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DNA metabarcoding of fungal 
diversity in air and snow 
of Livingston Island, South 
Shetland Islands, Antarctica
Luiz Henrique Rosa1*, Otávio Henrique Bezerra Pinto2, Tina Šantl‑Temkiv3, Peter Convey4, 
Micheline Carvalho‑Silva5, Carlos Augusto Rosa1 & Paulo E. A. S. Câmara5

We assessed fungal diversity present in air and freshly deposited snow samples obtained from 
Livingston Island, Antarctica, using DNA metabarcoding through high throughput sequencing (HTS). 
A total of 740  m3 of air were pumped through a 0.22 µm membrane. Snow obtained shortly after 
deposition was kept at room temperature and yielded 3.760 L of water, which was 昀ltered using 
Sterivex membranes of 0.22 µm mesh size. The total DNA present was extracted and sequenced. We 
detected 171 fungal amplicon sequence variants (ASVs), 70 from the air and 142 from the snow. They 
were dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. 
Pseudogymnoascus, Cladosporium, Mortierella and Penicillium sp. were the most dominant ASVs 
detected in the air in rank order. In snow, Cladosporium, Pseudogymnoascus, Penicillium, Meyerozyma, 
Lecidea, Malassezia, Hanseniaspora, Austroplaca, Mortierella, Rhodotorula, Penicillium, Thelebolus, 
Aspergillus, Poaceicola, Glarea and Lecanora were the dominant ASVs present. In general, the two 
fungal assemblages displayed high diversity, richness, and dominance indices, with the assemblage 
found in snow having the highest diversity indices. Of the total fungal ASVs detected, 29 were only 
present in the air sample and 101 in the snow sample, with only 41 present in both samples; however, 
when only the dominant taxa from both samples were compared none occurred only in the air and, 
among the rare portion, 26 taxa occurred in both air and snow. Application of HTS revealed the 
presence of a more diverse fungal community in the air and snow of Livingston Island in comparison 
with studies using traditional isolation methods. The assemblages were dominated by cold‑adapted 
and cosmopolitan fungal taxa, including members of the genera Pseudogymnoascus, Malassezia and 
Rhodotorula, which include some taxa reported as opportunistic. Our results support the hypothesis 
that the presence of microbiota in the airspora indicates the possibility of dispersal around Antarctica 
in the air column. However, further aeromycology studies are required to understand the dynamics of 
fungal dispersal within and beyond Antarctica.

Antarctica represents one of the most pristine regions of the planet and, despite the multiple extreme conditions 
that characterize it, harbours a considerable terrestrial biodiversity, mainly of microorganisms, that are able to 
survive and colonize its diferent environments. Due the continent9s isolation from lower latitudes by the oceanic 
Antarctic Circumpolar Current and atmospheric circulation, the lack of trophic complexity, and the vulner-
ability of its endemic biodiversity to environmental changes and anthropogenic infuences, Antarctica provides 
a unique opportunity for microbial aerobiology studies seeking to understand how airspora are transported to 
and within  Antarctica1,2. Ve extent to which Antarctic environments receive microbial propagules, potentially 
including globally cosmopolitan species from outside Antarctica, remains largely unstudied, although they have 
been detected in the air column and ager deposition, for instance in snow and  ice337. According to Archer et al.2, 
microbial communities present in ecosystems of isolated regions of Antarctica, such as the Victoria Land Dry 
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Valleys, display limited connectivity to the global microbial pool due the strong selection that occurs during 
atmospheric transport, resulting in regionally isolated airborne inputs and highly specialized soil communities, 
with fungi also displaying greater isolation from non-polar sources than bacteria. However, detailed information 
about the aerial routes by which microorganisms arrive and circulate in Antarctica is  lacking8,9.

Biological dispersal by aerial means can be an important factor shaping patterns of  biodiversity9,10. Viable 
organisms or their propagules present in the air column may be in dormant and cryptobiotic states, where they 
are metabolically inactive due the harsh dry, cold, low nutrient and high irradiance conditions. Diverse groups 
of microorganisms have been recorded in the few Antarctic aerobiological studies completed to date (reviewed 
by Pearce et al.9), including viruses, bacteria, microalgae and fungi.

Mycological studies in Antarctica have shown that much of the Antarctic fungal community is represented 
by cold tolerant (psychrophilic or psychrotolerant) species, many of which have wide and even globally cos-
mopolitan distributions, with presence in polar, temperate, and tropical  environments11. de Menezes et al.12 
suggested that the high densities of cosmopolitan fungi present in snow are consistent with them being present 
in air masses arriving at the Antarctic Peninsula from beyond Antarctica, which are then entrained in snow 
precipitation, and become concentrated in the snow. Snow and ice can provide an indirect record of the pres-
ence and deposition of fungal propagules (e.g. spores or hyphal fragments) from the air column over  time12. 
In snow samples obtained from six diferent regions of the Antarctic Peninsula, de Menezes et al.13 reported a 
rich fungal diversity assigned to 51 species in 26 genera and dominated by cold tolerant cosmopolitan fungi. 
However, in ice from continental Antarctica and the Antarctic Peninsula, Rogers et al.14 and de Menezes et al.15, 
respectively, reported much lower fungal diversity. In the present study, we assessed fungal diversity present in 
air and freshly deposited snow samples obtained from Livingston Island, Antarctica, using DNA metabarcoding 
through high-throughput sequencing (HTS).

Material and methods
Snow and air sampling. Air and snow samples were collected at Punta Polaca (62°402163 S; 60°222433 W), 
Hurd Peninsula, Livingston Island, South Shetland Islands, near to the Spanish station Juan Carlos I (Fig. 1). Two 
air samples were collected with a high fow glass impinger following Šantl-Temkiv et al.16,17. Ve chamber was 
flled with 2 L of sampling liquid  (ddH2O) and the sampler was run for 5 min, so that the liquid came in contact 
with the entire chamber, ager which 0.5 L of the sampling liquid was removed, stored as a control, and analyzed 
along with the samples. Ve control represented a feld blank to certify that the samples were not contami-
nated by external organisms. Ve resulting solution was fltered directly on the Sterivex flter units for the air, as 
described by Lever et al.18. Air was collected over c. 5 h on March 11th 2019. In addition, the two separate air 
DNA extractions were combined together in order to increase DNA yield. Two freshly deposited snow samples 
were collected on March  20th 2019 at the same site using a sterilized shovel. Both pairs of samples were separately 

Figure 1.  Location of soil sample collections. (a) Antarctic Peninsula, (b) Livingston Island and (c) Punta 
Polaca at Hurd Peninsula, where the air and snow were sampled [62°402163 S; 60°222433 W]. Photo (c) by 
T Šantl-Temkiv.
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combined in order to increase DNA yield. Snow was melted at room temperature, under strictly sterile condi-
tions, for 24 h in the laboratory at Juan Carlos I Station and then fltered using Sterivex  flters18.

DNA extraction and data analysis. Total DNA was extracted from environmental samples using the 
Qiagen Power Soil Kit (Qiagen, USA) following the manufacturer9s instructions. Extracted DNA was used as 
template for generating PCR amplicons. Ve internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA 
was used as a DNA barcode for molecular species  identifcation19,20. PCR amplicons were generated using the 
universal primers ITS3 and  ITS421 and were sequenced by high-throughput sequencing at Macrogen Inc. (South 
Korea) on an Illumina MiSeq sequencer, using the MiSeq Reagent Kit v3 (600-cycle) following the manufac-
turer9s protocol.

Raw fastq fles were fltered using BBDuk version 38.34 (BBMap4Bushnell B.4sourceforge.net/projects/
bbmap/) to remove Illumina adapters, known Illumina artifacts, and PhiX Control v3 Library. Quality read 
fltering was carried out using Sickle version 1.33-q 30-l  5022, to trim ends 32 or 52 with low Phred quality score. 
Sequences shorter than 50 bases were discarded. Vese sequences were imported to QIIME2 version 2019.10 
(https ://qiime 2.org/) for bioinformatics  analyses23. Ve qiime2-dada2 plugin is a complete pipeline that was used 
for fltering, dereplication, turning paired-end fastq fles into merged reads, and removal of  chimeras24. Taxo-
nomic assignment was carried out for the amplicon sequence variants (ASVs) using qiime2-feature-classifer25 
classify-sklearn against the UNITE fungal ITS database version 7.226 and trained with Naive Bayes classifer. A 
confdence threshold of 98.5% was used. All raw sequences have been deposited in the NCBI database under the 
codes SRR12830238, SRR12830240 and SRR12830239.

Many factors, including extraction, PCR, and primer bias, can afect the number of  reads27, and thus lead 
to misinterpretation of  abundance28. However, Giner et al.29 concluded that such biases did not afect the pro-
portionality between reads and cell abundance, implying that more reads are linked with higher  abundance29,30. 
Verefore, for comparative purposes we used the number of reads as a proxy for relative abundance.

All sequences obtained from air and snow samples were matched with sequences present in the list of the 
top 50 8most wanted9 fungi according to Nilsson et al.31. Ve sequences were merged, fltered, dereplicated, and 
clustered into > 97% identity ASVs using USEARCH version  1032. Nucleotide-Nucleotide BLAST 2.6.0 + was 
used to compare these ASVs against the top50_release_04.02.2020.fasta33, considering just subject matches with 
aligned length longer than 250 bp and > 98% identity.

Fungal diversity and distribution. To quantify species diversity, richness, and dominance, we used the 
following indices: (i) Fisher9s ³, (ii) Margalef 9s, and (iii) Simpson9s, respectively. Ve numbers of DNA reads of 
the amplicon sequence variants (ASVs) were used to quantify the fungal taxa present in the air sampled, where 
fungal ASVs with more than 1,000 reads were considered dominant and < 1,000 minor components (rare) of the 
fungal community. All of the results were obtained with 95% confdence, and bootstrap values were calculated 
from 1,000 iterations. Taxon species accumulation curves were obtained using the Mao Tao index. All diversity 
indices and species accumulation curves calculations were performed using PAST v. 1.9034. Venn diagrams were 
prepared according to Bardou et al.35 to compare the fungal assemblages present in both air and snow samples. 
Ve functional assignments of fungal ASVs at species and genera levels are shown using  FunGuild36.

Results
Fungal taxonomy. Ve number of reads in the air sample was 162,038 and that in snow 268,710. From 
these, we detected 171 fungal amplicon sequence variants (ASVs), 70 in 740  m3 of air and 142 in 3.76 L of snow 
from Livingston Island, Antarctica (Table 1; Fig. 2). Ve ASVs were dominated by the phyla Ascomycota, Basidi-
omycota and Mortierellomycota. In the air sample, ASVs identifed as Pseudogymnoascus roseus, Cladosporium 
sp., Mortierella sp. 1, Pseudogymnoascus sp. 3, Pseudogymnoascus sp. 2, Mortierella fmbricystis, Mortierella 
gamsii and Penicillium sp. were the most dominant taxa (all with > 1,000 reads), in rank order. In contrast, 27 
fungal ASVs (Cladosporium sp., Pseudogymnoascus roseus, Penicillium sp., Meyerozyma guilliermondii, Lecidea 
sp., Malassezia restricta, Pseudogymnoascus sp. 3, Hanseniaspora lachancei, Pseudogymnoascus sp. 2, Austro-
placa darbishirei, Mortierella gamsii, Malassezia globosa, Rhodotorula diobovata, Mortierella sp. 1, Ascomycota 
sp., Mortierella fmbricystis, Penicillium polonicum, Lecanorales sp., Velebolus sp., Lecidea cancriformis, Asper-
gillus sp., Poaceicola agrostina, Glarea sp., Pseudogymnoascus sp. 1, Mortierella sp. 2, Velebolus globosus and 
Lecanora physciella) were present as dominant fungi in snow. A further 177 ASVs (62 in air and 115 in snow) 
were detected less frequently (< 1,000 reads) and may represent the rare portion of the fungal assemblages. In 
addition, 78 ASVs could only be assigned to higher taxonomic levels (phylum, class, order or family). A total 
of 29,069 sequences from the air and 6,223 from the snow samples were matched with the sequences of 11 uni-
dentifed species hypotheses in the list of the top 50 most wanted  fungi31 with the alignment length longer than 
250 bp and > 98% identity (Suppl. Table 1).

Fungal diversity. Ve Mao Tao rarefaction curves of the fungal assemblages present in air and snow reached 
asymptote for both fungal assemblages (Fig.  3), indicating that the data provided a good description of the 
diversity present. In general, both fungal assemblages displayed high diversity, richness, and dominance indices 
(Table 2). Ve assemblage present in the snow was more diverse, rich, and included a wider range of dominant 
fungi when compared with that from the air sample. Of the total fungal ASVs detected, 29 were only present in 
the air sample and 101 in the snow sample, with 41 present in both samples (Fig. 4a). However, when only the 
dominant ASVs (> 1,000 reads) from both samples were compared, none occurred only in the air (Fig. 4b) and, 
among the rare portion, 26 occurred in both air and snow (Fig. 4c). In addition, the ecological functional assign-
ments of fungal ASVs in species and genera levels were showed in Suppl. Table 2 and Suppl. Table 3, respectively.

https://qiime2.org/
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Hierarchical level Fungal taxa (ASVs)*

Reference sequences

Reads by 
Samples

TotalAir Snow

Fungi Fungi sp. 39** 20,958 20,997

Ascomycota Pseudogymnoascus roseus SH1557165.08FU 61,935 0 61,935

Cladosporium sp. SH1521536.08FU 20,801 0 20,801

Pseudogymnoascus sp. SH1557215.08FU 2,035 1,5650 17,685

Meyerozyma sp. SH1516625.08FU 0 1,5735 15,735

Penicillium sp. SH1530043.08FU 431 9,385 9,816

Lecidea cancriformis SH2711223.08FU 0 6,781 6,781

Hanseniaspora sp. SH1547214.08FU 0 4,708 4,708

Austroplaca darbishirei SH1633428.08FU 0 3,165 3,165

Velebolus globosus SH1647628.08FU 271 1,614 1,885

Helotiales sp. SH1648813.08FU 1,075 404 1,479

Penicillium polonicum SH1529888.08FU 0 1,233 1,233

Pseudogymnoascus appendiculatus SH1939321.08FU 1138 0 1,138

Septoriella sp. SH1525156.08FU 0 902 902

Lecanora physciella SH1636780.08FU 0 738 738

Cyberlindnera sp. SH1648567.08FU 571 0 571

Mitrulinia sp. SH1574181.08FU 0 482 482

Cleistothelebolus nipigonensis SH1630064.08FU 0 433 433

Chalara pseudoaonis SH1522386.08FU 368 0 368

Pestalotiopsis sp. SH1562655.08FU 0 364 364

Neoascochyta paspali SH1547057.08FU 329 4 333

Paraconiothyrium africanum SH1525457.08FU 0 331 331

Debaryomyces sp. SH1516581.08FU 62 251 313

Phaeoacremonium hungaricum SH1644597.08FU 0 287 287

Lecidea sp. SH1524770.08FU 0 277 277

Colletotrichum sp. SH1636843.08FU 186 90 276

Rhizoscyphus sp. SH1543082.08FU 169 103 272

Aspergillus sp. SH1536361.08FU 0 249 249

Schwanniomyces polymorphus SH1649127.08FU 0 244 244

Septoriella hirta SH2714710.08FU 0 225 225

Ascomycota sp. SH1574206.08FU 123 82 205

Penicillium fuviserpens SH1536160.08FU 0 199 199

Saccharomyces cerevisiae SH1583301.08FU 0 193 193

Aspergillus niger SH3322875.08FU 0 183 183

Volucrispora graminea SH1605412.08FU 0 154 154

Aspergillus sydowii SH1550060.08FU 38 113 151

Penicillium steckii SH1692788.08FU 0 150 150

Leptosphaeria sclerotioides SH1624038.08FU 147 0 147

Leotiomycetes sp. SH1647738.08FU 136 0 136

Pseudallescheria sp. SH2328594.08FU 0 132 132

Buellia russa SH1551132.08FU 0 130 130

Chaetothyriales sp. SH1545109.08FU 0 129 129

Penicillium brasilianum SH1692798.08FU 0 123 123

Phaeosphaeria dennisiana SH1530704.08FU 120 0 120

Pseudallescheria ellipsoidea SH2328455.08FU 0 112 112

Lodderomyces elongisporus SH1507873.08FU 103 0 103

Candida tropicalis SH1542296.08FU 101 0 101

Yamadazyma sp. SH1539910.08FU 101 0 101

Trichoderma sp. SH1542292.08FU 0 91 91

Didymellaceae sp. SH1547074.08FU 82 0 82

Penicillium paxilli SH1530009.08FU 8 73 81

Parmeliaceae sp. SH1541255.08FU 71 0 71

Paraphoma fmeti SH1616190.08FU 0 70 70

Colletotrichum annellatum SH2219599.08FU 0 67 67

Polysporina subfuscescens SH1596449.08FU 0 67 67

Continued
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Hierarchical level Fungal taxa (ASVs)*

Reference sequences

Reads by 
Samples

TotalAir Snow

Fungi Fungi sp. 39** 20,958 20,997

Pseudeurotium sp. SH3332798.08FU 67 0 67

Dermateaceae sp. SH1522957.08FU 66 0 66

Penicillium astrolabium SH1530010.08FU 0 66 66

Cladosporium halotolerans SH1525346.08FU 37 27 64

Diaporthales sp. SH1657193.08FU 64 0 64

Lecanoromycetes sp. SH1517968.08FU 0 60 60

Lecanora contractula SH1527996.08FU 0 55 55

Ramalinaceae sp. SH1522446.08FU 0 51 51

Cystodendron sp. SH1524864.08FU 50 0 50

Penicillium cairnsense SH2190109.08FU 0 50 50

Cladonia rei SH3326345.08FU 49 0 49

Neodevriesia capensis SH3331962.08FU 0 49 49

Neopestalotiopsis sp. SH3324784.08FU 49 0 49

Penicillium sumatraense SH1585145.08FU 9 37 46

Mycosphaerella tassiana SH1607937.08FU 0 44 44

Pseudeurotiaceae sp. SH1556184.08FU 44 0 44

Fusarium solani SH2721166.08FU 43 0 43

Placopsis contortuplicata SH1521544.08FU 0 40 40

Schwanniomyces sp. SH2154634.08FU 38 0 38

Bacidina arnoldiana SH3321741.08FU 0 28 28

Penicillium citrinum SH1539276.08FU 15 13 28

Zymoseptoria verkleyi SH1544001.08FU 21 0 21

Sarocladium sp. SH1542060.08FU 17 0 17

Aspergillus penicillioides SH1537266.08FU 16 0 16

Pichia kluyveri SH1527730.08FU 16 0 16

Botryosphaeriaceae sp. SH3317647.08FU 0 6 6

Fusarium asiaticum SH2456121.08FU 0 4 4

Usnea sp. SH1550545.08FU 0 3 3

Basidiomycota Malassezia restricta SH2734004.08FU 401 4,740 5,141

Malassezia globosa SH1565779.08FU 165 2,946 3,111

Rhodotorula diobovata SH1585138.08FU 0 3,060 3,060

Agaricomycetes sp. SH1575746.08FU 0 2,581 2,581

Malassezia sp. SH1546915.08FU 22 1,548 1,570

Marasmius sp. SH1514868.08FU 912 0 912

Rhodotorula mucilaginosa SH1558606.08FU 750 120 870

Leucosporidiella creatinivora SH1651377.08FU 404 0 404

Heterochaete shearii SH1561152.08FU 75 259 334

Malasseziales sp. SH1547455.08FU 46 266 312

Calyptella capula SH1635872.08FU 0 170 170

Pluteus ephebeus SH2724840.08FU 158 0 158

Malassezia equina SH2723257.08FU 0 95 95

Vishniacozyma victoriae SH1572254.08FU 94 0 94

Phanerochaete sordida SH1573517.08FU 83 0 83

Hyphodontia microspora SH1651385.08FU 82 0 82

Peniophora laxitexta SH1646415.08FU 56 0 56

Gymnopus sp. SH1560298.08FU 50 0 50

Vishniacozyma tephrensis SH1691243.08FU 48 0 48

Microbotryomycetes sp. SH2750674.08FU 40 0 40

Vanrija humicola SH1514178.08FU 30 0 30

Basidiomycota sp. SH1514435.08FU 0 19 19

Polyporales sp. SH1651381.08FU 15 0 15

Malassezia sympodialis SH3313592.08FU 0 12 12

Mortierellomycota Mortierella sp. SH1557435.08FU 5,878 744 6,622

Mortierella fmbricystis SH2452854.08FU 2,260 0 2,260

Continued
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Hierarchical level Fungal taxa (ASVs)*

Reference sequences

Reads by 
Samples

TotalAir Snow

Fungi Fungi sp. 39** 20,958 20,997

Mortierella gamsii SH1556972.08FU 1,416 155 1,571

Mortierella parvispora SH1629873.08FU 396 0 396

Mortierella alpina SH1503809.08FU 158 0 158

Mortierella elongatula SH1574597.08FU 0 74 74

Mortierella turfcola SH3338068.08FU 0 56 56

Mucoromycota Densospora sp. SH3319965.08FU 0 145 145

Table 1.  Numbers of sequence reads of fungal amplicon sequence variants (ASVs) detected in air and snow 
samples from Livingston Island, South Shetlands, Antarctica. *ASVs = amplicon sequence variants; **number 
of the reads.

Figure 2.  Krona chart of (a) fungal assemblages detected in the air and (b) in snow from Livingston Island, 
South Shetland Islands, Antarctica.

Figure 3.  Rarefaction curves for samples from fungal assemblages present in the (a) air and (b) snow on 
Livingston Island, South Shetlands, Antarctica. Blue lines represent confdence limits inferred using bootstrap 
values calculated from 1,000 iterations using PAST, version 1.9034.
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Discussion
Fungal taxonomy and diversity. Despite an increase in mycological studies, fungal diversity in Ant-
arctica remains poorly  known11. According to Bridge and  Spooner37, around 1,000 fungal species have been 
described from Antarctica, identifed using a range of approaches including traditional methods for cultivable 
fungi such as macro- and/or micromorphology of colonies and fruiting bodies as well as DNA sequencing of 
mycelia of cultivable fungi. Most airborne mycological studies in Antarctica have relied on traditional morpho-
logical methods.  Marshall4 monitored airborne fungal spores over 13.6 months at three sites on Signy Island 
(South Orkney Islands) in the maritime Antarctic, reporting that Epicoccum spp. and Cladosporium spp. domi-
nated the diversity present. Duncan et al.38 sampled air inside the historic wooden huts on Ross Island, fnding 
Cladosporium cladosporioides, Pseudeurotium desertorum, Pseudogymnoascus sp. and Antarctomyces psychro-
trophicus as dominant viable fungal propagules and Cadophora sp. and Vebolus sp. as minor components of 
the outdoor airborne fungal assemblage. Archer et al.2 compared microbial diversity in near-ground and high-
altitude air above the Victoria Land Dry Valleys as well as that of underlying soil microbial communities, fnding 
basidiomycete yeasts to be dominant in the air and unclassifed fungi to be common in soils. However, the more 
recent fungal inventories using metabarcoding approaches have demonstrated that fungal diversity in Antarctica 
is greater than previously  recognised39341.

As air and snow are typically ultra-oligotrophic microhabitats, few viable fungal taxa are expected to be 
present, as reported by de Menezes et al.12 who, using cultivation techniques, reported only 14 fungal taxa in 
snow samples from several diferent Antarctic islands. However, despite analysing only a small a small absolute 
sample size of air and snow collected in the Livingston Island, use of the HTS approach in the current study 
revealed the presence of much greater fungal diversity in both air and snow, many of which display mechanisms 
that render them well-adapted to survive atmospheric transport, such as the production of resistant spores and 
UV protective  compounds42,43.

Ve dominant taxa detected in the air included representatives of Pseudogymnoascus, Cladosporium, Mor-
tierella and Penicillium. However, even though recently deposited snow would be expected to contain microbial 
airborne particles entrained from the air column as the snow fell, fungal diversity in the snow sampled was very 
diferent to that in the air over the same location. In snow sample, the dominant taxa found included repre-
sentatives of Cladosporium, Pseudogymnoascus, Penicillium, Meyerozyma, Lecidea, Malassezia, Hanseniaspora, 
Austroplaca, Mortierella, Rhodotorula, Penicillium, Velebolus, Aspergillus, Poaceicola, Glarea and Lecanora. Ve 

Table 2.  Sample data and ecological indices of the fungal DNA recovered from air and snow samples from 
Livingston Island, South Shetlands, Antarctica.

Ecological indices

Sample

Air Snow Total

Number of reads 162,038 268,710 430,748

Number of taxa 70 142 171

Fisher ³ 6.96 14.44 16.85

Margalef 5.75 11.3 13

Simpson 0.6 0.92 0.85

Figure 4.  (a) Venn diagram showing the (a) total, (b) dominant (those with > 1,000 reads) and (c) rare fungal 
taxa distribution detected in air and snow of Livingston Island, South Shetlands, Antarctica.
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diversity present in both the air and snow samples also included dominant taxa that could only be assigned to 
higher taxonomic levels such as Fungal sp., Ascomycota sp., Basidiomycota sp., Agaricales sp., Chaetothyriales 
sp., Helotiales sp., Lecanorales sp. and Polyporales sp. Vese may represent currently undescribed or otherwise 
unsequenced species, further supporting the assertion that much of the true fungal diversity present in Antarctica 
is currently unknown.

Pseudogymnoascus were detected as dominant fungi in both air and snow samples. Pseudogymnoascus (previ-
ously known as Geomyces) is a genus ogen detected in cold environments including those of polar, alpine, and 
temperate  regions11,44347. In Antarctica, it has been reported from  soils44,48350, associated with  plants51354 and 
 macroalgae55, in freshwater  lakes56, and associated with  lichens57. Cladosporium and Penicillium also represent 
common airborne fungi reported globally, including Antarctica. Cladosporium is a dematiaceous fungal group 
with global  distribution58. In Antarctic microhabitats, Cladosporium has mainly been detected in association with 
plants and  soil11. Penicillium is a ubiquitous genus, again detected in multiple substrates in Antarctica includ-
ing  soils50,59,60,  permafrost61,62 and associated with  macroalgae63. Ve abundant presence of Pseudogymnoascus, 
Cladosporium, and Penicillium both in air and snow sampled indicated that these fungi may circulate at least 
around the Antarctic Peninsula.

Ve genus Mortierella includes about 85 species, which occur mainly in  soils64. Mortierella species are found 
worldwide, particularly in temperate and polar regions. Representatives of the genus are abundant in Antarctica 
and reported in association with  plants51,52,  macroalgae63,  lichens57,  soils65,  freshwater56, and  permafrost62. Some 
species of Mortierella are known as snow moulds and have the capability to growth and produce spores at 0°C66. 
Vey occur abundantly in the interstitial water in Antarctic snow where snow melting occurs in summer, for 
instance in association with snow algal communities.

Ve genus Malassezia includes 17 species of basidiomycetous pigmented black yeast species generally present 
in the skin and mucosa microbiome of humans and other warm-blooded  animals67. According to Prohic et al.68, 
several Malassezia species found on human and animal skin are commensals, but they can also be associated with 
Pityriasis versicolor, Malassezia folliculitis, seborrheic dermatitis/dandruf, atopic dermatitis, and psoriasis. Ve 
detection of Malassezia in Antarctica is unusual. Rosa et al.54 detected diferent Malassezia taxa in soil samples 
from undisturbed and disturbed (by human activity) sites on Deception Island (South Shetland Islands) using 
HTS metabarcoding techniques.

Ve genus Meyerozyma includes species that are typically widely distributed or  cosmopolitan69. Species of 
Meyerozyma have previously been isolated from aquatic environments in  Antarctica69,70 and associated with 
 macroalgae63. Ve genus Hanseniaspora (anamorph Kloeckera) includes ascomycete yeast species commonly asso-
ciated with alcoholic fermentation, but is also recorded from soil, plants, fruit-eating insects, birds, and  seafood71. 
Some Hanseniaspora species have been reported as unusual opportunistic superfcial mycosis in  humans72375.

Ve genus Rhodotorula includes cosmopolitan pigmented yeast species and is ogen dominant in extreme 
 environments76, including those of  Antarctica63,70. Our study represents the frst report of high abundance of R. 
muscilagionsa in Antarctic snow samples, although de Menezes et al.13 reported the species among the dominant 
fungi detected in snow samples from several Antarctic islands. Ve genus Velebolus is distributed globally and 
representatives occur in diverse  habitats77. Species of Velebolus have been reported in Arctic and Antarctic 
 environments78,79, as being abundant in lakes, and in association with birds (skuas)80, in  freshwater56,81 and in 
 ice15. Finally, from the air and snow sampled in Livingston Island, Antarctica, we detected 11 unidentifed species 
hypotheses in the list of the top 50 most wanted  fungi31, suggesting the both habitats may shelter rare species 
that merit further taxonomic attention.

Conclusions
We used DNA metabarcoding to catalogue the fungi present in air and snow samples from Livingston Island, 
South Shetland Islands. Vis revealed a diverse fungal community comprising taxa from the phyla Ascomycota, 
Basidiomycota, Mortierellomycota and Mucoromycota. Ve assemblages were dominated by cold-adapted and 
cosmopolitan (psychrophilic) taxa, including members of the genera Pseudogymnoascus, Malassezia and Rho-
dotorula, which include taxa reported as opportunistic fungi. Our results confrm the presence of fungi in the 
airspora, supporting the possibility of dispersal over diferent geographical scales around Antarctica in the air 
column. Given that many of the taxa identifed in this study are known from Antarctic fungal communities, a 
local source for those present in the air column is plausible. Ve large proportion of unassigned taxa highlight 
the poor level of baseline knowledge of Antarctic fungal diversity, and further aeromicrobiology and diversity 
studies are required to understand the dynamics of fungal dispersal within and beyond Antarctica. However, as 
metabarcoding detects environmental DNA, the technique can also detect DNA from dead fungi or otherwise 
non-viable material. Further studies will be necessary to develop strategies to isolate these fungi into culture.
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