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“Imagination will often carry us to worlds that never were.

But without it we go nowhere.”
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Resumo

A exposição prolongada a circunstâncias de dor pode ter muitos efeitos colaterais na vida

de um feto e causar consequências negativas no seu desenvolvimento. Assim, a avaliação

e gestão da dor torna-se necessária para identificar esses cenários precocemente. Embora

existam numerosas escalas de dor para auxiliar na avaliação da dor em recém-nascidos,

até recentemente, não existia um método para detectar dor em fetos. Com base nessas

escalas, algumas pesquisas foram desenvolvidas para avaliar automaticamente a dor por

meio da análise de imagens com ajuda computacional. Ainda assim, nenhum trabalho

desse tipo havia sido desenvolvido especificamente para fetos.

Nesse cenário, propomos o uso de redes neurais convolucionais profundas para con-

struir um modelo de aprendizado capaz de detectar automaticamente a presença de dor

em fetos. Fazemos isso por meio da avaliação de suas expressões faciais em imagens cole-

tadas de máquinas de ultrassom 4-D. Utilizando técnicas de transferência de aprendizado,

partimos de uma rede pré-treinada na tarefa de reconhecimento facial e confirmamos que

a transferência de aprendizado de uma tarefa semelhante obteve um desempenho melhor

do que se fosse feita a partir de um conjunto de dados de propósito geral.

Avaliamos nosso modelo em imagens extráıdas de 13 gravações de v́ıdeo de fetos

submetidos a est́ımulos dolorosos e não dolorosos e alcançamos uma precisão de 84,8%

na tarefa de discriminar imagens de dor daquelas em um grupo de controle não doloroso.

Nossos resultados demonstram a eficácia da aplicação de tais métodos com imagens fetais

e, acima de tudo, mostram que é posśıvel desenvolver um modelo para detectar automati-

camente dor em fetos.

Palavras-chave: aprendizado profundo; transferência de aprendizado; dor em fetos;

medição automática de dor.



Abstract

Prolonged exposure to pain circumstances can have many side-effects on the life of a fetus

and cause negative developmental consequences. Thus, pain assessment and management

is made necessary to identify these scenarios early on. Even though numerous pain scales

exist to help assess pain in neonates, until recently, no such method existed for detecting

pain in fetuses. Based on these scales, some research has been developed to automatically

assess pain through the means of analyzing images with computational help. Still, no

such work had been developed for fetuses as well.

In this scenario, we propose the use of deep convolutional neural networks to

construct a learning model capable of automatically detecting the presence of pain in

fetuses. We do so through the evaluation of their facial expressions in images collected

from 4-D ultrasound machines. By taking advantage of transfer learning, we used a

network pre-trained on the task of face recognition, and confirmed that transferring from

a similar task performed better than if made from a general-purpose dataset.

We have evaluated our model on images extracted from 13 video recordings of

fetuses undergoing painful and non-painful stimulus and achieved an accuracy of 84.8%

on the task of discriminating images of pain from those in a non-painful control group.

Our results demonstrate the effectiveness of applying such methods with fetal images, and

above all, show that it is possible to develop a model for automatically detecting pain in

fetuses.

Keywords: deep learning; transfer learning; fetal pain; automatic pain assessment.
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Chapter 1

Introduction

The International Association for the Study of Pain (IASP) defines pain as “an unpleasant

sensory and emotional experience associated with actual or potential tissue damage, or

described in terms of such damage” [31]. The definition accompanying notes also estab-

lishes that “the inability to communicate verbally does not negate the possibility that an

individual is experiencing pain and is in need of appropriate pain-relieving treatment.”

As newborns are unable to self-report pain, its diagnosis is much harder when com-

pared to adults. Thus, specialists have used non-verbal responses like facial expressions,

crying sounds, and movements, alongside physiological measurements for better pain as-

sessment. These methods have been tested and found to be reliable indicators of pain.

Several observational scales have been published and verified based on them, such as the

Neonatal Infant Pain Scale (NIPS) [26], and the Neonatal Facial Coding System (NFCS)

[21].

In the case of fetuses we have even more restrict methods of pain assessment.

Fortunately, some recent studies have shown the feasibility of applying these pain scales

on a fetus through the use of 4-D (four-dimensional) ultrasound images [3]. This process

allowed the monitoring of facial expressions on a fetus while they were exposed to noxious

stimuli like an anesthetic puncture.

With recent advances in Artificial Intelligence (AI), the capacity of machines to

detect patterns in images has largely improved, which consequently allowed for its applica-

tion in diverse scenarios. Hence, these techniques could also be useful for pain assessment

by helping to match patterns of facial expressions that are common indicators of pain.

1.1 Motivation

With studies showing that fetuses beyond a certain week of pregnancy may ex-

perience pain [13, 14], early identification of this discomfort can be valuable in many

situations.
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One example is intrauterine surgery, which may be of significant benefit in the

future development and survival of the fetus. Early correction, prior to birth, of congenital

problems, will likely increase the odds of a healthy baby. These procedures, however, are

quite invasive to the fetus and could eventually cause harm. The assessment of pain

during the intrauterine life of a fetus is, therefore, a task with the potential of bringing

significant improvements to fetus life quality.

Another critical topic is abortion. In the United States, a 2016 law from the state

of Utah determines that women seeking abortion 20 weeks or more into pregnancy will

first have to be given anesthesia or painkillers [23]. This procedure is intended not for

them but the fetus.

This topic involves much ethical debate, as the exact week when a fetus starts

experiencing pain nor if they feel pain at all is well defined [28]. At the same time,

abortion is only legal until a particular week [13]. So discussion arises not only if the

fetus can or can not experience pain, but also as it may be the case that fetuses can

only experience pain after weeks in which abortion is no longer possible. Evidence on

the presence of pain in this scenario would be a significant contribution in such a delicate

situation and may assist the decision by the doctors and the mother.

For both scenarios, the current standard for assessing pain in infants and fetuses

relies on caregivers’ observation of specific behaviors such as facial expressions. However,

these observations are subject to bias and can be affected by several factors, such as

identity, background, culture, and gender, which may lead to inconsistent assessment and

treatment of pain. An impartial perspective during the pain assessment process could

bring a more realistic and deterministic view on the subject. Hence, computational help

would be of great use in finding evidence of pain and in effectively managing it.

1.2 Thesis Statement

We developed a learning model capable of automatically detecting the presence of

pain in fetuses through the evaluation of their facial expressions in images collected from

4-D ultrasound machines. We have used modern deep learning techniques like transfer

learning and data augmentation to find the best model. Our results demonstrated the

effectiveness of applying such methods to the assessment of pain in fetuses and, to the

best of our knowledge, is the first work attempting to do so.
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1.3 Contributions

As fetuses have been shown to respond to stimuli like anesthesia with facial ex-

pressions indicating pain, the goal of this work is to help automate the pain assessment

process and to generate unbiased evidence of pain. We have developed a process capable

of detecting the presence of pain from images collected from 4-D ultrasound machines.

If this system is eventually integrated into the ultrasound machine itself, it will

bring many benefits, such as the monitoring of anesthetic procedures efficacy, much like

what it is done in adults. As an example, if the surgeon detects that after the first

anesthesia, the fetus still shows signs of pain, he will be able to make better decisions and

apply another one if necessary.

This work also opens the way to explore the evolution of pain-related facial re-

sponses during fetal development. Considering that after the 20th gestational week, fe-

tuses start to develop brain structures capable of showing signs of pain, this model would,

therefore, allow for continuous monitoring of pain across time.

In summary, our main contributions are:

• We have created a systematic procedure for collecting and processing images of a

fetus from videos of 4-D ultrasound machines. This procedure is also capable of

detecting their facial landmarks. From this procedure, we have created a labeled

database consisting of 226 images of 13 fetuses with facial expressions while in

the manifestation of pain and two other control conditions. To the best of our

knowledge, no such database existed.

• We have developed a learning model capable of detecting the presence of pain in-

dicators from images of a fetus’s face. We believe this is good evidence towards

an unbiased pain assessment process. This novel approach has the potential to im-

prove the pain assessment process significantly on fetuses. It would facilitate pain

management by the doctors and caregivers and could even be the first indicator of

discomfort or distress, leading to earlier intervention if necessary.

• We have shown that transfer learning with a network pre-trained with the face

recognition task transfers well to fetus images even though the domain is different.

We have achieved an accuracy of 84.8% on the classification task between images

of pain and a non-painful control group. If we look only at the images from acute

pain videos, and classify them between the images before the stimulus (at rest), and

after it (acute pain), we were able to achieve an AUC of 0.923.
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1.4 Organization

The rest of this dissertation is structured as follows. First, Chapter 2 discusses

related work in pain assessment. Chapter 3 introduces some background concepts on

deep learning, necessary to further understand our work. Chapter 4 describes the fetal

pain assessment study, and also introduces our dataset. Chapter 5 follows with our

methodology, including our learning model. Then, Chapter 6 describes our validation

process, as well as our experimental results. Chapter 7 concludes the dissertation and

presents future work possibilities.
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Chapter 2

Related Work

In this chapter, we present the most relevant research results that guided our work,

exposing the methodologies used by the authors and how they correlate to ours. Research

on automatic pain assessment has a significant intersection between the medical field and

applied machine learning both for fetuses and infants [2, 48]. Thus, we start by exploring

the signs of pain in infants and fetuses, their main indicators, the available pain scales

to measure them, and automatic methods of assessment. We conclude the chapter by

explaining how our work is different from the mentioned ones, as we explore automatic

pain assessment from a novel perspective with fetuses.

2.1 Pain

Pain is a universal form of distress present in humans and some other animals.

Acute and chronic pain is very typical in the population and constitutes widespread public

health problems [20]. Its prolonged presence could cause many adverse consequences,

including psychological effects, which is especially true in the case of neonates and fetuses.

The study of neonatal pain appears to have begun as early as the 1870s when Dr.

Flechsig proposed it was unlikely that neonates could feel pain because their neuronal

myelination was not complete [10]. Charles Darwin’s book written a couple of years later

agreed with this view, as he wrote that “infant’s pain expressions were related to reflexes

only” [11]. Even in the 1950s, some pediatric surgeries were still performed without

analgesia and anesthesia [10].

It was only in the early 1980s that the first fetal surgery was performed by Dr.

Michael Harrison [22]. The fetus to be operated had a blockage in the urinary tract

that caused the kidney to dangerously extend, which is a condition known as congenital

hydronephrosis. A vesicostomy was conducted to correct this issue by placing a catheter

in the fetus to allow the urine to be released normally.

Further progress has been made in the years since the first operation, as advances
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in imaging technology and in surgery techniques allowed additional abnormalities to be

treated and for less invasive forms of fetal surgical intervention to be performed.

Even though the cases in which fetal surgery is necessary are relatively rare, it has

become the standard form of intervention in some abnormalities like myelomeningocele, as

shown by the Management of Myelomeningocele (MOMS) trial [1]. The study compared

outcomes of in utero repair (before birth) with standard postnatal repair (after birth).

The conclusion was that prenatal repair might result in better neurological function than

repair deferred until after delivery.

A follow-up cohort study by the same study group has evaluated children originally

enrolled in the MOMS trial, who are now in their school age (5.9 – 10.3 years old)

[24]. They discovered that, even though there were no significant differences in adaptive

behavior, motor function and quality of life were significantly better in the group with

prenatal repair.

The study of fetal surgery is tightly coupled with the one of fetal pain. [16],

for instance, evaluated the effect of opioid analgesia on fetal hormonal stress responses

to intrauterine needling and showed that fentanyl, an opioid commonly used for pain

medication and anesthesia, does attenuate the fetal stress responses.

Later on, [44] studied fetal reactions to painful stimuli and showed that painful

interventions could have long-term effects on them. This study also concluded that ad-

equate pain relief during potentially painful procedures is recommended, as it leads not

only to better fetus well-being, but also helps with fetus immobilization, which prevents

accidental fetal movements complicating these procedures.

These conclusions also affect anesthesiologists, as [15] shows that fetal pain is

among their primary concerns during fetal surgery for myelomeningocele. Considering

these procedures are so delicate, fetal pain assessment and management are of fundamental

help, which leads research to the study of pain detection through the use of pain indicators.

2.1.1 Pain Indicators

Fetuses and infants can produce different signals of pain, which can be decoded

to both identify its presence and to measure its level. These signals come from a vari-

ety of sources, such as facial expressions, crying sounds, body movements, physiological

indicators, and biological markers [2].

Even though we have this many indicators, pain identification is a challenging task

as we have the manifestation of the same indicators present in similar feelings, such as

anger, hunger, or stress. The recommendation to address this issue is that these indicators
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should be used in combination with each other [2] because most of the time, their presence

alone is not sufficient.

Crying, for instance, can also be generated by hunger or anger which implies it can

not be used as a sole indicator of pain. Thus, pain scales normally combine features of

crying with other indicators for pain assessment. Fetuses have been shown to express a

homolog of crying [19], which can also be further explored for automatic pain assessment,

as shown by [40].

Physiological indicators, on the other hand, have the limitation that they are

subject to variations due to underlying illness [43]. Body movements have also been

pointed out to be indicators of pain, as fetuses already present withdrawn reflexes during

stressful procedures [55], but care must be taken as they can also be misleading as other

factors may cause the movements.

Studies have also shown that biological markers like stress hormones (cortisol,

adrenaline, and beta-endorphins) are increased in concentration in the blood in the pres-

ence of pain [18]. However, the problem of these indicators is that they depend on results

from laboratory tests, which makes it unfeasible to use during clinical procedures.

One of the most relevant indicators of pain, not only in adults but also in neonates

and fetuses are facial expressions. As suggested by [45], a great way of evaluating fetal

facial expressions is through the means of 4-D sonography, and as he points out, these

studies may be the key to predicting fetal brain function and well-being. Later research by

[37, 36] also suggests that, when healthy fetuses mature from 24 to 26 weeks of gestation,

their capability of showing complex facial movements increases, and they were even able

to observe facial expressions which resemble a face while in pain or distress.

Facial expression indicators are frequently present in pain scales. Several facial

movements are usually tracked, such as brow bulge, eye squeeze, nasolabial furrow, and

open mouth. The assessment of these manifestations is done by observers, which use pain

scales to identify its presence and intensity of pain.

2.1.2 Pain Scales

Multidimensional neonatal pain scales were developed using the many indicators

mentioned in the previous section. These scales are used by caregivers to assess pain with

behavioral and physiological indicators. The most popular ones are:

• Neonatal Infant Pain Scale (NIPS), by [26]

• Face, Legs, Activity, Crying and Consolability (FLACC), by [30]
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• Neonatal Facial Coding System (NFCS), by [21]

These scales were all developed targeting neonates, as some indicator observations

are not easily measured in a fetus due to the difficulties of collecting images of their

faces. However, recent studies by [3] have reported that the use of the NFCS is feasible to

detect pain-related facial expressions compared with control conditions in a randomized

and blinded assessment report. We further discuss this study in Chapter 4.

Nevertheless, the scales also have some limitations, as they are highly dependent

on the observant’s bias, require specific training for proper utilization, and are not able to

monitor pain in a continuous manner. Thus developing tools that are capable of addressing

this task automatically and continuously is highly compelling as they can result in a more

consistent pain assessment.

2.2 Learning Models for Pain Assessment

The development of learning models to automatically assess pain has been a pop-

ular topic of research lately. As an example, for adults pain assessment, [29] has achieved

remarkable results in identifying spatiotemporal features extracted from video sequences

for pain recognition.

In terms of neonates, the first work attempting to assess pain automatically emerged

in 2006 with the development of the iCOPE database [5]. The database consisted of 204

images from 26 infants. The images were collected in five different conditions, a resting

baseline, with bodily disturbance, with an air stimulus on the nose, with friction on the

external surface of the heel, and with the pain of a heel stick. The idea behind using this

variety of conditions was to make sure the set of images were representative of the many

possible situations, but also challenging enough to discriminate. The five conditions were

later divided into two groups for classification: pain and non-pain.

Their studies considered the best scenario where the system would be able to train

on a fetus and evaluate that same fetus later on. However, as permanence in the baby

nursery is quite short, they also experimented with the case where this was not possible,

thus developing a validation process where the classifier had to be trained beforehand and

evaluated on images of a new infant, which was not in the dataset distribution previously.

Given they had a small number of subjects, it was feasible to use a validation strategy

known as leave-one-out, which consisted of iterating over every combination of using 25

subjects for training and 1 for testing.

At the time, neural networks were not as popular and advanced as they are today.
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Thus, the first attempts to automatically detect pain used traditional algorithms such as

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Support

Vector Machines (SVM) [4, 5, 6]. In order to extract features from the images, these

studies relied heavily on texture descriptors like Local Binary Patterns (LBP) and a few

other variations [32]. Still, the results were satisfactory, and the experimental process

they developed is similar to what is used today with more modern techniques.

[47], more recently, proposes a multimodal approach for automatic pain assessment,

which combines a few indicators like facial expressions, body movements, and changes in

vital signs for producing a pain score. This score was evaluated on videos of 18 infants

recorded at the Neonatal Intensive Care Unit (NICU) of the Tampa General Hospital,

and the multimodal approach performed much better than each individual indicator on

its own, by achieving 95% accuracy for pain classification. A later cohort study also

included crying sounds into the model and yielded an accuracy of 96.6% [49].

Modern approaches in automatic pain assessment of neonates make the use of deep

neural networks to achieve state of the art results. [46], for instance, has significantly

improved the results in the aforementioned iCOPE database, achieving 0.948 of AUC

by combining both handcrafted features and features extracted by Convolutional Neural

Networks (CNNs) using transfer learning.

[50], in a similar study, has compared the use of popular CNNs, such as VGG and

ResNet, with a network particularly tailored for neonatal pain assessment, the N-CNN.

To evaluate the networks, they have also recorded videos at the NICU of the Tampa

General Hospital, where a camera was installed on a stand next to the neonate’s incubator,

targeting their faces. These recordings resulted in the Neonatal Pain Assessment Dataset

(NPAD), which consists of 31 neonates and are available at the study’s website 1. Their

findings suggest that automatic recognition of neonatal pain using these networks is not

only viable but also a more efficient alternative to the current standard of pain assessment,

which relies on caregivers.

New studies, like [17], have also been using videos directly as inputs to the learning

models. [39], for instance, has proposed a multi-channel shared network to classify pain

from videos by extracting features from facial expressions and body movements. Likewise,

[54] proposes the use of dynamic facial texture features and dynamic geometric features to

extract features from video sequences and use them to classify facial expressions of infants

as pain or no pain. These techniques take advantage of the spatiotemporal sequence of

the frames, to create a time series of frame-level features. [40] also contributed with

an alternative approach by using convolutional neural networks to extract features from

crying sounds.

Our work has adopted a similar approach of not having only images of rest and

pain, but also a third set of images from another stimulus, which in our case was a vibro-

1https://rpal.cse.usf.edu/project_neonatal_pain

https://rpal.cse.usf.edu/project_neonatal_pain
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acoustic sound with the intention of causing discomfort, but no pain. As for the validation

strategy, we have also adopted the leave-one-out method used by [5]. Like [46], we relied

heavily on the use of transfer learning to train our convolutional neural networks, given we

have limited data available. For the same reason, we have also used data augmentation,

which was very common in many of the mentioned studies due to data limitation. To the

best of our knowledge, our work is the first attempt to detect pain in fetuses automatically,

and we believe many of the approaches mentioned earlier have the potential to help in

this task.
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Chapter 3

Background on Deep Learning

In the task of image classification, traditional machine learning algorithms required hand-

engineered features, like filters and descriptors, which were meant to extract information

from the images to be used as an input for algorithms. These algorithms would then

be trained to find patterns in these features capable of distinguishing between different

classes.

Neural networks, on the other hand, have the advantage of being able to learn

these features directly from the data, which makes the process of feature engineering a

lot simpler and achieves better results in most cases. Furthermore, the recent advances

in deep neural networks have taken these capabilities to a new level. They not only win

most of the competitions in the field but also achieve state of the art results in a wide

range of real applications. One type of network that is responsible for these results is the

Convolutional Neural Network (CNN) [27].

3.1 Convolutional Neural Networks

Convolutional neural networks are similar to traditional neural networks. They

both have an input layer which receives the data, followed by hidden layers with numerous

neurons with weights and biases capable of learning the characteristics of the data, and a

fully connected output layer at the end which is responsible for classification. The main

difference is that CNNs assume the input has some spatial relationship, which is a pattern

present in images. Thus, knowledge of where pixels are located in reference to each other

is preserved. CNNs are capable of extracting and capturing patterns from the images that

would not have been possible if we used traditional networks. To extract these features,

the networks uses two primary operations: convolution and pooling.

Convolutions are linear mathematical operations that act as learnable filters (also

called kernels) to capture patterns in the images. These filters are usually small in terms

of dimension, typically 3x3 or 5x5 matrices. Each one of them convolves across the width
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and height of the input image and compute dot products with the pixels of the image,

producing an activation map out of it. These activation maps, once learned, are able to

detect features in the images, such as edges, corners, or color shifts.

Figure 3.1: The convolution operation

Source: Extracted from the Peltarion website1.

Pooling is another mathematical operation responsible for reducing the spatial size

of the convolved feature. These series of transformations reduce the dimensionality of the

data and makes it possible to process images of high resolution. The most common cases

of pooling are average pooling and max pooling, which are illustrated on Figure 3.2.

Figure 3.2: Common pooling types

(a) Average Pooling (b) Max Pooling

Source: Extracted from the Peltarion website2.

As multiple convolutional and pooling layers get stacked, the network becomes

able to detect more complex patterns that are composed of multiple inputs of different

feature extractors in the first layers. By turning this activation maps back into images,

we are able to see what kinds of features they are detecting, as demonstrated by [51].

1https://bit.ly/38bR3uK
2https://bit.ly/2Pzpkxq

https://bit.ly/38bR3uK
https://bit.ly/2Pzpkxq
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3.2 Transfer Learning

Transfer Learning is a technique commonly used in machine learning when a learn-

ing model that was originally developed for one task is then reused on a second related

task. It comes from the assumption that what has been learned in one setting can be

used to improve optimization in another setting. The idea behind is inspired by human

behavior, as sometimes we can use expertise in solving one problem to solve a new one.

Another motivation behind using transfer learning comes from the high computa-

tional cost necessary to train large deep neural networks for image classification. Since

the number of parameters present in a CNN is very high, it requires a large amount of

training data to tune the network for making precise predictions.

As an example, a commonly used dataset in the field for pre-training networks is a

subset of ImageNet [12], which contains 1.2 million images and has 1000 labeled categories

for classification. Even with today’s computational power, it still requires a significant

amount of hours to be trained.

In this scenario, using transfer learning trough pre-trained networks arises as a

solution. In this process, the weights and biases from a network trained in another task,

are reused to train a new similar task.

Another reason for using transfer learning comes from the cases where we do not

have enough data to train a CNN. [8] highlights this is especially true in the medical

field, as the acquisition costs are elevated, and it also involves a complicated set-up for

photographing, which makes it very common to have little annotated data.

3.3 Data Augmentation

Another solution that handles small datasets is data augmentation. It consists

of applying transformations, such as geometric and color augmentations, for generating

alternative images that derive from the original dataset.

For each input image in the dataset, a new image is generated that can be zoomed,

shifted, mirrored, rotated, distorted, or have changes in its color, brightness, contrast.

Hence, this technique increases the amount of data available for input.

Having a large dataset is crucial for the performance of the deep learning models,

but instead of starting with a large dataset of images, a more common scenario is to

have a small amount of data available from the specific domain of research. This usually
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happens due to the high cost of collecting data, be it in terms of human labor or monetary

resources. As mentioned in the previous section, this is mainly the case in the medical

field.

Another problem of small datasets is that problems trained on them are often over-

fitted to the specific data available, which means they lack the power of generalization,

as the dataset is not representative of the real world. In these cases, as discussed by [35],

data augmentation can act as a regularizer for preventing over-fitting and also improve

performance in imbalanced class problems.
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Chapter 4

Data

Fetal therapy is a promising field in pediatric medicine, and prenatal surgery has become

an option for an increasing number of babies with congenital disabilities. Regardless of

its popularity increase, it is still a relatively rare procedure as it affects only a small

percentage of pregnancies and offers risks for both the mother and the unborn baby.

The procedure is also highly sophisticated and thus requires a skilled team, assisted with

advanced technological resources to perform such complex procedures. The particularities

of this topic, make research in the field very challenging.

At the same time, as fetuses are protected against biological and social effects

while in utero, the circumstances offer an excellent opportunity for investigation of fetal

behavior free of influences from the outside world. The study of fetal pain is a great

example, as it is still a topic of debate if human fetuses feel pain or not. The Fetal Pain

Study Group from the University of São Paulo was formed with the purpose of helping

answer these questions. In the following section, we describe one of their most recent

studies, which consisted of the assessment of pain trough facial expressions in fetuses.

4.1 Fetal Pain Study

Trough the use of high definition 4-D ultrasound machines, it is possible to record

and observe fetal responses to different stimuli, and by looking at their facial expres-

sions and body movements, one could potentially assess visual pain responses during the

intrauterine life. This was done by the aforementioned study group, which proved the

feasibility of using a pain scale, initially developed for acute pain assessment in neonates,

in fetuses [3].

Based on this hypothesis, the Fetal Pain Study Group conducted a novel study,

which is the first attempt to assess specific pain-related facial patterns in human fetuses.

They were able to evaluate facial expressions after an anesthetic injection was adminis-

tered before an intrauterine surgical procedure, which was used as a model of acute pain.
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They were pioneer in the usage of two ultrasound machines for this purpose, as the exact

moment of the anesthetic puncture was recorded to capture the reaction of the fetus and

its manifestations of pain.

While one machine was used to perform the anesthesia, a second ultrasound ma-

chine was placed in the clinical room and operated by a fetal medicine specialist to monitor

the fetus’s face and its expressions. The spatial set-up of the room can be seen in Figure

4.1.

Figure 4.1: Operating room set-up for surgery and face recording. (1) Position of the
mother; (2) chief surgeon who performed the puncture; (3) assistant surgeon who obtained
the 4-D images; (4) surgical technologist; (5) ultrasound machine used in surgery focusing
the fetal trachea/thigh; (6) ultrasound machine used for fetal face recording; and (7) an
external camera.

Source: Diagram extracted from [3]

In order to measure and quantify pain, a second study (yet to be published) eval-

uated the presence or absence of pain in a larger group of 13 fetuses. Besides the anes-

thetic acute pain stimulus, two other scenarios were used as control conditions: resting,

and responses after an acoustic stimulus of a horn, which is routinely used to assess fetal

well-being. It is important to notice that for the acute pain group, all fetuses were previ-

ously diagnosed with diaphragmatic hernia and had an indication of intrauterine surgery

(fetoscopic endoluminal tracheal occlusion). They were all assessed in their preoperative

period.

This study was then able to refine the Neonatal Facial Coding System (NFCS) to

be more suitable for the application on fetuses. As fetuses can display facial expressions

unrelated to pain [37], the scoring system should be capable of discriminating acute pain

responses from those at rest and from other non-painful stimuli that also trigger facial

expressions, like the vibro-acoustic sound of a horn. After refinement, indicators unable to

discriminate between painful stimuli, and the control groups were removed. Likewise, in-

dicators that were undetectable from static images were also not considered. Additionally,

one item deemed relevant for the research was added: neck deflection.

The final scale thus contained the following seven items: brown lowering, eyes

squeezed shut, deepening of the nasolabial furrow, open lips, horizontal mouth stretch,
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vertical mouth stretch and the new item neck deflection. Each item is considered one point

if present or zero if absent on a given screenshot, then the present items are summed to

give an overall score, and the scale ranges from zero to seven. The study concluded that

no fetus in the control groups had a score higher than four, and at the same time, in

the acute pain group, no score was less than five. These results allowed researchers to

determine that a “pain cut-off” exists in the new seven-item scoring system.

In summary, the study concludes that fetal humans undergoing an anesthetic punc-

ture show facial expressions changes, which can be detected, quantified, and scored using

a refined scale derived from one used in newborns. Furthermore, the features of the facial

expressions present while in acute pain exposure are sufficiently discriminative from those

expressed while in rest or during a sound stimulus. Hence, making it possible to establish

a threshold which separates acute pain responses from non-painful responses.

4.2 Data Description

The data collected by the second study and its findings present a unique oppor-

tunity to do further experiments. To the best of our knowledge, no publicly available

dataset exists with images or videos of fetuses while in acute pain exposure. This fact

alone highlights the novelty and innovative aspects of the study mentioned above and our

research.

A total of 13 films were recorded from a 4-D ultrasound machine of the model

Voluson E8 by General Electric, being 6 from the acute pain group, 4 from resting condi-

tions, and 3 from the exposure to acoustic stimulation. An example image from each one

of them can be seen on Figure 4.2. All the fetuses were in the third trimester of gestation,

with an average of 31.1 ± 2.8 weeks. Videos from each of these three conditions were

collected as follows:

• Acute Pain (AP): fetuses from this group were diagnosed with a diaphragmatic

hernia, which indicated intrauterine surgery (fetoscopic endoluminal tracheal occlu-

sion). The videos were recorded in the preoperative period during the anesthetic

puncture, using the setup described in the previous section. Videos from this group

had two parts in it, first a baseline period defined as the first 45 seconds before the

anesthesia puncture and second the 45 seconds immediately after the puncture.

• Rest (RE): fetuses in this group were recorded during routine ultrasound exams to

assess fetal well-being. The videos lasted 45 seconds and begun after a 5 minutes

period of rest for the mother. All the fetuses were considered healthy.
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• Acoustic Stimulus (AS): fetuses from this group were exposed to a vibro-acoustic

stimulation that is used to improve the efficiency of fetal heart rate testing to assess

fetal well-being. Their facial expressions were recorded 45 seconds before and after

the stimulus of a horn, which was applied to the maternal abdomen next to the

cephalic fetal pole for approximately 4 seconds.

All mothers gave written informed consent to participate in the study and to record

the behavioral reactions of the fetuses. The study was also approved by the ethics review

board of the Hospital das Cĺınicas da Faculdade de Medicina da Universidade de São

Paulo, under protocol number 2.649.528.

Figure 4.2: Images of each individual fetus grouped by their conditions

(a) Acute Pain Group

(b) Rest Group

(c) Acoustic Stimulus Group

Source: Images created by the author.
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Chapter 5

Deep Learning Models for Fetal Pain

Assessment

Based on the techniques mentioned in Chapter 3, we have proposed a process and a few

learning models for classifying images of fetuses with facial expressions containing the

presence of pain or not. In summary, our pipeline consists of sampling the videos into

frames, finding the images which contain a clear fetus face, and training a Convolutional

Neural Network (CNN), with the help of transfer learning, for the binary classification

task of finding the presence of pain. In the following sections, we describe each of these

steps.

5.1 Image Sampling

It is common to have a small number of data to work within the medical field in

general, given the inherent difficulty of collecting it [53]. In our case, especially, only a

small percentage of pregnancies require intra-uterus intervention before birth, and thus

fetal anesthesia is a relatively rare procedure. Thus, as seen in the previous chapter, we

ended up with 13 videos available, which is a number similar to what we have seen in

other studies, such as the iCOPE database.

Since we had a small number of videos, it was not possible to work with them

directly. So, we brought the data to another dimension, reducing the space from videos

to images by sampling them and capturing frames at a rate of every 2 seconds.

With this process, we generated a total of 508 images, but since the images were

recorded from ultrasound machines, they depend on the calibration by the specialists to

capture the exact section of the 3-D space where the fetus’s face is clear. Because of this,

it was common to find parts of the video where the face of the fetus was not visible and

showed non-distinguishable parts. As we had a significant number of images, and manual

selection would be not only hard but also dependent on the observant, this became a
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problem. Thus, our final dataset consisted of 226 images.

To overcome this issue, we decided to use another neural network capable of de-

tecting facial landmarks, like the nose, the mouth, and the eyes. The network we used was

the Multi-task Cascaded Convolutional Networks (MTCNN) developed by [52], which is

trained to identify faces in images. It worked surprisingly well in our domain, even though

the images had quite different characteristics.

With this process, we were able to filter our dataset and reduce the number of

images from 508 to 232, but being sure the images contained a clear face. The network

also returns a confidence value of which it found the face in the image, and we have used

only confidences of over 95%, which, after manual inspection, showed to be very reliable,

with just six clear errors that were removed manually.

The position of the facial landmarks encountered by the network also allowed us

to crop images around the fetus’s face. This process is achievable after we have the coor-

dinates of the landmarks returned through the MTCNN, which also makes face alignment

possible. This helps to discard images with blurred surroundings around the fetus, which

contains non-distinguishable parts. In Figure 5.1, we can see an example of a sampled

image and its respective cropping.

Figure 5.1: Image cropping with MTCNN

Source: Image created by the author.

In the videos of acute pain, as we knew precisely when the anesthetic puncture

stimuli were applied, it was possible to divide the images into the two classes of pain and

non-pain. This division is relevant, as it allows us to experiment in the scenario where

we can evaluate the same fetus, for both conditions. In the other two groups, this is not

possible as we have only images of the non-pain class.
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5.2 Data Augmentation

Even though we had increased the size of the dataset by turning the videos into

images, it is still considered a relatively small dataset for deep learning models. To

further augment our chances of succeeding, we have applied the use of data augmentation

techniques to increase the variability of our data. The effectiveness of this technique has

been demonstrated by [35] and is widely used in the field.

There is a wide variety of transformations possible for using data augmentation,

and even simple techniques already work very well. We have chosen to apply the following

transformations:

• Horizontal flip, which mirrors the image horizontally.

• Rotation, which applies rotations to the images up to a maximum degree.

• Zooming, which zooms into parts of the image up to a maximum level.

• Warping, which adds distortions to the image up to a maximum level.

• Lighting, which changes the brightness and the contrast of the images.

All of these methods have a probability of being applied and can be used in com-

bination with each other. Thus for each image, given the probability, a combination of

these techniques would be applied. Some examples of these different combinations within

the same image are shown in Figure 5.2.

To further experiment with this process, we have compared two levels of intensity

in the changes regarding their max levels of rotation, zoom, warping, and lightning. First,

a weak set of transformations, which does subtle changes in the images. Later, a stronger

set, which applies substantial changes to the images.

5.3 Residual Networks (ResNets)

Uncountable convolutional neural network architectures have been developed by

researchers around the world with many creative modifications, designed for a range of

applications. One type of network that is commonly used is the Deep Residual Network

(ResNet) developed by [34]. This network was the winner of the ImageNet Large Scale
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Figure 5.2: Application of different data transformations to a fetus image

Source: Image created by the author.

Visual Recognition Challenge (ILSVRC) [38], achieving an error rate of only 3.57% in the

image classification task and being the first to beat human performance.

The intuition behind ResNet emerged when the researchers noticed that as they

increased the depth of a regular network, its training and test errors got worse than

when compared to an equivalent shallow network. This happens because of a well-known

problem, the vanishing gradient. As the gradient back-propagates to the earlier layers of

a network, the repeated multiplications make the gradient infinitely small, which prevents

it from reaching the weights of the earlier layers.

Other techniques have been developed to deal with this problem, such as batch nor-

malization, but despite that, deeper networks still suffer from degradation in convergence,

as the errors remain higher than if it was on an equivalent shallow network.

The insight the authors had, was that when adding extra layers, if these layers are

identity mappings, they become equivalent to the shallower network. Thus, the deeper

network should not produce an error higher than its shallower counterpart. They achieved

this behavior by injecting these identity mappings in the network trough shortcut con-

nections, which are simply connections skipping one or more layers. The output of these

layers is added to the outputs of the stacked layers, and add no extra parameter nor

computational complexity to the networks.

Another insight they had was regarding residuals, which are just the error in a

result. Thus, the network should be able to learn these residuals so that the predictions
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are closer to the actual values. By combining these two ideas, they have created the

residual learning building block, as shown in Figure 5.3 extracted from the original paper.

Figure 5.3: Residual Network building block

Source: Image extracted from [34].

During the training period, the ResNet learns the weights of its layers in a way

that if the identity mapping were optimal, all the weights would be set to zero.

In the diagram, we can see that if F (x) becomes zero, it means x is getting directly

mapped to the actual value, and no corrections need to be made. These are the identity

mappings that help the network grow deeper. On the other hand, if there is a deviation

from optimal identity mapping i.e., a residual, the weights and biases of F (x) will be

learned to adjust for it. In other words, F (x) learns how to adjust our predictions to

match the actual values.

These building blocks are stacked together to arrive at a deep network architecture.

Figure 5.4, also extracted from the original paper, shows a comparison between a 34-layer

plain network and 34-layer ResNet. In our work, we have used 50-layer one with the

intuition that a relatively larger network would yield better results.

5.4 Transfer Learning and Fine-tuning

As described in Chapter 3, training a deep neural network from scratch is a very

costly task, both in terms of the amount of data necessary as well as in terms of com-

putational power. Because of these factors, transfer learning is often used in a variety of

applications as a solution for when we have a limited amount of data, which is especially

the case in the medical field. The intuition is that by using pre-trained weights, we can get

the benefits of networks trained on much larger datasets, often with millions of images.

Then, by changing only the last fully connected layer of the network to match the number

of classes in our problem, we are able to fine-tune them with our data.
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Figure 5.4: 34-layer plain network in comparison with 34-layer residual network

Source: Image extracted from [34].
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One general-purpose dataset very often used for pre-training is ImageNet 1 [12],

which consists of more than 14 million images, which have been hand-annotated by the

project to indicate what objects are pictured on them. This visual database was designed

for use in visual object recognition software studies and had a significant impact on deep

learning research. The most popular network architectures we know today, have emerged

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual computer

vision contest held between 2010 and 2017, which uses a subset of the ImageNet database

with 1.2 million images and 1000 classes.

Convolutional neural networks are very often pre-trained on this dataset, as it

contains images of many different categories, like plants, animals, cars, objects, and many

others. Hence, by training on this data, the network can learn low-level features such as

lines, edges, and basic shapes, but also mid-level features which build on top of the low-

level ones, and can detect objects or more complex shapes. These types of features can

be considered independent from the final task to some extent, as for many applications

detecting basic shapes will often be necessary.

Another popular large-scale dataset used for pre-training is the VGGFace2 2 [7],

which consists of 3.3 million images of faces downloaded from Google Image Search, with

variations in pose, age, illumination, ethnicity, and profession. A few example images

from this dataset can be seen in Figure 5.5.

Figure 5.5: VGGFace2 example images

Source: Images extracted from [7].

This dataset was the same used by [46] for automatically detecting pain in infants,

1http://www.image-net.org
2http://www.robots.ox.ac.uk/~vgg/data/vgg_face2

http://www.image-net.org
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2
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therefore we hypothesize it would perform well in our data too. We believe the high-level

features learned by a network trained on this dataset should be able to detect similar

features to the ones we aim to detect in fetuses, such as the mouth, the nose, and the

eyes, to mention a few.

When using transfer learning, the features computed in the early layers of the

network usually are already well trained in doing basic tasks such as recognizing basic

lines, patterns, or gradients. On the other hand, the features computed in the later layers

are the ones highly dependent on the specific task we are trying to predict. Thus, when

we are fine-tuning the network in our domain, we have two main approaches to train the

network, namely with frozen or unfrozen layers. These methods allow us to decide which

specific layers of our model we want to train at a given time.

In the frozen approach, all layers except the last one will not be trainable. In

the unfrozen approach, however, all the layers are kept unfrozen during training, and the

errors are back-propagated to the entire network during fine-tuning. Hence, even the early

layers may be affected. In our experiments, we decided to test both approaches, as even

though unfreezing the layers appears to be better, we were unsure if the amount of data

and its noise would be enough to improve the weights of the whole network.
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Chapter 6

Experimental Results

In this chapter, we present the experimental results of our research. As no previous work

has attempted to develop models for automatic pain assessment in fetuses, we have no

baseline to compare to. Thus, we discuss the decisions we have made along the way,

which led to our best results. In particular, our experiments aim to answer the following

research questions (RQ):

• RQ1: Is it possible to identify the presence of pain in images of fetuses from 4-D

ultrasound machines? Can we create an effective learning model for automatic pain

identification?

• RQ2: Is this model capable of discriminating images of fetuses while in acute pain

exposure from those in a control group while in rest our in a non-painful sound

stimulus?

• RQ3: Does transfer learning transfer well from a face recognition task in adults to

our domain with fetuses?

6.1 Setup

Given we had relatively few data available, we chose a validation strategy that

works best in this scenario. Like [9], we used the leave-one-out method for cross-validation,

but instead of leaving one image out, we leave one subject. Additionally, we make use

of the images from the Acoustic Stimulus (AS) group only for training purposes, as they

belong to a control group, this scenario wouldn’t be evaluated in a real-life application.

Hence, we produce 10 different combinations containing training and test subsets,

given that Acoustic Stimulus (AS) images are always on training. On each of these

combinations, we train our networks in the training subset with images of twelve fetuses

and evaluate on the test subset with images of one. All the evaluations are then averaged

to assess the overall performance of the models.
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In order to find the best network architecture for this particular problem, we have

tested a few variations in the setup as described in Chapter 5. These variations are

regarding three variables:

• Data augmentation, which could be with weak or strong transformations.

• Network training, which could be with frozen or unfrozen layers.

• Pre-training, which could be on the ImageNet or the VGGFace2 datasets.

By combining all the possibilities of these three variables, we have a total of eight

experiments. Like [46], we have chosen two types of pre-training for the CNNs, so we can

compare the differences between using CNNs trained on a relatively similar dataset like

VGGFace2, as opposed to CNNs trained on a general-purpose dataset like ImageNet.

Besides these variations, all the networks used Adam as a gradient descent opti-

mization algorithm [25], which uses adaptive momentum to reduce the error in the training

set quickly. We have used a batch size of 8 for both training and validation, which yielded

the best results after we have experimented with different sizes (4, 8, 16, 24). We have

also applied some methods to prevent over-fitting like L2 for weight regularization [33]

and dropout [42]. Lastly, the loss function we used was binary cross-entropy, as it shows

good performance for classification problems with two classes.

The metric we used to evaluate our model during the validation process was accu-

racy. To calculate it for a given test set, we divide the number of images we have predicted

the correct class by the total number of images available in that set.

Additionally, we have also calculated another metric for the videos of acute pain

(AP). As we have 45 seconds of video before the acute pain stimulus, and 45 seconds

after it, we have images from both classes in these videos: pain and non-pain. This

division allows the use of a metric that considers not only the cases we are making the

correct prediction but also how much of each class we are making the wrong predictions.

Thus, like [46], we have used the Area Under the Receiver Operating Characteristic Curve

(AUC) to evaluate the performance of our models in the set of acute pain videos.

6.2 Results

In this section, we compare the performance of each training approach and discuss

their results. Table 6.1 displays the results in terms of accuracy considering each training

method, which gives us some insights about the behavior of the different models. For in-

stance, we can see our best result came from a pre-training on VGGFace2, which confirms
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our hypothesis that it was better to use pre-training on a set of images similar to ours

and that the features learned from these images transfer well to fetuses.

However, when looking at all the results, we can see that the overall standard

deviation was reasonably high, which shows how challenging the task is when we have

little data. In fact, by looking only at the dimensions of training type and transformations,

a clear winner approach is not evident, as the results are very similar and one variation

not always perform better than the other.

Table 6.1: Accuracy comparison considering all videos.

Accuracy
Mean Std

Training Transforms Network

frozen weak ResNet (ImageNet) 0.786 0.231
frozen weak ResNet (VGGFace2) 0.821 0.162
frozen strong ResNet (ImageNet) 0.772 0.211
frozen strong ResNet (VGGFace2) 0.848 0.143
unfrozen weak ResNet (ImageNet) 0.804 0.214
unfrozen weak ResNet (VGGFace2) 0.784 0.213
unfrozen strong ResNet (ImageNet) 0.782 0.205
unfrozen strong ResNet (VGGFace2) 0.812 0.168

When we look at the accuracy reported in each test set for the best model in Table

6.2, we can see the model performs reasonably well both in the acute pain (AP) and rest

(RE) groups, with an average accuracy score of 0.803 in the former and 0.917 in the latter.

Table 6.2: Accuracy per test set in the leave-one-out for the best model.

Accuracy
1AP 2AP 3AP 4AP 5AP 6AP 7RE 8RE 9RE 10RE

0.917 0.824 0.583 0.875 0.850 0.769 1.000 1.000 1.000 0.667

Nonetheless, we can also take a closer look at the results from the acute pain

(AP) group, from which we can measure the AUC. As we can see on Table 6.3, we have

performed much better on this group, especially considering we had images of the same

fetuses on both states, pain and non-pain. This result is very promising, as it indicates

our model is able to discriminate pain from rest on images of fetuses.

We can see that the best model is still the same as the one from Table 6.1. However,

now we have some more insights in terms of the other two dimensions. For example, we can

see that the strong transformations have a slight advantage when compared to the weak

in terms of AUC. Likewise, training the network with frozen layers performs better than

unfrozen in terms of accuracy, which could also be caused by the noise in the data, so the

error propagates back into the first layers, causing the network to worsen its performance.

Although more data would be ideal to make more conclusions.
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Table 6.3: Accuracy and AUC considering only Acute Pain videos.

Accuracy AUC
Mean Std Mean Std

Training Transforms Network

frozen weak ResNet (ImageNet) 0.710 0.233 0.849 0.173
frozen weak ResNet (VGGFace2) 0.768 0.155 0.885 0.150
frozen strong ResNet (ImageNet) 0.698 0.205 0.850 0.130
frozen strong ResNet (VGGFace2) 0.802 0.118 0.923 0.063
unfrozen weak ResNet (ImageNet) 0.684 0.198 0.813 0.163
unfrozen weak ResNet (VGGFace2) 0.763 0.132 0.898 0.112
unfrozen strong ResNet (ImageNet) 0.692 0.185 0.909 0.110
unfrozen strong ResNet (VGGFace2) 0.742 0.139 0.833 0.156

Also, we can see the standard deviation is much lower, which can be explained not

only by the fact we have fewer validations sets to consider but also because our model is

performing better at predicting acute pain videos.

Table 6.4: AUC per test set in the leave-one-out for the best model, considering only
Acute Pain videos.

AUC
1AP 2AP 3AP 4AP 5AP 6AP

0.991 0.983 0.829 0.938 0.870 0.929

When we look at the result from each test set of acute pain (AP) from the best

model in Table 6.4, we see that videos 3AP and 5AP have a lower AUC, which shows

how much variations in the images can affect the final result when we work with a small

number of subjects.

6.3 Visual Explanations

The success of convolutional neural networks came with the ever-increasing com-

plexity of the architectures, which led to difficulties in understanding why the models

make certain decisions. Some methods exist to try to overcome this issue, such as Grad-

CAM [41], which tries to provide visual explanations of why the model made a given

decision. This method uses the gradients of the target flowing back into the final convo-

lutional layer to produce a heat map that highlights the important regions in the image

that were used for prediction.

We have attempted to use this technique to identify the parts of the image our
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models found that were the most relevant for classifying an image as pain. In an ideal

scenario, the heat map should be stronger in the parts of the image that are indicators

of pain, like the ones used by the pain scales. However, even though this did happen for

some examples, as we can see in Figure 6.1, for most cases, the heat map was inconclusive.

We believe this could also be an effect of the limited amount of data, thus we propose

this topic gets further investigated in a future work.

Figure 6.1: Grad-CAM heat map for visual explanations

Source: Images created by the author.

It is important to highlight these explanations are an essential feature in an even-

tual application of our system in real life. As doctors and specialists look at the images

produced by the model, the heat map should ideally agree with the indicators from pain

scales and direct their view to regions of interest where manifestations of pain are present.

We believe this feature would certainly give more robustness to the results and facilitate

adoption by the users. As such, we stand out its importance and suggest further research

as a future work topic in the next chapter.

6.4 Answering Our Research Questions

In this section, we aim to answer the proposed research questions from the begin-

ning of this chapter based on the results we presented.

Regarding RQ1, we believe our results showed in tables 6.1 and 6.3 are a good

argument to show it is viable to develop a learning model capable of effectively identifying

pain. We believe an accuracy of 84.8% is a good evidence that we are in the right direction,

even considering that a new experiment with more data could be necessary to validate

these conclusions any further. As data is complicated to collect, we think our experimental

process was able to extract significant results out of it.
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As for RQ2, we did see our model had problems in discriminating images of acute

pain from those of an acoustic stimulus, although it did so very well from images of rest.

It appears the images from acoustic stimulus indeed made the task more difficult, but

we believe this effect would be mitigated if we had a larger dataset available for training.

Nevertheless, even if we have a false positive predicted from an acoustic stimulus image,

from a precautionary perspective, it would still benefit the fetus, as this could be an

indication of discomfort and could also be treated.

Finally, for RQ3, it does appear transfer learning with pre-training in the VG-

GFace2 dataset performs better than when trained on ImageNet, as it achieved our best

result. We believe this comes from the fact the pre-training on face images was able to

learn features in their middle to last layers related to the human face, such as the mouth,

the eyes, the chin, the nose. Even though the fetus images are relatively different, these

features are still present, which could explain why the model detected them and performed

better.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The results of our study presented in this dissertation are promising as we believe

they move us towards the ultimate goal of automatically detecting pain in fetuses. Our

learning model was indeed able to discriminate images of fetuses while in acute pain

exposure from those in control groups of rest and acoustic stimulus. If confirmed on a

larger dataset, we believe this work has the potential to influence and improve the current

practice of assessing fetal pain.

We also think our work can serve as good evidence to help answer the question of

when fetuses start to feel pain, as the exact gestational week in which they start showing

pain responses is still not a consensus. By providing an unbiased and automatic approach

for detecting pain, we could continuously monitor a fetus across many weeks, and an

absence of pain may even be a good indicator of fetal wellbeing. However, a dataset with

more variable gestational age would be necessary to train such a model.

On the other hand, if we do detect pain, the question arises as to what is the cause

of it, as some condition may be present since our model accused the presence of pain. Is

this condition some malformation? Is it a disease? Or is it related to chronic pain? It

does open a range of possibilities but also brings awareness to future problems, which in

some cases could be corrected with in-uterus repairs, with many benefits for the fetus.

As for the control group of acoustic stimuli, our model found it more difficult to

discriminate it from pain, which was an expected outcome. Because the group shares some

common indicators with those of pain, it makes it indeed harder to predict, as shown in

the original study that collected the data [3]. Nonetheless, we still believe that from a

precautionary approach, it may be a good practice to investigate these cases, as they can

be signs of discomfort or stress, and may also be caused by some conditions.

If our model eventually gets integrated into an ultrasound machine, it would make

pain detection much simpler and easier to use, allowing continuous monitoring. This

would be beneficial in many situations, especially during fetal surgery procedures, as it
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could aid anesthesiologists to see how effective their anesthesia was and aid the doctors

while they perform delicate procedures. Likewise, during routine prenatal ultrasound

exams, this system could be the first to indicate pain or discomfort, which would then be

further investigated.

It is also important to highlight that even though nurses and caregivers must assess

the videos used as inputs by our model, we think a model trained on a range of different

videos from different sources, would tend to be much more unbiased than an assessment

of a single caregiver. This result is also a great benefit, as we can produce a system ideally

free from bias factors such as identity, background, culture, and gender, which may lead

to inconsistent assessment and treatment of pain.

7.2 Future Work

Our studies have shown that it is viable to construct a model capable of identifying

the presence of pain on images of fetuses from 4-D ultrasound machines. A larger dataset

is already being collected by the same fetal pain study group, which has the potential

to confirm our results and produce models that are even more robust and accurate. We

are also currently not able to explain why the model made such predictions or what is

the main factors it considered for detecting pain. Thus, we identify as future work the

following possibilities:

• Evaluate our models on larger datasets. Even though the data is quite complicated

to collect and studies with fetuses and infants usually have a small number of sub-

jects, we think it would be very beneficial to experiment with our methodology in

a more extensive number of fetuses. This addition could bring more variability into

the model inputs in terms of fetal positions, gestational age, gender, image quality,

and many other factors, which will end up producing a better model.

• Expand our system to include chronic pain. Monitoring the same fetuses at different

gestational ages has the potential to identify the presence of chronic factors. A model

that evaluates not only acute pain but also chronic pain could, therefore, help in

this scenario, as it may lead to further investigation of what is causing the chronic

pain and maybe be the first indicator that an intervention may be necessary.

• Include other types of features. As it is the case with pain scales, the combination

of indicators is what tends to work best. Thus one could construct a model that

takes as inputs not only images of the face and facial expressions but also other
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indicators such as sounds, body movements, physiological indicators, and biological

markers. These new factors could help produce more robust models, and maybe

identify conditions not visible through facial expressions only.

• Produce explainable models. Given a single fetus where the presence of pain has

been identified, one should be able to visualize what are the most relevant features

that the model analyzed to output its prediction. By making the decision of the

models more transparent, one could point to the exact locations where the pain was

present, which will lead to a better understating by fetal pain specialists. In an ideal

scenario, these visual explanations should match the individual indicators present

on the pain scale.

In summary, our main interests as future works are to help medical experts to

understand the output of the models better and be more effective on pain assessment and

management, which will eventually lead into improving overall fetuses life quality and

well-being.



48

Bibliography

[1] N. Scott Adzick, Elizabeth A. Thom, Catherine Y. Spong, John W. Brock, Pamela K.

Burrows, Mark P. Johnson, Lori J. Howell, Jody A. Farrell, Mary E. Dabrowiak,

Leslie N. Sutton, Nalin Gupta, Noel B. Tulipan, Mary E. D’Alton, and Diana L.

Farmer. A randomized trial of prenatal versus postnatal repair of myelomeningocele.

New England Journal of Medicine, 364(11):993–1004, March 2011.

[2] Carlo Valerio Bellieni. Pain assessment in human fetus and infants. The AAPS

Journal, 14(3):456–461, April 2012.

[3] Lisandra Stein Bernardes, Juliana Fontan Ottolia, Marina Cecchini, Antônio Gomes
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