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A B S T R A C T

Freshwater biota are more comprehensive and direct indicators of biological impacts, and more meaningful to the

public than water quality or physical habitat surrogates. Freshwater biotic data and the multiple biological in-

dicators developed from them offer a much richer array of data for assessing the impacts of pollution controls than

a limited set of physical or chemical measures. In recent decades, assemblage-based assessments by ecologists,

environmental scientists, and water quality agencies have been employed globally for determining the condition

of, and threats to, freshwater ecosystems. A key step in this advance has been the development of multimetric

indices (MMIs) or indices of biotic integrity (IBIs) based on quantitative assessments of algae, macrophyte,

macroinvertebrate, fish or riparian bird assemblages. In Europe, where biological assemblages are mandated for

assessing freshwater ecosystem health, many indices are multimetric. However, the proliferation of MMIs globally

has not always occurred through the application of rigorous study designs and monitoring protocols, nor have

they always effectively incorporated functional metrics, stressor assessments, and statistical analyses. Therefore,

in this review, we discuss eleven major concerns with the development and application (including logistical

limitations) of multimetric indicators based on freshwater biota to encourage more rigorous and widely applicable

(transferable) MMI use and implementation. Specifically, our concerns focus on reference conditions; sampling

effort, methods, and season; trophic guild definition; metric comprehensiveness, options, screening and scoring;

and MMI validation. MMIs could also benefit from increased attention to ecological mechanisms and metric

development, to further improve our understanding of anthropogenic impacts as well as rehabilitation effects on

freshwater ecosystems globally. Paying closer attention to study designs, ecological mechanisms and metric

development should further improve our understanding of anthropogenic impacts and better facilitate rehabili-

tation of degraded freshwater ecosystems, as well as aiding in the conservation of healthy freshwater ecosystems

globally.

1. Introduction

Advances in the biotic assessment of freshwater ecosystems can better

address the cumulative and synergistic impacts of water pollution, hy-

drological alteration, and physical habitat degradation in these systems,

beyond what physicochemical (abiotic) sampling alone can provide

(Karr, 1981; Karr and Chu, 1999; Karr et al., 2022; Suter, 1993; Yoder

and Rankin, 1998). Traditionally, government agencies focus on

measuring parameters such as dissolved oxygen, nutrients, chlorophyll,

or fish abundance while ignoring their natural regional differences

(Larsen et al., 1988; Rohm et al., 1987; Whittier et al., 1988). What

constitutes good habitat structure and water quality varies by region

(Kaufmann et al., 2022a) and season (Fierro et al., 2021). Freshwater

biota are more sensitive and more directly detect biological effects than

traditional physicochemical water quality parameters, flow regime, or

physical habitat surrogates (Kaufmann et al., 2022b). Nonetheless, it is

useful for freshwater impacts to be assessed with a combination of such

data and biotic abundance, biodiversity, and biotic-index approaches

(Karr and Dudley, 1981, Rankin, 1995; Storch et al., 2022; Suter et al.,

1995; USEPA, 2016a, 2016b, 2016c, 2020; Vadas, 1992c, 1997, 1998,

2000). Some biotic parameters, physical habitat structure, and water

quality measures are naturally highly variable, and this limits our ability

to assess human and natural impacts on freshwater biota using those

parameters alone (Allan, 1984; Landres et al., 1988; Suter et al., 1995;

Vadas, 1998). Similarly, population abundances and physiological con-

ditions vary naturally with habitat, season, life cycle, epigenetics, and the

ages of individual organisms (Hynes, 1970; Khatun et al., 2020; Schreck,

2010; Stevenson et al., 2013; Vadas, 1991, 1992b; Warren, 1971).

Rigorously developed and diverse biological indicators based on clearly

defined concepts can help us understand the sources of biological vari-

ability. In addition, ecologically comprehensive multimetric indices

(MMIs) can reduce indicator variability. That is, they act similarly to

diversified investment portfolios, which help protect investors from the

variability of single assets. MMIs also behave like species-rich fish as-

semblages and life-history rich fish populations that respectively limit

assemblage and species variability (Karr et al., 1986; Schindler et al.,

2010). Therefore, Karr (1981), Davies and Jackson (2006) and Hughes

and Noss (1992) argued that biological condition is best assessed by

evaluating multiple structural and functional metrics.

Hence, MMIs, multivariate analyses, and observed/expected (O/E)

taxa richness have become important assemblage-based approaches to

enhance bioassessment sensitivity. This is a shift from the narrow,

abiotic, single-factor focus that (1) characterized historical freshwater

impact assessments and (2) largely ignored the breadth of freshwater

ecosystem stressors (Karr, 1981; Karr and Dudley, 1981; Karr and Chu,

1999; Ruaro et al., 2020; Yoder, 1995; Yoder and Rankin, 1998, Fig. 1).

We focus this paper on MMIs because of their global popularity (Ruaro

and Gubiani, 2013; Ruaro et al., 2020), and have reserved comparisons

with other approaches to the Discussion. MMIs are useful for determining

both temporal and spatial trends, and for identifying which remediation

actions have provided beneficial biotic effects (Moncayo-Estrada et al.,

2012; Pyron et al., 2008; Stainbrook et al., 2006; Yoder et al., 2005,

2019). Such information can save societies money by relating costs to

benefits, prioritizing ecosystems at greatest biological risk, and providing

warnings of impending ecosystem collapse (Callisto et al., 2019; Diaz

et al., 2019; Hughes et al., 2021b; Martins et al., 2021c).

However, Suter (1993) argued that MMIs 1) lack grounding in

ecological theory, 2) have no meaning because scores may result from

one low-scoring metric or multiple moderately scoring metrics, 3) are

unpredictable and inapplicable to regulatory problems, 4) lack diagnostic

power, 5) effects on one metric may be eclipsed by another, and 6)

reasons for various index scores are unknown. Here, we briefly counter

his arguments in order. (1) MMIs contain critically important

Fig. 1. Example of the disconnects between condition assessments based on

water chemistry versus those based on fish and macroinvertebrate MMI scores

(from Hughes and Noss, 1992). Based on four years of original data collected at

1030 sites (Ohio EPA, 1990). Results such as these led to widespread use of MMI

and biological criteria in the USA (Davis and Simon, 1995).
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components of biological and ecological condition (e.g., taxa richness,

taxa generally sensitive to anthropogenic disturbances, taxa generally

tolerant to anthropogenic disturbances, representation of multiple tro-

phic and life history guilds or traits, anomalies) (Karr, 1981; Ruaro et al.,

2020; Stoddard et al., 2008). Thus, we argue that MMIs are grounded in

ecological theory. (2) MMI scores result from averaging the scores of all

the metrics in the index, so a single low-scoring metric is unlikely to shift

a good MMI score to a poor MMI score (Karr et al., 1986; Stoddard et al.,

2008). Multiple moderately scoring metrics will necessarily yield a

moderate MMI score, as intended. (3) MMI scores are somewhat unpre-

dictable because of the many interacting pressures and stressors affecting

them, and those pressures and stressors vary regionally (Herlihy et al.,

2020; Martins et al., 2021a; Silva et al., 2018), but MMI scores are

certainly appropriate in regulatory applications. The best examples come

from Ohio EPA, where fish and macroinvertebrate MMIs have been used

to inform reductions of point and diffuse source discharges for over 30

years (Yoder and Barbour, 2009; Yoder et al., 2005; Yoder et al., 2019).

(4) The differing MMI metrics have diagnostic power. The percent

anomalies metric (% deformities, eroded fins, lesions, tumors) is diag-

nostic for toxics and disease in fish (Hughes and Gammon, 1987; Mebane

et al., 2003). Migratory fish metrics are a diagnostic for how instream

barriers affect the number and percent of migratory fish taxa (Herlihy

et al., 2020; Hughes et al., 2022). Shredder macroinvertebrate metrics

are a diagnostic of the condition of riparian vegetation (Oliveira et al.,

2011; Stoddard et al., 2008). Ephemeroptera (mayfly) relative abun-

dance and clinger richness were most affected by electrical conductivity,

and collector/filterer relative abundance was mostly affected by arsenic

concentration (Vander Laan et al., 2013). (5) A relatively low score for

one metric might lower the overall MMI score slightly, but it will not

overwhelm the total MMI score. For example, an otherwise high-quality

stream may be dominated by invasive non-native trout species and

would, therefore not be considered as being in as good an ecological

condition as a stream supporting only native fish species (Davies and

Jackson, 2006; Hughes et al., 2004; Lomnicky et al., 2021; Mebane et al.,

2003). (6) Major reasons for poor MMI scores are known. In the Brazilian

Atlantic Rainforest (Mata Atlantica), the most important relative risks for

poor macroinvertebrate MMI scores were physical habitat quality, ri-

parian vegetation condition, and catchment condition (Jimenez-Valencia

et al., 2014). For Brazilian neotropical savanna (Cerrado) streams, the

major relative risk factors for poor macroinvertebrate MMI scores were

turbidity, percent fine sediments, and percent catchment agriculture

(Silva et al., 2018), or percent catchment pasture and low streambed

stability in the drier northern savanna (Martins et al., 2021c). Nationally

in conterminous USA streams, the major attributable risk factors for poor

macroinvertebrate and fish MMI scores were excess macronutrients (ni-

trogen and phosphorus); but for fish in the western USA, it was poor ri-

parian vegetation cover (USEPA, 2016b). Total N and P were also the

major attributable risk factors for poor macroinvertebrate MMI scores in

conterminous USA lakes (USEPA, 2016c). The major attributable risk

factors for poor wetland-vegetationMMI scores were vegetation removal,

soil compaction, and ditching (USEPA, 2016a). At smaller spatial extents,

excess total N and turbidity were the best predictors of poor macro-

invertebrate MMI scores in five of nine USA ecoregions, whereas relative

streambed stability and dams predicted best in three ecoregions (Herlihy

et al., 2020). The best predictors of poor fish MMI scores in five USA

ecoregions were percent fines, but in three ecoregions they were total-N,

chloride, turbidity, and dams (Herlihy et al., 2020). Therefore, as rec-

ommended by Suter (1993), an array of biological responses are assessed

byMMIs, they are being used for diagnosing causes of impaired condition

and are employed for regulatory and management mitigative measures.

As a result of their ecological and regulatory applicability, freshwater

MMI assessments based on algae, macrophyte, macroinvertebrate, fish,

and riparian-bird and vegetation assemblages are becoming more widely

adopted (Charles et al., 2021; Hughes and Vadas, 2021; Karr and Chu,

1999; Ruaro et al., 2020; Ticiani et al., 2018; Yoder and Kulik, 2003).

Karr and Chu (1999) described sampling techniques, useful metrics for

assessing various anthropogenic impacts, and the superiority of MMIs for

assessing anthropogenic impacts on North American streams and other

freshwater ecosystems. MMI metrics usually fall into three categories:

species-composition (richness, diversity, dominance, tolerance), trophic

and trait composition (life histories and feeding, habitat, flow, mobility,

and thermal guilds), and abundance/disease/hybridization metrics,

comprising a hierarchically diverse approach that enhances detection of

anthropogenic impacts (An et al., 2006; Karr and Chu, 1999; Moyle et al.,

1998; Ruaro et al., 2020; Ticiani et al., 2017; Yoder et al., 2008; 2015;

2016). An entire MMI score is considered more reliable than any one

metric score for assessing the degree of impact across biogeographical

regions because the individual metrics were designed to vary in their

sensitivity to multiple anthropogenic pressures and stressors (Fausch

et al., 1990; Karr et al., 1986; McCormick and Peck, 2000; Miller et al.,

1988). Also, metric aggregation reduces inaccuracy compared to any

individual metric (Loeb and Spacie, 1994; Davis and Simon, 1995). The

main strengths of an MMI over past impact-assessment approaches is that

it integrates environmental damage (including diffuse and point source

pollutants and cumulative impacts of multiple anthropogenic distur-

bances), reduces bioassessment subjectivity, is more conservative than

strictly physicochemical methods, and facilitates protection of other

freshwater biota (Harris, 1995; Karr and Chu, 1999; Winter and Hughes,

1996). Rigorous MMIs can be developed by using statistical relationships

with stressors at regional and trans-regional levels. Such an MMI is ho-

listic in scope, relevant to assemblage-environmental relations, and in-

dicates how good conditions are for freshwater biota (Karr, 1981), much

like analogous indices do for assessing economic or human health in

layperson-friendly formats (Karr and Chu, 1999).

Karr and Chu (1999) and Karr et al. (2022) addressed MMI criticisms

since the index was first formulated by Karr (1981) and Karr et al. (1986)

as an index of biotic integrity (IBI) and critiqued alternative methods for

assessing freshwater ecosystem impairment. Although MMIs have been

applied to streams of various sizes, as well as lake, wetland, and estuarine

systems worldwide, many MMIs suffer from some fundamental envi-

ronmental biology challenges and misapplications that are not always

adequately addressed. Indeed, Karr's (1981) original concern that the

index would experience mindless band-wagoning is a very real problem,

i.e., developing unique MMIs for every different stream, lake, estuary, or

wetland rather than developing fewer MMIs that can be widely imple-

mented (e.g., Martins et al., 2020, 2021a; Moya et al., 2011; Pont et al.,

2006; Riato et al., In Press; Stoddard et al., 2008). Although regional or

local MMIs can more accurately assess ecological conditions in the areas

in which they were developed, they are frequently inapplicable else-

where (Martins et al., 2020; Suter, 1993) which can hinder pluralistic

research and scientific progress (Vadas, 1994). Therefore, our objectives

here are to encourage freshwater scientists and managers to seriously

consider the concerns raised below to develop more robust MMIs, apply

them to improve watershed and water body management, and to

consider tradeoffs between widespread MMI applicability and loss of

local specificity. We believe that doing so would lead to a better under-

standing of assemblage responses to anthropogenic pressures and

stressors. This could help identify the dominant pressures and stressors

by region and waterbody type and help determine the sensitivity dif-

ferences of different assemblages to those pressures and stressors.

Additionally, this would provide greater insights into the mechanisms

driving impairment and indicate where societies can most

cost-effectively focus their limited natural-resource rehabilitation and

protection efforts to meet sustainable development goals (e.g., MBI,

2015a, 2015b; Miltner, 2021; USEPA, 2016a, 2016b, 2016c, 2020).

Consequently, we have identified eleven major concerns with MMI

development and application (Hughes, 2012).

R.L. Vadas Jr. et al. Water Biology and Security 1 (2022) 100054

3



2. Concerns

2.1. Appropriate reference conditions

Having a range of reference (control) and degraded (treatment) sites

is critical to adequately assess metrics and MMI changes resulting from

human activities (Karr and Chu, 1999). Reference sites are those with

minimally disturbed conditions, based on historical, in situ data (before

human activities became intense) and/or data from nearby minimally

disturbed watersheds or wetlands having similar natural characteristics

(Hughes et al., 1986; Karr and Chu, 1999; Stoddard et al., 2006; Vadas,

1998). A widely unresolved problem is exactly what constitutes mini-

mally disturbed sites or catchments. Indeed, such sites are often absent in

highly developed regions (Hughes et al., 1986; Roset et al., 2007; Stod-

dard et al., 2006). Karr and Chu (1999) acknowledged this issue and

emphasized the need to look for biophysical thresholds that separate

water bodies with different levels of anthropogenic impact. They rec-

ommended using status designations based on whether sites were above,

near, or below average conditions. Such an equal-proportion approach

assumes that environmental responses are relatively linear and leads to a

shifting baselines dilemma (Hughes et al., 2022; Pauly, 1995; Thurow

et al., 2020). Suter et al. (1995) instead suggested that freshwater eco-

systems should be considered disturbed if they show at least 20% dif-

ference in metric scores relative to pristine conditions. But one could

argue that truly pristine ecosystems do not exist because of global climate

change, atmospheric deposition and invasion by non-native species

(Callisto et al., 2019; Landers et al., 2010; Vadas et al., 2016). USEPA

(2020) used the 75th percentile of least-disturbed sites in ecoregions

(Herlihy et al., 2008) to classify test sites as being in good, fair, or poor

condition. Similarly, Hughes et al. (1986), Ligeiro et al. (2013b), and

Roset et al. (2007) recommended using sites in the least-disturbed con-

dition, in regions that are extensively disturbed. Such ecoregional

reference sites, although not pristine, have been successfully used by the

Ohio EPA to improve biological conditions statewide and at selected

discharge sites (USEPA, 2013; Yoder, 1995; Yoder and Rankin, 1995,

1998; Yoder et al., 2005, 2019). In addition, the criteria used for clas-

sifying sites as either reference or impaired, may vary between the ap-

proaches used (Ruaro et al., 2020), which may also affect the MMI

responses to environmental disturbance (Hawkins, 2006; Hawkins et al.,

2010). Furthermore, it is essential for MMI development to have a sub-

stantial disturbance gradient, and numerous sites displaying it, so that

statistical inference is sufficiently robust for assessing cause-effect re-

lationships between a range of stressors and using different metrics.

We also acknowledge the importance of accounting for natural

regional differences (i.e., physiographic regions or ecoregions) when

selecting reference sites, developing MMIs, and comparing disturbed

sites (Agra et al., 2019; Bailey et al., 2004; Buss et al., 2015; Hughes et al.,

1986; Kaufmann et al., 2022a Martins et al., 2018; Yoder and Rankin,

1995). Reference conditions must be regionally appropriate. Failing to

make them so will lead to biased measurements of deviation (Feio et al.,

2014; Hawkins et al., 2010). In addition, Davies and Jackson (2006)

emphasized characterizing reference condition quality by using a bio-

logical condition gradient (BCG). The BCG provides a step toward a

standardized scale for assessing biological condition. Clearly, when

constructing new MMIs and when making biological assessments based

on them, it is important to select meaningful, relatively large numbers of

minimally or least-disturbed reference sites for setting attainable regu-

latory benchmarks (Yoder and Rankin, 1995).

Four confounding problems are commonly associated with defining

reference sites: nutrient enrichment, climate change, invasive non-native

species, and loss of keystone taxa.

2.1.1. Nutrient enrichment

Nutrient enrichment resulting from both point and diffuse sources

(USEPA, 2020), including atmospheric deposition (Stoddard et al.,

2016), is a globally pervasive stressor affecting most of Earth's

ecosystems to varying degrees. Freshwater plant and animal productivity

often increases with mild nutrient enrichment (Davies and Jackson,

2006; Esselman et al., 2015; Magurran, 1988; Nichols et al., 2000; Rising

et al., 2004; Vadas, 1998; Warren, 1971; Washington, 1984), as does

total-taxa richness (Brito et al., 2020; Davies and Jackson, 2006; Gee

et al., 1985; Hughes et al., 2004; Johnson and Angeler, 2014; Mebane

et al., 2003). However, sensitive and rare taxa typically decline or even

disappear with minimal enrichment (Davies and Jackson, 2006; Leit~ao

et al., 2016; Stevenson et al., 2008). For example, nutrient enrichment

adversely affects coldwater fish species but benefits cool and warmwater

fishes (Hooper, 1999; Jacobson et al., 2019; Kitchell et al., 1977; Lee and

Jones, 1991). This is because salmonids and other cold-stenothermic

fishes generally require more highly oxygenated water (Davis, 1975) as

well as colder temperatures, but enriched and warmer waters hold less

oxygen (Cole, 1979; Jacobson et al., 2019).

2.1.2. Climate change

Reference sites should include those minimally affected by changing

climate and largely free of other anthropogenic impacts— if they can be

found (Isaak et al., 2018; Jacobson et al., 2019; Vadas et al., 2016). As

with nutrient enrichment, taxonomic diversity may often increase, and

sensitive taxa will be reduced or even lost as waters become warmer and

streams and lakes are increasingly subjected to extreme events like floods

and droughts (Colvin et al., 2019; Jacobson et al., 2019; Leit~ao et al.,

2016; Robinson et al., 2019; Vadas, 2000; Winfield et al., 2016). Because

climate change is becoming increasingly problematic, reference sites

should be resampled periodically to account for and document such

changes (e.g., Pollock et al., 2022). Resampling also helps ensure

ecologically reasonable expectations for MMI test sites and provides

time-series data for future climate-impact analyses.

2.1.3. Invasive non-native species

Invasive non-native species (artificial diversity) can adversely affect

biological condition through biotic interactions and/or habitat modifi-

cations that degrade ecosystem processes and native biodiversity (Bar-

bour et al., 1999; Gehrke et al., 1995; Hermoso et al., 2010; Hossain et al.,

2018; Hughes and Herlihy, 2012; Karr and Chu, 1999; Lassuy et al., 1994;

Lomnicky et al., 2007; Moyle, 1994; Ruaro et al., 2018; Stanford et al.,

1996; Whittier et al., 2002, 2006; Yoder et al., 2008). Su et al. (2021)

reported an increasing trend for local phylogenetic, taxonomic, and

functional richness in over half the world's fish assemblages, which was

explained primarily by non-native species introductions that compensate

for – or exceed – extinctions of native species in most rivers. In other

words, increased diversity may not be ecologically desirable.

Non-native species are sometimes included as an MMI metric because

their abundances are considered biological pollution and they are linked

to degraded freshwater ecosystems (Hughes et al., 2004; Hughes and

Gammon, 1987; Mebane et al., 2003; Whittier et al., 2007). However,

they also occur in western USA mountain sites and Chilean streams that

are otherwise minimally disturbed (Habit et al., 2010; Lomnicky et al.,

2007; Mebane et al., 2003; Whittier et al., 2007). The limited presence of

non-native species is common in many European and Brazilian reference

sites, and reference conditions there should be based on admissible

ecological limits for their presence (Casarim et al., 2020; Segurado et al.,

2014). However, non-native species are often ignored when determining

reference sites (Ruaro et al., 2021). Information on the occurrence,

abundance, and autecologies of non-native species may be insufficient to

determine the difference between pre- and post-invaded ecosystems

(Ruaro et al., 2021), or even to set abundance thresholds of non-native

species for impact assessments on native assemblages (Ruaro et al.,

2018, 2021). This can occur for various reasons. For instance, it is

analytically circular to use non-native species data to classify sites as

reference or impaired and then to calculate, select, and score non-native

metrics from them (Kanno and Vokoun, 2008; Kanno et al., 2010; Parker

et al., 1999; Ruaro et al., 2018; Stoddard et al., 2006). Therefore, we

recommend considering non-native species as biological pollution
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(Davies and Jackson, 2006), avoiding the inclusion of such sites as

reference sites, and using metrics based on native species (e.g.,

native-taxa richness vs. total-taxa richness; e.g., Mebane et al., 2003;

Whittier et al., 2007).

2.1.4. Loss of key species

Overfishing and construction of migration barriers have reduced fish

migration and the upstream transport of nutrients and taxa (Storch et al.,

2022). Reductions in marine nutrients from overfishing and impassable

dams can result in oligotrophication of some headwater streams because

of losses of anadromous species (Gende et al., 2002; Vadas, 1998).

Similarly, impassable dams and stream-road crossings have eliminated

potamodromous and catadromous species from streams and rivers

(Hughes et al., 2022; Leit~ao et al., 2018; Oberdorff and Hughes, 1992).

Depending on their ecological functions, these losses can alter the

structure and functions of otherwise high-quality reference sites. A

similar case can be made for loss of native beavers (Castor spp.), given

their roles in water storage and flow and thermal modulation (Naiman

et al., 1986; Vadas et al., 2016). Therefore, where possible, it is important

to consider once naturally occurring key species abundances when

selecting reference sites.

2.2. Incorporating variability when estimating taxa richness

Karr and Chu (1999) and Karr et al. (1996) described the benefits of

various MMI metrics that quantify different components of taxonomic

richness, noting that those metrics are more reliable than taxa-diversity

indices. However, taxa-richness metrics (like taxa-diversity indices) are

sample-size dependent until an asymptote (plateau of diminishing

returns) is reached (Hughes et al., 2021a; Magurran, 1988; Peet, 1974;

Pompeu et al., 2021; Vadas, 1998; Washington, 1984) because of rarely

occurring species (Hughes et al., 2021a; Kanno et al., 2009) that also

often represent unique traits (Leit~ao et al., 2016). We agree with Karr and

Chu (1999) that small sample sizes, e.g., the criterion of 100 individuals

often used for macroinvertebrate assessments, are tenuous for reaching

asymptotes (Cao et al., 2002; Chen et al., 2015; Hughes and Vadas, 2021;

Hughes et al., 2012; Li et al., 2003, 2014; Ligeiro et al., 2013a; Segurado

et al., 2014; Silva et al., 2017; Vadas, 1998). We recommend determining

sample-size vs. taxa richness relationships for biotic assemblages to

ensure that taxa-richness metrics are reliable (Cao et al., 2001; Flote-

mersch et al., 2011; Hughes and Herlihy, 2007; Hughes et al., 2002,

2012, 2021a; Kanno et al., 2009; LaVigne et al., 2008; Pompeu et al.,

2021; Reynolds et al., 2003; Terra et al., 2013a).

Natural environmental gradients markedly affect the taxa richness of

fish (Chen et al., 2017; de Carvalho et al., 2017, 2020; Fausch et al., 1984;

Macedo et al., 2014; McCormick et al., 2001; Oberdorff et al., 2002; Pont

et al., 2006, 2009; Terra et al., 2013b) and macroinvertebrates (Bello--

Gonz�alez et al., 2022; Chen et al., 2014, 2017; Ferreira et al., 2014;

Hawkins, 2006; Hawkins et al., 2000; Klemm et al., 2003; Macedo et al.,

2014; Moya et al., 2011; Silva et al., 2016; Stoddard et al., 2008). Natural

gradients are incorporated in the apparent deviation of assemblages from

reference conditions if reference conditions co-vary with natural gradi-

ents (e.g., Reynoldson et al., 1997). Therefore, especially when MMIs are

developed for large areas (ecoregions, river basins), some calibration is

required to separate natural variability from the co-occurring effects of

anthropogenic disturbance on taxa richness.

Furthermore, as Cao et al. (2007), Karr and Chu (1999) and Ligeiro

et al. (2013a) have noted, standardization of taxonomic richness by

sample size, spatial unit area or rarefaction is necessary but somewhat

controversial given inadequate testing and site-based variability. Similar

concerns exist for eDNA, which has substantial potential for more accu-

rate and cost-effective determinations of local species richness for algae

(Keck et al., 2022), macroinvertebrates (Fern�andez et al., 2019; Keck

et al., 2022; Suh et al., 2019; Uchida et al., 2020) and fish (Blabolil et al.,

2021; Cantera et al., 2022; Keck et al., 2022; Lavergne et al., 2021; Pont

et al., 2019). We believe that taxa-richness metrics must be standardized

by consistent sampling and sample processing efforts and be calibrated

for natural gradients when making comparisons among sites.

2.3. Trophic metric robustness

Trophic metrics may require modification despite Karr and Chu's

(1999) optimism for vertebrate versus macroinvertebrate applications,

given that many taxa are generalist or opportunistic feeders (Ferreira

et al., 2015; Vadas, 1990, 1997). For example, the omnivorous fish

metric, which has been useful as an indicator of poor freshwater condi-

tion in temperate waters, is compromised by naturally common omni-

vory — especially in minimally altered temperate (Peters, 1977; Vadas,

1990, 1992a, 1998) and tropical (Hossain et al., 2018; Iba~nez et al.,

2009) freshwater ecosystems. Hence, Karr and Chu's (1999) contention

that fish trophic metrics behave more predictably than those for zoo-

benthos, given better ecological knowledge and less dietary oppor-

tunism, is questionable. Moreover, because apex-predator fish species eat

only fish, other vertebrates, and crayfish when large, MMI biologists

should divide such predatory species into large (apex predator) versus

small (insectivorous) size classes (Esselman et al., 2013; Peters, 1977;

Vadas, 1990). For example, a nursery stream with inadequate flows for

adult game fishes (Schlosser, 1982; Van Deusen, 1953) would be classi-

fied as having high piscivory, even though juvenile game fish feed mostly

on freshwater and/or terrestrial invertebrates (Kandem Toham and

Teugels, 1997). Hence, the caveat that freshwater ecological dynamics

need further study to improve trophic metrics (Davis and Simon, 1995;

Karr and Chu, 1999) should be heeded. This is also the case when

considering natural movements of different life stages of fish into and out

of temporary freshwater habitats like headwaters, non-perennial

(ephemeral, intermittent) streams and rivers, and off-channel refuges

(Colvin et al., 2009; Pompeu et al., 2012; Vadas, 1992b). Although tro-

phic guild metrics certainly have merit and offer insights into ecosystem

mechanisms and processes, they could be improved by increased

knowledge of the feeding ecologies and life histories at genus and species

levels for taxa used in MMIs. Notably, the river continuum concept

stresses longitudinal shifts in energy sources, particularly herbivory in

unimpaired, midsized, temperate rivers for freshwater macro-

invertebrates (Resh, 1995; Vannote, 1981; Vannote et al., 1980; Webber

et al., 1992), but this logic needs further extension to fish (e.g., Ibanez

et al., 2009; McGarvey and Hughes, 2008). MMI researchers have not

usually considered longitudinal changes in trophic composition when

developing metrics (McCormick and Peck, 2000; Plafkin et al., 1989;

Simon and Lyons, 1995). However, Crumby et al. (1990) and Pont et al.

(2009) used higher piscivory criteria for downstream areas or other

co-variates of stream size, whereas Oberdorff et al. (2002) used higher

omnivory and lower invertivory criteria for downstream sites.

2.4. Single-taxon metrics

The original IBI and some other MMIs have used metrics based on a

single fish species or family, rather than on all relevant species having a

particular habitat, tolerance, life-history, reproductive or trophic trait

(e.g., Chen et al., 2019b). Indeed, confamilial fish species can vary in

feeding habits (Vadas, 1990) and habitat uses (Vadas and Orth, 2000;

Vadas, 1991, 1992b), thus forming ecological guilds with species from

other fish families. Stable isotopes offer a cost-effective mechanism for

determining trophic guilds without having to identify individual food

items (de Carvalho et al., 2020), as can ecomorphological analyses to

some extent (Gatz, 1979, 1981; Vadas, 1988). Ecomorphologies are also

useful for determining habitat and behavioral guilds (Alvarenga et al.,
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2021; Chan, 2001; Chen et al., 2019b; Leit~ao et al., 2018; Silva et al.,

2021a).

As Karr (1981), Karr et al. (1999), and Vadas (1992a) emphasized,

not all lotic fish species in a family share the same sensitivities to

disturbance. This is certainly true for major fish families in tropical

(Martins et al., 2021c, 2022; Pinto et al., 2006; Terra et al., 2013b) and

temperate regions (Hughes et al., 2022; Mebane et al., 2003; Whittier and

Hughes, 1998; Whittier et al., 2007; Zaroban et al., 1999). Moreover, a

given fish species (e.g., the generally tolerant Green Sunfish, Lepomis

cyanellus) may be more sensitive to some pollutants than others (Suter,

1993). Fortunately, Karr and Chu (1999) highlighted more-generalized

metrics that have improved the ability to apply MMIs across continen-

tal (Pont et al., 2006, 2009; Stoddard et al., 2008; USEPA, 2020) and

national (Moya et al., 2011; Oberdorff et al., 2002) spatial extents.

Similarly, taxa within many macroinvertebrate taxonomic groups

vary in their sensitivities to disturbance. Within the tropical Odonata,

most Zygoptera (damselflies) tend to be more sensitive than Anisoptera

(dragonflies) (Oliveira-Junior et al., 2015, 2017; Silva et al., 2021a,

2021b), but not always (Oliveira-Junior et al., 2015). Some Chironomi-

dae (midge) genera are more sensitive than others (Deshon, 1995; Mar-

tins et al., 2021b; Yoder and Rankin, 1995). Several Trichoptera

(caddisflies), Heteroptera (true bugs), Ephemeroptera (mayflies), and

Plecoptera (stoneflies) genera differ in the directions of their responses to

anthropogenic disturbances (Vadas, 1997, 1998; Linares et al., In Press;

Martins et al., 2021c, 2022). Like fishes, specific macroinvertebrate taxa

may be more sensitive to some stressors (e.g., sedimentation and/or

heavy metals) than others (Karr and Chu, 1999; Rosenberg and Resh,

1993; Vander Laan et al., 2013). This may explain why the relative

abundance of EPT (combined Ephemeroptera, Plecoptera and Trichop-

tera) metrics are less sensitive to riparian impacts than they potentially

could be if the tolerant EPT were removed (Vadas, 1997, 1998).

Compared to single-taxon metrics, more generalized metrics have

reduced the need for ad hoc modifications that are common when new

regions are studied (Davis and Simon, 1995). Nonetheless, we recom-

mend caution if assuming all species in a family share the same habitat

use, tolerance, life-history, reproductive or trophic traits. Further work

on ecological guilds is warranted, albeit intra-guild members may not

always respond similarly to disturbances (Orth, 1980), likely a reflection

of guild differences on other environmental axes. Also, because different

biotic assemblages respond differently to environmental disturbances

(Herlihy et al., 2020; Martins et al., In Press; USEPA, 2016b, 2016c;

Vadas, 1998), it is usually best to restrict an MMI to one assemblage at a

time, to enhance ecological interpretation and diagnosis. Furthermore,

because different assemblages and metrics are more sensitive to some

anthropogenic disturbances than others, this could provide a basis for

more strategic development of metrics for diagnosing limiting factors.

2.5. Functional guilds & traits

Karr's original MMI included trophic guilds based on taxonomy.

Compared to taxonomic metrics, a broader set of functional traits such as

reproductive strategies, habitat preferences, or other life-history char-

acteristics sometimes offer greater insights into the biotic and ecological

mechanisms relating anthropogenic disturbances to assemblage re-

sponses (Alvarenga et al., 2021; Chen et al., 2019b; Leit~ao et al., 2018;

Moya et al., 2011; Silva et al., 2021a, 2021b; Vadas, 1997; Yoder et al.,

2008). However, accurate assessments of those traits also require suffi-

cient monitoring to detect taxa that may be rare or patchily distributed

because functional richness is correlated with taxa richness (Alvarenga

et al., 2021; Leit~ao et al., 2016). In addition, accurate determination of

functional traits requires accurate taxonomic identifications and suffi-

cient biological knowledge of those taxa, which calls for additional

research, especially in bio-diverse tropical regions (Ferreira et al., 2015;

Leit~ao et al., 2018; Silva et al., 2021b). But ecologists still lack such in-

formation for many freshwater faunas, especially the megadiverse trop-

ical faunas, or where taxa can only be identified to family or higher

taxonomic levels. Nonetheless, we recommend employing more metrics

based on habitat, tolerance, life-history, reproductive, and trophic traits,

and fewer based on single taxa that may not be ubiquitous (Bryce et al.,

2002; Bryce, 2006; Chen et al., 2019b; Esselman et al., 2013; McCormick

et al., 2001; Riato et al., In Press; Stevenson et al., 2013; Stoddard et al.,

2008).

2.6. Robust sampling methodology

Many MMI metrics are selected without the benefit of a robust data

set or survey design. MMIs based on fewer than 40 sites per region or

water body class, those of limited geographic scope, and those lacking

clear disturbance gradients are likely to suffer from a lack of generality,

which greatly restricts their usefulness, assessment accuracy, and preci-

sion. Likewise, metrics that are based on few study sites cannot be

rigorously evaluated statistically. Similarly, metrics that are based on

neighboring sites on the same stream or in the same lake suffer from

autocorrelation or pseudoreplication (Griffith, 1987; Hurlbert, 1984;

Hurlbert and Lombardi, 2015; Vadas, 1998; Whittier et al., 2002).

Therefore, it is important to employ enough sites selected across an entire

ecoregion or river basin to ensure wide gradients of natural conditions, as

well as with different levels of anthropogenic disturbance, to develop

reliable MMIs (Feio et al., 2014). Probability surveys are especially useful

for this purpose (Bryce, 2006; Bryce et al., 2002; Hughes et al., 2000,

2004; Klemm et al., 2003; Macedo et al., 2016; McCormick et al., 2001;

Olsen and Peck, 2008; Pont et al., 2009; Riato et al., In Press; Silva et al.,

2017; Stevenson et al., 2013; Stoddard et al., 2008; Tang et al., 2016;

Whittier et al., 2007). But if minimally disturbed reference and highly

disturbed sites are uncommon across the study area, they should be

added via stratified-random (de Carvalho et al., 2017; Silva et al., 2017)

or pollution-survey (MBI, 2015b; Yoder et al., 2008) designs.

2.7. Metric screening

Candidate metrics should be screened for their range in values,

redundancy, repeatability, natural gradients, and sensitivity (Hughes

et al., 1998; Jun et al., 2012; Klemm et al., 2003; McCormick et al., 2001;

Riato et al., In Press; Stoddard et al., 2008, Fig. 2).

2.7.1. Metric range & redundancy

Metrics based on few taxa or having similar values (low range) at

most sites will not vary sufficiently to discriminate different conditions.

Although metric redundancy may increase the MMI environmental

sensitivity via enhanced weight of evidence (Karr and Chu, 1999), total

scores will be biased if certain metrics are overrepresented via such high

redundancy (Millsap et al., 1990). Metrics that are highly correlated (r >

[0.7]) are redundant and therefore, add little new information and can

inflate MMI variance, thus reducing statistical power. In fact, many po-

tential metrics may be highly correlated to the point that avoiding

redundancy can be difficult (Logez et al., 2013). However,

non-redundant and heterogeneous metrics respond to different facets of

assemblage responses, to differing anthropogenic disturbances (Chen

et al., 2019b; Vander Laan et al., 2013), and to differing degrees of the

same disturbance (Karr et al., 1986). This commonly occurs with metrics

that are sensitive to a disturbance compared to those that are tolerant.

The former, by definition, respond earlier and negatively along the

disturbance gradient, whereas the latter respond later and positively

along that gradient direction. If that disturbance has been sufficiently

great, the biota representing the sensitive metric have already dis-

appeared. For example, neotropical Anisoptera (dragonflies, positive

response) and Zygoptera (damselflies, negative response), both in the

Odonata order, generally respond in different directions to riparian

vegetation removal (Oliveira-Junior et al., 2015, 2017; Silva et al.,

2021a, 2021b), The same is true for several other freshwater insect taxa

regarding low levels of both catchment and riparian devegetation (Brito

et al., 2020; Martins et al., 2021c). Van Sickle (2010) found that as the
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average correlation among metrics increased, the MMI precision and

capacity to distinguish differences among sites decreased.

2.7.2. Metric repeatability

Metrics with low repeatability, i.e., those having high sampling

variation between repeat visits at reference sites (noise variance, N)

relative to the variation among test sites (signal variance, S) have ques-

tionable assessment value (Kaufmann et al., 1999; 2022a). Metrics with

an S/N < 1 should be rejected in favor of those with an S/N > 2.

2.7.3. Metric natural variability

Metrics that are strongly correlated with natural gradients cannot

separate anthropogenic effects from natural effects on metric scores

(Kaufmann et al., 2022a; Oberdorff et al., 2002; Pereira et al., 2016; Pont

et al., 2006, 2009). Typical gradients include topological (water body

size, catchment area, elevation, stream slope), climatic (air temperature,

precipitation), and geological (lithology, groundwater input) variables

(e.g., Esselman et al., 2013; Pereira et al., 2016; Pont et al., 2009; Silva

et al., 2017; Stevenson et al., 2013). To correct for those influences, raw

metrics having natural-gradient regression correlations>0.1 – or random

forest correlations >10% – should have their scores substituted by their

regression-residual scores (Chen et al., 2019a; Macedo et al., 2016; Pont

et al., 2009; Silva et al., 2017; Stoddard et al., 2008; Terra et al., 2013).

For example, regression residuals in reference sites have been used to

separate stressor effects from natural variation in stream size, channel

slope, elevation, and air temperature for fish assemblage metrics (Chen

et al., 2017; de Carvalho et al., 2017; Esselman et al., 2013; Oberdorff

et al., 2002; Pont et al., 2006, 2009). Similarly, macroinvertebrate met-

rics have been calibrated for pH, conductivity, stream size, latitude,

elevation, catchment area, channel slope, temperature, and precipitation

(Chen et al., 2017, 2019a, 2019b; Fierro et al., 2018; Macedo et al., 2016;

Martins et al., 2020; Moya et al., 2011). Lotic diatom metrics have been

calibrated by latitude, longitude, elevation, temperature, catchment

soils, flow, catchment area, and channel slope (Tang et al., 2016). Such

site-scale corrections for natural variability have improved the perfor-

mance of metrics and the MMIs that they comprise. However, we

recommend caution when attempting to distinguish natural and

anthropogenic effects on metrics, because anthropogenic disturbance

covaries with stream size, soil fertility, and many other natural envi-

ronmental variables (Tang et al., 2020).

At continental and state extents, MMIs or metrics have been cali-

brated by ecoregions (Ohio EPA, 1988; Stoddard et al., 2008; Yoder and

Rankin, 1995) and assemblage typologies (Schmutz et al., 2007; Tang

et al., 2016). But within large heterogeneous ecoregions or river basins,

meaningful differences exist for macroinvertebrate (Agra et al., 2019;

Hawkins, 2006; Hawkins et al., 2010; Martins et al., 2018) and diatom

(Tang et al., 2016; Theroux et al., 2020) metrics, so site-specific metric

modeling is usually warranted.

Importantly, the effects of water-quality and physical-habitat degra-

dation may be confounded by the natural responses of biotic assemblages

to both natural (Soria et al., 2020; Vadas et al., 2016) and anthropogenic

flow intermittence (Colvin et al., 2019; Falke et al., 2011; Riato et al. In

Press; Vadas, 2000). For example, Crabot et al. (2021) showed that

current French macroinvertebrate-based bioindicators were unable to

detect organic contamination when annual-flow intermittence occurred

30–60% of the time. Munne et al. (2021) demonstrated that current

MMIs could not be applied for much of the year in non-perennial Spanish

rivers. Over half of the world's river network is prone to flow intermit-

tence (Messager et al., 2021), and such episodicity is likely to increase

because of changes in global climate and land and water uses (Colvin

et al., 2019; Falke et al., 2011; Vadas, 2000; Vadas et al., 2016). There-

fore, alternatives are needed to integrate non-perennial rivers into cur-

rent biomonitoring programs (Crabot et al., 2021).

Also, proximity to mainstem rivers (Davis and Simon, 1995; Garman

et al., 1982; Hitt and Angermeier, 2008; Osborne and Wiley, 1992;

Osborne et al., 1992; Whiteside and McNatt, 1972), and lentic ecosys-

tems and irrigation canals (Alofs, 2019; Courtney, 1995, 1997; Hossain

et al., 2018; Vadas, 1998) may affect fish species composition and rich-

ness through entirely natural dispersion processes that may not neces-

sarily indicate site degradation issues directly.

2.7.4. Metric sensitivity

Lastly, metrics should clearly discriminate between reference and

disturbed sites. This is often determined via box plots that display no or

little overlap between the quartiles of reference and disturbed sites (Pont

et al., 2009; Stoddard et al., 2008). The preceding metric screening

process markedly improves the capacity of MMIs to reliably assess

anthropogenetic disturbances by reducing the influences of natural

environmental gradients and sampling variability. Notably, future MMI

applications could benefit from examining divergences among metric

sensitivities to better diagnose problems, rather than simply focusing on

total MMI scores.

2.8. Metric scoring & quality classes

Although Karr (1981) and Karr et al. (1986) scored metrics as 1

(poor), 3 (fair), or 5 (good), subsequent MMI metrics have been scored

continuously from 0 to 1 or 0–10 (Ganasan and Hughes, 1998; Magee

Fig. 2. Suggested MMI metric screening process (adapted from Stoddard et al., 2008 and Whittier et al., 2007).
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et al., 2019; Mebane et al., 2003; Minns et al., 1994; Stoddard et al.,

2008; Tang et al., 2016), similar to habitat-suitability metrics (Vadas and

Orth, 2001). Stepped (1, 3, or 5) scoring increases MMI variability and

widens confidence intervals (Blocksom, 2003) because it scores metrics

the same at the bottom or top of the step range (Stoddard et al., 2008).

Continuous metric scoring eliminates step functions in metric scoring as

well as an unnecessary step in metric-condition classification that prop-

agates error (Reash, 1995), leaving site condition classification to the

final MMI score itself. However, European multimetric indices use five

quality classes, but often the disturbance gradient is not wide enough to

reliably define class boundaries (Segurado et al., 2014). Similarly, only

three of potentially six quality classes were classified in an assessment of

Rio Grande sites for both fish and macroinvertebrate assemblages

(Hughes et al., 2022). This may be why the USEPA uses only three classes

in its national reports (USEPA, 2016a, 2016b, 2016c, 2020).

2.9. Temporal variability

As Karr (1981) and Karr et al. (1986) warned, data collected from the

same sites during different seasons should be used with caution when

making assessments of anthropogenic impacts, because of substantial

natural variation among seasons in stream flows, water quality, and bi-

otic phenologies and life-histories (Callisto et al., 2021; Chen et al., 2014;

Fierro et al., 2021; Vadas, 1992a). We strongly recommend sampling

when flows are most stable, habitat types are most distinct, access is

easiest, and conditions are safest for field crews (usually the dry,

low-flow season) for permanent waters (Callisto et al., 2021; Eriksen

et al., 2021; Fierro et al., 2021; Hughes and Peck, 2008; Vadas and Orth,

2000; Yoder and Smith, 1999). Wet-season sampling is necessary for

non-perennial streams and rivers (Colvin et al., 2009; Dieterich and

Anderson, 2000; Hartman and Brown, 1988), although disconnected

pools occurring in the dry season (Faustino and Terra, 2020) or on the

floodplain (Hartman and Brown, 1988; Vadas, 1992b) must also be

considered. Nonetheless, it is useful to understand how varying flows

affect metric scoring, as shown by Fierro et al. (2021). Longer-term

weather fluctuations associated with ocean conditions (i.e., the El

Ni~no-Southern Oscillation, Indian Ocean Dipole, and Pacific Decadal

Oscillation) can also alter freshwater conditions, especially via the

abundances of anadromous species (Storch et al., 2022). Thus, both

seasonal and annual weather conditions must be acknowledged as nat-

ural factors altering biological performances.

2.10. Sampling variability

Karr (1981) and Karr et al. (1986) also warned about comparing data

collected with different sampling methods. Different site-scale sampling

designs, especially focusing on different habitat types, will naturally yield

divergent numbers of individuals and taxa (Gerth and Herlihy, 2006;

LaVigne et al., 2008; Li et al., 2014; Ligeiro et al., 2020; Mercado-Silva

and Escandon-Sandoval, 2008; Vadas and Orth, 1993). The same is true

when comparing data collected with different sampling gear (Callisto

et al., 2021; Dunn and Paukert, 2020; Robinson et al., 2019; Vadas,

1992a; Yoder and Smith, 1999). Europe-wide intercalibration of MMIs

was implemented in the last decade to ensure comparability of methods

and results (Poikane et al., 2014). Therefore, MMI development and

testing, as well as subsequent monitoring programs, should use stan-

dardized sampling methods that are cost effective and easily employed

(Bonar et al., 2009; Hughes and Peck, 2008; Pont et al., 2006; Vadas and

Orth, 1993).

2.11. MMI validation

MMI development without validation is an inappropriate practice.

This problem is best resolved by applying the developed MMI to an in-

dependent dataset (Riato et al., In Press; Vadas and Orth, 2001; Van

Sickle, 2010). The most common approach for doing so is randomly

selecting separate sets of sites for MMI development from those used for

validation, and then assessing the performance of the new MMI on the

independent sites (de Carvalho et al., 2017; Klemm et al., 2003; Merca-

do-Silva et al., 2002; Oliveira et al., 2011; Pereira et al., 2016). Alter-

natively, MMI researchers have validated MMIs on data from other river

basins (Mebane et al., 2003; Martins et al., 2020, 2021; Moya et al.,

2011). Such hypothesis testing of model transferability (Martins et al.,

2020, 2021; Vadas and Orth, 2001) should improve our understanding of

ecological mechanisms, and thus the predictive science and efficacy of

environmental remediation (Suter, 1993; Vadas, 1994).

3. Caveats

Despite our plea for developing more rigorous and spatially extensive

(national, continental, large regional) MMIs, we realize that individual

researchers and less developed nations commonly lack the resources to

create MMIs following all our recommendations. In many cases, there is

deliberate political opposition towards rigorous bioassessment programs,

apparently because they threaten entrenched political and economic

interests (Hughes, 2014; Hughes et al., 2021b; Zhang et al., 2021).

Furthermore, high degrees of endemism and biodiversity together with

limited taxonomic functional knowledge and poorly developed institu-

tional infrastructure may hinder creating rigorous MMIs, especially in the

tropics (Feio et al., 2021). Unlike the USA, the European Union, South

Africa, and South Korea (where a Clean Water Act, Water Framework

Directive, National Water Act, or National Aquatic Ecological Health

Monitoring Program have been established), there are no legal, govern-

mental mandates or funding for implementing continental- or

national-extent biological assessments across most political jurisdictions.

Finally, the very human tendencies to prefer one's own samplingmethods

over others, and to avoid sharing data, limit aggregating data sets

collected via standard methods. How might some of these barriers be

minimized?

We believe that those caveats can be addressed by common guidance,

quality control, data monitoring, and close collaboration. Case studies

from Oregon, Brazil, and South Africa provide useful examples. Rather

than attempt to develop MMIs for the entire nation, South African gov-

ernment scientists have focused on applying fish and macroinvertebrate

MMIs in individual river basins (Kleynhans, 1999, 2008; Roux et al.,

1999; Thirion, 2008). Basin-focused MMIs were also developed for fish

assemblages in the nearby Okavango River, Namibia (Hay et al., 1996;

Hocutt et al., 1994). In Brazil, a consortium of collaborating scientists

from four universities funded by a hydropower company developed

MMIs after sampling 195 wadeable stream sites in five large hydrologic

units in the Cerrado biome of Minas Gerais. From that database, they

developed both fish and macroinvertebrate MMIs (de Carvalho et al.,

2017; Macedo et al., 2016; Silva et al., 2017) and conducted probability

assessments of the major freshwater stressors in the biome (Martins et al.,

2021a; Silva et al., 2018). In Oregon's Willamette basin, data from a

watershed council, multiple university researchers, two city govern-

ments, and state and federal agencies (total of 689 sites) were shared to

determine the biological condition and key stressors and pressures of

both wadeable streams and boatable rivers (Mulvey et al., 2009). That

assessment was facilitated by the widespread use of standard sampling

methods, a probability survey design, and fish and macroinvertebrate

MMIs. The current trend by many scientific journals and funding

agencies to publish data online provides additional hope.

We are not arguing that MMIs are necessarily superior to other sta-

tistical approaches or analytical methods, but we quantitatively

comparedMMI results with alternatives where both have been conducted

from the same data. Ganasan and Hughes (1998) assessed fish assem-

blage condition at 13 sites sampled in the Khan and Kshipra Rivers, India,

through use of both an MMI and Bray-Curtis Similarity Analysis. They

found that axis-2 of the similarity scores produced anomalous results, but

axis-1 separated the three most-disturbed sites from the five

least-disturbed sites. However, their MMI indicated that there were six
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impaired sites, three intermediate sites, and only three sites in acceptable

condition (i.e., a finer, more-powerful partitioning of site condition).

Hughes and Gammon (1987) sampled fish assemblages from 26 sys-

tematically selected sites in the Willamette River, Oregon (USA) and

examined the data patterns through use of an MMI and Detrended Cor-

respondence Analysis (DCA). The DCA separated the sites into upper

river (7 sites), middle river (9 sites), Newberg Pool (5 sites), and Portland

Metro (5 sites) reaches (i.e., a longitudinal delineation). On the other

hand, their MMI detected seven sites with point-source impacts that the

DCA missed. Hawkins (2006) compared data sets from Ohio and the

Mid-Atlantic Highlands (USA) and determined that regional assessments

of biological condition were similar for those based onMMIs versus those

based on O/E taxa richness indices. However, the O/E indicated greater

numbers of sites in non-reference condition, suggesting greater sensi-

tivity to disturbance. The USEPA sampled macroinvertebrate assem-

blages from 1,392 randomly selected wadeable stream sites across the

conterminous USA and analyzed the data using both an MMI (Stoddard

et al., 2008) and an O/E index (Hawkins et al., 2000). The MMI results

indicated that 28% of the stream length was in good condition and 41%

was in poor condition (Paulsen et al., 2008). Conversely, the O/E index

indicated that 52% of the stream length experienced <20% taxa loss

(good condition) and 10% of the stream length experienced >50% taxa

loss (poor condition; Paulsen et al., 2008), i.e., the MMI was more sen-

sitive than the O/E. Based on simulations of data from 394 stream sites in

four western USA states (Idaho, Montana, Oregon, Washington), Haw-

kins et al. (2010) determined that O/E indices and MMIs had similar

precision, but O/E had slightly greater sensitivity. Vander Laan et al.

(2013) applied a macroinvertebrate O/E and an MMI to 401 Nevada

(USA) sites and found that the O/E index was more sensitive than the

MMI to increased electrical conductivity. However, based on 379 test

sites, their MMI was more precise, sensitive, and responsive to overall

degradation than their O/E index (Vander Laan and Hawkins, 2014).

Terra et al. (2015) used Redundancy Analysis (RDA) for assessing the

effects of environmental variables on fish taxonomic and functional

species at 46 randomly selected Atlantic Forest sites in Brazil. They found

that four of ten predictor variables were natural (altitude, % bedrock, %

boulder, % root cover), but did not assess assemblage condition or

causation. Using an MMI, they determined which sites were

least-disturbed, intermediate, and most-disturbed by anthropogenic ac-

tivities (Terra et al., 2013b).

One might also ask, why not use diversity indices or taxa richness for

making biological assessments? Hughes and Noss (1992) and Noss

(1990) stressed the multifaceted aspects of biological diversity, incor-

porating the structural, compositional, and process aspects of life from

genes to landscapes. However, diversity is commonly assessed simply as

assemblage taxa richness or a diversity index. Neither of those indicators

relate well to the usefulness of biological integrity as a policy directive

(Angermeier and Karr, 1994; Hughes, 2019), nor to Frey's (1977) defi-

nition of biological integrity as the capacity to support an adaptive biotic

system incorporating the components and processes occurring in natural

habitats. Furthermore, total taxa richness and biological diversity may

increase with anthropogenic disturbance as native species are replaced

by invasive non-native species, and generally intolerant or sensitive

species are replaced by tolerant species (Davies and Jackson, 2006;

Hughes and Gammon, 1987; LaVigne et al., 2008; Moncayo-Estrada

et al., 2012; Stainbrook et al., 2006). Such invasive processes are key

considerations of most MMIs.

We believe that the above differences in MMI and alternative statis-

tical tools result from the latter evaluating all species equally, whereas

MMIs discriminate among sensitive, tolerant, native, and invasive non-

native taxa. Also, similarity analyses (DCA and RDA) are at least partly

driven by natural environmental conditions that are modeled out in O/E

and by more advanced MMIs and multivariate analyses (e.g., Reynoldson

et al., 1997). Indeed, multivariate clustering of aquatic taxa among

months can show notable variation associated with natural thermal

and/or flow differences (Vadas, 1991, 1992b, c). On the other hand, an

MMI detected site differences but showed no significant temporal effect

from two summer sampling events over 25 y (Pyron et al., 2008). The

capacity to separate sampling and natural variability from anthropogenic

disturbance is a critical component of useful indicators (Kaufmann et al.,

1999; In Press a).

Others might ask, why are MMIs preferable to measures of fish health

or population trends (e.g., Arciszewski and Munkittrick, 2015; Munkit-

trick and Dixon, 1989)? Certainly, if one is concerned with specific fish

species or populations, such measures are appropriate (e.g., Nehlsen

et al., 1991; Storch et al., 2022) and their results often attract consider-

able public and management support. However, indicator species con-

dition does not necessarily equate with assemblage condition or

biological diversity (Hughes and Noss, 1992; Landres et al., 1988). The

same is true of fishing quality indices versus fish assemblage MMIs

(Lomnicky et al., 2021; Oliveira et al., 2009).

4. Summary

The proliferation of freshwater MMIs may represent dissatisfaction

with existing indicators (Rosenberg and Resh, 1993), as well as enthu-

siasm regarding potentially powerful indicators of ecosystem condition

(Ruaro et al., 2020; Ticiani et al., 2018). Also, MMIs and sampling effort

have been standardized and have improved bioassessment at continental

and national spatial extents as Karr and Chu (1999) and Karr et al. (1986)

had hoped they would (Herlihy et al., 2020; Magee et al., 2019; Martins

et al., 2020; Moya et al., 2011; Oberdorff et al., 2002; Pont et al., 2006,

2009; Riato et al., In Press; Stevenson et al., 2013; Stoddard et al., 2008;

Tang et al., 2016; USEPA, 2016a, 2016b, 2016c, 2020). Nonetheless,

MMIs could benefit from increased attention to ecological mechanisms

and better metric development to further improve our understanding of

anthropogenic impacts, as well as rehabilitation effects on freshwater

ecosystems globally (Feio et al., 2021; Suter, 1993). Doing so will in-

crease our understanding of basic ecology, better separate assemblage

responses to anthropogenic disturbance versus natural gradients, quan-

titatively document the dominant anthropogenic disturbance that most

affect freshwater biota regionally, and focus our limited rehabilitation

resources more cost effectively (e.g., USEPA, 2016a, 2016b, 2016c,

2020). Although local MMIs often more accurately and precisely assess

local conditions, we as scientists and managers should continuously be

seeking scientific generalizations, including MMIs, that are widely

applicable to improve our science and our resource management. After

all, Karr (1981) based his initial IBI on stream data collected from hun-

dreds of sites located across two midwestern USA states and generated

biological metrics (without the aid of computer analyses) that remain

useful 40 y later.

Clearly, there needs to be a balance between statistical rigor and

biological wisdom, because statistical significance does not necessarily

imply biological significance if low p-values result merely from large

sample sizes (Karr and Chu, 1999; Rosenberger and Angermeier, 2003;

Ross et al., 1980; Williams, 2010). Our aim in this paper was to review

both MMI studies and basic ecology to offer better guidance for

improving future MMI applications. We must also remember that MMIs

are not ends in themselves. Rather, they (1) are means to important ends

— the more practical, accurate, and robust assessment of freshwater

condition within management frameworks — and (2) make those

frameworks and their outcomes more accurate, complete, and protective

of freshwater ecosystems.
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