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ABSTRACT 
 

Elastomeric components are essential in engineering field since they isolate vibration, reduce 

noise, accommodate oscillatory movements and allow misalignment between axes. Their 

mechanical properties can vary according to a specific condition, enabling their applications be 

subjected to large deformations under multiaxial loading. Since their constitutive relations are 

highly nonlinear and different for each pure mode of deformation, experimental tests for each 

mode must be performed in order to obtain the proper law which describes the behavior of this 

type of material. In this context, the framework of this study is to develop a methodology based 

on Digital Image Correlation (DIC) applied in biaxial straining under large deformations to 

calibrate the rubber computational modeling by Finite Element Method (FEM) according to 

prototype tests when subjected to a very complex deformation mode. Thus, the validation of 

the adopted methodology has as focus of study a conical rubber spring used in suspensions of 

the railway industry and which is produced by an engineering company. Since the material 

approaches incompressibility, different shape functions were adopted to describe the fields of 

pressure and displacements according to the finite element hybrid formulation. The biaxial 

experiments were performed in a cruciform machine and the applied methodology was 

validated through a classical bulge test. Despite the low biaxiality degree, reasonable results 

were obtained to nominal strain levels higher than 300%, with the proposed methodology. 

Initially, the correlation between axial and radial stiffness under pre-compression was obtained 

by experimental tests in prototypes and virtual modeling developed through a curve fitting 

procedure. Next, aiming to compare the material responses and investigate its mechanical 

behavior under different multiaxial loading conditions, the constitutive parameters were 

accurately adjusted through an optimization algorithm implemented in Python® program 

language for Abaqus®, which calibrates the virtual model according to the prototype test data. 

Final results pointed to a change in material behavior when subjected to radial loading due to 

friction between rubber pads and metal parts as well as due to pre-compression effects. In order 

to take this effect into account a subroutine for adaptive remeshing and mesh mapping solution 

was implemented. Finally, an analytical solution for radial stiffness was proposed taking into 

account the shape factor and compression modulus of the rubber component.  

 

Keywords:  

Elastomers; Hiperelastic Models; Biaxial Extension; DIC; Conical Rubber Spring. 

 

 



 

 

 

RESUMO 
 

Os componentes elastoméricos são essenciais na engenharia, pois isolam a vibração, reduzem 

ruídos, acomodam movimentos oscilatórios e permitem o desalinhamento entre os eixos. Suas 

propriedades mecânicas podem variar de acordo com uma condição específica, permitindo que 

suas aplicações sejam submetidas a grandes cargas multiaxiais. Como suas relações 

constitutivas são altamente não-lineares para cada modo puro de deformação, testes 

experimentais devem ser realizados para obtenção da lei apropriada que descreva o 

comportamento desse tipo de material. Nesse contexto, o presente estudo visa desenvolver uma 

metodologia baseada em Correlação de Imagens Digitais para grandes extensões biaxiais e 

calibração da modelagem computacional da borracha pelo Método dos Elementos Finitos de 

acordo com testes em protótipo quando submetidos a um modo de deformação muito complexo. 

A validação da metodologia adotada tem como foco de estudo uma mola cônica utilizada em 

suspensões de veículos ferroviários, produzida por uma empresa de engenharia. Como o 

material se aproxima da incompressibilidade, diferentes funções de forma foram adotadas para 

descrever os campos de pressão e de deslocamentos de acordo com a formulação híbrida de 

elementos finitos. Os experimentos biaxiais foram realizados no modo cruciforme e a 

metodologia aplicada foi validada através de um bulge test clássico. Apesar do baixo grau de 

biaxialidade, os resultados obtidos foram aceitáveis para níveis de deformação superiores a 

300%, com a metodologia proposta. Inicialmente, a correlação entre rigidez axial e radial sob 

pré-compressão foi obtida por testes em protótipos e modelagem virtual desenvolvida através 

de um procedimento de ajuste de curvas. Em seguida, com o objetivo de comparar as respostas 

dos materiais e investigar seu comportamento mecânico sob diferentes condições de 

carregamento multiaxial, os parâmetros constitutivos foram ajustados por meio de um 

algoritmo de otimização implementado em linguagem de programação Python® para Abaqus®, 

que calibra o modelo virtual de acordo com os dados de teste. Os resultados finais apontaram 

uma mudança no comportamento do material quando submetido a carga radial devido ao atrito 

entre as camadas de borracha e as peças metálicas, bem como devido aos efeitos de pré-

compressão. Para considerar este efeito, foi implementada uma sub-rotina para remalhamento 

adaptativo. Por fim, foi proposta uma solução analítica para rigidez radial, levando em 

consideração o fator de forma e o módulo de compressão do componente de borracha. 
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1  
INTRODUCTION 

 

 

1.1 Project Background 

 

Road and railway vehicles must comply with a large spectrum of objectives including noise 

reduction, ride enhancement, dynamic behavior and/or handling improvement while reducing 

costs. The use of bushing elements can reduce the wear of the components in a mechanism by 

using their energy absorption capacity to decrease transmitted vibrations (LUO et al., 2013; 

SEBESAN et al., 2015). Therefore, laminated elastomeric bearings arranged in a conical shape, 

which is usually known as conical rubber spring, became a very important suspension 

component used between the frame and the axle for railway vehicles. The elastomeric bushings 

are essential in this type of application since they isolate vibration, reduce noise, accommodate 

oscillatory motions and allow axes misalignments (LUO et al., 2001). 

 

The main problem regarding elastomeric materials are the time consuming and costly 

experiments conducted in a trial and error methodology to obtain the mechanical behavior of 

complex shape components during the product development process. This happens due to 

complex constitutive laws for rubber-like materials under multiaxial loading, making it difficult 

to implement a computational simulation procedure. At Vibtech, an engineering company 

which produces rubber-like material components, some difficulties have been found concerning 

Finite Element (FE) modeling and strong divergence appeared when correlation between 

numerical simulation and experimental tests in prototypes was tried. For this reason, a 

partnership was made with this company in order to obtain all information regarding the conical 

rubber spring, experimental tests and design complexity. 
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In Finite Element Analysis (FEA) involving rubbers, some experiments should be performed 

in order to assess the material constitutive law. Thus, for this reason the elastomers physical 

testing often requires experiments in multiple strain states under certain loading conditions.  

 

Several material models are available in the most common computational codes, but at least 

uniaxial and equal biaxial stretching tests are required to fit the model accurately and to extract 

material parameters (HARIHARAPUTHIRAN and SARAVANAN, 2016; LALO and 

GRECO, 2017; SASSO et al., 2008). The uniaxial testing can be performed in a standard tensile 

machine which is easily accessible, but on the other hand the equal biaxial extension is much 

more complex and difficult to implement (MILLER, 2004a). In situations where the elastomer 

is highly constrained, a volumetric compression test may be requested in order to determine the 

bulk behavior, but if the material is considered to be almost incompressible the third basic 

invariant is constant and, hence, does not contribute to the stored energy (ZIMMERMANN and 

STOMMEL, 2013a). 

 

The main strain states are simple tension, pure shear and simple compression. For experimental 

reasons that will be discussed further on, the compression test will be replaced by the equal 

biaxial extension, which is much more complex than the simple compression experimental test. 

Thus, in order to have a more accurate material model, the Author developed an innovative and 

more efficient way of computing stress-strain relations based on biaxial extension to obtain the 

compressive strain and consequently the force-displacement relationship obtained by FEA 

necessary to determine the conical rubber spring stiffness.   

 

The biaxial experimental tests were performed in the “Technische Mechanik” lab from Saarland 

University and consisted of a classical cruciform device controlled by four step engines 

symmetrically triggered and headed according to a high performance embedded controller, 

during a sandwich doctorate cooperation project. The biaxial deformation was captured in the 

center of the specimen through GOM Correlate®, a free Digital Image Correlation (DIC) and 

evaluation software. A bulge test was also conducted, but data were evaluated in the VIC-3D® 

software from correlated solutions, since the calibration pattern was related to this software. 

 

The main concern about this methodology development was to obtain by computational 

simulation the stiffness response due to changes in design such as the number of elastomeric 

layers, the cone tilt angle and the rubber thickness without having to build new prototypes. 
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The contact surfaces were also studied using the FE commercial software Abaqus® to represent 

the interaction between rubber and metal parts. 

 

1.2 Objectives 

 

The main focus of the present Dissertation is to develop a methodology to correlate the FE 

modeling of a conical rubber spring with the prototype experimental data under different 

multiaxial deformation loads.   

 

The methodology was applied to evaluate the axial and radial stiffness under pre-compression 

of a real component in some certain working load conditions, where the final FE model has to 

be able to describe the real mechanical behavior of complex rubber bushings and to work 

effectively in the simulation. 

 

In order to reach the proposed objective some steps were performed: 

 

• For the purpose of fitting material models in FEA, the elastomers physical experiments 

were performed in uniaxial simple tension and simple compression which could also be 

represented by the equal biaxial extension test; 

 

• Since the equal biaxial extension is one of the most challenging tests and is highly 

discussed in the literature concerning the accuracy of the uniform deformation region, 

a new method for obtaining the nominal stress-strain relationship was proposed. The 

validation was conducted by numerical simulations and biaxial extension experiments, 

which were treated according to the proposed methodology for large strains;   

 

• An optimization algorithm was implemented in Python program language for Abaqus® 

in order to obtain the material parameters from FE simulations accurately adjusted 

according to the prototype test data. In the case of radial deflection, the optimization 

algorithm was implemented aiming to calibrate the responses considering the effects of 

a vertical pre-compression load. In addition, a subroutine for adaptive remeshing and 
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mesh mapping solution was implemented to regenerate the distorted mesh and to 

account the material constitutive behavior changes over the solution process; 

 

• Finally, an analytical solution for radial deflection when the component is in the pre-

compression free condition was developed based on simple rubber bushing geometries. 

 

The effectiveness of the proposed approaches applied for the present Dissertation were 

demonstrated through the comparison with results obtained from the FE model and prototypes 

tests. From the final results, the main challenges involved in the finite element hyperelasticity 

simulation of rubber-like material real components under different cases of multiaxial loading 

and pre-compression could be stated. 

 

1.3 Problem statement 

 

Since new products development has always been increasing, several efforts have been focused 

on reducing time and costs. As the usual prototype-construction is generally very expensive and 

time-consuming, numerical simulation tools like the finite element method should become 

more reliable.  

 

Even though a number of materials are available, elastomers play an important role in the 

product properties definition since it fulfills a wide range of functional tasks. Their typical 

applications are related to vibration damping, acoustic insulation, sealing, coupling, tires, 

consumer goods and so on. The high elasticity, considerable durability and the ability to support 

large deformations under external forces are their basic characteristics (EYERER et al., 2008; 

GENT, 2012).  

 

In railway industry the rubber springs are very useful, since they accommodate oscillatory 

motions and allow axes misalignments. They are located in the primary suspension, between 

the bogie frame and the axle box. Although a wide range of geometries can be found in order 

to fulfill user requirements, the conical rubber spring is one of the most used designs, since it 

acts as a universal damping and guiding element (LUO et al., 2001; SEBESAN et al., 2015). It 

consists of rubber pads bonded on its inner and outer metal surfaces layers conically arranged. 
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Thus, it is worth mentioning that this component needs to combine high stiffness for axle-

guiding and an optimally vertical rigidity due to damping purposes. 

 

Besides the conical rubber spring, the most common rubber components are subjected to 

different multiaxial loading cases in the real working conditions. For this reason, choosing a 

proper material model to be implemented in the numerical simulations is necessary to better 

describe the component behavior under each loading case (CHEVALIER et al., 2001).  

 

Since rubbers are materials that exhibit nearly incompressible behavior and often experience 

high strains in service, their strain states are usually very complex. Thus, their mechanical 

behavior should be defined based on strain energy potentials formulated according to the 

hyperelasticity theory. They are a mixture of tension, compression and shear with a very small 

amount of volume change.  

 

The strain energy density function (𝑊) defines the strain energy stored in the material per unit 

of reference volume. This function depends on the principal stretches or invariants of the strain 

tensor and it is directly linked to the material’s stress-strain relationship which depends on a 

series of parameters (material constants) (LALO and GRECO, 2017). Therefore, in order to 

assess the rubber-like material constitutive law, some experiments should be performed for 

input data into curve fitting procedures for the Finite Element Analysis (FEA).  

 

Several published works related to rubber bushing have been extensively researched since last 

decades. The first studies have been performed by Adkins and Gent (1954), who found a 

formulation to predict the stiffness variation according to the bushing length for four principal 

modes of deflection termed: torsional, axial, radial and tilting. Hill (1975a; b; 1977) performed 

studies related to the radial deformations of bonded cylindrical rubber bush mountings and its 

pre-compression effect. Petek and Kicher (1987) experimentally investigated the nonlinear 

behavior of a shear bushing with conical ends focusing on the axial quasi-static load/deflection 

properties.  

 

In addition to the empirical bushing models, constitutive modeling through FEA has also been 

studied. Despite the main challenges about computational efforts and time-consuming process, 

Morman and Pan (1988) performed studies comparing the closed-form analytical equations 

developed for the application in the design of elastomeric components and simulation response 



25 

 

 

through FEA. They argued that the closed-form equations should not provide accurate results 

in case of more complicated geometries and complex boundary conditions.  

 

Besides the studies presented above, Horton et al. (2000a; b) and Horton and Tupholme (2006) 

derived more accurate expressions for annular rubber bush mountings subjected to radial 

loading and tilting deflection based on the classical theory of elasticity. In the meantime, Luo 

et al. (2001) obtained the stress state of a simplified conical rubber spring by FEA according to 

the von Mises criterion. They compared the prototype experimental data with simulations, but 

only focusing on strength and durability of metal parts of the system. Kadlowec et al. (2003) 

performed studies in which annular bushings were subjected to radial, torsional and coupled 

radial-torsional modes of deformation. They compared the elastic bushing response obtained 

experimentally with finite element results. As far as the torsional mode was concerned, Horton 

and Tupholme (2005) derived new closed-form expressions for the torsional stiffness of 

spherical rubber bush mountings in the two principal modes of angular deformation. Despite 

the reasonably agreement of some analytical relationships, there have been some limitations in 

the use of closed-form equations, not being possible to cover all the real situations. 

 

Thus, since the last ten years the modeling of rubber components through the finite element 

method has been increasingly used. Gil-Negrete et al. (2006) predicted the dynamic stiffness 

of filled rubber isolators using a finite element (FE) code. Olsson (2007)  presented a method 

to analyze the dynamic behavior of rubber components under radial loading by considering an 

overlay of viscoelastic and elastoplastic finite element models. Gracia et al. (2010) studied two 

types of filled rubber industrial components subjected to several loads using FE analysis with 

the overlay model. In more recent studies, Tobajas et al. (2016) compared six hyperelastic 

models to simulate the behavior of a rubber used in automotive engines. Finally, Lee et al. 

(2017) proposed a hybrid method based on FEA and empirical modeling to obtain the hysteresis 

of suspension rubber bushings and predict the dynamic stiffness without performing iterative 

experiments and avoiding high computational costs. 

 

Since the rubber properties for FEA should be defined from experimental data, Seibert and his 

co-workers (2014) studied an optimized specimen’s shape through biaxial extension to calibrate 

the hyperelastic material parameters for the simulation of an engine mount placed in a car under 

multiaxial loading. Furthermore, Kaya et al. (2016) simulated the behavior of a vehicular rubber 

bushing using FEA and performed the shape optimization to redesign its geometry and to meet 
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the target static stiffness curve. Lalo and Greco (2017) compared the rubber bushing behavior 

extracted experimentally with hyperelastic models based on shore hardness and uniaxial 

extension.  

 

At this point, it is worth mentioning that this Dissertation should be of value not only to the 

rubber industries, but also to the description of certain biomaterials, including soft tissues, cells 

and the DNA, which can be represented by hyperelastic models (FUNG, 1993; 1994). This 

happens since the biological molecules are mainly long chains of covalently bonded carbon and 

hydrogen atoms witch can be modeled by entropic elasticity (TRELOAR, 1975). Some research 

have shown that pathological soft tissues show different elastic behavior, as compared to 

healthy tissues. For example, the cancerous tissue is 3–7 times stiffer than the normal tissue 

(KROUSKOP et al., 1998). Diabetes can increase the stiffness of the soft tissues of feet, causing 

pain in the region of the heel (ZHENG et al., 2000). Nowadays with the overwhelming advance 

in 3D printing technology some breakthroughs in biomaterials (JAMMALAMADAKA and 

TAPPA, 2018; LIU and LI, 2018) and hyperelastic metamaterials (BODAGHI et al., 2017; 

MANSOURI et al., 2018) have been made. Recent studies have also been related to the 

hyperelastic bone (ALLURI et al., 2018; JAKUS et al., 2016), a 3D-printed synthetic material 

in which consists of an intricate latticework, designed to support the growth and regeneration 

of the new bone. 

 

Based on the apparent extent of earlier works in modeling rubber-like materials, it is possible 

to state that the hyperelastic constitutive models predefined in finite element codes can be able 

to simulate geometry-independent components. However, some challenges need to be 

overcome when dealing with different multiaxial loading cases under large strains. In this 

situation, the present work seeks to develop a methodology based on curve fitting procedures 

for the main pure modes of deformation and optimization algorithms to characterize the 

hyperelastic constitutive model according to the applied multiaxial loading. Although the 

loading directions are axial and radial, the complex geometry of the component results in 

multiaxial modes of deformation on the rubber pads. According to the final results, it will be 

shown that special care should be taken when the load direction is changed and the previous 

characterization cannot be valid anymore. 
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Therefore, the wide range of hyperelastic materials application justifies a high research interest 

in their characterization through experimental techniques and in the study of accurate 

constitutive models able to describe their particular behavior. 

 

1.4 Manuscript organization 

 

The organization of this Dissertation will be done as follows: 

 

• In the present chapter one, some introductory considerations were made in order to 

emphasize the relevance of the theme, considering the justifications, objectives and 

organization of the text. 

 

• The second chapter presents a brief literature review about the rubber general 

characteristics (molecular structure, manufacturing process and mechanical properties). 

It also describes the hyperelastic constitutive relations and the experimental tests for 

fitting the material stress-strain curves into the FEA. An explanation about the conical 

rubber spring characteristics, geometry and applications is also approached in this 

chapter.  

 

• In the third chapter the methods adopted to achieve the proposed objectives are 

presented. It contains the laboratory apparatus description and how the different rubber 

tests had been performed. The FE methodology used for all the structural calculation 

involved in this project is also explained in this chapter, including a brief description 

about the boundary conditions adopted. 

 

• The fourth chapter shows the uniaxial and equal biaxial experimental results and its 

correlation with FEA. A comparison between equal biaxial and simple compression test 

considering both an oily and rough surface is also presented. Only for knowledge, a 

hardness test of the rubber is shown in this chapter. In addition, as for prototype tests, 

its experimental results and respective correlation with FEA based on data fitting and 

optimization algorithms can be found in this chapter together with the analytical solution 

developed for radial stiffness when the component is subjected free of pre-compression. 
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• The fifth and last chapter is addressed to the final conclusions about the applicability of 

the implemented methods and final results obtained. This chapter also suggests 

recommendations and proposals for future work.   
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2  
LITERATURE REVIEW 

 

 

2.1 Rubber general characteristics 

 

Rubber is a collective name for a large group of materials with different chemical compositions 

but similar molecular structure and mechanical properties. The name “rubber” was originated 

from the pencil erasing property, since it could be used to erase or "rub out" mistakes made 

with a pencil. In the 18th century, it started to be used in the manufacturing of suspenders and 

straps. Many products were impregnated with rubber to make them waterproof, but its 

performance was still poor and used to cause major changes in products due temperature 

variation. Then, in 1839 Charles Goodyear discovered accidentally the vulcanization process, 

making the rubber an elastic material capable of preserving its characteristics over a wide 

temperature range (HANHI et al., 2007). The fact that all rubbers are highly elastic polymers, 

that is, their shapes are recovered after being stretched or deformed, justifies the origin of the 

more descriptive name elastomer. 

 

The common physical properties measured in rubber compounds include hardness, ultimate 

tensile strength, ultimate elongation, rebound resilience, aging resistance, tear resistance, 

weather resistance and fatigue resistance. 

 

A very important process called vulcanization converts the plastic raw elastomeric material into 

a solid with elastic consistency. The vulcanization is a chemical process where the long 

molecular chains are linked together and thereby a stable and highly elastic matrix is formed. 

In general, the cross linking is enabled by a small amount of sulfur that is mixed with the plastic 

raw material. When the mixture is heated to about 150°C, the vulcanization process starts and 

cross-links are formed, connecting the molecular chains (CHEN et al., 2017). 
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After vulcanization process, a flexible, resistive, three-dimensional chain is constructed, and 

then the material has an established structure and shape, becoming a soft, elastic solid. Its 

deterioration also becomes significantly slower, being able to be accelerated when exposed to 

ultraviolet radiation (GENT, 2012). 

 

According to Morton (MORTON, 2013), rubber formulations are not simple and they are 

generally composed of a base rubber, fillers/oil system and a curing agent for vulcanization 

process. In general, the materials added in the rubber composition can be classified into the 

main following categories: 

 

• Elastomers: The basic component of the rubber, selected in order to obtain the final 

physical properties of the product. It can be rubber alone, rubber-oil masterbatches, 

rubber-carbon black, reclaimed rubber, or thermoplastic elastomers. 

• Processing Aids: Materials used to modify the rubber during mixing or during the 

processing steps. They are useful to help extrusion, calendering or molding operation. 

• Vulcanization Agents: These materials are necessary for vulcanization in natural rubber. 

Without the chemical crosslinking reactions involving these agents, no improvement in 

the physical properties of the elastomers can occur. 

• Accelerators: These ingredients reduce the vulcanization time (cure time) by increasing 

the rate of chemical reactions between compound molecules. In most cases the 

mechanical properties of the products are also improved. 

• Accelerator Activators: They react with the accelerators in order to obtain maximum 

benefits from the acceleration process. Since they increase vulcanization rates, they are 

able to improve the final product’s properties.   

• Age-Resistors (Antidegradants): Antioxidants, antiozonants and other materials used to 

reduce aging processes in vulcanizates. They work by slowing the deterioration of 

rubber products, in which occur through reactions with an environment that causes 

damage to elastomer integrity, such as oxygen, ozone, light, heat, radiation, among 

 others. 

• Fillers: These materials are used to reinforce or modify physical/mechanical properties, 

to transmit processing properties and/or to reduce costs. 
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• Softeners: These materials when added to the rubber aid the molecules to interact better 

with each other within the blend. They promote higher elasticity, adhesion or replace a 

portion of rubber hydrocarbon without loss of physical properties. 

 

Additional components may include colors, antioxidants, adhesion agents, flame retardant 

agents, blowing aids, abrasives and many other special process-enhancing chemical additives. 

Every component of a rubber formulation may affect its physical properties, where the mixing 

and curing process is also critical to define. Changes to improve one compound property may 

affect other properties, positively or negatively (DICK, 2014). 

 

2.1.1 Molecular structure 

 

Rubber is a collective term for macromolecular substances of natural (Natural Rubber - NR) or 

synthetic origin (Synthetic Rubber - SR), which are amorphous and composed by long 

molecular chains. 

 

The rubber structure is composed of isoprene which is polymerized to give the polyisoprene 

polymer. The isoprene polymerization may follow either of two pathways: cis-polymerization 

(Figure 2-1a) or trans-polymerization (Figure 2-1b). The rubber formed from cis-

polymerization is called cis-polyisoprene or Natural Rubber. Similarly, the rubber formed from 

trans-polymerization is called Synthetic Rubber (SHANKS and KONG, 2013). 

 

 

 

(a) 

 

(b) 

 

Figure 2-1: Rubber molecular structure (a) Cis (b) Trans. 

Source: Shanks and Kong (2013) 
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Natural rubber is prepared from latex which is a colloidal solution of rubber in water. It has 

elastic properties and undergoes long range reversible extension even if relatively small force 

is applied to it. 

 

Synthetic Rubber is an artificial rubber which is used as a substitute for the natural one. It is a 

by-product of petroleum and obtained by polymerization or polycondensation of unsaturated 

monomers. A wide range of different synthetic rubbers have emerged, reflecting the various 

different applications they are required. 

 

The elastic properties of elastomers stem from a few crosslinks between the molecular chains 

(Figure 2-2) which are generated by crosslinking reactions between the macromolecules.  

 

 

 

Figure 2-2: Elastomer structural diagram. 

Source: Tomanek (1993) 

 

The elasticity is derived from the ability of long molecular chains to stretch and to orient 

themselves at the straining direction. Thus, it is possible they reconfigure themselves to 

distribute an applied stress. The covalent cross-linkages ensure that the elastomer will return to 

its original configuration after the stress is removed. As a result of this extreme flexibility, 

elastomers can reversibly extend from 5% to 700%, depending on the specific material. These 

all are possible because the repeated molecular units in the polymer can rotate freely about the 

bonds joining the units. Without the cross-linkages or with short uneasily reconfigured chains, 

the applied stress would result in a permanent deformation (WHITE et al., 2009).  

 

Since the deformation is related to the straightening of chains, there is little volume change 

under an applied stress. Hence, it is possible to say that elastomers are nearly incompressible. 
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Reinforcing fillers such as carbon-black are added in order to increase the material stiffness and 

for some applications, to increase the resistance to wear. Carbon-black consists of very small 

particles of carbon (20nm – 50nm) that are mixed into the raw rubber base before vulcanization. 

The filler and the elastomeric material are not chemically joined. They are separate phases in 

the vulcanized rubber connected only by the cross-links. The rubber phase forms a continuous 

network, and the filler material forms agglomerates inside the rubber network. The material is 

thus a two-phase material made from constituents with completely different mechanical 

properties (DICK, 2014). Figure 2-3 better illustrates the carbon-black-filled rubber 

microstructure. 

 

 

 

Figure 2-3: Microstructure for a carbon-black-filled vulcanized rubber. Grey circles: carbon-

black particles. Solid lines: polymer chains. Zigzag and dashed lines: crosslinks. 

Source: Olsson (2007) 

 

Currently more than 42 standard commercial grades of carbon black are available to the rubber 

compounder. Some rubber formulations will use more than one grade of carbon black to balance 

the compound performance properties, adding further to the complexity (DICK, 2014). 

 

Some fillers which do not impart the black coloration to the rubber can also be found, they are 

known as white fillers and are divided into non-reinforcing fillers and reinforcing fillers. Both 

are used to increase the viscosity of the vulcanizates, but non-reinforcing fillers can cause a 
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decrease in the mechanical quality of the material (generally for cost reduction) whereas 

reinforcing fillers provide hardness gain and mechanical resistance, among other important 

properties (MORTON, 2013). The main and most commonly used substances known as white 

fillers are: kaolins, calcium carbonates, hydrated silica and the silicates. 

 

2.1.2 Manufacturing process 

 

Vulcanized polymers are generally not used without compounding. Various additives like 

curing additives, protective system, reinforcing agents, cheapeners and other process aids have 

to be mixed to the polymer to make a coherent homogenous mass of all these ingredients 

 

Due to the partly elastic nature and very high viscosity of rubber, power intensive sturdy 

machinery like mixing mills or internal mixers is necessary to achieve the mixing of additives 

into the polymer. The ingredients are in form of liquids, solid powders or solid agglomerates. 

 

The mixing of solid raw materials into the polymer occurs in phases. During subdivision, large 

lumps or agglomerates are several times broken down into smaller aggregates at controlled 

temperatures for suitable incorporation into the rubber. 

 

The ingredients incorporation is a very slow process. After an intensive mixing, the 

agglomerates and particles moves from one point to another increasing the randomness of the 

mixture. The powdery mass is compacted in another machine and then fed to the internal mixer. 

 

Vulcanization and shaping are combined in the so-called molding process. The rubber filler mix 

is inserted into the mold cavity and heated to the appropriated temperature. Afterwards, the 

vulcanization process begins. The curing time is dependent on the temperature, the unit size 

and the appropriate heat is transferred to the unit. Engineering applications are often composed 

of both rubber and steel. The attached steel parts are used to connect the rubber unit to other 

structures or to increase the stiffness of the unit. It is possible to attach steel parts to the rubber 

material in the molding process. The steel parts are bonded, very efficiently, to the rubber. 

 



35 

 

 

The bond can be stronger than the rubber material itself in the sense that a rupture in a 

manufactured rubber-steel unit usually occurs in the rubber and not at the bonding surface 

between rubber and steel. 

 

2.1.3 Mechanical properties 

 

The most prominent feature of vulcanized rubbers is the elastic property. The ability to store 

large amounts of strain energy and to release most of it during unloading phase is a primary 

function. However, the more filler is mixed in the compound, the less elastic and stiffer becomes 

the material.    

 

Another rubber characteristic is the large difference between shear modulus and bulk modulus. 

An example is a typical carbon-black-filled vulcanized rubber where the shear modulus (around 

1MPa) is much lower than the bulk modulus (around 2000MPa). The large volumetric stiffness 

compared to the shear stiffness indicates a nearly incompressible behavior (FREAKLY and 

PAYNE, 1978). 

 

Although rubber is a highly elastic material, it is not perfectly elastic. A difference is always 

observed between the loading and the unloading curves in a stress-strain diagram. This 

phenomenon is referred to as hysteresis, and is illustrated in Figure 2-4.   

 

 

 

Figure 2-4: Hysteresis curve for natural rubber. 

Source: Adapted from Shanks and Kong (2013) 
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The enclosed area by the loading and unloading curves represents energy dissipated mainly as 

heat. For free vibrations this phenomenon causes the amplitude decrease, and for this reason its 

property is therefore termed as damping capacity. In cyclic loading, the stress softening (or 

Mullin’s effect) is another phenomenon which has to be considered and will be discussed 

further in this Dissertation.  

 

The filler phase has a very small stress strength capacity as compared to the rubber phase. They 

can be regarded as rigid inclusions embedded in the rubber matrix. Consequently, stress and 

strain in the rubber phase of filled elastomeric units will reach higher levels than an unfilled 

unit. The maximum elongation will also be affected and it will be decreased by adding fillers. 

This effect due to filler adding on the rubber phase is called strain amplification. According to 

Chen et al. (2013) the rubber stiffness is classified by a hardness value. It is measured by an 

indentation test with three different shapes of indenter: spherical, conical or cylindrical. In the 

experimental test, a constant force is applied and the vertical displacement of the indenter’s tip 

is measured.  

 

There are two standard test methods used for measuring the rubber hardness: the IRHD 

(International Rubber Hardness Degrees) and the SH (Shore Hardness). The tests scales are 

almost identical for rubbers in the range of 30-80 IRHD where most rubbers mixes belong. The 

hardness test gives an indirect measure of the elastic modulus. This is sometimes the only value 

available for the material modulus. The relationship between the elastic modulus “𝐸” and 

hardness in terms of shore scale is indicated in Figure 2-5 (ISO 7619-I, 2010; ISO 7619-II, 

2010). 
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Figure 2-5: Relationship between the elastic modulus E and the shore hardness SH. 

Source: Adapted from Göbel (1978) 

 

The temperature is an important factor as well. When the polymer is below glass transition (𝑇𝑔) 

temperature, there is insufficient thermal energy to overcome the activation energy for 

segmental motions and it will be glassy, that is a hard and relatively brittle state. If the 

temperature of a polymer is above 𝑇𝑔, segmental motions will occur and the polymer will 

exhibit an elastomeric behavior. When the temperature is within the glass transition range the 

polymer will be predominately viscoelastic. Thus, to obtain an effective elastomer, the polymer 

should be at a temperature higher than its 𝑇𝑔. Elastomeric performance at ambient temperatures 

(20–25 ºC) effectively requires 𝑇𝑔 in the range of -70 to -20 ºC for an effective instantaneous 

reversible response to occur (GENT, 2012; SHANKS and KONG, 2013). 

 

According to Figure 2-6 it is possible to see the expected results for a tensile test considering 

the three states of a polymer: glassy, crystalline and rubbery. 
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Figure 2-6: Stress-strain curves for a polymer in its three physical states: glassy, crystalline 

and rubbery. 

Source: Gent (2012) 

 

When the polymer becomes crystalline, it undergoes a series of changes until it reaches the 

rupture, such as: elastic deformation, yielding, plastic flow, necking, strain hardening and 

rupture (GENT, 2012).  

 

2.2 Rubber nonlinear elasticity  

 

In this section, a brief overview of the basic equations which describe the response of an 

incompressible isotropic nonlinear elastic material is provided. As the presented theory is 

focused on incompressible materials, a more general description of the nonlinear elasticity 

encompassing volume changes can be found in the works of (BORST et al., 2012; CRISFIELD, 

2000; HOLZAPFEL, 2000; OGDEN, 1984). 

 

In continuum mechanics, the finite strain theory (also called large deformation theory) deals 

with deformations in which both rotations and normal strains are arbitrarily large. In this case, 

the undeformed and deformed configurations of the continuum are significantly different and a 
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clear distinction has to be made between them. This is commonly the case of elastomers, 

plastically-deforming materials and biological soft tissues.  

 

Based on a constitutive law, an ideal material model can be described and the predictions of 

this law should provide an accurate approximation to the actual behavior of a real material 

(HOLZAPFEL, 2000) 

 

The hyperelastic constitutive models are able to describe the behavior of nearly incompressible 

materials that exhibit instantaneous elastic response up to large strains. They are expressed in 

terms of a strain energy density function (𝑊) which defines the strain energy stored in the 

material per unit of reference volume. This function depends on the principal stretches or 

invariants of the strain tensor and it is directly linked to the material’s stress-strain relationship 

which depends on a series of parameters (material constants). In order to determine these 

constants, the nominal stress-strain data obtained from experimental tests are required to fit 

most models theoretical behavior available (BORTOLI et al., 2011).  

 

Based on hyperelasticity theory, the mechanical behavior of elastomers, foams and many 

biological tissues can usually be defined. Since elastomers are materials that exhibit nearly 

incompressible behavior and undergo large strains in service, its states of strain are usually very 

complex (LALO and GRECO, 2017). They are a mixture of traction, compression and shear 

with a very small amount of volume change.  

 

This class of material still represents an elastic material, which means that it will return to its 

original form after the applied effort is removed. The main difference to the linear elastic 

material is that the hyperelastic stress-strain relationship derives from the function 𝑊 and not 

from a constant factor. This definition says nothing about the Poisson's ratio, but since the 

material is nearly incompressible, the Poisson’s ratio is considered to be close to 0.5 (JAKEL, 

2010). 

 

Several mathematical constitutive theories for hyperelastic large-strain response in quasi-static 

conditions and without irreversible strain phenomena have been extensively studied since last 

decades and are basically defined in two main theories: phenomenological or micromechanical.  
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The phenomenological models capture the overall behavior of some polymers and fit their 

experimental data with reasonable accuracy aiming to minimize computational effort. The first 

representative formulations were developed in the works of Mooney (1940) and Rivlin (1948a; 

b). The authors’ approach was based on the strain invariants and in the concept that the material 

is isotropic and incompressible. Later, Rivlin and Saunders (1951) have proposed a new 

constitutive model, currently known as Mooney-Rivlin. In the 90s, Yeoh (1990; 1993) proposed 

a model by truncating the polynomial series to the first invariant and added more terms in order 

to increase accuracy. The simplest form of Rivlin’s strain energy function is the Neo-Hookean 

model, based only on the first term  (YEOH, 1993). The phenomenological models can also be 

formulated in terms of principal stretches as in Valanis and Landel (1967), and Ogden (1972).  

 

On the other hand, the micromechanical models are based on statistical mechanics to capture 

the network evolution of cross-linked polymer chains and to predict the three-dimensional 

material response. These models can be applied to unusual polymers types, being first studied 

in the works of Flory and Rehner (1943), James and Guth (1943), Treloar (1943a; b; 1946) and 

Wang and Guth (1952). Latter, other classical models such as van der Waals proposed by Kilian 

et al. (1986), Arruda-Boyce (1993) and Gent (1996) were developed and nowadays are 

implemented in the most common FEA commercial software packages.  

 

Additional documentation on this research topic including other theories and conditions can 

also be found in Al Akhass et al. (2014), Beda (2007), Cao et al. (2017), Carroll (2011), 

Destrade and Ogden (2010), Destrade et al. (2017), Drozdov (2007), Horgan (2015),  Lambert-

diani and Rey (1999) and Veronda et al. (1970). 

 

Initially, an introduction to the nonlinear continuum mechanics is approached and following 

the hyperelastic constitutive relations assigned to rubbers will be discussed. 

This Dissertation will focus on the constitutive models which have been implemented into the 

most common computational codes (ANSYS INC., 2014; MSC, 2016; SIMULIA, 2016). A 

quick review of the different models (Polynomial, Neo Hooke, Mooney–Rivlin, Yeoh, Ogden, 

Arruda–Boyce, Gent and van der Waals) will be given in the next sections, showing their 

characteristic formulations and how they are able to fit experimental data of uniaxial and equal 

biaxial extension tests. 
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Thus, after data fitting it is possible to simulate the mechanical behavior of a hyperelastic 

component into FEA codes and verify how simulations data are comparable to experimental 

ones. 

 

2.2.1 Description of deformation and motion 

  

To describe deformation properties of a body it is necessary to find the relation between the 

initial (not deformed) and final (deformed) positions. For a generic material point “𝑃” in the 

body, the initial position will be the reference configuration of this elastic body (𝑅0) and its 

position vector “𝑿” is relative to an arbitrary chosen origin. Application of mechanical forces 

deforms the body, so that the initial point from 𝑿 occupies a new position vector “𝒙” in the 

deformed configuration which is denoted by 𝑅𝑡 (Figure 2-7). The reference system orientation 

is such that the loading directions for all cases are parallel to the Cartesian coordinate axes 

(PANCHERI and DORFMANN, 2012). The reference configuration can be denoted by 

material or Lagrangian coordinates and the deformed configuration by spatial, current or 

Eulerian coordinates (MAL and SINGH, 1991). 

 

 

 

Figure 2-7: Representation of a generic material point “P” from the reference to deformed 

configuration. 

Source: Adapted from Mal and Singh (1991) 
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Thus, the motion of a body can be described by a transformation function 𝜑, defined according 

to the coordinates (𝑋1, 𝑋2, 𝑋3) from the vector 𝑿 and (𝑥1, 𝑥2, 𝑥3) from the vector 𝒙 at time "𝑡" 

(DOGHRI, 2000): 

 

𝒙 = 𝜑(𝑿, 𝑡) ;        𝑿 = 𝜑−1(𝒙, 𝑡)        (2-1) 

 

Equation (2-1) can be interpreted as a mapping function which relates the reference 

configuration to the deformed configuration and describes the body motion.  

 

This deformation is completely described by the second-order Cartesian tensor “𝑭” called 

deformation gradient tensor and defined by: 

 

𝑭 = ∇𝒙 (2-2) 

 

where ∇ denotes the gradient operator with respect to 𝑿. The Cartesian components of 𝑭 are 

𝐹𝑙𝐾  =  𝜕𝑥𝑙/𝜕𝑋𝐾, where 𝑙 =  1, 2, 3 and 𝐾 =  1, 2, 3. 

 

Since 𝒙 = 𝑿 + 𝒖 where 𝒖 is the displacement, the deformation gradient can also be given by: 

 

𝑭 = 1 +
𝜕𝒖

𝜕𝑿
= 𝑰 + 𝛻𝒖 ;        where 𝑰 is the identity tensor (2-3) 

 

From the undeformed and deformed length relationships of an infinitesimal fiber of material, 

the expressions for infinitesimal volume variation in both configurations can be defined by the 

mixed product calculation (DOGHRI, 2000; OGDEN, 1984): 

  

𝑑𝑉 = 𝑑𝑿1. (𝑑𝑿2 × 𝑑𝑿3) = (𝑑𝑿1, 𝑑𝑿2, 𝑑𝑿3) (2-4) 

 

𝑑𝑣 = 𝑑𝒙1. (𝑑𝒙2 × 𝑑𝒙3) = (𝑑𝒙1, 𝑑𝒙2, 𝑑𝒙3) (2-5) 

 

Thus, the volumetric relationship between both configurations is derived as follows: 

 

𝑑𝑣 = (𝑭. 𝑑𝑿1, 𝑭. 𝑑𝑿2, 𝑭. 𝑑𝑿3) = |𝑭|𝑑𝑉 (2-6) 
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The determinant of 𝑭 is called the functional determinant or the Jacobian1 “𝐽”, which must be 

greater than zero for a continuous deformation to be physically possible. If the material is 

considered incompressible, 𝐽 = 1, that is, the initial volume is equal to the final volume. 

 

𝐽 = det[𝐹𝑙𝐾] = |𝑭| > 0 (2-7) 

 

From equation (2-2), it is possible to see that the transformation of all infinitesimal line elements 

in the neighborhood of the material points is described by the values of the 𝑭 at that point. 

However, the general motion of a line element consists of rigid translation and/or rotation, as 

well as a deformation caused by the material stretching containing the line element (MAL and 

SINGH, 1991). 

 

From the statement above, the displacement of a body has two components: a rigid-body motion 

and a deformation. The rigid-body motion consists of a simultaneous translation and rotation 

of the body without changing its shape or size, and deformation on the other hand, implies the 

change in shape and/or size of the body from an initial or undeformed configuration to a current 

or deformed configuration. 

 

Since 𝑭 is asymmetric and the major interest is in the deformational properties of the solid, it 

is necessary to identify and separate out the part of 𝑭 that describes the rigid translation and 

rotation of the element. Thus, this can be accomplished as the deformation gradient can be 

decomposed according to the unique polar decomposition (BORST et al., 2012): 

 

𝑭 = 𝑹.𝑼 = 𝑽.𝑹 (2-8) 

 

where 𝑹 is a proper orthogonal rotation tensor, and 𝑼 and 𝑽 are positive-definite and symmetric 

tensors. They are known as the right and left stretch tensors2 respectively. 

 

 

1 Relates the factor by which the components of F expand or shrink volumes near P. 

2 The terms right and left means that they are to the right and to the left of the rotation tensor R, respectively. 
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The tensors 𝑼 and 𝑽 have the same three real positive eigenvalues 𝜆1, 𝜆2 and 𝜆3 (principal 

stretches) and three mutually orthogonal eigenvectors, which are the principal directions of the 

deformation defined according to a rotation followed by stretches.  

 

Since the stretch tensors measure the material length variation, two new strain measurements 

can be defined by calculating the squared length of an infinitesimal fiber of material in the 

reference and current configurations: 

  

𝑑𝒙2 = (𝑭𝑑𝑿)2 = 𝑑𝑿𝑇 . 𝑭𝑇 . 𝑭. 𝑑𝑿 = 𝑑𝑿𝑇 . 𝑪. 𝑑𝑿 (2-9) 

 

𝑑𝑿2 = (𝑭−1𝑑𝒙)2 = 𝑑𝒙𝑇 . (𝑭. 𝑭𝑇)−1. 𝑑𝒙 = 𝑑𝒙𝑇 . 𝑩−1. 𝑑𝒙 (2-10) 

  

Thus, through the decomposition of 𝑭, it is possible to have a very important strain measure for 

hyperelastic constitutive models, which is called Cauchy-Green strain tensor. This tensor is 

symmetrical and is subdivided into two strain tensors known as: right and left Cauchy-Green 

strain tensor, respectively represented by equations (2-11) and (2-12). 

 

𝑪 = 𝑭𝑇 . 𝑭 = 𝑼𝑇 . 𝑹𝑇 . 𝑹. 𝑼 = 𝑼2 (2-11) 

 

𝑩 = 𝑭. 𝑭𝑇 = 𝑽.𝑹.𝑹𝑇 . 𝑽𝑇 = 𝑽2 (2-12) 

 

Therefore, it was clearly shown that 𝑪 was defined according to the reference configuration 

while 𝑩 according to the current configuration. 

 

From the eigenvalues of 𝑪 or 𝑩, the squared principal stretches 𝜆𝑖
2 (𝑖 = 1,2,3) can be computed 

with their respective invariants 𝐼1, 𝐼2 and 𝐼3 based on the tensor 𝑪 (HOLZAPFEL, 2000): 

 

𝐼1 = 𝑡𝑟 𝑪 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2
 (2-13) 

 

𝐼2 =
1

2
(𝑡𝑟 𝑪)2 −

1

2
(𝑡𝑟 𝑪2) = 𝜆1

2. 𝜆2
2 + 𝜆2

2. 𝜆3
2 + 𝜆3

2. 𝜆1
2
 (2-14) 

 

𝐼3 = |𝐂| = 𝐽2 = 𝜆1
2. 𝜆2

2. 𝜆3
2
 (2-15) 
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Thus, it is possible to show that the transformation of the line element from 𝑿 to 𝒙 is due to 

compression if 𝜆𝑖 < 1 or stretching if 𝜆𝑖 > 1 along the principal axes of 𝑼, as follows: 

 

𝑥1 = 𝜆1. 𝑋1 ;                𝑥2 = 𝜆2. 𝑋2 ;                𝑥3 = 𝜆3. 𝑋3  (2-16) 

 

where 𝑋1, 𝑋2 and 𝑋3 are rectangular Cartesian coordinates that identify material particles in the 

unstressed reference configuration, 𝑥1, 𝑥2 and 𝑥3 are the corresponding coordinates after 

deformation with respect to the same axes, and the coefficients 𝜆1, 𝜆2 and 𝜆3 are positive 

constants, referred to as the principal stretch ratios of the deformation. 

 

Since the mechanical experimental tests applied in the characterization of rubber-like materials 

are performed in pure deformation modes, the Cauchy-Green strain tensors are already obtained 

in a principal coordinate system:  

  

𝑪 = 𝑩 = [

𝜆1
2 0 0

0 𝜆2
2 0

0 0 𝜆3
3

]  (2-17) 

 

2.2.2 Finite strain measures 

 

Since elastomers deals with deformations in which strains and/or rotations are very large, the 

undeformed and deformed configurations of the continuum are significantly different, requiring 

a clear distinction between them, and recalling to the finite strain theory. 

  

From the concept of Cauchy-Green strain tensors and their respective stretches, some classical 

measurements applied in the finite strain theory could be developed according to the Seth-Hill 

family (SETH, 1961), which for one-dimensional (1D) case is defined as follows (GRECO and 

DA COSTA, 2012): 

 

𝜀𝑚 =
1

𝑚
(𝜆𝑚 − 1)         : 𝑚 𝜖 ℝ  \ {0} (2-18) 

 

𝜀𝑚 = 𝑙𝑛(𝜆)         : 𝑚 = 0  (2-19) 
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The above strain measurement 𝜀𝑚 can also be generalized from 1D to 3D (three-dimensional), 

resulting in a strain tensor 𝑬𝑚. 

 

𝑬𝑚 =
1

𝑚
(𝑼𝑚 − 𝑰) =

1

𝑚
(𝑪𝑚/2 − 𝑰)         : 𝑚 𝜖 ℝ  \ {0} (2-20) 

 

𝑬𝑚 = ln (𝑼)         : 𝑚 = 0 (2-21) 

 

where 𝑚 is intrinsically related to the strain measure adopted. This strain measure must be 

invariant for rotational motions, that is, rigid body rotations cannot generate strains (GRECO 

and DA COSTA, 2012). Some classical strain tensors are described according to the different 

values of 𝑚: 

  

• Green-Lagrange strain tensor: This tensor is written based on the reference 

configuration and does not account for rigid body motions by subtracting the identity 

tensor 𝑰.  

 

𝑬𝑚=2 =
1

2
(𝑼2 − 𝑰) =

1

2
(𝑪 − 𝑰) (2-22) 

 

• Euler-Almansi strain tensor: This tensor also disregards rigid body motions, but unlike 

Green-Lagrange, the strain measurements are written in the current configuration. 

 

𝑬𝑚=−2 =
1

2
(𝑰 − 𝑼−2) =

1

2
(𝑰 − 𝑪−1) (2-23) 

 

According to Seth (1961) the Green and Almansi strain tensors can be special cases of a more 

general strain measures.  

 

• Biot strain tensor: This tensor corresponds to the nominal strain measurement. It is a 

linear tensor and corresponds to the engineering strain, also known as Cauchy tensor. 

 

𝑬𝑚=1 = (𝑼 − 𝑰) (2-24) 
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• Hencky strain tensor: This tensor corresponds to the true strain measurement and is 

written in a logarithmic scale. 

 

𝑬𝑚=0 = ln (𝑼) (2-25) 

 

• Hyperbolic strain tensor: This tensor is also known as Swainger and is based on linear 

displacement gradients in the deformation state (SETH, 1961). 

  

𝑬𝑚=−1 = (𝑰 − 𝑼
−1)  (2-26) 

 

From Figure 2-8 it is worth noting that all strain measures presented in the graph tend to the 

same value for infinitesimal stretching measures (𝜆 ≈ 1). As the stretching increases or 

decreases, the results diverge significantly. This explains how important is the strain measure 

when dealing with a large strain regime. 

 

 

 

Figure 2-8: Strain-stretching curves for the classical strain measures 

  Source: Greco and Da Costa (2012) 

 

2.2.3 Stress measures 

 

Mechanical stress is defined as a measurement of forces density per unit of area, represented 

by each point of the continuum body as a second order tensor. As there are several ways to 
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measure strain, there are also several ways to measure stress. For each type of strain measure, 

there is an energy conjugate stress pair 𝜎𝑚, which is associated to the constant 𝑚 and stretch 𝜆 

(GRECO and DA COSTA, 2012). 

 

In the case of large deformations, it is of great interest to deal with material geometry in the 

reference configuration. For this reason, the nominal stress 𝜎𝑁 measures are very useful, since 

it is directly conjugate to the linear strains. The classical strain–stress energy conjugate pairs 

are presented in Table 2-1: 

 

𝜎𝑚 = 𝜎𝑁 . 𝜆
(1−𝑚)  (2-27) 

 

Table 2-1: Strain–stress energy conjugate pairs 

Source: Adapted from Greco and Da Costa (2012) 

 

 𝑚 Symbol Strain measure Stress pair 

Almansi -2 𝜀𝐴 1/2(1 − 𝜆−2) 𝜎𝐴 = 𝜎𝑁 . 𝜆
3 

Hyperbolic -1 𝜀𝐻 (1 − 𝜆−1) 𝜎𝐻 = 𝜎𝑁 . 𝜆
2 

Logarithmic 0 𝜀𝐿 𝑙𝑛(𝜆) 𝜎𝐿 = 𝜎𝑁 . 𝜆 

Linear 1 𝜀𝑁 (𝜆 − 1) 𝜎𝑁 = (𝑁/𝐴) 

Green 2 𝜀𝐺 1/2(𝜆2 − 1) 𝜎𝐺 = 𝜎𝑁 . 𝜆
−1 

 

In order to better represent the physical meaning of some stress measures, a circular cylindrical 

bar is considered. The current value of the tension force will be 𝐹, while the cross section area 

will be 𝐴 and 𝑎 for the initial and final configurations, respectively. As the nominal stresses are 

related to the reference configuration it will be denoted as 𝜎𝑁, while the Cauchy stresses (𝜎𝐿), 

also known as true stresses or even logarithmic stresses, are related to the current configuration. 

 

𝜎𝑁 =
𝐹

𝐴
 ;        𝜎𝐿 =

𝐹

𝑎
 ;        𝐹 = 𝜎𝑁 . 𝐴 = 𝜎𝐿 . 𝑎 (2-28) 

 

Then, considering an infinitesimal area 𝑑𝑎 and the outward normal vector 𝒏 on 𝑅𝑡, and an 

infinitesimal area 𝑑𝐴 with the outward normal vector 𝑵 on 𝑅0, it is possible to generalize the 

relations obtained in equation (2-28) to multiaxial stress states. In this context, Nanson’s 

formula, see Ogden (1984), becomes a very interesting relationship: 
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𝑭𝑇 . 𝒏 𝑑𝑎 = 𝐽.𝑵 𝑑𝐴      (2-29) 

 

remembering that 𝑭 is the deformation gradient tensor and 𝐽 its determinant. 

  

As long as Cauchy stress is a second order tensor (𝝈𝑳) defined with respect to the current 

configuration, it can be written in terms of traction forces 𝒕 for uniaxial extension at time 𝑡: 

 

𝒕(𝒙, 𝑡, 𝒏) = 𝝈𝑳
𝑇(𝒙, 𝑡). 𝒏       (2-30) 

 

From equations (2-29) and (2-30), a new expression for the traction force can be found: 

 

𝒕 𝑑𝑎 = (𝝈𝑳
𝑇 . 𝒏) 𝑑𝑎 = (𝐽. 𝝈𝑳

𝑇 . 𝑭−𝑇). 𝑵 𝑑𝐴      (2-31) 

 

Thus, the expression (𝐽. 𝝈𝑳
𝑇 . 𝑭−𝑇) represents the first Piola-Kirchhoff stress 𝑷, and its transpose 

the nominal stress 𝝈𝑵 = 𝑷
𝑇 = 𝐽. 𝑭−1. 𝝈𝑳 . 

 

If the traction per unit of area is designated by 𝒕(𝒙, 𝑡, 𝒏) and 𝑻(𝑿, 𝑡, 𝑵) in the current and 

reference configurations, respectively, it is possible to have the extension from 1D to 3D as 

follows: 

 

(𝝈𝑳
𝑇 . 𝒏) 𝑑𝑎 = (𝑷.𝑵) 𝑑𝐴 ;        

𝒕 = 𝝈𝑳
𝑇 . 𝒏

𝑻 = 𝑷.𝑵 = 𝝈𝑵
𝑇 . 𝑵

 (2-32) 

 

It is worth noting that vectors 𝒕 and 𝑻 have the same directions. 

 

One of the main difficulties of the first Piola-Kirchhoff stress tensor is its unsymmetry, which 

results in very complex constitutive equations. For this reason, another important symmetric 

stress tensor which is conjugate with Green-Lagrange strains was developed. It is named as 

second Piola-Kirchhoff and designated by 𝑺.  

 

To solve the symmetry problem, the traction forces should be transferred from deformed 

configuration to the initial configuration through the inverse of the deformation gradient tensor. 
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𝑺 = 𝐽. 𝑭−1. 𝝈𝑳. 𝑭
−𝑇 = 𝝈𝑵. 𝑭

−𝑇      (2-33) 

 

From the definition of the classical strain tensors and consequently, through the constitutive 

equations of the deformable material it is possible to relate each stress tensor according to the 

respective conjugate pair of strain. 

 

 

2.2.4 Hyperelastic constitutive relations 

 

The quantifiers of stress-strain responses are related through laws, which are called constitutive 

laws. How they relate to each other depends on the material behavior and its application (ALI 

et al., 2010). In general, the behavior of materials can be listed according to models which can 

include one or more behaviors, such as: elasticity, hyper/hypoelasticity, viscoelasticity, 

plasticity, viscoplasticity, among others. 

 

In order to obtain the constitutive relationships for hyperelastic materials specially applied to 

isotropic and incompressible materials, the definitions of nonlinear elasticity for the large strain 

regime must be developed. 

 

In the theory of hyperelasticity, the work done by body forces and surface tractions is all stored 

as elastic energy, for a time independent deformation. As already mentioned in the beginning 

of this chapter, the strain energy density is denoted by “𝑊” and represents the work done by 

the stress when deforming a unitary volume from domain 𝑅0 to domain 𝑅𝑡. For homogeneous 

materials, 𝑊 depends on the deformation gradient and for this reason it will be used the notation 

𝑊 = 𝑊(𝑭). 

 

Since 𝑭 = 𝑹.𝑼 and 𝑪 = 𝑭𝑇 . 𝑭 = 𝑼2 from the polar decomposition and according to the 

principle of material objectivity3, the rotation matrix 𝑹 reduces to the identity matrix 𝑰, so the 

energy 𝑊 can also be written in terms of the strain tensor 𝑪 (DOGHRI, 2000): 

 

 

3 The objectivity requires that the stored energy is unchanged when the body is subject to an arbitrary rigid motion 

in the configuration 𝑅𝑡. 
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𝑊(𝑭) = 𝑊(𝑪)      (2-34) 

 

Recalling that 𝑪 is symmetric, so 𝑪𝑇 = 𝑪. The energy function 𝑊 depends on the principal 

invariants of 𝑪. These are denoted by 𝐼1, 𝐼2 and 𝐼3 as a function of principal stretches according 

to equations (2-13), (2-14) and (2-15) already presented in the previous section. 

 

Therefore, the energy function of an unconstrained, isotropic and elastic material can be derived 

as a function of the right Cauchy-Green strain invariants 𝐼1, 𝐼2 and 𝐼3, or even in terms of the 

principal stretches 𝜆1, 𝜆2 and 𝜆3 (OGDEN, 1984; VALANIS and LANDEL, 1967). If the 

energy is a symmetric function of the principal stretches, it can be rewritten as: 

 

𝑊(𝜆1, 𝜆2, 𝜆3) = 𝑊(𝜆2, 𝜆1, 𝜆3) = 𝑊(𝜆1, 𝜆3, 𝜆2)      (2-35) 

 

Since the material is considered to be incompressible, a single scalar constraint called ℎ = (𝑭) 

should be taken into account, and its time derivation ℎ̇ equals zero (DOGHRI, 2000): 

 

ℎ̇ =
𝜕ℎ

𝜕𝑭
. 𝑭̇ = 0        (2-36) 

 

where 𝑭̇ means the deformation gradient rate. 

 

Based on this assumption the expression for strain energy rate (𝑊̇) can be formulated according 

to derivative chain rule in terms of ℎ̇. 

 

𝑊̇ =
𝜕𝑊

𝜕𝑭
. 𝑭̇ − 𝑝.

𝜕ℎ

𝜕𝑭
. 𝑭̇  (2-37) 

 

where 𝑝 is treated as a Lagrange multiplier related to the volume change. 

 

Thus, providing that 𝑊̇ = 𝝈𝑵. 𝑭̇, it is possible to derive the stress accounting for the 

compressibility constraint. 

 

𝝈𝑵 =
𝜕𝑊

𝜕𝑭
− 𝑝.

𝜕ℎ

𝜕𝑭
  (2-38) 
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Since for rubber-like materials it is common to adopt the incompressibility constraint, it is 

considered that: ℎ(𝑭) = 𝐽 − 1 = 0 ∴ 𝐽 = 1. According to Ogden (1984) 𝜕𝐽/𝜕𝑭 = 𝐽. 𝑭−𝑇, and 

then, the second part of the equation (2-38) is rewritten according to the chain rule: 

 

𝝈𝑵 =
𝜕𝑊

𝜕𝑭
− 𝑝. 𝑭−𝑇  (2-39) 

 

Then, equation (2-39) can be read in the component form: 

 

𝜎𝑁𝑖𝐾 =
𝜕𝑊

𝜕𝐹𝑖𝐾
− 𝑝. 𝐹𝐾𝑖

−1 ;         𝑖, 𝐾 = 1,2,3 (2-40) 

 

where it is possible to note the switch of indices with respect to the gradient deformation tensor. 

 

In some cases, it may be useful to work in the current configuration using the Cauchy stress 

tensor (CRISFIELD, 2000). Thus, considering the Nanson’s formula showed in equation (2-29) 

the connection between the symmetric second-order Cauchy stress 𝝈𝑳 and the nominal stress 

𝝈𝑵 is obtained: 

 

𝝈𝑳 = 𝐽−1. 𝑭. 𝝈𝑵 (2-41) 

 

Since for an incompressible material 𝐽 = 1, equation (2-41) gives: 

 

𝝈𝑳 = 𝑭
𝜕𝑊

𝜕𝑭
− 𝑝. 𝑰 ;        𝜎𝐿𝑖𝑗 = 𝐹𝑖𝐾

𝜕𝑊

𝜕𝐹𝑗𝐾
− 𝑝. 𝛿𝑖𝑗   (2-42) 

 

where 𝑰 is the identity tensor and 𝛿𝑖𝑗 the Kronecker delta. The first terms in 𝝈𝑵 and 𝝈𝑳 are 

related to the deviatoric4 part of stress, while 𝑝 in the second term to the hydrostatic5 part of 

stress which is associated with the incompressibility condition (CHEVALIER et al., 2001). 

 

 

4 The deviatoric stress is related to shape change and it is what's left after subtracting out the hydrostatic stress. 

5 The hydrostatic stress is related to volume change. 
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The stress tensor 𝝈𝑳 can also be written is terms of Cauchy-Green strain tensor 𝑪, by the 

following relation: 

 

𝜕𝑊

𝜕𝑭
= 2. 𝑭𝑇 .

𝜕𝑊

𝜕𝑪
 ;         𝝈𝑳 = 2. 𝑭

𝜕𝑊

𝜕𝑪
. 𝑭𝑇 − 𝑝. 𝑰  (2-43) 

It’s worth mentioning that the Lagrange multiplier 𝑝 is not given by the constitutive model, but 

instead it can be obtained from solving the boundary value problem together with the 

incompressibility constraint. 

 

From this point, according to the Cayley-Hamilton theorem, the tensor 𝑪 can be derived in 

terms of its invariants as follows:  

 

𝑪3 − 𝐼1𝑪
2 + 𝐼2𝑪 − 𝐼3𝑰 = 0  (2-44) 

 

As already mentioned in section 2.2.1, the experiments for elastomers are performed in pure 

modes of deformation. For this reason, the tensor 𝑪 is already obtained in the principal 

directions and analytical solutions can be derived. From this assumption and equation (2-44) 

the constitutive relation for a hyperelastic isotropic material is given based on strain invariants 

(MANSOURI et al., 2016; MARCKMANN and VERRON, 2006):  

 

𝛔𝑳 = 2
𝜕𝑊

𝜕𝐼1
𝐂 − 2

𝜕𝑊

𝜕𝐼2
𝐂−1 − 𝑝𝐈  (2-45) 

 

or in terms of its components in the principal directions: 

 

σ𝐿𝑖 = 2𝜆𝑖
2
𝜕𝑊

𝜕𝐼1
−
2

𝜆𝑖
2

𝜕𝑊

𝜕𝐼2
− 𝑝 ;         𝑖 = 1,2,3  (2-46) 

 

For the energy function determination, Valanis and Landel (1967) and Ogden (1984) stated that 

stress deformation relation in terms of the extension ratios is more appropriate than the strain 

invariants. Hence, the Cauchy stress components in terms of principal stretches is given by:  

 

σ𝐿𝑖 = 𝜆𝑖.
𝜕𝑊

𝜕𝜆𝑖
− 𝑝 ;         𝑖 = 1,2,3  (2-47) 
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where σ𝐿𝑖 are the eigenvalues of 𝛔𝑳. Similary, the specialization of equation (2-47) gives the 

principal Nominal stresses: 

σ𝑁𝑖 = 
𝜕𝑊

𝜕𝜆𝑖
− 𝑝. 𝜆𝑖

−1 ;         𝑖 = 1,2,3  (2-48) 

 

Note that the transformation between the principal components of 𝛔𝑵 and 𝛔𝑳 reduces to σ𝐿𝑖 =

𝜆𝑖. σ𝑁𝑖, with no summation over i. 

 

When the incompressibility constraint 𝐽 = 1 is applied 𝐼3 = 𝜆1
2. 𝜆2

2. 𝜆3
2 = 1, and the stretch 

in the third direction is expressed as:  

 

𝜆3 = 𝜆1
−1. 𝜆2

−1
 (2-49) 

 

This means that only two of the principal stretches are independent, so the strain energy can be 

defined by a symmetric function of the stretches 𝜆1 and 𝜆2 as follows: 

 

𝑊̃(𝜆1, 𝜆2) = 𝑊 (𝜆1, 𝜆2, 𝜆1
−1. 𝜆2

−1) (2-50) 

 

Using equation (2-50) in (2-47) the principal stress differences are given: 

 

σ𝐿1 − σ𝐿3 = 𝜆1.
𝜕𝑊̃

𝜕𝜆1
 ;         σ𝐿2 − σ𝐿3 = 𝜆2.

𝜕𝑊̃

𝜕𝜆2
 (2-51) 

 

where one note that the scalar “𝑝” has been eliminate, and 𝑊̃ is an arbitrary function of 𝜆1 and 

𝜆2. For consistency with the classical theory, 𝑊̃ must satisfy a series of conditions (SASSO et 

al., 2008): 

 

{
 
 
 
 

 
 
 
 
𝑊̃(1,1) = 0

𝜕𝑊̃

𝜕𝜆1
(1,1) =

𝜕𝑊̃

𝜕𝜆2
(1,1) = 0

𝜕2𝑊̃

𝜕𝜆1𝜕𝜆2
(1,1) = 2𝜇

𝜕2𝑊̃

𝜕𝜆1
2
(1,1) =

𝜕2𝑊̃

𝜕𝜆2
2
(1,1) = 4𝜇

 (2-52) 
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where 𝜇 is the shear modulus of the material in the reference configuration. 

 

If the deformation is applied to a thin sheet of material (a common situation experimentally) 

then a plane stress condition is applied, and the stress normal to the plane of the sheet, 𝜎3 = 0. 

Then, equation (2-51) can be simplified as follows: 

 

σ𝐿1 = 𝜆1.
𝜕𝑊̃

𝜕𝜆1
 ;         σ𝐿2 = 𝜆2.

𝜕𝑊̃

𝜕𝜆2
 (2-53) 

 

There are several special cases of tests which are important from the experimental point of view. 

These are simple tension, equal biaxial extension and pure shear, which are going to be 

discussed later.  

 

When the material compressibility is a concern, it is necessary to split out the deviatoric 

(represented with “superscript bar”) and volumetric terms of the strain energy function, 

represented by 𝑊𝑑 and 𝑊𝑏 respectively. As a result, the volumetric term is a function of the 

volume ratio 𝐽 only. 

 

𝑊 = 𝑊𝑑(𝐼1̅, 𝐼2̅) +𝑊𝑏(𝐽) (2-54) 

 

𝑊 = 𝑊𝑑(𝜆1̅̅̅, 𝜆2̅̅ ̅, 𝜆3̅̅ ̅) +𝑊𝑏(𝐽) (2-55) 

 

where the deviatoric principal stretches and invariants are respectively defined as:  

 

𝜆𝑝̅̅ ̅ = 𝐽−1/3. 𝜆𝑝 ;         𝑝 = 1,2,3  (2-56) 

 

𝐼1̅ = 𝐽
−2/3. 𝐼1 ;         𝐼2̅ = 𝐽

−4/3. 𝐼2 (2-57) 

 

Thus, the first and second deviatoric strain invariants “𝐼1” and “𝐼2” derived from equations 

(2-13) and (2-14) can be rewritten as: 

 

𝐼1̅ = 𝜆̅1
2 + 𝜆̅2

2 + 𝜆̅3
2 (2-58) 
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𝐼2̅ = 𝜆̅1
(−2)

+ 𝜆̅2
(−2)

+ 𝜆̅3
(−2)

 (2-59) 

 

The particular models of the strain energy functions will be discussed in the next sections, as 

they determine whether stretch ratios or invariants are going to be used. 

 

2.2.4.1 Neo-Hookean model 

 

Treloar (1943a; b) proposed the so-called neo-Hookean material model based on molecular 

chain statistics theory. This is the simplest physically based constitutive model for rubbers since 

it was derived only in terms of the first invariant (𝐼1̅). It can also be formulated by truncating 

the power series of a polynomial equation (RIVLIN, 1948a; b) and has the following simple 

form: 

 

𝑊 = 𝐶10. (𝐼1̅ − 3) +
1

𝐷1
(𝐽 − 1)2 (2-60) 

 

where, 𝐶10 is a material parameter obtained from experimental data for deviatoric part and 𝐷1 

is related to the compressibility ratio. Then, the initial shear modulus “𝜇0” and bulk modulus 

“𝐾0” are given by: 

  

𝜇0 = 2. 𝐶10 ;         𝐾0 = 2/𝐷1 (2-61) 

 

Even though the phenomenological and statistical theories were formulated from quite different 

premises they are considered equivalent. This model can be a good starting point for the 

analysis, knowing just the constant shear modulus. However, the strains should be limited up 

to 30-40% in uniaxial extension and up to 80-90% in shear deformation, according to the 

commercial software packages guidelines (ANSYS INC., 2014; MSC, 2016; SIMULIA, 2016).   

 

2.2.4.2 Mooney-Rivlin model 

 

The Mooney-Rivlin model is very useful to describe the stress-strain nonlinear response at large 

values of stretch. It is a phenomenological model and was derived by Rivlin and Saunders 

(1951) in a full polynomial form as an infinite series of the first and the second deviatoric 
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principal invariants 𝐼1̅ and 𝐼2̅. The compressibility degree can be accounted by adding the terms 

of 𝐷𝑘 in the hydrostatic part of the 𝑊 equation: 

 

𝑊 = ∑ 𝐶𝑖𝑗. (𝐼1̅ − 3)
𝑖. (𝐼2̅ − 3)

𝑗

𝑁=∞

𝑖,𝑗=0

+ ∑
1

𝐷𝑘
(𝐽 − 1)2𝑘

𝑁=∞

𝑘=1

 (2-62) 

 

In this case, 𝐶𝑖𝑗 are the material constants for a “𝑁𝑡ℎ” order with 𝐶00 = 0. The values of 𝐷𝑘 can 

be estimated from volumetric test data, but if the material is considered to be almost 

incompressible, 𝐷𝑘 → 0.   

 

The higher the value of 𝑁, the better the response to the exact solution. Nevertheless, it may 

cause numerical difficulties when fitting the material constants and requires enough data to 

cover the entire range of the aimed deformation. For this reason, high values of 𝑁 is not usually 

recommended. 

 

The first order of this model (𝑁 = 1) was originally developed by Mooney (1940) and is 

represented by the equation (2-63). However, since its approximation is linear it can be valid 

only for small deformations (RIVLIN and SAUNDERS, 1951).   

 

𝑊 = 𝐶10. (𝐼1̅ − 3) + 𝐶01. (𝐼2̅ − 3) +
1

𝐷1
(𝐽 − 1)2 (2-63) 

 

The parameters 𝐶𝑖𝑗 are generally determined from experimental data and they can be related to 

𝜇0 similar to that of the Neo-Hookean form. Thus, 𝜇0 and 𝐾0 are defined by the following 

equation: 

 

𝜇0 = 2. (𝐶10 + 𝐶01) ;        𝐾0 = 2/𝐷1 (2-64) 

 

As a general guideline, the two-term form can be applied for tensile strains up to 90-100%, 

despite this, the stiffening effects usually presented at large strains are not taken into account. 

Compression behavior may also not be well characterized with only the two-term model 

(CRISFIELD, 2000; MSC, 2010). 



58 

 

 

2.2.4.3 Yeoh model 

 

Yeoh (1990; 1993) introduced a phenomenological model dependent only on the first strain 

invariant 𝐼1̅ in the deviatoric part of 𝑊. Since it is based on a polynomial form but neglects the 

second invariant 𝐼2̅, the Yeoh model can be also called as reduced polynomial model and has 

the general form: 

 

𝑊 =∑𝐶𝑖0. (𝐼1̅ − 3)
𝑖

𝑁

𝑖=1

+∑
1

𝐷𝑘
(𝐽 − 1)2𝑘

𝑁

𝑘=1

 (2-65) 

 

Thus, 𝜇0 and 𝐾0 are given by: 

 

𝜇0 = 2. 𝐶10 ;         𝐾0 = 2/𝐷1 (2-66) 

 

According to Yeoh (1993) the terms containing 𝐼2̅ were eliminated from the equation since its 

variation in the sensitivity of 𝑊 function is negligible if compared to 𝐼1̅. Thus, it is possible to 

improve the model’s ability when predicting the behavior of deformation states over a large 

strain range even when limited test data is available. 

 

The Yeoh model is commonly considered with 𝑁 = 3, and the upturn of the stress-strain curve 

can be captured. This model is generally applied in the characterization of carbon-black filled 

rubbers and has a good fit over a large strain range, being able to simulate various modes of 

deformation even with limited data, reducing consequently the requirements on material testing 

(RENAUD et al., 2009). However, caution needs to be exercised when applying this model for 

deformations involving low strains (YEOH, 1996). 

 

2.2.4.4 Ogden model 

 

Proposed by Ogden (1972), this is also a phenomenological model and is based on the principal 

stretches rather than strain invariants. This model has been found to be effective for very large 

strains and it is written as: 
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𝑊 =∑
𝜇𝑖
𝛼𝑖
. (𝜆̅1

𝛼𝑖 + 𝜆̅2
𝛼𝑖 + 𝜆̅3

𝛼𝑖 − 3)

𝑁

𝑖=1

+∑
1

𝐷𝑘
(𝐽 − 1)2𝑘

𝑁

𝑘=1

 (2-67) 

 

where 𝜇𝑖 and 𝛼𝑖 are real material parameters, being positive or negative and satisfying the 

condition for 𝜇0 and 𝐾0 given by: 

 

𝜇0 =
1

2
∑𝜇𝑖. 𝛼𝑖

𝑁

𝑖=1

 ;         𝐾0 = 2/𝐷1 (2-68) 

 

If a two-term expansion (𝑁 = 2) is applied with 𝛼1 = 2 and 𝛼2 = −2, it coincides with the 2 

parameter Mooney-Rivlin form for typical values of 𝜇1 = 2. 𝐶10 and 𝜇2 = −2. 𝐶01. If 𝑁 is set 

to 1 with 𝛼1 = 2 and 𝜇1 = 𝜇0 = 2. 𝐶10, it degenerates to the Neo-Hookean form (CRISFIELD, 

2000). 

 

As in the polynomial Rivlin series, there is no limitation on 𝑁, but although high values of 𝑁 

is able to provide better results, it may cause numerical difficulties when fitting the material 

constants. For this reason, a value of 𝑁 >  3 is not usually recommended (OGDEN et al., 

2004). 

 

Although this model is more computationally expensive, it provides a good data fitting and 

thereby, is more accurate since it is directly based on the principal stretch ratios. This model is 

able to capture upturn (stiffening) of stress-strain curve but attention should be paid to not use 

this model with limited test data (e.g. just uniaxial tension) (OGDEN et al., 2004). 

 

2.2.4.5 Arruda-Boyce model 

 

Proposed by Arruda and Boyce (1993), this model was developed based on a statistical 

treatment of the non-Gaussian chains, in which the volume element is represented by a cubic 

containing eight chains emanating from the center along to its corners as in Figure 2-9. This is 

the reason why it is also known as the eight-chain model. 
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Figure 2-9: Eight Chain Network in stretched configuration 

Source: MSC (2005) 

 

where 𝛼0 is the cube dimension with an unstretched network. 

 

As this model represents the physics of network deformation, they are called micro-mechanical 

models and can be described as follows: 

 

𝑊 = 𝜇∑
𝐶𝑖

𝜆𝐿
2𝑖−2

. (𝐼1̅
𝑖 − 3𝑖)

5

𝑖=1

+
1

𝐷
(
𝐽2 − 1

2
− 𝑙𝑛 𝐽) (2-69) 

 

where the material constants 𝐶𝑖 are predefined functions of the limiting network stretch “𝜆𝐿” as 

it follows: 

 

𝐶1 =
1

2
;        𝐶2 =

1

20
;        𝐶3 =

11

1050
;        𝐶4 =

19

7000
;        𝐶5 =

519

673750
 (2-70) 

 

Although the material constants are predefined functions of the 𝜆𝐿, it is possible to observe that 

the Arruda-Boyce model is equivalent to the Yeoh with 𝑁 = 5. On the other hand, if 𝜆𝐿 

becomes infinite, the Arruda-Boyce model tends to the Neo-Hookean form. The physical 

meaning of 𝜆𝐿 is that it corresponds to the stretch at which stress starts to increase without limit. 

 

In the Arruda-Boyce model, the material parameter 𝜇 is defined as: 
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𝜇 = 𝑐. 𝑘. 𝛩 (2-71) 

 

which it is a function of the chain density “𝑐”, the Boltzmann’s constant ‘𝑘”, and temperature 

“𝛩”. 

 

Thus, 𝐾0 is related to 𝐷 according to the expression (2-72): 

 

 𝐾0 = 2/𝐷 (2-72) 

 

The original equation is based on the inverse Langevin6 function as this function represents an 

expanded series and 𝜆𝐿 can be less pronounced (TØMMERNES, 2014). 

 

According to Arruda and Boyce (1993), this model is unique since it is able to provide great 

accuracy for multiple modes of deformation based only on the standard uniaxial tensile test. 

 

2.2.4.6 Gent model 

 

The Gent form was proposed by Gent (1996) and it is also a micromechanical model. Similar 

to Arruda-Boyce model, it is based on the concept of limiting network stretch and its 

constitutive relation is proposed as follows: 

 

𝑊 = −
𝐸𝐼𝑚
6
. 𝑙𝑛 (1 −

𝐼1̅ − 3

𝐼𝑚
) +

1

𝐷
(
𝐽2 − 1

2
− 𝑙𝑛 𝐽) (2-73) 

 

where the constant “𝐸” is the initial elastic modulus, in which for incompressible materials, is 

3𝜇0, and 𝐼𝑚 is the limiting value of (𝐼1̅ − 3), analogous to 𝜆𝐿 for Arruda-Boyce. 

 

If the natural logarithm is expanded, this expression will be equivalent to the Yeoh model, but 

in this case the coefficients will be predefined functions of 𝐼𝑚. 

 

 

6 Generally used when studying an idealized paramagnetic material in statistical mechanics. In this case, by using 

the statistical mechanics considerations, the work of deformation is proportional to the entropy change on 

stretching the chains from the unstretched state. 
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The constant 𝐸𝐼𝑚 is independent of the molecular length, and hence of the crosslinking degree. 

This model is attractive due to its simplicity, but yet captures the main behavior of a network 

of extensible molecules over the entire range of possible strains (GENT, 1996). 

 

The initial bulk modulus can be obtained based on the same relation as in Arruda-Boyce form. 

Thus, it is quite clear that there are many similarities between the Gent and Arruda-Boyce 

models. 

 

2.2.4.7 Van der Waals model 

 

This model was developed by Kilian (1981) and is based on van der Waals interactions between 

the chains of a molecular network. It is also a micromechanical model and its strain energy 

equation is described as follows:  

 

𝑊 = 𝜇 [−(𝜆𝑚
2 − 3)(𝑙𝑛(1 − 𝜂) + 𝜂) −

2

3
𝑎 (
1

2
𝐼𝑙 −

3

2
)

3
2
] (2-74) 

 

𝜂 = √
𝐼𝑙−3

𝜆𝑚
2 −3

 ;        𝐼𝑙 = (1 − 𝛽)𝐼1 + 𝛽𝐼2 (2-75) 

 

where: 𝜇, 𝜆𝑚, 𝑎 and 𝛽 are material parameters. The variables 𝑎 and 𝜆𝑚 are invariant parameters, 

but 𝑎 express the interactions between the chains and is hard to be obtained, while 𝜆𝑚 is the 

maximum elongation possible. The parameter 𝛽 controls the curvature changes of the stress-

strain curve for different modes of deformation exhibited by the material. If 𝛽 = 0 the strain 

energy function will be dependent only on the first invariant 𝐼1 (KILIAN, 1981; KILIAN et al., 

1986). 

 

2.2.4.8 Valanis-Landel hypothesis 

 

Valanis and Landel (1967), based on several experimental data, postulated that the strain energy 

“𝑊” for a incompressible isotropic material can be split out according to the sum of separate 

functions of the principal stretches, which can be expressed in the following form: 
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𝑊(𝜆1, 𝜆2, 𝜆3) = 𝑤(𝜆1) + 𝑤(𝜆2) + 𝑤(𝜆3) (2-76) 

 

where the function “𝑤” is a scalar value and due to the symmetry condition obtained by 

equation (2-35),  has the same form for each of the principal stretches.  

 

If the material is incompressible, the three principal stretches are not independent and equation 

(2-76) can be rewritten: 

 

𝑊̃(𝜆1, 𝜆2) = 𝑊 (𝜆1, 𝜆2, 𝜆1
−1. 𝜆2

−1) = 𝑤(𝜆1) + 𝑤(𝜆2) + 𝑤̅(𝜆1. 𝜆2) (2-77) 

 

where the argument of the function 𝑤̅ is 𝜆1. 𝜆2, i.e. 𝑤̅(𝜆1. 𝜆2) = 𝑤(𝜆1
−1. 𝜆2

−1) = 𝑤(𝜆3).  

 

Equation (2-53) using the formulation of equation (2-77) for 𝑊̃, gives: 

 

𝜎1 = 𝜆1𝑤
′(𝜆1) + 𝜆1. 𝜆2. 𝑤̅′(𝜆1. 𝜆2) (2-78) 

 

𝜎2 = 𝜆2𝑤
′(𝜆2) + 𝜆1. 𝜆2. 𝑤̅′(𝜆1. 𝜆2) (2-79) 

 

where, for convenience of notation, the superscript ′ is used to indicate differentiation with 

respect of the argument of the function concerned. 

 

2.3 Mullins effect 

 

The Mullins effect is a phenomenon resulting from load-induced changes to constitutive 

response exhibited by some hyperelastic materials. This property generally occurs in filled and 

non-filled rubber-like materials and has been investigated intensively by Mullins and his co-

workers, for this reason it is referred to as the ‘‘Mullins effect” (MULLINS, 1969). 

 

The effect is most evident during cyclic loading, where the unloading response is more 

compliant than the loading behavior. Thus, if the elastomer is loaded up to a determined strain 

level and after that is completely unloaded to a zero stress during several cycles, a phenomenon 

called stress softening changes the structural properties from cycle to cycle, which occurs due 

to the effect of stress relaxation. According to Mullins (1969), the initial stress-strain curve 
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obtained from the first strain of an elastomer is unique and cannot be retraced. Through cyclic 

tests in a NR-MPC with carbon black, Mullins also concluded that the major relaxation occurs 

at the first deformation, decreasing over the course of the cycles until the response becomes 

stable for strain levels below that the maximum which was initially requested. However, if the 

elastomer is taken to a new higher strain, structural properties will change significantly again 

and the result will be an irreversible and instantaneous softening of the material, which causes 

a hysteresis in the stress-strain response.  

 

Bergströn and Boyce (1999) performed uniaxial cyclic compression tests on chloroprene 

rubbers with different quantities of carbon black, and they realized that the higher the 

concentration of this filler in the rubber compound, the greater its stiffness and relaxation, that 

is, the more evident will be the Mullins effect. They also considered different temperature 

ranges in some strain levels and observed great dependence of this factor on the stress-strain 

curves. 

 

One example of this behavior is well represented in the paper of Diani et al. (2009), where 

cyclic uniaxial tension tests were performed on a sulfur-vulcanized SBR filled with 50 phr of 

N220 carbon-black. According to Figure 2-10 the stress-strain responses of two samples are 

illustrated: one sample was submitted to a simple uniaxial tension test, while another one was 

submitted to a cyclic uniaxial tension test with the maximum stretching increasing every 5 

cycles. 

 

 

 

Figure 2-10: Stress–strain responses of a 50 phr carbon-black filled SBR submitted to a 

simple and cyclic uniaxial tension test. 

Source: Diani et al. (2009) 
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Attempting to explain the stress relaxation phenomenon, researchers have proposed various 

physical interpretations, such as, chains rupture at the interface between rubber and fillers 

(BLANCHARD and PARKINSON, 1952), slip of molecules (HOUWINK, 1956), breakage of 

filler structure (KRAUS et al., 1966), chain slack (HANSON et al., 2005), among others, but 

its molecular origins still remains unresolved (CLOUGH et al., 2016). 

 

The Mullins effect is also reported in the literature for other states of deformation such as: 

uniaxial compression, simple shear and equibiaxial extension (AMIN et al., 2002; JOHNSON 

and BEATTY, 1995; LI et al., 2008; MARS and FATEMI, 2004; NÉMETH et al., 2005), as 

well as hydrostatic tension (DORFMANN, 2003). Anyway, it is still not clear which mechanical 

quantity pilots the Mullins effect.  

 

Although a number of constitutive models have been proposed to describe this effect 

(DARGAZANY and ITSKOV, 2013; DORFMANN and OGDEN, 2004; DROZDOV and 

DORFMANN, 2001; LU and WANG, 2017), one famous example is the work done by Ogden 

and Roxburgh (1999), which is implemented in several commercial FE computational codes. It 

consists in a pseudo-elastic model based on the theory of incompressible isotropic elasticity 

modified by the incorporation of a single continuous parameter, interpreted as a damage 

parameter 𝜂. This variable represents the material damage due to deformation and controls the 

material properties, so that the material response is governed by an energy function for 

unloading and subsequent reloading different from that obtained at the initial state. Thus, it is 

no longer appropriate to assign 𝑊 as a stored elastic energy, since part of it is dissipated as 

damage. Therefore, it can be stated that:  

 

𝜕𝑊

𝜕𝜂
(𝑭, 𝜂) = 0 (2-80) 

 

Equation (2-80) determines the evolution of 𝜂 during the deformation process, where it may be 

in the active or inactive state and varies continuously. In the idle state 𝜂 = 1 and the material 

will have an elastic behavior according to the energy function 𝑊(𝑭, 𝜂). When 𝜂 is active, it 

behaves elastically based on a new potential energy function (𝐅, 𝜂(𝐅)) . 

 

The Ogden-Roxburgh model derives from the deviatoric part in the energy density function, 

and exhibits history dependence under certain conditions as in the following form: 
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𝑊𝑑(𝜆1̅̅̅, 𝜆2̅̅ ̅, 𝜂) = 𝜂. 𝑊̃𝑑(𝜆1̅̅̅, 𝜆2̅̅ ̅) + 𝜙(𝜂) (2-81) 

 

where 𝜙(𝜂) is the damage function written in terms of the damage variable “𝜂”, and that are 

expressed as:  

 

𝜂 = 1 −
1

𝑟
𝑒𝑟𝑓 (

𝑊𝑑
𝑚 −𝑊𝑑

𝑚 + 𝛽𝑊𝑑
𝑚) (2-82) 

 

being the damage function implemented in the commercial software Abaqus® in the following 

form: 

 

𝜑(𝜂) = (𝑚 + 𝛽𝑊𝑑
𝑚)𝑒𝑟𝑓−1(𝑟(1 − 𝜂)) −𝑊𝑑

𝑚    (2-83) 

 

where 𝑟,𝑚 and 𝛽 are material parameters obtained from cyclic experimental tests, 𝑊𝑑
𝑚 is the 

maximum value of 𝑊𝑑 and 𝑒𝑟𝑓 means error function (SIMULIA, 2016). 

 

The variable 𝜂 varies continuously during the material deformation process to satisfy condition 

0 < 𝜂 ≤ 1. When 𝜂 =  1, 𝜑 (𝜂 = 1)  =  0 and the material deformation state is at a point on 

the hyperelastic initial curve, not accounting for the Mullins effect (OGDEN and ROXBURGH, 

1999; SIMULIA, 2016). 

 

Although the Ogden-Roxburgh is a phenomenological model, its parameters are related to 

particular physical aspects of the stress-strain response. At the microscopic level, the stress 

softening is generally interpreted as being due to damage caused by the loading and viscoelastic 

effects, since in filled rubber there can be additional contributions to the mechanical hysteresis 

from filler particles debonding from each other or from the polymer chains (OGDEN and 

ROXBURGH, 1999). 

 

It should be clear that the Mullins effect does not address the dependence of dynamic stiffness 

on dynamic strain amplitude (generally called the Payne effect or the Fletcher-Gent effect). 
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2.4 Fletcher-Gent effect  

 

The Fletcher-Gent effect proposed by Fletcher and Gent (1953), involves a non-linearity in the 

dynamic stress-strain behavior and it becomes more pronounced with the presence of rubber 

fillers, generally one of the many kinds of carbon black, as shown by Payne and Whittaker 

(1971). It is also known as Payne effect due to the scientist who made extensive studies of the 

phenomenon, e. g. Payne (PAYNE, 1962, 1963). 

 

By this phenomenon, the dynamic stiffness decreases with increasing dynamic amplitude and 

the linear viscoelastic theory is naturally unable to deal with this effect. This phenomenon is 

observed under cyclic loading conditions in the range of 0.1% up to 50% strain amplitudes, and 

is related to a dependence of the viscoelastic storage modulus7 on the amplitude of the applied 

strain (KRAUS, 1984; LION, 2005; RENDEK and LION, 2010; ULMER, 1996). 

 

The experimental tests performed by Lion et al. (2003) implied that the storage modulus 

strongly decreased as a function of the strain amplitude, but on the other hand, increasing 

frequencies lead to an increase in the modulus (Figure 2-11). 

 

 

 

Figure 2-11: Experimental data of the storage modulus. 

Source: Lion et al. (2003) 

 

7 The storage modulus in viscoelastic materials measures the stored energy associated with the elastic properties. 
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The Fletcher-Gent effect is usually denoted as a plastic effect (MIEHE and KECK, 2000). It 

can be attributed to irreversible slip processes between the filler particles and their plastic 

deformations. For this reason, it can also be characterized using friction models, like Gregory 

(1985), Coveney et al. (1995) and Kaliske and Rothert (1998). 

 

The constitutive relations of this phenomenon should be applied when it is necessary to predict 

the frequency and/or amplitude-dependent dynamic stiffness, as well as damping behavior of 

rubber bushings, automotive tires and other products (GIL-NEGRETE et al., 2006; LION et 

al., 2003). Since this Dissertation deals with static stiffness for multiaxial loadings it was not 

implemented in this work, but it is an important topic to be discussed for the future ones.  

 

 

2.5 Fitting curve experimental tests 

 

When fitting hyperelastic material models in mechanical analysis software, it is desirable to set 

experimental data for multiple strain state, so that the material model can effectively analyze 

the elastomer behavior that occur in numerical simulations. Each mode of deformation put the 

material into a particular strain state. Thus, in order to represent the elastomer behavior in such 

a defined state, individual experimental tests are performed aiming to achieve pure strain states 

and as a result, the material parameters for constitutive models can be sufficiently defined. 

 

For almost incompressible elastomers, the main strain states are simple tension, pure shear and 

simple compression. Nevertheless, as there is friction between the test specimen surface and 

the equipment contacting platens, the simple compression test should to be replaced by an 

equivalent biaxial extension. Therefore, the specimen is completely free to expand laterally, 

which in fact does not occur during the compression test due to friction, and the surface friction 

strains create an undefined strain state (MILLER, 2004a). The typical behavior of the three 

main stress-strain curves appropriate for input the material into fitting routines are shown in 

Figure 2-12. 
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Figure 2-12: Typical stress strain curves for input into fitting the material. 

Source: Miller (2004a) 

 

The nearly incompressible behavior of elastomers is such that the Poisson’s ratio is close to 0.5. 

If an elastomer is considered constrained in service, exactly how close to 0.5, it may be critical 

to predict the hydrostatic stresses. Then, since Poisson’s ratio cannot be measured in the lab 

with sufficient precision, a volumetric compression test may be needed in situations where the 

elastomer is slightly compressible or highly constrained, and consequently, the bulk behavior 

can be determined (MILLER, 2004a).  

 

The hyperelastic material models can represent a surface that contains the stress response for 

all of the various combinations of strains. When the material model is calibrated, the surface is 

defined. Each individual experiment defines a line on the surface (Figure 2-13) where, to 

adequately define the entire surface, experiments in several strain states are performed so as to 

crisscross the surface and force it to represent the actual material. 
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Figure 2-13: Hyperelastic energy surface with three testing paths. 

Source: Miller (MILLER, 2004b) 

 

It is very important that the experiments should be performed at reasonable strain levels 

according to the application. If the applied strains are much different than those that the part 

will experience, the material properties can be changed and the obtained response becomes 

unrealistic for the application of interest. In addition, to evaluate the structural condition of a 

component in service, the stress-strain curves should be derived by cycling the material until 

its properties are stabilized. This happens due to Mullins effect (DIANI, FAYOLLE and 

GILORMINI, 2009).    

 

2.5.1 Simple Tension Strain State 

 

Simple tension experiments are widely used for elastomers. It corresponds to an elongation in 

one direction accompanied by free contraction in the other two Cartesian directions. To achieve 

a pure strain state, the specimen must be much longer in the stretching direction than in the 

other dimensions. As a result, the lateral constraint associated with specimen thinning will be 

eliminated.  

 

Despite some standard test methods for rubbers in simple tension, such as ASTM D412 (2016), 

it is not mandatory to use the dogbone shape in the sample if a failure oriented experiment is 

not required (MILLER, 2004a). Notwithstanding, depending on the magnitude in which the 

component is subjected, it turns needful to experiment the sample under high levels of strain 
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and the dogbone shape becomes interesting from the point of view of this condition, since it 

avoids the earlier tearing effect.     

 

In this experimental test, the real length should be comprised between the clamp edges. It is 

worth noting that the specimen straining cannot be measured close to the clamps, as the pure 

tension strain state occurs away from them. An example of a strain measuring device required 

for the test is shown in Figure 2-14. 

 

 

 

Figure 2-14: Simple tension experiment device. 

Source: Mansouri et al. (2016) 

 

Particularizing that 𝐽 = 1 and 𝜎2 = 𝜎3 = 0 according to Figure 2-15, the corresponding 

principal stretches are given by: 

 

 

 

 

Figure 2-15: Stress-strain state of a thin sheet under uniaxial extension. 

Source: Adapted from Jakel (2010)  
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𝜆1 = 𝜆𝑈 ;         𝜆2 = 𝜆3 = 𝜆𝑈
−1/2  (2-84) 

 

𝐼1 = 𝜆𝑈
2 +

2

𝜆𝑈
 ;         𝐼2 = 2𝜆𝑈 +

1

𝜆𝑈
2 (2-85) 

 

By attempting these boundary conditions, the parameter 𝑝 from equation (2-46) will result in: 

 

𝑝 =
2

𝜆𝑈

𝜕𝑊

𝜕𝐼1
− 2𝜆𝑈

𝜕𝑊

𝜕𝐼2
 (2-86) 

 

Thus, the uniaxial Cauchy stress 𝜎𝐿1 will be: 

 

𝜎𝐿1 = 2(𝜆𝑈
2 −

1

𝜆𝑈
) (
𝜕𝑊

𝜕𝐼1
+
1

𝜆𝑈

𝜕𝑊

𝜕𝐼2
) (2-87) 

 

Appling the Valanis-Landel hypothesis, the energy in equation (2-77) can be rewritten only in 

terms of principal stretches, such as: 

 

𝑊̅(𝜆𝑈) = 𝑊̃ (𝜆𝑈, 𝜆𝑈
−
1
2) = 𝑤(𝜆𝑈) + 𝑤 (𝜆𝑈

−
1
2) + 𝑤̅ (𝜆𝑈

1
2) 

𝑊̅(𝜆𝑈) = 𝑤(𝜆𝑈) + 2𝑤(𝜆𝑈
−1/2) 

(2-88) 

 

and the principal stress components, making use of equation (2-53), are: 

 

𝜎𝐿1 = 𝜆𝑈 ∙
𝜕𝑊̅(𝜆𝑈)

𝜕𝜆𝑈
= 𝜆𝑈. 𝑤

′(𝜆𝑈) − 𝜆𝑈
−1/2. 𝑤′(𝜆𝑈

−1/2) ;               𝜎2 = 𝜎3 = 0 (2-89) 

 

The corresponding nominal stress is 𝜎𝑁1 = 𝜎𝐿1/𝜆𝑈, as already discussed in section 2.2.4. 

 

2.5.2 Equal-biaxial Strain State 

 

Unfortunately, only uniaxial-tensile data do not fulfill the requirements to characterize the 

material with sufficiently accuracy, especially for those applications with multiaxial loading 

(KEERTHIWANSA et al., 2018). Although biaxial extension is essential for data-fitting, there 
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is not any standard with proper directives to conduct this test. This happens due to complexity 

of the tests and of the mathematical models required for defining the highly nonlinear material 

behavior. 

 

Equal-biaxial tension tests were initially developed in order to represent the strain state of pure 

compression. Even though this state can also be achieved by a simple uniaxial compression test, 

it is inaccurate because small amounts of friction generated between rubber specimen and metal 

surfaces cause a mixed state of compressive, shear and tensile strain (DAY and MILLER, 

2000). The friction can also vary as the compressive load increases, and even for small levels 

of friction the deviation from the pure uniaxial compressive strain state causes significant 

measurement errors. For this reason, by adopting a suitable equal-biaxial testing fixture it is 

possible to obtain a pure compressive strain accurately, eliminating the errors due to friction. 

 

In general, the most commonly methods used for biaxial tests are: straining a circular specimen 

radially, biaxial extension of a thin square sheet or bulge tests. Initially, the first studies have 

been conducted concerning the bubble shape and tearing pattern in an inflated latex rubber sheet 

clamped around its circumference by Flint and Naunton (1937). Next, Treloar (1944), Hart-

Smith and Crisp (1967) and Schmidt and Carley (1975) developed devices for bulge tests 

aiming to characterize the stress-strain relations for rubber in a two-dimensional (2D) extension.  

 

As far as biaxial strain distributions are concerned, Rivlin and Saunders (1951), introduced tests 

in a thin square sheet in order to produce a pure homogeneous deformation. Later, based on this 

approach, Obata et al. (1970), Arenz et al. (1975) and, Jones and Treloar (1975) implemented 

experimental tests trying to predict the relation between stress and strain when applying the 

theory of elasticity over the entire region of strain invariants (𝐼1, 𝐼2).  

 

Then, from the 21st century, several variants of the experimental approaches to the biaxial 

straining in elastomers have been developed based on these initial concepts and which 

nowadays are aided by Digital Image Correlation (DIC). The bulge test technique consists in 

the expansion of a thin elastomeric sheet using air/hydraulic pressure as illustrated in the Figure 

2-16. The main disadvantage of this approach is the difficulty of controlling the strain in the 

center as the balloon shape increases. Also, the sheet thickness needs to be much thinner than 

its circumference and it is necessary to deal with two synchronized digital cameras to capture 

the strain range. Some implementations can be seen in Reuge et al. (2001), Nguyen et al. (2004), 
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Genovese et al. (2006), Selvadurai (2006), Feichter et al. (2007), Meunier et al. (2008), Sasso 

et al. (2008), Jerrams et al. (2012), Lăzărescu et al. (2012), Çakmak et al. (2014), Mansouri et 

al. (2016), Keerthiwansa et al. (2018). 

 

 

 

Figure 2-16: Bulge test apparatus for equal biaxial inflation of the rubber sheet. 

Source: Meunier et al. (2008) 

 

In the case of a square sheet, the specimen is gripped around its perimeter and stretched with 

multiple arms or cable bearing systems according to Figure 2-17. This experiment has been 

used with great success by several investigators, and has the advantage of elastomer 

deformations be examined in unequal biaxial deformation states. However, the stress 

calculation has been one of the main difficulties in this approach and, for this reason, is still 

being studied. Some biaxial testing device implementations can be found in Chevalier et al. 

(2001), Batra et al. (2005), Fujikawa et al. (2010), Johlitz and Diebels (2011), Pancheri and 

Dorfmann (2012), Jerrams et al. (2012), Chen et al. (2013) Zhao et al. (2013), Fujikawa et al. 

(2014), Seibert et al. (2014), Avanzini and Battini (2016), Hariharaputhiran and Saravan 

(2016). 
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Figure 2-17: Biaxial tensile test apparatus for a square thin sheet specimen. 

Source: Seibert et al. (2014) 

 

In addition to the implementations cited above, some low-cost and easy mounting fixture 

devices have been developed to be coupled with a universal tensile machine. Most of these 

fixture devices consist of four scissor arms at 45 degrees to the axis of the machine, as shown 

in Figure 2-18 (ADEEL et al., 2012; SHAHZAD et al., 2015; VENKATESH and MURTHY, 

2012). Other fixture devices have also been proposed in Bhatnagar et al. (2007) and Barroso et 

al. (2012). More recently, Medellín and La Peña (2017) studied  different fixture designs in 

order to identify their advantages and disadvantages as well as their behavior under loading. 

From 3D printed models, they evaluated the kinetic behavior of each fixture and proposed a 

new design, but despite the correct deformation, some improvements regarding the 

manufacturing process, clamping edges and accuracy should be performed.  
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Figure 2-18: Fixture device to produce equal biaxial strains in a square thin sheet specimen. 

Source: Shahzad et al. (2015) 

 

Finally, for the radial extension of a circular plate, the grips are moved radially outward by 

pulling with thin flexible cables which are redirected around pulleys to a common loading plate 

as shown in Figure 2-19 (DAY and MILLER, 2000). This type of equal biaxial rig gives a better 

control of the strains, since there is little influence of the geometry on the stress state in the 

center of the sample. In spite of its complex construction and difficulty of implementation, a 

very recent study conducted by Robinson et al. (2019) could build in-house this type of test, 

just assembling the apparatus to a single uniaxial testing machine. Most of the parts were 

obtained from 3D printing, which enabled its implementation (see Figure 2-20).   

 

 

 

Figure 2-19: Biaxial tensile test apparatus for a circular specimen stretched radially. 

Source: Day and Miller (2000) 
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Figure 2-20: Circular biaxial tensile test apparatus coupled with uniaxial machine. 

Source: Adapted from Robinson et al. (2019) 

 

As long as 𝜎3 = 0 for the biaxial extension, it is possible to derive the principal stretches based 

on Figure 2-21: 

 

  

 

Figure 2-21: Stress-strain state of a thin sheet under biaxial extension. 

Source: Adapted from Jakel (2010) 

 

𝜆1 = 𝜆2 = 𝜆𝐵 ;          𝜆3 =
1

𝜆𝐵
2  (2-90) 
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𝐼1 = 2𝜆𝐵
2 +

1

𝜆𝐵
4  ;         𝐼2 = 𝜆𝐵

4 +
2

𝜆𝐵
2 (2-91) 

 

Thus, recalling equation (2-46), the parameter 𝑝 will result in: 

 

𝑝 =
2

𝜆𝐵
4

𝜕𝑊

𝜕𝐼1
− 2𝜆𝐵

4 𝜕𝑊

𝜕𝐼2
 (2-92) 

 

and the Cauchy stress will be 𝜎𝐿1 = 𝜎𝐿2 according to equation (2-93): 

 

𝜎𝐿1 = 𝜎𝐿2 = 2(𝜆𝐵
2 −

1

𝜆𝐵
4) (

𝜕𝑊

𝜕𝐼1
+ 𝜆𝐵

2 𝜕𝑊

𝜕𝐼2
) (2-93) 

 

Appling the Valanis-Landel hypothesis, the energy in equation (2-77) can be rewritten only in 

terms of principal stretches, such as: 

 

𝑊̿(𝜆𝐵) = 𝑊̃(𝜆𝐵, 𝜆𝐵) = 2𝑤(𝜆𝐵) + 𝑤̅(𝜆𝐵
2) (2-94) 

 

and the principal stress components, making use of equation (2-53), are: 

𝜎𝐿1 = 𝜎𝐿2 =
𝜆𝐵
2
.
𝜕𝑊̿(𝜆𝐵)

𝜕𝜆
= 𝜆𝐵. 𝑤

′(𝜆𝐵) + 𝜆𝐵
2. 𝑤̅′(𝜆𝐵

2) ;        𝜎3 = 0  (2-95) 

 

where the superscript ′ on 𝑤̅ indicates differentiation with respect to the argument 𝜆𝐵
2
 and 

𝜎𝑁1 = 𝜎𝑁2 = 𝜎𝐿1/𝜆𝐵 

 

Since the objectives herein do not involve the need for unequal biaxial straining, the mechanical 

aspects of the experimental approach can be greatly simplified. The biaxial tests conducted by 

the author will be described in more detail in Chapter 3. Particularly at this chapter, some of the 

original contributions of this Dissertation will be detailed. 
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2.5.3 Pure Shear Strain State 

 

Pure shear deformation occurs when a thin rectangular sheet is stretched along the 1-direction, 

free to contract in the secondary direction and no deformation at a third direction. Since 

elastomers are nearly incompressible, a state of pure shear exists in the specimen at an inclined 

angle of 45 degrees regarding the stretching direction (TIMOSHENKO, 1970). 

 

Treloar (1943c) was the first to conduct pure shear experiments on a thin sheet of rubber. 

Afterwards, Rivlin (1948b) applied surface forces necessary to produce simple shear in a cuboid 

of either compressible or incompressible material. From this study, Rivlin and Saunders (1951) 

extracted load-deformation relations obtained for pure shear to predict the results of simple 

extension tests. In 1964, Mooney reported a series of measurements using a hollow cylinder 

rather than a sheet of rubber aiming to increase the shear beyond 200% reached in flexometer8 

(MOONEY, 1964).  

 

Many recent researches have been developed over the last years, mainly with regard to the 

rotational effects that relate pure shear and simple shear (DESTRADE et al., 2012; MOREIRA 

and NUNES, 2013; NUNES, 2011; RITTO and NUNES, 2015; THIEL et al., 2019). 

Notwithstanding, several studies have been conducted to show that uniaxial and biaxial fitted 

models are able to reproduce the planar shear behavior correctly  (BAASER and NOLL, 2009; 

CHEN et al., 2013; CHEVALIER and MARCO, 2002; MEUNIER et al., 2008; SASSO et al., 

2008; SEIBERT et al., 2014). According to Seibert et al. (2014) all achievable deformations 

are within uniaxial and biaxial curves, and by performing a biaxial tensile test it is possible to 

capture a larger area in the invariant plane. 

 

The specimen used in this type of experiment should be much shorter in the direction of 

stretching than its width, thus its thinning will only occur in the thickness direction resulting in 

a pure shear state. According to Miller (2004a), based on FEA of a specimen geometry, the 

width must be at least 10 times wider than the length in the stretching direction, being the 

experiment very sensitive to this ratio. 

 

8 It is a device used to measure the motion range of various joints around the body. It is also able to test the 

flexibility of materials. 
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This experimental test is based on a rectangular sheet under tension at its plane normal to the 

clamped edges according to Figure 2-22. An optical strain measuring device can be used to 

measure the strain away from the clamp edges, where there is in fact a pure strain state.  

 

 

 

Figure 2-22: Pure shear experiment device. 

Source: Baaser and Noll (2009) 

 

In the case of planar shear the thickness contraction was considered in the 2-direction as shown 

in Figure 2-23, and consequently 𝜎2 = 0. As a result, the principal stretches can be written as 

follows: 

  

 

Figure 2-23: Stress-strain state of a thin sheet under planar shear. 

Source: Adapted from Jakel (2010) 

 

𝜆1 = 𝜆𝑆 ;                𝜆2 = 𝜆𝑆
−1;                 𝜆3 = 1  (2-96) 
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𝐼1 = 𝜆𝑆
2 +

1

𝜆𝑆
2 + 1 ;             𝐼2 = 𝐼1 (2-97) 

 

Thus, recalling equation (2-46), the parameter 𝑝 will result in: 

 

𝑝 =
2

𝜆𝑆
2

𝜕𝑊

𝜕𝐼1
− 2𝜆𝑆

2 𝜕𝑊

𝜕𝐼2
 (2-98) 

 

and the Cauchy stresses 𝜎𝐿1 and 𝜎𝐿3 are written respectively as: 

 

𝜎𝐿1 = 2(𝜆𝑆
2 −

1

𝜆𝑆
2) (

𝜕𝑊

𝜕𝐼1
+
𝜕𝑊

𝜕𝐼2
) (2-99) 

 

𝜎𝐿3 = 2(1 −
1

𝜆𝑆
2) (

𝜕𝑊

𝜕𝐼1
+ 𝜆𝑆

2 𝜕𝑊

𝜕𝐼2
) (2-100) 

 

Appling the Valanis-Landel hypothesis, the energy in equation (2-77) can be rewritten only in 

terms of principal stretches, such as: 

 

𝑊⃛(𝜆𝑆) = 𝑊̃(𝜆𝑆, 𝜆𝑆
−1) = 𝑤(𝜆𝑆) + 𝑤(𝜆𝑆

−1) (2-101) 

and the principal stress components, making use of equation (2-53), are: 

 

𝜎𝐿1 = 𝜆𝑆.
𝜕𝑊⃛(𝜆𝑆)

𝜕𝜆𝑆
= 𝜆.𝑤′(𝜆𝑆) − 𝜆

−1. 𝑤′(𝜆𝑆
−1) ;               𝜎2 = 0  (2-102) 

 

where again the superscript ′ indicates differentiation with respect to the argument of the 

function 𝑤. From equation (2-51) the component 𝜎𝐿3 is: 

 

𝜎𝐿3 = −𝜆𝑆
−1. 𝑤′(𝜆𝑆

−1) − 𝑤̅′(𝜆1𝜆2)   (2-103) 

 

evaluated at 𝜆1 = 𝜆𝑆 and 𝜆2 = 𝜆𝑆
−1

. Just as the other deformation modes 𝜎𝑁1 = 𝜎𝐿1/𝜆𝑆 and 

𝜎𝑁3 = 𝜎𝐿3/𝜆𝑆. 
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2.5.4 Volumetric Compression 

 

When the material cannot be assumed to be incompressible, the volumetric properties should 

be included in the model predictions. The compressibility degree has a high effect on the 

mechanical behavior of rubbers, and this property is intimately related to the rubber packing 

density. It can be quantified by the bulk modulus assigned by the variable 𝐾; when the problem 

is effectively almost incompressible, this variable tends to very high values, being solved by a 

penalty procedure, in which the pressure variables act as Lagrange multipliers to force the 

condition of incompressibility (AL AKHRASS et al., 2014). 

 

The first studies as for rubber compressibility started with rubber blocks being compressed by 

two steel plates (GENT and LINDLEY, 1959; HOLOWNIA, 1971; 1972). However, when  

Holownia (1972) varied carbon black content to measure bulk modulus he found problems in 

the field of compliant-surface bearings owing to fluid-film dependency behavior while rubber 

was used. Then, in 1975, Holownia proposed a thick mild steel cylinder into which the rubber 

sample was placed, such that the radial displacements could be constrained. With this method 

he obtained great accuracy (±3% maximum error) in the measuring of 𝐾 (HOLOWNIA, 1975). 

Afterwards, other authors conducted studies regarding the reliability of this approach 

(CROCKER and DUNCAN, 2001; PENG et al., 1994). 

Some important results concerning the change in volume of a natural rubber can be found in 

the works Mott et al. (2008). Then, based on the Digital Image Correlation (DIC) technique, Le 

Cam and Toussaint (2008; 2009) captured the volume variation of a stretched sample. They 

performed studies on both natural and synthetic rubbers, unfilled and filled with carbon black. 

In more recent studies, Zimmermann and Stommel (2013a) analyzed the mechanical behavior 

of a reinforced natural rubber under hydrostatic pressure and showed insufficient outcome 

quality when a nearly incompressible material is assumed in simulations. In (2013b), they 

evaluated the influence of different filler types and filler contents on the hydrostatic 

compression behavior of natural rubber. They also performed cyclic uniaxial tensile tests to 

take the stress softening and determine the influence of previous loading on the compression 

behavior. Ilseng et al. (2015), tested six different elastomer compounds under cyclic volumetric 

compression and verified no significant stress softening between the volumetric compression 

cycles. On the other hand, Gehrmann et al. (2017) found the cyclic evolution of the bulk 
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modulus for a technical ethylene propylene diene rubber (EPDM) by using cyclic volumetric 

compression tests. 

  

Nowadays, the usual way of conducting a volumetric compression test involves the application 

of stress to the sample at one direction only. The sample is a small cylinder of material 

constrained in a rigid container and compressed by a piston as shown in Figure 2-24. The 

stresses generated on the sides are lower than those observed at the top and the bottom. Thus, 

the stress field is close to a hydrostatic state (quasi-hydrostatic state). Because the bulk modulus 

is much higher than the shear modulus, the deviatoric part of the stress will be much smaller 

than the hydrostatic, and for this reason it can be neglected (CROCKER and DUNCAN, 2001). 

 

 

 

Figure 2-24: Volumetric compression experiment scheme. 

Source: Miller (2004b) 

 

According to Miller (2004a), during the compression test the actual displacement is very small, 

and for this reason, great care must be taken to not measure the container stiffness. The bulk 

modulus is obtained through the initial slope of the resulting stress-strain function. Just to have 

a notion, this value is typically two or three orders of magnitude greater than the shear modulus 

for elastomers. 
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The relation between initial bulk modulus (𝐾0) and shear modulus (𝜇0) is given by the Poisson's 

ratio (𝜈) according to the equation (2-104) derived from the theory of elasticity (LOVE, 1982). 

Based on this equation some representative values can be considered as follows in Table 2-2. 

As a guide, typical unfilled elastomers have 𝜈 in the range of 0.4995 to 0.49995 and filled 

elastomers in the range of 0.490 to 0.497 (SIMULIA, 2016). 

 

𝜈 =
3𝐾0 − 2𝜇0
6𝐾0 + 2𝜇0

=
3𝐾0/𝜇0 − 2

6𝐾0/𝜇0 + 2
   (2-104) 

 

 

 

Table 2-2: Compressibility degree according to Poisson's ratio  

Source: Adapted from Simulia (2016). 

 

𝐾0/𝜇0 Poisson's ratio 

10 0.452 

20 0.475 

50 0.490 

100 0.495 

1000 0.4995 

10000 0.49995 

 

The bulk modulus is a material constant which defines the material resistance to volume change 

when subjected to compression loading. Consequently, it is a function of volumetric strain and 

can be expressed as a derivative of the pressure-strain curve (OGDEN, 1984). Nevertheless, as 

these are experimental results it turns appropriated to define the bulk modulus in an incremental 

form, such that: 

 

𝐾𝑖𝑛𝑐
𝑖 =

𝑑𝑝

𝑑𝜀𝑣
=
∆𝑝

∆𝜀𝑣
=
𝑝𝑖+1 − 𝑝𝑖

𝜀𝑣𝑖+1 − 𝜀𝑣𝑖
   (2-105) 

 

where 𝑖 represents the sequential number of the experimental points; 𝑝 and 𝜀𝑣 are respectively 

the pressure on the sample and volumetric strain. 

 



85 

 

 

In the experimental tests, the compression load is applied evenly over the piston’s contact 

surface, such that 𝑝 can be easily calculated through the force “𝐹” exerted on the piston. 

 

𝑝 =
𝐹

𝐴𝑝
  (2-106) 

 

where 𝐴𝑝 is the piston area in contact with the button sample. 

 

Since the diameter of the cylindrical sample remains constant during the compression, the 

volumetric strains can be derived as follows: 

𝜀𝑣 =
𝑉0 − 𝑉

𝑉0
=
ℎ0 − ℎ

ℎ0
  (2-107) 

 

In this case, 𝑉 and ℎ are respectively the volume and height of the button sample at the instant 

of measurement, while 𝑉0 and ℎ0 are the initial volume and height.  

 

Since rubber-like materials are considered isotropic, hydrostatic stresses act equally in all 

directions, so that this state can be written according to Figure 2-25. 

 

  

 

Figure 2-25: Stress-strain state under hydrostatic compression. 

Source: Adapted from Jakel (2010) 

 

𝜆𝑉 = 𝜆1 = 𝜆2 = 𝜆3  (2-108) 

 

𝐼1 = 3𝜆𝑉
2 ;           𝐼2 = 3𝜆𝑉

4 ;           𝐼3 = 𝜆𝑉
6 = 𝐽2 (2-109) 
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𝐽 = 𝜆𝑉
3 < 1 (2-110) 

 

𝑝 = 𝜎1 = 𝜎2 = 𝜎3 (2-111) 

 

In this situation 𝜎1; 𝜎2; 𝜎3 means the representation of both Cauchy or nominal stresses. 

  

 

2.6 Conical rubber spring 

 

Conical rubber springs, or just conical springs, are used as vibration isolators combining the 

function of primary damping and axle linkage in a single component. This kind of spring is one 

of the main objectives of study in the present Dissertation. 

 

As a universal damping and guiding element, the conical spring needs to combine all the 

properties required: high stiffness for axle-guiding and an optimally vertical rigidity for 

damping purposes. 

 

Its design is compact and light, making it easy for retrofitting. It consists of one or several 

conically arranged elastomeric layers bordered by adequately molded metallic components, the 

conical metallic molded parts should provide a separation between the various elastomeric 

layers as shown in Figure 2-26. 
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Figure 2-26: Conical rubber spring design. 

Source: Author modeling as a courtesy from Vibtech manufacturer 

 

The conical spring application and its performance depend on the number of elastomeric layers, 

the cone tilt angle and the selection of an optimum elastomeric compound. As the rubber is in 

both compression and shear when loaded, the conical springs allow for considerable excursion 

and have a progressive characteristic curve. 

 

They are generally used in the railway industry in order to comply with comfort and 

environmental demands. Some conical springs are even fitted with bump stops that help to 

absorb shock loads without causing permanent damage. Its assembly between wheels and bogie 

frame is illustrated according to Figure 2-27.  
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Figure 2-27: Conical rubber spring assembly. 

Source: Adapted from Rail Motor Society (2017) 
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3  
MATERIALS AND METHODS 

 

3.1 Sample details and experimental apparatus for rubber characterization 

 

In order to reach the main objectives proposed in the present Dissertation, samples of natural 

rubber reinforced with carbon-black have been prepared from the same batch of raw material 

to conduct a series of uniaxial and equal biaxial extension tests. In order to avoid the Mullins 

effect (see section 2.3), five loading cycles were performed prior to each test. The rubber 

compound used in characterization tests is a confidential formulation produced by Vibtech 

company, since it is the elastomeric material presented in the laminated bearings of the conical 

rubber spring. 

 

The uniaxial stretching tests have been performed in a standard tensile machine according to 

ASTM D412 (2016). 

 

For the case of equal biaxial deformation mode, two different methodologies have been studied: 

stretching the elastomeric sample in a cruciform device and blowing the sample according to 

the classical bulge test method. Both methodologies have been coupled with Digital Image 

Correlation (DIC) technique, allowing measurements in real time of strain levels on the surface 

of the deformed specimen. Just as a comparison, the compression test was also carried out 

varying the friction levels between rubber and metal surfaces (from rough to oily surface). 

 

The rubber shore hardness was extracted from five circular samples with at least 6 mm in 

thickness according to ASTM D2240 (2015). The average hardness value was 47 Shore A, as 

depicted in Figure 3-1. 
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Figure 3-1: Rubber shore hardness test on a type A durometer  

 

Other experimental tests regarding tear resistance (ASTM D624, 2012), deterioration under 

high temperatures (ASTM D573-04, 2015), adhesion to rigid substrates (ASTM D429, 2014), 

compression set in air or liquid media (ASTM D395, 2018), resistance to outdoor weathering 

(ASTM D1171, 2018), impact resilience (ASTM D2632, 2015) and vulcanization 

characteristics from rheometer (ASTM D2084, 2019) have been conducted to ensure the rubber 

quality. Because these results are confidential to Vibtech company and they are not in the scope 

of the Dissertation, they will not be present here. 

 

3.1.1 Strain field measurement with DIC technique 

 

The DIC technique is a way of collecting data that does not involve contact between the object 

studied and the measurement method. Data acquisition is done through photography, which is 

digitally stored and analyzed through mathematical formulation according to an algorithm 

capable of extracting the physics of the underlying deformation processes (SUTTON et al., 

2009). 

 

During DIC analysis a reference image should be fixed (generally the one free of deformation). 

In the reference image, a sub-area called Zone Of Interest (ZOI) is defined, and then a series of 

other images can be evaluated from the reference one. The full-field measurement information 
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can be described by random speckle patterns artificially applied through, for example, an ink 

able to adhere to the surface without interfering the mechanical properties of the material under 

study. These speckles consist of describing discrete image areas, which can be determined with 

subpixel accuracy by analyzing the image information. Figure 3-2 shows how ZOI is defined 

and how it matches the next image in a deformed configuration based on a determined speckle 

pattern (CHEVALIER et al., 2001; MOREIRA, 2015). 

 

 

 

Figure 3-2: ZOI in the initial and ‘deformed’ image for a two-dimensional configuration.  

Source: (CHEVALIER et al., 2001) 

 

The displacement field is analyzed by a correlation function, which is defined by a subset size. 

The subset size controls the ZOI to track the displacement between images. It should be large 

enough to ensure that there is a sufficiently distinctive pattern contained in the area used for 

correlation. This function understands that deformed configuration is like a copy of the 

reference image in which the point of interest has been displaced. 

 

A classic correlation function can be described according to the Sum of Squared Differences 

(SSD) of the pixel values, where smaller values represent better similarity. Thus, the correlation 

function can act as a similarity score, checking the possible matches at several locations, as 

follows (CORRELATED SOLUTIONS, 2009):  

 

𝐶(𝑥, 𝑦, 𝑢, 𝑣) = ∑ (𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝐼∗(𝑥 + 𝑢 + 𝑖, 𝑦 + 𝑣 + 𝑗))
2

𝑛/2

𝑖,𝑗=−𝑛/2

 (3-1) 
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where 𝐶 is the correlation function; 𝑥 and 𝑦 pixel coordinates from reference image; 𝑢 and 𝑣 

the displacements; and 𝑛 the subset size. The image before motion (𝐼) is related to 

(𝑥 + 𝑖, 𝑦 + 𝑗), while the image after motion (𝐼∗) is related to (𝑥 + 𝑢 + 𝑖, 𝑦 + 𝑣 + 𝑗).  

 

For a 2D test, only one camera is necessary to be used, but when the test is in a 3D system, two 

cameras should be synchronized each other in order to take the out of plane deformations. In 

addition, illumination through Light Emitting Diode (LED) and camera tripod are requested to 

an accurate data acquisition. During the experiment, the speckle pattern deforms with the 

surface and is captured by the camera, which is connected to the computer. In this case, the 

image acquisition can be done automatically, using a programming for the camera to be 

triggered with each deformation performed by the device.  

 

In this work, the deformation of the measuring field was mapped with a CMOS 

(Complementary Metal-Oxide Semiconductor) camera, Manta G-235B®, from Allied Vision 

Technologies GmbH®. It is important to emphasize, that the measuring field stayed stationary 

in the center during the entire experiments herein conducted and the corresponding force values 

were stored in a file at the same time of each picture in the deformed configuration, ensuring 

data synchronization. 

 

3.1.2 Uniaxial stretching tests 

 

According to ASTM D412 (2016), measurements for tensile stress, tensile strength and ultimate 

elongation should be performed on specimens that have not been pre-stressed, and rubbers 

should be compared only when tested under the same conditions. The periods of extension and 

recovery must be controlled in order to avoid residual deformation and to obtain comparable 

results. 

 

The experimental uniaxial tensile tests were performed on a dual column tabletop testing system 

(Instron 5567) coupled with a maximum capacity 5kN load cell. Two different approaches of 

strain measurement have been performed: clip gauges (extensometers) coupled with the 

machine and DIC (Figure 3-3 (a) and (b) respectively) capable of measuring large 

displacements. The specimens analyzed were submitted to three mechanical traction tests under 

a 500 mm/min displacement rate and the final curve was obtained from tests average. 
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(a) 

 

(b) 

  

Figure 3-3: Uniaxial extension test. (a) Instron clip gauges (b) DIC speckle pattern 

 

According to ASTM D412 (2016), the two grips clamped on the dumbbell shape specimen in 

Figure 3-3 (a) are called bench marks and are used to calculate the strain in the central area. On 

the other hand, the strain field of Figure 3-3 (b) will be computed by GOM Correlate®, a free 

DIC and evaluation software.  The samples adopted in the experimental tests have been cut off 

from a 2mm thick flat sheet, with a width of 6mm on the reduced section where the distance 

between each bench mark is equal to 25mm as illustrated in Figure 3-4. 

 

 

 

Figure 3-4: Dumbbell shape specimen dimensions according to ASTM D412 (2016). 
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3.1.3 Equal biaxial stretching tests 

 

As already mentioned, to accurately determine the material constants for a hyperelastic material 

model, the nominal stress-strain relationships under equal biaxial extension should be 

considered in addition to that under uniaxial extension. 

 

Since this type of deformation mode has no technical standard which guides the experimental 

tests, several approaches describing nominal stress-strain measurements have been developed 

over the years (for more details see section 2.5.2). From this standpoint, the present work 

conducted equal biaxial experimental tests seeking to compare the implementation in two main 

different devices: cruciform extension and bulge tests.  

 

It is very important to highlight the need to obtain results for high strain levels. This condition 

is imposed due to the high deformations in which the studied component is subjected, otherwise 

the material parameters obtained may become unrealistic for the application of interest. The 

experiments were carried out in the “Technische Mechanik” lab from Saarland University but 

the author of the current Ph.D. Dissertation has introduced some contributions in the post 

processing results aiming to reach accurate results for high strain levels. 

 

3.1.3.1 Cruciform extension test 

 

The equal biaxial tensile tests of this project were all conducted in an in-house development of 

the “Technische Mechanik” lab. The machine was outfitted with four diametrically opposed 

step engines controlled by linear actuators arranged in a cruciform manner, according to Figure 

3-5. The force measurement was computed by two force sensors (one in each axis) in a range 

up to 200N. Just like in the tensile test, three samples were evaluated under a 500mm/min 

displacement rate and the final curve was obtained from tests average. The strain field was 

captured every 2mm of displacement between clamps through images obtained by a device-

triggered digital camera connected to the real-time controller Compact RIO® (cRIO). The code 

environment was implemented in the software LabView® from National Instruments®.   More 

details concerning the apparatus configuration can be found in (JOHLITZ and DIEBELS, 2011; 

SEIBERT et al., 2014). 
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Figure 3-5: Testing device and clamping details 

 

The design of the specimen suitable for biaxial testing should present uniform stress/strain 

distributions at the central zone. Moreover, geometrical features should provide height levels 

of strain before failure. Based on (SEIBERT et al., 2014) two types of samples were adopted 

according to the machine fitting settings. As illustrated in Figure 3-6, each arm of the specimen 

should be parallel to the particular center line. The clamping region has to be a square of 

12.5𝑚𝑚 of width, and the average thickness was 𝑡 = 2.22mm for both samples. 
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(a) 

 

(b) 

 

Figure 3-6: Sample geometries: (a) Type: A; (b) Type: B 

 

In order to have the corrected dimensions for the carbon black vulcanized rubber samples, 

special molds were developed and manufactured in house as shown in Figure 3-7. 

 

 

(a) 

 

(b) 

 

Figure 3-7: Sample mold design: (a) Type: A; (b) Type: B 

 

In this experiment, the optical setup was composed by only one high-resolution digital camera 

due the fact that the deformation field occurs in the plane. For the post-processing analysis, 

GOM correlate® software was used for strain computation, and ZOI area was described through 

a surface component. In the software approach, square facets are like square image fragments 

determined with subpixel accuracy by analyzing the image information. Figure 3-8 illustrates 

surface component with square facets for sample A and sample B respectively. For both 

samples the facet size was 15 pixels and point distance 16 pixels as depicted in Figure 3-9.  
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(a) 

 

  

(b) 

 

Figure 3-8: Surface component based on square facets computation. (a) Type: A; (b) Type: B 

 



98 

 

 

 

(a) 

 

(b) 

 

Figure 3-9: Surface component parameters. (a) Type: A; (b) Type: B 

 

Since the aim of this study is to precisely measure the nominal stress-strain relationships of 

industrial rubber materials for multiaxial deformation, the biaxial response should be calculated 

based only on uniform-deformation region. The main problem of this assumption is the 

uncertainty concerning the determination of the stress state in the central area of the specimen. 

The total force measured by the load cells differs substantially from the load transferred to the 

central area depending on details of the gripping system and sample shape. Then, recent 

research has been implementing optimization algorithms coupled with FEA aiming to extract 

accurate material parameters from force-displacement experimental data (AVANZINI and 

BATTINI, 2016). But, the main problem of this approach is the influence of gripping method 

when displacement is accounted between them. 

 

Thus, the author of the present Dissertation implemented a simpler and more effective way of 

computing stress around uniform region in the specimen, just employing an inverse method 

which combines strain field obtained from DIC and FEA. In this approach, it is not necessary 

several iterations like optimization methods, and its effectiveness is regardless sample shape 

and gripping system. More details about this methodology will be described in section 3.3.2 

and final results will be compared to bulge tests in section 4.3.2. 

 

 



99 

 

 

3.1.3.2 Bulge test 

 

The bulge test methodology adopted in this project basically consists of clamping a thin rubber 

disc between two clamping flanges. In the implemented bulge test, the specimen assumes a 

“balloon like” shape when it is inflated with air pressure. 

 

The equal biaxial inflation tests have also been performed at “Technische Mechanik” lab and 

the equipment was essentially composed by a lower flange with a small central hole to introduce 

the air pressure, and an upper flange with an internal diameter large enough to let the specimen 

expand avoiding any border effect. In this type of experiment, a thin rubber disc is blocked 

between lower and upper clamping flanges along its external circumference. Then, it is inflated 

by a compressed air from the inner side of the specimen until it assumes a spherical shape. In 

the device used, the compressed air was controlled by a compact and accurate pressure 

regulator, GIESA GmbH - DR10, according to the settings implemented in a LabView® 

environment, up to a maximum pressure of 1 bar. The change in pressure state inside the bulge 

chamber was measured by a 4-20 mA pressure transducer (Sensortechnics GmbH - 

CTE8010GV7). This means that the transducer receives a 4-20 mA Direct Current (DC) input 

signal from the device, where 4 mA is equivalent to the zero pressure value and 20 mA means 

that the pressure is equal to 10 bar. Data synchronization could be ensured through a cRIO-

controller able to integrate the information from digital cameras and pressure transducer 

connected to the bulge chamber. The process flow and how information were all connected can 

be better understood through Figure 3-10.    

 

Figure 3-10: Bulge test connected devices 
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The specimens were disks of initial diameter 𝐷0 = 50𝑚𝑚 and average thickness 𝑡 = 2.31𝑚𝑚. 

Because these dimensions are in accordance with the thin-walled spherical pressure vessel 

theory, that is 𝐷0/𝑡 ≥ 20, this assumption could be adopted and the tensional state of the 

specimen could be obtained by force equilibrium due to stress and pressure. According to 

equation (3-2) the principal Cauchy stresses in the bulged thin film are calculated through the 

relationship between applied pressure, radius of curvature, and thickness (XIAN, 2015). 

 

𝜎𝐿1 = 𝜎𝐿2 =
𝑃. 𝑅

2. 𝑡
=

𝑃. 𝑅

2. 𝑡0. 𝜆3
 (3-2) 

 

where 𝑃 is the pressure inside the bulge, 𝑅 the radius on the top of the balloon, 𝑡 is the thickness 

at the instant of acquisition, 𝑡0 is the initial value of thickness and 𝜆3 is the stretch along the 

thickness direction. Since the thickness is much smaller than the other two planar dimensions, 

𝜎3 is negligible and plane stress condition can be considered. 

 

From pure geometry, the relationship between deflection height (𝛿), rubber sheet width (𝑎) and 

curvature radius (𝑅) can be written according to Figure 3-11.   

 

 

 

 

(a) (b)            

 

Figure 3-11: Schematic representation of bulge test and its parameters. (a) Rubber sheet cross 

section; (b) Geometry relations.  

Source: Adapted from Eijden (2008) 

 

From Figure 3-7 (b) it is possible to note that 𝑅 can be rewritten in terms of rubber sheet width 

𝑎 and deflection apex, 𝛿. 
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𝑅2 = 𝑎2 + (𝑅 − 𝛿)2  → 𝑅 =
𝑎2 + 𝛿2

2. 𝛿
 (3-3) 

 

The optical setup was composed by two high-resolution 3D stereo camera system which 

delivers precise 3D coordinates based on triangulation and random speckle patterns. Based on 

this stochastic approach, the VIC-3D software was used to measure and visualize 3D 

measurements of shape, displacement, and strain based on the principle of DIC.  

 

The cameras should be calibrated and mounted on a moveable arm in order to maintain a good 

focal distance during the inflation of the specimen. The developed bulge test with an 

undeformed specimen is shown in Figure 3-12. 

 

 

 

Figure 3-12: Bulge device with an undeformed specimen 

 

As the out-of-plane surface can only be described by two cameras, they should be synchronized 

each other. During the calibration process, parameters are calculated together through a 
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calibration plate with a known distance between points (in this case, 5mm). Then, the 

synchronized images are used to fully calibrate the system according to a calibration target.  

 

In this method, each camera acquires target images separately which are used to calculate 

intrinsic parameters for the cameras. For each image, a determined number represents the value 

of total points extracted (0 for failed images). The position of these points are computed and 

displayed during the extraction. According to Figure 3-13 it is possible to note the three hollow 

orientation dots labeled with different colors. When all image analysis is complete, the final 

calibration will be computed. There is a maximum score that validates the calibration (the lower 

the score, the better the calibration). If the score is higher than the limit, any outlying images 

will be discarded and the calibration computed again. Notwithstanding, if there are not enough 

images within the target, the calibration cannot be performed.  

 

 

  

Figure 3-13: Stereo system calibration process and score 

 

The final score presented in Figure 3-13 corresponds to the average error (in pixels) between 

the position where a target point was found in the image, and the theoretical position where the 
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mathematical calibration model places the point. Good scores are displayed in green, whereas 

bad scores in red. 

 

After calibration process, data acquisition for the bulge test could be started. In the experiment, 

pressure range was increased approximately every 0.02bar, and from this moment a couple of 

images were taken from each camera synchronized with the pressure. In the post-processing, 

VIC-3D requires a subset and step size defined from a ZOI which can be seen in Figure 3-14. 

 

 

 

Figure 3-14: ZOI definition based on specimen size 

 

From Figure 3-15 it is worth noting that the chosen value of subset size returns a very low 

uncertainty interval and consequently an accurate pattern. 
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Figure 3-15: Uncertainty interval defined according to subset size 

 

Unlike subset size, smaller values of step size return more accurate results. This happens, 

because step size controls the points spacing which are analyzed during correlation. On the 

other hand, the lower the step size the more computational efforts are necessary, and analysis 

time varies inversely with the square of the step size. As an example, if a step size of 1 is chosen, 

a correlation analysis is performed at every pixel inside ZOI, but it will take 25 times longer to 

analyze than a step size of 5. In this consensus, a step size of 5 was adopted, and it as able to 

give accurate results without destroying the surface during the analysis. 

 

The final stress-strain curves were calculated by considering the average results obtained from 

several points inside a radius of 6mm around the dome as in Figure 3-16. 
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Figure 3-16: Evaluated points for bulge test stress-strain response 

 

3.1.4 Simple compression tests 

 

The compression tests conducted herein this project were performed according to ASTM D575-

91 (2018), but taking into account some changes regarding friction between rubber and metal 

plates. This kind of test is very useful to compare stiffness of rubber materials in compression 

although the surface treatment can really affect final results. The experiment was carried out on 

the same machine as tensile tests (Instron 5567), but between rubber surfaces and machine 

plates two very different conditions of friction were evaluated: rough, with a coarse P60 

sandpaper and oily, with a HD 68 hydraulic oil. 

 

The force was applied under a deflection rate of 12 mm/min until the sample reaches 50% of 

strain. The sample consists of a cylinder with a diameter of approximately 28mm and a height 

of 12mm. The undeformed position is shown in Figure 3-17. 
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Figure 3-17: Undeformed cylindrical specimen for compression test 

 

3.2 Conical rubber spring experimental tests 

 

The conical rubber spring consists of rubber and metal armatures. It is placed on primary 

suspensions between the axle and the bogie frame, allowing the transmission of longitudinal 

traction/braking loads and transverse guidance loads, as well as the vertical flexibility 

(SEBESAN et al., 2015). It must fulfill with the requirements of the standard NF EN 13913 

(2004) for rubber based parts. 

 

The bogie is the key element in wheel-rail contact. It is equipped with two axles connected to 

a frame by eight springs. In order to have a better understanding, a schematic example of the 

B23 bogie from Alstom is illustrated in Figure 3-18. The weight of each spring should be the 

lightest as possible and must not exceed 15.5kg. 
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Figure 3-18: B23 Alstom bogie with conical rubber spring suspension 

Source: Adapted from Alstom (2015) 

 

Regarding the nature of the elastomer mixtures no condition is imposed, but its formulation 

shall be identical to the mixtures used for manufacturing the parts which successfully went 

through the qualification procedure. 

 

The vulcanization characteristic curve should be in accordance with standard NFT 43-015 

(1996) or ISO 6502 (2016), and the mechanical characteristics on test pieces in conformity with 

standard NFT 46-002 (1988) or ISO 37 (2011). All the prototype experimental tests have been 

performed at Vibtech, with the Dissertation author accompaniment. 

 

3.2.1 Static vertical loads 

 

The vertical loads per spring are described according to Table 3-1. The speeds of measurement 

must be in agreement with the prescriptions of the technical standard NF EN 13913 (2004). 

 

Table 3-1: Vertical loads per spring according to AW (Added Weight).  

Source: Adapted from NF EN 13913 (2004). 

 

 

 
Load cases Function 

Minimum 

load [kN] 

Average 

load [kN] 

Maximum 

load [kN] 

Tare AW0 - 10% 16.0 20.0 23.0 

Normal 

load 

AW1 4pers/m2 25% 21.5 26.0 30.6 

AW2 6pers/m2 50% 24.0 29.5 35.1 

AW3 8pers/m2 15% 27.5 33.3 39.1 

Crush load AW4 - - 30.0 36.5 43.0 
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The AW loading refers to the weight added to a vehicle to simulate passenger load, where: 

• AW0 simulates an empty car; 

• AW1 – AW3 simulates a load with some seated and some standing passengers; 

• AW4 simulates a train with a crush load (the maximum number of passengers that can 

possibly travel in the railcar, standing and sitting). 

 

The maximum load must be supported by the spring without any damage for this last one.  

 

3.2.2 Static axial stiffness 

 

The conical spring should present a static vertical stiffness of 650 N/mm ± 15 %. The testing 

machine is illustrated according to Figure 3-19, where two power screws are the responsible for 

executing the translational motion in order to compress the spring through a metal block 

controlled by a load cell. The procedure used to measure the static axial stiffness should be 

performed by the following methodology: 

 

• Application of two preload cycles from 0 to AW3 - AW3max; 

• During the 3rd cycle from 0 to AW3 - AW3max, recording of the load/deflexion curve; 

• On the curve corresponding to the increasing loads, calculation of the stiffness between 

AW0min and AW2min, then between AW0max and AW2max. 
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Figure 3-19: Assembly for the axial stiffness test 

 

3.2.3 Height under load 

 

After static axial stiffness measurement, application of a fourth cycle from 0 to AW3max should 

be performed. Then, on the curve corresponding to the decreasing loads, and after a stabilization 

of 15 seconds under AW0, the height under load is recorded. 

 

Under a vertical load of AW0, the conical spring should present a height under load “ℎ” of 154 

mm, as shown in Figure 3-20. Adjustment, if necessary, should be done by a maximum of two 

shims. These shims must be sticked to prevent any disassembly.  
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Figure 3-20: Assembly for the high under load measurement 

 

3.2.4 Static radial stiffness 

 

The conical spring should present a static radial stiffness of 5600 N/mm ± 15 % under a preload 

equivalent to the tare load AW0 which is set according to Figure 3-21. After preload the position 

is changed as shown in Figure 3-22, where a punch emulates the radial load. The procedure to 

measure the static radial stiffness, under vertical load, should be performed by the following 

methodology: 

 

• Application of a vertical preload 𝐹𝑧𝑖 (N); 

• Application of two preload cycles from -6 to 6mm; 

• During the 3rd cycle from -6 to 6mm, recording of the load/deflection curve; 

• Calculation of the stiffness pick to pick. 
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Figure 3-21: Assembly for a preload equivalent to AW0, performed before radial stiffness test 

 

 

 

Figure 3-22: Assembly for the radial stiffness test 
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3.3 Finite element method for analysis correlation 

 

The finite element method is a popular tool for designing elastomeric components.  This 

numerical method is able to approximate the stress-strain behavior of rubber components based 

on a theoretical material model. 

 

In order to correlate the hyperelastic material properties with experimental data many static 

tests procedures and constitutive expressions for FEM have been developed over the years – 

for a brief review see Beda (2014) and Marckmann and Verron (2006). Thus, based on classical 

hyperelastic theories it was possible to analyze the stress-strain response obtained by means of 

uniaxial and equal-biaxial stretching tests with the numerical models implemented in the 

commercial software Abaqus®. All simulation involved in this project were run in an Intel (R) 

Core (TM) i7-7700k 4-Core @ 4.20GHz processor with 32GB of RAM memory and a GeForce 

GTX 1060 6GB graphics card. 

 

A curve fitting method was implemented through a Visual Basic for Applications - VBA® code 

aiming to minimize the relative and absolute errors by a Generalized Reduced Gradient (GRG) 

optimization algorithm.  

 

The exactness of the material parameters was validated through a finite element analysis of 

each specimen type and compared with experimental data. From the obtained parameters, axial 

and radial stiffness of the component were evaluated, but in order to match the prototype 

numerical results with experimental tests final parameters were obtained by a pattern search 

optimization method implemented in Python® and Abaqus® scripting interface. This method 

was proposed by (HOOKE and JEEVES, 1961) and does not require a gradient calculation. It 

examines points near the current point by perturbing design variables until an improved point 

is found, and then follows the favorable direction until no more design improvement is possible. 

The convergence is detected according to a Step Size Reduction Factor until the step-length is 

sufficiently small or when a maximum number of runs are reached.  

 

Since the nature of the objective function is unknown a priori, this optimization algorithm is a 

well-suited method for the curve fittings obtained by FEA. The optimization process coupled 

with finite element simulation is depicted in Figure 3-23. The design variables change 
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automatically throughout the process and the force-displacement curve depends on the material 

parameters for accounting the error. 

 

 

 

Figure 3-23: Process automation implemented for material parameters definition in prototype. 

 

3.3.1 Data fitting routines for material model calibration 

 

The most common procedure used in numerical computation is the Least Squares Method 

(LSM) based on a single process of evaluating simultaneously all the parameters of a model. 

Initially, the hyperelastic constants definition were performed in the Abaqus® environment 

through an input source selection area as shown in Figure 3-24. 

 

Abaqus® executes the least squares method to determine the best curve for each constitutive 

model, where for each “𝑛” stress-strain pair that make up the test data, the following relative 

error “𝐸𝑟” is minimized (SIMULIA, 2016): 

 

𝐸𝑟 =∑(1 − 𝑇𝑖
𝑡ℎ/𝑇𝑖

𝑡𝑒𝑠𝑡)2
𝑛

𝑖=1

 
     

(3-4) 

 

 

where 𝑇𝑖
𝑡𝑒𝑠𝑡 is the stress value from the test data and 𝑇𝑖

𝑡ℎ is the theoretical stress from the fitted 

curve. 
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Figure 3-24: Material definition area for experimental test data input and evaluation at 

Abaqus®.  

 

Another way to define the best curve fitting, but is not implemented at Abaqus® environment, 

is by accounting the absolute error “𝐸𝑎”. This measurement, can be interesting since it 

expresses how far the theoretical curve 𝑇𝑖
𝑡ℎ is from the experimental values 𝑇𝑖

𝑡𝑒𝑠𝑡. It basically 

takes into account the difference between expected and actual values as follows: 

 

𝐸𝑎 =∑|𝑇𝑖
𝑡𝑒𝑠𝑡 − 𝑇𝑖

𝑡ℎ|

𝑛

𝑖=1

 
     

(3-5) 

 

 

The theoretical stresses are defined for each pure deformation mode based on the assumption 

of full incompressibility. Then, pure deviatoric part can be conveniently rewritten for each 

hyperelastic model as a function of the elongation and/or invariants of the strain experimental 

data. From this point, 𝑇𝑖
𝑡ℎ equations are derived for uniaxial, biaxial and planar shear as follows 

(SIMULIA, 2016): 
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• Polynomial strain energy potential 

 

The hyperelastic polynomial form can be fitted by Abaqus® up to order 𝑁 = 2. Although 

Mooney-Rivlin is a formulation based on polynomial form, Abaqus® names it as a case of 𝑁 =

1, where the higher-order coefficients are set to zero. 

 

𝑇𝑈 = 2(1 − 𝜆𝑈
−3)[𝐶10. 𝜆𝑈 + 𝐶01 + 2𝐶20. 𝜆𝑈(𝐼1̅ − 3) +

                                 𝐶11(𝐼1̅ − 3 + 𝜆𝑈(𝐼2̅ − 3)) + 2𝐶02(𝐼2̅ − 3)]  

     

(3-6) 

 

 

𝑇𝐵 = 2(𝜆𝐵 − 𝜆𝐵
−5)[𝐶10 + 𝐶01. 𝜆𝐵

2 + 2𝐶20(𝐼1̅ − 3) +

                                   𝐶11(𝜆𝐵
2 (𝐼1̅ − 3) + (𝐼2̅ − 3)) + 2𝐶02. 𝜆𝐵

2 (𝐼2̅ − 3)]  

     

(3-7) 

 

 

𝑇𝑆 = 2(𝜆𝑆 − 𝜆𝑆
−3)[𝐶10 + 𝐶01 + 2(𝐶20 + 𝐶11 + 𝐶02)(𝐼1̅ − 3)] (3-8) 

 

where the subscripts 𝑈,𝐵, 𝑆 corresponds to uniaxial, biaxial and planar shear respectively. 

 

• Reduced polynomial strain energy potential 

 

The hyperelastic reduced polynomial form can be fitted by Abaqus® up to order 𝑁 = 6. In the 

case of 𝑁 = 3 the formulation becomes identical to the Yeoh model and for 𝑁 = 1 the Neo-

Hookean model is retained. 

 

𝑇𝑈 = 2(𝜆𝑈 − 𝜆𝑈
−2). ∑ 𝑖𝐶𝑖0(𝐼1̅ − 3)

𝑖−1𝑁
𝑖=1   (3-9) 

 

𝑇𝐵 = 2(𝜆𝐵 − 𝜆𝐵
−5). ∑ 𝑖𝐶𝑖0(𝐼1̅ − 3)

𝑖−1𝑁
𝑖=1   (3-10) 

 

𝑇𝑆 = 2(𝜆𝑆 − 𝜆𝑆
−3). ∑ 𝑖𝐶𝑖0(𝐼1̅ − 3)

𝑖−1𝑁
𝑖=1   (3-11) 

 

• Ogden strain energy potential 

 

Like reduced polynomial, the hyperelastic Ogden form can be fitted by Abaqus® up to order 

𝑁 = 6. 
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𝑇𝑈 = ∑
2𝜇𝑖

𝛼𝑖
(𝜆𝑈

𝛼𝑖−1 − 𝜆𝑈
−1/2.𝛼𝑖−1)𝑁

𝑖=1   (3-12) 

 

𝑇𝐵 = ∑
2𝜇𝑖

𝛼𝑖
(𝜆𝐵
𝛼𝑖−1 − 𝜆𝐵

−2.𝛼𝑖−1)𝑁
𝑖=1   (3-13) 

 

𝑇𝑆 = ∑
2𝜇𝑖

𝛼𝑖
(𝜆𝑆
𝛼𝑖−1 − 𝜆𝑆

−𝛼𝑖−1)𝑁
𝑖=1   (3-14) 

 

• Arruda-Boyce strain energy potential 

 

𝑇𝑈 = 2𝜇(𝜆𝑈 − 𝜆𝑈
−2). ∑

𝑖𝐶𝑖

𝜆𝐿
2𝑖−2 (𝐼1̅)

𝑖−15
𝑖=1   (3-15) 

 

𝑇𝐵 = 2𝜇(𝜆𝐵 − 𝜆𝐵
−5). ∑

𝑖𝐶𝑖

𝜆𝐿
2𝑖−2 (𝐼1̅)

𝑖−15
𝑖=1   (3-16) 

 

𝑇𝑆 = 2𝜇(𝜆𝑆 − 𝜆𝑆
−3). ∑

𝑖𝐶𝑖

𝜆𝐿
2𝑖−2 (𝐼1̅)

𝑖−15
𝑖=1   (3-17) 

 

• Van der Waals energy potential 

 

𝑇𝑈 = 𝜇(1 − 𝜆𝑈
−3). (

1

1−𝜂
− 𝛼√

𝐼−3

2
) [𝜆𝑈(1 − 𝛽) + 𝛽]  (3-18) 

 

𝑇𝐵 = 𝜇(𝜆𝐵 − 𝜆𝐵
−5). (

1

1−𝜂
− 𝛼√

𝐼−3

2
) [1 − 𝛽 + 𝛽𝜆𝐵

2 ]  (3-19) 

 

𝑇𝑆 = 𝜇(𝜆𝑆 − 𝜆𝑆
−3). (

1

1−𝜂
− 𝛼√

𝐼−3

2
)  (3-20) 

 

As already mentioned, the specimens’ response for each deformation mode was initially 

computed by testing the classical strain energy potential forms through Abaqus® data fitting 

routine using LSM. Hence, the constitutive models which best fit the experimental curves were 

evaluated with more accuracy by GRG optimization algorithm, taking into account the 

minimization of both relative and absolute error, as well as equivalent number of experimental 

points.  
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The author of the current Ph.D. Dissertation applied this original procedure due to lack of 

adjustment in some regions of the curve. When data are fitted simultaneously for all 

experiments, the number of stress-strain pairs should be equivalent, otherwise the experiment 

with higher number of points may have a greater weight in error accounting. In addition, if only 

relative error is computed, the error distribution between theoretical and experimental curves 

cannot be uniform and most of the total error can be concentrated in a specific region of the 

entire curve, resulting in a high lack of accuracy in that region.  

 

The hyperelastic models which best fit experimental data simultaneously, being stable in all 

strain ranges, were Arruda-Boyce and Yeoh (see section 4.2). For this reason, these models 

were implemented in a VBA® code at Excel® environment. As an example, the graphical 

interface for Arruda-Boyce model is depicted in Figure 3-25. The model can be chosen by the 

dropdown menu, while the scrollbar is used to evaluate the constants influence on the 

theoretical curve and the optimization process can be run by pressing the solve parameters 

button. For implementation of other constitutive models, the only difference will be in material 

parameters and stress equations inside routine calculation.  

 

 

 

Figure 3-25: Arruda-Boyce data fitting implementation by GRG optimization algorithm 

 

3.3.2 Material parameters validation through FEA 

 

The validation of hyperelastic models with experimental data has been done by modeling the 

test specimens in FE environment. Based on Arruda-Boyce and/or Yeoh coefficients obtained 

from an accurate data fitting, the simulation was performed to predict the correct stress-strain 

relation for simple tension and equal biaxial test in Abaqus®. 
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Since the in-plane experiments (uniaxial and cruciform biaxial) have the rubber thickness 

significantly lower than its width and length, the plane stress condition could be adopted. In 

plane stress elements the material is free to deform in the thickness direction and for this reason, 

special treatment on the volumetric behavior was not necessary. This is the only condition in 

which the element can be formulated by a fully integrated pure displacement method instead of 

hybrid formulation (details of hybrid formulation in Appendix A) and/or reduced integration.  

 

In general, an analysis with hybrid element will be more computationally expensive than an 

analysis using a regular displacement-based element. Although reduced integration is an 

interesting option for shell elements, it may cause serious mesh dependency problems, 

especially in biaxial extension, due to a high artificial strain energy introduced by hourglass 

modes in coarser meshes. The author has also carried out a research about this effect, which is 

described in the Appendix B. 

 

To represent the rubber samples stretching in plane, symmetry models were performed for each 

type of experiment. The mesh was composed of 4-node bilinear plane stress quadrilateral 

elements (CPS4) and the refinement was good enough to evaluate de stress-strain behavior in 

the area of interest. The specimen modeling and boundary conditions for each experiment is 

represented in Figure 3-26. 

 

For the case of biaxial extension in a cruciform specimen, the developed methodology initially 

considered a uniform stress distribution around the whole central region of the specimen, and 

the adopted width for calculating the initial area is shown in Figure 3-27. Based on this 

assumption it was possible to obtain an initial guess for FEA data fitting. Thus, from this first 

simulation in both samples, the stress-strain uniform region size could be evaluated, as well as 

the reaction forces acting around this small region. 
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(a) (b) (c) 

 

Figure 3-26: Specimen finite element modeling according to in plane experiments. (a) 

uniaxial extension; (b) cruciform biaxial: Type A; (c) cruciform biaxial: Type B 

    

 

(a) 

 

(b) 

 

Figure 3-27: Width dimensions for area initial guess in the biaxial experiment. (a) Type A; (b) 

Type B. 
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The reaction forces were obtained for each 1mm stretching increment over the analysis, which 

was set as analysis time period according to the number of each experiment acquisition. Just as 

validation, the uniform area (𝐴𝑢𝑛) can also be calculated from equation (3-21) regardless 

analysis time period. The graph depicted in Figure 3-28 shows that uniform area remains 

constant during the simulation and the difference between time points is neglectable. The 

maximum displacement in sample A was 120mm and in sample B, 50mm. It is worth 

remembering that a very refined mesh around biaxial extension should be considered, mainly 

if biaxiality degree is small. Therefore, it is possible to verify the responses change node by 

node and extract the correct uniform region in the experiment with its respective force relation.   

 

𝐴𝑢𝑛
𝑖 = 𝑅𝐹𝑖

𝜎𝑁
𝑖⁄   (3-21) 

 

where 𝑅𝐹 is extracted from numerical simulation and corresponds to the total reaction force in 

the uniform area. The superscript "𝑖" means the current time period in the analysis.  

 

 

  

Figure 3-28: Biaxial uniform area calculated from numerical simulation. 

 

Although this method is simple, it is very effective, because the stress sensitivity is much less 

evident than strains for any variation in the material parameters range, and consequently the 
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reaction forces acting in the uniform area will not suffer major changes between initial guess 

and corrected curve. To reach this conclusion the author conducted tests in four different rubber 

compounds varying the quantities of a soft carbon-black in order to obtain significantly 

different material parameters as shown in Table 3-2. The formulations were named as follows: 

D00 (pure natural rubber), DS10, DS30, DS60 (10%, 30% and 60% of a soft carbon black type).  

 

From material parameters, a FE simulation was carried out only for Sample A, because it has a 

very low biaxiality degree and supported very high deformations in the experiment. Figures 

3-29 to 3-31 show respectively the reaction force, nominal stress and nominal strain responses 

over the analysis time. 

 

Table 3-2: Arruda-Boyce coefficients according to carbon-black quantities in NR compounds 

 

Error type Coefficients [MPa] D00 DS10 DS30 DS60 

Abaqus®: 

Relative 

Error 

𝜇 0.419 0.509 1.110 2.029 

𝜆𝐿 3.628 3.405 3.091 3.056 

D 4.551E-03 3.721E-03 1.685E-03 9.202E-04 
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Figure 3-29: Reaction forces around the uniform area obtained from numerical simulation for 

different NR compounds. 

 

 

 

Figure 3-30: Biaxial nominal stresses obtained from numerical simulation for different NR 

compounds. 
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Figure 3-31: Biaxial nominal strains obtained from numerical simulation for different NR 

compounds. 

 

It is clear to note that, when the constitutive coefficients variation is relatively small, the 

nominal stresses are very similar and only one iteration of the proposed procedure is enough to 

correct the experimental stress-strain curve obtained from the initial treatment. In case of higher 

variations, more iterations should be performed. However, this condition must be hard to 

happen, and both samples (A and B) converged in only one iteration as will be shown in section 

4.3.2.1.  

 

To ensure the potential of the proposed methodology the implemented optimization algorithm 

used for prototype data fitting was run coupled with FEA aiming to match the stretching force 

and biaxial strain measured from DIC. Although the work conducted by Barroso et al. (2012) 

seeks to match force in terms of prescribed displacement, the author understands that gripping 

system may influence on final results and added nodal strain response inside optimization code. 

Finally, a classical bulge test was also carried out to validate the nominal stress-strain response 

between both theories, while they should match. All the results concerning this validation 

process will be presented in section 4.3.2.2. 
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To represent the rubber bulge test and validate material constitutive parameters when dome is 

stretched, a symmetry model was built through a mesh composed of 4-node doubly curved thin 

shell with reduced integration and hourglass control (S4R). In this case, plane stress modeling 

could not be used since pressure forces are not acting in the element plane. Despite this fact, a 

very refined mesh was performed in the dome in order to overcome mesh dependency problems. 

The specimen modeling and boundary conditions for this experiment is represented in Figure 

3-32. The highlighted gray area corresponds to the rubber constrained between both flanges.  

 

 

 

Figure 3-32: Bulge test specimen finite element modeling.  

 

3.3.3 Simple compression FEA modeling 

 

A numerical simulation of the compression test was performed by using a two-dimensional 

axisymmetric FE model due to its rotational symmetry. Axisymmetric elements convert a 3D 

problem into a 2D problem, making it a smaller model with faster execution and easier post-

processing. For more detail about the axisymmetric formulation used in the analysis see section 

3.2.8 of the Abaqus® Theory Guide from Simulia (2016). 

 

To represent the rubber material, 8-node biquadratic axisymmetric quadrilateral elements with 

hybrid formulation and linear pressure (CAX8H) were used in the mesh, and metal plates were 

modeled by using 4-node bilinear axisymmetric quadrilateral elements (CAX4). The hybrid 

formulation is suitable for strictly incompressible solids, such as rubber, being represented by 

the letter “H” at the end of element name.  
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The contact between elastomer and metal parts was enforced by a surface-to-surface contact 

algorithm, where the friction coefficient was varied from 0 (frictionless) to 1 (rough). The finite-

sliding formulation was adopted to allow relative motion of the surfaces. For a brief description 

about nonlinear contact and finite-sliding formulation see sections 5.1.2 and 5.2.3 of the 

Abaqus® Theory Guide from Simulia (2016). In order to avoid penetration, rubber was set as 

slave surface (softer) in a densely meshed body, while metal plates were the masters in a coarser 

mesh. The capabilities of this implementation with its boundary conditions is shown in Figure 

3-33.  

 

 

 

Figure 3-33: Simple compression test finite element modeling 

 

3.3.4 Axial stiffness FEA modeling 

 

For the case of axial stiffness simulation, the conical rubber spring under investigation has been 

treated as an axisymmetric model due to its rotational symmetry and load applied around its 

circumference. The implementation assumed that the elements are located exclusively in 𝑥, 𝑦 

plane, where the 𝑥-axis relates to the radial direction, and the 2D model will be rotated about 

the 𝑦-axis always considering the 𝑥 = 0 position. Thereby, in post-processing, 𝜎𝑥 will be the 

radial stress, 𝜎𝑦 will be the axial stress, and 𝜎𝑧 will be the tangential stress. 
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In this analysis, different from compression test, the rubber pads were modeled by 4-node 

bilinear axisymmetric quadrilateral elements with hybrid formulation and constant pressure 

(CAX4H), while metal parts just by using 3-node linear axisymmetric triangle elements 

(CAX3). This simplified mesh was adopted aiming to avoid convergence problems. 

Considering that, the metal parts were manufactured by a carbon steel SAE 1045, the main 

material properties were designed as follows: modulus of elasticity 𝐸 = 200 𝐺𝑃𝑎; density 𝜌 =

7.85. 10−3 𝑘𝑔/𝑚3 and Poisson’s ratio 𝜈 = 0.3. 

 

Since the rubber is vulcanized and molded into the metal surfaces, parts cannot slide relative to 

each other. Then, a surface-based tie constraint was used to make the translational and rotational 

motion as well as all other active degrees of freedom equal for metal-rubber surface pairs. In 

this approach, a node on the slave face is tied to the master elements only if this node is really 

"in contact". Therefore, the tie constraint should be defined at the interface of the two zones to 

stitch the two meshes together. The final model with its boundary conditions is shown in Figure 

3-34, where the 2D axisymmetric mesh is discretized into 2978 elements. 

 

 

 

Figure 3-34: Conical rubber spring FE model for axial stiffness (axisymmetric section). 
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3.3.5 Radial stiffness FEA modeling 

 

For the case of radial stiffness simulation, the conical rubber spring has been treated as a solid 

3D model. Here, it was not possible to use the axisymmetric approach because the load is not 

applied in the axial direction. A brief review about the solid 3D formulation used in the analysis 

can be found in the sections 3.2.2 and 3.2.4 of the Abaqus® Theory Guide from Simulia (2016). 

 

As with all simulations already presented in this project, FEA was performed using the 

commercial software Abaqus®. The rubber pads were modeled by a mesh composed of 8-node 

linear hex element with hybrid formulation and constant pressure (C3D8RH), the reduced 

integration and hourglass control was also inputted to reduce the volumetric constraints, 

avoiding the overly stiff behavior due to volumetric locking. The metal parts were modeled by 

using 10-node tetrahedrons with an improved surface stress formulation (C3D10I) considering 

the same material applied in the axial stiffness.  

 

The implementation must be performed in two analysis steps. The first step relates to the 

vertical preloading in order to put the component in a pre-stressed condition. Afterwards, in the 

second step the radial force should be applied through an imposed displacement of 6mm. The 

3D model was discretized into 213814 solid elements, being the implementation with its 

boundary conditions shown in Figure 3-35 for each step. The surface-based tie constraint 

approach was based on the same calculation method as in axial stiffness. 

 

During the first step, the operation conditions experience large deformations. For this reason, 

the implemented mesh ends up deforming significantly from its original configuration and the 

replacement of a better quality mesh is required. When elements become so severely distorted 

during a geometrically nonlinear analysis, they no longer provide a good discretization of the 

problem. To overcome this situation, a mesh solution mapping was implemented in the model 

at the end of the first step, ensuring a high quality mesh since from the beginning of second step 

ought to a remeshing procedure in the deformed shape. 

 

Through this technique, the solution from the old deformed mesh is imported to the new mesh 

and the analysis can continue taking into account the stress state obtained from previous step. 
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(a) 

 

(b) 

 

Figure 3-35: Conical rubber spring FE model for radial stiffness. (a) mesh; (b) entire model 

with its boundary conditions. 

 

3.4 Analytical solution for radial stiffness 

 

The radial stiffness is a key design parameter for conical rubber spring and is determined by 

the relation between perpendicular force applied in the main axle and its displacement over the 

loading. As rubber pads are bonded between several layers of rigid steel plates, the compression 

behavior becomes more evident. In terms of function, the stiffness (also called as spring rate) 

is defined according to equation (3-22). 

 

𝐾 = 𝐹 𝑑⁄   (3-22) 

 

where 𝐹 is the applied force and 𝑑 is the displacement. 

 

The deformation caused by compressing a rubber pad between two parallel rigid plates 

generates very complex deformation states which is dependent on a shape factor “𝑆”, that is, 

Pre-load step 

Radial force step 
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the ratio of one loaded area to force-free area (HOLOWNIA, 1971). Thus, the stiffness 𝐾 is 

defined in terms of geometry (area “𝐴” and thickness “𝑡”) and compression modulus 𝐸𝑐. 

 

𝑆 =
𝑙𝑜𝑎𝑑𝑒𝑑 𝑎𝑟𝑒𝑎

𝑓𝑜𝑟𝑐𝑒 − 𝑓𝑟𝑒𝑒 𝑎𝑟𝑒𝑎
=
𝐴𝐿
𝐴𝐵

 (3-23) 

 

𝐾 =
𝐴. 𝐸𝑐

𝑡⁄   (3-24) 

 

where force-free area was named as 𝐴𝐵, because it corresponds to the total surface area that is 

free to bulge. 

 

The main challenge here is to define the correct 𝐸𝑐 because it is strongly affected by the shape 

factor of a component. Although many different analytical solutions have been developed for 

some design examples, they are limited to fairly simple geometries. The first analysis of the 

compression stiffness was performed by Rocard (1937) through an energy approach, and further 

developments were made by Gent and Lindley (1959) and Gent and Meinecke (1970). Later, 

Kelly and Konstantinidis (2011) formulated a version of these analyses which was applicable 

to bearings with shape factors greater than about five. 

 

Therefore, in order to account for more complex geometry effects and/or for nonlinear 

elastomer properties, the basic equations should be modified. From this assumption, three basic 

geometric shapes were adopted to formulate the analytical solution for the conical rubber 

spring: Planar sandwich forms, Laminate bearings and Tube form bearings, as presented in 

Figure 3-36. 

 

 

   

(a) (b) (c) 
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Figure 3-36: Basic geometric shapes for calculating compression modulus and shape factors. 

(a) Planar sandwich forms; (b) Laminate bearings; (c) Tube form bearings.  

Source: Adapted from Gent (2012) 

 

The effective compression modulus for a flat sandwich block is a function of both material 

properties and component geometry and can be given by the following equation (GENT, 2012): 

 

𝐸𝑐 = 𝐸0. (1 + 𝜙. 𝑆
2)  (3-25) 

 

where, 𝐸0 is the initial Young’s modulus and 𝜙 corresponds to an elastomer compression 

coefficient determined empirically. This coefficient was added in the equation just to correct 

the experimental deviation from theoretical equations. 

 

For isotropic polymeric materials, there are simple relationships between elastic constants such 

as shear modulus 𝐺, Young’s modulus 𝐸0, bulk modulus 𝐵, and Poisson's ratio 𝜈. Thus, from 

the data fitting procedure applied in FEA, the shear modulus can be obtained according to the 

constitutive model which best match experimental curves. As long as two of these constants 

should be known, an estimate of the Poisson's ratio is applied and all other parameters can be 

predicted. Under these circumstances, the relationship between 𝐺 and 𝜈 returns 𝐸0 and 𝐵, as 

follows: 

 

𝐸0 = 2𝐺. (1 + 𝜐)  (3-26) 

  

𝐵 =
2𝐺. (1 + 𝜐)

3. (1 − 2𝜐)
 (3-27) 

 

In the case of laminate bearings, the compression stiffness is also calculated from 𝐸𝑐, but, as 

each elastomeric layer is considered to be identical, this relationship is now written in terms of 

the total number of layers 𝑁.  

 

𝐾 =
𝐴. 𝐸𝑐

𝑡. 𝑁⁄   (3-28) 

 

where 𝐸𝑐 and 𝑡 are related to each individual layer. 
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As for tube form bearings, the radial stiffness becomes higher because rubber is used in 

compression and tension, providing also greater stability. The effective loaded area depends on 

the load direction and/or deflection of interest. Although axial and torsional loadings result in 

an easy calculation of the loaded area, radial deflections correspond to much more complex 

relations. For this reason, they are estimated approximately based on a projected area as follows 

(GENT, 2012):  

 

𝐴𝐿 = (𝑑0 − 𝑑𝑖). 𝐿  (3-29) 

 

where, 𝑑0 is the outer diameter and 𝑑𝑖 the inner diameter of the tube mounting. 

 

To further complicate the calculation, some kind of pre-compression is generally induced in 

order to enhance performance and fatigue life.   

 

In conventional tube form bearings, this pre-compression can be applied by enlarging the inner 

diameter or reducing the outer diameter. Another option is to apply a very high pressure, able 

to cause residual pre-compression during the molding stage. From Figure 3-37 it is possible to 

observe the effect of pre-compression on elastomer behavior. Pre-compressed tubes effectively 

make the “tension side” work in compression, whereas in pre-compression free tubes one side 

of the elastomer works in tension and the other works in compression (GENT, 2012).  

 

Also, according to Gent (2012), radial stiffness can be nearly twice as high in pre-compressed 

elastomers. However, this assumption can only be valid until the deflection reaches a point 

where the initial pre-compression is relieved (Figure 3-38). 
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(a) 

 

(b) 

 

Figure 3-37: Tube form bearing stress distribution for: (a) Unpre-compressed elastomers;    

(b) Pre-compressed elastomers. 

Source: Adapted from Gent (2012) 

 

 

 

Figure 3-38: Load-deflection curve comparison for pre-compressed and unpre-compressed 

rubbers on tube form mountings. 

Source: Adapted from Gent (2012) 

 

This behavior was also verified in the pre-compressed conical rubber spring, due to an apparent 

increase in the laminate loaded areas, where consequently, there was some compensation to the 

numerator of the equation (3-24). For this reason, although the manufacturer company only 

requires the radial stiffness in a pre-compressed condition, it was also computed without pre-

compression, where the comparison results will be shown in section 4.6. 
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Since the conical rubber spring geometry is very complex, the surface area for calculating the 

shape factor was extracted for each laminate bearing directly from Siemens NX®, a Computer-

aided design (CAD) software. Then, the radial stiffness was calculated for each different layer, 

taking into account the three main conditions stated above, and was associated in series as they 

are connected end-to-end. From this assumption the equivalent radial stiffness 𝐾𝑒𝑞 could be 

obtained through the following equation: 

 

1

𝐾𝑒𝑞
=∑

1

𝐾𝑖

𝑁

𝑖=1

 (3-30) 

 

where 𝑖 is related to each different layer over the spring. 
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4  
RESULTS 

 

 

4.1 Experimental tests for rubber characterization 

 

As already mentioned in the current Dissertation, rubber-like materials can only be 

characterized if at least uniaxial and equal biaxial stretching tests are performed to fit the model 

and extract material parameters. Based on this assumption, experimental results concerning 

these deformation modes were obtained according to the methodology already described in 

section 3.1. 

 

4.1.1 Uniaxial stretching 

 

Since rubber mixture is not always homogeneous and can vary even in a given batch, three 

dogbone shape samples were manufactured and tested experimentally according to the both 

strain measurement approaches already discussed in section 3.1.2. The importance to compare 

the results obtained from machine extensometer and DIC technique, is to validate the uniaxial 

response obtained under high strain levels, in which due to stochastic pattern damage of DIC 

method, is only possible to be captured by extensometer clip gauges. 

 

From Figure 4-1, it is worth noting that the variation between three samples became more 

evident after strain levels reached values higher than 350%. On the other hand, Figure 4-2 was 

not able to show greater variations because the maximum strain values computed from DIC 

methodology were lower than 400%. The region evaluated by the DIC technique can be 

demonstrated through the surface component which is highlighted in blue and has seven-point 

measurements as shown in Figure 4-3. 
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Figure 4-1: Stress-strain curves for tensile test samples measured according to clip gauges 

coupled to the Instron machine. 

 

 

 

Figure 4-2: Stress-strain curves for tensile test samples measured according to DIC technique. 
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Figure 4-3: Surface component obtained for uniaxial strains measurements. 

 

Although DIC method has presented to be very effective over the last years and has been used 

in many fields, it is not able to capture accurate measurements after its stochastic contrast black 

and white pattern starts to damage itself ought to high deformations (Figure 4-4). For this 

reason, only a maximum value could be reached according to the pattern creation. In the case 

of the present Dissertation, the total measured strain was up to 400% as depicted in Figure 4-5. 

Nevertheless, the measurement points presented almost no significant deviation between them, 

which shows the characterization of the uniaxial plane stress state around the neck area of the 

sample.  
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Figure 4-4: Damaged stochastic pattern during 400% of deformation. 

 

 

 

Figure 4-5: Seven-point strain measurements plotted over time. 
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Finally, the experimental stress-strain curve obtained through DIC could be compared to 

extensometers results extracted from Instron machine (Figure 4-6). It is worthwhile to note that 

both curves presented a very similar behavior. Thus, the use of clip gauges in uniaxial 

experiments can be a useful alternative when higher strain levels should be captured. 

 

 

 

Figure 4-6: Average stress-strain curve of the tensile test. Comparison between DIC method 

and machine clip gauges.  

 

4.1.2 Equal biaxial stretching 

 

4.1.2.1 Cruciform extension 

 

Based on the methodology already described in section 3.1.3.1, equal biaxial experiments were 

initially carried out in a cruciform way taking into account two different shapes for the samples 

(Sample A and Sample B). During the tests, acquisition was taken under displacement steps, 

where a picture of the central area was being captured after 2mm of clamps opening. In addition, 

extension force to open each side was also being computed synchronized with the correct 

picture position in both axes (x and y) as shows Figure 4-7 for Sample A and Figure 4-8 for 

Sample B. 
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Figure 4-7: Cruciform biaxial stretching captured for sample A. 

 

 

 

Figure 4-8: Cruciform biaxial stretching captured for sample B. 

For the strain measurements two different points related to “x” and “y” axis, were evaluated 

around the center position. One point was located in the center before loading while the another 

point passed to be in the center after loading (Figures 4-9 and 4-10 for sample A and B 
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respectively). The strain response in the both axes over time step can be seen as in Figures 4-11 

and  4-12  respectively for A and B samples. 

 

 

  

Figure 4-9: Central points for biaxial strain measurements in sample A.  

  

 

 

Figure 4-10: Central points for biaxial strain measurements in sample B. 
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Figure 4-11: Equal biaxial strain response over time step for sample A.  

 

 

 

Figure 4-12: Equal biaxial strain response over time step for sample B. 
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As long as the uniform area around the central zone is unknown, an initial guess should be 

defined based on Figure 3-27 already described in Methods section (Chapter 3). According to 

delimited width dimensions and thickness, the initial area could be calculated for both samples 

as follows: 

 

𝐴0
𝑠𝑎𝑚𝑝𝑙𝑒𝐴 = 5.2 . 2.22 = 11.54 𝑚𝑚2  (4-1) 

 

𝐴0
𝑠𝑎𝑚𝑝𝑙𝑒𝐵 = 23.6 . 2.22 = 52.39 𝑚𝑚2  (4-2) 

 

where 𝐴0 is related to the initial guess area for nominal stress calculation over the experiment.  

 

Providing that extension forces were exactly synchronized with strain measurements from DIC 

method, the initial nominal stress-strain curve could be constructed for both samples as depicted 

in Figure 4-13.    

 

 

 

Figure 4-13: Initial stress-strain curve of the equal biaxial extension test in a cruciform device.  

 

The corrected curve can only be obtained after an initial FEA and, for this reason it will be 

demonstrated in the section 4.3.2.1.  
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4.1.2.2 Bulge inflation 

 

In order to validate the proposed methodology for the cruciform extension experimental data, a 

conventional bulge test was performed. First of all, to reach the equal biaxial nominal stress-

strain curve some geometric variations were taken into account according to a sample of points 

distributed inside a radius of 6mm.  

 

As already explained in section 3.1.3.2, the principal Cauchy stresses can be obtained from thin-

walled spherical pressure vessel theory, where it is dependent on sheet curvature radius (𝑅). 

From this assumption, two different initial values of rubber sheet width (𝑎) were set as a 

reference to compare and validate final results, since the curvature radius should remain the 

same regardless its reference point around the dome. The sheet changes were extracted 

according to pressure increase as plotted in Figure 4-14, for an average points around 𝑎 = 3𝑚𝑚 

and 𝑎 = 6𝑚𝑚.   

 

 

 

Figure 4-14: Bulge test sheet width over pressure increase. 

 

From sheet points, it is possible to define the deflection height (𝛿) according to equation (4-3), 

where the evolution of 𝑍𝑚𝑎𝑥 and 𝑍𝑝𝑜𝑖𝑛𝑡 is presented according to Figure 4-15. 

𝛿 = 𝑍𝑚𝑎𝑥 − 𝑍𝑝𝑜𝑖𝑛𝑡  (4-3) 
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where 𝑍𝑚𝑎𝑥 is the deflection apex around the dome and 𝑍𝑝𝑜𝑖𝑛𝑡 is the reference deflection related 

to the point 𝑎 of the rubber sheet. 

 

 

 

Figure 4-15: Bulge test reference deflections over pressure increase. 

 

Finally, based on the relationship between 𝛿 and 𝑎, the curvature radius could be obtained 

synchronized with pressure (Figure 4-16) from equation (3-3) derived in section 3.1.3.2.     

 

The measurements of strain state were directly extracted from dome according to calibrated 3D 

cameras which capture synchronized images with pressure. Based on DIC method, the principal 

strain values were obtained from VIC-3D software, where the last step able to give accurate 

results due to pattern damage is depicted in Figures 4-17 and 4-18 for 𝜀1 and 𝜀2 respectively. It 

is very important to note that the component surface around the dome is in a perfect shape for 

both images.       
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Figure 4-16: Bulge test curvature radius over pressure increase. 

 

 

 

Figure 4-17: Bulge test nominal principal strain 𝜀1 in the last step.  
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Figure 4-18: Bulge test nominal principal strain 𝜀2 in the last step. 

 

Since nominal strains were defined by DIC technique, it was possible to calculate the stretch 

along thickness direction (𝜆3) as presented in Figure 4-19. Because of the specimen geometry, 

Cauchy stresses could be assumed according to equation (3-2) derived in section 3.1.3.2, and 

then nominal stress can finally be obtained as follows:    

 

𝜆3 =
1

(1 + 𝜀𝐿)2
 (4-4) 

 

𝜀𝐿 = 𝑙𝑛(1 + 𝜀𝑁)  (4-5) 

 

𝜎𝑁 =
𝜎𝐿

1 + 𝜀𝑁
 (4-6) 
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Figure 4-19: Bulge test thickness stretch over nominal strains 

 

Lastly, the nominal stress-strain curve from bulge test experimental data could be raised 

according to Figure 4-20, and it will be compared to corrected curves from cruciform stretching 

in section 4.3.2.1.   

 

 

 

Figure 4-20: Bulge test equal biaxial stress-strain curve 
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4.1.3 Simple compression  

 

This is a very simple experiment where normal stresses are applied to the specimen surface. 

The compression behavior would be required for formulating rubber-like material models but 

data from this test do not represent pure states of strain due to friction between machine plates 

and rubber surface. As a comparison and validation of this assumption for the material studied, 

some experimental tests were performed on oily and rough surfaces according to the 

explanation provided in section 3.1.4.  

 

As already expected, the compression stiffness for rough surface is much higher than the oily 

one, where the entire curve can be evaluated based on Figure 4-21. 

  

 

 

Figure 4-21: Rubber compression stiffness in oily and rough surfaces 

 

Since elastomers behave very differently in compression than in tension, a combination of the 

whole curve was carried out, taking into account the positive part from tensile test already 

presented in section 4.1.1 combined with stress-strain curves obtained from compression tests, 

according to Figure 4-22. The difference between responses of oily and rough conditions occurs 

due to friction effects that cannot be measured. 
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Figure 4-22: Stress-strain curves for uniaxial traction and compression tests. 

 

As far as compression behavior is concerned, it is possible to state that it is equivalent to 

equibiaxial response because the free surfaces come together when an elastomer is radially 

strained in all directions of a single plane. Thus, biaxial strains and stresses can be rewritten in 

terms of compression responses as follows: 

 

𝜀𝑏 = √
1

𝜀𝑐 + 1
− 1 (4-7) 

 

𝜎𝑏 =
𝜎𝑐

(1 + 𝜀𝑏)3
 

 

(4-8) 

where the subscripts 𝑏 and 𝑐 is related to biaxial and compression responses respectively.  

 

Analyzing the biaxial curve obtained from bulge test together with the compression converted 

curves in Figure 4-23, it is possible to understand that the effects of friction significantly affect 

the measured stiffness even in an oily surface. This is a problem because friction values for 

elastomers are related to a function of normal force and cannot be well characterized. 
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Figure 4-23: Comparative of biaxial responses through compression tests 

 

4.2 Data fitting procedure for hyperelastic models 

 

In order to obtain the material constants for a model, data fitting procedures should be 

performed according to experimental test data. Due to easiness of execution and processing 

data only uniaxial extension set is usually used, what leads to inaccurate results.  To initially 

analyze the shortcoming of this usual approach a detailed examination was conducted in the 

main classical constitutive models. In this situation, data fitting routines were run into the 

commercial software Abaqus® for uniaxial and biaxial data obtained from cruciform extension 

and bulge test.   

 

For the tensile test (uniaxial extension) only three out of seven models showed to be stable for 

all strain ranges, including: Neo-Hooke, Yeoh and Arruda-Boyce. The uniaxial data and 

theoretical fitted curves are shown in Figure 4-24 and the other deformation modes obtained 

through this adjustment can be seen in Figure 4-25 for planar shear and Figure 4-26 for biaxial 

extension. 
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Figure 4-24: Nominal stress-strain curves adjusted using uniaxial data. 

 

 

 

Figure 4-25: Planar shear nominal stress-strain curves obtained from uniaxial data fitting 

constants 
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Figure 4-26: Biaxial nominal stress-strain curves obtained from uniaxial data fitting constants 

 

The material coefficients predicted by the use of only uniaxial data for each constitutive model 

can also be analyzed by Table 4-1. Then, from the presented curves in Figure 4-24, it is possible 

to note that the uniaxial data could present a suitable adjustment only by higher order 

phenomenological constitutive models and micromechanics. The lower order models, such as 

Mooney-Rivlin (Poly N1) and Neo-Hooke tried to fit the data linearly and for this reason the 

relative error curves presented in Figure 4-27 had only two minimum points over the strain. 

Furthermore, these models also presented the highest accumulated relative errors according to 

Figure 4-28. 

 

Table 4-1: Material models coefficients based on uniaxial extension data fitting 

 

Arruda-Boyce Yeoh Mooney-Rivlin Polynomial N=2 Ogden N=3 van der Waals 

μ 0.417199 C10 0.241022 C10 0.427634 C10 -1.05616 μ1 -0.20836 μ 0.497754 

μ0 0.438546 C20 -1.40E-03 C01 -3.38E-01 C20 3.44E-02 μ2 5.22E-03 λm 8.111323 

λL 3.560303 C30 1.54E-04 μ0 1.80E-01 C01 1.522366 μ3 1.064307 α 0.265486 

  μ0 4.82E-01 - C11 -1.92E-01 α1 3.875555 β 0 

Neo-Hooke - - C02 6.52E-01 α 2 5.857766 - 

C10 0.304525 - - μ0 9.32E-01 α 3 -6.28211 - 

μ0 6.09E-01 - - - μ0 0.861162 - 



153 

 

 

 

 

Figure 4-27: Relative errors over strain range for uniaxial data fitting 

 

 

 

Figure 4-28: Accumulated relative error according to each constitutive model for uniaxial data 

fitting 
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Now, the same procedure has been executed for the equal biaxial experiments herein conducted. 

In the cruciform extension, both samples, A and B, were evaluated and the data fitting results 

were compared. For sample A four out of seven models showed to be stable for all strain ranges, 

including: Neo-Hooke, Mooney-Rivlin, Yeoh and Arruda-Boyce, whereas for sample B only 

three models presented stability, such as: Neo-Hooke, Yeoh and Arruda-Boyce. From Figures 

4-29 to 4-34 it is possible to compare the theoretical fitted curves obtained through biaxial test 

data in sample A and B respectively. 

 

It is worth noting that, because of each sample endured different values of maximum strains, 

some models like, Neo-Hooke and Mooney-Rivlin could return acceptable representations only 

for moderate levels of strain (up to approximately 130%) due to their lower order constitutive 

formulations. Thus, when deformations start to get higher these more simplified models start to 

lose their accuracy. 

 

 

 

Figure 4-29: Nominal stress-strain curves adjusted using sample A biaxial data. 
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Figure 4-30: Nominal stress-strain curves adjusted using sample B biaxial data. 

 

 

 

Figure 4-31: Uniaxial nominal stress-strain curves obtained from sample A biaxial data fitting     

constants. 
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Figure 4-32: Uniaxial nominal stress-strain curves obtained from sample B biaxial data fitting 

constants. 

 

 

 

Figure 4-33: Planar shear nominal stress-strain curves obtained from sample A biaxial data 

fitting constants. 
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Figure 4-34: Planar shear nominal stress-strain curves obtained from sample B biaxial data 

fitting constants. 

 

According to Tables 4-2 and 4-3 the material coefficients predicted by the use of biaxial data 

for each constitutive model can be respectively compared for sample A and sample B.  

 

Table 4-2: Material models coefficients based on sample A biaxial extension data fitting. 

 

Arruda-Boyce Yeoh Mooney-Rivlin Polynomial N=2 Ogden N=3 van der Waals 

μ 0.521822 C10 0.283708 C10 0.236648 C10 0.536051 μ1 0.531414 μ 0.587275 

μ0 0.546889 C20 -1.07E-04 C01 1.84E-02 C20 5.50E-02 μ2 0.439485 λm 8.11645 

λL 3.665995 C30 1.39E-04 μ0 5.10E-01 C01 -0.20065 μ3 -0.21963 α 0.251463 

  μ0 5.67E-01 - C11 -2.10E-04 α1 2.302632 β 0 

Neo-Hooke - - C02 3.13E-05 α 2 10.10689 - 

C10 0.324915 - - μ0 6.71E-01 α 3 -5.0536 - 

μ0 6.50E-01 - - - μ0 0.751264 - 
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Table 4-3: Material models coefficients based on sample B biaxial extension data fitting. 

 

Arruda-Boyce Yeoh Mooney-Rivlin Polynomial N=2 Ogden N=3 van der Waals 

μ 0.575092 C10 0.306922 C10 0.294124 C10 1.098274 μ1 0.456039 μ 0.676959 

μ0 0.575092 C20 -1.20E-02 C01 -2.55E-03 C20 2.65E-01 μ2 1.415853 λm 5.528815 

λL 1678.449 C30 1.20E-03 μ0 5.83E-01 C01 -0.67743 μ3 -0.70791 α 0.57904 

  μ0 6.14E-01 - C11 -4.06E-02 α1 -7.18E-02 β 0 

Neo-Hooke - - C02 5.40E-03 α 2 18.51233 - 

C10 0.287546 - - μ0 8.42E-01 α 3 -9.25618 - 

μ0 5.75E-01 - - - μ0 1.163983 - 

 

Although the material curves are similar until their respective strain ranges, some coefficients 

were quite different depending on the constitutive mode. This happens because the adjustment 

can only map the experimental curve until its final maximum strain. After this value, the 

theoretical fitted curves can suffer severe changes when compared with an experimental curve 

with higher strain values. This effect can be analyzed in Figure 4-30, where theoretical curves 

from sample B turned out completely different from sample A after its final strain range. 

 

Finally, the relative error over the strain and its accumulated sum were computed for both 

samples as presented in Figures 4-35 and 4-36 for sample A, and Figures 4-37 and 4-38 for 

sample B. The Neo-Hooke model presented the worst adjustment, accounting for an 

accumulated error much larger than other models for sample A (Figure 4-36). On the other 

hand, for sample B, the accumulated error ended up being equivalent among all the models 

analyzed (Figure 4-38) ought to the lower strains which were reached by the sample during 

biaxial stretching. 

 

It is important to point out that, sample B just presented lower values of accumulated relative 

error compared to sample A because it reached only a 125% of nominal strain, whereas sample 

A reached approximately 311%. If the same lower strain range had been considered for sample 

A, it would have presented an accumulated sum of about 1 for the worst fitted constitutive 

model, that is, almost like sample B values. 

 



159 

 

 

 

 

Figure 4-35: Relative errors over strain range for sample A biaxial data fitting. 

 

 

 

Figure 4-36: Accumulated relative error according to each constitutive model for sample A 

biaxial data fitting. 

 

 

 

 



160 

 

 

 

 

Figure 4-37: Relative errors over strain range for sample B biaxial data fitting. 

 

 

 

Figure 4-38: Accumulated relative error according to each constitutive model for sample B 

biaxial data fitting. 

 

As far as equal biaxial behavior is concerned, data fitting routines for bulge test were also 

carried out. This evaluation becomes important, since corrected curves obtained from FEA in 

cruciform extension should be compared to bulge test data in order to validate the proposed 
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methodology for biaxial data treatment. Therefore, the theoretical fitted curves obtained 

through bulging a circular specimen can be analyzed in Figures 4-39 to 4-41. 

 

 

 

Figure 4-39: Nominal stress-strain curves adjusted using bulge test biaxial data. 

 

  

 

Figure 4-40: Uniaxial nominal stress-strain curves obtained from bulge test biaxial data fitting     

constants. 
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Figure 4-41: Planar shear nominal stress-strain curves obtained from bulge test biaxial data 

fitting constants. 

 

Then, the material coefficients predicted by the use of only biaxial data obtained from bulge 

test for each constitutive model can also be analyzed by Table 4-4. 

 

Table 4-4: Material models coefficients based on bulge test biaxial data fitting. 

 

Arruda-Boyce Yeoh Mooney-Rivlin Polynomial N=2 Ogden N=3 van der Waals 

μ 3.44E-01 C10 1.82E-01 C10 1.61E-01 C10 -0.4234 μ1 0.42062 μ 3.51E-01 

μ0 3.82E-01 C20 1.92E-02 C01 2.32E-02 C20 -2.63E-01 μ2 -4.49E-01 λm 491.3677 

λL 2.537302 C30 -2.27E-03 μ0 3.68E-01 C01 0.545549 μ3 0.224288 α -2.74E-01 

  μ0 3.64E-01 - C11 6.14E-02 α1 9.51E-01 β 0 

Neo-Hooke - - C02 -8.80E-03 α 2 16.61512 - 

C10 1.96E-01 - - μ0 2.44E-01 α 3 -8.30754 - 

μ0 3.92E-01 - - - μ0 1.96E-01 - 

 

Because this experiment could not reach high levels of strain (maximum of 102%), the relative 

error curves plotted in Figure 4-42 presented very similar values. Likewise, this same 

assumption can also be stated when Figure 4-43 is evaluated for accumulated error. 
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Figure 4-42: Relative errors over strain range for bulge test biaxial data fitting. 

 

 

 

Figure 4-43: Accumulated relative error according to each constitutive model for bulge test 

biaxial data fitting. 

 

Similarly to other experiments, there were only three out of seven models which showed to be 

stable for all strain ranges, and they are: Neo Hooke, Mooney-Rivlin and Arruda-Boyce. It is 

worthwhile to point out that Arruda-Boyce was the only model that presented stability for all 

experiments herein conducted, whereas Ogden N3, Polynomial N2 and van der Waals could 
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not be stable for none of the experiments although they presented good solutions regarding data 

fittings. 

 

4.3 Validation of tests on specimens thorough Finite Element simulation 

 

In order to evaluate the efficiency of the constitutive parameters obtained for the stable models 

with best data fitting, FE simulations were conducted on uniaxial and biaxial experimental tests 

according to the geometric shape and boundary conditions. Thus, Arruda-Boyce and Yeoh 

models were analyzed for uniaxial and cruciform extension, whereas for bulge test only Arruda-

Boyce model was tested due to lack of stability in the Yeoh model. In addition, the simple 

compression experiment was also modeled through FEA and compared to the biaxial data, 

taking into account the oily and rough compression surfaces. 

 

4.3.1 Uniaxial stretching 

 

In this experiment a dogbone shape was modeled according to the methodology already 

described in section 3.3.2. The pure mode of uniaxial deformation could be obtained through a 

force amplitude that was applied to the upper stretching clamp while the lower one got fixed. 

True strain-stress responses were computed through an average of the values in the central 

region of the specimen, in such a way that, the maximum principal stresses could be analyzed 

according to Figure 4-44.   

 

Hence, for a better comparison between experimental and simulated curves, both the forces and 

the stresses were plotted over the strains as shown in Figures 4-45 and 4-46 respectively. This 

approach was considered because clamps greatly influence the tensile load and consequently 

impact the correct strain calculation. 
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Figure 4-44: Uniaxial true stress distribution in a dogbone shape 

 

 

 

Figure 4-45: Uniaxial forces plotted over simulated true strains. 
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Figure 4-46: Simulated and experimental uniaxial true stress-strain curves. 

 

Considering that relative errors should be accounted in order to infer the constitutive models 

performance (DESTRADE et al., 2017; OGDEN et al., 2004), both Arruda-Boyce and Yeoh 

models presented very similar maximum error values regarding its stress-strain slope. The 

comparison between error curves over analysis time period is depicted in Figure 4-47.  

 

Although the maximum errors presented very close values, 25% and 21% for Arruda-Boyce 

and Yeoh respectively, the time to run the analysis was much higher for the Yeoh model, that 

is, 1 hour and 25 minutes against half the time for Arruda-Boyce (which was 45 minutes). Under 

these circumstances, Arruda-Boyce model turned out a more efficient option. 
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Figure 4-47: Relative error curves over analysis time period for uniaxial extension. 

 

4.3.2 Equal biaxial stretching 

 

4.3.2.1 Cruciform extension 

  

In the case of equal biaxial deformation mode obtained by cruciform extension, the stretches in 

the sample center are indeed larger than that at the entire outer region for the same level of 

loading. This effect can be well analyzed for samples A and B respectively in Figures 4-48 and 

4-49, where initial theoretical curves were obtained from non-corrected material parameters 

that were defined according to stress-strain relations of the outer region. Moreover, though these 

simulated stress-strain curves matched with the experimental ones, they were not able to follow 

the entire strain range (Figures 4-50 and 4-51). This happens because the initial FE constitutive 

modeling was not built according to the nominal stress-strain curves that should be extracted 

from the uniform region observed in central area of the specimen. Just like uniaxial tests, forces 

were plotted over the strains due to stress concentrations produced between clamps  

(FUJIKAWA et al., 2014) .  
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Figure 4-48: Initial sample A curves for cruciform extension forces plotted over simulated 

true strains. 

 

 

 

Figure 4-49: Initial sample B curves for cruciform extension forces plotted over simulated 

true strains. 
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Figure 4-50: Simulated and experimental cruciform extension true stress-strain curves 

obtained from sample A initial material parameters. 

 

 

 

Figure 4-51: Simulated and experimental cruciform extension true stress-strain curves 

obtained from sample B initial material parameters. 
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Thus, aiming to obtain the corrected stresses synchronized with the strains measured through 

DIC, the uniform area size was evaluated according to the stress distributions of sample A and 

B (Figures 4-52 and 4-53 respectively) simulated through initial guess material parameters.  

 

 

 

Figure 4-52: Sample A equal biaxial true stresses based on initial guess material parameters. 

 

 

 

Figure 4-53: Sample B equal biaxial true stresses based on initial guess material parameters. 
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Taking into account the stress distributions presented in Figures 4-52 and 4-53, reaction forces 

were extracted directly from Abaqus® environment for both axis “x” and “y” according to the 

mesh dimensions around the symmetry point. Therefore, this relation between stretching forces 

around the uniform area defined at the center can be seen in Figures 4-54 and 4-55 for sample 

A, and Figures 4-56 and 4-57 for sample B. Although these figures show only the last simulation 

step, the procedure was applied for all force amplitudes that were synchronized with the 

measured strains over the analysis.   

 

 

 

Figure 4-54: Sample A mesh dimensions around the central point for uniform area 
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(a) 

 

(b) 

 

Figure 4-55: Sample A reaction forces extracted from Abaqus®. (a) axis “x”; (b) axis “y”. 

 

 

 

 Figure 4-56: Sample B mesh dimensions around the central point for uniform area  
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(a) 

 

(b) 

 

Figure 4-57: Sample B reaction forces extracted from Abaqus®. (a) axis “x”; (b) axis “y”. 

 

Finally, the corrected nominal stresses could be calculated over the analysis for each axis 

through the conventional relation between forces and area. Just as a validation, the average of 

theoretical stresses calculated from uniform region were compared to the nominal stresses 

obtained directly from FEA of the specimen.  

 

Then, according to the Figures 4-58 and 4-59 for samples A and B respectively it is possible to 

note that both curves should match, being the difference between them almost negligible. This 

means that the proposed procedure is able to return accurate results in the treatment of equal 

biaxial experimental data even when the sample is subjected to high levels of deformation. 

 

As a result, the corrected nominal stress-strain curves obtained from cruciform extension are 

plotted in Figure 4-60, where both curves are compared to bulge test experimental data. Finally, 

it is worth noting that, all biaxial curves show almost the same behavior when evaluated 

according to the maximum strains of each experiment, empowering even more the methodology 

applied when the problem must deal with high levels of deformation.   
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Figure 4-58: Nominal stress validation for sample A. 

 

 

 

Figure 4-59: Nominal stress validation for sample B. 
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Figure 4-60: Comparison of final stress-strain curves for biaxial test samples. 

 

After corrected nominal stress-strain curves were obtained, a new data fitting procedure should 

be performed. Like initial guess experimental curves four out of seven models showed to be 

stable for sample A, including: Neo-Hooke, Mooney-Rivlin, Yeoh and Arruda-Boyce. From 

Figure 4-61 final theoretical fitted curves are compared to the biaxial test data. 

 

 

 

Figure 4-61: Sample A corrected stress-strain curves adjusted through cruciform extension. 
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Hence, from Table 4-5 the accurate material coefficients predicted by the use of only biaxial 

corrected data in a cruciform extension were finally discovered for each constitutive model. 

 

Table 4-5: Material models coefficients based on corrected sample A cruciform extension 

data fitting. 

 

Arruda-Boyce Yeoh Mooney-Rivlin Polynomial N=2 Ogden N=3 van der Waals 

μ 0.422461 C10 0.229610 C10 0.198746 C10 0.412404 μ1 0.432091 μ 0.477965 

μ0 0.439851 C20 -3.41E-04 C01 1.12E-02 C20 3.92E-02 μ2 0.331748 λm 8.575475 

λL 3.940081 C30 8.96E-04 μ0 4.20E-01 C01 -0.14489 μ3 -0.16582 α 0.250584 

  μ0 4.59E-01 - C11 -1.24E-04 α1 2.223626 β 0 

Neo-Hooke - - C02 1.87E-05 α 2 10.2905 - 

C10 0.256293 - - μ0 5.35E-01 α 3 -5.14536 - 

μ0 5.13E-01 - - - μ0 0.598021 - 

 

The relative error computation over the strain is presented in Figure 4-62 followed by its 

accumulated sum in Figure 4-63. Just like all other models, Neo-Hooke presented the worst 

adjustment for both specific relative errors and its accumulated value. 

 

 

 

Figure 4-62: Relative errors over strain range for sample A corrected biaxial data fitting. 
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Figure 4-63: Accumulated relative error according to each constitutive model for sample A 

corrected biaxial data fitting. 

 

Exactly the same procedure has been performed for sample B, but in this case, only three out 

of seven models showed to be stable for all strain ranges, which they are: Neo-Hooke, Arruda-

Boyce and Yeoh. Then, the final theoretical fitted curves corrected from initial guess test data 

can be evaluated according to Figure 4-64. 

 

Like sample A, the accurate material coefficients were predicted for sample B, taking into 

account the use of only biaxial corrected data in a cruciform extension, as shows Table 4-6 for 

each constitutive model. 

 

Table 4-6: Material models coefficients based on corrected sample B cruciform extension data 

fitting. 

 

Arruda-Boyce Yeoh Mooney-Rivlin Polynomial N=2 Ogden N=3 van der Waals 

μ 0.470856 C10 0.249304 C10 0.240247 C10 0.849494 μ1 0.375486 μ 0.545372 

μ0 0.470857 C20 -8.64E-03 C01 -1.87E-03 C20 2.04E-01 μ2 1.170852 λm 5.667507 

λL 1634.511 C30 8.67E-04 μ0 4.77E-01 C01 -0.51477 μ3 -0.58542 α 0.547287 

  μ0 4.99E-01 - C11 -3.22E-02 α1 -0.10576 β 0 

Neo-Hooke - - C02 4.28E-03 α 2 20.34048 - 

C10 0.235428 - - μ0 6.69E-01 α 3 -10.1702 - 

μ0 4.71E-01 - - - μ0 0.960916 - 
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Figure 4-64: Sample B corrected stress-strain curves adjusted through cruciform extension 

 

Finally, the relative error computation is presented over the strain for sample B in Figure 4-65 

and its accumulated sum in Figure 4-66. As this sample experiences much lower levels of strain 

the relative errors did not present major differences between constitutive models.  

 

 

 

Figure 4-65: Relative errors over strain range for sample B corrected biaxial data fitting. 
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Figure 4-66: Accumulated relative error according to each constitutive model for sample B 

corrected biaxial data fitting. 

 

After constitutive parameters were obtained from an accurate data fitting according to the 

uniform biaxial extension area, a new FEA was carried out in order to check the efficiency and 

validate the proposed methodology.  

 

The strain and stress true responses were computed in the central region of the specimen, where 

the maximum principal stresses of sample A could be analyzed according to Figure 4-67. Then, 

experimental and simulated curves were compared according to both the forces and the stresses 

which were plotted over the strains respectively in Figures 4-68 and 4-69. 

 

Based on the same consideration applied in uniaxial tensile test the force amplitude was 

analyzed over the strains because of the high influence of the clamps in the uniform strain 

calculation around the center. 
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Figure 4-67: Sample A equal biaxial true stress distribution in a cruciform shape. 

 

 

 

Figure 4-68: Sample A cruciform extension forces plotted over uniform true strains.  
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Figure 4-69: Simulated and experimental sample A equal biaxial true stress-strain curves. 

 

The performance of Arruda-Boyce and Yeoh models were almost the same, being the relative 

errors projected according to final stress-strain slope in Figure 4-70.  

 

 

 

Figure 4-70: Relative error curves over analysis time period for sample A biaxial extension.  
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To better visualize the error difference between models a response interval was zoomed in, 

considering the time period after step 20, as shows Figure 4-71. 

 

 

 

Figure 4-71: Zoom in of relative error curves over analysis time period for sample A biaxial 

extension. 

 

The principal stress distributions of sample B is depicted in Figure 4-72, while the experimental 

and simulated curves compared according to the forces and the stresses amplitudes are 

respectively plotted in Figures 4-73 and 4-74. 

 

Taking the same procedure of sample A, the relative errors projected according to final stress-

strain slope is presented in Figure 4-75, and the respective details selected according to a time 

interval after step 10 is depicted in Figure 4-76. The same way as sample A, the performance 

of both models evaluated were practically the same. 

 

It is possible to note that, opposite than initial guess force-strain curves of Figures 4-48 and 

4-49 for samples A and B respectively, the corrected curves obtained through uniform region 

matched very well experimental data with simulated models.   
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Figure 4-72: Sample B equal biaxial true stress distribution in a cruciform shape. 

 

 

 

Figure 4-73: Sample B cruciform extension forces plotted over uniform true strains. 
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Figure 4-74: Simulated and experimental sample B equal biaxial true stress-strain curves. 

 

 

 

Figure 4-75: Relative error curves over analysis time period for sample B biaxial extension. 
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Figure 4-76: Zoom in of relative error curves over analysis time period for sample B biaxial 

extension. 

 

4.3.2.2 Bulge inflation 

 

The simulation of bulge test was conducted based on a quarter of symmetry considering the 

application of pressure amplitudes experienced in the tests. In order to evaluate the shape of 

bulge profile the total deflection response was extracted and is depicted in Figure 4-77 followed 

by stress distribution in Figure 4-78. 

 

 

 

Figure 4-77: Bulge inflation final deflection. 
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Figure 4-78: Bulge inflation equal biaxial true stress distribution around dome center. 

 

Since Arruda-Boyce was a stable model with a reasonable relative error, FE simulation was 

performed according to this hyperelastic material law. Then, as a comparison pressure was 

plotted over maximum deflection in Figure 4-79  and over true strains in Figure 4-80 against 

experimental data.  

 

Based on equation (3-2), the experimental calculated stress was also compared to simulated 

response, taking into account the strains measured through DIC. Thus, the true stress-strain 

curves can be evaluated in Figure 4-81. 

 

From presented results it is possible to state that the Arruda-Boyce hyperelastic model could 

predict with high accuracy the experimental tests response. This happens because this eight 

chain model is always stretched in the principal direction and in response to any deformation 

the chains in the reference frame can undergo stretches describable by the principal values of 

stretch. In addition, this model extends equally under biaxial extension as well as uniaxial 

extension (ARRUDA and BOYCE, 1993).  
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Figure 4-79: Bulge inflation pressure plotted over maximum deflections in the dome. 

 

 

 

Figure 4-80: Bulge inflation pressure plotted over true strains in the dome. 
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Figure 4-81: Simulated and experimental bulge test true stress-strain curves. 

 

The relative error curve regarding stress-strain slop is presented in Figure 4-82 with a maximum 

value a bit higher than 20%. 

 

 

 

Figure 4-82: Relative error curves over analysis time period for bulge inflation. 
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4.3.3 Simple compression 

 

The simple compression experiment was carried out aiming to compare its efficiency related to 

biaxial response. This test is known as not being uniform and can vary considerably due to the 

presence of irregularities and asperities on the specimen surfaces. For this reason, experiments 

were conducted in an oily and rough surface in order to be compared to FEA, where a thorough 

analysis took into account four different cases of simulation models, being two of them 

analyzed with biaxial stretch material response in the constitutive modeling under contact 

conditions of frictionless and no slippage between rubber and machine plates. Next, the other 

cases considered simple compression experiment data (oily and rough) in the constitutive 

modeling, but as the friction effects were already accounted in the material response only 

frictionless contact condition was analyzed.   

 

From Figure 4-83, it is possible to analyze the difference between stiffness curves obtained 

through biaxial extension material data fitting. This happens because the experimental curves 

account for an intermediate level of unknown friction between contact conditions simulated. 

 

 

 

Figure 4-83: Simple compression stiffness curves according to material and contact condition. 
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Although simulated curves obtained through simple compression data fitting matched 

experimental curves, the deformation behavior and stress distribution did not agree with the 

physical phenomenon. This effect can be understood in Figures 4-84 to 4-87, which represent 

the four different cases simulated (biaxial data fitting and frictionless - case 1, biaxial data 

fitting and no slip - case 2, simple compression in oily surface data fitting - case 3, and simple 

compression in rough surface data fitting - case 4, respectively). It is worth paying attention 

that, for simple compression presented  in Figures 4-86 and 4-87, they could not bulge around 

the specimen sides. This is incorrect, since this effect really exists due to friction between 

surfaces, and if the correct friction could be known, its effects could not be accounted by the 

constitutive material model in data fitting procedure. 

 

 

 

Figure 4-84: Simple compression mechanical behavior simulated under case 1. 

 

 

 

Figure 4-85: Simple compression mechanical behavior simulated under case 2. 
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Figure 4-86: Simple compression mechanical behavior simulated under case 3. 

 

 

 

Figure 4-87: Simple compression mechanical behavior simulated under case 4. 

 

Finally, taking into account the relation between equal biaxial and simple compression stress-

strain response presented in equations (4-7) and (4-8), it is possible to compare the biaxial 

response obtained by simple compression under frictionless condition simulated in case 1 with 

cruciform extension and bulge inflation results. Final curves can be evaluated in Figure 4-88, 

where this comparison is only presented for sample B in order to show a detailed view between 

curves, and in Figure 4-89 where all biaxial responses obtained in the present Dissertation were 

plotted. 
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Figure 4-88: Case 1 simple compression and sample B cruciform extension biaxial response. 

 

 

 

Figure 4-89: Case 1 simple compression compared with all biaxial responses. 
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4.4 Conical rubber spring experimental tests 

 

Since one of the aims in the present Dissertation is to predict the mechanical behavior of a 

conical rubber spring by means of FEA, experimental tests were conducted in prototypes taking 

into account the axial and the radial loading conditions. In both situations, the curve was 

extracted after 3rd cycle when rubber properties became stable due to Mullins effect.   

 

4.4.1 Axial loading 

 

In the case of axial loading, the cyclically force-displacement responses in the spring were 

recorded up to a maximum force of approximately 40kN, as shown in Figure 4-90, at a high 

peak of displacement. Then, from cyclic curves the final stable axial stiffness is depicted in 

Figure 4-91, considering the last stable curve obtained in the 3rd cycle. 

 

 

 

Figure 4-90: Conical rubber spring axial stiffness under cyclic loading 
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Figure 4-91: Conical rubber spring final stable axial stiffness curve 

 

Based on NF EN 13913 (2004), axial stiffness should be calculated linearly according to the 

range described in section 3.2.2. The component must present a static vertical stiffness of 650 

N/mm ± 15 %, which implies that the experimental response shown in Table 4-7 is in 

accordance with the target. 

 

Table 4-7: Axial stiffness calculation between AW0max and AW2max.  

 

AW0max / AW2max 

Load (kN) Displacement (mm) Stiffness (N/mm) 

23.0 49.67 
657 

35.1 68.10 

 

4.4.2 Radial loading 

 

In the case of radial loading, although the technical standard NF EN 13913 (2004) requests this 

test under a vertical preload of approximately 20kN, tests free of this pre-compression were 

also carried out in order to take its effects into account. The cyclically force-displacement 

responses were recorded up to a maximum displacement of 6mm, as shown in Figure 4-92 for 

the pre-compressed spring in radial stiffness and Figure 4-93 for the pre-compression free case. 
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Figure 4-92: Pre-compressed conical rubber spring radial stiffness under cyclic loading. 

 

 

 

Figure 4-93: Pre-compression free conical rubber spring radial stiffness under cyclic loading. 

From cyclic curves the final stable radial stiffness for both cases of vertical preload is plotted 

in Figure 4-94, considering the last stable curve obtained in the 3rd cycle. It is important to pay 

attention that, as the displacement gets higher the pre-compressed condition starts to show a 
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stiffness curve which is almost two times greater when compared with the pre-compression free 

case.  

 

 

 

Figure 4-94: Conical rubber spring final stable radial stiffness curves 

 

According to NF EN 13913 (2004) the component must present a static radial stiffness of 5600 

N/mm ± 15 % under the vertical preload condition. Thus, from Table 4-8 it is possible to verify 

that the response is in accordance with the target. 

 

Table 4-8: Radial stiffness calculation from pick to pick. 

 

Pick to Pick 

Displacement (mm) Load (kN) Stiffness (N/mm) 

6.00 26.05 
4986 

0.82 0.225 

 

 

4.5 Conical rubber spring Finite Element simulation 

 

Since the aim of the present Dissertation is to understand rubber mechanical behavior under 

multiaxial deformation modes, experimental tests in a conical rubber spring were carried out in 
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the axial and radial directions and compared to FEA results, considering the hyperelastic 

constitutive laws obtained through uniaxial and biaxial experimental data. In addition, a pattern 

search optimization algorithm was implemented in the Abaqus® environment in order to find 

out the material parameters that best fit the prototype multiaxial deformation modes with the 

smallest possible error (as methodology described in section 3.3).  

 

Based on an extensive research conducted by Lalo et al. (2019) on the performance of the 

classical constitutive models in the literature for the component in question, Arruda-Boyce 

model was chosen as the one which best correlated the prototype load-deflection experimental 

curve. From this assumption, comparative analyses were carried out in the material parameters 

here obtained.  

 

4.5.1 Axial loading 

 

When the spring was subjected to the axial loading large deflections were observed during the 

experimental tests. For this reason, taking into account the multiaxial deformations transferred 

to the rubber, three cases of data fitting were analyzed.  

 

The first case, which was named as case 1, fitted the material model considering uniaxial tensile 

test and cruciform biaxial extension in sample A, being the theoretical curves compared to the 

experimental data in Figure 4-95 for the uniaxial deformation mode and in Figure 4-96 for the 

biaxial mode. Next, the second case (case 2) considered the uniaxial tensile test together with 

cruciform biaxial extension in sample B, where theoretical curves can be compared to the 

experimental data in Figure 4-97 for uniaxial direction and Figure 4-98 for the biaxial one. 

Finally, considering that in many situations the material curve is only fitted according to the 

uniaxial test data due to its test simplicity, a third case (case 3) was analyzed taking into account 

only its effect, being shown in Figure 4-99. 
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Figure 4-95: Uniaxial stress-strain curve prediction according to data fitting of case 1. 

  

 
 

Figure 4-96: Biaxial stress-strain curve prediction according to data fitting of case 1. 
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Figure 4-97: Uniaxial stress-strain curve prediction according to data fitting of case 2. 

 

 
 

Figure 4-98: Biaxial stress-strain curve prediction according to data fitting of case 2. 
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Figure 4-99: Uniaxial stress-strain curve prediction according to data fitting of case 3. 

 

Since the curve fitting method was implemented aiming to minimize the relative and absolute 

errors, it is important to mention that the number of points and strain levels should be equivalent 

in uniaxial and biaxial extension experiments. This assumption has to be considered in order to 

minimize the tendency for a better fit in one test compared to another, since the errors are 

counted as the sum of each point of the experiment. 

 

Although rubber material could be considered as almost incompressible due to its quantity and 

type of carbon-black, FE computational simulation was first run based on optimized material 

parameters obtained through prototype experimental data. The optimization process was 

conducted together with Arruda-Boyce model where material parameters were assigned as 

design variables in the pattern search algorithm, which returned a Poisson’s ratio equal to 𝜈 =

0.4985. Thus, Table 4-9 shows the comparison between materials analyzed taking into account 

the constitutive coefficients obtained in cases 1,2 and 3, with the volumetric behavior calculated 

from the optimum FEA. 
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Table 4-9: Material constants comparison between cases 1, 2, 3 and optimum FEA. 

   

Arruda-Boyce model 𝜇 𝜆𝐿 𝐷 

Optimum FEA 0.345 2.98 0.01622 

Case 1 0.367 3.60 0.01559 

Case 2 0.375 3.26 0.01508 

Case 3 0.395 3.44 0.01441 

 

According to Figure 4-100, it is possible to compare the undeformed (a) and deformed (b) 

shapes. The maximum magnitude displacement value occurs around the metal axle, more 

exactly at the point where the concentrated load was applied. Although the rubber section 

undergoes large strains, it still keeps a reasonable shape, without excessive distortion. 

 

 

(a) 

 

(b) 

 

Figure 4-100: Conical rubber spring deflection [mm] under axial load: (a) undeformed shape 

and (b) deformed shape. 

 

For a better visualization of the deformed geometry in the vertical direction, Figures 4-101 and 

4-102 show respectively the final shape in front view for axial displacements and von Mises 

equivalent stresses distributions to ensure that there is no plasticity phenomenon in the steel 

parts. 
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Figure 4-101: Conical rubber spring vertical displacements distribution [mm]. 

 

 

 

Figure 4-102: Conical rubber spring von Mises equivalent stresses distribution [MPa] under 

axial loading. 
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From load-deflection curves in Figure 4-103, it is possible to note that case 3 presented the 

worst accuracy among other cases of data fitting, whereas case 1 presented the best correlation 

when compared to the optimized models and experimental data. This really makes sense, as 

case 1 considered both deformation modes uniaxial and biaxial for higher levels of strain.  

 

 

 

Figure 4-103: Conical rubber spring prototype experimental data compared to Arruda-Boyce 

model under axial deflection. 

 

The optimization algorithm efficiency in relation to data fitting from case 1 can be proved when 

relative and absolute errors are evaluated over the analysis as shown respectively in Figures 

4-104 and 4-105. Although the optimized model allows a more accurate adjustment, the 

prototype test data will always be necessary for the material characterization, aiming as an 

objective function minimizing the error between the curves computed by the area difference. 

This is a huge problem when a new component is under development process and there is no 

experiments. For this reason, the solution of case 1 can be considered as a great option when 

predicting an elastomeric component behavior with a reasonable accuracy. 

 

 

 



204 

 

 

 

 

Figure 4-104: Arruda-Boyce model relative errors over analysis for axial stiffness. 

 

 

 

Figure 4-105: Arruda-Boyce model absolute errors [N/mm] over analysis for axial stiffness. 

 

 

 



205 

 

 

4.5.2 Radial loading 

 

Considering the annular geometry of the conical rubber spring, another important loading 

direction was considered in order to evaluate a different type of multiaxial deformation mode. 

In this case the spring was subjected to a radial deflection taking into account two different 

situations of pre-loading. Initially, a pure displacement of 6mm was radially imposed in the 

component without any effect of pre-compression loading. After that, an axial compressive pre-

load of 20kN was applied before the imposed radial deflection. 

 

From the pattern search optimization algorithm, accurate fitted hyperelastic material 

coefficients were obtained according to the experimental radial stiffness under the pre-

compression free condition. In this case, it is important to mention that, although Arruda-Boyce 

model performed very well under axial loading, it could not find any parameters to fit the radial 

stiffness curve accurately. This shortcoming occurred because of some limitations of the model 

regarding the order of the data fitting, in which is based on 𝜇 and 𝜆𝑙 to control the initial and 

final slopes of the entire theoretical curves. For this reason, considering the number of 

parameters available in the Yeoh material model and its performance in relation to strain ranges 

stability, it was adopted and could be able to match the component simulation with experimental 

curve.  

 

As a result, the Yeoh material parameters for this case of loading are shown according to Table 

4-10, while the final deformed shape can be seen in Figure 4-106 followed by von Mises 

equivalent stresses distributions in Figure 4-107. From the material coefficients obtained, it is 

possible to infer a change in the volumetric behavior, since the Poisson’s ratio has now a value 

of 𝜐 = 0.4933.    

 

Table 4-10: Yeoh material constants for the pre-compressed free radial stiffness. 

   

Yeoh model 𝐶10 𝐶20 𝐶30 𝐷 

Optimum FEA 0.526 6.578 1.800 0.25546 
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Figure 4-106: Conical rubber spring radial deflection [mm] in the pre-compression free 

condition. 

 

 

 

Figure 4-107: Conical rubber spring von Mises equivalent stresses distribution [MPa] under 

radial loading in the pre-compression free condition. 
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Considering the material model and its parameters obtained by the implemented optimization 

algorithm for axial deflection (see section 4.5.1) and analyzing the results in Figure 4-108, it is 

possible to note a great difference in the radial stiffness curve when compared to the 

experimental data. This is because the material model used in the previous loading mode is no 

longer capable of reproducing the results with the same accuracy for the current multiaxial 

deformation mode, being the reason why Yeoh model started to be implemented for radial 

loading simulation. In this situation, the inner conical sleeves are displaced towards the fixed 

outer sleeve, causing a bulge effect outwards at the free ends due to bulk incompressibility of 

the rubber. This behavior caused both deviatoric and volumetric changes in the material due to 

friction effects.  

 

 

 

Figure 4-108: Conical rubber spring prototype experimental data compared to FEA under pre-

compression free radial loading. 

 

As far as the pre-compressed condition is concerned, the same optimization procedure for 

material fitting was carried out, but because the mesh deformed significantly from its original 

configuration after axial preload, a solution mapping technique was applied. As explained in 

section 3.3.5 the FE simulation for this loading condition was performed in two analysis steps.  
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Considering the good accuracy provided by Arruda-Boyce model during the vertical deflection, 

the first step was able to provide reliable results without much effort. The final axial 

displacements concerning this first step with a detailed view of the distorted mesh is shown in 

Figure 4-109. Then, based on the deformed shape obtained, a remesh procedure was conducted 

taking care to not generate significant discontinuities in relation to the old mesh. The 

regenerated and better quality mesh can be analyzed in Figure 4-110.  

 

It is really worth mentioning that very high discontinuities between old and new meshes means 

that the mesh can be too coarse or that the remeshing procedure should have been done at an 

earlier stage before too much distortion occurred.  

 

 

 

Figure 4-109: Deformed conical rubber spring [mm] and distorted mesh after vertical preload. 
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Figure 4-110: Conical rubber spring regenerated mesh after vertical preload. 

 

Based on step 1 results, the same radial deflection of 6mm was analyzed in the second step, 

where only Yeoh model could have a reasonable performance in terms of material coefficients 

during optimization process. This means that, it is possible to infer that rubber can lead to 

different properties depending on the multiaxial deformation mode that it was subjected. 

 

Furthermore, bulk compressibility has an important effect on the radial stiffness due to bulge 

effect occurred under compression, which is accentuated by the vertical preload. Consequently, 

Poisson’s ratio is able to modify the mechanical behavior predicted by the FEA of rubber 

components and give rise to the accuracy of the simulation result. 

 

From this point, the final deformed shape is presented by Figure 4-111 and the von Mises 

equivalent stresses distributions can be seen in Figure 4-112. It is important to mention that, the 

maximum yield strength of the metal parts is 530MPa and for this reason they worked only in 

the linear elastic regime. 
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Figure 4-111: Conical rubber spring radial deflection [mm] considering the vertical pre-

compression loading condition. 

 

 

 

Figure 4-112: Conical rubber spring von Mises equivalent stresses distribution [MPa] under 

vertical pre-compression and radial deflection. 
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Finally, the simulated radial stiffness curves compared to the experimental data under a vertical 

preload are plotted according to Figure 4-113. It is possible to observe that, there was an 

increase in the difference between curves of the model simulated with material parameters 

obtained by optimization process in axial loading and prototype test. On the other hand, if only 

the pre-compression effect is analyzed during radial deflection, the correlation between FEA 

with material parameters free of pre-compression (Table 4-10) and optimized material model 

taking into account the axial pre-compression effect (Table 4-11) becomes acceptable up to 

displacements of 2mm. This means that, the pre-compression effect due to vertical preload 

influences the rubber behavior only under higher levels of deformation.   

 

Table 4-11: Yeoh material constants for the radial stiffness under pre-compression. 

   

Yeoh model 𝐶10 𝐶20 𝐶30 𝐷 

Optimum FEA 0.0557 19.178 22.500 0.25546 

 

 

 

Figure 4-113: Conical rubber spring prototype experimental data compared to FEA under pre-

compression and radial deflection. 
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4.6 Conical rubber spring analytical solution 

 

Considering that the performance of a product is influenced by elastomer compression modulus 

and its geometry details, an analytical solution for radial stiffness was proposed according to 

the methodology described in section 3.4.  

 

Since the conical rubber spring under study has a complex design, the main geometric 

properties required to fulfill equation (3-24) were extracted direct from Siemens NX® CAD 

software. Based on a combination of laminate and tube form bearings for planar sandwich 

shapes, the loaded conical area for each layer was adopted according to Figure 4-114, whereas 

the respective rubber thickness returned a constant value of approximately 10mm for all layers 

involved by the spring, as presented in Figure 4-115. Table 4-12 represents the exact loaded 

area values extracted for each layer.  

 

Table 4-12: Loaded area according to each layer of the conical rubber spring. 

 

Layer number Loaded Area (𝐴𝐿) [mm2] 

N1 10358.01 

N2 13722.63 

N3 15115.86 

N4 16321.23 

N5 17474.32 

N6 18673.68 
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Figure 4-114: Representation of the loaded area for each rubber layer. 
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Figure 4-115: Representation of the rubber thickness for each conical layer. 

 

Taking into account the complexity of calculating 𝐸𝑐, at least an uniaxial tensile test should be 

performed in order to estimate the shear modulus from material parameters obtained through a 

given hyperelastic constitutive model.  

 

Based on data fitting already conducted for uniaxial extension and its respective parameters 

defined in Table 4-1, it is possible to define the initial Young’s modulus 𝐸0 - equation (4-9) - 

through the simple relation described in equation (3-26). Since the Arruda-Boyce model 

presented stability for all strain levels and returned a reasonable fitted curve, an initial shear 

modulus of 𝜇0 = 𝐺 = 0.4385 was adopted. In addition, considering the compressibility degree 

of Table 2-2, a value of 𝜐 = 0.4995 was also defined. 

 

𝐸0 = 2.0.4385. (1 + 0.4995) = 1.3152 MPa  (4-9) 

 

The coefficient 𝜙 is an empirically determined material property, which was included here to 

correct the experimental deviation from theoretical equations. It is dependent on the 𝐸0 

according to the relation curve represented by Figure 4-116. 



215 

 

 

 

 

Figure 4-116: Relation between initial Young’s modulus and coefficient 𝜙. 

 

Interpolating data points from the relation curve of Figure 4-116, the coefficient 𝜙 is defined 

as a third order function as follows: 

 

𝜙 = −0.0016. 𝐸0
3 + 0.034. 𝐸0

2 − 0.2477. 𝐸0 + 1.133  (4-10) 

 

The compression modulus (𝐸𝑐) is really affected by the shape of a geometric design. For this 

reason, the shape factor (𝑆) should be determined according to the relation between loaded area 

and force-free area derived in equation (3-23).  

 

The force-free area (𝐴𝐵), which is associated with the area that is free to bulge, was defined for 

each layer considering the same procedure performed for the determination of 𝐴𝐿, but in this 

case it was calculated from external and internal diameters on the middle surface (𝐷𝑒 and 𝐷𝑖 

respectively). 

 

Therefore, the compression modulus and associate radial stiffness for each layer can be 

analyzed according to Table 4-13. 
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Table 4-13: Radial stiffness according to shape factors and material parameters of each layer. 

 

Layer 

number 
De [mm] Di [mm] 

Force-Free Area 

(𝐴𝐵) [mm2] 
S 

𝐸𝑐 

[MPa] 
K [N] 

N1 75.3228 60.0278 3251.8546 3.1853 12.82 13275.31 

N2 100.2399 82.8372 5004.6003 2.7420 9.84 13511.73 

N3 125.1855 107.7662 6374.0645 2.3715 7.69 11634.17 

N4 150.4734 132.7118 7900.8499 2.0658 6.16 10049.27 

N5 176.1190 157.9995 9509.6955 1.8375 5.14 8991.29 

N6 201.0000 183.6450 10485.8728 1.7808 4.91 9113.14 

 

Finally, the radial stiffness for the overall structure is obtained according to equation (3-30) 

based on an association of springs in series. Thus, considering the values obtained the analytical 

solution is:   

 

1

𝐾𝑒𝑞
=

1

13275.31
+

1

13511.73
+

1

11634.17
+

1

10049.27
+

1

8991.29
+

1

9113.14
 (4-11) 

  

𝐾𝑒𝑞 = 1799.37 N (4-12) 

 

The radial stiffness obtained from experimental data (𝐾𝑒𝑥𝑝) under the condition free of pre-

compression is: 

 

𝐾𝑒𝑥𝑝 =
11100

6⁄ = 1850 N  (4-13) 

 

Just as a comparison the relative error between these values is lower than 15%, and for this 

reason is in accordance with the technical standard variation required for conical rubber spring 

(NF EN 13913, 2004).  

 

𝐸𝑟 = (1 −
𝑇𝑖
𝑡ℎ

𝑇𝑖
𝑡𝑒𝑠𝑡) . 100 = (1 −

1799.37

1850
) . 100 = 2.74% 

     

(4-14) 
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5  
FINAL CONSIDERATIONS 

 

 

5.1 Conclusions 

 

Since the present Dissertation aimed to investigate the rubber behavior under different modes 

of large multiaxial deformation, a complex geometry, known as conical rubber spring, that 

includes several conical-laminated elastomeric bearings was subjected to different cases of real 

working load found in the railway industry. 

 

Considering that, the equal biaxial extension plays an important role to mechanically 

characterize the deformation behavior, experimental tests were conducted on samples with 

different cruciform shapes in order to achieve high strain levels for data fitting taking into 

account the effect of the geometric variables of the specimen on the uniformity of stress around 

the central region. Several research can be found in the literature focusing on the geometric 

design of the specimens to improve the sample biaxiality degree and to increase the uniformity 

of stress-strain area. However, according to the experiments conducted by the Author, the 

higher is the biaxiality degree the lower is the maximum strain supported by the sample and 

consequently the lower will be the equal biaxial strains. 

 

From this assumption, a novel methodology based on reverse response through the strain field 

measured by DIC and FEA was developed to account the uniform stress-strain relation 

regardless area size. The finite element simulations introduced in this work dealt with nearly 

incompressible hyperelastic material under quasi-static condition. The development of the 

proposed approach was based on studies from other rubber compound formulations, where the 

variation of the carbon-black amounts presented low sensitivity of the reaction forces and 

consequently of the stress response over the simulation. The effectiveness of the solution was 

validated through the bulge test method and showed high level of accuracy. Besides the 
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proposed method being efficient, its application is very simple and low computational 

consuming. 

 

The reduced phenomenological models with a higher number of terms, such as Yeoh, and the 

Arruda-Boyce micromechanical model allowed better curve fittings for the problem under 

study. However, although several techniques concerning uniaxial and biaxial data fitting were 

applied to describe a unique rubber constitutive modeling, the formulated equations for 

theoretical stress became inapplicable for the radial load-deflection relations due to the 

compressive force arising from the bonded condition at the loaded surfaces. When the rubber 

is compressed by metal parts, deformation occurs by a simple homogeneous compression 

followed by shearing deformation due to friction effects. Since the compressive strain is 

associated with the lateral profile, it is strongly dependent on the shape factor and the 

compression modulus. Thus, when the complete absence of slippage was considered between 

surfaces, the stress-strain relations became not uniform throughout the rubber pad and the 

material started to harden sharply as it was compressed. For this reason, it is important to 

emphasize that the most suitable hyperelastic constitutive model depends on the loading 

direction, geometry and rubber compound formulation. There is no universal hyperelastic 

model suitable for all possible deformation cases. 

 

From this point, a pattern search optimization method was implemented to characterize the 

rubber behavior when performing in the overall component and to predict the load-deflection 

relations for each loading direction. Therefore, when the output of the simulation is compared 

to the experimentally obtained load-deflection curves, it can be observed the huge influence of 

the constitutive constants under different multiaxial loading cases. That is the reason why very 

complex rubber component geometries show a great challenge for numerical simulations. Even 

with experimental test data for the main pure deformation modes, it is not always possible to 

obtain the component response with a high accuracy degree. 

 

Finally, the analytical solution proposed for the conical rubber spring under radial deflection 

presented reasonable results when compared to the experimental data. However, the effects of 

vertical pre-compression were not taken into account for this solution.  
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5.2 Future Works 

 

From the present Dissertation, the following suggestions for future work are proposed: 

 

Considering the importance and challenges regarding the compression behavior in rubbers, a 

study about the shape variations during compressive loading for different compound 

formulations is proposed. Based on a half symmetry circular block sample, the DIC technique 

is proposed to capture large compressive strains for thick and thin blocks with other shape 

variations. 

 

Another important issue is related to the Mullins effect and viscoelastic behavior during cyclic 

multiaxial deformations. There are several research related to this topic, but none of them 

comprised this phenomenon in real working load conditions for complex geometry 

components. The Mullins effect is still misunderstood and it is not clear which mechanical 

quantity rules this phenomenon. In addition, different rubber compound formulations can be 

evaluated since higher carbon-black amounts increase this effect. 

 

In regard to biaxial behavior it is important to develop solutions for bulge test under large 

strains. In this case, a study concerning stochastic patterns, tracking, lights and lens distortion 

should be taken into account. Afterwards, it is important that the material characterization is 

applied to other multiaxial deformation modes evolving tension-torsion effects. 

 

Since the complexity of rubber behavior is higher as the variation in the number of data involved 

during a product development process increases, the study of some tools evolving artificial 

intelligence becomes necessary in order to allow the creation of more sophisticated solutions. 

In this situation, machine intelligence can learn and acquire information, rationally and 

conclusively, performing very well this advanced task. Based on artificial neural networks the 

output data (experimental tests results) can be obtained according to a determined input 

(compound formulation) as the network has been trained.  

 

Finally, with the adventure of 3d printed thermoplastic elastomers, the development of 

components with complex geometries becomes more accessible. From this point, experiments 

concerning the influence of 3d printing parameters should also be evaluated together with FEA 
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in order to evaluate the anisotropy induced by printing. Depending on the application and 

manufacturing process a new constitutive approach can be developed based on strain energy 

potentials and artificial neural networks. When the mechanical behavior and material strength 

is a concern, optimization tools for frame lattice can also be powerful in the infill pattern 

definition.  

 

To summarize, there are many other applications to be discovered and discussed with relation 

to rubber, ranging from effects of aging, hostile environments, temperature variation, 

manufacturing process and so on. Thus, real world applications, not only brand new but also 

tough challenging, are still wide open for future research concerning rubber-like materials 

behavior. 
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FINITE ELEMENT HYBRID FORMULATION 
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In the theory of hybrid formulation pressure (surface force) is treated as an uncoupled variable 

and therefore it must receive a suitable formulation through the weak form of the Finite Element 

Method (FEM). Since in almost incompressible problems the bulk modulus 𝐾 is relatively high, 

its relation to the pressure is given through the Cauchy stress tensor: 

 

𝝈 = 𝐾(𝐽 − 1). 𝑰 = −𝑝. 𝑰 (1) 

𝑝 = −𝐾(𝐽 − 1) (2) 

 

Linearizing the equation (2) in relation to the displacement field (PUCCI and SACCOMANDI, 

2002), we have:  

 

𝑝 = −𝐾 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
) (3) 

 

Therefore, it worth mentioning that pressure 𝑝 has less variation in relation to displacements 

field and, for this reason, it must be treated as an uncoupled term, that is, it must be treated 

separately as an independent variable in the FEM formulation (AL AKHRASS et al., 2014). If 

the problem is effectively incompressible, a relatively high value of the variable 𝐾 is assigned, 

forcing it to an incompressibility condition solved by a penalty procedure, in which the pressure 

variables act as Lagrange multipliers to force the condition of incompressibility. 

 

In view of the above, the hybrid formulation can be used by FEM, where different shape 

functions are adopted to describe the fields of pressure and displacement. In the case of pressure, 

a lower order variation must be attributed: 

 

𝑝 = Σ𝑁𝑝𝑖. 𝑝𝑖 ;           𝑢 = Σ𝑁𝑖. 𝑢𝑖  ;           𝑣 = Σ𝑁𝑖. 𝑣𝑖  ;           𝑤 = Σ𝑁𝑖. 𝑤𝑖 (4) 

 

where 𝑝𝑖 refers to the nodal pressure variables constituting the vector 𝒑, and 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 the nodal 

displacements that constitute the vector 𝒅. 

 

Thus, the equation (4) can be rewritten as: 

𝑝 = 𝑵𝑝
𝑇 . 𝒑 ;           𝛿𝑝 = 𝑵𝑝

𝑇 . 𝛿𝒑 ;           𝑑 = 𝑵𝑇 . 𝒅  (5) 

All in all, the boundary value problem can be expressed in the weighted form, integrating the 

solid domain through a weight function. Therefore, through the Principle of Virtual Work 
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(PVW) one can obtain the equilibrium condition of the internal forces 𝒒𝑖 and external 𝒒𝑒 in the 

volume (CRISFIELD, 2000). 

 

𝛿𝒒𝑒 = 𝛿𝒒𝑖 = ∫𝑩𝑛𝑙
𝑇 𝛿𝑺𝑑𝑉𝑜 +∫𝛿𝑩𝑛𝑙

𝑇 𝑺𝑑𝑉𝑜 (6) 

 

The forces and pressures variables coupling vector is called 𝒂 and can be derived as: 

 

𝒂 = ∫𝑩𝑛𝑙
𝑇 𝒈𝑡𝑲2𝛿𝑝𝑑𝑉𝑜 =𝑷𝛿𝒑 (7) 

 

where 𝛿𝑝 is the pressure variation in terms of nodal variables 𝛿𝒑 and 𝒈 = 𝒒𝑖 − 𝒒𝑒.  The 

subscript 𝑲2 shows that the tensor refers to the 2nd Piola-Kirchoff stress tensor. Thus, the 

differentiation of the matrix 𝑷 is given by: 

 

𝑷 =
𝜕𝒒𝑖

𝜕𝒑
=

𝜕𝒈

𝜕𝒑
= ∫𝑩𝑛𝑙

𝑇 𝒈𝑡𝑲2𝑵𝑝
𝑇𝑑𝑉𝑜 (8) 

 

In addition, the pressure-displacement relationship of equation (2) should still be considered. 

In this case, the Galerkin Method must be applied to obtain the weak form of equation (2) by 

multiplying it by 𝛿𝑝 and integrating it over the element. 

 

∫ ((𝐽 − 1) +
𝑝

𝐾
) 𝛿𝑝𝑑𝑉𝑜 = 𝛿𝒑

𝑇 ∫𝑵𝑝 ((𝐽 − 1) +
𝑝

𝐾
) 𝑑𝑉𝑜 = 𝛿𝒑

𝑇𝒇 = 𝟎 (9) 

 

This relationship should hold for any 𝛿𝒑, where 𝒇 represents the lack of pressure compatibility:  

 

𝒇 = −∫𝑵𝑝 ((𝐽 − 1) +
𝑝

𝐾
) 𝑑𝑉𝑜 = 0 (10) 

 

The equations above represent the governing relationships between the displacement and nodal 

pressure variables. For a purely incompressible problem, the term 𝑝/𝑘 from equation (10) 

would disappear and this equation could be used in the weak form of the incompressibility 

constraint. 

It is worth mentioning that the governing equation (10) involves the pressure and not its 

derivative, so it is not necessary the pressure to be continuous between the elements. Hence, 
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they can be treated as internal variables of the system. As a way to reduce the number of 

additional unknowns, in general one of these conditions (force or displacement) is admitted in 

the strong form, while the second is the weak form obtained by weighting. Since the 

formulations was adopted to the almost incompressible materials the weak form has been 

attributed to the pressure. 
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APPENDIX B 

 

MESH DEPENDENCY PROBLEMS ON SHELL ELEMENTS 
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Mesh dependency is a shortcoming associated with numerical solutions of localized problems 

under quasi-static loading conditions. This effect becomes very evident during the strain 

softening, especially in cases of biaxial deformation of narrow bands subjected to intense 

straining. This problem occurs because the equations governing incremental equilibrium lose 

ellipticity (NEEDLEMAN, 1988; SUMMERSGILL, et al., 2014; 2017). 

 

In situations where the material is considered to be almost incompressible, the use of reduced 

integration in the Gaussian Quadrature method is advisable because the displacement-based FE 

formulations always over-estimate the stiffness matrix, becoming susceptible to volumetric 

locking. However, because the use of fewer integration points produce a less stiff element, care 

should be taken in order to avoid some instabilities ought to stiffness matrix tending to zero, 

which is known as hourglass mode. 

 

In Abaqus® commercial software the use of reduced integration is mandatory for 4-node shell 

elements, being this, the only option available for this type of element. Therefore, this constraint 

can lead to a high mesh dependency problem when the biaxial deformation mode is simulated 

through shell elements. Although the cruciform extension can also be represented by plane 

stress elements, which are not influenced by volumetric locking, a mesh dependency study was 

conducted taking into account the responses of sample A due to its narrow bands, which 

consequently present a low biaxiality degree, and supported high levels of strain. This study is 

somehow important since some other applications can face this problem due to modeling 

conditions, e.g. bulge test under high strain levels.     

 

In the proposed study four different mesh sizes were adopted in a quarter of symmetry model, 

and are depicted respectively in Figures B-1 to B-4 according to the following mesh sizes: 

 

• Model 1: Mesh size = 1.0mm; total number of elements = 314; total number of nodes = 399; 

• Model 2: Mesh size = 0.6mm; total number of elements = 945; total number of nodes = 811; 

• Model 3: Mesh size = 0.3mm; total number of elements = 3573; total number of nodes = 

3310; 

• Model 4: Mesh size = 0.1mm; total number of elements = 29634; total number of nodes = 

28846; 
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Figure B-1: Cruciform biaxial extension represented by a mesh size of 1.0mm.  

 

 

 

Figure B-2: Cruciform biaxial extension represented by a mesh size of 0.6mm. 
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Figure B-3: Cruciform biaxial extension represented by a mesh size of 0.3mm. 

 

 

 

Figure B-4: Cruciform biaxial extension represented by a mesh size of 0.1mm. 
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The localization problem is totally evident when the responses of global displacements 

represented by Figure B-5 are compared to the equal biaxial strains of Figure B-6 evaluated in 

the center for each mesh size.     

 

 

 

Figure B-5: Global displacement response according to force for different mesh sizes. 

 

 

 

Figure B-6: Localized true strain response according to force for different mesh sizes. 
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It is possible to note that, the localized strain response starts to show a great increase in the 

difference between evaluated mesh sizes from values higher than 40% of true strain, that is, 

approximately 50% of nominal strain and equivalent to 24mm of global displacement. But, on 

the other hand, because overall stiffness is less affected by this phenomenon the difference 

between each mesh size response becomes greater only after 70mm of displacement and even 

this way this difference is not too significant. 

 

The mesh dependency problem can also be analyzed by the history of the total artificial strain 

energy (ALLAE). This is a more quantitative approach since it is the total energy dissipated to 

control hourglassing deformation. It contains both viscous and elastic terms; however, since the 

viscous term is usually predominant, most of the energy that goes into artificial strain energy is 

non-recoverable (SIMULIA, 2016).  

 

One way to determine if ALLAE is representing excessive values, is to compare it to the other 

internal energies. Since the material of the proposed study is based on the hyperelasticity theory 

a comparison with the total elastic strain energy (ALLSE) becomes more appropriate. Thus, 

from Figure B-7 the ratio between artificial strain energy and elastic strain energy is represented 

over the global displacements.    

 

 

 

Figure B-7: Raelation between ALLAE and ALLSE over the global displacements 
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Finally, considering that mesh dependency describes a solution which appears to follow the 

mesh nodal positions, the final deformed shapes are respectively depicted in Figures B-8 to B-

11 according to the adopted mesh size (1.0, 0.6, 0.3, 0.1 mm).  

 

Through the pictures, it is possible to see the effect of the displacements following the mesh 

due to hourglassing. For this reason, the coarser the mesh the greater will be the artificial strain 

energy going into controlling hourglassing deformation and consequently the lower will be the 

localized strains around the center as shown in Table B-1 compared to experimental test. 

 

Table B-1: Final equal biaxial true strains according to the mesh size and experimental test. 

 

 Mesh size:  

1.0mm 

Mesh size: 

0.6mm 

Mesh size: 

0.3mm 

Mesh size: 

0.1mm 

Experimental 

test  

Central true strains 75.89% 102.39% 123.15% 140.19% 141.51% 

 

 

 

Figure B-8: Equal biaxial true strain distribution modeled with a mesh size of 1.0mm. 
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Figure B-9: Equal biaxial true strain distribution modeled with a mesh size of 0.6mm. 

 

 

 

Figure B-10: Equal biaxial true strain distribution modeled with a mesh size of 0.3mm. 



251 

 

 

 

 

Figure B-11: Equal biaxial true strain distribution modeled with a mesh size of 0.1mm. 
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APPENDIX C 

 

SIMPLIFIED RUBBER BUSHING UNDER AXIAL LOADING 
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In order to initiate the studies, the first simulations have been performed on a rubber bushing 

component with a simpler geometry. This component is also manufactured by Vibtech, where 

the load-deflection prototype curve could be obtained as well. Some studies involving 

optimization techniques have also been performed. 

 

The FEA was performed using the commercial software Abaqus®, and the axisymmetric 

formulation was applied due to the rotational symmetry of the model. The metal parts were 

modeled by using the 3-node linear triangle axisymmetric elements (CAX3) and the rubber pad 

by using the 4-node bilinear quadrilateral axisymmetric elements with the hybrid formulation 

and constant pressure (CAX4H). The final model with its refined mesh and boundary conditions 

is shown in Figure C-1 (LALO and GRECO, 2017). 

 

 

 

Figure C-1: Rubber spring finite element model (axial section). 

 

Initially, the constitutive modeling was implemented based on a relationship obtained from 

literature between rubber Shore-Hardness and first order Mooney-Rivlin model with two 

coefficients. These values are listed according to Table C-1, and do not cover all types of rubber, 

they are just an approximation based on uniaxial extension test for some rubbers with Poisson’ 

ratio very close to 0.5, that is, nearly incompressible. For this reason, it can be used as a 

reference (ALTIDIS and ADAMS, 2005). 
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Table C-1: Mooney-Rivlin model with two coefficients.  

Source: Adapted from Altidis et al. (2005). 

 

Shore-A Young’s Modulus (E) Shear Modulus (μ) C10 C01 

[º] [N/mm2] [N/mm2] [N/mm2] [N/mm2] 

55 3.207 0.956 0.382 0.096 

58 3.811 1.089 0.436 0.109 

60 4.268 1.185 0.474 0.118 

65 5.616 1.465 0.586 0.147 

70 7.289 1.839 0.736 0.184 

 

 

The final results showed that the rubber section undergoes large strains but it still keeps the 

reasonable shape, without excessive distortion. According to Figure C-2 it is possible to 

compare the undeformed (a) and deformed shape (b). The maximum displacement value occurs 

around the metal axle, more exactly at the point where the concentrated load is applied. 

 

  

 

Figure C-2: Rubber bushing deformation under axial load (a) undeformed shape; (b) 

deformed shape.  

 

The comparison among experimental data and curves obtained by FEM simulation for the 

Mooney-Rivlin constitutive model is presented in Figure C-3. 

 

(b) 

 

(a) 
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Figure C-3: Bushing behavior comparison with prototype experimental data and Mooney-

Rivlin models based on shore hardness. 

 

Then an optimization study was also performed by testing nine algorithms types. From the 

algorithms tested, the one which best fits the prototype experimental curve was the MMFD 

(Modified Method of Feasible Directions) initially implemented by Vanderplaats (1984). The 

Yeoh constitutive model was used for material description, once that it deals with large strain 

rates. Through the graph shown in Figure C-4 it is possible to compare the axial stiffness of the 

component with the curves obtained by the optimization methods tested. 

 

 

 

 

 



256 

 

 

 

 

Figure C-4: Bushing behavior comparison with prototype experimental data and Yeoh models 

based on optimization algorithms. 

 

In the case where optimization algorithms are used, the adjustment becomes better, however 

the prototype test data will always be necessary for the material characterization, aiming as an 

objective function minimizing the error between the curves computed by the area difference. 

Therefore, for a more accurate calibration without accessing prototypes test data, experimental 

tests based on simple specimens and considering some states of deformation should be 

performed, mainly for the biaxial extension.  

 

During the optimization process, the material constants should be defined as design variables 

in which their values change throughout the analysis. Each optimization algorithm tested 

resulted in a set of Yeoh constants taking into account the deviatoric and the hydrostatic parts 

of the stress tensor. The final values obtained as design variables basically depend on the search 

method implemented by each algorithm and can be found in Table C-2. Since the MMFD 

method provided the best result, it is highlighted in the gray color.    
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Table C-2: Final material constants obtained by optimization process for Yeoh model. 

 

Optimization 

Algorithm 

Total 

Run 
C10 C20 C30 D1 D2 D3 

Error - 

Area Diff 

POINTER 59 4.133 -1.955 15.577 16.078 -5.781 -4.908 787.189 

NSGA-ll 237 1.200 -1.145 7.654 0.707 -7.215 0.800 506.561 

NLPQL 123 2.796 -2.300 0.080 1.403 -0.609 1.075 179.391 

LSGRG 152 2.840 -2.100 0.080 1.400 -0.600 1.585 169.478 

Hooke Jeeves 352 2.840 -2.116 6.392 1.400 -0.600 8.539 143.506 

ASA 940 2.840 -2.110 6.390 1.400 -0.600 8.530 144.436 

Down Hill Simplex 452 2.649 -1.428 5.335 1.121 -0.473 11.769 106.526 

MMFD 513 2.638 -1.421 5.383 1.110 -0.462 11.760 104.938 

 

 

 


