.48)

where gae is the Yukawa axion-electron coupling, a parameter quantifying the strength of
the axion-electron interaction, which we calculated at tree and one-loop level on the last
chapter.

The axion production rate is expressed through the equation:

dNa

dV dt
=
∫ d3k

(2π)3 ΓPa (ω) ,

=
∫ ∞

0

ω2dω

(2π)2 ΓPa (ω) ,
(5.49)

where Na is the number of axions, V is the volume, t is time, and ΓPa (ω) is the sum of
the axion production rate resulting from each ABC process. The distinct contributions
include (I represents ions, the I∗ indicates that its electron is excited):

• A processes:

(bb) Atomic axio-deexcitation, or bound-bound electron transition

I∗ → I + a
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Figure 8 – Atomic axio-deexcitation [72]

(fb) Atomic axio-recombination, also know as electron capture or free-bound electron
transition

e+ I → I− + a

Figure 9 – Atomic axio-recombination [72]

• B processes:

(ee) electron-electron bremsstrahlung

e+ e→ e+ e+ a

Figure 10 – e-e bremsstrahlung [72]

(ff) electron-Ion bremsstrahlung, also known as free-free electron transition

e+ I → e+ I + a

• C process:
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Figure 11 – e-I bremsstrahlung [72]

Figure 12 – Compton [72]

(C) Compton-like scattering
e+ γ → e+ a

Hence, the total axion production rate is given by:

ΓPa (ω) = ΓP,ffa (ω) + ΓP,fba (ω) + ΓP,bba (ω) + ΓP,Ca (ω) + ΓP,eea (ω) . (5.50)

When discussing photon opacities, the specific absorption coefficient k(ω) is determined
by the energy transport equation:

dIω
ds = −k(ω)Iω + j(ω) , (5.51)

this equation governs the sourcing and damping of radiation with specific intensity Iω
along a line of sight within the plasma, where j(ω) is the source of the radiation [94]. The
radiative opacity κ(ω) is then defined as the absorption coefficient per unit mass of target:

κ(ω) = k(ω)
ρ

, (5.52)

with ρ being the density of the medium.

In the solar interior, the absorption coefficient k(ω) receives contributions analogous
to the ABC processes but time-reversed and involving photons instead of axions: free-free,
free-bound, and bound-bound electronic atomic transitions, which are the true absorption
processes, and Compton scattering. Notably, electron-electron bremsstrahlung is not
considered in the absorption coefficient [72]. The equation for k(ω) is thus:

k(ω) =
(
ΓA,ffγ (ω) + ΓA,bfγ (ω) + ΓA,bbγ (ω)

)
(1− e−ω/T ) + ΓA,Cγ (ω) , (5.53)
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where (1− e−ω/T ) corrects for stimulated emissions in thermal equilibrium and applies
only to the true absorption processes.

Each ΓAγ depends on the density of different atomic species nZ and temperature T
and requires a substantial numerical calculation for its computation. For example, the
absorption rate for the bound-free transition can be calculated as:

ΓA,bfγ =
∑
Z

nZ
∑
s

rsσ(γ + Zs → Zs′ + e−) , (5.54)

where nZ are the densities of atoms of nuclear charge Z, rs the fraction of these atoms in
state s and σ(γ + Zs → Zs′ + e−) is the total cross-section for this ionization process.

The calculation of rs is rather complicated, involving the solution of the atomic
structure in a relatively dense medium. It requires solving the Saha equation, which
is an expression that relates the ionization state of a gas in thermal equilibrium to
the temperature and pressure, for the ionization fraction and computing the partition
functions for the probability of initial states for each atom. In addition, the cross section
must account for the non-trivial atomic structure, electrostatic screening, Coulomb wave
functions in the final states when applicable, and other complexities. The remarkable
achievement in Redondo’s work [72] was avoiding this formidable task for axions.

As we are not required to perform these intricate calculations directly for axions,
we can leverage photon opacities available in scientific databases. Photon opacities play a
crucial role in stellar evolution and plasma physics, leading to their routine calculation and
refinement. Several opacity databases are publicly accessible, but only a few provide the
monochromatic opacities (opacities specified by frequency), with a notable mention of the
Opacity Project (OP) (https://cds.unistra.fr//topbase/) and the Los Alamos Light Ele-
ment Detailed Configuration OPacity code (LEDCOP) (https://aphysics2.lanl.gov/apps/).

The subsequent step involves establishing a relation between photon absorption
rates and photon production rates, enabling the incorporation of photon opacities into
our calculation. In thermal equilibrium, the rates of reactions and their inverses are linked
by detailed balance, as expressed by the equation:

ΓA,pγ (ω) = eω/TΓP,pγ (ω) . (5.55)

A critical aspect for the overall argument and calculation is that this relationship holds
for each process individually. It’s essential to note that ΓP,iγ (ω) is the production rate of
photons per phase-space volume averaged over polarizations. This implies that the total
rate is 2× ΓP,iγ (ω), accounting for each of the two photon polarization states.

5.2.2 Relations between photon and axion emission processes

To achieve the goal of expressing ΓPa in terms of ΓPγ , specific relations need to
be established for each process under consideration. This task requires a case-by-case



Chapter 5. Solar Axion Production 105

analysis, as the dependencies vary depending on the particular process involved.

1. ff, fb, bb
To establish the relationship between the matrix elements for processes involv-
ing the emission of an axion/photon during an atomic transition ei → ef , a key
proportionality can be defined [85,87,95]:∑

si,sf |M(ei → ef + a)|2
1
2
∑
ε

∑
si,sf |M(ei → ef + γ)|2 = 1

2
g2
ae

e2
ω2

m2
e

. (5.56)

This equality is contingent on three fundamental approximations: 1) nonrelativistic
expansion of the interaction hamiltonians. 2) The separability of initial and final
states in spatial and spin wave functions. 3) The use of a multipole expansion for
M.

The photon emission can be well described by the electric dipole approximation
(eik̂·X̂ ≈ 1):

〈f |Hγ
I |i〉 ∼ −2e 〈f | ei~k·X̂

(
~ε · P̂ + iŜ · (~k × ~ε)

)
|i〉 ,

∼ −2e 〈f |
(
~ε · P̂

)
|i〉 ,

= −2iemeω 〈f |
(
~ε · X̂

)
|i〉 ,

(5.57)

where X̂, P̂ , Ŝ are the electron’s position, momentum, and spin operators, respec-
tively.

For the axion emission, one needs to retain one more order:

〈f |Ha
I |i〉 ∼ −2gae 〈f | ei

~k·X̂
(
~k · P̂ − ω

me

P̂ × Ŝ
)
|i〉 ,

∼ −2gaeω2i 〈f |
(
(n̂ · X̂)(n̂ · Ŝ)− X̂ · Ŝ

)
|i〉 ,

(5.58)

where n̂ is a unit vector in the direction of the axion momentum ~k.

The integration over the phase space of final states finds the same proportionality
as in (5.56), which applies to the emission cross-sections as well:

σ(ei + I → ef + I + a)
1
2σ(ei + I → ef + I + γ) = 1

2
g2
ae

e2
ω2

m2
e

. (5.59)

After convolving these with the appropriate densities of final states, the same
proportionality holds for thermal axion/photon emission rates:

ΓP,ia (ω)
ΓP,iγ (ω)

= 1
2
g2
ae

e2
ω2

m2
e

; i= ff, fb, bb (5.60)

because the kinematics are the same for axions and photon in the massless limit.
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Finally, we can explicitly cross-check this formula against the calculations present
in the literature for the case of free-free transitions. The photon production rate in
electron collisions with ionized nuclei of electric charge Ze and number density nZ ,
including Debye screening in the Born approximation [96], is given by:

ΓP,ffγ (ω) = α3Z2 64π2

3
√

2π
nZne√
Tm

3/2
e ω3

e−ω/TF (w, y) , (5.61)

where
F (w, y) =

∫ ∞
0

dx xe−x
2
∫ √x2+w+x
√
x2+w−x

t3dt

(t2 + y2)2 , (5.62)

with y = ks/
√

2meT , where ks is the Debye screening scale. The axion production
rate can then be translated from (5.60). We obtain:

ΓP,ffa (ω) = α2g2
aeZ

2 8π
3
√

2π
nZne√
Tm

7/2
e ω

e−ω/TF (w, y) . (5.63)

2. e-e bremsstrahlung

The cross-section of photon bremsstrahlung in e-e collisions is zero in the electric
dipole approximation because the electric dipole moment of two colliding electrons in
the center of mass is zero. Photon emission occurs at the 4-pole level, which is much
more suppressed than the e-I bremsstrahlung (free-free electron transition) [97]. As a
result, ΓP,eeγ is often neglected for the conditions of opacities in the solar interior, or
included as an O(10−3) correction to ΓP,ffγ [98]. However, for the axion case, emissions
in e-e collisions are of the same order than in e-I collision [70] and thus has to be
included. The emission rate was computed by Raffelt [70,99]:

ΓP,eea = α2g2
ae

4
√
π

3
n2
e√

Tm
7/2
e ω

e−ω/TF (w,
√

2y) , (5.64)

where F (w,
√

2y) is given by (5.62).

3. Compton scattering

In the non-relativistic limit, the cross section for the photo-production of axions in
Compton-like scattering is given by [90,100]:

σC,a = αg2
aeω

2

3m4
e

. (5.65)

Consequently, the production rate is:

ΓP,Ca (ω) = αg2
aeω

2

3m2
e

ne
eω/T − 1 . (5.66)

It’s worth noting that the cross-section for normal Compton scattering in the
non-relativistic limit is the Thomson cross-section:

σC,γ = 8πα2

3m2
e

. (5.67)
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Therefore, the production ratio for Compton-like scattering processes is given by:

ΓP,Ca (ω)
ΓP,Cγ (ω)

= f(ω)neσC,a
f(ω)ne 1

2σC,γ
,

= σC,a
1
2σC,γ

,

= αg2
aeω

2

3m4
e

6m2
e

8πα2 ,

= g2
aeω

2

m2
e

1
4πα ,

= g2
aeω

2

m2
e

4π
4πe2 ,

= g2
aeω

2

e2m2
e

.

(5.68)

It’s important to note the factor of 2 difference between the Compton and (5.60)
production rates, indicating that Compton processes are relatively more efficient
than other processes (free-free, bound-bound, and free-bound) for emitting axions
compared to the photon emission rate.

5.2.3 Total axion production rate

Finally, with all the ingredients and their expressions at our disposal, we can derive
the total axion production rate step by step. To simplify the notation, we omit the explicit
dependence on ω for clarity:

ΓPa = ΓP,ffa + ΓP,fba + ΓP,bba + ΓP,Ca + ΓP,eea ,

= 1
2
g2
aeω

2

e2m2
e

(
ΓP,ffγ + ΓP,fbγ + ΓP,bbγ

)
+ ΓP,Ca + ΓP,eea ,

(5.69)

note that we utilized (5.60) to arrive at the second line. Continuing the calculations, we
obtain:

ΓPa = 1
2
g2
aeω

2

e2m2
e

(
ΓP,ffγ + ΓP,fbγ + ΓP,bbγ

)
+ 1

2ΓP,Ca + 1
2ΓP,Ca + ΓP,eea ,

= 1
2
g2
aeω

2

e2m2
e

(
ΓP,ffγ + ΓP,fbγ + ΓP,bbγ + ΓP,Cγ

)
+ 1

2ΓP,Ca + ΓP,eea ,

(5.70)

where we have utilized (5.68) in the second line. Now, using the relation for photon
production and absorption of (5.55), we find:

ΓPa = 1
2
g2
aeω

2

e2m2
e

(
ΓA,ffγ + ΓA,fbγ + ΓA,bbγ + ΓA,Cγ

)
e−ω/T + 1

2ΓP,Ca + ΓP,eea (5.71)
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Now, to consult the photon opacities libraries, we express the total production rate in a
form that evokes (5.53). For this purpose, we obtain:

ΓPa = 1
2
g2
aeω

2

e2m2
e

(
ΓA,ffγ + ΓA,fbγ + ΓA,bbγ + ΓA,Cγ

1− e−ω/T
1− e−ω/T

)
e−ω/T + 1

2ΓP,Ca + ΓP,eea ,

= 1
2
g2
aeω

2

e2m2
e

(
ΓA,ffγ + ΓA,fbγ + ΓA,bbγ +

ΓA,Cγ

1− e−ω/T

)
e−ω/T

+ 1
2

(
1− e−ω/T

1− e−ω/T

)
ΓP,Ca + ΓP,eea ,

= 1
2
g2
aeω

2

e2m2
e

k(ω)
1− e−ω/T e

−ω/T + 1
2

(
1− 1

eω/T − 1

)
ΓP,Ca + ΓP,eea ,

= 1
2
g2
aeω

2

e2m2
e

k(ω)
eω/T − 1 + 1

2

(
eω/T − 2
eω/T − 1

)
ΓP,Ca + ΓP,eea .

(5.72)

The total solar axion flux from the Sun is obtained by integrating the total axion production
rate ΓPa times the phase space density over the volume of the Sun. This results in the
expression:

dΦa

dω = 1
4πR2

Earth

∫
Sun

dV
4πω
(2π)3 ΓPa (ω) , (5.73)

where ΓPa (ω) depends on the position in the Sun due to its reliance on local plasma
characteristics such as temperature (T ), mass density (ρ), and the mass-fraction of the
chemical element Z (XZ). The latter is taken to be dependent solely on the radial position
within the Sun and provided by a solar model.

Figure 13 – Total solar axion flux due to ABC reactions (for gae = 10−13) and to Primakoff
conversion (for gaγγ = 10−12) scaled up by a factor 50 to make it visible. The
different contributions are shown as red lines: Atomic recombination and
deexcitation (FB+BB, solid), Bremsstrahlung (FF, dot-dashed) and Compton
(dashed). [72]
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6 Solar Axion Detection

In contrast to conventional particle physics experiments, the detection of axions
necessitates unique and specialized techniques. In 1983, Sikivie [101] proposed two highly
effective methods for searching invisible axions:

• The axion heliscope: employed for the detection of solar axions.

• The axion haloscope: employed for the detection of axions from hypothetical dark
matter (DM) halos.

Despite our specific interest in solar axions, both of these experimental approaches share
a common principle: leveraging coherent effects across macroscopic distances and/or
extended durations to enhance axion detection.

Sikivie’s proposal introduced a crucial concept that, in retrospect, may seem
evident, owing partly to the manner in which this work has been presented. During that
period, the prevailing notion was that axion detection experiments entailed the production
of axions within a laboratory setting. However, Sikivie showed that we could use natural
sources of axions — namely, the Sun and the Big Bang — exploiting their inherent
efficiency and concentrating the search efforts solely on the detection phase.

Due to the exceptionally high fluxes of natural axions, helioscopes and haloscopes
typically exhibit much greater sensitivity than their purely laboratory-based counter-
parts. However, it is crucial to note that their luminosities are also susceptible to larger
uncertainties, especially in the case of DM.

Many experiments designed to investigate the effects of axion coupling to SM
particles also exhibit sensitivity to ALPs. This characteristic enables axion experiments
to uncover ALPs beyond the conventional axion, which arise quite naturally in exten-
sions of the SM. Unfortunately, the potential overlap in signals makes it challenging to
unequivocally attribute a discovery in one experiment solely to the existence of purely
QCD axions. In such instances, the necessity arises for a multitude of distinct signals to
discriminate between axions and ALPs. Despite this complication, the diverse array of
ongoing experiments and the continual emergence of new ones suggest that, in certain
scenarios, it may be feasible to distinguish and identify a discovery specifically linked to
QCD axions.

Moreover, there exists a category of low-mass, very weakly coupled particles that
share numerous theoretical and phenomenological aspects with axions and ALPs. These
particles, such as dark photons and other Weakly Interacting Slim Particles (WISPs), can
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often be investigated using the same experimental setups. It is noteworthy that the search
for ALPs through conventional High-Energy Physics (HEP) tools, such as accelerators, is
suitable only for very high masses (on the order of MeV or more), a range largely excluded
for QCD axions.

Both primary mechanisms of axion production within the solar interior, namely
Primakoff conversion and ABC reactions, yield distinct peaks in the keV range (see Fig.
13). Specifically, Primakoff conversion exhibits a peak around 3 keV, while ABC reactions
manifest a peak at approximately 1 keV.

6.1 Axion Helioscopes
The axion helioscope stands out as the primary technique for the exploration

of solar axions, relying on the conversion of axions into X-ray photons within powerful
laboratory magnets. This conversion process, known as the inverse Primakoff conversion
or axion-photon oscillation, represents the reverse of the process outlined in (5.1.1).
Consequently, the detection hinges on the coupling parameter gaγγ.

In helioscopes, the standard approach involves considering only the Primakoff
component of the solar axion flux. This choice maintains broad generality across models
and yields significant constraints on gaγγ across a wide range of masses. It is noteworthy
that all helioscope experiments conducted to date were conceived prior to Redondo’s work
on the ABC flux [72]. By focusing solely on the Primakoff component, the total solar
axion flux can be found in Fig.14

It is crucial to note that signals from non-Primakoff axions in helioscopes depend
on the corresponding product of couplings, and typically, they do not pose a challenge to
astrophysical limits. However, this scenario may undergo a transformation in the near
future, as anticipated improvements in experimental sensitivities, as seen in upcoming
helioscopes like IAXO, are expected to surpass astrophysical limits on gae. This opens
up the exciting prospect of probing a compelling set of non-hadronic models, such as the
DFSZ model.

6.1.1 Intricacies of the axion helioscope

Utilizing the aγγ vertex once again, solar axions can efficiently convert back into
photons in the presence of a strong magnetic field. When the background field is static,
the energy of the reconverted photon matches that of the incoming axion, resulting in an
anticipated flux of detectable X-rays with energies in the range of a few keV. In (5.1.1),
we computed the probability of photon-to-axion conversion in a transverse magnetic field
B over a length z. It is crucial to recognize that, via crossing symmetry, the probability
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Figure 14 – Solar axion flux spectra at Earth by the most generic situation in which
only the Primakoff conversion of plasma photons into axions is assumed (for
gaγγ = 10−12) [102].

of axion-to-photon conversion is the same as photon-to-axion:

P (a→ γ) = P (γ → a) . (6.1)

A commonly referenced formula for helioscopes is provided in [101,103,104]:

P (a→ γ) = 2.6× 10−17
(

gaγγ
10−10GeV−1

)2 ( B

10T

)2 ( L

10m

)2
F(q, L) , (6.2)

where F(q, L) is the homogenous B-field form factor defined as:

F(q, L) =
(

2
qL

)2

sin2 qL

2 , (6.3)

and q is the difference between the photon and axion wave numbers, which in the relativistic
limit and in vacuum can be written as:

q = kγ − ka ≈
m2
a

2ω . (6.4)

Coherent conversion along the whole length gives F = 1, a condition met when qL� 1.
Utilizing the q approximation, the coherence condition for solar axion energies and a
magnet length of approximately 10 m is satisfied for axion masses ma . 10−2 eV.

However, for higher masses, F decreses as (2/qL)2 ∝ 1/m4
a, resulting in a decrease

in the conversion probability and, consequently, a reduction in the experiment’s sensitivity.
To counteract the loss of coherence, a buffer gas can be introduced into the magnet beam
pipes [105,106] to impart an effective mass to the photons:

mγ = ωp , (6.5)
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where ωp is the plasma frequency of the gas and is defined by:

ω2
p = 4παne

me

, (6.6)

being ne and me the electron density and mass, respectively.

When the axion mass matches the photon mass, q = 0 and the coherence is restored.
By systematically adjusting the pressure of the gas within the pipe, the photon mass can
be controlled, allowing for an increase of sensitivity to higher axion masses.

In this setup, in the event of a positive detection, helioscopes have the capability
to determine the value of ma. Even in a vacuum, ma can be determined from the spectral
distortion caused by the initiation of ALP-photon oscillations in the helioscope, particularly
in the low-energy part of the spectrum. This phenomenon can be detectable for masses
down to 10−3 eV, contingent upon the intensity of the signal [107].

The configuration of a helioscope entails a robust magnet linked to one or more
X-ray detectors. In contemporary iterations of the concept (see Fig.15), an extra focusing
stage is incorporated at the conclusion of the magnet. This stage serves to concentrate
the signal photons, thereby enhancing the signal-to-noise ratio. When the magnet is
aligned with the Sun, an excess of X-rays at the detector is expected, contrasting with
the background measurements taken during non-alignment periods.

Figure 15 – Conceptual layout of a modern helioscope [108].

6.1.2 Experimental History and Development

The first experimental realization of the axion helioscope took place at BNL
(Brookhaven National Laboratory) in 1992. This first-generation experiment featured
a stationary dipole magnet with a magnetic field strength of B = 2.2 T and length of
L = 1.8 m. Positioned towards the setting Sun [109], this configuration established the
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initial upper limit:
gaγγ < 3.6× 10−9 GeV−1 , (6.7)

for ma < 0.03 eV at 99% C.L. (Confidence Level).

In 1998, the University of Tokyo introduced a second-generation experiment known
as the Sumico axion helioscope. This configuration incorporated dynamic tracking of
the Sun, a more potent and larger magnet with B = 4 T and L = 2.3 m. Technical
enhancements included evacuating the bore, the region between the two coils of the
magnet, and installing higher-performance detectors [83, 84, 110]. These improvements
substantially augmented the experiment’s sensitivity, establishing an improved upper
limit:

gaγγ < 6.0× 10−10 GeV−1 , (6.8)

for ma < 0.03 eV at 95% C.L.. Subsequent advancements involved the introduction of a
buffer gas to enhance sensitivity at higher masses.

The most important and restrictive helioscope to date is a third-generation experi-
ment: the CERN Axion Solar Telescope (CAST), which started data collection in 2003. In
its configuration, a dipole prototype magnet from the LHC with B up to 9 T and L = 9.3
m was employed [111]. The magnet, equipped with elevation and azimuth drives, enables
solar tracking for several hours per day (see to Fig.16).

Figure 16 – Picture of the CAST experiment setup. Credit: M. Rosu/CAST collaboration,
CERN.
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The CAST experiment stands out as the first to incorporate X-ray focusing optics
for one of its fours detector lines [112], along with low background techniques from
detectors in underground laboratories [113].

Its main observational program happened in the period of 2003-2011:

• (2003-2004): Operated first with the magnet bores in vacuum and obtained:

gaγγ < 8.8× 10−11 GeV−1 , (6.9)

for ma < 0.02 eV at 95% C.L. [103,104].

• (2005-2011): Upgraded to be operated with buffer gases of 4He (2005-2006) and 3He
(2008-2011) to obtain continuous, high sensitivity up to ma = 1.17 eV, during this
period the experiment obtained an average upper limit:

gaγγ . 2.3× 10−10 GeV−1 , (6.10)

for 0.02 eV < ma < 0.64 eV at 95% C.L. [106,114] and

gaγγ . 3.3× 10−10 GeV−1 , (6.11)

for 0.64 eV < ma < 1.17 eV at 95% C.L. [115].

In the period from 2013 to 2015, CAST revisited the vacuum phase, implementing
improved detectors and novel X-ray optics. These enhancements resulted from extensive
research and development efforts conducted in preparation for the next-generation axion
helioscope, the IAXO (International Axion Observatory). Notably, one of the detection
lines, named the IAXO pathfinder system [116], marks the first instance where both
low-background techniques and a newly designed X-ray optics, purpose-built for this
endeavor, are combined. This system enjoys an effective background count rate of 0.003
counts per hour in the signal region.

The outcome of this phase represents the most stringent experimental limit on
gaγγ:

gaγγ < 0.66× 10−10 GeV−1 , (6.12)

for ma < 0.02 eV at 95% C.L [117].

CAST has marked a significant milestone as the first helioscope with sensitivities
to gaγγ values belows 10−10 GeV−1 and has rivaled the strongest limits from astrophysics
on this coupling (see Table.1). This limit is derived from the properties and evolution of
horizontal branch (HB) and red giants (RG) stars in 39 globular clusters (GCs) [62]:

gaγγ < 0.65× 10−10 GeV−1 . (6.13)
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This outcome leads to a highly promising and intriguing conclusion: the long-called
invisible axion may not be too far from becoming visible. For a more direct overview of
the experimental parameters and their evolution across generations, see Table 2 and the
limits on gaγγ are meticulously illustrated in Fig.17.

Helioscope Experiments
Experiment Status B (T) L (m) A (cm2) Focusing g10
Brookhaven Past 2.2 1.8 130 No 36
SUMICO Past 4 2.5 18 No 6
CAST Ongoing 9 9.3 30 Partially 0.66
TASTE
[118]

Concept 3.5 12 2.8×103 Yes 0.2

BabyIAXO In con-
struction

∼ 2.5 10 2.8×103 Yes 0.15

IAXO [108,
119]

In design ∼ 2.5 22 2.3×104 Yes 0.04

Table 2 – Evolution of Heliscopes. The last column represents the sensitivity achieved in
gaγγ in terms of an upper limit on g10 = 1010 × gaγγ [68].

Figure 17 – The most stringent upper limit established by CAST and future experimental
prospects [68].

As illustrated in Fig.17, in the region of higher axion masses (ma & 0.1 eV), the
experiment has ventured into the band of QCD axions and excluded KSVZ axions for
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those specific values. However, this result is not surprising, given that the ma ∼ eV region
had already been excluded by astrophysical bounds.

Beyond this main result, CAST has also explored other axion production channels
in the Sun, enabled by the gae and gaN . As previously stated, in these scenarios, helioscopes
provide limits to the product of gaγγ and the corresponding coupling. A more detailed
view of these limits is provided in Fig.23.

All helioscopes thus far have primarily relied on repurposing existing equipment,
particularly the magnet. CAST, in particular, benefited from the availability of the first-
class LHC test magnet, even though it was not specifically designed for CAST itself. There
appears to be substantial room for improvement in sensitivity beyond CAST by designing
a dedicated magnet optimized to maximize a parameter known as the helioscope magnet’s
figure of merit, defined as:

fM = B2L2A , (6.14)

where A is the cross-sectional aperture area, as detailed in Table 2.

Enhancing the value of fM obtained by CAST is only feasible [108] through a
radically different magnet configuration with a much larger A, which in the CAST magnet
is only 3× 10−3 m2. However, for fM to directly translate into an improved signal-to-noise
ratio of the overall experiment, the entire cross-sectional area of the magnet must be
equipped with X-ray focusing optics. This forms the foundational layout for the IAXO.

6.1.3 Future of Helioscopes

IAXO, currently in the design stage, represents the next generation of axion
helioscopes. The objective of the experiment is to search for axions with a signal-to-noise
ratio some 105 times better than CAST, aiming to reach gaγγ ∼ 10−12 GeV−1. Building
upon the experience gained from CAST, IAXO plans to construct a new large-scale
magnet optimized for axion searches, incorporating extensive focusing and low-background
techniques.

The central component of IAXO is a new superconducting magnet that, in contrast
to previous helioscopes, adopts a toroidal multibore configuration [120] to effectively
generate an intense magnetic field over a large volume. The design envisions a 25 m
long and 5.2 m diameter toroid assembled from 8 coils, effectively generating an average
(peak) magnetic field of 2.5 T (5.1 T) in 8 bores of 600 mm diameter. This represents a
remarkable 300-fold improvement in fM compared to the CAST magnet, with the toroid’s
stored energy amounting to 500 MJ. The design draws inspiration from the ATLAS barrel
and end-cap toroids [121,122], the largest superconducting toroids built and presently in
operation at CERN.
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Beyond the magnet, several improvements are anticipated in optics and detector
parameters. However, the intricate details of these technologies are beyond the scope of
this work.

The initial phase towards IAXO, already under construction, is the BabyIAXO
experiment. This scaled-down version of IAXO features a magnet only 10 m long with
a single bore of 600 mm diameter. The expected sensitivity throughout the parameter
space is illustrated in Fig.17.

6.2 Underground detectors
Axions can also interact with matter through their couplings with electrons or

nucleons. One notable mechanism is the axioelectric effect [123–126], where solar axions
could generate visible signals in ionization detectors. Utilizing this technique to search
for solar axions produced by gae processes is particularly attractive, as the final signal
depends solely on gae, enabling robust limits to be set on this coupling.

Several large liquid xenon detectors designed for dark matter WIMP detection, such
as XMASS [127], XENON [128–130], PANDAX-II [131] and LUX [132], have conducted
searches for solar axions as a byproduct of their experiments. Despite the most competitive
result to date achieved by the XENONnT experiment, which has not yet surpassed 10−13

in gae, the result value is still considerably larger than the astrophysical limits presented
in Table.1. Due to the mild dependency on exposure gae ∝ (MT )−1/4 (being M the mass
and T the exposure time), even the future DARWIN detector, with a target mass of 50
ton of liquid xenon, is expected to fall short of reaching these limits [133].

While these conventional detection techniques may still be a bit distant from
achieving the necessary astrophysical upper limits, understanding how these experiments
work and exploring the latest results is crucial. Our focus will be on the results from the
XENON collaboration, specifically the XENON1T and XENONnT experiments.

6.2.1 XENON experiment

The XENON experiment features a time projection chamber filled with liquid
xenon (LXe TPC), as illustrated in Fig.18. A time projection chamber is a detector in
particle physics that combines electric and magnetic fields with a sensible gas or liquid to
reconstruct particle trajectories or interactions in three dimensions. Originally designed to
detect DM WIMPs, the XENON experiment, due to its low background rate, substantial
target mass, and low energy threshold, is also sensitive to solar axions. Positioned under a
mountain, as is common in particle physics experiments, the XENON experiment benefits
from background shielding.
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.

Figure 18 – Illustration of a particle interaction in a LXe TPC. Found in: Sid El Moctar
AHMED MAOULOUD / LPNHE GDR, June 1st, 2021

Currently in its fourth generation, the XENON experiment has undergone sig-
nificant improvements over the course of its development. Notably, these improvements
include a larger target mass and lower background rates, as detailed in Table 3. We will
delve into the results and details of last two generations, the XENON1T and XENONnT.

XENON generations
Parameters XENON10 XENON100 XENON1T XENONnT
Operation 2005-2007 2008-2016 2012-2019 2020-2026
Xe mass tar-
get

14 kg 62 kg 2t 5.9t

Cross-section
sensitivity

∼ 10−43 cm2 ∼ 10−45 cm2 4× 10−47 cm2 1.4 × 10−48

cm2

Background
ER
events/keV.t.y

∼ 2× 106 1.8× 103 82 16.1

Table 3 – The evolution of XENON experiment

In the XENON experiment, a particle interaction within the detector generates two
distinct signals: a prompt scintillation signal (S1) and a delayed electroluminescence signal
(S2). These light signals are detected by arrays of photomultiplier tubes (PMTs) positioned
on the top and bottom of the active volume. They play a crucial role in determining the
deposited energy and the interaction position of an event. Accurate determination of the
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event position is essential for eliminating background events occurring near the edges
of the target volume, such as those originating from radioactivity in detector materials,
through a process known as fiducialization.

The ratio of S2 to S1 (S2/S1) is employed to differentiate electronic recoils (ERs),
produced by sources like gamma rays or beta electrons, from nuclear recoils (NRs),
generated by particles such as neutrons or WIMPs. This ratio allows for a degree of
particle identification. The capability to determine the scatter multiplicity further aids
in reducing background events, as signals are expected to exhibit only a single energy
deposition. Since most background events are ERs, the primary objective of the experiment,
when investigating the hypothesis of solar axions, is to detect an excess of events over the
known background.

As their mass is significantly below the keV range, dark matter axions from the
primordial Universe are not observable by any XENON experiment. However, as mentioned
earlier, solar axions have production rates that peak at low keV energies, precisely within
the sensitivity range of both XENON1T and XENONnT.

Both ABC and Primakoff axions could be detected in XENON via the axioelectric
effect, which is the axion analog to the photoelectric effect. The cross-section for this
effect scales with the axion-electron coupling gae and is given by [85,87,134]:

σae = σpe
g2
ae

β

3E2
a

16παm2
e

(
1− β2/3

3

)
, (6.15)

where β and Ea are the velocity and energy of the axion, respectively, α is the fine
structure constant, and me is the mass of the electron.

6.2.1.1 XENON1T results

In 2020, the XENON collaboration reported [129] an excess over known background
at low energies (see Fig.19), most notably between 2−3 keV, in the XENON1T experiment.

The solar axion model showed a significance of 3, 4σ over the background, and a
three-dimensional 90% confidence surface was presented for axion couplings to electrons,
photons, and nucleons. This surface is enclosed within the cuboid defined by:

gae < 3.8× 10−12 ,

gaeg
eff
an < 4.8× 10−18 ,

gaegaγγ < 7.7× 10−22 GeV−1 .

(6.16)

Another plausible explanation for the reported excess was a potential tritium (3H) con-
tamination, favored at 3.2σ when compared to background. The amount of tritium needed
to account for such an excess is exceptionally small, corresponding to a tritium-xenon
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Figure 19 – Detected events in XENON1T. Red line represents the expected background
events [129].

ratio of:
3H
Xe = (6.2± 2.0)× 10−25mol/mol . (6.17)

Both fits can be visualized in Fig.20.

As evident in the Fig.21, XENON1T did not solely establish an upper limit on
solar axion couplings but rather defined a region where solar axions would need to exist
to explain the observed excess. While this may seem intriguing initially, it is crucial to
note the simultaneous presence of astrophysical upper limits in the same figure, which
directly conflict with this hypothesis. The figure also displays upper limits from other
collaborations and experiments, including CAST.

This conflict with astrophysical bounds largely excludes the possibility of solar
axions being the explanation for this result. Accepting such an explanation would imply
inconsistencies in stellar evolution, a field with robust and well-established results. There-
fore, the most plausible explanation remains the tritium contamination, a hypothesis that
was further tested by the XENONnT experiment.

6.2.1.2 XENONnT results

In 2022, the XENON collaboration reported the XENONnT first science run [130].
The excess observed in the XENON1T experiment, when modeled as a 2.3 keV mono-
energetic peak, is excluded with a statistical significance of ∼ 4σ, as depicted in Fig.22.This
outcome aligns with expectations given the astrophysical conflict and further supports
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Figure 20 – Detected events in XENON1T. Red line represents the expected background
events [129].

the hypothesis of tritium contamination, which at XENONnT was confirmed to not be
present.

The new upper limits on gae and gaγγ are presented in Fig.23. In this figure, it is
evident that there is no longer an astrophysical conflict, and it is also apparent that these
limits have not yet been surpassed. However, as indicated in Table 3, the XENONnT
experiment is still in progress and is expected to conclude in 2026.

6.2.2 Primakoff-Bragg conversion in crystalline detectors

Axion-photon conversion can also occur in the atomic eletromagnetic field of
materials, particularly in crystalline media where the periodic nature of the electronic
structure imposes a Bragg condition. This condition implies that the conversion is co-
herently enhanced if the momentum of the incoming particles matches one of the Bragg
angles [135, 136]. This concept has been applied to search for solar axions with crystalline
detectors [137,138].

The Earth’s rotation induces a continuous variation of the angle between the
incoming direction of axions and the crystal plane, resulting in distinct and sharp energy-
and time-dependent patterns in the expected signal in the detector. This characteristic
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Figure 21 – Parameter region for axion couplings constraints in XENON1T experiment.
[129].

pattern can effectively help identify a potential signal over the detector background.
One advantage of this technique is its ability to be utilized as a byproduct of ongoing
low-background underground detectors, provided they have a low enough threshold and
the orientation of the crystal plane is (at least partially) known.

After its initial application with small germanium (Ge) detectors by the SOLAX
[139] and COSME [140] experiments, this technique has also been employed as a byproduct
in experiments such as DAMA [141], CDMS [142], and EDELWEISS [143]. It is also
foreseen as part of the physics program of experiments like CUORE [144], GERDA, and
MAJORANA [145]. However, in the mass range where helioscopes achieve full coherent
conversion of axions, this technique’s prospects are not competitive [146,147]. The most
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Figure 22 – Detected events in XENONnT. Red line represents the expected background
events [130].

Figure 23 – Parameter region for axion couplings constraints in XENONnT experiment.
[130].
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stringent result to date comes from DAMA, which sets a limit at 90% C.L.:

gaγγ < 1.7× 10−9 GeV−1. (6.18)

It’s important to note that this limit is less stringent than the limit derived from solar
physics itself, indicating that these bounds are not yet self-consistent. While future results,
such as those from [144], may improve upon this, even with future multiton target masses,
this technique may not reach sensitivity to gaγγ similar to current helioscopes [146]. For
higher masses above ∼ 1 eV, where the sensitivity of helioscopes diminishes, this technique
surpasses the former; however, this parameter region is disfavored by astrophysics and
cosmology, as explained earlier.
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7 Conclusion

After reviewing the theoretical foundations, production mechanisms, and detection
strategies for solar axions, it is evident that these particles have been increasingly gaining
focus in particle physics through the course of the last four decades. As the favored
resolution to the strong CP problem, axions (and more broadly, ALPs) are not only driven
by theoretical considerations but are also supported by a diverse array of astrophysical and
cosmological arguments, which have seen substantial development in recent years. These
arguments extend to models involving inflation, dark radiation, and dark energy. Crucially,
axions and ALPs emerge as compelling candidates for constituting a fraction or all of the
elusive dark matter in the Universe, especially given the absence of positive results in
searches for WIMPs, making axions increasingly pivotal in unraveling the mystery of dark
matter.

In the realm of astrophysics, axions and ALPs, in contrast to WIMPs, assume
significant roles. Certain astrophysical observations already suggest the possible existence
of these particles. Furthermore, the detection possibilities offered by axions produced in
stellar interiors, such as solar axions, present unique detection opportunities, exemplified
by axion helioscopes, which lack analogs for WIMPs.

The advantageous aspect of having numerous plausible BSM theoretical frameworks
that naturally predict axions or ALPs is underscored. The theoretical framework explored
in this study readily finds applications in diverse fields such as SUSY, GUTs, and string
theory.

While axions were traditionally considered invisible due to their extraordinarily low
couplings, recent developments suggest that we are approaching a juncture where axions
may no longer remain elusive. The surge in the intensity and diversity of experimental
efforts to detect axions is noteworthy. Established detection techniques are now being
challenged by next-generation experiments with ambitious sensitivity goals, presenting
substantial prospects for transformative impacts on the field. We are on the brink of
delving into the intriguing region below astrophysical constraints.

In conclusion, we argue that the robustness of the axion-ALP paradigm today
underscores the imperative to pursue their experimental detection as a major goal in
particle physics. Should axions indeed exist, there is a realistic chance of their positive
detection in the near future. Such a discovery would represent a groundbreaking moment,
reshaping the trajectories of particle physics, cosmology, and astrophysics on a grand
scale.
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APPENDIX A – Noether’s Theorem

Noether’s theorem is a fundamental principle in physics that establishes a profound
connection between symmetries in a physical system and the corresponding conservation
laws. Named after the pioneering mathematician Emmy Noether, who formulated it in
1915, the theorem has become a powerful guide in various branches of physics, including
quantum mechanics and general relativity. Its implications have significantly improved
our understanding of the universe.

At its core, Noether’s theorem provides a powerful method for identifying conserved
quantities, such as energy, momentum, and angular momentum, in diverse physical
systems. This theorem highlights the deep relationship between the symmetries inherent
in a system’s laws and the unchanging quantities that emerge from those symmetries.
Consequently, Noether’s theorem stands as a fundamental tool, shedding light on the
underlying laws that govern the behavior of the universe.

Noether’s theorem is derived from the general properties of the action, as well as
its invariance. To begin, let’s define the functional action as follows:

S (τ1, τ2, [φ]) ≡
∫ τ2

τ1
d4x L (φ, ∂µφ) , (A.1)

where the action must be real to conserve total probability. It provides the classical
equations of motion, in which are at most 2nd order in derivatives. The action is invariant
under Poincaré group, a fundamental symmetry group in physics encompassing translations
and Lorentz transformations. Additional symmetries, such as gauge symmetries, can be
imposed if necessary, although this may not always be required. Despite the action having
units of angular momentum, in natural units where ~ = 1, the action S is dimensionless.
Making a small variation δφ on the field, the action varies as follows:

δS =
∫ τ2

τ1
d4x δL =

∫ τ2

τ1
d4x

[
∂L
∂φ

δφ+ ∂L
∂ [∂µφ]δ(∂µφ)

]
. (A.2)

In this case, there are no variations on the space-time variables xµ, so that the variation
δ(∂µφ) simplifies to:

δ(∂µφ) = ∂µ(δφ) , (A.3)
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utilizing this relation, we obtain:

δS =
∫ τ2

τ1
d4x

[
∂L
∂φ

δφ+ ∂L
∂ [∂µφ]∂µ(δφ)

]
,

=
∫ τ2

τ1
d4x

[
∂L
∂φ
− ∂µ

∂L
∂ [∂µφ]

]
δφ+

∫ τ2

τ1
dx4∂µ

[
∂L

∂ (∂µφ)δφ
]
,

=
∫ τ2

τ1
d4x

[
∂L
∂φ
− ∂µ

∂L
∂ [∂µφ]

]
δφ+

∫
σ
dσµ

[
∂L

∂ [∂µφ]δφ
]
,

=
∫ τ2

τ1
d4x

[
∂L
∂φ
− ∂µ

∂L
∂ [∂µφ]

]
δφ .

(A.4)

If δφ(σ) = 0, the surface term vanishes. Utilizing the principle of minimum action δS = 0,
we arrive at the Euler-Lagrange equation:

∂µ
∂L

∂ [∂µφ] −
∂L
∂φ

= 0 . (A.5)

We have reached a significant result, but this is not enough to derive the theorem. To do
so, we must also consider variations in x (δx) and in the integration variable d4x. The
variation of the integration variable is given by the Jacobi formula:

δ
(
d4x

)
= d4x (∂µδxµ) , (A.6)

with these considerations, the variation of the action becomes

δS =
∫ τ2

τ1
d4x

[
∂µ
(
δx4L+ δL

)]
, (A.7)

where
δL = δxµ∂µL+ δ0L ,

= δxµ∂µL+ ∂L
∂φ

δ0φ+ ∂L
∂[∂µφ]δ0∂µφ ,

(A.8)

and δ0 is the functional variation

δ0 [∂µφ] = [δ0, ∂µ]φ+ ∂µδ0φ ,

= ∂µδ0φ .
(A.9)

Putting it all together and utilizing the chain rule, we obtain:

δL = δxρ∂ρL+
[
∂L
∂φ
− ∂µ

∂L
∂[∂µφ]

]
δ0φ+ ∂µ

(
∂L

∂ [∂µφ]δ0φ

)
, (A.10)

note that the second term is equivalent to the equation of motion found in A.5. Conse-
quently, this term vanishes as

∂L
∂φ
− ∂µ

∂L
∂[∂µφ] = 0 . (A.11)
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Therefore, we obtain:

δS =
∫ τ2

τ1
d4x

[
L∂µδxµ + δxµ∂µL+ ∂µ

(
∂L

∂ [∂µφ]δ0φ

)]
,

=
∫ τ2

τ1
d4x ∂µ

[
Lδxµ + ∂L

∂[∂µφ]δ0φ

]
.

(A.12)

Utilizing
δ = δ0 + δxµ∂µ 7→ δ0 = δ − δxµ∂µ , (A.13)

we reach:
δS =

∫ τ2

τ1
d4x ∂µ

[
Lδxµ + ∂L

∂[∂µφ] [δφ− δxρ∂ρφ]
]
,

=
∫ τ2

τ1
d4x ∂µ

[(
Lgµρ −

∂L
∂ [∂µφ]∂ρφ

)
δxρ + ∂L

∂[∂µφ]δφ
]
.

(A.14)

Writing the variations of the coordinates and the fields in terms of the global parameters

δxρ = δxρ

δwa
δwa ,

δφ = δφ

δωa
δωa ,

(A.15)

the variation of the action can be expressed as:

δS =
∫ τ2

τ1
d4x ∂µ

[(
Lgµρ −

∂L
∂ [∂µφ]∂ρφ

)
δxρ

δωa
+ ∂L
∂[∂µφ]

δφ

δwa

]
δwa . (A.16)

At this point, we can define the Noether current jµ as:

jµa ≡ −
[
Lgµρ −

∂L
∂ [∂µφ]∂ρφ

]
δxρ

δωa
− ∂L
∂[∂µφ]

δφ

δωa
. (A.17)

If the action is invariant under the small variation δφ, i.e., δS = 0, then the Noether
current is conserved. This implies:

∂µj
µ
a = 0 . (A.18)

In the case where δS 6= 0, the action is not symmetric under the variation, and consequently,
the corresponding Noether current is not conserved

∂µj
µ
a 6= 0 . (A.19)

In the case where there is no variation in the space-time variable, δxρ = 0, the Noether
current simplifies to:

jµa = − ∂L
∂[∂µφ]

δφ

δωa
, (A.20)

which leads to:
∂µj

µ
a = −∂µ

(
∂L

∂ [∂µφ]
δφ

δωa

)
,

= −∂µ
(

∂L
∂[∂µφ]

)
δφ

δωα
− ∂L
∂ [∂µφ]∂µ

δφ

δwa
.

(A.21)



APPENDIX A. Noether’s Theorem 144

Since δxρ = 0, accordingly to A.13, the variation operator simplifies to δ = δ0, and we
obtain:

∂µj
µ
a = −

(
∂µ

∂L
∂ (∂µφ)

)
δ0φ

δ0wa
− ∂L
∂ (∂µφ)∂µ

δ0φ

δ0wa
,

= −
[
∂L
∂φ

δ0φ

δ0ωa
+ ∂L
∂ (∂µφ)

δ0

δ0ωa
(∂µφ)

]
,

(A.22)

where we utilized the equation of motion to get to the second line. Therefore for δS 6= 0,
δφ 6= 0 and δxµ = 0, we reach:

∂µj
µ
a = − δL

δωa
. (A.23)

Now, assuming that we have identified a set of transformations that maintain the invariance
of the action, this leads to:

∂µj
µ
a = 0 . (A.24)

Expressing this in terms of the complete variation of the action, we obtain:

0 =
∫ τ2

τ1
dτ

∫ +∞

−∞
dx3 ∂µj

µ
a ,

=
∫ τ2

τ1
dx0 ∂

∂x0

∫ +∞

−∞
d3x j0

a +
∫ τ2

τ1
dx0

∫ +∞

−∞
d3x ∂ij

i
a(x) ,

=
∫ τ2

τ1
dx0 ∂

∂x0

∫ +∞

−∞
d3x j0

a +
∫ τ2

τ1
dx0

∮
σ
jia(x)dσi ,

(A.25)

if we choose the suitable boundary conditions, the surface term vanishes∮
σ
jia(x)dσi = 0 . (A.26)

Continuing the calculations, we obtain:

0 =
∫ τ2

τ1
dx0 ∂

∂x0

∫ +∞

−∞
d3x j0

a ,

=
∫ +∞

−∞
d3x j0

a (τ2, x)−
∫ +∞

−∞
d3x j0

a (τ1, x) .

(A.27)

Finally, we can define an arbitrary charge

Qa(τ) ≡
∫ +∞

−∞
d3xj0

a(τ, ~x) , (A.28)

which is conserved
dQa

dt
= 0 . (A.29)

At last, from δS = 0, we have derived the existence of conserved charges.

In the realm of quantum theory, the direct reliance on classical equations of motion
fades away. Instead, the concept of current conservation transitions into the profound
framework of Ward’s identities, offering a nuanced perspective in quantum dynamics.

Noether’s theorem, despite this shift, retains its elegance and power. It seamlessly
links the inherent symmetries of a physical system to its conserved quantities. This
fundamental principle finds wide applications in contemporary physics, spanning from the
intricate realms of particle physics to the vast cosmic landscapes explored in cosmology.
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