
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Guilherme Vieira Leobas

Semiring Optimization: Dynamic Elision of Expressions with Identity and
Absorbing Elements

Belo Horizonte
2019

Guilherme Vieira Leobas

Semiring Optimization: Dynamic Elision of Expressions with Identity and
Absorbing Elements

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte
2019

2019, Guilherme Vieira Leobas.
Todos os direitos reservados

 Leobas, Guilherme Vieira.

L576s Semiring optimization:[recurso eletrônico] dynamic elision of
 expressions with Identity and absorbing elements / Guilherme
 Vieira Leobas – 2019.
 1 recurso online (62 f. il, color.) : pdf.

 Orientador: Fernando Magno Quintão Pereira.

 Dissertação (Mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de
 Ciências da Computação.
 Referências: f. 60-62

 1. Computação – Teses. 2. Otimização – Teses.
 3. Compiladores (Computadores) - Teses. 4.– Anéis semilocais
 – Teses. I. Pereira, Fernando Magno Quintão. II. Universidade
 Federal de Minas Gerais, Instituto de Ciências Exatas,
 Departamento de Computação. III. Título.

CDU 519.6*21(043)

Ficha catalográfica elaborada pela bibliotecária Irenquer Vismeg Lucas Cruz
CRB 6/819 - Universidade Federal de Minas Gerais - ICEx

Acknowledgments

O mestrado foi um momento muito importante na minha vida. Concluir essa etapa

demonstrou que eu era capaz de ir muito além do que o Guilherme, recém ingresso do

curso de Ciência da Computação, em 2012, imaginou.

Agradeço aos meus pais, Antônio Leobas dos Santos e Angela Marisa Vieira Leobas,

que me apoiaram incondicionalmente durante esse peŕıodo. Agradeço também ao meu

orientador, Fernando Magno, por acreditar na minha capacidade e pelo suporte e ensina-

mento durante esses anos de mestrado.

Gostaria também de agradecer a Abdoulaye Gamatiê por fornecer orientação e feed-

back ao longo do projeto. Além disso, os meses que passei no Laboratoire d’Informatique,

de Robotique et de Microélectronique de Montpellier (LIRMM) sendo orientado por Ab-

doulaye foram extremamente valiosos para o desenvolvimento deste projeto.

Aos meus amigos de laboratório: Breno, Bruno, Carina, Caio, Junio, Marcelo,

Marcus, Pedro Caldeira, Pedro Ramos, Roberto, Tarsila e Yukio, por toda a ajuda e

companhia desde 2017. Agradeço também aos meus colegas de graduação: Amanda,

Francisco, Gabriel, Guilherme, Henrique, Lucas, Marcelo, Mariana, Marina e Thiago, que

dividiram grande parte dessa jornada desde 2012.

“Hilbert said once: ”We must know. We will know”. The truth is: We don’t know.

Sometimes, we can’t know. But in trying to find out, we can discover new things, things

that change the world”

(Derek Muller)

Resumo

Essa dissertação descreve uma técnica de otimização que elimina ocorrências dinâmicas de

expressões no formato a = a⊕ b⊗ c. A operação ⊕ deve admitir um elemento identidade

z, de forma que a ⊕ z = z ⊕ a = a. Além disso, z deve ser o elemento anulador da

operação ⊗, de forma que b⊗ z = z ⊗ c = z. Semi aneis onde ⊕ é a operação de adição

e ⊗ é o operador de multiplicação cumprem esse contrato. Esse padrão é muito comum

em benchmarks de alta-performance – seu representante canônico é a operação de adição

e multiplicação a = a+ b× c. No entanto, vaŕıas outras expressões envolvendo operações

aritméticas e lógicas podem ser agrupadas dentro da álgebra necessária. Nós mostramos

que a eliminação em tempo de execução de tais atribuições podem ser implementadas

em uma maneira segura do ponto de vista de performance utilizando perfilamento in-

loco. A eliminação dinâmica de expressões redundantes envolvendo identidade e elemento

anulador em 35 programas da súıte de testes do LLVM é responsável por um ganho de

velocidade de 1.19x (tempo total otimizado sobre tempo total não otimizado) quando se

comparado com o clang -O3. Quando aplicado a toda a súıte de testes (259 programas),

a otimização leva a um ganho de 1.025x.

Quando adicionadas ao clang, a otimização de semi anel aproxima aquele sistema

de TACO, um compilador especializado de álgebra tensorial.

Palavras-chave: compiladores; otimização de código; geração de código; semi-anel.

Abstract

This dissertation describes a compiler optimization to eliminates dynamic occurrences

of expressions in the format a ← a ⊕ b ⊗ c. The operation ⊕ must admit an identity

element z, such that a ⊕ z = a. Also, z must be the absorbing element of ⊗, such that

b⊗ z = z⊗ c = z. Semirings where ⊕ is the additive operator and ⊗ is the multiplicative

operator meet this contract. This pattern is common in high-performance benchmarks—

its canonical representative being the multiply-add operation a ← a + b × c. However,

several other expressions involving arithmetic and logic operations satisfy the required

algebra. We show that the runtime elimination of such assignments can be implemented

in a performance-safe way via online profiling. The elimination of dynamic redundancies

involving identity and absorbing elements in 35 programs of the LLVM test suite that

present semiring patterns brings an average speedup of 1.19x (total optimized time over

total unoptimized time) on top of clang -O3. When projected onto the entire test suite

(259 programs) the optimization leads to a speedup of 1.025x. Once added onto clang,

semiring optimizations approximates it to TACO, a specialized tensor compiler.

Keywords: compilers; code optimization; code generation; semiring.

List of Figures

1.1 The näıve implementation of semiring optimizations. 14

2.1 (i) C source code and (ii) its LLVM IR counterpart. 21

2.2 High level representation of LLVM Architecture. LLVM is language-agnostic,

supporting multiple front-ends and back-ends. 22

2.3 Control Flow Graph for the fact function. Nodes are basic blocks and edges

are used to represents jumps between two blocks. 22

2.4 SSA transformation for programs with and without branches 23

2.5 Program Dependence Graph for the fact function. Solid edges represent data

dependences and dashed edges represent control dependencies. 24

3.1 Matrix multiplication taken from [3] [page 332]. We have added the restrict

keyword to run the experiments in this section. 26

3.2 Näıve mat-mul after Elimination of Silent Stores. 27

3.3 Runtime of different implementations of matrix multiplication (C = A × B),

given different probabilities that cells from matrices A[103× 103] and B[103×
103] contain zero. Programs were compiled with clang -O3. The bottom fig-

ure shows the same information as the upper figure, albeit with a reduced

scaled along the Y-axis. The runtime of the original implementation of ma-

trix multiplication has been removed from the bottom figure, to improve its

readability. We use the following keys: ORG: the original program, without

any form of semiring optimization, compiled with clang -O3 -ffast-math.

EAE: program optimized with elision of absorbing elements (for details, see

Section 5.2). PLP: program optimized with a pre-loop profiling that guards

the elision of absorbing elements against unprofitable inputs (for details, see

Section 5.4). 28

3.4 Elision of Absorbing Elements applied onto the implementation of näıve matrix

multiplication. In this example, we check if a is non-zero; however, it would

also be possible to check if b is non-zero, or if their product is non-zero. More

details are given in Section 4.3. 29

3.5 Pre-Loop Profiling applied onto the implementation of näıve matrix multipli-

cation. 30

4.1 Optimizable patterns that this work considers. 32

4.2 Identification of optimization points. 34

4.3 Example of relations produced by optimize. 35

5.1 Implementation of silent store elimination when z is the identity of⊕. (i) Origi-

nal program. (ii) Program optimized when t0 is used in instructions other than

the store. (iii) Program optimized when t0 is used only once. Annotations at

Line 7 are not part of the language used to write the computations—rather,

they are pseudo-code indicating that variables are either alive or dead past the

point where they appear. 37

5.2 Checking if b is an absorbing element. 38

5.3 The impact of liveness on the elision of instructions that depend on absorbing

elements. 38

5.4 Näıve matrix multiplication augmented with code to implement Intra-Loop

Profiling. The PROFILE constant that initializes target sends the execution

flow to the default clause of the switch. 39

5.5 Näıve matrix multiplication augmented with code to implement Intra-Loop

Profiling. 40

5.6 (i) Backward slice that determines the memory access a[i*n+k]. (ii) The

sampling function that is derived from this slice. Figure 3.5 shows the final,

optimized code, with a call to function sampling. Figure 5.7 will show how

this code is implemented in practice in the low-level representation of a program. 42

5.7 (i) Three-address code version of the näıve matrix multiplication algorithm

seen in Fig-3.1. The grey triangle shows the instruction that we will slice out

from the loop. (ii) The grey boxes mark the backward slice of the load of

a[i*n+k]. (iii) The sampling function built out of the slice. Grey boxes show

code present in the original loop. 43

6.1 Histogram with the number of static store instances marked for the set of

benchmarks used. 46

6.2 Prevalence of the semiring pattern on the Polybench suite. Powers on top of

bars denote absolute number of dynamic instances of stores (order of magnitude). 47

6.3 Mean of five executions of the programs in the Polybench collection that pre-

sented semiring patterns. 48

6.4 Speedup of optimizations over baseline (ORG) 49

6.5 Speedup of optimizations over baseline (ORG) for other benchmarks 49

6.6 Speedup of optimizations over baseline (ORG) for other benchmarks 51

6.7 Overhead of profiling (both pre and intra loop). The Y-axis indicate percentages. 52

6.8 The overhead of Semiring Optimization on compilation time over the baseline

(ORG). Dark gray is the time to compile with -O3. In gray is the time for

Semiring Optimization and light gray the time for optimizations required by

RO. 53

6.9 Comparison between TACO and clang + Pre-Loop Profiling on matrix multi-

plication with the j and k loops manually inverted, using [1.5k× 1.5k] matrices. 54

6.10 Impact of inputs onto three PolyBench programs. X-axis shows probability

of a cell being initialized with a zero, in case its value can vary. Cells are

independently set to zero, and matrices are produced independently. 55

6.11 The effect of semiring-optimizations on the ikj version of matrix multiplication,

seen in Figure 6.9. The X-axis shows the probability that input. 57

List of Tables

6.1 List of PolyBench benchmarks used . 45

6.2 List of benchmarks used from other suites. 50

Contents

1 Introduction 14

1.1 Tools and Publications . 16

2 Background Information 18

2.1 Mathematical Definitions . 18

2.2 The LLVM Compiler Infrastructure . 20

2.3 Static Program Analysis . 21

2.4 Literature Review . 24

3 Overview 26

4 Generalizing Semiring Optimizations 31

4.1 A Family of Semiring Expressions . 31

4.2 Safety of Semiring Optimizations in the Floating Point Domain 32

4.3 Identification of Optimization Points . 33

5 Four Variations of Semiring Optimization 36

5.1 Version 1: Elimination of Silent Stores (ESS) 36

5.2 Version 2: Elision of Absorbing Elements (EAE) 37

5.3 Version 3: Intra-Loop Profiling (ALP) . 38

5.4 Version 4: Pre-Loop Profiling (PLP) . 40

6 Evaluation 44

6.1 RQ1: Prevalence . 45

6.2 RQ2: Speedup . 47

6.3 RQ3: Overhead . 51

6.4 RQ4: Impact in Compilation Time . 52

6.5 RQ5: Comparison with a Specialized Tensor Compiler (TACO) 53

6.6 RQ6: The Impact of Program Inputs . 54

6.7 RQ7: Performance Counters . 56

6.8 Discussion . 56

7 Conclusion 59

7.1 Future Work . 59

References 60

14

Chapter 1

Introduction

Expressions that fit into the pattern a = a ⊕ b ⊗ c are common in programs. In this

pattern, ⊕ and ⊗ are binary operations of type T × T → T . Operator ⊕ has an identity

element z, which is the absorbing element of operator ⊗. Therefore, z ⊕ x = x ⊕ z = x

for any x ∈ T , and z⊗x = x⊗ z = z. The multiply-add pattern m[i, j]+=p[i, k]×q[k, j],

heart of matrix multiplication, is an example of this family of expressions. In Section 4.1

we show that this family is well-provided with a rich assortment of members. Indeed,

any triple (T,⊕,⊗) forming an algebraic semiring [9, Chapter IX] meets the required

constraints. In this work, we show that the pattern a = a ⊕ b ⊗ c is amenable to a kind

of transformation, henceforth called semiring optimization, that can lead to great profit.

Because z is the identity of ⊕, the operation a = a ⊕ e is silent whenever e = z.

Thus, this assignment can be replaced by a conditional statement that only allows its

execution when e ̸= z. Figure 1.1-i illustrates this code transformation. Similarly, the

operation a = b ⊗ c can be reduced to a = z whenever b = z or c = z. Figure 1.1-ii

shows an example of the latter simplification. In its most general form, the expression

a = a ⊕ b ⊗ c is silent whenever b or c are the absorbing element. Figure 1.1-iii outlines

the general transformation.

a ← a + e

t0 = ld a
t1 = ld e
t2 = t0+t1
st a t2

t1 = ld e
if (t1) {
 t0 = ld a
 t2 = t0+t1
 st a t2
}

a ← b × c

t0 = ld b
t1 = ld c
t2 = t0*t1
st a t2

t0 = ld b
if (t0) {
 t1 = ld c
 if (t1) {
 t2 = t0*t1
 st a t2
 }
}

a ← a + b × c

t0 = ld a
t1 = ld b
t2 = ld c
t3 = t1*t2
t4 = t3+t0
st a t4

t1 = ld b
if (t1) {
 t2 = ld c
 if (t2) {
 t3 = t1*t2
 t0 = ld a
 t4 = t3+t0
 st a t4
 }
}

1
2
3
4

1
2
3
4
5
6

1
2
3
4

1
2
3
4
5
6
7
8

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

10

(i) (ii) (iii)

Figure 1.1: The näıve implementation of semiring optimizations.

15

The Issue of Performance Safety. The code transformations seen in Figure 1.1 try to

eliminate the execution of some instructions by guarding them with conditional checks.

Depending on the values loaded from memory, they can save several operations. For

instance, whenever variable b in Figure 1.1-iii is zero, none of the instructions between lines

3 and 9 of the transformed program executes. However, the unrestricted application of

such transformations might downgrade performance instead of improving it. Regressions

are due to the insertion of branches into otherwise straight-line code. Branches add an

extra burden onto the branch predictor, compromise the formation of super-blocks [11],

make register allocation more difficult and, most of all, hinder vectorization. As we show

in Section 6, the impossibility to apply vectorization into heavily nested loops might

double the runtime of some of the programs in the Polybench suite.

In this dissertation, we show how to implement semiring optimizations in a perfor-

mance safe way. By performance safety, we mean that if a program runs for a sufficiently

long time, then either the code transformation improves its speed, or does not change it

in any statistically significant way. The key to achieve performance safety is profiling.

Profiling, in this case, is applied on-line, that is, while the optimized program runs. We

evaluate four different ways to carry out semiring optimizations –two of which resort to

on-line profiling:

• Section 5.1 discusses the simplest implementation of semiring optimization: the con-

ditional elimination of silent stores due to operations involving the identity element.

• Section 5.2 discusses the conditional elimination of loads whose values are absorbing

elements, and of the forward program slice that depends on such loads.

• Section 5.3 presents an on-line profiling technique implemented within loops that

avoids checking loads that do not contain absorbing elements.

• Chapter 5.4 shows how to move the code in charge of on-line profiling outside the

loop. This code hoisting harmonizes semiring-optimization and vectorization.

Summary of Results. We have implemented the four variations of the proposed op-

timization in LLVM 6.0.1 [18]. Even though this optimization may appear, at first,

innocuous, its effects are impressive when properly implemented. Chapter 6 supports this

statement with experiments performed onto the LLVM test suite. Optimizable patterns

appear within loops of 126 programs, 35 of which run for above one second when given

their standard inputs. Our of this lot, 20 programs belong into PolyBench, and 13 to

TSVC. The näıve optimization (Section 5.1) improves performance, with a significance

level α = 0.05, in 12 benchmarks (out of 35). These results use, as baseline, LLVM

-O3. We have observed speedups of 1.48x, 1.45x and 1.11x in different LLVM bench-

marks, for instance. However, we have also observed slowdowns of 1.26x and 1.25x in

1.1. Tools and Publications 16

two benchmarks. This scenario improves as we move from the näıve elimination of silent

stores towards the online profiler hoisted outside loops (Section 5.4). In its fourth, and

most effective implementation, our optimization causes a maximum slowdown of 1.13x

in one benchmark, while maintaining all the previous speedups. Overall, it delivers a

performance improvement of 1.19x on the 35 benchmarks, when compared to LLVM -O3

-ffast-math1. Additionally, we show that when equipped with semiring optimization,

vanilla LLVM can output code for matrix multiplication on par with the code produced

by TACO [14], a code generation engine specialized in the compilation of linear algebra

applications.

1.1 Tools and Publications

The contributions of this dissertation are the result of four articles published during

two years of research.

• Leobas, G. V., and Pereira, F. M. Q. a. (2020). Semiring Optimizations: Dynamic

Elision of Expressions with Identity and Absorbing Elements (OOPSLA ’20)

This article is the direct result of two years of research. In this article, we show

how one can leverage semiring optimizations to eliminate dynamic occurrences of

expressions in the format a ← a⊕ b⊗ c. We show that the runtime elimination of

such assignments can be implemented in a performance-safe way via online profiling.

The elimination of dynamic redundancies involving identity and absorbing elements

in 35 programs of the LLVM test suite that present semiring patterns brings an

average speedup of 1.19x (total optimized time over total unoptimized time) on top

of clang -O3.

• Pereira, F. M. Q. a., Leobas, G. V., and Gamatie, A. (2018). Static prediction of

silent stores. ACM Transactions on Architecture and Code Optimization (TACO)

In this article, we tried to answer the following question: is it possible to predict the

silentness of a store instruction by analyzing the source code? To answer this ques-

tion, we have combined static analysis techniques and Machine Learning to classify

store operations in terms of syntactic features of programs. The conclusions of this

dissertation led to the foundations of this research with Semiring Optimizations.

1This number is the result of dividing the total running time of programs compiled without semiring
optimizations by the running time of the programs compiled with it. The geometric mean of speedups is
1.06x.

1.1. Tools and Publications 17

• Leobas, G. V., Guimarães, B. C. F., and Pereira, F. M. Q. (2018). More than meets

the eye: Invisible instructions. In Proceedings of the XXII Brazilian Symposium on

Programming Languages, SBLP ’18

In this research, we introduce the notion of invisible instructions, which are instruc-

tions present in the binary but are not visible in the program’s compiler-generated

intermediate representation. We use static analysis and profiling techniques to mea-

sure the prevalence of these instructions for a wide variety of programs in several

benchmark suites, and show that for some instruction types, up to 36% of its oc-

currences on average are invisible.

• Leobas, G. V. And Pereira, F. M. Q. Semiring Optimizations: Dynamic Elision of

Expressions with Identity and Absorbing Elements, OOPSLA ’20,

A small testing framework built with composability in mind. TF is capable of many

things, including but not limited to:

i Parallel compilation and execution using gnu-parallel [31]

ii Run programs with a time limit

iii Easily collect statistics

iv Instrument programs using Intel PIN [22], Perf [5] or Valgrind [25]

• Leobas, G. V., LLVM Test-Suite Benchmarks, GitHub repository,

https://github.com/lac-dcc/Benchmarks

A collection of benchmarks available in the LLVM test-suite composed of 260 bench-

marks from 36 test-suites.

18

Chapter 2

Background Information

In this chapter, we will cover the mathematical definitions of algebraic structures on

section 2.1. Additionally, we will present the LLVM Compiler Infrastructure on section

2.2. The last section (sec. 2.3) will introduce concepts and data structures used for

program analysis.

2.1 Mathematical Definitions

In this section we focus our attention on the mathematical definitions of Semiring

Optimization. We will cover some of the fundamental algebraic structures used in abstract

algebra as well as the characterization of operations.

Definition 2.1.1. Set and Element

In mathematics, a set R is a collection of distinct objects. The different objects that

compose the set are called elements. For example, the collection of letters of the latin

alphabet represents a set while the letters symbolize the elements.

Definition 2.1.2. Binary Operations ⊙
A binary operation is an operation of arity two that combines two elements to produce

another element. Operations may have properties. For instance, an operation can be

commutative (2.1), distributive (2.2) and associative (2.3)

a⊕ b = b⊕ a (2.1)

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) (2.2)

(a⊕ b)⊕ c = a⊕ (b⊕ c) (2.3)

Definition 2.1.3. Identity, Absorbing and Invertible elements

With respect to a binary operation ⊙, an identity element I is a type of element which

when combined with another element leaves the set R unchanged: a ⊙ I = I ⊙ a = a.

2.1. Mathematical Definitions 19

On the other hand, the absorbing element z when combined with other elements of R

produces the absorbing element itself: a⊙z = z⊙a = z. Moreover, the invertible element

a−1 is defined as: a⊙ a−1 = a−1 ⊙ a = I.

Definition 2.1.4. Closure

A set R is said to be closed under an operation ⊙ if the application of that operation

on members of the set always produces a member ∈ R. For example, the set of positive

integers are closed under multiplication.

Definition 2.1.5. Algebraic structures

Semigroup is an algebraic structure consisting of a set of elements R and an associative

operation ⊙.
Monoid is a semigroup combined with an identity element I.

Group is a set R with a binary operation ⊙. The set R must be closed under ⊙ and

have identity and invertible elements. The binary operation ⊙ must be associative.

Abelian group is a commutative group. That is, the result of applying the group

operation over two elements does not depend on their order.

Semiring is a set R with two binary operations. These operations are usually called

addition (⊕) and multiplication (⊗). In order to be a semiring, the set R must satisfy

the following conditions:

(i) a⊕ b ∈ R

(ii) Commutative under ⊕

(iii) Associative under ⊕

(iv) For every a ∈ R, there should be an identity element I such that a⊕ I = I ⊕ a = a

(v) There should be a 0 element such that a⊕ (−a) = 0

(vi) a⊗ b ∈ R

(vii) Commutative under ⊗

(viii) ⊗ must be distributive with respect to ⊕

The previous conditions stated that: (i)Rmust be an Abelian group under addition

operation; (ii) R is a Monoid under multiplication; and (iii) multiplication should be

distributed over addition.

Lemma 2.1.6. The additive identity is unique in a group;

2.2. The LLVM Compiler Infrastructure 20

Proof. Let G be a group under addition and let e and f be two distinct identities. So,

for any g ∈ G and by the definition of identity, the following conditions must hold:

e+ g = g + e = g

f + g = g + f = g

Let g = f and g = e on the two equations below

e+ f = f + e = f (g = f)

f + e = e+ f = e (g = e)

On the first equation, we have that e+f = f and on the second equation, we have

that e + f = e. Thus, this implies that f = e and therefore both identities are the same

element.

Lemma 2.1.7. The additive identity is always the multiplicative absorbing element;

Proof. Let 0 be the additive identity in a semiring R. For any element x ∈ R, the

condition must hold:

x+ 0 = 0 + x = 0 (identity definition)

x · 0 = 0 · x = 0 (absorbing definition)

⇓

x · 0 = x · 0

x · 0 = x · (0 + 0)

x · 0 = (x · 0) + (x · 0) (distributive rule)

x · 0 = 0 + 0

x · 0 = 0

Thus, for any value of x ∈ R, x · 0 = 0. Therefore, 0 is the additive identity and

the multiplicative absorbing element.

2.2 The LLVM Compiler Infrastructure

The LLVM Compiler Infrastructure [18] is an umbrella project that hosts and

develops a set of modular tools with well-defined interfaces used to compile, optimize and

2.3. Static Program Analysis 21

debug programs. The name ”LLVM” was once an acronym for Low Level Virtual Machine

but it was removed to avoid confusion with Virtual Machines. LLVM is designed around

a language-independent intermediate representation called LLVM IR. This representation

serves as a portable high-level assembly language that can be optimized for a diversity of

architectures, such as Intel x86, IBM Power PC and ARM.

Figure 2.1 shows the (i) C source code and (ii) its LLVM IR representation for

a program that computes the factorial of a given number. Notice that the intermediate

representation is a typed, 3-address, statement based intermediate representation.

int fact(int n){
 if (n <= 1)
 return 1;
 return n * fact(n-1);
}5

4

1
2
3

define i32 @fact(i32 %n){
entry:
 %cmp = icmp slt i32 %n, 2
 br i1 %cmp, label %return, label %if.end

if.end: ; preds = %entry
 %sub = add nsw i32 %mul, -1
 %call = call i32 @fact(i32 %sub)
 %mul = mul nsw i32 %call, %n
 ret i32 %mul

return: ; preds = %entry
 ret i32 1
}

6
5

7

4

1
2
3

8
9
10
11
12
13
14

(i) C source code (ii) LLVM IR

Figure 2.1: (i) C source code and (ii) its LLVM IR counterpart.

The project was originally implemented to compile C and C++ using the Clang

front-end, but because of its language-agnostic design, LLVM is now the target of many

front-ends (i.e. Ada, C#, C, C++, Lisp, D, Rust, Fortran, Python, Java, Kotlin, . . .).

Figure 2.2 shows the three phrase design adopted by LLVM. In this scheme, creating a

compiler for a new language only requires the development of the front-end and LLVM

will take care of the optimization and code generation steps.

2.3 Static Program Analysis

Definition 2.3.1. Control Flow Graph (CFG)

In a control flow graph each node in the graph represents a basic block, i.e., a

straight line sequence of code with no jumps except at the end of the block Jump targets

start a basic block, and jumps end a block. Directed edges are used to represent jumps in

the control flow. There are, in most presentations, two specially designated blocks: the

entry block, through which control enters into the flow graph, and the exit block, through

2.3. Static Program Analysis 22

Clang Frontend

Rust Frontend

Julia Frontend

opt Power PC

X86

ARM

llc

The frontend that
parses C/C++ into
bytecode (LLVM IR)

Machine Independent
Optimizations

Machine Dependent
Optimizations

LLVM IR

LLVM IR
Assembly

Backend

Figure 2.2: High level representation of LLVM Architecture. LLVM is language-agnostic,
supporting multiple front-ends and back-ends.

which all control flow leaves. Figure 2.3 illustrates a CFG for a program that computes

the factorial of n.

Definition 2.3.2. Dominance A node X ∈ CFG dominates another node Y ∈ CFG if

every path from the start node to Y goes through X. On Figure 2.3, node 2 dominates

all subsequent nodes but node 4 does not dominate 5. There is a direct path from 1 to 5

Entry

int p = 1
int i = 0

while(i < n)

i = i+1
p *= i

return p

int fact(int n){
 int p = 1;
 int i = 0;
 while(i < n){
 i = i+1;
 p *= i;
 }
 return p;
}

6
5

7

4

1
2
3

8
9

1

2

3

4

5

Figure 2.3: Control Flow Graph for the fact function. Nodes are basic blocks and edges
are used to represents jumps between two blocks.

2.3. Static Program Analysis 23

that does not go through 4. Similarly, a node Y post-dominates X if every path from X

to end goes through Y . On Figure 2.3, node 3 post-dominates all previous nodes.

Definition 2.3.3. Static Single Assignment form (SSA)

The Static Single Assignment form (SSA) [4] is an intermediate representation with two

fundamental properties: (i) Every variable is assigned exactly once and (ii) every definition

dominates its uses. SSA is so important because it simplifies considerably the design and

implementation of many compiler analyses and transformations. Any major compiler

nowadays implements SSA in its internal representation, i.e., LLVM [18], GCC [7], Soot

[30], Erlang OTP [8], WebKit JavaScriptCore [32].

Figure 2.4 shows the conversion of two different programs in the three-address

code to SSA form. In a straight-line source code (fig. 2.4(i)), the conversion to SSA is

straightforward: every assignment creates a new variable. However, in a program with

branches (fig. 2.4(ii)), converting the program requires the usage of a special type of node:

PHI nodes (ϕ). A PHI function works as a multiplexer, selecting the value depending on

the path taken.

L1: a0 = x0 + y0
L2: b0 = a0 - 1
L3: b1 = 4 * x0
L4: a1 = a0 + b1

L1: a = x + y
L2: b = a - 1
L3: b = 4 * x
L4: a = a + b

L1: a = read()
L2: b = read()
L3: if a > b go to L4 else L6

L4: b = a
L5: goto L6

L6: return b

L1: a0 = read()
L2: b0 = read()
L3: if a0 > b0 go to L4 else L6

L4: b1 = a0
L5: goto L6

L6: b2 = φ(b0, b1)
L7: return b2

(i) (ii)

Figure 2.4: SSA transformation for programs with and without branches

Definition 2.3.4. Program Dependence Graph (PDG)

A Program Dependence Graph (PDG) is a graph representation introduced by [16] and

later by [6] that makes data dependencies and control dependencies explicit. The depen-

dence graph is a digraph G(V,A) whose vertices are program statements and whose arcs

are one of the two dependence relations.

Data Dependency: A variable v is said to be data dependent on u if u is used to

compute v. For instance, the statement in line 5 is data dependent on the statement of

line 1.

Control Dependency: A variable v is control dependent on p if p is used as the

predicate of a branch that determines the value that v is assigned. For example, the

statement in line 6 is controlled by the predicate on line 4.

Figure 2.5 illustrates a PDG for a program that computes the factorial of n.

2.4. Literature Review 24

int fact(int n){
 int p = 1;
 int i = 0;
 while(i < n){
 i = i+1;
 p *= i;
 }
 return p;
}

6
5

7

4

1
2
3

n
i = 0

p = 1

while(i < n)

8
9 p *= i

i = i+1
return p

Figure 2.5: Program Dependence Graph for the fact function. Solid edges represent data
dependences and dashed edges represent control dependencies.

Definition 2.3.5. Program Slicing

A program slice [33] with respect to instruction ι in a program is the subset of statements

that are necessary to compute ι. A program dependency graph is used to compute the

set of data and control dependencies among variables. A program slicing can be used in

debugging to find errors more easily or in our case, to automatically generate a sampling

function.

2.4 Literature Review

Much of the inspiration behind this work came from the recent developments in

the investigation of silent stores. The term silent store was coined by Lepak and Lipasti

[19] in the early 2000’s. It denotes a store operation that deposits in memory a value that

was already there. Together with his collaborators, Kevin Lepak showed that silent stores

are prevalent among well-known benchmarks, and that it is possible to build hardware

that mitigates their overhead [1, 20, 21]. More recently, different research groups showed

that it is possible to use profiling techniques to help developers to uncover and remove

them [12, 34, 35]. Finally, in 2018 [26] showed how to predict store operations that are

likely to be silent statically.

The present dissertation differs from this foregoing literature in two ways. First,

none of these previous works attempt to remove silent stores automatically via code gener-

ation techniques. In contrast, we propose a compiler optimization that affects the target

program without any intervention from users. Second, although we chose to eliminate

2.4. Literature Review 25

only semiring patterns that can lead to silent stores, the theoretical framework that we

propose in this work goes beyond that. As an example, Figure 1.1(b) shows an example

of semiring optimization that is not associated with any silent store.

The kind of patterns that we optimize are common in tensor algebra, such as the

ever-present multiply-add operation. Incidentally, this kind of algebra has become very

fashionable in recent years. Today, there are specialized compilers that generate high-

quality code for tensor products, such as TACO [14, 13], Sparso [29] and TVM [2]. In

Section 6 we show that the optimizations that we introduce in this work can bring a

general compiler closer to TACO, which is probably the state-of-the-art tool in terms

of tensor compilation. However, we do not see semiring optimizations as a competing

approach. On the contrary, we believe that this technique could be used to enhance even

further these specialized tensor compilers.

26

Chapter 3

Overview

In this chapter, we will explain the optimization that we propose in this dissertation,

and we will introduce three of its variants, which will be further detailed in Section 5.

Our exposition will use the näıve matrix multiplication algorithm seen in Figure 3.1. All

the examples in this chapter are written in C, for the sake of readability; however, our

optimization is meant to be implemented in the back-end of a compiler. Indeed, the

implementation that we shall evaluate in Section 6 was implemented in the LLVM code

generator, and requires no intervention from users –it is fully automatic.

void mul_ORG(float *restrict a, float *restrict b, float *restrict c, int n)
{
 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++) {
 c[i*n + j] = 0;
 for (int k=0; k<n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
 }
}

7

5
6

3
2
1

4

8
9

Figure 3.1: Matrix multiplication taken from [3] [page 332]. We have added the restrict
keyword to run the experiments in this section.

Elimination of Silent Stores. The store operation at line 7 of Figure 3.1 is silent

whenever the product a[i*n+k] * b[k*n+j] happens to be zero. “Silent Store” is a

term coined by [19] to denote a store operation that writes in memory a value that was

already there. As recently demonstrated by [26], expressions involving the value zero are

a common source of silent stores. In the context of this dissertation, silentness happens

because zero is the identity element of the addition operation. Thus, we can avoid the

store operation by checking if a[i*n+k] * b[k*n+j] is zero. Figure 3.2 shows code that

exercises such possibility.

At the first optimization level of clang, e.g., -O0, the code in Figure 3.2 saves

one addition, plus one load and one store of c[i*n+j]. At clang -O3, it saves only

one addition, due to the scalarization of c[i*n+j]. Non-surprisingly, the new version of

matrix multiplication, i.e., function mul ESS, has worse runtime than function mul ORG

at that optimization level. Figure 3.3 shows this comparison, considering input matrices

27

void mul_ESS(float *restrict a, float *restrict b, float *restrict c, int n)
{
for (int i=0; i<n; i++)
 for (int j=0; j<n; j++) {
 c[i*n + j] = 0;
 for (int k=0; k<n; k++) {
 float aux = a[i*n + k] * b[k*n + j];
 if (aux)
 c[i*n + j] += aux;
 }
}

6
5

11
10

7

9
8

4

1
2
3

Figure 3.2: Näıve mat-mul after Elimination of Silent Stores.

with increasing probability of having cells with the value zero1. Function mul ESS has

two disadvantages, when compared with mul ORG. First, the conditional at line eight

downgrades the performance of the branch predictor, as the density of zeros in the input

matrices increases. Second, clang does not vectorize the innermost loop of mul ESS. In

contrast, it unrolls the innermost loop of mul ORG 40x, and parallelizes it using 8-word

vectors. These shortcomings lead to the gap marked as region “1” in Figure 3.3.

1Data produced with LLVM 10.0.0, in an Intel Core i5 at 1.4GHz, running OSX 10.14.4, and 1000×
1000 matrices.

28

0	

1	

2	

3	

4	

5	

6	

7	

P=
.0
	

P=
.5
	

P=
.1
0	

P=
.1
5	

P=
.2
0	

P=
.2
5	

P=
.3
0	

P=
.3
5	

P=
.4
0	

P=
.4
5	

P=
.5
0	

P=
.5
5	

P=
.6
0	

P=
.6
5	

P=
.7
0	

P=
.7
5	

P=
.8
0	

P=
.8
5	

P=
.9
0	

P=
.9
5	

ORG	

ESS	

EAE	

PLP	

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

2.3	

ORG	 EAE	 PLP	

1

2

3 4

5

Ru
nt

im
e

(s
ec

s)
Ru

nt
im

e
(s

ec
s)

Probability that input matrices contain zero

Figure 3.3: Runtime of different implementations of matrix multiplication (C = A× B),
given different probabilities that cells from matrices A[103×103] and B[103×103] contain
zero. Programs were compiled with clang -O3. The bottom figure shows the same
information as the upper figure, albeit with a reduced scaled along the Y-axis. The
runtime of the original implementation of matrix multiplication has been removed from
the bottom figure, to improve its readability. We use the following keys: ORG: the
original program, without any form of semiring optimization, compiled with clang -O3

-ffast-math. EAE: program optimized with elision of absorbing elements (for details,
see Section 5.2). PLP: program optimized with a pre-loop profiling that guards the elision
of absorbing elements against unprofitable inputs (for details, see Section 5.4).

Elision of absorbing elements. The guard of Figure 3.2 encompasses too narrow a

region to be of much benefit. To widen it, we notice that either a[i ∗ n+ k] = 0 or

b[k ∗ n+ j] = 0 is a sufficient condition for a silent store, as zero is the absorbing element

of multiplication. Figure 3.4 uses this observation to optimize the code originally seen in

Figure 3.1. The chart in Figure 3.3 reveals that this optimization starts paying off when

about 35% of the elements of matrix A are the value zero. Its benefit increases noticeably

29

with the density of zeros. Once over 90% of the elements of A are zeros, we observe a

performance boost over the original matrix multiplication (compiled with clang -O3) of

almost 70% (Gap “4” in lower chart of Figure 3.3). On the other hand, at lower densities

we observe important slowdowns, which gap “2” highlights. This slowdown is due, again,

to the lack of vectorization, and to poor branch prediction –both negative consequences

of the conditional at line 8 of Figure 3.4.

void mul_EAE(float *restrict a, float *restrict b,
 float *restrict c, int n) {
 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++) {
 c[i*n + j] = 0;
 for (int k=0; k<n; k++) {
 float t0 = a[i*n + k];
 if (t0 != 0.0) {
 c[i*n + j] += t0 * b[k*n + j];
 }
 }
 }
}

7

5
6

3
2
1

4

8
9

11
10

12
13

Figure 3.4: Elision of Absorbing Elements applied onto the implementation of näıve
matrix multiplication. In this example, we check if a is non-zero; however, it would also
be possible to check if b is non-zero, or if their product is non-zero. More details are given
in Section 4.3.

Pre-Loop Profiling. Semiring optimization hinders vectorization because its implemen-

tation requires inserting conditional tests into straight line code that, if left untouched,

would be easy to vectorize. Nevertheless, it is still possible to benefit from vectorization

and from semiring optimization. Key to this possibility is profiling. Figure 3.5 shows a

possible way to apply profiling in this scenario. Because the profiler runs online, immedi-

ately before the program flows into the loop that contains the semiring pattern, we call

this technique Pre-Loop Profiling. We adopt this name to contrast this technique with

Intra-Loop Profiling, a similar –albeit simpler– methodology that applies profiling within

the loop of interest. Intra-loop profiling shall be discussed in Section 5.3.

The function sampling invoked at line 3 of Figure 3.5 reads a few positions of

an array to count occurrences of a value. In Figure 3.5, the array is matrix A, and

the value of interest is zero. If the ratio of zeros exceeds a threshold –in this case, 0.5,

then we suppress computation dependent on absorbing elements; otherwise, we run the

code without any semiring optimization. Figure 3.3 shows that this approach recovers the

performance of the original code when the density of zeros is low. Additionally, it matches

the performance of elision of absorbing values when this density is high. The choice of an

30

void mul_PLP(float *restrict a, float *restrict b, float *restrict c, int n)
{
 if (sampling(a, n, 0.0F) > 0.50)
 mul_EAE(a, b, c, n);
 else
 mul_ORG(a, b, c, n);
}7

5
6

3
2
1

4

Figure 3.5: Pre-Loop Profiling applied onto the implementation of näıve matrix multipli-
cation.

adequate threshold is important. In this example, 0.35 would be a better threshold than

0.5. The gap labeled “3” highlights a region where semiring optimization is profitable,

but the high threshold prevents it from happening. Profiling imposes a small overhead

onto the program, which the gap labelled “5” outlines. In this example, we sample 1,000

cells of matrix A. Nevertheless, Chapter 6 will show situations in which sampling has a

positive effect, due to data prefetching. In Section 5.4 we shall explain how we generate

code to carry out sampling for any loop containing the semiring pattern.

31

Chapter 4

Generalizing Semiring Optimizations

This chapter has two goals. First, in Chapter 4.1 we present a list of semiring patterns.

Second, in Chapter 4.3, we introduce an algorithm to identify load and store instructions

that can be eliminated, given the occurrence of identities and absorbing elements in the

semiring pattern.

4.1 A Family of Semiring Expressions

Figure 4.1 shows examples of operators and values that enable the proposed op-

timization. Some of these operators, when combined with the proper type, form true

algebraic rings. Examples include bitwise operations such as (int, ORB, ANDB); and logi-

cal operations such as (bool, ORL, ANDL). Other combinations do not yield even semirings,

such as (float, ADD, MUL), as floating-point arithmetic lacks associativity [15, Sec.4.2.2].

Nevertheless, these patterns are optimizable, because they present identity and absorbing

values: the pattern OP1(a, OP2(b, c)) is optimizable whenever the absorbing value of OP2 is

the identity of OP1. SHRL stand for logical shift right, and SHRA denotes arithmetic shift

right; SHLL and SHLA denote the logical and arithmetic shift left equivalents. We let sz

be the size of the type, in bits.

Example 4.1.1. The tuples (ADD, MUL, int), (ADD, MUL, float), (ANDB, ORB, int),

(ORB, ANDB, int), (ORL, ANDL, bool), and (ADD, SHLA, int8), are examples of optimizable

patterns.

Operations DIV and MOD in Figure 4.1 do not form true rings. However, we include

them, because they contain identity (Id) and absorbing (Ab) elements, albeit position

dependently. Thus, 0 is an absorbing element in DIV(0, n), as long as n ̸= 0. Similarly,

1 is an identity in DIV(n, 1), regardless of the value of n. We can fit these two operations

into the same optimization algorithm that Section 4.3 introduces.

4.2. Safety of Semiring Optimizations in the Floating Point Domain 32

ANDL T F

TFORL

0~0ANDB

~00ORB

AbId

SHLA 0 sz

sz0SHRL

−∞+∞MIN

+∞−∞MAX

AbId

SHRA 0

0XOR

0ADD

Id

MOD(l, r)

MOD(l, r) DIV(l, r)

1DIV(l, r)

Idr only

0

1

Abr only

sz0SHLL

01MUL

0SUB(l, r)

0

Abl only

+∞0ADDs
r ≠ 0

Figure 4.1: Optimizable patterns that this work considers.

Example 4.1.2. The following identities are examples that follow from applying opera-

tions seen in Figure 4.1: a == ADD(a, MOD(b, 1)), or a == OR(a, DIV(0, b)).

4.2 Safety of Semiring Optimizations in the

Floating Point Domain

Semiring optimizations must be implemented with care, when applied onto floating-

point types. To be safe, semiring optimizations must be restricted to finite arithmetics.

Finite arithmetics is assumed in mainstream compilers such as gcc and clang if the

flag -ffinite-math-only1 is enabled. The implementation in this paper guards the

optimization with -ffast-math, which enables -ffinite-math-only. There are four

issues that must be considered to understand the limits of this optimization when applied

onto the floating-point domain:

• Zero is not the absorbing element in IEEE 754 arithmetics, due to two special val-

ues, NaN and INFINITY [10]. The former propagates through almost every operation

involving floating-point numbers. The latter also propagates throughout these op-

erations, except when they involve NaN. So, if c is NaN or INFINITY and b is zero,

then the multiplications in Figure 1.1-ii and Figure 1.1-iii will not be zero.

• Again, considering Figure 1.1, if a is −0, b is +0, and c is +0, then a + b × c

will return +0. However, the optimization will keep a as −0. Therefore, semiring

optimization on the floating-point domain requires the flag -fno-signed-zeros.

This flag is enabled by default with -ffast-math.

1https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

4.3. Identification of Optimization Points 33

• the comparison at Line 8 in Figure 3.4 will be skipped when t0 is either minus or

plus zero. If t0 is a very small nonzero value, e.g. a subnormal number, then the

computation will still run although it might not change the value of c[i*n+j]. In

this case the optimization is innocuous; albeit safe.

• Associativity is missing in the IEEE 754 standard. However, in this case semiring

optimizations are safe, because they do not change the order in which operations

happen.

4.3 Identification of Optimization Points

The function optimize, in Figure 4.2, identifies optimization points in a program

for some operations seen in Figure 4.1. This function is invoked onto expressions that

fit into the pattern a = a ⊕ b. Figure 4.2 represents such patterns as st a (a ⊕ b). In

this case, ⊕ is any operation that has an identity element and st is a store. Given this

pattern, optimize invokes function fix over b. This procedure will traverse –backwardly–

the data-dependence graph of b, looking for operations whose absorbing element is the

identity of ⊕.
The output of function fix is a set of relations in the form {s == v}, where s

is a variable name, and v is the absorbing element of some operation that uses s. This

relation means that whenever s has the value v, then the entire expression that uses s

can be replaced by a known constant. These two procedures, optimize and fix, have

been designed to operate on programs in the Static Single Assignment format (SSA) [4].

Therefore, every relation s == v is unambiguous, because every program variable s has

just one definition point. The next example illustrates how these two functions work.

Example 4.3.1. Figure 4.3 shows the invocation of optimize on the program St(a,

ADD(VAR a, MUL(ANDB(MOD(VAR b, VAR c), VAR c), VAR d))). Function optimize

produces four equalities for this code snippet, namely: { (b == 0), (c == 1), (c == 0),

(d == 0) }. The point where each equality is created is marked in gray in Figure 4.3. If

any of these equalities hold at run time, then the store to variable a will be silent.

To keep our report concise and reproducible, in this paper, we focus on the elimina-

tion of silent stores only. Nevertheless, identity patterns enable many other optimizations

that we will not explore. For instance, instead of removing silent stores, we can simply

remove operations like a⊕ b, whenever either a or b are the identity element of ⊕.

4.3. Identification of Optimization Points 34

fun pin (VAR s, v) ⇒ (s == v)
 | pin (OR (a, b), ~0) ⇒ pin(a, ~0) ∪ pin(b, ~0)
 | pin (MUL (a, b), 0) ⇒ pin(a, 0) ∪ pin(b, 0)
 | pin (AND (a, b), 0) ⇒ pin(a, 0) ∪ pin(b, 0)
 | pin (LOR (a, b), T) ⇒ pin(a, T) ∪ pin(b, T)
 | pin (LAND (a, b), F) ⇒ pin(a, F) ∪ pin(b, F)
 | pin (DIV (a, b), 0) ⇒ pin(a, 0)
 | pin (MOD (a, b), 0) ⇒ pin(b, 1) ∪ pin(a, 0)
 | pin _ ⇒ ∅

fun optimize (st a OR(a, b)) ⇒ pin(b, 0)
 | optimize (st a AND(a, b)) ⇒ pin(b, ~0)
 | optimize (st a MUL(a, b)) ⇒ pin(b, 1)
 | optimize (st a LOR(a, b)) ⇒ pin(b, F)
 | optimize (st a LAND(a, b)) ⇒ pin(b, T)
 | optimize (st a ADD(a, b)) ⇒ pin(b, 0)
 | optimize (st a SUB(a, b)) ⇒ pin(b, 0)
 | optimize (st a XOR(a, b)) ⇒ pin(b, 0)
 | optimize (st a SHL(a, b)) ⇒ pin(b, 0)
 | optimize (st a SHR(a, b)) ⇒ pin(b, 0)
 | optimize (st a DIV(a, b)) ⇒ pin(b, 1)
 | optimize (st a MOD(a, b)) ⇒ pin(b, 1)

Figure 4.2: Identification of optimization points.

Correctness. In this section, we lay out the key invariants of functions optimize and

fix. These invariants are stated on top of the semantics of the language of logical and

arithmetic expressions that fix traverses. In this context, we define the store environment

σ : VAR → VALUE as a function that maps variable names to values. Next, we define an

evaluation function eval : st × σ → σ, which receives a store instruction, like those

seen in Figure 4.2, plus an environment σ, and produces a new environment σ′. The

implementation of eval is standard; hence, instead of defining it formally, we will only

illustrate it with Example 4.3.2. Function eval lets us state the core invariant of function

fix, which Theorem 4.3.3 proves.

Example 4.3.2. If σ = {a 7→ 7, b 7→ 4}, then we have that eval(st a ADD(b, a), σ) =

σ[a 7→ 11], and eval(st a ADD (DIV(a, b), a), σ) = σ[a 7→ 8]. We use [] to denote function

updating, i.e.: σ[s 7→ v] = λx.(x = s)?v : σ(x).

Theorem 4.3.3. If fix(b, z) = C, then, for any (s==v) ∈ C and any store environment

σ, eval(b, σ[s 7→ v]) = z.

4.3. Identification of Optimization Points 35

st(•, •)

a ADD(•, •)

a MUL(•, •)

dAND(•, •)

MOD(•, •) c

b c

optimize(…)

pin(MUL, 0)

pin(AND, 0) pin(d, 0)

pin(MOD, 0) pin(c, 0)

pin(c, 1)pin(b, 0)
(b == 0) (c == 1)

(c == 0)

(d == 0)

Figure 4.3: Example of relations produced by optimize.

The proof is by induction on the derivation tree of fix. We shall consider a few

cases:

• if fix(VARs, v), then C = {s==v}. We have that eval(VARs, σ[s 7→ v]) = v;

• if fix(OR(a, b), 0̃), then C = C1 ∪ C2, where C1 = fix(a, 0̃) and C2 =

fix(b, 0̃). If s==v ∈ C1 (the case for C2 is analogous), then, by induc-

tion, eval(b, σ[s 7→ v]) = 0̃. Because 0̃ is the destructor of OR, we have that

eval(OR(a, b), σ[b 7→ 0̃]) = 0̃.

Corollary 4.3.4. Let optimize(st a(⊕(a, b))) = C.

If (s==v) ∈ C, then eval(⊕(a, b), σ[s 7→ v] = a, whenever σ(s) = v

We have that optimize(st a(⊕(a, b))) = fix(b, z) = C, where z is the absorbing

element of ⊕. From Theorem 4.3.3, if b==z ∈ C, then eval(b, σ[s 7→ z]) = z. Thus,

eval(⊕(a, b), σ[s 7→ v]) = eval(⊕(a, b), σ[s 7→ v, b 7→ z]) = a.

36

Chapter 5

Four Variations of Semiring

Optimization

This chapter presents four ways to eliminate silent stores related to semiring patterns,

from the simplest (Section 5.1) towards the most complex (Section 5.4).

5.1 Version 1: Elimination of Silent Stores (ESS)

The simplest form of semiring optimization guards a store with a conditional test.

We have implemented this transformation as the exhaustive application of the rewriting

rule earlier seen in Figure 1.1-i. Figure 5.1 generalizes that example. Notice that the

semiring pattern makes two trivial optimizations possible. In case variable t0 is alive

past the store at line 4 of Figure 5.1-i, then we must settle for the more conservative

transformation seen in Figure 5.1-ii. Otherwise, we can also avoid the load of t0, using

the transformation seen in Figure 5.1-iii. The transformations seen in Figure 5.1 preserve

program semantics. Although trivial, we state this fact formally in Theorem 5.1.1, for the

sake of completeness.

Theorem 5.1.1. If t0 is only used at line 3 of Figure 5.1-i, then Fig. 5.1-i and Fig. 5.1-ii

are equivalent. Otherwise, Fig. 5.1-i and Fig. 5.1-iii are equivalent.

Proof. We show equivalence from Fig 5.1-i and Fig 5.1-iii. The second part of the theorem

follows from similar reasoning. If t1 ̸= z, then both programs execute the same set of

assignments. Otherwise, we have that t2 = t0⊕ z = t0 = a, and the store is silent.

5.2. Version 2: Elision of Absorbing Elements (EAE) 37

t0 = ld a
t1 = ld e
t2 = t0⊕t1
st a t2

t1 = ld e
t0 = ld a
if (t1 ≠ z) {
 t2 = t0⊕t1
 st a t2
}
is_alive (t0)

1
2
3
4

1
2
3
4
5
6

t1 = ld e
if (t1 ≠ z) {
 t0 = ld a
 t2 = t0⊕t1
 st a t2
}
is_dead (t0)

1
2
3
4
5
6
77

(i) (ii) (iii)

Figure 5.1: Implementation of silent store elimination when z is the identity of ⊕. (i)
Original program. (ii) Program optimized when t0 is used in instructions other than the
store. (iii) Program optimized when t0 is used only once. Annotations at Line 7 are
not part of the language used to write the computations—rather, they are pseudo-code
indicating that variables are either alive or dead past the point where they appear.

5.2 Version 2: Elision of Absorbing Elements (EAE)

The conditional elision of expressions that depend on absorbing elements is based

on the invariant stated by Theorem 4.3.3. Thus, if (s==v) ∈ pin(b, z), the evaluation

of b yields z whenever the symbol s holds the value v. From Corollary 4.3.4, (s==v) is

enough to yield the store st a ⊕ (a, b) silent. To capitalize on these observations, we

proceed in the three steps below, where the pattern st a ⊕ (a, b) is called ιs:

1. We decorate the load of s with a guard g that checks if s receives the value v.

2. We move ιs to the false branch of g. Thus, ιs will happen only when g is false.

3. We move to inside the false branch of g any other instruction ι that is only used to

compute ιs, or some other instruction ι′ already inside the false branch.

Example 5.2.1. Fig. 5.2-i shows the tree in Fig. 4.3 written in three-address format.

Fig. 5.2-ii shows the guard used to check if the value loaded from b is an absorbing element.

Fig. 5.2-iii displays the optimized program, provided that none of the temporary variables

is used past the last store instruction.

In Example 5.2.1, we emphasize that instructions can only be moved into the

guarded region if they are not used in expressions other than the silent store. In other

words, the region that guards the execution of a potentially silent store ιs will contain

every instruction ι that is part of the backward slice of ιs –except if ι is used to compute

values that do not belong into this slice. Example 5.2.2 clarifies these observations.

Example 5.2.2. Figure 5.3 shows three optimized versions of the code snippet from

Figure 5.2. Each version differs on the instructions that can be placed inside the region

5.3. Version 3: Intra-Loop Profiling (ALP) 38

t0 = ld b
t1 = ld c
t2 = t0 % t1
t3 = ld c
t4 = t2 & t3
t5 = ld d
t6 = t4 * t5
t7 = ld a
t8 = t6 + t7
st a t8

1
2
3
4

(i)

5
6
7
8
9
10

t0 = ld b
t1 = ld c
t2 = t0 % t1
t3 = ld c
t4 = t2 & t3
t5 = ld d
t6 = t4 * t5
t7 = ld a
t8 = t6 + t7
if (t0 ≠ 0) {
 st a t8
}

(ii) (iii)1
2
3
4
5
6
7
8
9
10
11
12

t0 = ld b
if (t0 ≠ 0) {
 t1 = ld c
 t2 = t0 % t1
 t3 = ld c
 t4 = t2 & t3
 t5 = ld d
 t6 = t4 * t5
 t7 = ld a
 t8 = t6 + t7
 st a t8
}

1
2
3
4
5
6
7
8
9
10
11
12

Figure 5.2: Checking if b is an absorbing element.

guarded by the check on t0. Notice how, in Figure 5.3-iii, the liveness of t6 past the store

prevents several other instructions from being moved within the guarded region.

(i) t0 = ld b
t1 = ld c
if (t0 ≠ 0) {
 t2 = t0 % t1
 t3 = ld c
 t4 = t2 & t3
 t5 = ld d
 t6 = t4 * t5
 t7 = ld a
 t8 = t6 + t7
 st a t8
}
is_alive (t1)

1
2
3
4
5
6
7
8
9
10
11
12
13

(ii) t0 = ld b
t5 = ld d
if (t0 ≠ 0) {
 t1 = ld c
 t2 = t0 % t1
 t3 = ld c
 t4 = t2 & t3
 t6 = t4 * t5
 t7 = ld a
 t8 = t6 + t7
 st a t8
}
is_alive (t5)

1
2
3
4
5
6
7
8
9
10
11
12
13

(iii) t0 = ld b
t1 = ld c
t2 = t0 % t1
t3 = ld c
t4 = t2 & t3
t5 = ld d
t6 = t4 * t5
if (t0 ≠ 0) {
 t7 = ld a
 t8 = t6 + t7
 st a t8
}
is_alive (t6)

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 5.3: The impact of liveness on the elision of instructions that depend on absorbing
elements.

5.3 Version 3: Intra-Loop Profiling (ALP)

Semiring Optimization is speculative, because its performance depends on program

inputs. Thus, the unrestricted application of semiring optimization might lead to runtime

regression. As explained in Section 3, regression is due to the fact that the guards that

5.3. Version 3: Intra-Loop Profiling (ALP) 39

implement the optimization hinder vectorization and complicate branch prediction. It is

possible to circumvent these shortcomings via profiling techniques.

In this section, we introduce a form of profiling of easy implementation: its de-

ployment does not require any static program analysis. Profiling happens in-vivo, that

is to say, during the execution of the profiled program already in production mode. The

version of profiling that we describe in this section inserts code within the loops that con-

tain semiring patterns; hence, we call it Intra-Loop Profiling (ALP). It improves branch

prediction, but still hinders vectorization. Later, in Section 5.4 we will show how to hoist

the profiling code outside the loop; thus, enabling also vectorization.

Loop header Is trip count greater
than NUM_ITER ?

Is store silent more than
NUM_ITER/THRESHOLD ?

Optimized loop bodyOriginal loop bodyOriginal loop body
(NUM_ITER++)

Loop latch

yes
no

yesno

Figure 5.4: Näıve matrix multiplication augmented with code to implement Intra-Loop
Profiling. The PROFILE constant that initializes target sends the execution flow to the
default clause of the switch.

Figure 5.4 shows how Intra-Loop Profiling augments a loop with code to carry out

profiling. As we see in the figure, the body of the loop is cloned twice. Thus, in addition to

the original loop, ALP creates a body with an iteration counter, that performs profiling,

and another body optimized with the elision of absorbing elements (see Section 5.2).

Profiling is guided by two constants. The first, NUM ITER, determines the number of times

that stores are inspected, to check if they are silent or not. The second, THRESHOLD,

determines when semiring optimization should take place.

Example 5.3.1. Figure 5.5 shows the implementation of ALP on the program used as

an example in Section 3. For the sake of clarity, we show code written in C; however, just

like all the other optimizations described in this dissertation, ALP is implemented at the

binary level.

5.4. Version 4: Pre-Loop Profiling (PLP) 40

6
5

12
11
10

7

9
8

4

1
2
3

18
17

24
23
22

19

21
20

16

13
14
15

25

void mul_ALP(float *restrict a, float *restrict b,
 float *restrict c, int n){
for (int i=0; i<n; i++){
 for (int j=0; j<n; j++){
 for (int k=0; k<n; k++){
 switch (target){
 case Original:
 c[i*n + j] += a[i*n + k] * b[k*n + j];
 break;
 case Optimise:
 float t0 = a[i*n + k];
 if (t0 != 0.0) c[i*n + j] += t0 * b[k*n + j];
 break;
 default:
 float t = a[i*n + k] * b[k*n + j];
 silent += (t == 0.0) ? 1 : 0;
 iter += 1;
 if (iter == PROFILING_THRESHOLD)
 target = silent > PROFILING_THRESHOLD/THRESHOLD
 ? Optimize : Original;
 c[i*n + j] += t;
 }
 }
 }
}

Figure 5.5: Näıve matrix multiplication augmented with code to implement Intra-Loop
Profiling.

5.4 Version 4: Pre-Loop Profiling (PLP)

The online profiling technique discussed in the previous section improves the hit

rate of the branch predictor, as it tends to reduce the number of branches dynamically

executed. However, it is still hard to vectorize the optimized code. As an example, neither

LLVM 8.0 nor gcc 6.0 can vectorize the assignment at line 8 of Figure 5.5. The culprit is

the switch statement at line 6, which leads to three very different variations of the original

loop body. To enable vectorization, we must hoist the profiling code outside the loop.

This new version of in-vivo profiling shall be called Inter-Loop Profiling.

Different hoisting strategies. While designing PLP, we considered three different

approaches. Although we have considered every one of them, only the last technique

became fully functional. Nevertheless, we discuss them all, to avoid those who intend to

expand our ideas start implementations that are difficult to conclude successfully:

• Loop peeling: we can split the target loop into two iterators: the first iterates

NUM ITER times (the number of samplings performed by the profiler); and the second

completes the rest of the loop. In this form of loop peeling [23], both loops do the

useful work present in the original program, but only the first samples memory.

This strategy was our first approach to hoist the profiler outside the loop. However,

5.4. Version 4: Pre-Loop Profiling (PLP) 41

although LLVM provides support to peel the innermost loop, no such support exists

for the whole loop nest, and we found it difficult to craft a correct implementation.

• Symbolic range analysis: we can use symbolic range analysis to obtain bounds

to the arrays present in LLVM’s intermediate representation. To this end, we

could reuse DAWNCC’s parametric range analysis [24], which is publicly available

for LLVM. Unfortunately, DAWNCC’s implementation targets a lower version of

LLVM than the one we use in this work. Thus, we were not able to build a prototype

on top of DAWNCC.

• Program slice: a program slice with respect to a statement ι in a program P is

the subset of P that contributes to the execution of ι [33]. To profile a memory

location s, loaded by an instruction ιld, we extract the program slice of ιld. Because

a backward slice considers data and control-dependences, it gives us every loop

nest that contributes to compute the address used in ιld. In this work, we have

implemented a slicing algorithm available for the LLVM compiler [28]. Hence, this

was our approach of choice.

Example 5.4.1. Figure 5.6(i) shows the backward slice of the access a[i*n + j], orig-

inally at line 7 of Figure 3.1. This memory access depends on the indexing variables,

e.g., i, n and k. Control dependences add to the slice the outermost loop (which controls

variable i), and the innermost (which controls variable k). Notice that the middle loop

is left out of the slice, as variable j bears no influence on the memory access.

Sampling stride. In addition to enabling vectorization, hoisting the profiling code out-

side the loop of interest via backward slicing brings another advantage: we are free to

choose different strides to sample memory locations. The sampling stride is the spatial

distance between successive addresses inspected via profiling. The stride used in Sec-

tion 5.3 always follows the pattern in which memory is accessed within the original loop.

As an example, in Figure 5.5, sampling happens at line 15. Array a’s sampling stride is

1, and array b’s is n.

Sampling based on the loop trip count might lead to bad decisions. For instance,

one of the benchmarks that we analyze in Section 6 is Cholesky’s decomposition. This

benchmark receives a diagonal matrix, in which the elements below the main diagonal are

all zeros. However, sampling based on the trip count, even with a large number of profiling

iterations, touches only a handful of memory positions under that diagonal. Consequently,

profiling misses a substantial region that contains only zeros –multiplication’s absorbing

element.

Example 5.4.2. Figure 5.6(ii) shows the sampling function that we built after the slice

in Figure 5.6(i). The induction variables within the two loops that constitute the slice

is incremented by a parameterized interval STRIDE. The implementation evaluated in

5.4. Version 4: Pre-Loop Profiling (PLP) 42

void mul_ORG(float *a, float*b, float*c, int n) {
 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++) {
 c[i*n + j] = 0;
 for (int k=0; k<n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
 }
}

7

5
6

3
2
1

4

8

double sampling(float* a, int n, float v) {
 int tx = 0;
 int num_iter = 0;
 for (int i=0; i<n; i += STRIDE)
 for (int k=0; k<n; k += STRIDE) {
 tx += (a[i*n + k] == v) ? 1 : 0;
 if (num_iter++ > NUM_ITER)
 break;
 }
 return tx/(NUM_ITER*NUM_ITER);
}

0.0

(i)

(ii)

Figure 5.6: (i) Backward slice that determines the memory access a[i*n+k]. (ii) The
sampling function that is derived from this slice. Figure 3.5 shows the final, optimized
code, with a call to function sampling. Figure 5.7 will show how this code is implemented
in practice in the low-level representation of a program.

Section 6 sets the value of this variable at compilation time. However, nothing hinders

another implementation from having this value defined per program, for instance.

On the number of profiling iterations. There exists a tradeoff between the number

of samples collected by the pre-loop profiler, and the accuracy of the information that

it reports. The larger the number of samples, the better this accuracy. However, more

samples contribute towards a heavier overhead that the profiler imposes onto the programs

that it aims to optimize. Our implementation of of the pre-loop profiler limits the number

of samples in 1,000 per loop. This value, like the sampling stride, is defined at compilation

time, although users have the option to define it in a per-program basis. In Section 6 we

shall consider the same limit of 1,000 samples for all the programs that we analyze.

Low-level implementation. Example shown thus far in this paper are written in C;

however, the implementation of all the techniques that it introduces happens at the level

of LLVM’s intermediate representation. In the case of the pre-loop profiling, there is one

further difference between our presentation and our implementation: the profiler, which

is seen in Figures 3.5 and 5.6(ii) as a separate function, is, in practice, inlined in the

optimized code. Example 5.4.3 provides a more faithful view of this implementation.

5.4. Version 4: Pre-Loop Profiling (PLP) 43

Example 5.4.3. Figure 5.7 shows the backward slice of the access a[i*n + j] at line 7

of Figure 3.1. The third part of Figure 5.7 shows the code of the sampling function built

out of that slice, augmented with profiling. This sampling function is the same that is

invoked at line 3 of Figure 3.5.

L1: i1 = phi(0, i2)
 if (i1 >= n) goto L6
L2: j1 = phi(0, j2)
 if (j1 >= n) goto L5
 t0 = i1 * n
 t1 = t0 + j1
 st (c+t1) 0
L3: k1 = phi(0, k2)
 if (k1 >= n) goto L4
 t2 = i1 * n
 t3 = t2 + k1
 t4 = ld (a+t3)
 t5 = k1 * n
 t6 = t5 + j1
 t7 = ld (b+t6)
 t8 = t4 * t7
 t9 = i1 * n
 t10 = t9 + j1
 t11 = ld (c+t10)
 t12 = t8 + t11
 st (c+10) t12
 k2 = k1 + 1
 goto L3
L4: j2 = j1 + 1
 goto L3
L5: i2 = i1 + 1
 goto L1
L6: ...

L1: i1 = phi(0, i2)
 if (i1 >= n) goto L6
L2: j1 = phi(0, j2)
 if (j1 >= n) goto L5
 t0 = i1 * n
 t1 = t0 + j1
 st (c+t1) 0
L3: k1 = phi(0, k2)
 if (k1 >= n) goto L4
 t2 = i1 * n
 t3 = t2 + k1
 t4 = ld (a+t3)
 t5 = k1 * n
 t6 = t5 + j1
 t7 = ld (b+t6)
 t8 = t4 * t7
 t9 = i1 * n
 t10 = t9 + j1
 t11 = ld (c+t10)
 t12 = t8 + t11
 st (c+10) t12
 k2 = k1 + 1
 goto L3
L4: j2 = j1 + 1
 goto L2
L5: i2 = i1 + 1
 goto L1
L6: ...

L1’: sil1 = phi(0, sil2)

 i1 = phi(0, i2)
 if (i1 >= NUM_ITER)
 goto L6’
L3’: k1 = phi(0, k2)
 if (k1 >= NUM_ITER)
 goto L1’
 t2 = i1 * n
 t3 = t2 + k1
 t4 = ld (a+t3)
 tx = (t4 == 0)?1:0

 sil2 = sil1 + tx

 k2 = k1 + STRIDE
 goto L3’
L5’: i2 = i1 + STRIDE
 goto L1’
L6’: ty = NUM_ITER/

 THRESHOLD

 if (sil1 > ty)

 goto Lro

L1 : original loop
Lro: optimized loop

(i) (ii) (iii)

Figure 5.7: (i) Three-address code version of the näıve matrix multiplication algorithm
seen in Fig-3.1. The grey triangle shows the instruction that we will slice out from the
loop. (ii) The grey boxes mark the backward slice of the load of a[i*n+k]. (iii) The
sampling function built out of the slice. Grey boxes show code present in the original
loop.

44

Chapter 6

Evaluation

In this chapter, we shall evaluate Semiring Optimization aiming to answer the following

research questions:

RQ1 How often does the semiring pattern appear in typical benchmarks?

RQ2 What is the runtime benefit of the different versions of Semiring Optimization?

RQ3 What is the overhead of the different versions of profiling-based Semiring Optimiza-

tions?

RQ4 What is the overhead of Semiring Optimization on Compilation Time?

RQ5 How does Semiring Optimization compare with a specialized tensor compiler?

RQ6 What is the effect of input variation on semiring-optimizations?

RQ7 What is the effect of semiring-optimizations on performance couters?

Runtime Setup. We have implemented Semiring Optimization onto LLVM 6.0.1. Re-

sults reported in this section were produced on an 8-core Intel(R) Core(TM) i7-3770 at

3.40GHz, with 16GB of RAM running Ubuntu 16.04.

Benchmarks. We have applied semiring optimization on the programs available in the

LLVM test suite. In this chapter, we shall restrict our presentation to PolyBench [27],

for concision. However, we shall present results from other benchmarks when we discuss

RQ1 and RQ2, e.g., Prevalence and Speedup. We do not run the RQ4 experiments for

all the program because its execution time would be prohibitive and we think the evidence

gathered from this experiment is likely to be indicative of the overall behavior. PolyBench

consists of 30 programs written in C. Out of this lot, 20 benchmarks contain the pattern

a = a⊕ b. Hence, we restrict our evaluation to this subset of PolyBench. Table 6 shows

the PolyBench benchmarks we use alongside a small description.

Measurement methodology. We report 5 runs for each version of each program. We

adopt a significance level α = 0.05. Thus, if the results reported by original and optimized

programs cannot be distinguished with a confidence of more than 95% (via Student’s Test),

6.1. RQ1: Prevalence 45

Table 6.1: List of PolyBench benchmarks used

Benchmark LoC # Semiring Patterns Description
2mm 252 3 2 Matrix Multiplication
3mm 267 3 3 Matrix Multiplication
bicg 227 2 BiCG Sub Kernel
cholesky 211 4 Cholesky Decomposition
correlation 248 7 Correlation Computation
covariance 218 4 Covariance Computation
doitgen 214 1 Multiresolution analysis kernel
fdtd-2d 256 3 2-D finite Different Time Domain Kernel
gemm 232 2 Matrix-multiply C = α · A ·B + β · C
gemver 261 3 Vector Multiplication and Matrix Addition
gesummv 222 2 Scalar, Vector and Matrix Multiplication
gramschmidt 231 2 Gram-Schmidt decomposition
lu 210 4 LU decomposition
ludcmp 258 1 LU decomposition
mvt 222 2 Matrix Vector product and Transpose
symm 231 1 Symmetric matrix-multiply
syr2k 225 2 Symmetric rank-k operations
syrk 210 2 Symmetric rank-2k operations
trmm 210 2 Triangular matrix-multiply

then we consider them as originating from the same population. Our baseline is LLVM

-O3. At this level, LLVM performs vectorization, unrolling and inlining, for instance.

A note on static and dynamic instances. A static instance of a store instruction

is the syntactic occurrence of it. A dynamic instance, in turn, is its execution. Hence,

a static instance can have many corresponding dynamic instances. We call instructions

involved in a semiring pattern as “marked” instructions. Given these definitions, we shall

use Dyn to refer to the number of dynamic instances of store instructions in a benchmark,

M-Dyn for the number of dynamic stores marked and MS-Dyn for the number of times a

store marked was silent. The proportion of marked instances is the ratio M-Dyn

Dyn
. Similarly,

the ratio MS-Dyn

Dyn
gives the percentage of silent instances. Finally, the ratio MS-Dyn

M-Dyn
measures

the silentness level of marked instructions.

6.1 RQ1: Prevalence

We have measured the prevalence semiring patterns in 259 programs from 36 bench-

mark suites. Out of the 259 programs, 126 (49%) contain the semiring pattern. Figure 6.1

shows the frequency of semiring patterns among the 126 benchmarks. These benchmarks,

6.1. RQ1: Prevalence 46

when running with their standard inputs, gave us a total of 101,107 static instances of

store operations, out of which 1,569 (1%) belong into a semiring pattern. Henceforth,

we shall call these instructions marked. A large portion of programs (41%) contains one

or two marked stores, but this number varies significantly across benchmarks. If we av-

erage the number of marked store instructions per program, then we obtain 12 with a

standard deviation of 39. In other words, programs tend to have approximately 12 stores

involved in a semiring pattern. This high standard deviation is due to the variability in

the workload of the test suites we use. Some programs are designed for computer-intensive

tasks, whereas others are not. In total, we observed 988,223,728,822 dynamic instances of

store instructions (Dyn), out of which 276,072,024,712, i.e., 27%, were from marked stores

(M-Dyn). Out of this lot, 29,765,251,126, i.e., 3%, were silent (MS-Dyn). Thus, 1% of all

static instances contributed to 27% of all execution of store operations of which 11% were

silent.

Figure 6.2 shows the prevalence of the semiring pattern on the PolyBench test suite.

The transparent bar is the ratio M-Dyn

Dyn
while the gray bar is MS-Dyn

Dyn
. The numbers on top of

each bar are the order of magnitude of M-Dyn. Numbers inside circles report the number

of static instances. Most of the benchmarks have M-Dyn

Dyn
≈ 1.0 and three benchmarks

(cholesky, lu, ludcmp) have MS-Dyn

Dyn
≥ 0.5. On ludcmp, one static store was responsible

for almost all 109 dynamic instances. Approximately 60% of these instances were silent.

0	

3	

6	

9	

12	

15	

18	

21	

24	

27	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	 49	 51	 53	 55	 57	 59	 61	 63	 65	 67	

Omitted values:
0 semiring patterns: 133 programs
146 semiring patterns: 1 program
412 semiring patterns: 1 program

N
um

be
r o

f B
en

ch
m

ar
ks

Number of Semiring Patterns involving store instructions, e.g., a = a ⊗ b

Figure 6.1: Histogram with the number of static store instances marked for the set of
benchmarks used.

6.2. RQ2: Speedup 47

0.00

0.25

0.50

0.75

1.00

2m
m
3m
m
bic
g

ch
ole
sk
y
co
rr co

v

do
itg
en
fdt
d2
d
ge
mm

ge
mv
er

ge
su
mm
v
gra
m lu

lud
cm
p
mv
t
sy
mmsy

r2k sy
rk
trm
m

109

108 108

108

1010 1010109 109 109 109 109 10
9 109 109 109 109 109 109

109

2221

2

142

23

231474

2

33

Figure 6.2: Prevalence of the semiring pattern on the Polybench suite. Powers on top of
bars denote absolute number of dynamic instances of stores (order of magnitude).

6.2 RQ2: Speedup

Figure 6.3 shows the absolute runtime of the 20 programs present in the Polybench

collection that present any semiring pattern. The figure shows the mean of five execu-

tions for each one of the five different optimization modes that we consider: the original

program, plus the four optimizations described in Section 4. Notice that these four opti-

mizations are applied independently and exclusively. The category called ORG (short for

original) represents the Polybench programs compiled with clang -O3. The other cate-

gories include one of the semiring optimizations discussed in this work, in addition to the

other optimizations available in clang -O3. All the original programs run for at least 5

seconds. The longest runtime belongs to simm: 97.34 seconds, in the original program.

Figure 6.4 shows the speedup of Semiring Optimization when compared to the

original programs (ORG). Considering significant the experiments with a p-score under

0.05, we observed statistically significant speedups in 9 out of 13 benchmarks. The largest

6.2. RQ2: Speedup 48

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

25

50

75

100

2m
m

3m
m

at
ax bic

g

ch
ole

sk
y

co
rr

co
v

do
itg

en

fd
td

−2
d

ge
m

m

ge
m

ve
r

ge
su

m
m

v
gr

am lu

lud
cm

p
m

vt

sy
m

m
sy

rk

tri
so

lv
trm

m

R
un

tim
e

(s
ec

s)

●ALP EAE ILP ORG ESS

Figure 6.3: Mean of five executions of the programs in the Polybench collection that
presented semiring patterns.

speedups were observed in the three programs with the highest number of silent stores, as

reported in Figure 6.2: 2.05x on Cholesky, 1.72x on Lu and 1.75x on Ludcmp. All these

speedups were produced using the pre-loop profiling technique discussed in Section 5.4.

The simple elimination of stores discussed in Section 5.1 is substantially less effective. For

the same benchmarks, this version of semiring optimization gives us speedups of 1.11x,

1.09x and 1.10x. Hoisting the profiling code outside the loop is essential for performance.

The intra-loop profiler of Section 5.3 gives us even smaller speedups: 1.04x, 1.05x and

1.04x.

6.2. RQ2: Speedup 49

● ●

●

● ●
●

● ●
● ●

●
●

●
●

●

●

●
●

●●

0.5

1.0

1.5

2.0

2m
m

3m
m

at
ax bic

g

ch
ole

sk
y

co
rr

co
v

do
itg

en

fd
td

−2
d

ge
m

m

ge
m

ve
r

ge
su

m
m

v
gr

am lu

lud
cm

p
m

vt

sy
m

m
sy

rk

tri
so

lv
trm

m

S
pe

ed
up

●ALP EAE ILP ESS

Figure 6.4: Speedup of optimizations over baseline (ORG)

The benefit of profiling over the irrestrict elision of code (Section 5.2) is clear once

we consider vectorization. Although EAE gives us speedups in some benchmarks, it also

yields large slowdowns whenever it disables vectorization. As an example, the original

version of gemm is 1.66x faster than the version optimized with EAE. Pre-loop profiling

recovers this slowdown in its totality: there is no statistically significant difference between

the original version of gemm and the version optimized with Intra-Loop Profiling.

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

0.0

2.5

5.0

7.5

10.0

08
−m

ain

an
ag

ra
m

bm
m

cfr
ac

co
ns

um
er

_jp
eg

_c

Con
tro

lF
low

−f
lt

Con
tro

lLo
op

s−
flt

db
m

s

es
pr

es
so

Exp
an

sio
n−

db
l

Exp
an

sio
n−

flt

ffb
en

ch

Glob
alD

at
aF

low
−f

lt gs

In
du

cti
on

Var
iab

le−
flt

Lin
ea

rD
ep

en
de

nc
e−

db
l

Lin
ea

rD
ep

en
de

nc
e−

flt

m
ini

GM
G

ne
ur

al

Rec
ur

re
nc

es
−d

bl

Rec
ur

re
nc

es
−f

lt

Sta
te

m
en

tR
eo

rd
er

ing
−d

bl

Sta
te

m
en

tR
eo

rd
er

ing
−f

lt

Sym
bo

lic
s−

flt

tra
m

p3
d−

v4

R
un

tim
e

(s
ec

s)

● EAE ORG ESS

Figure 6.5: Speedup of optimizations over baseline (ORG) for other benchmarks

6.2. RQ2: Speedup 50

Table 6.2: List of benchmarks used from other suites.

Suite Benchmark Semiring Patterns MS-Dyn
Dyn

M-Dyn

cBench consumer jpeg c 11 0.74 109

DOE ProxyApps C miniGMG 24 0.79 109

FreeBench neural 2 0.75 109

MallocBench cfrac 3 0.85 109

MallocBench espresso 39 0.91 108

MallocBench gs 26 0.68 107

MallocBench make 2 0.55 104

McCat 08-main 1 0.92 107

mediabench jpeg-6a 11 0.72 106

MiBench consumer-jpeg 12 0.51 106

Misc ffbench 2 0.99 108

Ptrdist anagram 4 0.85 109

tramp3d-v4 tramp3d-v4 13 0.73 109

TSVC ControlFlow-flt 22 0.79 109

TSVC ControlLoops-flt 5 0.63 109

TSVC Expansion-dbl 2 0.50 1010

TSVC Expansion-flt 2 0.50 1010

TSVC GlobalDataFlow-flt 4 0.83 1010

TSVC InductionVariable-flt 1 0.87 1010

TSVC LinearDependence-dbl 7 0.69 1010

TSVC LinearDependence-flt 7 0.69 1010

TSVC Recurrences-dbl 1 1.00 109

TSVC Recurrences-flt 1 1.00 109

TSVC StatementReordering-dbl 2 0.50 1010

TSVC StatementReordering-flt 2 0.94 1010

TSVC Symbolics-flt 2 0.87 1010

VersaBench bmm 1 0.96 109

VersaBench dbms 7 1.00 108

In figures 6.5 and 6.6 we present the results for 25 programs outside the PolyBench

test-suite. These programs were chosen from the list of 126 benchmarks mentioned in

Section 6.1 and were selected due to their high proportion of silent stores. We classify the

proportion of silent stores as high if MS-Dyn

Dyn
≥ 5%, i.e., the coefficient of dynamic marked

store instructions must represent at least 5% of all dynamic instances. Table 6.2 shows

the list of benchmarks we use for this experiment. The last column M-Dyn is the order of

magnitude for the number of dynamic stores marked.

Note that we do not report the runtime and speedup for profiling variants of

Semiring Optimization. As a current limitation of our implementation, the program

slicing step requires loops to have Single-Entry Single-Exit property, which is not the case

for most benchmarks. Thus, we choose to not present profiling variants results for those

suites.

We have observed 6 statistically significant speedups with EAE. The largest speedups

were observed on VersaBench/Bmm (2.03x), TSVC/Recurrences-flt (1.4x),

TSVC/Recurrences-dbl (1.37x) and Misc/ffbench (1.22x).

6.3. RQ3: Overhead 51

●

●
●● ● ●●

●

● ●

●

●
●

●

●

● ●

●

●

●

●● ●
● ●1.0

1.5

2.0

08
−m

ain

an
ag

ra
m

bm
m

cfr
ac

co
ns

um
er

_jp
eg

_c

Con
tro

lF
low

−f
lt

Con
tro

lLo
op

s−
flt

db
m

s

es
pr

es
so

Exp
an

sio
n−

db
l

Exp
an

sio
n−

flt

ffb
en

ch

Glob
alD

at
aF

low
−f

lt gs

In
du

cti
on

Var
iab

le−
flt

Lin
ea

rD
ep

en
de

nc
e−

db
l

Lin
ea

rD
ep

en
de

nc
e−

flt

m
ini

GM
G

ne
ur

al

Rec
ur

re
nc

es
−d

bl

Rec
ur

re
nc

es
−f

lt

Sta
te

m
en

tR
eo

rd
er

ing
−d

bl

Sta
te

m
en

tR
eo

rd
er

ing
−f

lt

Sym
bo

lic
s−

flt

tra
m

p3
d−

v4

S
pe

ed
up

● EAE SSE

Figure 6.6: Speedup of optimizations over baseline (ORG) for other benchmarks

The simplest elimination (ESS) was more conservative and yielded speedups in 4 bench-

marks. However, for two of these, the improvements in runtime were slightly better. We

have also observed slowdowns on EAE and ESS. The largest slowdowns were 0.66x (EAE)

observed on TSVC/ControlLoops-flt and 0.75 (ESS) for both TSVC/LinearDependence-

flt and ControlLoops-flt.

6.3 RQ3: Overhead

Figure 6.7 shows the overhead of the profiling techniques proposed in Sections

5.3 and 5.4. Results are given in terms of percentage of the original runtime. To build

the figure, we made the “optimized code section” the same as the unoptimized code;

hence, any change in runtime is due to profiling. When augmented with the ALP profiler

(Section 5.3), the execution time of the Polybench programs has varied within the range

[−6%,+27%]. The few speedups produced by ALP are due to prefetching: perf reveals

that cache misses decreased in cholesky, lu and ludcmp. PLP was more stable: we

could not consistently measure any runtime variation outside the interval [−0.4%,+0.5%].

Notice that each program runs for at least 5s, whereas profiling accounts for milliseconds

of execution. Therefore, we conclude that for long-running applications, the overhead of

PLP profiling is negligible.

6.4. RQ4: Impact in Compilation Time 52

0.3	

3	

1

× PLP

ALP

co
rre

la
tio

n
co

va
ria

nc
e

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

rk
trm

m
2m

m
3m

m
at

ax
bi

cg
do

itg
en m
vt

ch
ol

es
ky

gr
am

sc
hm

id
t lu

lu
dc

m
p

tri
so

lv
fd

td
-2

d

O
ve

rh
ea

d
of

 p
ro

fili
ng

 o
ve

r L
LV

M
 -O

3

Figure 6.7: Overhead of profiling (both pre and intra loop). The Y-axis indicate percent-
ages.

6.4 RQ4: Impact in Compilation Time

Figure 6.8 shows the total compilation time that clang -O3 plus semiring opti-

mization spends on Polybench. For each benchmark, we show: (i) the total time taken

by the optimization passes in clang -O3; (ii) the total time taken to execute the semiring

optimization pass and (iii) the time taken by the standard LLVM analyses and trans-

formations necessary to enable semiring optimization. In this last category, we count

the following LLVM passes: instcombine, early-cse, indvars and loop-simplify.

These passes are necessary to simplify the control flow graph. Notice that the time taken

by clang -O3 varies according to the version of semiring optimization that we use. Varia-

tion happens mostly between the approaches that use profiling (ALP and PLP) and those

that do not (ESS and EAE). This difference is due to the fact that the profiling code is

inserted before LLVM -O3 runs; thus, there will be more code to be optimized.

Inspection of Figure 6.8 reveals that semiring optimization is practical. In absolute

terms, clang -O3 takes approximately 0.30 seconds on average to compile the 20 programs

in Figure 6.8. This number increases by 0.01, 0.01, 0.10 and 0.23 seconds when considering,

respectively, ESS, EAE, ALP and PLP. The time taken by semiring optimization itself is

usually shorter than the time taken by its supporting optimizations.

6.5. RQ5: Comparison with a Specialized Tensor Compiler (TACO) 53

2m
m

3m
m

at
ax

bi
cg

ch
ol
sk

co
rr

co
v

do
it

fd
td

ge
m
m

ge
m
v

ge
su

gr
am l
u

lu
d

m
vt

sy
m
m

sy
rk tri

trm
m

2m
m

3m
m

at
ax

bi
cg

ch
ol
sk

co
rr

co
v

do
it

fd
td

ge
m
m

ge
m
v

ge
su

gr
am l
u

lu
d

m
vt

sy
m
m

sy
rk tri

trm
m

ALP

PLP

EAE

ESS
1

0

1

0

Ti
m

e
(s

)

-O3
Ring Opt
Required

Ti
m

e
(s

)
1

0
1

0

Ti
m

e
(se

c)
Ti

m
e

(se
c)

Figure 6.8: The overhead of Semiring Optimization on compilation time over the baseline
(ORG). Dark gray is the time to compile with -O3. In gray is the time for Semiring
Optimization and light gray the time for optimizations required by RO.

6.5 RQ5: Comparison with a Specialized Tensor

Compiler (TACO)

Semiring patterns are common in linear algebra, as our evaluation on Polybench

indicates. There are compilers specialized in the generation of code for this kind of

applications. We believe that the current state-of-the-art approach in the field is TACO

(short for Tensor Algebra Compiler) [14, 13]. Figure 6.9 compares TACO with clang (plus

our Pre-Loop Profiler). We emphasize that this figure relates two different compilers.

TACO provides different data-structures to represent matrices. We have experi-

mented with dense and sparse representations. In Figure 6.9, DD means that the two

input matrices, e.g., A and B in the product C = A × B, are dense; SD means that A

is sparse, and B is dense. The other representations, DS and SS, follow similar nomen-

clature. ORG (short for ORiGinal) is clang -O3, and PLP is Pre-Loop Profiling, with a

6.6. RQ6: The Impact of Program Inputs 54

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ● ● ●0

1

2

3
0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Ru
nt

im
e

(s
ec

s)

TACO

PLP

ORG

ORG
DS PLP

× DD
SD
SS

ORG

+

for (int i=0; i<n; i++)
 for (int k=0; k<n; k++) {
 float aux = a[i*n+k];
 for (int j=0; j<n; j++)
 c[i*n+j]+=aux*b[k*n+j];
}

5
6

3
2
1

4

Figure 6.9: Comparison between TACO and clang + Pre-Loop Profiling on matrix mul-
tiplication with the j and k loops manually inverted, using [1.5k × 1.5k] matrices.

threshold of 50% of absorbing elements. PLP brings clang -O3 very close to TACO as the

ratio of zeros mounts, whenever matrix B has a dense representation; hence, reducing a 5x

gap to a runtime difference of less than 40%. Nevertheless, clang -O3 plus PLP can never

beat TACO. This result is expected, for we are comparing different programs: TACO uses

special matrix representations, whereas semiring optimization is a general optimization

that avoids unnecessary computations. These techniques are complementary, as semiring

optimizations could also be implemented in TACO.

6.6 RQ6: The Impact of Program Inputs

The optimizations proposed in this paper are dependent on input values—a fact

already observed in Figures 3.3 and 6.9. Figure 6.10 provides more insight on this be-

havior. To prepare this experiment, we have changed the init array routine used in

three PolyBench kernels to insert zeros into the input matrices with the probabilities seen

in the X-axis of Figure 6.10. We show results for three programs: Cholesky, Gemm and

Gramschmidt. We chose these three programs because they are representative of the kinds

of behaviors that our optimization tends to produce.

Cholesky, for instance, already manipulates diagonal matrices. Any flavor of

semiring-optimization is already advantageous in this case, as more than half of every

6.6. RQ6: The Impact of Program Inputs 55

0	

20	

40	

60	

80	

9	

12	

15	

18	

21	

21.5	

22	

22.5	

23	

Cholesky

Gemm

Gramschmidt

× ORG + ESS
̗ PLP ○ EAE

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

Probability that 0.0 will be produced by init_array

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Figure 6.10: Impact of inputs onto three PolyBench programs. X-axis shows probability
of a cell being initialized with a zero, in case its value can vary. Cells are independently
set to zero, and matrices are produced independently.

matrix is set to zero. Nevertheless, Figure 6.10 shows that the code produced by EAE

and PLP runs faster as the density of zeros increases. ESS also enhances performance, but,

this improvement tends to remain constant, regardless of the input. PLP, once past the

optimization threshold, is not strictly equivalent to EAE. For instance, in Gramschmidt,

it yields faster code, because it reduces misses in the data cache (as observed via perf).

In Gemm, the profiling overhead leads to slower code, compared to EAE. Finally, the effect

of ESS: saving one addition and one store is small compared to the elimination of loads

that we obtain with PLP and EAE.

6.7. RQ7: Performance Counters 56

6.7 RQ7: Performance Counters

Figure 6.11 uses performance counters to measure the effect of the different flavors

of semiring-optimizations onto the i-k-j version of matrix multiplication that was evalu-

ated in Section 6.4. In this case, the expression c[i*n+j]+=a[i*n+k]*b[k*n+j] admits

vectorization over all the memory accesses. Figure 6.11 clarifies why simple elimination of

silent stores (ESS, Section 5.1) is not an effective optimization for this particular bench-

mark, whereas EAE (Section 5.2) and PLP (Section 5.4) are. The conditional that ESS

inserts within the innermost loop hinders vectorization completely—LLVM -O3 is not

able to vectorize none of the memory accesses due to that branch.

Both EAE and PLP still support vectorization in this benchmark. To understand

why, we refer the reader to the code in Figure 6.9. When applied onto this code, EAE will

insert a conditional test guarding the load at line 3. The second part of this optimization

moves the forward slice of that load to within the guard. This transformation will ensure

that the innermost loop will be entirely moved inside this guard. Therefore, the innermost

loop can still be vectorized.

Figure 6.11 evidences the point in which the online profiler activates semiring-

optimization. In this experiment, we adopt a threshold of 50%; that is, one the probability

of finding a zero in the input matrix reaches this point, the sampling routine seen in

Figures 3.5 and 5.6 activates the optimized version of matrix multiplication. It is possible

to observe an abrupt change in PLP’s behavior in Figure 6.11 at this moment: PLP stops

following ORG’s pattern, and starts following EAE’s. Figure 6.11 also provides some idea

on the overhead of the profiler, once we observe the number of last-level-cache accesses:

the sampling compromises locality during profiling; hence, more misses in the lower levels

of the cache are, indeed, expected.

6.8 Discussion

The experiments described in this section show that when semiring patterns dom-

inate computations, their elision leads to statistically significant speedups (Section 6.2).

As Figure 6.4 indicates, gains can be dramatic, reaching three-fold levels, as observed

in VersaBench’s bmm. Furthermore, online profiling tends to preserve performance-safety

when applying the optimization: the overhead of the pre-loop profiler is insignificant

(Section 6.5), and its benefits noticeable (Figure 6.4). Nevertheless, it tends to increase

6.8. Discussion 57

0.E+00	

1.E+07	

2.E+07	

3.E+07	

4.E+07	

5.E+07	

6.E+07	

7.E+07	

8.E+07	

L1
 D

 C
ac

he
 L

oa
d

M
is

se
s

1.E+07	

1.E+08	

1.E+09	

1.E+10	

Br
an

ch
 In

st
ru

ct
io

ns

0.0E+00	

5.0E+06	

1.0E+07	

1.5E+07	

2.0E+07	

2.5E+07	

La
st

 L
ev

el
 C

ac
he

 R
ef

er
en

ce
s

0.E+00	

2.E+08	

4.E+08	

6.E+08	

8.E+08	

1.E+09	

L1
 D

 C
ac

he
 S

to
re

s

1.E+04	

1.E+05	

1.E+06	

1.E+07	

1.E+08	

1.E+09	

Br
an

ch
 M

is
se

s

0.0E+00	

5.0E+08	

1.0E+09	

1.5E+09	

2.0E+09	

2.5E+09	

L1
 D

 C
ac

he
 L

oa
ds

0.E+00	

2.E+05	

4.E+05	

6.E+05	

8.E+05	

1.E+06	

1.E+06	

C
ac

he
 M

is
se

s

1.E+08	

1.E+09	

1.E+10	

In
st

ru
ct

io
ns

×ESS (Section 4.1)ORG EAE (Section 4.2) PLP (Section 4.4)

P=
0.

05
P=

0.
10

P=
0.

15
P=

0.
20

P=
0.

25
P=

0.
30

P=
0.

35
P=

0.
40

P=
0.

45
P=

0.
50

P=
0.

55
P=

0.
60

P=
0.

65
P=

0.
70

P=
0.

75
P=

0.
80

P=
0.

85
P=

0.
90

P=
0.

95
P=

1.
00

P=
0.

05
P=

0.
10

P=
0.

15
P=

0.
20

P=
0.

25
P=

0.
30

P=
0.

35
P=

0.
40

P=
0.

45
P=

0.
50

P=
0.

55
P=

0.
60

P=
0.

65
P=

0.
70

P=
0.

75
P=

0.
80

P=
0.

85
P=

0.
90

P=
0.

95
P=

1.
00

Figure 6.11: The effect of semiring-optimizations on the ikj version of matrix multiplica-
tion, seen in Figure 6.9. The X-axis shows the probability that input.

compilation time, although less than two-fold, when compared to the other variants of

semiring optimization discussed in this paper (Section 6.3).

We emphasize that silent semiring expressions are relatively uncommon, at least in

the benchmarks that we have evaluated. They appeared in 126, out of 259 benchmarks;

however, most dynamic occurrences of semiring patterns were not silent—hence, non-

6.8. Discussion 58

optimizable. As a consequence, the optimization that we advocate in this paper is not

as general as classic compiler techniques such as constant propagation or global-value

numbering. Our experience indicates that semiring patterns are most common in linear-

algebra applications. Yet, there are programs outside this domain that also tend to present

semiring patterns. Examples include implementations of SAT solvers over linked lists of

booleans or computation of transitive closures via boolean matrix multiplication.

Because semiring patterns are relatively uncommon, when applied onto large pro-

grams, our optimizations are unlikely to produce the large gains observed in Section 6.2.

We have applied it onto the integer benchmarks in SPEC CPU2006, using the same ex-

perimental setup of that section. The elision of absorbing elements led to statistically

significant gains only in perlbench. When using the reference input, the optimized ver-

sion of perlbench runs in 49.80 seconds. Without the elision of absorbing elements, but

still at the -O3 optimization level, perlbench runs in 51.50 seconds. No statistically

significant running time difference was observed in the other 11 benchmarks, except in

namd. In that case, without the guard inserted by the pre-loop profiler, we perceived a

slowdown (262.9 seconds without the optimization vs 293.80 with it).

59

Chapter 7

Conclusion

This dissertation has described a code optimization technique that avoids certain op-

erations that, depending on the input values, are redundant. We call these operations

semiring patterns. These so called semiring optimizations can be implemented in any

classic compiler, and work in any commodity hardware. Therefore, it was a pleasant sur-

prise that we could observe speedups of almost 2x over clang -O3 in benchmarks such as

Polybench’s Cholesky, which has been used for years in the gcc and LLVM communities.

We have also observed large speedups in other programs available in the LLVM

test suite, such as VersaBench/Bmm (2.03x), TSVC/Recurrences-Flt (1.40x) and

Misc/FFbench (1.22x), all using simple elision of absorbing elements, without the sup-

port of profiling. Thus, we believe that semiring optimizations are a viable and effective

way to improve the quality of the code generated by mainstream compilers.

7.1 Future Work

There are small improvements that can be done to fine tuning the optimization.

First, our implementation of the Program Slicing algorithm requires loops to have the

Single-Entry Single-Exit (SESE) property. This limits us to a subset of programs we can

optimize. The work of [24] could be used to infer array bounds to reconstruct loops.

Second, the framework we propose goes beyond the elimination of semiring patterns that

lead to silent stores (i.e. Figure 1.1(b)). Finally, we think that a just-in-time compiler

would benefit more of this optimization. One compiler that we considered implementing

this optimization was Numba [17]. Numba is a JIT compiler that translates a subset of

Python and NumPy into fast-machine code using LLVM.

60

References

[1] Gordon B. Bell, Kevin M. Lepak, and Mikko H. Lipasti. Characterization of silent

stores. In PACT, pages 133–, Washington, DC, USA, 2000. IEEE.

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan

Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and

Arvind Krishnamurthy. TVM: An automated end-to-end optimizing compiler for

deep learning. In OSDI, pages 579–594, Berkeley, CA, USA, 2018. USENIX Associ-

ation.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, Cambridge, MA, US, 3rd

edition, 2009.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient

method of computing static single assignment form. In POPL, pages 25–35, New

York, NY, USA, 1989. ACM.

[5] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from Linux Kongress,

volume 18, 2010.

[6] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence

graph and its use in optimization. ACM Transactions on Programming Languages

and Systems (TOPLAS), 9(3):319–349, 1987.

[7] Brian Gough and Richard Stallman. An introduction to gcc. Network Theory, Ltd,

2004.

[8] Björn Gustavsson. Introduction to ssa. http://blog.erlang.org/

introducing-ssa/, 2018.

[9] David Hilbert. Die Theorie der algebraischen Zahlkörper. Jahresbericht der

Deutschen Mathematiker-Vereinigung, Germany, 1904.

[10] David G. Hough and Mike Cowlishaw. IEEE standard for floating-point arithmetic,

2019.

[11] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J.

Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiy-

ohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. The superblock: An

http://blog.erlang.org/introducing-ssa/
http://blog.erlang.org/introducing-ssa/

References 61

effective technique for VLIW and superscalar compilation. J. Supercomput., 7(1-

2):229–248, May 1993.

[12] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and

Onur Mutlu. Detecting and mitigating data-dependent dram failures by exploiting

current memory content. In MICRO, pages 27–40, New York, NY, USA, 2017. ACM.

[13] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Amaras-

inghe. Taco: A tool to generate tensor algebra kernels. In ASE, pages 943–948,

Piscataway, NJ, USA, 2017. IEEE Press.

[14] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-

inghe. The tensor algebra compiler. Proc. ACM Program. Lang., 1(OOPSLA):77:1–

77:29, 2017.

[15] Donald Knuth. Arithmetic, chapter 4, pages 194–525. Addison-Wesley, Boston, MA,

USA, 1998.

[16] David J Kuck, Robert H Kuhn, David A Padua, Bruce Leasure, and Michael Wolfe.

Dependence graphs and compiler optimizations. In Proceedings of the 8th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 207–

218. ACM, 1981.

[17] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python

jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infras-

tructure in HPC, page 7. ACM, 2015.

[18] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In CGO, pages 75–, Washington, DC, USA, 2004. IEEE

Computer Society.

[19] Kevin M. Lepak and Mikko H. Lipasti. On the value locality of store instructions.

In ISCA, pages 182–191, New York, NY, USA, 2000. ACM.

[20] Kevin M. Lepak and Mikko H. Lipasti. Silent stores for free. In MICRO, pages 22–31,

New York, NY, USA, 2000. ACM.

[21] Kevin M. Lepak and Mikko H. Lipasti. Temporally silent stores. In ASPLOS, pages

30–41, New York, NY, USA, 2002. ACM.

[22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

References 62

[23] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A.

Bringmann. Effective compiler support for predicated execution using the hyperblock.

In MICRO, pages 45–54, Los Alamitos, CA, USA, 1992. IEEE.

[24] Gleison Mendonça, Breno Guimarães, Péricles Alves, Márcio Pereira, Guido Araújo,

and Fernando Magno Quintão Pereira. Dawncc: Automatic annotation for data

parallelism and offloading. ACM Trans. Archit. Code Optim., 14(2):13:1–13:25, 2017.

[25] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’07, pages 89–100, New

York, NY, USA, 2007. ACM.

[26] Fernando Magno Quintão Pereira, Guilherme Vieira Leobas, and Abdoulaye

Gamatié. Static prediction of silent stores. ACM Trans. Archit. Code Optim.,

15(4):44:1–44:26, November 2018.

[27] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite, 2012.

http://www.cs.ucla.edu/pouchet/software/polybench.

[28] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. Sparse

representation of implicit flows with applications to side-channel detection. In CC,

pages 110–120, New York, NY, USA, 2016. ACM.

[29] Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A. Anderson, and Mikhail

Smelyanskiy. Sparso: Context-driven optimizations of sparse linear algebra. In

PACT, pages 247–259, New York, NY, USA, 2016. ACM.

[30] Johannes Späth. A brief overview of shimple.

https://github.com/Sable/soot/wiki/A-brief-overview-of-Shimple, 2014.

[31] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Maga-

zine, 36(1):42–47, Feb 2011.

[32] JavaScriptCore Team. Bare bones backend - webkit. https://webkit.org/docs/

b3/, 2015.

[33] Mark Weiser. Program slicing. In ICSE, pages 439–449, Piscataway, NJ, USA, 1981.

IEEE.

[34] Shasha Wen, Milind Chabbi, and Xu Liu. REDSPY: Exploring value locality in

software. In ASPLOS, pages 47–61, New York, NY,USA, 2017. ACM.

[35] Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. Watching for software in-

efficiencies with witch. In ASPLOS, pages 332–347, New York, NY, USA, 2018.

ACM.

https://webkit.org/docs/b3/
https://webkit.org/docs/b3/

	Introduction
	Tools and Publications

	Background Information
	Mathematical Definitions
	The LLVM Compiler Infrastructure
	Static Program Analysis
	Literature Review

	Overview
	Generalizing Semiring Optimizations
	A Family of Semiring Expressions
	Safety of Semiring Optimizations in the Floating Point Domain
	Identification of Optimization Points

	Four Variations of Semiring Optimization
	Version 1: Elimination of Silent Stores (ESS)
	Version 2: Elision of Absorbing Elements (EAE)
	Version 3: Intra-Loop Profiling (ALP)
	Version 4: Pre-Loop Profiling (PLP)

	Evaluation
	RQ1: Prevalence
	RQ2: Speedup
	RQ3: Overhead
	RQ4: Impact in Compilation Time
	RQ5: Comparison with a Specialized Tensor Compiler (TACO)
	RQ6: The Impact of Program Inputs
	RQ7: Performance Counters
	Discussion

	Conclusion
	Future Work

	References

