
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Caio Mário Henriques Silva da Rocha Mesquita

Scenario generation for financial data: a machine learning dynamic copula
approach based on realized volatility and correlation

Belo Horizonte
2024



Caio Mário Henriques Silva da Rocha Mesquita

Scenario generation for financial data: a machine learning dynamic copula
approach based on realized volatility and correlation

Final Version

Dissertation presented to the Graduate Program in Computer
Science of the Federal University of Minas Gerais in partial
fulfillment of the requirements for the degree of Doctor in
Computer Science.

Advisor: Adriano César Machado Pereira
Co-Advisor: Cristiano Arbex Valle

Belo Horizonte
2024



2024, Caio Mário Henriques Silva da Rocha Mesquita. 
Todos os direitos reservados 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 

     Mesquita, Caio Mário Henriques Silva da Rocha  
 
M582s           Scenario generation for financial data: [recurso eletrônico]  
                  a machine learning dynamic copula approach based on  
                  realized volatility and correlation / Caio Mário Henriques Silva  
                  da Rocha Mesquita – 2024. 
                      1 recurso online  (110 f. il, color.) : pdf. 
                      
                      Orientador: Adriano César Machado Pereira 
                      Coorientador: Cristiano Arbex Valle 
                      Tese (Doutorado) - Universidade Federal de Minas 
                  Gerais, Instituto de Ciências Exatas, Departamento de  
                  Ciências da Computação. 
                      Referências: f.101-110 
                                    
                      1. Computação – Teses. 2. Aprendizado do computador –  
                  Teses. 3.– Gestão de riscos – Teses. 4. Mercado financeiro  
                  Portifólios - Teses. I. Pereira, Adriano César Machado.  
                  II. Valle, Cristiano Arbex. III. Universidade Federal de Minas   
                 Gerais, Instituto de Ciências Exatas, Departamento de 
                 Computação. IV.Título. 

 
CDU 519.6*82(043) 

 
Ficha catalográfica elaborada pela bibliotecária Irenquer Vismeg Lucas Cruz 

CRB 6/819 - Universidade Federal de Minas Gerais - ICEx 



�����������������������������������
����������������������������

�������������������������������������������������

�������������������

������������������������������������������������������������������������
������������������������������������������������������

����������������������������������
���������

�����������������������������������������������������������������������������

������������������������������������������������
���������������������������������������������

��������������������������������������������
���������������������������������������������

���������������������������������
����������������������������������������

��������������������������������
���������������������������������������������

�������������������������
���������������������������������������������

�������������������������������
�������������������������������������

�����������������������������������������

Heitor Soares 
Ramos 
Filho:7875124140
4

Assinado de forma digital 
por Heitor Soares Ramos 
Filho:78751241404 
Dados: 2024.05.21 
10:26:18 -03'00'



Dedico este trabalho à minha mãe, ao meu pai e ao meu irmão,
que sempre me apoiaram incondicionalmente a alcançar todos
os meus sonhos.



Acknowledgments

Agradeço a Deus e minha família por todo apoio, incentivo e suporte ao longo de todos
esses anos. A Stephany por todo carinho e companheirismo.

Um agradecimento especial aos meus orientadores Adriano César e Cristiano Arbex
por toda a caminhada e aprendizado ao longo do trabalho.

Agradeço também ao Programa de Pós Graduação em Ciência da Computação da
Universidade Federal de Minas Gerais pela oportunidade. Aos professores do programa
e amigos que contribuíram muito a minha formação. A CAPES pelo apoio financeiro ao
longo da pós-graduação.

Enfim, a todos que contribuíram de alguma forma para que eu chegasse até aqui.
Muito obrigado!



“A persistência é o caminho do êxito.”
(Charles Chaplin)



Resumo

A otimização de portfólio é uma questão fundamental em finanças quantitativas, e as
técnicas de geração de cenários desempenham um papel vital na simulação do compor-
tamento futuro de ativos para uso em estratégias de alocação. Na literatura, diversas
abordagens existem para gerar cenários, que variam de observações históricas a modelos
que preveem a volatilidade dos ativos. Nesta tese, propomos uma metodologia inovadora
para gerar cenários discretos um dia à frente, os quais são então utilizados como entrada
para alocação de portfólio. Nossa abordagem emprega algoritmos supervisionados de
aprendizado de máquina como modelos de previsão para estimar a variância realizada e a
correlação intradiária de Kendall dos ativos. Com base nessas previsões, aplicamos uma
abordagem de cópula com distribuições de valores extremos para simular a distribuição de
probabilidade multivariada dos ativos. Nossos experimentos computacionais indicam que
nossa abordagem pode proporcionar previsões de volatilidade e correlação mais precisas,
bem como portfólios com melhor relação risco-recompensa em comparação com baselines
tradicionais da literatura.

Palavras-chave: aprendizado de máquina; funções cópula; volatilidade realizada; otimiza-
ção de portfólios.



Abstract

Portfolio optimization is a fundamental issue in quantitative finance, and scenario gen-
eration techniques play a vital role in simulating the future behavior of assets for use
in allocation strategies. In the literature, various approaches exist for generating sce-
narios, ranging from historical observations to models predicting asset volatility. In this
dissertation, we propose a novel methodology for generating discrete scenarios one day
ahead, which are then used as input for portfolio allocation. Our approach employs ma-
chine learning supervised algorithms as forecasting models to predict the realized variance
and intraday Kendall correlation of assets. Using these predictions, we apply a copula
approach with extreme value distributions to simulate the multivariate probability distri-
bution of the assets. Our computational experiments indicate that our approach may yield
more accurate volatility and correlation forecasts, as well as better risk-reward portfolios
compared to traditional literature baselines.

Keywords: machine learning; copula functions; realized volatility; portfolio optimiza-
tion.
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Chapter 1

Introduction

Portfolio selection is a core problem in quantitative finance. It is a well-established
research area that provides a theoretical and practical foundation to investors seeking
to make informed investment decisions. The area has its roots in the seminal work of
Markowitz [1952], which proposed the Modern Portfolio Theory (MPT). MPT states that
an investor is risk-averse and has two conflicting goals when selecting a portfolio: max-
imizing expected return and minimizing risk. Markowitz introduced the mean-variance
framework in which the risk measure of choice is the portfolio variance. With its sub-
sequent developments, MPT has set the stage for theory and practice in finance for the
past decades.

MPT, however, relies on assumptions that contradict well-known stylized facts
observed in decades of studies of financial time series [Cont, 2001]. For instance, MPT
assumes that asset returns follow a normal distribution. However, as observed exten-
sively, such distributions are not necessarily symmetric and generally have heavier tails
than expected in a normal distribution. Moreover, variance is not necessarily the most
appropriate measure of risk as it penalizes “good volatility” (extreme positive returns).
Finally, optimizing variance requires solving a quadratic programming program, which
can lead to computational difficulties when, for example, exogenous constraints are in-
cluded to simulate real-world trading conditions. These drawbacks have been well known
for decades, and even Markowitz alternatively suggested using a downside risk measure,
semi-variance [Markowitz, 1959].

Artzner et al. [1999] defined a set of desirable mathematical properties that risk
measures should ideally satisfy. A risk measure that satisfies these properties is referred
to as coherent. Both variance and Value-at-Risk (VaR) [Guldimann, 2000] violate some
of these properties and are thus incoherent. A well-established coherent risk measure is
the Conditional Value-at-Risk (CVaR), which has, since its inception, gained popularity
as a preferential risk measure during the Basel III Convention [Chang et al., 2019].

Rockafellar and Uryasev [2000] proposed a linear programming model that selects
the portfolio with minimum CVaR. Compared to the traditional mean-variance frame-
work, which requires a vector of mean returns and a covariance matrix as input data,
CVaR optimization relies on scenarios representing discrete multivariate distributions.
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Historical data can represent scenarios. While historical data may implicitly keep proper-
ties such as heavy tails in marginal distributions and the overall correlation among assets,
they do not necessarily reflect future behavior as the structure of markets is inherently
dynamic.

1.1 Motivation

Generating scenarios that accurately reflect the future behavior of assets is a re-
search area. It involves finding discrete multivariate distributions of asset returns that
preserve both marginal moments and the dependence structure among them. As the lit-
erature shows, assets are generally not independent, and the correlations between them
can also change over time.(Christodoulakis and Satchell [2002], Engle [2002], Tse and Tsui
[2002]).

Several papers in literature have proposed scenario generation methods based
on different techniques [Kaut and Wallace, 2003, Guastaroba et al., 2009]. A family
of scenario generation techniques combine Generalized Auto-regressive Conditional Het-
eroskedasticity (GARCH) models [Bollerslev, 1986] with copula functions [Bai and Sun,
2007, Messaoud and Aloui, 2015, Chakkalakal et al., 2018]. GARCH models provide uni-
variate predictions, and copulas are used to model asset dependence, allowing them to
combine independent models.

In this context, it is possible to extend the use of copula functions along with
different prediction models. More recently, in the literature, there is evidence of more
efficient predictions of volatility using high-frequency data compared with daily historical
data (Fleming et al. [2003], Caldeira et al. [2017]), and machine learning algorithms have
not been much explored.

The motivation of the dissertation is to combine these techniques to generate fu-
ture accurate scenarios. Generating reliable scenarios can benefit investors and portfolio
managers who optimally allocate the weights according to some optimization criterion.
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1.2 Research problem

The problem of the dissertation is to generate the future multivariate probabil-
ity distribution of N assets in one day ahead horizon. This probability distribution is
also known as a scenario matrix, where columns represent assets and rows represent dif-
ferent simultaneous simulations of the asset returns for an instant t can represent this
distribution.

1.3 Objective

This dissertation proposes a new methodology capable of generating this future
multivariate probability distribution of a set of assets based on machine learning regression
models as forecasting predictors of future behavior (volatility and correlation). This new
methodology uses machine learning algorithms and intraday measurements to extend the
GARCH-Copula framework in the literature. We expected the proposed approach to
generate more accurate scenarios than traditional baselines.

1.4 Research Hypothesis and Questions

The fundamental hypothesis of the dissertation is that, through machine learning
algorithms, it is possible to achieve more accurate predictions compared to other classical
models in the literature. Consequently, it is possible to obtain more precise future scenar-
ios by employing superior predictions. Below there is a list of research questions related
to the development of the dissertation:

1. Is the volatility of assets (represented by realized variance) dynamic over time?

2. Is the correlation structure between assets dynamic, and can we use intraday Kendall
correlation to adjust copula functions?

3. Is it possible to increase the performance forecast of volatility and correlation of
stocks using machine learning algorithms compared with traditional econometric
forecasting models?
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4. Can this methodology generate more accurate scenarios than other traditional liter-
ature techniques and achieve lower risk metrics using optimization portfolio models?

1.5 Main contribution

The main contribution of the dissertation is the development of a new methodology
that combines realized volatility and correlation, machine learning regression algorithms,
and a copula function to generate future scenarios to allocate the portfolio weights based
on an optimization model. In the literature, several studies use some of these differ-
ent techniques separately, but none use all of these cited techniques combined. This
approach’s potential benefit is supporting investment decisions with better portfolio allo-
cation to minimize the risk.

1.6 Chapter organization

In Chapter 2, we review the literature on scenario generation models and intraday
volatility forecasting. Next, in Chapter 3, we present the theoretical foundations, and in
4 we describe our methodology. In Chapter 5, we present our computational experiments,
and in Chapter 6 we discuss the conclusion of the dissertation and future experiments.
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Chapter 2

Literature review

In this chapter, we bring relevant papers in the context of the proposed methodology. In
the first section, we focus on some of the more traditional econometric volatility modeling
techniques. Further, we exploit the machine learning algorithms used to model volatility
in the literature. Next, we mention the common techniques related to the problem of
portfolio scenario generation, with an emphasis on copula GARCH approaches that are
the core of our proposed methodology. In the final section, we compared our proposed
methodology with the cited papers in the literature discussing similarities and main in-
novations.

2.1 Modeling and forecasting volatility

Over history, several models have been proposed to estimate and forecast future
volatility using different approaches. Engle [1982] proposed the ARCH process assuming
a normal distribution for the returns with constant mean and time-varying conditional
variance. Bollerslev [1986] extended the idea with Generalized ARCH models (GARCH)
by adding a lagged variance term in the conditional equation. This model became popular
since it has few parameters, can generally explain the major stylized facts of returns
[Cont, 2001], and has been empirically shown to produce forecasts with good accuracy
[Taylor, 2007]. Several extensions of the traditional GARCH models have been proposed
in the literature, hoping to replicate different properties observed in the asset return series
[Nelson, 1991, Baillie and Mikkelsen, 1996].

The use and estimation of realized volatility emerged with the availability of high-
frequency data when researchers began using the intraday sum of squared return as a
proxy of assets. Andersen and Bollerslev [1998] showed that realized volatility was a
better estimator of the true volatility of the assets and Andersen et al. [2001] demonstrated
some of the statistical properties of the measure. The log of realized volatility was shown
to have a distribution similar to normal and analysis of the auto-correlation function



2.1. Modeling and forecasting volatility 20

suggested a long memory process. For this reason, one of the first approaches to model
realized volatility was using the autoregressive fractionally integrated moving average
(ARFIMA) models. Later, Corsi [2009] proposed a heterogeneous autoregressive model
(HAR), which also captured long-term memory while responding to short-term shocks.
This model became popular because of its simplicity and empirically good performance.
Some papers demonstrated superior accuracy in forecasting volatility using the realized
volatility models against daily models [Pong et al., 2004, Izzeldin et al., 2019].

One important extension of the HAR model was proposed by Bollerslev et al. [2016]
adding the realized quarticity measure to the model (HARQ), which increased the accu-
racy of forecasts. The economic value in forecasting volatility has been studied by Fleming
et al. [1999], where the authors developed a methodology to evaluate the performance of
a dynamic portfolio using forecasts of the covariance matrix and compared it with a static
efficient portfolio. The authors showed that volatility timing strategies outperformed the
static portfolio. The same methodology was used by Fleming et al. [2003] where the au-
thors evaluated the performance of switching from daily to intraday returns to estimate
the covariance matrix. The gains using realized volatility were substantial. Caldeira et al.
[2017] compared the performance of covariance matrices forecasts using high frequency
and low frequency in the Brazilian market. They used a multivariate GARCH frame-
work and showed that realized covariance estimators performed significantly better than
standard estimators.

Models that forecast covariance matrices must ensure that the estimates are pos-
itive definite. Different papers use different types of transformations to guarantee this
property. Bauer and Vorkink [2011] developed a latent factor model using a matrix log-
arithmic transformation. The use of the transformation is also beneficial since it does
not impose parameter restrictions for the predictions. Chiriac and Voev [2011] used a
Cholesky matrix decomposition to forecast the Cholesky series of covariance matrices of
a portfolio. The positivity of forecasts is ensured by squaring the reverse matrix transfor-
mation. They used a vector extension of the HAR and ARFIMA models. T. et al. [2018]
also used the Cholesky decomposition and other transformations to extend the HARQ
model for the multivariate case.
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2.2 Forecasting volatility using machine learning

algorithms

Some limitations of econometrics models are related to linear structure, parameter
restrictions, and distribution assumptions. The fields of artificial intelligence and machine
learning are getting attention with the development of nonlinear models, especially the
use of neural networks that can be applied in this context by circumventing these disad-
vantages. There are a large number of papers that use hybrid neural networks along with
GARCH models to improve the forecasts of volatility [Monfared and Enke, 2014, Krist-
janpoller and Minutolo, 2018, 2014, Roh, 2007, Donaldson and Kamstra, 1997]. More
recently, recurrent neural networks have achieved positive results forecasts in this context
[Kim and Won, 2018, Liu, 2019].

In addition to the large number of studies using neural networks with daily volatil-
ity models over the past decades, there has been a recent surge in studies investigating
the same concept in the context of realized volatility realized volatility, marking it as
a current and evolving topic. Arnerić et al. [2018] compared the performance of HAR
models with feed-forward neural networks. Björnsjö [2020] used different types of deep
learning models that were implemented and compared with extensions of HAR models,
while Vortelinos [2017] compared the performance of HAR against Principal Components
Combining, neural networks, and a GARCH model. Although in-sample some neural
network models performed well in all of these studies, the forecast performance in the
out-of-sample was not superior to HAR models.

The benefit of combining neural networks with realized volatility can be seen in
Maciel et al. [2017]. The authors proposed a hybrid neural fuzzy network with jump
methodology to forecast the realized volatility of S&P 500, NASDAQ, FTSE, DAX, IBEX
and Ibovespa indexes. The results showed that the nonlinear models outperformed the
traditional linear regression approach of the HAR modeling. Also, Bucci [2020b] demon-
strated the performance of a feed-forward and recurrent neural network with ARFIMAX
and ARFIMA models for the logarithm of the Standard & Poor’s (S&P) index. Using
two different types of loss functions, the recurrent neural networks presented significantly
better results.

In our literature review, we found few studies that used neural networks to forecast
realized covariance matrices. Bucci [2020a] investigates the use of different types of neural
networks to forecast the Cholesky factors of the realized covariance matrix, comparing the
results with two vector auto-regressive models and the DCC GARCH model. The results
showed statistically better performance using the neural networks against the baselines.
Mesquita et al. [2020] used a multilayer perceptron neural network along with the HAR
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model to predict one day ahead of the covariance matrices. The predictions were employed
in the optimization model of minimizing investment portfolio variance, and the results
demonstrated superiority over the baselines. This study showcases the application and
benefits of utilizing these enhanced predictions compared to other classical models in the
literature.

Çepni et al. [2022] employed machine learning techniques to predict the realized
variance of oil price returns. They showed that using aggregate economic-policy uncer-
tainty as a predictor it was possible to improve the accuracy of forecasts of the realized
variance/volatility of oil-price returns at intermediate and long forecast horizons. Chris-
tensen et al. [2022] compared several machine learning models with the HAR models and
have shown that machine learning algorithms outperformed the baseline models. The
gains were more significant at longer horizons, and the authors suggest that the high per-
sistence in machine learning models facilitates capturing the long-term memory of realized
variance. Zhang et al. [2023] also utilized various machine learning models and suggest
that neural network models outperform linear regressions and tree-based models in terms
of performance. This superiority is attributed to their capability to uncover and model
complex latent interactions among variables. An interesting observation made in the
study is that the results remain robust when they applied to new stocks not included in
the training set, thereby offering novel empirical evidence supporting a universal volatility
mechanism across stocks.

Gunnarsson et al. [2024] conduct a systematic literature review in the context of
employing machine learning models to forecast realized volatility. They affirm that ma-
chine learning models, particularly memory-based neural networks (LSTM and GRM),
stand among the top predictors, often being comparatively superior or equivalent to tra-
ditional baselines. This is largely attributed to the algorithms ability to capture nonlinear
relationships, utilize diverse feature variables, and handle large volumes of data. How-
ever, a drawback is that these algorithms are black-box in nature, making it challenging
to interpret the predictions. Souto and Moradi [2024] showed that neural basis expansion
analysis with exogenous variables (NBEATSx) consistently showed statistically more ac-
curate and robust forecasts than the other considered models (LSTM, HAR and GARCH
models).

2.3 Scenario generation techniques

The drawbacks of the mean-variance framework previously discussed, have given
rise to single-period portfolio selection models based on risk measures that can be opti-
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mized, in the case of discrete random variables, with linear programming (LP) models.
The discrete random variables are asset returns defined by their executions under differ-
ent scenarios. The first LP model for portfolio selection was proposed by Yitzhaki [1982],
which used the Gini’s mean (absolute) difference as a risk measure. However such models
gained traction when Konno and Yamazaki [1991] proposed an LP model that optimized
the mean-absolute deviation. Several other models, such as CVaR optimization [Rock-
afellar and Uryasev, 2000] and improvements regarding exogenous constraints have been
since proposed. For more details, we refer the reader to Mansini et al. [2014].

Regardless of the risk measure chosen, the out-of-sample performance of a port-
folio chosen via optimization depends strongly on its input data. Hence, another line
of research that has become popular is scenario generation - how to best approximate
the true multivariate distribution of asset returns with a discrete representation. The
most common approach is using historical data as scenarios, which as discussed earlier
may have some advantages but does not necessarily reflect the actual future distribu-
tion. There is also the problem of limited available data (only historical realizations),
which has been previously dealt with the use of bootstrapping. There are however several
alternative scenario generation methods, such as based on Monte Carlo simulation and
moment-matching - for a review and comparative evaluation we refer the reader to Kaut
and Wallace [2003], Guastaroba et al. [2009].

Monte Carlo-based methods assume that the underlying multivariate distribution
is known. The most common approaches are to sample from a multivariate Normal
distribution or, to account for heavy tails, a multivariate t-Student distribution with
various degrees of freedom (depending on the asset). Other methods allow more general
marginal distributions [Cario and Nelson, 1997, Lurie and Goldberg, 1998].

Moment-matching methods are used when the marginal distributions are not known,
but its moments have been estimated [Vale and Maurelli, 1983, Smith, 1993, Kouwenberg,
2001]. Date et al. [2008] proposed a method for matching moments from partially spec-
ified distributions. This method was extended by Ponomareva et al. [2015] to account
for asymmetric marginals. Høyland and Wallace [2001] proposed a nonlinear optimization
model for generating discrete scenarios that minimize the square of the difference between
a set of targets and the actual statistical properties of the scenarios. In subsequent work,
Høyland et al. [2003] proposed a heuristic that generates discrete scenarios given target
values for the first four marginal moments and the correlation matrix.

Alternatively, some methods attempt to predict the underlying multivariate dis-
tribution, usually via time-series forecasting models, then sample from the estimated
distribution. Messina and Toscani [2008] proposed a scenario generation approach based
on Hidden Markov Models that is capable of dynamically switching between multiple
states, assuming that the underlying distribution is not necessarily described by a single
model (as seen in bull and bear markets, for instance). In the univariate setting, the
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most common approaches are based on GARCH models [Bollerslev, 1986], which assume
heteroskedasticity of returns time series. In these cases, researchers often assume that
the data follows a normal or t-student distribution, and the dependence among assets
is assumed to be linear and symmetric, modeled through a correlation matrix [Bauwens
et al., 2006]. As is discussed in Embrechts et al. [2002] the use of linear correlation to
model the dependence structure shows many disadvantages and limitations.

2.3.1 Volatility Copula models

Copulas functions Sklar [1959] have gained popularity in risk management as the
dependence structure of the market can be isolated from the univariate marginal distri-
butions [Joe, 1997, Nelsen, 2006]. In the literature, many papers use GARCH models
with copula functions to model the volatility of assets and the non-linear and asymmetric
dependence between them [Hsu et al., 2008, Huang et al., 2009, Liu and Luger, 2009,
Koliai, 2016, Karmakar, 2017].

In Wang et al. [2010], Deng et al. [2011], Sahamkhadam et al. [2018] the authors
combined extreme value theory, univariate GARCH models, and Copulas for modeling
assets multivariate distributions. The GARCH model was applied in historical returns
using the combination of two distributions to model the residuals: the Generalized Pareto
Distribution for the upper and lower tail, and a Gaussin kernell for the middle part.
They generated future distributions for each asset using GARCH models and modelled
the correlation structure with copulas calibrated with historical data. They generated
scenarios with Monte Carlo simulation for estimating risk. The use of extreme value
theory can generate more flexible marginal distributions.

Fengler and Okhrin [2016] discuss that recently in the literature many studies have
been exploring the theme of dynamic copula models [Dias et al., 2004, Patton, 2004, 2006,
Chen and Fan, 2006, Jondeau and Rockinger, 2006, Enzo Giacomini and Spokoiny, 2009,
Jin, 2009, Hafner and Manner, 2012, Creal et al., 2013, Härdle et al., 2013], where the
parameters of the copula function vary over time and, in many cases, can be modeled by a
time series process. Almeida and Czado [2012] propose a stochastic copula autoregressive
model using inverse Fisher transformation of Kendall’s tau for bivariate copulas. So
and Yeung [2014] propose a vine-copula GARCH with dynamic conditional dependence.
The authors developed a methodology to model the dependence between assets using
any dependence measure and they performed experiments using linear correlation, rank
correlation, and Kendall correlation. The use of Kendall correlation is an interesting
approach because there is a direct relationship with a bivariate copula function [Alexander,



2.3. Scenario generation techniques 25

2008].
The vast majority of studies employ daily data when combining volatility forecast-

ing models with copula functions. More recent papers extend these concepts by utilizing
intraday data to model daily volatility and the correlation structure. De Lira Salvatierra
and Patton [2015] propose a new class of dynamic copula models for daily asset returns
that exploit information from high frequency data. The authors augmenting the gen-
eralized autoregressive score model (GAS) with realized correlation which improved the
in-sample fit and out-of-sample density forecast. Fengler and Okhrin [2016] propose to
predict the intraday covariance matrix based on HAR models. They estimate the copula
parameters by covariance moment condition provided by Hoeffding’s lemma. This ap-
proach allow the time dependecy structure to be time-varyng day by day. Both papers
also apply their methodology in portfolio choice problem showing gains comparing with
other classical approaches.

When analyzing the works cited in the literature, it is possible to perceive that the
copula approach is quite interesting and flexible, allowing for:

1. Modeling non-linear dependences separately from the marginal distributions [Joe,
1997, Nelsen, 2006]

2. Utilization of different volatility forecasting models: GARCH Wang et al. [2010],
Stochastic Volatility Hafner and Manner [2012], GAS [Creal et al., 2013], HAR
[Fengler and Okhrin, 2016],

3. Deployment of models that use data from different frequencies: daily [Wang et al.,
2010, Sahamkhadam et al., 2018, Almeida and Czado, 2012], intraday [De Lira
Salvatierra and Patton, 2015, Fengler and Okhrin, 2016]

4. Implementation of dynamic copulas [Patton, 2006, Dias et al., 2004]

5. Adoption of various marginal distributions [Sahamkhadam et al., 2018]

6. Capable to generate the multivariate distribution and consequently use different
optimization portfolio models [Sahamkhadam et al., 2018, Goel et al., 2019]

For these reasons the methodology we propose follows the approach of employing
volatility forecasting models in conjunction with a dynamic copula function to generate
a future multivariate distribution. Optimization models are then developed based on the
generated distribution.



2.4. Comparative analysis of literature and our proposed approach 26

2.4 Comparative analysis of literature and our

proposed approach

We propose the integration of four key elements for the new methodology: the
utilization of machine learning algorithms as forecasting models, the incorporation of
intraday data for predicting volatility and correlation, the application of a copula function
to model the correlation structure, and the adoption of extreme value theory (EVT)
for marginal distributions. In this manner, this represents the first methodology that
combines all these elements [Mesquita et al., 2023]. The advantage is associated with
each of the individual elements:

• The use of intraday data has greater predictive power compared to daily data.

• The utilization of machine learning exhibits greater predictive power in comparison
to classic forecasting models.

• The application of a methodology for predicting intraday Kendall correlation ensures
a dynamic correlation structure.

• The incorporation of marginal distributions through EVT distributions enhances
flexibility.
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Chapter 3

Theoretical foundation

In this chapter, we introduce the essential techniques employed in our methodology. The
initial sections encompass the exposition of the GARCH model, Extreme Value Theory,
and realized variance. These three concepts collectively serve as the foundation for mod-
eling the univariate distributions of assets. Subsequently, we introduce copula functions
to model the correlation structure between assets. Furthermore, we define the STARR
ratio portfolio optimization model for effective asset allocation. Finally, we present the
principles of supervised machine learning regression, which will be used in forecasting
volatility and correlation.

3.1 GARCH model

The GARCH(1,1) model [Bollerslev, 1986] with normal distributions states the
distribution of return for period t, conditional on all previous returns is

rt | rt−, rt−2, ... ∼ N(µ, ht) (3.1)

with residuals
et = rt − µ (3.2)

and the standardized residuals
zt =

et√
ht

. (3.3)

The formal definition of the model GARCH(1,1) with conditional normal distributions is

rt = µ+ h
1
2
t zt, (3.4)

zt ∼ i.i.d. N(0, 1), (3.5)

ht = ω + α(rt−1 − µ)2 + βht−1 (3.6)
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with variance ht, parameters α, β, ω, µ, and constraints β ≥ 0, α ≥ 0 ω ≥ 0 required to
ensure positive variance. The variance ht is a function of the previous squared residual
and previous variance.

As discussed in [Taylor, 2007], empirical evidence has contradicted the assumption
that returns have conditional normal distributions. The distribution of estimated stan-
dardized residuals obtained from observed returns and parameters has excess kurtosis and
the assumption zt ∼ N(0, 1) is unideal for the satisfactory of return process. Some exten-
sions of the model use other distributions (standardized t-distribution, generalized error
distribution [Nelson, 1991] ), which can be denoted by D(0, 1) and zt ∼ i.i.d. D(0, 1).

3.2 Extreme Value Theory - EVT

As is discussed in Longin [2017], Extreme Value Theory (EVT) serves as the foun-
dation for investigating the asymptotic distribution of extreme or rare events, which are
considerably larger in magnitude compared to the majority of observations. Grounded
in a solid theoretical framework, EVT provides the basis for constructing parametric or
semiparametric statistical models designed to handle rare events. It is particularly well-
suited for modeling and quantifying events that occur with a very low probability. EVT
has demonstrated its effectiveness as a robust and valuable tool for describing unusual sce-
narios that could have a significant impact across various application domains, especially
in situations where understanding the behavior of the tail of the distribution is crucial.

Following the paper of Scarrott and MacDonald [2012], Balkema and de Haan
[1974], Pickands [1975] demonstrated that if there is a non-degenerate limiting distribution
for appropriately linearly rescaled excesses of a sequence of independent and identically
distributed observations X1, ..., Xn above a threshold u, then the limiting distribution
will be a Generalized Pareto Distribution (GPD). In practical applications, the GPD is
employed as a tail approximation to the population distribution, from which a sample
of excesses x − u above some sufficiently high threshold u is observed. The GPD is
parameterized by scale and shape parameters σu > 0 and ξ, and can be alternatively
specified in terms of threshold excesses x− u or, as presented here, exceedances x > u

G(x|u, σu, ξ) = Pr(X < x|X > u) =

1− [1 + ξ(x−u
σu

)]
− 1

ξ

+ , ξ ̸= 0

1− exp[−(x−u
σu

)]+, ξ = 0
(3.7)

where y+ = max(y, 0). Implicitly underlying the GPD is a third parameter required
for estimation of quantities like return levels, the proportion of threshold excesses ϕu =
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Pr(x > u) used to calculate the unconditional survival probability

Pr(X > x) = ϕu[1− Pr(X < x|X > u)]. (3.8)

3.3 Realized variance

Following Bollerslev et al. [2016], consider that the price series Pit of asset i =

1, . . . , N at time t follows a stochastic differential equation:

d log(Pit) = µit dt+σit dWt, (3.9)

where t represents time, µ represents the drift, σ represent the asset volatility and Wt is a
Brownian motion. We would like to predict σit+1. The one-day integrated variance (IV)
of asset i is defined as,

IVit =

∫ t

t−1

σ2
is ds . (3.10)

IVit cannot be predicted as it is not directly observable. It can however be approximated
by using high-frequency returns to calculate the realized variance (RV), which is defined
as

RVit =
M∑
j=1

r2itj (3.11)

where M = 1/∆ and the ∆-period intraday return is defined as

rit,j = log(Pi,t−1+j∆)− log(Pi,t−1+(j−1)∆). (3.12)

3.4 Copula functions

A copula is a multivariate cumulative distribution function with each marginal
following a uniform distribution. In finance, they are commonly used to model the de-
pendence between random variables (assets), with applications in portfolio optimization
models.
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Following Alexander [2008], consider two random variables X1 and X2 with contin-
uous marginal distributions F1(x1) and F2(x2), and ui = Fi(xi), for i = 1, 2. The copula
function must ensure four properties [Alexander, 2008]:

1. C : [0, 1]× [0, 1] → [0, 1];

2. C(u1, 0) = C(0, u2) = 0;

3. C(u1, 1) = u1 and C(1, u2) = u2;

4. C(u2, v2)−C(u2, v1)−C(u1, v2) +C(u1, v1) ≥ 0, for every u1, u2, v1, v2 ∈ [0, 1] with
u1 ≤ u2 and v1 ≤ v2.

The Sklar Theorem [Sklar, 1959] shows that for any joint distribution function
F (x1, x2) there is a unique copula function C : [0, 1]× [0, 1] → [0, 1] that

F (x1, x2) = C(F (x1), F (x2)), (3.13)

and distinct copulas define distinct joint densities.
It is possible to express any multivariate joint distribution using univariate marginal

distribution functions and an associated copula function that delineates the dependence
structure among the variables.

The copula conditional distribution of X1 given X2 is defined as

C1|2(u1 | u2) = P (U1 < µ1 | U2 = µ2) =
∂C(µ1, µ2)

∂µ2

. (3.14)

All the concepts above can be generalized to n dimensions.
For n random variables, the Gaussian copula is defined as

C(u1, ..., un; Σ) = Φ(Φ−1(u1), ...,Φ
−1(un)), (3.15)

where Φ and Φ are the multivariate and univariate standard normal distribution functions
respectively, and Σ is the correlation matrix between the random variables.

Another elliptical copula is the Student t can be represented as

C(u1, ..., un; Σ) = tv(t
−1
v (u1), ..., t

−1
v (un)), (3.16)

where tv and tv are multivariate and univariate Student t distribution functions with
degrees v of freedom, respectively.

The Clayton copula is assimetric copula function defined as

C(u1, ..., un; θ) = ((u1)
−θ, ..., (un)

−θ − n+ 1)−
1
θ , (3.17)

with θ ̸= 0 representing the copula parameter.
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3.4.1 Calibrating the copulas

Following Demarta and McNeil [2005], there is a simple way of calibrating the
correlation matrix of the elliptical copulas using Kendall’s tau empirical estimates for
each bivariate margin of the copula.

Rank correlations are non parametric dependence measures based on ranked data
[Alexander, 2008]. If the data is composed of continuous variables, they are converted to
the ranked form, retaining only the ranks of the observations. At time t, Consider the joint
ranked intraday returns of two assets i and k as (rit1, rkt1), (rit2, rkt2), ..., (ritM , rktM). Two
pairs of observations l and m are said to be concordant if (ritl − ritm)× (rktl − rktm) > 0.
Accordingly the pairs are discordant if (ritl − ritm)× (rktl − rktm) < 0. The Kendall corre-
lation is calculated by comparing all possible pairs of observations {(ritl, rktl), (ritm, rktm)}
for l ̸= m, and is defined as:

τikt = 2 ∗ NC −ND

M(M − 1)
(3.18)

where NC is the number of concordant pairs, ND is the number of discordant pairs and
M is the number of observations.

It can be shown that a bivariate copula C(u1, u2) and the Kendall correlation are
related by

τ = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1 (3.19)

and any elliptical copula has a correlation parameter equal to

ρ = sin(
π

2
τ). (3.20)

In the case of the Clayton copula function, the Kendall correlation is related to
the parameter of the function as follows:

θ = 2τ(1− τ)−1. (3.21)

3.4.2 Tail dependency

Tail dependence examines the concordance in the extreme values of the joint distri-
bution. Karmakar [2017] discuss that the tail dependency measures the probability that
two variables are in the lower or upper joint tails. In this context, the tail dependence
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Table 3.1: Tail dependence coefficient of t-student copula function

v/p -0.5 0 0.5 0.9 1
2 0.06 0.18 0.39 0.72 1
4 0.01 0.08 0.25 0.63 1
10 0.0 0.01 0.08 0.46 1
∞ 0 0 0 0 1

coefficient serves as an indicator of the inclination of markets to experience simultaneous
crashes or booms.

As discussed in Demarta and McNeil [2005], the Gaussian copula has zero tail de-
pendence (for ρ < 1) while the Student t copula has a positive value. The tail dependence
coefficient is given by:

λ = 2tv+1(−
√
v + 1

√
1− ρ/

√
1 + ρ) (3.22)

where ρ is the off-diagonal element of correlation matrix and v is the number of degrees
of freedom. In Table 3.1 we show the tail dependence coefficient for different values of v
and ρ. We observe that higher values of correlation and low degrees of freedom increase
the coefficient of tail dependence in the t-Student copula function.

The Clayton copula is known for its ability to capture strong dependence in the
lower tails, making it suitable for modeling instances where extreme events tend to occur
together. It has zero tail dependence in the upper tail and a positive lower tail dependence
coefficient, when θ > 0, with

λl =

2−
1
θ , θ > 0

0, otherwise.
(3.23)

3.5 STARR ratio optimization model

Let N be the number of assets in which we can invest and let R ∈ RN be a
multivariate random variable representing asset returns. Suppose that R is discrete and
composed of S equiprobable scenarios; each scenario s being represented by a vector
rs = r1s, ..., rNs . Then given portfolio weights w ∈ RN , we have that portfolio returns
are given by

rps = wT rs =
N∑
i=1

wiris,∀s = 1, ..., S (3.24)
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Let r(s), s = 1, .., S denote the sorted portfolio returns in each scenario in increasing
order. Then for a given α (interpreted as confidence level 100(1 − α), the Conditional-
Value-at-Risk (CVaR) [Rockafellar and Uryasev, 2000] for discrete distributions with S

scenarios is given by

CV aRα(w
TR) =

1

⌊Sα⌋

⌊Sα⌋∑
s=1

(−1)rps (3.25)

where ⌊α⌋ is the largest integer smaller or equal to a 1.
The STARR ratio [Martin et al., 2003] is the reward-risk measure associated with

CVaR, and is defined as

STARR(w) =
wTu− rf

CV aRα(wTR)
(3.26)

The STARR ratio can be optimized as

maximise
N∑
i=1

uiŵi

subject to θ +
1

Sα

S∑
s=1

ds ≤ 1

ds ≥ −
N∑
i=1

risŵi − θ, ∀s = 1 . . . , S

ds ≥ 0, ∀s = 1 . . . , S

N∑
i=1

wi = t

t ≥ 0

(3.27)

where decision variable θ is the negative value of the Value-at-Risk (VaR), and variables
ds represent either the positive difference between a return and the VaR in the case that
return is worse than the VaR. If the return is equal or better than VaR ds is equal to zero.

3.6 Supervised machine learning regression

It is a machine learning task that tries to learn a continuous input-output mapping
from a limited number of examples. These inputs are a set of (X, y)m pairs where X ∈ Rd

and y is a continuous output target. This set is called training and each dimension d is a
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different feature. The goal is to learn a function f : X → y to predict correctly on new
inputs of X (generalization).

Different machine learning algorithms can be used to perform the regression task,
and each one has particular approaches with different hyperparameters that need to be
chosen. Commonly in the training stage of these algorithms, the hyperparameters are
optimized by minimizing a specific loss function.

3.6.1 Neural Networks

The idea behind artificial neural networks emerged in Rosenblatt [1958] when re-
searchers at the time were trying to simulate the functioning of brain cells computationally.
A neural network is a mathematical model with the ability to learn and generalize by the
use of previous training examples.

Neural networks are composed of parallel nodes (neurons) responsible for calculat-
ing a certain mathematical function related to the learning of the network. These neurons
are organized in layers that generally interconnect in a unidirectional way through differ-
ent connections. Most of the time, each neuron is associated with a weight that stores
the model learning and is responsible for weighing the input received to each neuron in
the network.

To make the predictions it is necessary to train the network with a series of data
so that learning occurs and the network can then infer the next values. Artificial neural
networks can approximate functions, are robust and fault-tolerant. Because of these char-
acteristics, this kind of model become good candidates for forecasting nonlinear systems
and non-stationary time series, as is the case with some financial time series.

3.6.2 Random Forest

Random Forest was proposed by Breiman [2001], and it is a type of ensemble
machine learning algorithm that combines multiple trees and calculates the average pre-
diction in the regression task. It uses the bootstrap aggregation (bagging) technique which
selects random samples with the replacement of the training and fits the trees with these
samples. The advantage of this approach is to reduce the variance of the model since each
tree received different training examples.
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Another aspect of the algorithm is that each tree received a random subset of the
features to perform the training. In many cases, for a total of N features,

√
N features

are used in each split.

3.6.3 eXtreme Gradient Boosting (XGBoost)

The XGBoost is end-to-end tree boosting system proposed by Chen and Guestrin
[2016]. The boosting technique consists of building a strong predictor by iterative com-
bining several weak predictors.

In the case of XGBoost, the weak predictors are regression trees using a gradient
descent algorithm to minimize the loss function. Each tree is added in an iterative way
using a subset of the training data, which helps to reduce model variance. The optimiza-
tion function of the algorithm uses regularization techniques (adding penalty as model
complexity increases) which also helps to prevent overfitting.
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Chapter 4

Methodology

This chapter describes our approach to modeling the asset return process to simulate the
one-day-ahead scenario matrices. We use the simulations as input to the STARR Ratio
optimization model. We divided the methodology into the in-sample set and the out-of-
sample set. To fit the models, we use the in-sample and out-of-sample set is responsible
for forecasting and simulating the scenario matrices.

Figure 4.1 illustrates the methodology. Step 1 consists of collecting the intraday
historical data of the assets. Step 2 consists of preparing the data (clean, transform, fea-
ture engineering) and splitting in-sample (training and validation sets) and out-of-sample
(test set). In step 3, we fit the distributions of standardized returns using extreme value
theory. Step 4 uses machine learning regression algorithms to predict the time-varying
volatility and correlation of assets. In step 5, we combine the marginal distributions with
the machine learning predictions and a copula function to generate discrete scenarios.
This future multivariate probability distribution simulation is represented as step 6 of the
Figure. The last step is to apply a portfolio optimization model in the simulation and
find the optimum weights. More specifically, for each different day of the out-of-sample
set, steps 4–7 comprise the following procedure:

1. For each asset, predict their realized variance one day ahead,

2. For each pair of assets, predict their respective intraday Kendall correlation one day
ahead,

3. Adjust the correlation matrix parameter of the copula function using the Kendall
correlation estimates,

4. Generate discrete scenarios based on the marginal distributions from step 3, with
variances equal to the realized variance predictions, and the estimated copula,

5. Apply the STARR Ratio optimization model to calculate portfolio weights to be
employed the next day.

We expect that more accurate forecasts, if achievable, will better approximate the
actual optimal weights of the portfolio. In the following subsections, we present each step
in more detail.
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Figure 4.1: Steps of methodology
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4.1 Data Preparation

We collect historical data on 29 B3 assets between 2008 and 2022, a total of ap-
proximately 14 years. We chose these assets because they represent different sectors of the
Brazilian economy and exhibit higher liquidity in the market. All assets have periodicity
of 5 minutes. We use the MetaTrader platform to collect the data.

The list of assets is: Ambev (ABEV3), Alpargatas (ALPA4), Banco do Brasil
(BBAS3), Banco Bradesco (BBDC4), Braskem (BRKM5), Grazziotin (CGRA4), Com-
panhia Energética de Minas Gerais (CMIG4), CPFL Energia (CPFE3), Cia Paranaense
De Energia Copel (CPLE6), Atacadao (CRFB3), Companhia Siderurgica Nacional (CSNA3),
Eletrobras (ELET3), Embraer (EMBR3), Energisa (ENGI4, ENGI11), Gerdau (GGBR4),
Itau (ITSA4), Itau Unibanco (ITUB4), Light (LIGT3), Lojas Renner (LREN3), Petrobras
(PETR4), Raia Drogasil (RADL3), Companhia de Saneamento Bsc DEDSP (SBSP3),
Suzano (SUZB3), TIM Brasil Serviços e Participações (TIMS3), Unipar Carbocloro (UNIP6),
Usinas Siderurgicas de Minas Gerais (USIM5), Vale (VALE3), Telefonica Brasil (VIVT3),
and the Brazilian ETF index BOVA11.

The collected data corresponds to the opening, closing, high, low prices, volume,
and tick-volume of each 5-minute candle (POt,j,PCt,j,PHt,j,PLt,j, vt,j, tvt,j). The t index
represents the day, while the j index represents an instant of 5 minutes during the day.
The period from 2008 to 2020 was used as an in-sample to adjust the models (which
we discuss in more detail in the following sections). Moreover, the out-of-sample period
corresponds to 2021 to 2022.

We construct features that the machine learning algorithms use to predict the
intraday moments and Kendall correlations. We define:

oct,j = log(POt,j)− log(PCt,j) (4.1)

hct,j = log(PHt,j)− log(PCt,j) (4.2)

lct,j = log(PLt,j)− log(PCt,j) (4.3)

which represents the intraday logarithmic difference between open, high, and low prices
with the asset’s closing price. In Table 4.1, we defined some features based on the moments
of the intraday probability distributions of these measures. Next, we define the intraday
log return using the closing price of the assets.:

rt,j = log(PCt,j)− log(PCt,j−1) (4.4)
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Table 4.1: Features using candle measurements: volume, tickvol, open, high and low
prices

index Feature description Feature Definition
1 volume intraday mean 1

M

∑M
j=1 vt,j

2 volume intraday variance 1
M

∑M
j=1(vt,j − v̄t)

2

3 volume intraday skewness
∑M

j=1(vt,j−v̄t)3

[ 1
M

∑M
j=1(vt,j−v̄t)2]3/2

4 volume intraday kurtosis
∑M

j=1(vt,j−v̄t)4

[ 1
M

∑M
j=1(vt,j−v̄t)2]2

− 3

5 volume intraday variance with zero mean
∑M

j=1 v2
t,j

6 tickvol intraday mean 1
M

∑M
j=1 tvt,j

7 tickvol intraday variance 1
M

∑M
j=1(tvt,j − t̄vt)

2

8 tickvol intraday skewness
∑M

j=1(tvt,j− ¯tvt)3

[ 1
M

∑M
j=1(tvt,j− ¯tvt)2]3/2

9 tickvol intraday kurtosis
∑M

j=1(tvt,j− ¯tvt)4

[ 1
M

∑M
j=1(rt,j− ¯tvt)2]2

− 3

10 tickvol intraday variance with zero mean
∑M

j=1 tv2
t,j

11 intraday open close difference mean 1
M

∑M
j=1 oct,j

12 intraday open close difference variance 1
M

∑M
j=1(oct,j − ōct)2

13 intraday open close difference skewness
∑M

j=1(oct,j− ¯r,oct)3

[ 1
M

∑M
j=1(oct,j− ¯oct)2]3/2

14 intraday open close difference kurtosis
∑M

j=1(oct,j− ¯r,oct)4

[ 1
M

∑M
j=1(oct,j− ¯oct)2]2

− 3

15 intraday open close difference variance with zero mean
∑M

j=1 oc2t,j
16 intraday high close difference mean 1

M

∑M
j=1 hct,j

17 intraday high close difference variance 1
M

∑M
j=1(hct,j − h̄ct)2

18 intraday high close difference skewness
∑M

j=1(hct,j−h̄ct)3

[ 1
M

∑M
j=1(rt,j−h̄ct)2]3/2

19 intraday high close difference kurtosis
∑M

j=1(hct,j−h̄ct)4

[ 1
M

∑M
j=1(hct,j−h̄ct)2]2

− 3

20 intraday high close difference variance with zero mean
∑M

j=1 hc2t,j
21 intraday low close difference mean 1

M

∑M
j=1 lct,j

22 intraday low close difference variance 1
M

∑M
j=1(lct,j − l̄ct)2

23 intraday low close difference skewness
∑M

j=1(lct,j− ¯lct)3

[ 1
M

∑M
j=1(lct,j− ¯lct)2]3/2

24 intraday low close difference kurtosis
∑M

j=1(lct,j− ¯lct)4

[ 1
M

∑M
j=1(lct,j− ¯lct)2]2

− 3

25 intraday low close difference variance with zero mean
∑M

j=1 lc2t,j
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Table 4.2: Moments features based on intraday log return

index Feature description Feature Definition
26 intraday log return mean (µt) 1

M

∑M
j=1 rt,j

27 intraday log return variance (σt) 1
M

∑M
j=1(rt,j − r̄t)2

28 intraday log return skewness (B1,t)
∑M

j=1(rt,j−r̄t)3

[ 1
M

∑M
j=1(rt,j−r̄t)2]3/2

29 intraday log return kurtosis (B2,t)
∑M

j=1(rt,j−r̄t)4

[ 1
M

∑M
j=1(rt,j−r̄t)2]2

− 3

30 intraday positive log return mean 1
M

∑M
j=1 r+t,j

31 intraday positive log return variance 1
M

∑M
j=1(r

+
t,j − r̄+t )2

32 intraday positive log return skewness
∑M

j=1(r
+
t,j−r̄+t )3

[ 1
M

∑M
j=1(r

+
t,j−r̄+t )2]3/2

33 intraday positive log return kurtosis
∑M

j=1(r
+
t,j−r̄+t )4

[ 1
M

∑M
j=1(r

+
t,j−r̄+t )2]2

− 3

34 intraday negative log return mean 1
M

∑M
j=1 r−t,j

35 intraday negative log return variance 1
M

∑M
j=1(r

−
t,j − r̄−t )2

36 intraday negative log return skewness
∑M

j=1(r
−
t,j−r̄−t )3

[ 1
M

∑M
j=1(r

−
t,j−r̄−t )2]3/2

37 intraday negative log return kurtosis
∑M

j=1(r
−
t,j−r̄−t )4

[ 1
M

∑M
j=1(r

−
t,j−r̄−t )2]2

− 3

where PCt,j is the closing price of the asset on day t at some instant j and PCt,j−1 is the
closing price five minutes before. The daily returns rt are the sum of M intraday returns

rt =
M∑
j=1

rt,j (4.5)

With the intraday log return, we construct several features for the machine learning
algorithms. In Table 4.2, we define the intraday moments, while in Table 4.3, we define
intraday dispersion metrics.

Regarding the features involving pairs of assets, we collect the data at the same
instant of time. As discussed in Massimo Guidolin [2018], we use synchronous time steps
to avoid covariance bias. In Table 4.4, we define the intraday association features between
pairs of assets.

4.2 Data modeling

In this section, we address the proposed modeling for the multivariate return pro-
cess of the assets. The goal is to construct a model to sample from a distribution with
the same statistical properties as the observed returns.
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Table 4.3: Dispersion features based on intraday log return

index Feature description Feature Definition
38 Realized variance (RVt)

∑M
j=1 r

2
t,j

39 Logarithmic of realized variance log(RVt)

40 5 days moving average 1
5

∑5
lag=0 log(RVt−lag)

41 20 days moving average 1
20

∑20
lag=0 log(RVt−lag)

42 Bipower variation (BPVt) (
√

2/π)−2
∑M−1

j=1 | rt,j || rt,j+1 |
43 Logarithmic of bipower variation log(BPVt)

44 5 days moving average (log(RVt−5|t)) 1
5

∑5
lag=0 log(BPVt−lag)

45 20 days moving average (log(RVt−20|t)) 1
20

∑20
lag=0 log(BPVt−lag)

46 Realized variance of positive returns (RV +
t )

∑M
j=1 r

2
t,jΠ{rt,j>0}

47 Logarithmic of RV +
t log(RV+

t )

48 5 days moving average (log(RV+
t−5|t))

1
5

∑5
lag=0 log(RV+

t−lag)

49 20 days moving average ((log(RV+
t−20|t)))

1
20

∑20
lag=0 log(RV+

t−lag)

50 Realized variance of negative returns (RV −
t )

∑M
j=1 r

2
t,jΠ{rt,j<0}

51 Logarithmic of RV −
t log(RV−

t )

52 5 days moving average log(RV−
t−5|t))

1
5

∑5
lag=0 log(RV−

t−lag)

53 20 days moving average log(RV−
t−20|t))

1
20

∑20
lag=0 log(RV−

t−lag)

54 Jump variation (Jt) max[RVt − BPVt, 0]
55 Logarithmic of Jt log(Jt)

56 5 days moving average (log(Jt−5|t)) 1
5

∑5
lag=0 log(Jt−lag)

57 20 days moving average (log(Jt−20|t)) 1
20

∑20
lag=0 log(Jt−lag)

58 Realized quarticity (RQt) M
3

∑M
j=1 r

4
t,j

59 Logarithmic of RQt log(RQt)

60 5 days moving average (log(RQt−5|t)) 1
5

∑5
lag=0 log(RQt−lag)

61 20 days moving average (log(RQt−20|t)) 1
20

∑20
lag=0 log(RQt−lag)

62 Moving average indicator rule

{
1, log(RVt−5|t) > log(RVt−20|t),

0, log(RVt−5|t) <= log(RVt−20|t)

63 Moving average indicator rule

{
1, log(BPVt−5|t) > log(BPVt−20|t),

0, log(BPVt−5|t) <= log(BPVt−20|t)

64 Moving average indicator rule

{
1, log(Jt−5|t) > log(Jt−20|t),

0, log(Jt−5|t) <= log(Jt−20|t)

65 Moving average indicator rule

{
1, log(RV+

t−5|t) > log(RV+
t−20|t),

0, log(RV+
t−5|t) <= log(RV+

t−20|t)

66 Moving average indicator rule

{
1, log(RV−

t−5|t) > log(RV−
t−20|t),

0, log(RV−
t−5|t) <= log(RV−

t−20|t)

67 Moving average indicator rule

{
1, log(RQ−

t−5|t) > log(RQ−
t−20|t),

0, log(RQ−
t−5|t) <= log(RQ−

t−20|t)
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Table 4.4: Intraday association features of pairs of assets i, k

index Feature description Feature Definition
68 Realized covariance (RCovt,ik)

∑M
j=1 rt,ij × rt,kj

69 Realized correlation (RCort,ik)
RCovt,ik√
RVt,i×RVt,k

70 Intraday Kendall correlation (τt,ik) nc−nd√
(n0−n1)(n0−n2)

71 Intraday Spearman correlation 1− 6
∑M

j=1(R(rt,ij)−R(rt,kj))
2

M(M2−1)

72 Intraday distance correlation dCov(X,Y )√
dV ar(X)×dV ar(Y )

73 Intraday mutual information
∑

y∈Y
∑

x∈X P(X,Y )(x, y)log(
P(X,Y )(x,y)

PX(x)×PY (y)
)

We base the univariate return process of each asset on the GARCH model. The
variance is a function of observed returns, and for each day, the asset return follows a
probability distribution represented by a parametric function with estimated mean and
variance. In this study, the difference is that we propose to model the variance using su-
pervised machine learning regression algorithms instead of the econometric approach. We
use past observed features to input the algorithms to obtain the one-day-ahead variance.

Further, we propose to model the multivariate assets’ return process, preserving the
existing dependence between assets. To achieve this goal, we use a copula function that
can separately model the individual’s marginal distributions from the joint distribution.
In this step, we also use machine learning regression algorithms to predict the intraday
Kendall correlation between each pair of assets. This approach is essential to capture the
dependencies from assets and adjust the copula function parameters. Once again, past
observed features are used as input to the algorithms to obtain one day ahead of the
correlation estimations.

With this data modeling, we simulate the one-day ahead scenario matrix. The
simulated scenario matrix preserves the statistical proprieties from the multivariate assets.
It is an ideal dynamic approach since variance and correlation are not constant over time.
In the following subsections, we describe each step of the proposed modeling in detail.

4.2.1 The proposed modeling

The proposed modeling extends the GARCH-EVT-Copula framework of the lit-
erature, using realized variance, intraday Kendall correlation, and machine learning al-
gorithms. The realized variance is assumed to be the variance of return on day t. We
use machine learning algorithms to learn a function f1 of realized variance. Following the
GARCH model definition in 3.1 we define:
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rt =
√
RV zt, (4.6)

zt ∼ i.i.d. G(z), (4.7)

RVt = f1(v1,t−1) (4.8)

where v1,t−1 is a vector of past features defined in Tables 4.1, 4.2 and 4.3, zt is the standard-
ized returns ( rt√

RVt
), and G(z) is the probability distribution of standardized returns. To

model this distribution, we follow the same approach of Wang et al. [2010], Sahamkhadam
et al. [2018] using the extreme value theory (EVT). We model the distribution’s tails by
a generalized Pareto using the method peak over the threshold. To model the middle of
the distribution, we use a Gaussian kernel

G(z) =


N

uL

N
{1 + ξL uL−z

βL }−
1

ξL , z < −uL

ϕ(z), uL < z < uR

1− N
uR

N
{1 + ξL uR−z

βR }−
1

ξR , z > −uR

(4.9)

where ξ, β, uL, uR denote: shape, scale, upper and lower thresholds respectively.
This approach models each asset independently. To model the dependency between

assets, we use a time-varying copula approach where for each day t we adjust the copula
function parameters by the estimates of intraday Kendall correlation τt given by a second
learning function τt = f2(v2,t−1) where v2,t−1 is a second vector of past features defined
in Table 4.4 used to train the algorithms to predict one day ahead the intraday Kendall
correlation.

Embrechts et al. [2002] discuss that Pearson’s correlation is a linear measure of
association, and it is inflexible to capture non-linear dependencies. The author identified
several problems associated with this metric; for example, feasible values for correlation
depend on the marginal distribution of the random variables. Further, the paper also
discusses that many management systems use correlation to model dependencies where
distributions are not Gaussian, so Pearson’s correlation is misleading. Only when the
distributions of returns are multivariate normal, or t-student Pearson’s correlation can be
justified as a measure of dependence.

For these reasons, we obtain the parameters of the copula functions by estimating
the Kendall correlation of intraday returns using Equation 3.20.
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4.2.2 Supervised machine learning regression

Machine learning algorithms are the core step of the methodology, responsible for
producing the accurate predictions of realized variance and intraday Kendall correlation
of the assets in the out-of-sample set. We use these predictions to construct the scenario
matrix and find the optimum weights of the portfolio.

We use the in-sample set in the training process to learn two different functions
f1, and f2 that map the features into the target variables:

RVt = f1(v1,t−1)

v1,t−1 = (feature1,t−1, feature2,t−1, ..., feature67,t−1),

τt = f2(v2,t−1)

v2,t−1 = (feature26,t−1, ..., feature29,t−1, feature68,t−1, ..., feature73,t−1)

(4.10)

where all the features are lagged for at least one day from the target variable, and corre-
spond to the Tables 4.1, 4.2, 4.3 and 4.4.

We use features related to the statistical properties of the intraday probability dis-
tributions and lagged values of these variables to predict the realized variance (features
1 to 67 of the Tables 4.1, 4.2, 4.3). We aggregated each asset’s training data, forming a
large, unified training dataset. We employed this approach to leverage substantial data
for training machine learning algorithms. In the case of predicting intraday Kendall cor-
relation, we use the same approach of stacking training data for each pair of assets. The
difference in the training process in this case pertains to the input features, involving vari-
ables related to asset association measures and moments of intraday distribution (features
26 to 29 of the Table 4.2, and 68 to 73 of Table 4.4).

We use the grid search technique to optimize and tune the hyperparameters of the
algorithms. This approach involves an exhaustive search across the hyperparameter space,
selecting the combination that results in the most minor error related to cross-validation.

After the training process, we have the adjusted machine learning algorithms to
make out-of-sample set predictions.

4.2.3 Generating the scenario matrix

With the estimates of realized variance, the residual distribution of the assets and
the intraday Kendall correlations of the assets, it is possible to generate the scenario
matrix following the algorithm suggested by Alexander [2008] :
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1. Generate simulations {u1, u2, ..., uN} from independent uniform random variables.

2. Fix u∗
1 = u1 and then apply the inverse conditional copula u∗

2 = C−1
2|1(u2 | u∗

1)

3. Fix u∗
3 = C−1

3|1,2(u3 | u∗
1, u

∗
2
)

4. Fix u∗
N = C−1

N |1,2,3,...,N−1(uN | u∗
1, u

∗
2
, u∗

3
, ..., u∗

N−1)

5. Feed the simulations {u∗
1
, u∗

2
, u∗

3
, ..., u∗

N
} into the marginals to obtain a corresponding

simulation {D−1
1 (u∗

1), D
−1
2 (u∗

2), D
−1
3 (u∗

3), ..., D
−1
N (u∗

N
)}, where Di corresponds to the

residual distributions of each asset with zero mean and variance equal the estimated
realized variance yt,i.

We repeat these steps 1000 times, generating a scenario matrix with dimensions
1000×N . Each row corresponds to a realization of the multivariate distribution predicted
for the one-day-ahead asset returns.

The entire covariance matrix of the elliptical copulas (with more than two di-
mensions) can be obtained by calculating the empirical Kendall’s τ matrix and then
constructing the estimator. However, Demarta and McNeil [2005] also mentions that this
procedure is not guaranteed to produce a positive definite correlation matrix. In this case,
the eigen method of Rousseeuw and Molenberghs [1993] can be applied. In the case of the
t-student copula function, we still must, however, arbitrarily choose a value of degrees of
freedom v. Since the best choice for v is unclear, and may vary over time, ideally, it should
also be predicted. We, however, opted to defer this to future work and, instead, use a
fixed value of v = 2 which gives the higher values of tail dependence for this function.

In the case of the Clayton copula function, we utilize the approach discussed in Ko-
jadinovic and Yan [2010], where we average the forecasts of Kendall correlations and then
employ equation 3.21 to calculate the corresponding parameter of the copula function.

4.2.4 Portfolio Optimization

After generating the scenario matrix, we use the transformation of ex to each log
return element of the matrix. This step is necessary since the optimization models use
simple returns instead of log returns. With the transformed matrix, we use it as input in
a portfolio selection model looking for a vector of weights (ŵ1t, . . . , ŵNt) that maximizes
the STARR Ratio model.

We chose the STARR Ratio allocation model because it is a model that takes into
consideration the trade-off between return and risk. Additionally, it employs Conditional
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Value at Risk as a risk measure, which is a coherent measure aligned with the ideal
properties for a risk function. If we used the CVaR minimization model, it would be
necessary to incorporate a portfolio return constraint, as return holds significance within
this context. Depending on the chosen threshold, the model might fail to converge to a
solution. Thus, by utilizing the STARR Ratio, we circumvent the issue of return selection,
as the model maximizes the portfolio return divided by the CVaR.
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Chapter 5

Experiments and Results

Figure 5.1: Power of the statistic test

In this section, we present our computational results by applying every step of the
methodology described in the previous section. We implemented the code in R and Python
and used the R packages rugarch, rmgarch, Copula, multDM, MCS, PerformanceAnalytics
and the Python package H2O Automl.

Throughout the chapter, we use hypothesis tests to assess the statistical signifi-
cance of the various results. The p-value obtained in the statistical test represents the
probability of obtaining the result, assuming the null hypothesis to be true. A signifi-
cance level α is then defined. We reject a null hypothesis if the p-value exceeds α. To
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avoid type 2 errors in the test (failing to reject the null hypothesis even when there is a
significant effect), we can calculate the test’s power, representing the probability that the
test correctly rejects the null hypothesis, 1− type 2 error.

To calculate the test’s power, it is necessary to specify the sample size, the signifi-
cance level α, and the effect size. Figure 5.1 illustrates the test power values for a α = 1%

as the sample size increases for different effect size values. We will use hypothesis tests
with samples of 2000 and 353 in our experiments. Assuming an effect size greater than
or equal to 0.4, the probability of encountering a type 2 error is approximately zero.

5.1 In-sample analysis

In this section, we used the in-sample (training and validation sets) to analyze the
assets’ statistical properties and to train and calibrate the machine-learning algorithms.

5.1.1 Realized variance and intraday Kendall correlation time

series analysis

Figure 5.2 shows the time series of realized variance of PETR4, VALE3, ITSA4,
and ABEV3 over nearly ten years and the autocorrelation functions of these assets for
the same period. It is possible to observe some stylized facts already mentioned in the
literature. We notice the volatility clustering effect, where high-volatility events tend to
cluster in time. There is also substantial positive autocorrelations of the first 30 lags with
slow decay, indicating a long memory effect.
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Figure 5.2: Time series of realized variance and the corresponding autocorrelation func-
tions.

Figures 5.3 and 5.4 show the time series of intraday Kendall correlation between
these pairs of assets and the autocorrelation function for the same period. We observe that
this correlation is dynamic. Also, we notice it is not an i.i.d. presenting serial correlation
and the same characteristic of the long memory effect with a significant correlation with
the first 30 lags.
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Figure 5.3: Time series of intraday Kendall correlation and the autocorrelation function
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Figure 5.4: Time series of intraday Kendall correlation and the autocorrelation function

These results suggest that it might be possible to develop a model to predict
future observations of these measurements based on past values since there is a significant
correlation. Also, the behavior of the series is dynamic. Therefore, we suggest that
accurate forecasts can approximate the actual future behavior of asset distributions.
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5.1.2 Analysis of the probability distribution of the

standardized returns

Figure 5.5: Histograms of the standardized returns.

Next, we analyze the distribution of standardized returns ( rt√
RVt

). Table 5.1 shows
the first four moments of these distributions. In all assets, we observe the mean close
to zero and the standard deviation close to 1. Also, the skewness is close to zero, and
kurtosis is near 3. Figure 5.5 shows the histograms of BBAS3 and PETR4. By analyzing
the moments and histograms, we observe another stylized fact already studied in the
literature: the distribution of standardized returns is almost normal [Taylor, 2007].

In Table 5.2, we present the values of the statistic and p-value from the Kolmogorov-
Smirnov test. We compare the standardized return distributions with standardized normal
and a fitted EVT distribution using maximum likelihood estimation to calibrate the pa-
rameters. This test quantifies a distance between the empirical distribution functions of
two samples with the null hypothesis that the samples are drawn from the same distri-
bution [Massey Jr, 1951]. Considering F (x) the empirical distribution function and G(x)

another empirical distribution function
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Table 5.1: First four moments

Asset Mean Std Skewness Kurtosis

ABEV3 5.20E-02 8.47E-01 -1.45E-03 3.02E+00
ALPA4 4.92E-03 7.86E-01 -8.66E-02 3.00E+00
BBAS3 5.95E-03 9.76E-01 6.84E-02 2.72E+00
BBDC4 1.64E-02 9.10E-01 9.60E-02 3.04E+00
BRKM5 -2.39E-02 8.94E-01 2.12E-02 3.07E+00
CGRA4 1.57E-01 8.10E-01 -2.73E-01 2.01E+00
CMIG4 -1.11E-02 9.07E-01 -1.02E-02 3.09E+00
CPFE3 -8.31E-03 8.34E-01 -1.81E-03 2.88E+00
CPLE6 2.03E-02 8.78E-01 1.35E-01 3.14E+00
CRFB3 1.11E-01 8.35E-01 -4.69E-02 2.82E+00
CSNA3 -8.97E-02 9.32E-01 1.58E-01 3.02E+00
ELET3 -6.12E-02 9.28E-01 1.17E-01 3.07E+00
EMBR3 -1.72E-02 8.88E-01 3.49E-02 3.02E+00
ENGI4 3.01E-02 8.03E-01 -6.33E-01 2.18E+00
ENGI11 1.96E-02 8.19E-01 -3.61E-01 2.26E+00
GGBR4 -9.60E-02 9.58E-01 1.46E-01 2.69E+00
ITSA4 1.50E-02 7.77E-01 3.88E-02 2.84E+00
ITUB4 2.16E-02 9.23E-01 9.29E-02 2.87E+00
LIGT3 -3.28E-02 8.22E-01 1.11E-02 3.21E+00
LREN3 2.51E-02 8.95E-01 1.02E-01 2.89E+00
PETR4 -8.31E-02 1.02E+00 1.01E-01 2.60E+00
RADL3 5.58E-03 8.23E-01 3.59E-02 2.82E+00
SBSP3 4.54E-02 8.32E-01 -1.36E-02 3.19E+00
SUZB3 -6.00E-02 8.80E-01 1.02E-01 3.01E+00
TIMS3 3.83E-02 8.64E-01 6.78E-03 2.99E+00
UNIP6 -1.34E-02 8.26E-01 1.07E-01 5.12E+00
USIM5 -1.16E-01 9.80E-01 1.40E-01 2.92E+00
VALE3 -4.12E-02 9.93E-01 1.02E-01 2.84E+00
VIVT3 7.90E-02 8.30E-01 -1.19E-01 2.69E+00

Dn,m = sup|F (x)−G(x)| (5.1)

where sup is the supremum function. Dn,m correspond the statistic used to test the null
hypothesis F (x) = G(x). For large samples, the null hypothesis is rejected at level α if

Dn,m >

√
−ln(

α

2
)×

1 + m
n

2m
(5.2)

where n and m are the sizes of the samples.
The results indicate that several assets reject the null hypothesis of normality. In

all cases, the EVT distribution better fits the distribution of the standardized returns.
Figure 5.6 shows the cumulative distributions of PETR4 and the cumulative dis-

tributions from simulated normal and EVT distributions. Analyzing the Figure, it can
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Table 5.2: Kolmogorov-Smirnov statistic and p-value

Asset KS EVT KS normal

D p-value D p-value

ABEV3 2.05E-02 7.95E-01 5.60E-02 3.78E-03
ALPA4 2.85E-02 3.91E-01 8.20E-02 2.89E-06
BBAS3 2.10E-02 7.70E-01 2.95E-02 3.49E-01
BBDC4 2.10E-02 7.70E-01 4.00E-02 8.15E-02
BRKM5 2.30E-02 6.65E-01 4.55E-02 3.18E-02
CGRA4 2.40E-02 6.12E-01 1.33E-01 1.11E-15
CMIG4 1.55E-02 9.70E-01 4.25E-02 5.40E-02
CPFE3 1.30E-02 9.96E-01 5.50E-02 4.72E-03
CPLE6 2.05E-02 7.95E-01 6.20E-02 9.17E-04
CRFB3 1.45E-02 9.99E-01 8.35E-02 1.84E-04
CSNA3 1.65E-02 9.48E-01 5.65E-02 3.38E-03
ELET3 1.15E-02 9.99E-01 5.90E-02 1.89E-03
EMBR3 1.85E-02 8.84E-01 4.50E-02 3.48E-02
ENGI4 2.20E-02 7.18E-01 3.09E-01 2.20E-16
ENGI11 2.00E-02 8.19E-01 1.47E-01 2.20E-16
GGBR4 2.15E-02 7.44E-01 5.80E-02 2.39E-03
ITSA4 2.65E-02 4.84E-01 8.45E-02 1.26E-06
ITUB4 1.85E-02 8.84E-01 3.30E-02 2.26E-01
LIGT3 2.15E-02 7.44E-01 7.50E-02 2.60E-05
LREN3 1.60E-02 9.60E-01 3.65E-02 1.39E-01
PETR4 1.65E-02 9.48E-01 6.20E-02 9.17E-04
RADL3 2.45E-02 5.86E-01 6.40E-02 5.54E-04
SBSP3 2.65E-02 4.84E-01 7.60E-02 1.92E-05
SUZB3 2.00E-02 8.19E-01 7.15E-02 7.25E-05
TIMS3 1.75E-02 9.87E-01 3.20E-02 5.02E-01
UNIP6 1.85E-02 8.84E-01 2.32E-01 2.20E-16
USIM5 8.50E-03 1.00E+00 6.35E-02 6.29E-04
VALE3 1.70E-02 9.35E-01 3.45E-02 1.85E-01
VIVT3 1.60E-02 9.60E-01 7.75E-02 1.21E-05

be noticed that the cumulative distribution of PETR4 returns is quite close to the cumu-
lative distribution of EVT, whereas there is a greater distance for the cumulative normal
distribution.
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Figure 5.6: Comparison of the cumulative distribution functions. The black curve shows
the standardized PETR4 returns, the red curve shows the standard normal, and blue
curve shows the EVT.

5.1.3 Simulated returns analysis

In this section, we used the observed realized variance and the fitted EVT proba-
bility distributions of the standardized returns to simulate the returns of each asset. For
2000 days, we extracted random samples of the EVT distributions and multiplied them
by the values of realized variance.

We used the nonparametric Kolmogorov-Smirnov test of goodness fit to evaluate
each asset simulation. Table 5.3 shows the p-values and statistics of the test. It is
possible to observe that only three of the simulated assets reject the null hypothesis of
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Table 5.3: Kolmogorov-Smirnov test between each simulated asset and corresponding
asset

Asset D statistic p-value

ABEV3 2.35E-02 6.39E-01
ALPA4 3.45E-02 1.85E-01
BBAS3 1.90E-02 8.63E-01
BBDC4 3.30E-02 2.26E-01
BRKM5 2.40E-02 6.12E-01
CGRA4 8.10E-02 4.00E-06
CMIG4 1.45E-02 9.85E-01
CPFE3 1.90E-02 8.63E-01
CPLE6 1.55E-02 9.70E-01
CRFB3 2.10E-02 9.80E-01
CSNA3 2.55E-02 5.34E-01
ELET3 1.90E-02 8.63E-01
EMBR3 1.70E-02 9.35E-01
ENGI4 1.32E-01 1.89E-15
ENGI11 1.04E-01 9.92E-10
GGBR4 1.10E-02 1.00E+00
ITSA4 2.25E-02 6.92E-01
ITUB4 2.10E-02 7.70E-01
LIGT3 2.15E-02 7.44E-01
LREN3 2.55E-02 5.34E-01
PETR4 2.15E-02 7.44E-01
RADL3 2.40E-02 6.12E-01
SBSP3 2.10E-02 7.70E-01
SUZB3 1.70E-02 9.35E-01
TIMS3 4.50E-02 2.63E-01
UNIP6 3.25E-02 2.41E-01
USIM5 1.65E-02 9.48E-01
VALE3 2.45E-02 5.86E-01
VIVT3 2.25E-02 6.92E-01

equal distributions.
Figure 5.7 shows the histograms, and Figure 5.8 shows the cumulative distribu-

tion functions from PETR4 and the simulated corresponding asset. As we notice in the
Kolmogorov-Smirnov test, the simulation distributions are close to the actual asset. In
Figure 5.9, we show the returns time series, the autocorrelation function of the returns,
and the autocorrelation function of the squared returns from PETR4 and compare them
with the simulated asset. We can observe that the simulated time series has similar
statistical properties to the autocorrelation functions of the assets.
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Figure 5.7: Histograms of the PETR4 asset and the simulated corresponded distribution
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Figure 5.8: Comparison of the cumulative distribution functions. Black curve shows
PETR4 returns and the blue curve the corresponding simulated returns
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Figure 5.9: Comparison of the returns time series, and autocorrelation functions of PETR4
and the corresponded simulation

5.1.4 Training of machine learning algorithms

To train the machine learning models we use the h20 package automl https://
docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html [LeDell and Poirier, 2020].
With this tool, we were able to automatically train the following machine learning algo-
rithms:

• Random Forest,

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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• Extremely Randomized Forest,

• Gradient Boosting Machine (GBM),

• eXtreme Gradient Boosting (XGBoost),

• Deep Neural Net.

We use the grid search technique To optimize the hyperparameters of the algo-
rithms. With this approach, we test different combinations of hyperparameters and select
the one that results in the lowest error. Subsequently, we combine the trained models
to obtain stacked models, where the final prediction is determined by aggregating the
individual predictions.

Figures 5.10 and 5.11 illustrate the ranking of trained algorithms based on the
obtained error. In both cases, we obtain the best predictions from combining individual
algorithms.

Figure 5.10: Training performance predicting one day ahead realized variance. Compari-
son of validation error for different machine learning algorithms
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Figure 5.11: Training performance predicting one day ahead intraday Kendall correlation.
Comparison of validation error for different machine learning algorithms

5.2 Out-of-sample analysis

In this section, we analyze the results for the out-of-sample set. First, we analyze
the performance of the machine learning algorithms to predict one day ahead of the
realized variance compared with econometric models. Next, we analyze the performance
of predicting one day ahead of the intraday Kendall correlation. Further, we simulate the
scenario matrix with the predictions and use the STARR Ratio optimization model to
build the portfolios and analyze the financial returns obtained.
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5.2.1 Forecasting one day ahead realized variance

In this section, we compare the predictions of fitted machine learning algorithms
with the predictions from some models found in the literature. We chose six baselines to
forecast the realized variance: the GARCH model with a normal distribution defined in
Section 3.1 and five econometric models based on intraday data:

• Exponential moving average (EMA)

• Heterogeneous Autoregression (HAR)

• Heterogeneous Autoregression with Jumps (HAR-J)

• Semivariance-HAR (SHAR)

• Continuous Heterogeneous Autoregression (CHAR)

• Heterogeneous Autoregression Quarticity (HARQ)

We chose the GARCH model with daily data as it is the most widely used model in
the literature in this context, as well as the HAR model and its extensions in the context
of intraday models. We also employed the exponential moving average technique, given
its widespread usage in industry.

The EMA can be defined as:

EMAt+1 = α×RVt + (1− α)× EMAt−1 (5.3)

where α = 0.9 is the weighting factor and EMA1 = RV1.
The HAR model, proposed by Corsi [2009], can be defined as:

RVt+1 = c+ β1RVt + β2RVt−5|t + β3RVt−22|t + ϵt (5.4)

where RVt−5|t is the weekly average of the lagged 5 values of RV series, RVt−22|t is the
monthly average of the lagged 22 values of RV series, and c, β1, β2, β3 are scalar parameters.

The HAR-J and CHAR models incorporate discontinuous (Jumps) and continuous
(Bi-power variation) parts of the total variation of intraday returns [Andersen et al., 2007].
The HAR-J model is defined as

RVt+1 = c+ β1RVt+ β2RVt−5|t + β3RVt−22|t + β4Jt + ϵt (5.5)

while the CHAR model is defined as

RVt+1 = c+ β1BPVt + β2BPVt−5|t + β3BPVt−22|t + ϵt. (5.6)
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The SHAR model decomposes the total variance in the variation related to negative
and positive intraday returns:

RVt+1 = c+ β+
1 RV+

t + β−
1 RV−

t + β2RVt−5|t + β3RVt−22|t + ϵt (5.7)

The HARQ model [Bollerslev et al., 2016] extends the HAR model by including
the error measures related to the realized variance. The HARQ model is defined as

RVt+1 = c+ β1,tRVt + β2RVt−5|t + β3RVt−22|t + ϵt

β1,t = (β1 + β1QRQ1/2
t ) (5.8)

where β1, β1Q are scalar parameters, RQt is the realized quarticity RQt = M
3

∑M
i=1 r

4
t,i.

The β1t parameter will vary with the estimated measurement error variance. In these
models, the parameters can be obtained using ordinary least squares.

To compare the performance among the different models, we used the Root Mean
Squared Error (RMSE)

RMSE =

√√√√ 1

353

353∑
t=1

(yt − ŷt)2 (5.9)

in which yt represents the actual value, and ŷt represents the predicted value.
Table 5.4 presents the comparison results of the root mean square error (RMSE)

for various variance forecasting models over a 1-day ahead horizon. Overall, the results
suggest that the ML model exhibited the smallest forecast errors, followed by the intraday
models from the literature. Among the 29 examined assets, the ML model achieved lower
RMSE compared with the HAR, CHAR, SHAR, HAR-J, HAR-Q, EMA, and GARCH
models in 23 (79.31%), 23 (79.31%), 22 (75.86%), 26 (89.65%), 23 (79.31%), 23 (79.31%),
and 29 (100%) assets, respectively.

To assess the statistical significance of the forecast differences, we employed the
Diebold-Mariano test [Diebold and Mariano, 1995]. Considering e1,t = yt− ŷ1,t and e2,t =

yt − ŷ2,t the residuals from two different models. And dt = e21,t − e22,t the loss differential
between the two forecasts. The test states the two forecasts have equal accuracy if and
only if the loss differential has zero expectation for all t. The null hypothesis of the test
is H0 : E(dt) = 0, ∀t.

d̄ =
1

n

T∑
1

dt

γk =
1

n

n∑
t=k+1

(dt − d̄)(dt−k − d̄)

DM =
d√

[γ0 + 2
∑h−1

k=1 γk]
1
n

, DM ∼ N(0, 1).
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Table 5.4: Comparison of Realized Variance RMSE from different models

ML HAR CHAR SHAR HAR-Q HAR-J EMA GARCH

ABEV3 1.68E-04 1.72E-04 1.87E-04 1.72E-04 1.77E-04 1.72E-04 1.79E-04 2.28E-04
ALPA4 5.01E-04 5.10E-04 5.00E-04 5.09E-04 5.20E-04 5.10E-04 5.05E-04 5.77E-04
BBAS3 1.87E-04 1.95E-04 2.02E-04 1.97E-04 2.03E-04 1.95E-04 1.96E-04 5.86E-04
BBDC4 1.73E-04 1.82E-04 1.82E-04 1.82E-04 1.90E-04 1.82E-04 1.80E-04 1.85E-04
BRKM5 3.88E-04 3.94E-04 3.89E-04 3.94E-04 4.03E-04 3.95E-04 3.97E-04 4.50E-04
CGRA4 1.41E-03 1.49E-03 1.55E-03 1.49E-03 1.49E-03 1.49E-03 1.37E-03 1.69E-03
CMIG4 2.19E-04 2.25E-04 2.73E-04 2.29E-04 2.32E-04 2.25E-04 2.30E-04 3.59E-04
CPFE3 2.17E-04 2.22E-04 2.32E-04 2.23E-04 2.24E-04 2.22E-04 2.26E-04 2.73E-04
CPLE6 1.90E-04 2.09E-04 1.96E-04 1.97E-04 2.01E-04 2.09E-04 1.96E-04 4.20E+00
CRFB3 3.06E-04 3.01E-04 3.00E-04 3.05E-04 3.08E-04 3.02E-04 3.09E-04 3.15E-04
CSNA3 3.71E-04 3.67E-04 3.62E-04 3.67E-04 3.74E-04 3.68E-04 3.75E-04 3.89E-04
ELET3 8.53E-04 8.39E-04 8.46E-04 8.44E-04 8.48E-04 8.39E-04 8.16E-04 2.52E-03
EMBR3 4.82E-04 4.97E-04 4.92E-04 4.97E-04 5.15E-04 4.97E-04 4.76E-04 5.33E-04
ENGI4 2.36E-04 2.39E-04 2.38E-04 2.38E-04 2.46E-04 2.39E-04 2.45E-04 2.81E-04
ENGI11 1.19E-03 1.17E-03 1.17E-03 1.16E-03 1.16E-03 1.17E-03 1.20E-03 1.29E-03
GGBR4 2.28E-04 2.33E-04 2.35E-04 2.33E-04 2.44E-04 2.33E-04 2.33E-04 2.78E-04
ITSA4 1.37E-04 1.44E-04 1.57E-04 1.44E-04 1.50E-04 1.44E-04 1.42E-04 1.83E-04
ITUB4 1.89E-04 2.00E-04 1.96E-04 1.99E-04 2.10E-04 2.00E-04 2.00E-04 2.10E-04
LIGT3 4.48E-04 4.48E-04 4.49E-04 4.49E-04 4.58E-04 4.49E-04 4.46E-04 5.41E-04
LREN3 4.14E-04 4.17E-04 4.14E-04 4.19E-04 4.29E-04 4.17E-04 4.21E-04 4.78E-04
PETR4 2.99E-04 3.05E-04 3.03E-04 3.01E-04 3.13E-04 3.05E-04 3.08E-04 3.33E-04
RADL3 2.83E-04 2.91E-04 2.83E-04 2.85E-04 2.92E-04 2.91E-04 2.93E-04 1.94E+00
SBSP3 3.34E-04 3.41E-04 3.40E-04 3.41E-04 3.47E-04 3.41E-04 3.52E-04 3.65E-04
SUZB3 2.19E-04 2.19E-04 2.22E-04 2.19E-04 2.26E-04 2.19E-04 2.21E-04 2.49E-04
TIMS3 2.16E-04 2.17E-04 2.17E-04 2.16E-04 2.34E-04 2.16E-04 2.18E-04 2.60E-04
UNIP6 4.87E-04 4.78E-04 4.79E-04 4.76E-04 4.89E-04 4.81E-04 4.83E-04 5.62E-04
USIM5 3.37E-04 3.40E-04 3.39E-04 3.39E-04 3.53E-04 3.41E-04 3.46E-04 3.68E-04
VALE3 1.41E-04 1.48E-04 1.81E-04 1.49E-04 1.60E-04 1.48E-04 1.51E-04 4.46E-03
VIVT3 1.37E-04 1.28E-04 1.52E-04 1.29E-04 1.32E-04 1.29E-04 1.29E-04 1.43E-04

Table 5.5 displays the p-values resulting from individual comparisons between the
literature and ML models. In Table 5.6, we present the percentage of assets the machine
learning algorithm had higher forecast accuracy according to the DM test for different α

levels. In Table 5.7 we present the same results using the Bonferroni correction. These
findings suggest that the ML model yields superior predictions to the other approaches
examined for the data within this period.

5.2.2 Forecasting Kendall’s tau correlation

Regarding intraday Kendall correlation forecasting, we computed the RMSE for
each pair of stocks, resulting in a total of 29×28

2
= 406 distinct pairs. We compared the

performance of the ML model against predictions from the following baselines:
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Table 5.5: p-values of Diebold-Mariano test comparing the realized variance predictions
of machine learning algorithm with some baselines

HAR CHAR SHAR HAR-J HAR-Q EMA GARCH

ABEV3 4.69E-02 1.02E-10 6.11E-02 5.08E-02 1.31E-03 2.11E-03 3.97E-12
ALPA4 6.47E-02 1.95E-01 8.06E-02 6.77E-02 1.57E-03 1.18E-01 1.35E-05
BBAS3 2.02E-04 4.55E-10 7.92E-05 1.96E-04 1.11E-07 9.42E-03 4.92E-70
BBDC4 1.03E-03 5.83E-04 9.02E-04 1.02E-03 1.46E-06 8.27E-05 2.53E-02
BRKM5 1.60E-03 1.04E-02 1.96E-03 9.95E-04 1.81E-05 5.98E-03 6.76E-06
CGRA4 2.90E-04 5.84E-08 7.76E-04 2.74E-04 8.01E-04 1.54E-01 7.56E-11
CMIG4 2.65E-06 7.84E-14 1.05E-06 7.80E-06 3.33E-07 9.85E-05 5.65E-10
CPFE3 3.31E-03 6.43E-10 7.42E-04 3.22E-03 2.93E-04 1.69E-03 2.02E-03
CPLE6 5.08E-07 3.17E-02 3.71E-03 4.06E-07 7.60E-03 3.56E-02 0.00E+00
CRFB3 2.92E-01 6.42E-02 1.07E-01 2.28E-01 3.48E-03 3.07E-02 9.55E-02
CSNA3 3.80E-01 2.37E-01 3.73E-01 3.54E-01 1.20E-02 1.03E-01 5.30E-02
ELET3 5.06E-01 1.52E-05 9.12E-02 4.35E-01 5.93E-03 2.40E-01 4.09E-75
EMBR3 2.44E-03 5.05E-02 3.18E-03 3.25E-03 6.50E-06 6.63E-03 1.61E-04
ENGI4 7.06E-02 1.70E-03 9.06E-02 8.80E-02 8.88E-03 2.76E-04 1.32E-06
ENGI11 9.93E-01 6.17E-01 9.81E-01 9.77E-01 9.66E-01 1.84E-02 8.71E-08
GGBR4 3.02E-03 2.90E-04 3.70E-03 2.92E-03 2.42E-06 7.64E-03 3.62E-05
ITSA4 5.14E-02 1.32E-17 3.79E-02 2.34E-02 9.82E-04 3.11E-01 1.61E-11
ITUB4 1.40E-03 8.30E-06 8.33E-04 1.20E-03 5.18E-06 1.49E-04 1.28E-03
LIGT3 2.78E-01 2.18E-01 2.95E-01 2.78E-01 1.48E-02 9.09E-02 4.41E-03
LREN3 1.58E-01 8.32E-02 1.19E-01 1.57E-01 3.92E-03 7.28E-03 1.25E-04
PETR4 1.22E-01 8.60E-03 1.65E-01 1.25E-01 1.16E-03 1.69E-03 2.45E-02
RADL3 3.01E-02 1.87E-01 2.03E-01 3.01E-02 1.87E-03 1.38E-04 0.00E+00
SBSP3 3.64E-04 1.88E-05 2.48E-04 5.27E-04 1.64E-05 4.86E-06 2.64E-05
SUZB3 2.88E-02 6.39E-04 1.90E-02 4.49E-02 4.13E-04 8.70E-03 1.55E-05
TIMS3 2.27E-01 7.84E-02 3.40E-01 3.60E-01 1.32E-02 2.04E-01 3.79E-06
UNIP6 8.91E-02 1.16E-03 1.27E-01 2.04E-02 4.64E-04 7.44E-02 2.80E-02
USIM5 8.84E-04 2.60E-04 8.84E-04 6.52E-04 1.88E-05 1.51E-03 7.23E-04
VALE3 5.23E-03 6.53E-15 2.98E-04 4.69E-03 1.41E-06 2.43E-03 4.08E-171
VIVT3 1.00E+00 6.83E-15 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.79E-01

• EMA,

• zero correlation (zero),

• the last observed intraday correlation as the prediction (τt−1),

• average of historical intraday Kendall correlation samples (intraday mean),

• average of historical daily Kendall correlation samples (daily mean)

In Figure 5.12, we compare the RMSE of Machine Learning versus EWA for each
pair of assets.

Out of the total 406 pairs of stocks, the ML model exhibited lower RMSE errors
in 370 (91.13%), 378 (93.56%), 338 (83.25%), 319 (78.96%) and 245 (60.34%) cases when
compared to the zero correlation, τt−1, daily mean, intraday mean, and EMA, respectively.
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Table 5.6: Percentage of assets that machine learning algorithm had rejected null hypoth-
esis from DM-test against the baselines for different α levels

α HAR CHAR SHAR HARQ HARJ EMA GARCH

0.01 44.83 62.07 44.83 44.83 79.31 79.31 58.62
0.05 55.17 68.97 51.72 58.62 79.31 79.31 68.97
0.10 68.97 79.31 65.52 68.97 79.31 79.31 75.86
0.15 72.41 79.31 75.86 72.41 79.31 79.31 82.76
0.20 75.86 79.31 75.86 75.86 79.31 79.31 86.21
0.25 79.31 79.31 75.86 79.31 79.31 79.31 93.10

Table 5.7: Percentage of assets that machine learning algorithm had rejected null hypoth-
esis from DM-test against the baselines for different corrected α levels by Bonferroni

α corrected α HAR BPV SHAR HARJ HARQ EMA GARCH

0.01 3.45E-04 13.79 44.83 13.79 13.79 37.93 20.69 65.52
0.05 1.72E-03 31.03 58.62 31.03 31.03 62.07 31.03 72.41
0.10 3.45E-03 41.38 58.62 37.93 41.38 65.52 37.93 75.86
0.15 5.17E-03 41.38 58.62 44.83 44.83 72.41 37.93 79.31
0.20 6.90E-03 44.83 58.62 44.83 44.83 75.86 44.83 79.31
0.25 8.62E-03 44.83 62.07 44.83 44.83 79.31 51.72 79.31

In Table 5.8, we present the percentage of assets the machine learning algorithm had
higher forecast accuracy according to the DM test for different α levels, and in Table 5.9
we present the same results using the Bonferroni correction. These findings also suggest
that the ML model yields superior predictions for intraday Kendall correlation compared
to the other approaches examined for the data within this period.
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Figure 5.12: RMSE of Kendall correlations

Table 5.8: Percentage of pairs of assets that machine learning algorithm had rejected null
hypothesis from DM-test against the baselines for different α levels

α Zero τt−1 Daily Mean Intraday Mean EMA

0.01 88.17 92.32 68.71 57.38 10.64
0.05 89.16 92.57 71.42 63.79 23.02
0.10 89.40 93.06 73.39 66.74 29.95
0.15 89.90 93.06 75.36 69.95 35.64
0.20 90.14 93.31 76.60 70.68 40.34
0.25 90.39 93.56 79.06 71.42 44.30

Table 5.9: Percentage of assets that machine learning algorithm had rejected null hypoth-
esis from DM-test against the baselines for different corrected α levels by Bonferroni

Alpha Adjusted Alpha Zero τt−1 Daily Mean Intraday Mean EMA

0.01 2.46E-05 85.96 87.62 58.86 44.08 2.97
0.05 1.23E-04 85.96 90.09 60.59 47.29 3.21
0.10 2.46E-04 86.69 91.08 63.05 48.76 3.46
0.15 3.69E-04 86.69 91.08 63.30 49.26 3.71
0.20 4.92E-04 86.94 91.08 64.03 49.50 3.71
0.25 6.15E-04 86.94 91.08 64.03 49.75 3.71
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5.2.3 Scenario Generation and Portfolio Optimization

Figure 5.13: Index BOVA11 operation performance from 04/01/2021 to 13/09/2022

This section aims to apply all the steps of the proposed methodology to generate
the future scenario matrix (1 day ahead) and optimize the portfolio weights through
simulation. With the obtained weights, we simulate the operation in the market by
buying the stocks at the beginning of the day (09:00 am) and selling them at the end of
the day (6:00 pm). To compare the results obtained by the proposed methodology, we
use other baselines from the literature to operate in the same manner. We compare the
following strategies:

• Historical: This baseline uses the historical distribution of assets (using the last
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1000 historical data observations) representing the future matrix. A sliding window
is used for each new day to always consist of a matrix of scenarios for 1000 days
Guastaroba et al. [2009].

• Bootstrap: This strategy uses historical observations representing the future matrix;
however, each scenario (row of the matrix) corresponds to a random choice of a past
day. We use bootstrap with repetition, meaning the same historical day can repeat.
Each new day also adds this day to the pool of days to be drawn from historical
observations using a sliding window. We use 1000 samples for the matrix Guastaroba
et al. [2009].

• GARCH-EVT-Copula: This approach uses GARCH models adjusted from histor-
ical days to fit each asset. Each residual distribution follows a generalized Pareto
distribution adjusted by the EVT technique. A copula function (adjusted with
the historical data) models the correlation between assets. The GARCH model pre-
dicts the one-day-ahead volatility, adjusting each distribution to have the associated
volatility Sahamkhadam et al. [2018], Wang et al. [2010].

• ML-EVT-Copula: The proposed methodology uses machine learning algorithms to
make predictions of intraday volatility and correlation between assets (1 day ahead).
We set the marginal distributions of each asset using the EVT technique and volatil-
ity predictions. We also set the copula parameters using the Kendall correlation
predictions. This approach dynamically adapts the volatility and correlation of the
multivariate distribution.

Each generated scenario matrix consists of 1000 scenarios (rows) and 29 columns
(each asset) in all the different strategies. In the GARCH-EVT-Copula and ML-EVT-
Copula strategies, we adjust the mean of each asset in the scenario matrix (for each
different day) to be equal to the same mean obtained by the Bootstrap strategy. We apply
this approach for two reasons. The first is that the historical and Bootstrap baselines will
obtain mean values different from zero when selecting historical days. We adopt this
criterion to prevent any bias related to the differences in the means from the results of a
different strategy. The second reason is that since we use the STARR Ratio optimization
model, the assets must have mean values different from zero.

In the GARCH-EVT-Copula and ML-EVT-Copula strategies, we use three differ-
ent copula functions to evaluate the impacts on the financial returns: normal, t-student
(with v = 2), and Clayton copula. Both normal and t-student copulas are symmetric
however the normal copula has zero tail dependence while the t-student has positive val-
ues. On the other hand, the Clayton copula is asymmetric with tail dependence only in
the negative tail.
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Figure 5.13 shows the cumulative financial return of the BOVA11 index when using
the strategy of buying (at 09:00) and selling (at 18:00) over the 353 days of the out-of-
sample dataset (04/01/2021 - 13/09/2022). We observe market behaviors in different
periods: growth, decline, and sideways movement. The proposed analysis involves eval-
uating the different strategies in the different individual periods and analyzing the 353
consecutive days.

5.2.3.1 First period: from 04/01/2021 to 01/03/2021 (decline movement)

Figures 5.14, 5.15, 5.16, 5.17, and Table 5.10, suggest that the ML-EVT-Clayton
approach stood out, being the only one to show a positive mean (and consequently a
positive cumulative return). Regarding downside risk measures and CVaR, it was the
second-best strategy, trailing only behind ML-EVT-Tstudent. It also achieved the best
values for the Sharpe ratio, Sortino Ratio, Starr Ratio, and Omega Ratio.

Figure 5.14: Comparison of accumulated portfolio return for different portfolio strategies.
Period of decline movement of the market, days 1-36
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Figure 5.15: Comparison of return distributions for different portfolio strategies. Period
of decline movement of the market, days 1-36
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Figure 5.16: Comparison of accumulated portfolio return for different copula functions.
Period of decline movement of the market, days 1-36
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Figure 5.17: Comparison of return distributions for different copula functions. Period of
decline movement of the market, days 1-36
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Table 5.10: Comparison metrics of different portfolio strategies. Period of decline move-
ment of the market, days 1-36

Mean Std Downside CVaR Sharpe Sortino Starr Omega

BOVA11 -0.31 1.31 1.08 -2.97 -0.24 -0.29 0.11 0.54
Historical -0.06 1.87 1.14 -3.19 -0.03 -0.05 0.02 0.92
Bootstrap -0.11 1.59 1.07 -2.83 -0.07 -0.11 0.04 0.83

G-Gaussian -0.08 1.61 1.10 -2.92 -0.05 -0.08 0.03 0.88
G-Student -0.06 1.66 1.11 -2.96 -0.04 -0.06 0.02 0.91
G-Clayton -0.10 1.78 1.13 -3.08 -0.05 -0.09 0.03 0.87

ML-Gaussian -0.07 1.59 1.01 -2.73 -0.05 -0.07 0.03 0.89
ML-Student -0.01 1.22 0.81 -2.22 -0.01 -0.01 0.00 0.98
ML-Clayton 0.15 1.51 0.88 -2.50 0.10 0.18 -0.06 1.32

5.2.3.2 Second period: from 02/03/2021 to 07/06/2021(upswing movement)

Analyzing Figures 5.18, 5.19, 5.20, 5.21, and Table 5.11, it is noticeable that differ-
ent strategies excel in various ways. In terms of mean and cumulative return, ML-EVT-
Gaussian and GARCH-EVT-Clayton stood out. Concerning risk measures, the BOVA11
index had the lowest standard deviation, the most minor downside risk, and the CvaR.
The best strategy for the Sharpe Ratio was BOVA11, while ML-EVT-GARCH excelled
in the Sortino Ratio, Starr Ratio, and Omega Ratio.
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Figure 5.18: Comparison of accumulated portfolio return for different portfolio strategies.
Period of decline upswing of the market, days 37-100
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Figure 5.19: Comparison of return distributions for different portfolio strategies. Period
of upswing movement of the market, days 37-100
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Figure 5.20: Comparison of acumulated portfolio return for different copula functions.
Period of upswing movement of the market, days 37-100
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Figure 5.21: Comparison of return distributions for different copula functions. Period of
decline upswing of the market, days 37-100
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Table 5.11: Comparison metrics of different portfolio strategies. Period of upswing move-
ment of the market, days 37-100

Mean Std Downside CVaR Sharpe Sortino Starr Omega

BOVA11 0.30 1.01 0.59 -2.18 0.30 0.51 -0.14 2.26
Historical 0.28 1.22 0.59 -1.74 0.23 0.48 -0.16 1.86
Bootstrap 0.28 1.02 0.50 -1.46 0.28 0.56 -0.19 2.07

G-Gaussian 0.24 1.17 0.62 -1.82 0.21 0.39 -0.13 1.67
G-Student 0.26 1.22 0.64 -1.91 0.22 0.41 -0.14 1.71
G-Clayton 0.32 1.25 0.59 -1.78 0.26 0.54 -0.18 1.97

ML-Gaussian 0.33 1.18 0.58 -1.75 0.28 0.56 -0.19 2.09
ML-Student 0.26 1.17 0.57 -1.72 0.22 0.46 -0.15 1.83
ML-Clayton 0.23 1.20 0.60 -1.81 0.19 0.39 -0.13 1.64

5.2.3.3 Third period: from 08/06/2021 to 06/01/2022 (decline movement)

In the third period (decline), all strategies showed a negative mean as per Figures
5.22, 5.23, 5.24, 5.25, and Table 5.12. The ML-EVT-Tstudent strategy achieves the
best mean. Regarding risk measures, BOVA11 had the lowest standard deviation, while
ML-EVT-Gaussian exhibited the best downside risk value, and GARCH-EVT-Gaussian
had the best CvaR value. The GARCH-EVT-Clayton strategy achieved the best Omega
Ratio.



5.2. Out-of-sample analysis 80

Figure 5.22: Comparison of accumulated portfolio return for different portfolio strategies.
Period of decline movement of the market, days 101-229
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Figure 5.23: Comparison of return distributions for different portfolio strategies. Period
of decline movement of the market, days 101-229
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Figure 5.24: Comparison of acumulated portfolio return for different copula functions.
Period of decline movement of the market, days 101-229



5.2. Out-of-sample analysis 83

Figure 5.25: Comparison of return distributions for different copula functions. Period of
decline upswing of the market, days 101-229
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Table 5.12: Comparison metrics of different portfolio strategies. Period of decline move-
ment of the market, days 101-229

Mean Std Downside CVaR Sharpe Sortino Starr Omega

BOVA11 -0.30 1.07 0.94 -2.51 -0.27 -0.31 0.12 0.49
Historical -0.24 1.16 0.95 -2.53 -0.21 -0.26 0.10 0.59
Bootstrap -0.26 1.10 0.92 -2.46 -0.24 -0.28 0.11 0.55

G-Gaussian -0.25 1.13 0.90 -2.27 -0.22 -0.27 0.11 0.58
G-Student -0.25 1.14 0.91 -2.28 -0.22 -0.27 0.11 0.58
G-Clayton -0.25 1.21 0.97 -2.54 -0.21 -0.26 0.10 0.60

ML-Gaussian -0.24 1.13 0.90 -2.33 -0.21 -0.26 0.10 0.59
ML-Student -0.23 1.13 0.93 -2.64 -0.20 -0.25 0.09 0.59
ML-Clayton -0.25 1.17 0.96 -2.82 -0.21 -0.26 0.09 0.58

5.2.3.4 Forth period: from 07/01/2022 to 13/09/2022 (sideway movement)

In the period of sideways movement, it is evident from Figures 5.26, 5.27, 5.28,
5.29, and Table 5.13 that the ML-EVT-Clayton strategy outperforms all others in terms
of mean, downside risk, Sharpe Ratio, Sortino Ratio, and Omega Ratio. BOVA11 had
the best standard deviation and CvaR, with ML-EVT-Tstudent (followed by ML-EVT-
Clayton) achieving the second-best CvaR.
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Figure 5.26: Comparison of accumulated portfolio return for different portfolio strategies.
Period of sideway movement of the market, days 230-353
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Figure 5.27: Comparison of return distributions for different portfolio strategies. Period
of sideway movement of the market, days 230-353
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Figure 5.28: Comparison of accumulated portfolio return for different copula functions.
Period of sideway movement of the market, days 230-353
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Figure 5.29: Comparison of return distributions for different copula functions. Period of
sideway of the market, days 230-353



5.2. Out-of-sample analysis 89

Table 5.13: Comparison metrics of different portfolio strategies. Period of sideway move-
ment of the market days 230-353

Mean Std Downside CVaR Sharpe Sortino Starr Omega

BOVA11 0.02 1.12 0.81 -2.68 0.02 0.03 -0.01 1.05
Historical 0.10 1.37 0.90 -2.70 0.07 0.11 -0.04 1.20
Bootstrap 0.15 1.26 0.80 -2.45 0.12 0.19 -0.06 1.35

G-Gaussian 0.16 1.32 0.83 -2.52 0.12 0.19 -0.06 1.37
G-Student 0.16 1.37 0.87 -2.67 0.11 0.18 -0.06 1.35
G-Clayton 0.22 1.35 0.84 -2.73 0.16 0.26 -0.08 1.51

ML-Gaussian 0.17 1.21 0.75 -2.19 0.14 0.23 -0.08 1.42
ML-Student 0.13 1.18 0.73 -2.13 0.11 0.18 -0.06 1.32
ML-Clayton 0.25 1.24 0.72 -2.15 0.20 0.35 -0.12 1.67

5.2.3.5 Analysis of the entire period: from 04/01/2021 to 13/09/2022

The results above suggest that different strategies perform better for different com-
parison measures in different periods. To assess which strategy is more robust, ensuring
performance across different market periods, we conducted the same analysis for the entire
period. Figures 5.30, 5.31, 5.32, 5.33, and Table 5.14 demonstrate the results obtained.



5.2. Out-of-sample analysis 90

Figure 5.30: Comparison of accumulated portfolio return for different portfolio strategies
for the entire period analyzed, days 1-353
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Figure 5.31: Comparison of return distributions for different portfolio strategies for the
entire period analyzed, days 1-353
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Figure 5.32: Comparison of accumulated portfolio return for different copula functions
for the entire period analyzed, days 1-353
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Figure 5.33: Comparison of return distributions for different copula functions for the
entire period analyzed, days 1-353

Table 5.14: Comparison metrics of different portfolio strategies for the entire period ana-
lyzed, days 1-353

Mean Std Downside CVaR Sharpe Sortino Starr Omega

BOVA11 -0.08 1.12 0.86 2.61 -0.07 -0.09 -0.03 0.83
Historical -0.01 1.34 0.90 2.48 -0.01 -0.01 -0.00 0.98
Bootstrap -0.00 1.22 0.84 2.39 -0.00 -0.00 -0.00 0.99

G-Gaussian -0.00 1.27 0.86 2.38 -0.00 -0.00 -0.00 1.00
G-Student 0.01 1.31 0.88 2.45 0.01 0.01 0.00 1.01
G-Clayton 0.03 1.35 0.89 2.50 0.02 0.04 0.01 1.06

ML-Gaussian 0.03 1.23 0.81 2.25 0.02 0.03 0.01 1.06
ML-Student 0.01 1.18 0.79 2.27 0.01 0.01 0.00 1.02
ML-Clayton 0.05 1.25 0.81 2.36 0.04 0.07 0.02 1.12
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It is noticeable that, among all strategies, ML-EVT-Clayton stands out for the
entire period, achieving the best values for Mean, Sharpe Ratio, Sortino Ratio, and Omega
Ratio. Regarding risk measures, BOVA11 showed the lowest standard deviation, while
ML-EVT-Tstudent and ML-EVT-Gaussian exhibited the lowest downside risk and CvaR
values, respectively.

Table 5.15 displays the top 4 strategies for each comparison measure when con-
sidering the entire period. It is noteworthy that in all comparison measures, except for
standard deviation, the three ML-EVT strategies are included in the top 4. This re-
sult highlights the financial advantage of using superior predictions compared to other
strategies.

Table 5.15: Comparison of the top 4 strategies for each portfolio measure for the entire
period (353 days). "ML-" stands for machine learning, while "G-" is the abbreviation for
the GARCH model. The copula functions are abbreviated by the first letters G, T, C
(Gaussian, t-student, Clayton).

Top Mean Std Downside CVaR Sharpe Sortino Starr Omega

1 ML-C BOVA11 ML-T ML-G ML-C ML-C ML-C ML-C
2 G-C ML-T ML-G ML-T G-C G-C G-C G-C
3 ML-G Bootstrap ML-C ML-C ML-G ML-G ML-G ML-G
4 ML-T ML-G Bootstrap G-G ML-T ML-T ML-T ML-T

5.2.3.6 Operating with stop loss

In this section, we demonstrate how we can employ the proposed methodology in
conjunction with the market operation stop-loss technique to enhance the financial out-
comes achieved. The technique involves monitoring the returns obtained by the portfolio.
If the cumulative negative return reaches a predefined threshold throughout the day, we
sell the stocks at that moment without waiting until the end of the day.

Our experiments selected four threshold values for comparison with the same strat-
egy without using stop loss: −4%, −3%, −2%, and −1%. We chose the ML-Clayton
strategy to test the technique, as it yielded the best financial values in the previous sec-
tion. In Figure 5.34, we present boxplot graphs of the strategy for different threshold
values. Upon examining the distributions, it is evident that the negative extreme values
decrease as we impose more stringent stop-loss limits.
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Figure 5.34: Comparison of return distributions for different stop loss thresholds for the
entire period analyzed, days 1-353

Figure 5.35 illustrates the application of the technique with a threshold of −4%

throughout the day 17/11/2021. As depicted in the Figure, the first negative return
below the established limit is the largest compared to subsequent returns. Consequently,
we observe that the strategy implementation did, in fact, ensure a less negative return,
thereby avoiding a more extreme negative value.
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Figure 5.35: Example of applied stop loss of -4% for the day 17/11/2021. The horizontal
line shows the stop loss threshold while the vertical line shows the return obtained by the
use of the technique

However, using stop-loss does not guarantee that we will always incur more minor
losses, as it is challenging to predict the optimal limit for each day and foresee whether the
upcoming returns will continue the downward trend. Figure 5.36 illustrates the application
of the technique with a threshold of −2% on day 11/10/2021. It is observed in the Figure
that the first negative return below the established limit is not the most minor compared
to subsequent returns. In this instance, we note an example where the technique adversely
impacted the portfolio’s return.
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Figure 5.36: Example of applied stop loss of -2% for the day 11/10/2021. The horizontal
line shows the stop loss threshold while the vertical line shows the return obtained by the
use of the technique

Table 5.16 more precisely illustrates the challenge of selecting ideal stop loss values.
By examining the frequency with which the technique enhanced returns and the total gain
generated, it becomes evident that it was worthwhile only in the case of a stop loss set
at -4%. For other stop loss values, the total of improved returns is less than 50% of the
cases, resulting in negative gain values. Figure 5.37 compares using or not using a stop
loss at -3%. In only 1 out of 5 cases, there was indeed an improvement in the outcome
obtained.
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Table 5.16: Stop loss analysis

StopLoss -4% StopLoss -3% StopLoss -2% StopLoss -1%

Number of Stops 1 5 30 127
Number of improvements 1 1 12 55
Gain 0.34% -2.97% -6.20% -13.49%

Figure 5.37: Portfolio return comparison using stop loss -3% against the pure strategie
for different days

In Table 5.17, we compare the performance metrics of the pure ML-Clayton strat-
egy with the same strategy combined with stop-loss. Upon examining the obtained aver-
ages, we notice that only in the case of a stop-loss of −4% did the average increase, while
for the other stop-loss values, the average decreased. There are days when stop-loss yields
a worse return than without its use. However, when analyzing the extreme negative val-
ues, the use of the technique tends to improve, as evidenced by the obtained Conditional
Value at Risk (CVaR) values. As we prioritize a trade-off between risk and return, the
best values were obtained for a stop-loss of −4%, yielding improved Sharpe ratio, Sortino
ratio, Starr ratio, and Omega ratio values.
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Table 5.17: Comparison metrics of different stop loss thresholds for the entire period
analyzed, days 1-353

ML Clayton StopLoss -4% StopLoss -3% StopLoss -2% StopLoss -1%

Mean 5.41E-04 5.50E-04 4.56E-04 3.64E-04 1.57E-04
Std 1.25E-02 1.24E-02 1.26E-02 1.25E-02 1.14E-02
Downside 8.09E-03 8.03E-03 8.26E-03 8.21E-03 6.89E-03
CVaR 2.36E-02 2.32E-02 2.38E-02 2.28E-02 1.93E-02
Sharpe 4.34E-02 4.43E-02 3.63E-02 2.90E-02 1.37E-02
Sortino 6.69E-02 6.85E-02 5.52E-02 4.43E-02 2.28E-02
Starr 2.29E-02 2.38E-02 1.91E-02 1.59E-02 8.16E-03
Omega 1.12E+00 1.12E+00 1.10E+00 1.08E+00 1.03E+00
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Chapter 6

Conclusion

In this dissertation, we have developed a novel methodology that integrates machine
learning algorithms, copula functions, intraday financial asset data, and extreme value
theory distributions for the future generation of the multivariate probability distribution
of financial assets. The fundamental hypothesis of this work posits that the utilization
of a trained machine learning algorithm in conjunction with intraday asset data can pro-
duce more accurate predictions of asset volatility and correlation compared to classical
approaches in the literature. Consequently, improved predictions can result in more pre-
cise future distributions, potentially leading to enhanced financial outcomes in terms of
risk and return when employing portfolio optimization models.

In our experiments, we utilized historical real data from 2008 to 2022, with a
5-minute frequency, encompassing 29 stocks from the Brazilian stock exchange. We pro-
posed a methodology to assess the results by comparing the predictions of the proposed
algorithms with classical models from the volatility and correlation forecasting literature.
This was achieved through the analysis of prediction errors using hypothesis tests. It was
observed that, in the majority of cases, our approach yielded predictions with smaller
errors. Furthermore, through our analyses, it was possible to validate and address the
hypotheses raised in the study:

1. Asset volatility (relized variance) exhibits dynamic characteristics.

2. The correlation among assets is also dynamic, as evident from the analysis of the
intraday Kendall correlation time series of assets. This observation suggests that
adjusting the copula function daily based on Kendall correlation predictions is ideal
for better modeling the correlation structure among assets.

3. Training a machine learning model properly, as described in the methodology along
with the utilized features, can lead to more accurate predictions for both one-day-
ahead realized variance and intraday Kendall correlation compared with the base-
lines.

4. The more accurate predictions of volatility and correlation had a positive impact
on the portfolio optimization model, resulting in improved returns and risk for the
trading strategy during the analyzed period,
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Further, we conclude with the experiments that it is possible to combine the pro-
posed methodology with market trading strategies, such as Stop Loss, to attempt to
enhance financial gains. However, selecting the optimal threshold for this technique is
challenging, and in our experiments, gains were only realized when setting the threshold
to extremely high values. Small threshold values ended up hindering the achieved gains.

6.1 Future work

In future work, we aim to apply the same methodology with a larger dataset,
drawn from previously published works in the literature, to obtain more robust results
and validate whether the positive findings persist. Exploring additional data sources,
including stocks from different markets, foreign exchange rates, commodities, and even
cryptoassets, holds potential interest for further analysis. Additionally, we plan to extend
the methodology to generate multivariate distributions of assets over a longer time horizon
than one day ahead. It would be insightful to assess the feasibility of making predictions
further into the future.

From a machine learning perspective, we intend to apply the state-of-the-art al-
gorithms such as N-Beats [Oreshkin et al., 2020], N-Hits [Challu et al., 2023], and trans-
formers [Wolf et al., 2020], as they represent the latest advancements in the field, capable
of achieving remarkable results. Also proposing new features to enhance predictions is
intriguing. Feature engineering techniques would be relevant in this context. Another
promising analysis involves understanding which features or market periods contribute
to better predictions. An approach in this regard would be to attempt using the SHAP
(SHapley Additive exPlanations) method proposed by Lundberg and Lee [2017]. By bet-
ter understanding the predictions, it may be possible to train better or even propose new
algorithms to predict volatility and Kendall correlation between assets and evaluate how
each feature influences the predictions.

Lastly, it is also compelling to extend the study from the perspective of copula
functions. The Gaussian, t-student, and Clayton functions were analyzed in the current
work using Kendall correlation to fit the functions. As mentioned in the paper, some
parameters of certain copula functions may be time-dependent and cannot be calibrated
via Kendall’s correlation (for example the degrees of freedom from the Student t copula).
In future work, we also intend to address this problem by trying to predict in some
way these parameters. Also, it would be interesting to evaluate whether using Spearman
correlation could yield better results. Testing other copula functions beyond those already
mentioned would also be valuable.
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