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A B S T R A C T   

The effects of anthropogenic disturbance on multiple facets of biodiversity are poorly understood. In this study, 
we worked with the hypothesis that anthropogenic disturbances affect the relationship between environmental 
heterogeneity (EH) and biodiversity. We used a model selection approach to test three predictions. P1: The 
greater the level of anthropogenic disturbance, the weaker will be the relationship between EH and both 
taxonomic and functional alpha diversities. P2: The sign and strength of correlations between EH metrics and 
both taxonomic and functional alpha diversities will depend on the level of anthropogenic disturbance. P3: 
Taxonomic and functional beta diversities will not respond to the EH gradient. We sampled 76 stream sites in the 
Brazilian Neotropical savanna and collected insect of the orders Ephemeroptera, Plecoptera and Trichoptera to 
measure taxonomic and functional alpha and beta diversities. For P1, we did not 昀椀nd a trend of decreasing 
strength of this relationship with increasing disturbance. Results con昀椀rmed P2. Spatial 昀氀ow diversity was 
positively correlated to taxonomic and functional alpha diversities in least-disturbed sites. Bankfull height 
variation was negatively correlated to taxonomic and functional alpha diversities in moderately-disturbed sites. 
Thalweg depth variation was positively correlated to taxonomic and functional alpha diversities in most- 
disturbed sites. Results partially con昀椀rmed P3 because taxonomic and functional beta diversities correlated 
with EH metrics in most-disturbed sites. We conclude that the biodiversity-EH relationship is not the same at all 
levels of anthropogenic disturbance, a 昀椀nding that has implications for biomonitoring and ecosystem 
management.   

1. Introduction 

Biological diversity typically varies along major environmental 
gradients (Gaston, 2000). For example, the species richness- 
environmental heterogeneity relationship is a well-established pattern 
in ecology (Ortega et al., 2018; Stein et al., 2014). Studies over the last 
50 years have shown that the greater the environmental heterogeneity 
(EH), the greater the species richness, both in terrestrial and aquatic 
ecosystems (Ortega et al., 2018). Recently, ecologists have also exam-
ined variation in measures of functional diversity (Graco-Roza et al., 
2020; Heino and Grönroos, 2013; Milesi et al., 2016) and beta diversity 

(Fernández-Aláez et al., 2020; Heino et al., 2013; López-Delgado et al., 
2020) along EH gradients, but the generality of these 昀椀ndings are still 
under debate. Clearly, a multi-faceted approach has become increas-
ingly important to understand the mechanisms that govern the 
biodiversity-EH relationship and to predict impacts on biodiversity in 
various scenarios of habitat loss and environmental homogenization 
(Mouillot et al., 2013; Perez Rocha et al., 2019). 

A mechanism commonly used to account for the positive effect of EH 
on biodiversity is the increased number of niche dimensions with 
increasing EH (MacArthur and MacArthur, 1961; Stein and Kreft, 2015). 
Within a riverscape (sensu Fausch et al., 2002; Wiens, 2002), 
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heterogeneous environments offer a greater range of conditions (e.g., 
water pH, 昀氀ow velocity) and variability of resources (e.g., coarse par-
ticulate organic matter, mosses), thereby increasing biodiversity (Boy-
ero and Bosch, 2004; McCreadie and Bedwell, 2013). Nonetheless, the 
ways in which EH is perceived by an aquatic insect taxon varies ac-
cording to its functional traits and concerning the spatial scales under 
study (Castro et al., 2020; Heino et al., 2015; Heino and Grönroos, 
2013). For instance, compared to other guilds, the distributions of 
scrapers (a functional feeding group of freshwater macroinvertebrates; 
Cummins and Klug 1979) are more strongly correlated with variations in 
coarse substrates, moss cover and stream width (Heino and Grönroos, 
2013). 

Anthropogenic disturbances interact with environmental, ecological 
and biotic factors that shape biological communities, often obscuring 
the diversity-EH relationship and the variables driving it (Allouche 
et al., 2012; Palmer et al., 2010). Anthropogenic disturbances may 
reduce regional species pools or prevent some species from colonizing a 
site (Gámez-Virués et al., 2015; Sundermann et al., 2011). Also, they 
may alter environmental conditions so that they become unsuitable for 
some species (Bini et al., 2014; Graco-Roza et al., 2020), limit resource 
availability (Burdon et al., 2013; Silva et al., 2018), or facilitate the 
spread of invasive species that may increase competitive exclusion 
(Albano et al., 2018). Therefore, in a scenario where anthropogenic 
disturbances 昀椀lter most of the functional traits and sensitive species 
(Castro et al., 2017; Silva et al., 2017), EH may no longer be a major 
factor controlling variation in biodiversity (Stoll et al., 2016), and it may 
even have a negative effect on some species (Allouche et al., 2012). 
Nonetheless, studies that have assessed the effect of anthropogenic 
disturbances on the biodiversity-EH relationship are scarce, making it 
dif昀椀cult to predict this relationship for different scenarios of anthropo-
genic disturbance (Larsen and Ormerod, 2014; Yang et al., 2015). 

Considering the lack of studies that explicitly attempt to examine 
how anthropogenic disturbance affects the relationship between biodi-
versity and EH in freshwater ecosystems, we addressed the following 
question: How does increased anthropogenic disturbance alter the 
relationship between EH and taxonomic and functional alpha and beta 
diversities of aquatic insects? To answer this question, we analyzed 
biological and environmental data from 76 stream sites, representing 
three different levels of anthropogenic disturbance in the Brazilian 
Neotropical savanna. As biological response metrics, we analyzed the 
taxonomic and functional diversity of aquatic insects belonging to 
may昀氀ies (Ephemeroptera), stone昀氀ies (Plecoptera) and caddis昀氀ies (Tri-
choptera), hereafter called EPT. Based on the importance of EH to 
assemblage structuring and the previous knowledge that anthropogenic 
disturbance interferes with one or more factors that shape biological 
communities, we tested three predictions. P1: The greater the level of 
anthropogenic disturbance, the weaker will be the relationship between 
EH and both taxonomic and functional alpha diversities. P2: The sign 
and strength of correlations between EH metrics and both taxonomic 
and functional alpha diversities will depend on the level of anthropo-
genic disturbance. P3: Taxonomic and functional beta diversities will 
not respond to the EH gradient at any level of disturbance because 
species dispersal rates among sampling stations within a stream site are 
assumed to be very high, potentially causing mass effects that homog-
enize assemblage compositional variation (Heino et al., 2015, 2013). 

2. Methods 

2.1. Study area 

We used data from 76 stream sites from 1st to 3rd order (on 
1:100,000 scale maps; Strahler, 1957) located in the Neotropical 
savanna (Cerrado biome, a hotspot of biodiversity; Myers et al., 2000) of 
southeastern Brazil. This biome covers 20% of the country, but less than 
30% of its original area is currently covered by native vegetation 
(Strassburg et al., 2017). Agriculture and pasture land uses are the main 

causes of loss of native vegetation, whereas hydropower dams, mining 
and urbanization are important secondary causes (Françoso et al., 2015; 
Strassburg et al., 2017). 

Stream sites were distributed across four hydrological units, 
delimitated by the contributing drainage area within 35 km upstream of 
four hydropower reservoirs: TrÆes Marias (TM), Volta Grande (VG), SÞao 
SimÞao (SS) and Nova Ponte (NP). We classi昀椀ed sites into three levels of 
disturbance (Fig. 1). All sites were selected through a probability-based 
procedure that considered a spatially-balanced design (Macedo et al., 
2014; Olsen and Peck, 2008). Field samples were collected in 2010 to 
2013 during September dry seasons with one visit per year at each 
aforementioned hydrological unit. 

2.2. Anthropogenic disturbance categorization 

We classi昀椀ed stream sites into three anthropogenic disturbance cat-
egories through the use of the Integrated Disturbance Index (IDI) 
(Ligeiro et al., 2013). This quantitative index integrates measures of 
anthropogenic disturbances at site and catchment scales into a single 
value. 

The catchment disturbance index (CDI) corresponds to the formula 
(Rawer-Jost et al., 2004): 

CDI = 4 × % urban area + 2 × % agricultural area + 1 × % pasture 
area 

At the site scale, local site disturbance is based on the w1_hall metric 
which sums 11 types of anthropogenic disturbance (walls, dikes, re-
vetments, riprap or dams, buildings, pavement or cleared lots, roads or 
railroads, inlet or outlet pipes, land昀椀lls or trash, parks or maintained 
lawns, row crops, pastures, rangelands, hay 昀椀elds, or evidence of live-
stock, logging, and mining) observed in-channel and in the riparian zone 
of a stream site (Kaufmann et al., 1999). 

The disturbance levels at both catchment and site scales were com-
bined using the Euclidean distance between each site to the origin of the 
plane formed by the local and catchment axes. Therefore, the higher the 
IDI, the higher the level of anthropogenic disturbance at the stream sites 
(Ligeiro et al., 2013). 

Stream sites categorization based on the IDI value has proven to be 
an effective means to analyze both taxonomic and functional diversity 
responses of stream macroinvertebrates to human disturbance in the 
Neotropics (Castro et al., 2017; Chen et al., 2017; Fierro et al., 2018; 
Martins et al., 2020). We separated stream sites into three categories of 
disturbance by visual inspection of ordered IDI values to detect natural 
breakpoints. We also considered cut-off values previously used for site 
categorization in Neotropical savanna streams as references to delimit 
our categories (e.g. Castro et al., 2018; Ligeiro et al., 2020; Macedo 
et al., 2016) (Supplementary Material 1). Guided by the breakpoints and 
considering a balanced number of stream sites in each category, we 
established the following categories: IDI less than 0.30 were considered 
as least-disturbed (n = 29); IDI values > 0.65 were considered as most- 
disturbed (n = 16); IDI values between these thresholds were considered 
as moderately-disturbed (n = 31). 

2.3. Sampling design 

We settled the length of stream sites at 40 times their mean wetted 
widths, with a minimum length of 150 m (Peck et al., 2006; USEPA - 
United States Environmental Protection Agency, 2016). At each site, we 
marked 11 equidistant transects to sample EPT and environmental 
variables. Taxonomic and functional alpha diversities at each stream site 
corresponded to the sums of taxa and functional traits observed in the 11 
transects, respectively. Taxonomic and functional beta diversities at 
each site corresponded to the taxonomic and functional traits dissimi-
larities among the 11 transects, respectively (Heino et al., 2015). Envi-
ronmental heterogeneity at each site referred to environmental 
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differences among transects within each site (Anderson et al., 2006). 
Thus, we obtained a single value of each biological and EH metrics 
(taxonomic and functional alpha and beta diversities) per stream site. 

2.4. Data collection 

We measured 13 attributes of physical habitat structure, the varia-
tions of which were considered important predictors of aquatic macro-
invertebrates assemblages (e.g. Boyero and Bosch, 2004; Heino and 
Grönroos, 2013; Kaufmann and Faustini, 2012) in each of the 11 tran-
sects and between them (Peck et al., 2006; USEPA - United States 
Environmental Protection Agency, 2016): wetted width (m); wetted 
depth (cm); wetted area (m2); substrate embeddedness (%); canopy 
cover (%); thalweg depth (cm); 昀氀ow velocity (m/s); bankfull width (m); 
bankfull height (m); bank angle (ç); channel slope (cm); visual estima-
tion of substrate types; and visual estimation of channel 昀氀ow types. 

We sampled macroinvertebrates by using a D-frame kick net (30 cm 
mouth width, 500 μm mesh size). Sampling followed a systematic zig- 
zag sequence along the 11 transects at each site (Peck et al., 2006; 
USEPA - United States Environmental Protection Agency, 2016). We 
preserved each of the 11 samples separately in 10% formalin and took 
them to the laboratory for further processing and identi昀椀cation. 

In tropical regions, EPT taxonomy and functional traits are better 
known than those for other orders (Castro et al., 2017; Heino et al., 
2018). We used the biological trait database for EPT genera summarized 
by Castro et al. (2017). This database encompasses seven trait 

categories: body size, number of reproductive cycles per year, feeding 
habits, locomotion, body 昀氀exibility, body form, and association with the 
substrate. Body size categories were based on direct estimates of larval 
body length. The other categories were based on a literature specialized 
in Neotropical macroinvertebrates (Baptista et al., 2006; Dedieu et al., 
2015; Reynaga and Dos Santos, 2012; Tomanova and Usseglio-Polatera, 
2007). These functional traits were subsequently coded using the fuzzy 
coding approach (Chevenet et al., 1994), where each taxon gains an 
af昀椀nity score for each trait within a category (Castro et al., 2017). 

2.5. Biological metrics 

Taxonomic alpha diversity corresponded to all genera recorded at 
each single stream site. We measured taxonomic beta diversity through 
Permutational Analysis of Multivariate Dispersion (PERMDISP), which 
gives the average distance of individual samples to the group centroid 
(Anderson et al., 2006). Thus, the average distance of samples (each 
transect) to group centroid was considered the measure of beta diversity 
at each stream site. We applied the Jaccard coef昀椀cient to calculate 
dissimilarity based on the presence/absence of genera, and the modi昀椀ed 
Gower distance based on abundances using transformed data (log2 X) +
1, with zeros not being transformed, instead remaining as zeros 
(Anderson et al., 2006). 

To calculate functional alpha and beta diversities, we 昀椀rst computed 
taxon-by-taxon Gower distance from the fuzzy-coded trait matrix to 
generate a hierarchical tree cluster based on the group average method 

Fig. 1. Location of the stream sites sampled (n = 76) in the four hydrological units in the Neotropical Savanna, Minas Gerais state, southeastern Brazil.  
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(UPGMA) (following Cardoso et al. 2014). Alpha and beta functional 
diversity measurements were then based on the total branch length of 
the hierarchical tree that links all taxa represented in the stream site. We 
calculated these metrics using the package BAT in R program (Cardoso 
et al., 2015). 

2.6. Environmental heterogeneity measures 

Physical habitat differences among transects within each stream site 
were considered as the basis of EH metrics. For quantitative physical 
habitat measurements, we calculated the coef昀椀cient of variation (CV; 
standard deviation/mean), because it expresses a standardized measure 
of physical habitat variation among samples within each stream site. In 
contrast, qualitative (presence-absence) physical habitat measurements 
of substrate types (i.e., silt, sand, 昀椀ne gravel, coarse gravel, small 
boulder, large boulder, concrete, rough bedrock, smooth bedrock, wood, 
and hardpan) and 昀氀ow types (i.e., falls, cascade, rapid, rif昀氀e, glide and 
pool) were calculated using Simpson diversity index (1 – D), estimated 
across all 11 transects in the same stream site. The higher the value of 
Simpson diversity index, the greater the probability of observing the two 
different possible entities randomly pulling two samples within a 
dataset. 

To avoid multicollinearity among the 13 EH metrics, we computed 
Variance In昀氀ation Factors (VIFs). VIF scores that exceed 5 indicate high 
rates of multicollinearity with other metrics of the set (James et al., 
2017) and should be eliminated from subsequent analytical steps. We 
identi昀椀ed high rates of multicollinearity for CV of channel wetted depth 
and CV of wetted area, and these metrics were thus excluded from the 
following analytical steps. Therefore, we ended up with 11 EH metrics. 

2.7. Data analyses 

We tested whether variations in biological metrics differed among 
categories of disturbance using an analysis of variance (one-way 
ANOVA; Supplementary Material 2). We used Levene’s tests to evaluate 

differences in the variances of each EH metric among the categories of 
disturbance. Also, we performed Moran’s I test to verify the spatial 
autocorrelation of all biological and EH metrics among stream sites. 
Tests were run in the R software using package spdep (Bivand and Wong, 
2018). The results of the Moran’s I test revealed a lack of spatial auto-
correlation among stream sites (P-value > 0.05 for all Moran’s I tests; 
Supplementary Material 3). 

To test if the relationship between the EH metrics and the biological 
metrics change with anthropogenic disturbance, we used a model se-
lection approach (Burnham and Anderson, 2002). The model selection is 
based on all possible additive combinations among EH metrics (i.e., 
predictor variables) to explain each biological metric (i.e., response 
variables) at each category of anthropogenic disturbance (Fig. 2). This 
analysis results in a set of balanced models (Doherty et al., 2012), which 
allows calculation of the cumulative AICc (w + ) weights for each EH 
metric (Burnham and Anderson, 2002). Thus, we selected the EH met-
rics that were the most likely (w+g 0.50) to explain the variation in our 
response variables at each category of disturbance (least-, moderately- 
and most-disturbed). Each model selected provides the regression β 

parameters and signi昀椀cance value (p-value). The explanatory strength of 
each model is given by the coef昀椀cient of determination (R2), calculated 
as 1 - (sums square of residual deviance/sums square of null deviance). 
Model selection was run in the R software using the package MuMIn 
(Bartón, 2019). 

3. Results 

We counted 24,874 individuals and found 77 EPT genera. Moder-
ately and least-disturbed sites had similar mean abundances (366.7 and 
365.9, respectively), whereas most-disturbed sites had lower abun-
dances (180.7). Taxonomic and functional metrics’ means did not differ 
among disturbance categories (Table 1). 

In most cases, the variances of the EH metrics did not differ among 
disturbance categories, except for CV of substrate embeddedness 
(CV_embedd) (F2,73 = 3.264, p = 0.032) (Table 2). CV_embedd at least- 

Fig. 2. A schematic diagram presenting the analytical approach based on model selection. Modeling was performed by category of disturbance, based on all metrics 
of environmental heterogeneity against each of the biological metrics. 
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disturbed sites presented variance (s2 
= 0.1225) 3.8 times greater than 

in most-disturbed sites (s2 
= 0.0324). 

The model selection algorithm indicated four EH metrics that were 

important variables accounting for variation in biological metrics across 
categories of anthropogenic disturbance (Table 3). At least-disturbed 
streams, spatial 昀氀ow diversity (div_昀氀ow) was positively correlated to 
taxonomic (w+ = 0.91) and functional (w+ = 0.97) alpha diversities. At 
moderately-disturbed streams, CV of bankfull height (CV_bkf_hight) 
negatively correlated with taxonomic (w+= 0.60) and functional (w+=

0.81) alpha diversities. In most-disturbed streams, CV of thalweg depth 
(CV_depth_t) was positively correlated to taxonomic (w+ = 0.93) and 
functional (w+ = 0.96) alpha diversities, while the CV of 昀氀ow velocity 
(CV_vel) had a positive effect on taxonomic beta diversity based on 
modi昀椀ed Gower distance. 

The model strengths did not decrease as the level of anthropogenic 
disturbance increased. In most-disturbed streams, the models that 
explained the increasing trend of taxonomic and functional alpha di-
versities as a function of CV_depth_t showed the highest R2 values (0.52 
and 0.59, respectively). In contrast, streams with moderate disturbance 
showed weaker explanatory power for the taxonomic alpha diversity 
model (R2 

= 0.10) and functional alpha diversity model (R2 
= 0.18). In 

least-disturbed streams, div_昀氀ow metric showed intermediate percent-
age of explanation for taxonomic (R2 

= 0.22) and functional (R2 
= 0.30) 

alpha diversities. 

4. Discussion 

Our results showed that anthropogenic disturbances at multiple 
spatial scales affected the relationship between EH and taxonomic and 
functional alpha diversities at the site scale. However, the increase in 
anthropogenic disturbances did not lead to the weakening of these re-
lationships in a unidirectional way. Also, EH did not affect beta diversity 
between transects at each stream site, as we predicted. 

In a scenario where freshwater ecosystems are strongly threatened 
by anthropogenic disturbances (Collen et al., 2014), our results 
contribute to understand how tropical stream insect (EPT) assemblages 
respond to key gradients of EH at three levels of anthropogenic distur-
bance. Following a multi-faceted approach that encompassed alpha and 
beta components of taxonomic and functional diversities, we can better 
understand the causes and consequences of anthropogenic disturbances 
on the biodiversity and potential functioning of stream ecosystems (Mori 
et al., 2018; Mouillot et al., 2013). 

4.1. The responses of taxonomic and functional alpha diversities to the 
EH gradient 

For the 昀椀rst prediction (P1), we expected that the higher the level of 
anthropogenic disturbance, the weaker would be the strength of the 
relationship between EH and taxonomic and functional alpha di-
versities. Contrary to our expectations, as the anthropogenic disturbance 
increased, the strength of this relationship did not decrease. In the most- 
disturbed stream category, thalweg depth variation was a stronger 
predictor of taxonomic and functional alpha diversities compared to 
spatial 昀氀ow diversity in the least-disturbed streams. On the other hand, 
bankfull height variations negatively affected taxonomic and functional 
alpha diversities in moderately-disturbed stream sites. The absence of a 
unidirectional pattern of biological responses along the EH gradient 
with the disturbance increase has also been reported in the literature. 
Using a theoretical model, Yang et al. (2015) predicted that plant species 
richness increases along the EH gradient when plants are subjected to 
low or high environmental severity, but the pattern becomes unimodal 
at moderate levels. In contrast, benthic communities did not respond to 
a local habitat quality gradient when regional disturbance levels were 
low or high, but they did when regional disturbance levels are moderate 
(Stoll et al., 2016). Based on these results, we can conclude that the sign 
and strength of the biodiversity-EH relationship is not universal in 
stream insect assemblages and that it depends on the level of anthro-
pogenic disturbance. 

Different mechanisms may explain the diversity-heterogeneity 

Table 1 
Mean values of taxonomic and functional diversity metrics (standard deviation 
in parentheses) representing biological response in different categories of 
disturbance: least-, moderate- and most-disturbed sites. Beta taxonomic – (dj) 
corresponds to Jaccard coef昀椀cient dissimilarity measure. Beta taxonomic – 

(dMG) corresponds to modi昀椀ed Gower distance-based measure. P-values of 
ANOVA’s test between disturbance categories are presented.  

Biological 
metrics 

least moderately most p- 
value n = 29 n = 31 n = 16 

Alpha 
taxonomic  

19.13 (7.50)  20.14 (8.30)  16.31 (8.30)  0.306 

Beta 
taxonomic - 
dJ  

0.53 (0.06)  0.52 (0.07)  0.49 (0.08)  0.246 

Beta 
taxonomic - 
dMG  

1.26 (0.22)  1.24 (0.28)  1.24 (0.21)  0.931 

Alpha 
functional  

8.42 (2.56)  9.38 (3.19)  7.30 (2.88)  0.072 

Beta 
functional  

0.59 (0.08)  0.62 (0.07)  0.61 (0.10)  0.551  

Table 2 
Mean values of EH metrics (standard deviation in parentheses) representing 
environmental heterogeneity among sites in different categories of disturbance: 
least-, moderately- and most-disturbed sites. P-values of Levene’s test between 
disturbance categories are presented.  

Environmental 
heterogeneity 
metric 

code least moderately most p- 
value n = 29 n = 31 n = 16 

Coef昀椀cient of 
variation of 
channel wetted 
width (m) 

CV_width 0.37 
(0.12) 

0.35 (0.14) 0.31 
(0.08)  

0.063 

Coef昀椀cient of 
variation of 
substrate 
embeddedness 
(%) 

CV_embedd 0.61 
(0.35) 

0.40 (0.22) 0.41 
(0.18)  

0.032 

Coef昀椀cient of 
variation of 
canopy cover (%) 

CV_canopy 0.22 
(0.20) 

0.23 (0.30) 0.21 
(0.18)  

0.864 

Coef昀椀cient of 
variation of 
thalweg depth 
(cm) 

CV_depth_t 0.64 
(0.15) 

0.50 (0.18) 0.44 
(0.08)  

0.081 

Coef昀椀cient of 
variation of 昀氀ow 
velocity (m/s) 

CV_vel 0.94 
(0.65) 

0.75 (0.52) 0.49 
(0.27)  

0.145 

Coef昀椀cient of 
variation of 
bankfull width 
(m) 

CV_bkf_width 0.29 
(0.10) 

0.35 (0.15) 0.27 
(0.10)  

0.064 

Coef昀椀cient of 
variation of 
bankfull height 
(m) 

CV_bkf_height 0.37 
(0.33) 

0.29 (0.18) 0.28 
(0.20)  

0.626 

Coef昀椀cient of 
variation of 
margin angle (ç) 

CV_angle 0.64 
(0.20) 

0.51 (0.18) 0.42 
(0.16)  

0.445 

Coef昀椀cient of 
variation of 
channel slope 
(cm) 

CV_slope 1.21 
(0.50) 

1.23 (0.62) 0.93 
(0.33)  

0.318 

Simpson’s diversity 
of substrate types 

div_subst 0.44 
(0.14) 

0.44 (0.15) 0.44 
(0.18)  

0.633 

Simpson’s diversity 
of spatial 昀氀ow 
types 

div_昀氀ow 0.21 
(0.14) 

0.18 (0.12) 0.22 
(0.12)  

0.772  
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relationship (Stein and Kreft, 2015). It is possible that many ecological 
factors (e.g., large-scale factors, competition, stochastic events) other 
than environmental heterogeneity affect the structure of biological as-
semblages (McCabe and Gotelli, 2000; Perez Rocha et al., 2018). 
Therefore, the lower explanatory power may have been attributed to EH 
in our dataset response under least-disturbed conditions (R2 

= 0.22 for 
taxonomic alpha diversity; R2 

= 0.30, functional alpha diversity). On the 
other hand, EH may play a major role in maintaining diversity in streams 
subject to high levels of anthropogenic disturbance, where a single 
metric of heterogeneity explained 52% of the variation in taxonomic 
diversity and 59% of the variation in functional diversity. We also 
observed that bankfull height heterogeneity can have a weak negative 
effect on aquatic insect diversity in moderately-disturbed streams, a 
pattern usually reported in studies conducted at small scales (Tamme 
et al., 2010; Tews et al., 2004). In this case, an increase in EH can lead to 
habitat fragmentation, making organisms more susceptible to stochastic 
events (Allouche et al., 2012). In fact, bankfull height heterogeneity 
provides a measure of channel form heterogeneity (Peck et al., 2006), 
which suggests that the increment of the selected metrics might be 
causing habitat fragmentation for EPT assemblages. Since both biolog-
ical metrics (taxonomic and funcional alpha diversity) responded in the 
same direction (positively) and with a similar percentage of explained 
variation (R2), these patterns suggest that the taxonomic and functional 
alpha diversity respond similarly to EH gradients in any category of 
disturbance. 

We con昀椀rmed our second prediction (P2) because different features 
of EH affected aquatic insect assemblages at different levels of anthro-
pogenic disturbance. Because anthropogenic disturbances interact with 
natural ecological conditions (Seiferling et al., 2014), one EH metric 
could be ecologically relevant in the context of least anthropogenic 
disturbance category, but other ones would become more relevant when 
disturbances increase. Our observations point to the importance of 
measuring a wide range of environmental factors to identify those that 
are ecologically important for the biological assemblage studied (Heino 
and Grönroos, 2013). In our dataset encompassing stream sites (~150 
m) in least-disturbed conditions, the positive effect of spatial 昀氀ow di-
versity on taxonomic and functional alpha diversities corroborated 
previous studies (Kärnä et al., 2018; Silva et al., 2014). A higher level of 
spatial 昀氀ow diversity increases the range of environmental conditions 
suitable for species with different functional traits (Bouckaert, 1995). 
Flow diversity is directly related to substrate diversity (Boyero, 2003), 
and the interaction of these factors results in a riverine landscape with 
distinct habitat patches that are perceived differently by aquatic insect 
species (Boyero and Bosch, 2004; Wiens, 2002). Thalweg depth 

variations may also play a role similar to spatial 昀氀ow diversity in most- 
disturbed streams. This metric is associated with changes in the water 
昀氀ow velocity and direction (Kaufmann and Faustini, 2012), which ul-
timately lead to effects similar to those caused by spatial 昀氀ow diversity. 

4.2. The responses of taxonomic and functional beta diversities to the EH 
gradient 

For the third prediction (P3), we expected that taxonomic and 
functional beta diversities would not respond to the gradient of EH in 
any disturbance category, because mass effects are a major factor 
structuring biological assemblages at small scales in streams (Heino 
et al., 2015). We found that in almost all categories of anthropogenic 
disturbance, no EH metric was correlated with the taxonomic and 
functional dissimilarities among samples within a given stream. Only in 
the most-disturbed streams, taxonomic beta diversity increased with 
increasing variation in water velocity, which is surprising given that 
anthropogenic disturbances have contributed to the biotic homogeni-
zation of freshwater ecosystems (Castro et al., 2017; Larsen and 
Ormerod, 2014; Siqueira et al., 2015). 

Beta diversity patterns in freshwater ecosystems are typically 
strongly scale dependent (Heino et al., 2015). Our results reinforce the 
idea that EH measured within streams does not strongly affect the dis-
tributions of organisms among samples within each stream site (Heino 
et al., 2013; Heino and Grönroos, 2013). In our sampling design, tran-
sects within the stream site are 15 to 25 m apart, and dispersal limita-
tions are thus likely to be minimal as organisms can easily access 
different habitat patches (Brown and Swan, 2010). In this case, in-
dividuals may be randomly distributed in space, and they do not exhibit 
a speci昀椀c relationship with the environment (Brown et al., 2018; Heino 
et al., 2013). 

4.3. Implications for management 

Ecosystem management aiming to increase EH to re-establish 
biodiversity must take into account the relevant factors for the organ-
isms studied at a given spatio-temporal scale (Kolasa and Rollo, 1991). 
We provided insights into how aquatic insects may perceive EH in a set 
of tropical streams classi昀椀ed into different levels of anthropogenic 
disturbance. Maintaining spatial 昀氀ow diversity in preserved streams 
seems to be an effective means to increase local alpha diversity, whereas 
the increment in thalweg depth variations potentially results in an in-
crease of local taxonomic and functional alpha diversity in most- 
disturbed streams. On the other hand, we suggest that efforts to 

Table 3 
Environmental heterogeneity metrics selected to the model of biological metrics of the EPT assemblages. All models are separated according to the category of 
anthropogenic disturbance to which the assemblages are subjected: Least-, moderate- and most-disturbed. The estimates of the effects of the environmental hetero-
geneity metrics (β parameters) are given for the model built with meaningful environmental heterogeneity metrics based on criteria of cumulative AICc weights > 0.50. 
Beta taxonomic (dj) corresponds to Jaccard coef昀椀cient dissimilarity measure. Beta taxonomic (dMG) corresponds to modi昀椀ed Gower distance- based measure.  

Category of disturbance Biological metric Physical habitat metric Cumulative AICc Weights β parameters R2 p-value 
Estimate Lower 95% CI Upper 95% CI 

Least Alpha taxonomic div_昀氀ow  0.91  26.64  7.54  45.74  0.22  0.011 
Beta taxonomic - dJ –  –  –  –  –  –  – 

Beta taxonomic - dMG –  –  –  –  –  –  – 

Alpha functional div_昀氀ow  0.97  12.18  5.22  19.14  0.30  0.002 
Beta functional –  –  –  –  –  –  – 

Moderately Alpha taxonomic CV_bkf_hight  0.60  −13.18  −27.36  1.00  0.10  0.079 
Beta taxonomic - dJ –  –  –  –  –  –  – 

Beta taxonomic - dMG –  –  –  –  –  –  – 

Alpha functional CV_bkf_hight  0.81  −5.99  −10.59  −1.39  0.18  0.016 
Beta functional –  –  –  –  –  –  – 

Most Alpha taxonomic CV_depth_t  0.93  70.40  34.75  106.05  0.52  0.002 
Beta taxonomic - dJ –  –  –  –  –  –  – 

Beta taxonomic - dMG CV_vel  0.55  0.43  0.09  0.77  0.30  0.028 
Alpha functional CV_depth_t  0.96  26.07  14.64  37.50  0.59  0.001 
Beta functional –  –  –  –  –  –  –  
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increase beta diversity should also be tested at broader spatial scales. 
A high number of restoration projects that have aimed to increase EH 

in streams have not achieved a signi昀椀cant increase in biodiversity 
(Palmer et al., 2010). The factors that may in昀氀uence the biodiversity-EH 
relationship include: (i) the absence of suitable species in the regional 
species pool (Sundermann et al., 2011); (ii) the ongoing effects of 
anthropogenic stressors on the biota (Brown et al., 2018; Stoll et al., 
2016); (iii) focus on the wrong spatial scale; (iv) the wrong perception of 
increased EH by the biota (Polvi et al., 2014). We propose that there are 
often two or more factors interacting, depending on a given case. The 
model selection approach used in our study identi昀椀ed ecologically 
meaningful EH metrics accounting for variation in the taxonomic and 
functional alpha diversities in each disturbance category. Finally, we 
recommend the use of a model selection approach to pinpoint the most 
important EH metrics that should be managed for the preservation of 
stream biodiversity. 
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