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Resumo

Neste trabalho, dois problemas na área de navegação de robôs são abordados: guiagem e

controle. Para resolver o problema de guiagem, propõe-se um campo vetorial artificial, que

pode ser aplicado em várias plataformas robóticas. O problema de controle é abordado

no contexto de um modelo de quadrirrotor, que precisa seguir o campo vetorial proposto.

Após introdução e revisão da literatura, apresenta-se a metodologia para calcular

um campo vetorial artificial variante no tempo em n dimensões, que admite uma determi-

nada curva como ciclo limite estável. A função de distância Euclidiana constrói o campo,

facilmente calculado a partir de uma representação paramétrica da curva. A norma da

componente de feedforward que compensa a dependência temporal é limitada pela ve-

locidade máxima da curva, permitindo uma normalização do campo vetorial variante no

tempo sem afetar a convergência. Provas de estabilidade do campo normalizado variante

no tempo são apresentadas e a existência de ultimate bounds é demonstrada para o caso de

distúrbios limitados. Duas modificações no campo vetorial são apresentadas: a primeira

para curvas com auto interseção e a segunda para desvio de obstáculos.

Com o campo vetorial definido, apresenta-se uma estratégia de controle para um

quadrirrotor seguir uma curva variante no tempo usando o campo vetorial proposto.

Primeiramente, leis de controle são desenvolvidas para impor o comportamento das cur-

vas integrais do campo vetorial ao modelo do integrador de segunda ordem. Depois, leis

de controle impõem a dinâmica do integrador de segunda ordem controlado a um modelo

de quadrirrotor, que assume o impulso total e as velocidades angulares como comandos

de entrada. A convergência assintótica do sistema completo é provada ao mostrar que as

camadas individuais são estáveis no sentido entrada-estado. Uma análise da influência de

distúrbios limitados nas entradas de controle avalia a robustez do controlador, mostrando

que distúrbios limitados causam desvios limitados da curva alvo. Várias simulações ilus-

tram as metodologias propostas para guiagem e controle. Experimentos com diferentes

quadrirrotores e um robô terrestre em ambientes externos não estruturados mostram que

o arcabouço proposto é adequado para aplicações no mundo real. Uma simulação com

um manipulador de 6 graus de liberdade também exemplifica o uso do campo vetorial em

dimensões maiores que 3.

Palavras-chave: Campo Vetorial Artificial; Controle de Quadrirrotor; Guiagem e Navegação;

Estabilidade e Robustez.



Abstract

In this work we consider two problems in robot navigation: guidance and control. To

solve the guidance problem we propose an artificial vector field, applicable to various

robot platforms. The control problem is addressed by using a quadcopter model that

follows the proposed vector field.

After a brief introduction and literature review, we present a methodology to com-

pute an artificial time-varying vector field in n dimensions with a given curve as its stable

limit cycle. The Euclidean distance function constructs the field, easily computed from

a parametric curve representation. The time feedforward term’s norm is limited by the

curve’s maximum velocity, allowing normalization of the vector field without negatively

affecting convergence. We provide stability proofs for the normalized time-varying vector

field and demonstrate ultimate bounds with bounded disturbances. We also present two

modifications: one for self-intersecting curves and another for obstacle avoidance.

Given the vector field, we propose a control strategy for a quadcopter to follow

a time-varying curve. First, control laws are developed to impose the behavior induced

by the integral curves of the vector field to a second order integrator model. After that,

control laws are developed to impose the dynamics of the controlled second order inte-

grator to a quadcopter model, which assumes the total thrust and angular rates as input

commands. Asymptotic convergence of the system is proved by showing input-to-state

stability of individual layers. We analyze the influence of norm-bounded disturbances on

control inputs to evaluate robustness, showing limited deviations from the target curve.

Simulations illustrate the guidance and control methodologies, while experiments with dif-

ferent quadcopters and a ground robot in outdoor environments demonstrate the frame-

works’ real-world applicability. A simulation with a six-degree-of-freedom manipulator

exemplifies the vector field’s use in higher dimensions.

Keywords: Artificial Vector Field; Quadcopter Control; Guidance and Navigation; Sta-

bility and Robustness.
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Chapter 1

Introduction

1.1 Robot navigation

The robot navigation problem is a complex and interdisciplinary challenge in the

area of robotics. Solutions to this problem aim to make an autonomous robot move safely

in a given environment. In general, this complex task can be broken into several different

sub-problems, for instance: perception, localization, mapping, planning, guidance, and

control. Perception consists of the extraction of exteroceptive data of the environment1.

Localization involves the use of this information and additional proprioceptive sensor data

to estimate the robot states. Mapping focuses on the obtainment of a representation of

the environment. Planning consists of the definition of a target place, path or trajectory

the robot should pursue. The guidance stage computes a reference velocity, or a motion

direction, to make the robot achieve its planned objective. Finally, in the control stage,

signals for the robot’s actuators are computed so that it moves according to the guiding

reference.

Many times, some strategies tackle more than one sub-problem without making

an exact distinction between the parts. For instance, it is common to observe percep-

tion together with localization, planning with guidance, and localization with mapping,

the so-called Simultaneous Localization and Mapping (SLAM). The guidance and control

problems are also addressed together in many works. Some authors do not distinguish

these tasks, a common approach in trajectory tracking, for example. In fact, one may

consider that guidance and control are simply different layers of the same task. From

this point of view, the guidance is a higher-level controller. For instance, if we consider

the simple integrator model for a robot, the guidance is equivalent to control. The dis-

tinction between these sub-problems is usually made according to the utility it has in the

description of the adopted approach.

In this work, we address two of the mentioned sub-problems in robot navigation:

guidance and control. The guidance solution can be used in the navigation of seveval

1http://www.cs.cmu.edu/~rasc/Download/AMRobots4.pdf
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robotic platforms. The control solution is focused on quadcopter aerial vehicles and is

integrated with the proposed guidance strategy. Our main contribution is a novel vector

field based guidance strategy to allow path following. In addition, for the specific case

of quadcopters, we also propose a nonlinear controller to follow the guidance vector field.

The proposed nonlinear controller, designed for a quadcopter robot, controls the vehicle

to follow the guidance vector field. Here we will adopt the term guidance for the task of

defining a reference velocity to the robot. It can be seen as a high-level control. On the

other hand, the term control will be mostly used for the computation of control signals

that, given a specific robot architecture, make the vehicle follow the guidance velocity.

1.1.1 Guidance vector field

The guidance problem in this work is solved with the use of artificial vector fields.

Let x ∈ R
n be the robot state vector and Φ(x, t) : Rn × R

+ → R
n be a vector field that

returns a velocity reference for the robot. The field is designed so that it leads the robot

to converge to and follow a predefined path, possibly time-varying. In the case of a static

closed path, and a robot with single integrator dynamics, we have that C corresponds to

the limit cycle of the dynamical system ẋ = Φ(x).

Strategies based on artificial vector fields have been widely used to guide the high-

level control of several types of robots. For instance, one of the most frequent uses of

such a strategy is associated with the guidance of fixed-wing UAVs (Unmanned Aerial

Vehicles) [56, 64, 86]. Such approaches have already been discussed in scientific books,

such as [7]. Vector fields are also used to guide quadcopters, [87, 63, 66]. Other types

of robots that can be controlled with vector fields include wheeled robots [34, 40], AUVs

(Autonomous Underwater Vehicles) [1], manipulators [46], and even humanoid-like robots

[29, 6, 47].

In [27], a strategy to generate time-varying vector fields for converging to and

circulating a curve in n dimensions is proposed. There, the curve to which the integral

lines of the vector field converge is defined by the intersection of n–1 zero level sets given by

αi(x, t) = 0, i = 1, ..., n – 1, in which αi : R
n×R

+ → R. This approach has the drawback

of requiring the design of these scalar functions αi that implicitly define the target curve.

For simple curves, such as circles and ellipses, it is easy to obtain these functions, however,

for general curves it is not the case. Methodologies for generating these functions were

presented, but the obtained αi functions are prone to induce spurious undesirable stable

equilibrium points in the vector field, a problem that is often a source of criticism when

[27] is referred. Now, we propose a simpler and improved methodology to solve the same
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problem. Thus, our contribution may be considered as an improvement of [27].

Chapter 3 of this work is dedicated to the description of this simpler methodology

that can be easily applied given a parametric representation of the curve, instead of using

a representation with an intersection of zero level surfaces. The main feature of this field

is that it is computed by using the Euclidean distance between the robot and the curve

as an error measurement function. The use of a parametric representation of the curve

and the consideration of the distance function make our method simple to implement

and allow for easy geometric interpretation of our results. Another achieved property

is that the proposed field does not have spurious stable equilibrium points, which is a

problem that often appears in other vector field methodologies. Nonetheless, as we will

discuss in Chapter 3, there might be singular points in the field. We also present a novel

normalization strategy for time-varying fields, allowing for fields with a fixed norm, a

useful feature for practical applications. Figure 1.1 shows an example of the vector field

generated by the methodology described in this work.
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Figure 1.1: Paths generated by following the vector field described in this work for a given
target curve. The vector field, also shown, is devoid of any stable equilibrium point.

Two extensions of the proposed vector field are also presented to deal with some

further issues. The first is an adaptation that tackles the singularities of the original field.

The second one incorporates the ability to deviate from obstacles by contouring them.

Rigorous mathematical proofs for these extended vector field methodologies are left for a

future research.
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1.1.2 Quadcopter control

In the last years, the presence of robots in everyday life grew quickly. Among

several types of robots, quadcopters are receiving special attention due to their peculiar

capabilities. They have a high maneuverability and are used in indoor and outdoor

environments. Several researchers address the use of these flying robots for mapping [30],

surveillance [79, 42], inspections [21, 5], package delivery [62, 80], among other tasks. Such

applications motivate the development of the control strategy that will be presented in

Chapter 4 of this thesis.

The control problem in this work aims to make a quadcopter follow the vector

field designed in Chapter 3. We assume a robot model that has states representing

position, linear velocities, and orientation. Given the vector field Φ(x, t), the controller

will compute signals for total thrust force and angular velocities such that the quadcopter

follows the velocity reference given by a vector field and then converge to a given path.

The developments in this thesis were motivated by the participation of our research group

in the Autonomous Drone Racing (Alpha Pilot2) [66]. In the race, the vehicle needs to

flight through a sequence of gates. The XQuad team3, constituted by members of our

research group, was ranked 8th among 400 teams worldwide in the qualifying stage, which

classified us to the Artificial Intelligence Robotic Racing (AIRR4). The theory proposed

in this work is the basis for the controllers used in the competition.

In [64], the authors develop a controller to make a fixed-wing UAV follow a curve by

using an artificial vector field. The considered airplane model has a second-order position

dynamics. The approach considers the derivatives of the vector field in order to control

the UAV and ensure asymptotic convergence. The approach considered in this work takes

the same guidelines of [64], thus it can be considered as an extension of that work for a

different type of robot, the quadcopter.

1.2 Robotic platforms

Besides the computational simulations provided to exemplify the methodologies

presented in Chapters 3 and 4, which include a quadcopter and a 6 DOF (degrees of

freedom) manipulator, real robot experiments were also performed. It is important to

2https://www.herox.com/alphapilot/teams
3https://xquadufmg.com
4https://thedroneracingleague.com/airr
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The first property of the vector field proposed in Chapter 3 is that it can be easily

computed from the parametric representation of the curve. This contrasts with previous

methods that require an implicit representation with intersection of zero-level sets [27].

These implicit functions may be hard to find analytically. Some numerical methods are

available, however, despite being valid only locally, they may induce undesirable equilib-

rium points. Having a field defined from a parametric representation allows for an easy

consideration of a wider variety of curve shapes. In addition, the strategy can be easily

applied if the curve is represented by a sequence of points.

The function that measures the position error of the robot is the Euclidean distance

to the curve. This feature gives the vector field a homogeneous convergence behavior,

meaning that aggressiveness depends only on the distance to the curve, not on the direc-

tion nor on the part of the curve the robot is. When general analytic functions are used,

such as in [27], the convergence properties will be tied to the behavior of these functions.

For instance, the field may be more aggressive in some parts of the workspace while less

aggressive in others. In practice, a field with a homogeneous convergence behavior makes

it easier to perform the calibration of the controller gains.

The proposed vector field methodology is also applicable for curves embedded in

Euclidean spaces of any finite dimension and possibly time-varying. This contrasts with

other methodologies that are usually limited to R
2 and R

3. The method proposed in [27]

also considers n dimensions and time dependence. However, as the number of dimensions

grows, the harder is to obtain the functions that implicitly define the curve. In Section

5.3.3, a simulation with a 6 DOF manipulator exemplifies the use of the proposed vector

field in higher dimensions.

Another important achievement of the theory that we present here is that the de-

signed field has a constant norm even for time-varying cases. Thus, the robot can converge

to and traverse the curve with a constant speed, which is a useful characteristic in practi-

cal applications. In the literature, it is common to normalize the field in order to obtain

a constant norm over the whole workspace. However, when the curve is time-varying

and the field has an associated time feedforward component, the standard normalization

strategy can not be directly applied, since it will jeopardize the convergence. We propose

a novel normalization technique that enables the obtainment of a constant norm while

keeping asymptotic convergence. This new strategy can be applied to the Euclidean dis-

tance vector field since the norm of the feedforward component is limited by the maximum

speed of the moving curve, which is not the case for other methodologies in the literature

[27].

An attribute of the guidance vector field is that it is classified as a controller for

paths, not for trajectories. To follow a path means that, given a specific time, there is

no specific point in the curve the robot needs to be. A better discussion on this topic is

made in Chapter 2.
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We also show how the Euclidean distance field we propose can be easily applied to

make a robot contour an obstacle. The only additional requirement is the robot’s ability

to detect the closest point on the obstacle. A LiDAR sensor, for instance, can be used for

this task. We then propose a vector field that switches between the behavior of following

a desired curve and contouring obstacles. With that, we incorporate a reactive feature to

the navigation methodology that allows it to deviate from obstacles by contouring them.

Experiments with the DJI drone, the ESPcopter, and the EspeleoRobô, and simula-

tions with a robotic manipulator, were performed to illustrate the proposed methodology.

The features described here, which are formally described over the text, are corroborated

by the results observed in practice.

The quadcopter control designed in Chapter 4 has also some positive characteris-

tics. Vector fields have already been used to control quadcopters. The most direct use

consists of the consideration of lower-level controllers that make the vehicle respond to

linear velocity commands. In other words, the closed-loop systems behave as a simple

integrator. Evidently, this assumption is reasonably valid only for small velocities. Our

methodology assumes a more complex quadcopter model, which enables the consideration

of the vector field in the design of the inner layers of the controller. This fact is responsi-

ble for better performance of the controller and enables higher velocities with aggressive

flights. We consider that a drone has an aggressive flight when it is moving in high speeds

and the orientation dynamics cannot be disregarded without leading to a poor represen-

tation of the system. In such case, the vector field, which is originally designed for a

first order system, cannot be successfully applied by considering independent lower-level

controllers. In the literature, the consideration of the vector field in the inner layers of

the quadcopter control has already been studied in [87]. However, only static curves are

considered. Our approach considers time-varying curves as well.

Another feature of the proposed controller is that it inherits the property of being

a controller for paths, not for trajectories. As it will be better discussed in Chapter 2,

following a path is less restrictive than tracking a trajectory. Besides, path controllers

can possibly deal better with common practical issues such as some types of motion

failure and saturation. For a variety of navigation problems where no synchronization

is required, a path following approach may be a better choice given these advantages.

On the other hand, a trajectory tracking approach may still be necessary when there are

specific position/time constraints in the problem, i.e. the robot should be in a specified

configuration at each instant.

An additional contribution of this work is the execution of experiments with two

real quadcopters, the DJI M100 and the ESPcopter. Additional aggressive flights, with

higher speeds, were tested only on simulations. Nevertheless, simulators that consider the

full dynamics of the quadcopter were used to illustrate these flights with high velocities.
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• Héctor Azpúrua; Adriano Rezende; Guilherme Potje; Gilmar Júnior; Rafael Fer-

nandes; Victor Miranda; Levi Filho; Jacó Domingues; Filipe Rocha; Frederico Sousa;

Luiz Barros; Erickson Nascimento; Douglas Macharet; Gustavo Pessin; Gustavo Fre-

itas. Towards semi-autonomous robotic inspection and mapping in confined spaces
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Rezende; Victor Miranda; Gustavo Freitas; Gustavo Pessin; Héctor Azpúrua. A

Simulated Environment for the Development and Validation of an Inspection Robot

for Confined Spaces. 2020 Latin American Robotics Symposium (LARS),

2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on

Robotics in Education (WRE).

1.4.3 National conferences

• Douglas Coutinho; Israel Amaral; Adriano M. C. Rezende; Hector Azpúrua;
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Chapter 2

Related works

Instead of focusing on very basic theoretical fundamentals, in this chapter we concen-

trate on strongly related and state-of-the-art works. Section 2.1 focuses on the high-level

guidance problem, while Section 2.2 on the quadcopter control problem.

2.1 Guidance

In this Section, we first review some works that specify the difference between

the path following and the trajectory tracking problems. Then, we present a literature

review on solutions for the path following problem and focus on vector field methodologies.

After that, we discuss how the vector field proposed in this work relates to the discussed

references.

2.1.1 Path following and trajectory tracking

In the literature, many authors consider a subtle difference between a path and a

trajectory. By path, we should understand one-dimensional continuous manifold C(t) that
can be described by a possibly time-varying parametrization. By trajectory, we mean

a time-dependent reference point (or state) xr(t) ∈ R
n. In [70], a trajectory tracking

problem is defined as a specified reference in time that should be tracked, in which the

references are given by a temporal evolution of each spatial coordinate. In the path follow-

ing problem, the authors of [70] assume that there is no preassigned timing information,

thus, any time-dependence of the problem is removed. According to our more generic

definition of the path following problem, the path may be time-varying, thus, some time

dependence is allowed. The important detail in the definition of a path following problem
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2.1.2 Solutions for the path following problem

In the literature, path controllers can be categorized into two groups, Separated

Guidance and Control (SGC) and Integrated Guidance and Control (IGC) [70]. In the

SGC approach, a high-level guidance is designed and an inner control loop is considered

to impose the guidance to the robot [17]. In the IGC, the robot model is taken into

account during the design of the guidance law [13] or the guidance law is considered in

the inner loop control layers. In general, SGC are simpler and easier to design, however,

many SGC strategies lack convergence proofs.

One of the strategies to obtain a controller for paths is to adapt an existing con-

troller for trajectories. Backstepping is a widely used method for trajectory tracking. In

[13], the authors present a strategy to obtain path controller from a Backstepping ap-

proach. First, Backstepping is used to obtain controllers for the thrust force and torques

of a quadcopter. The original law may be undefined in some cases. To solve this issue,

the degree of freedom provided by the path parameter is explored and a timing law for

this parameter is designed. In a simple way, instead of using the physical time to compute

the trajectory, there is an additional law that computes this “artificial time”, which is the

path parameter. The final result is an IGC for paths. Similar strategies are also proposed

in [12] and [72]. Another control strategy that has also been used is Feedback Lineariza-

tion [69]. In this strategy, a linear model is obtained by inverting the original nonlinear

model, then a linear controller can be deployed. In Section 2.2.2, we will specify how this

strategy can be used in an inner control loop of the non-holonomic robot described in

Section 1.2.3.

Lyapunov Theory has also been used to obtain controllers to solve the path fol-

lowing problem and obtain convergence proofs. The characteristics of such methods are

very diverse, and they are usually constrained to the three dimensional space [19, 52].

As an example, in [19], Lyapunov theory is used to obtain convergence proofs for a path

following approach designed to guide a quadcopter that has the thrust force and the

angular rates as input controls. In [51], the path following problem is tackled with the

so-called maneuvering approach. As stated in [76], this strategy consists of two stages: (i)

a geometric task that aims to guide the robot towards the paths; and (ii) a dynamic task

that aims to assign some velocity or acceleration to the robot. The strategy is similar

to defining a timing law for the path parameter. To solve both stages of the strategy,

the work in [51] needed a velocity measurement of the vehicle. A velocity observer is

implemented with this purpose. Lyapunov theory is also recurrent in the study of vector

fields as path controllers, see [41]. A more extensive discussion on these approaches is

made in Section 2.1.3.

A geometric approach is also considered to solve the path following problem. Ge-
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ometric techniques are usually simple high-level strategies that do not consider a detailed

robot model, which are used in an SGC approach. They are characterized by the use of a

geometric entity to guide the robot to the path, for instance, straight lines that connect

the vehicle and the path. A simple geometric approach is the Pure Pursuit [57], which

guides the robot towards a straight line to the path. Such methods are differentiated by

the strategy used to define the point on the path to be pursued. For instance, in the

Line-Of-Sight (LOS) methods this point is defined as the closest one in the path [3]. The

Virtual Target Point (VTP) is another example of a geometric technique [53]. The idea is

similar to a trajectory tracking control. However, the target point is not defined by time,

but by a propagation along the path of the current robot’s position. This method is also

referred as Carrot-Chasing. The Non-Linear Guidance Law (NLGL) is also another tech-

nique based on the virtual target point idea. The VTP is defined by the intersection of a

circumference centered in the robot and the path. Another work that may be classified

as a geometric method is [17], in which the Frenet-Serret frames associated with the path

are used. They consider the closest point map projection to define the point on the path

from which the Frenet-Serret frame will be computed. However, these works are limited

to three dimensions [10], and convergence proofs are only available for constant-curvature

planar paths.

The works in [78, 72] use a Nonlinear Model Predictive Control (NMPC) to solve

the path following problem. This type of strategy consists in the computation of control

inputs that minimize a given cost functional in a future time horizon. The controller

is able to make the robot deviate from obstacles and simulations considering a unicycle

robot are presented to illustrate the approach. Another work that tackles the problem

with Model Predictive Control (MPC) is [55], in which spline paths in three dimensions

are considered in an SGC structure.

In the survey presented in [70], the authors show that path controllers are mostly

used in two forms: (i) adaptation of trajectory tracking strategies, such as the ones based

on Feedback Linearization and Backstepping; and (ii) geometric strategies such as LOS

and VPT. The former have formal convergence proofs and the latter are less formal.

However, the authors conclude that the less formal strategies perform better than the

trajectory tracking adaptations for path following. The vector field approach presented

in this work, better discussed in Section 2.1.5, has formal convergence proofs, is directly

developed for path following, and has exhibited good performance in real applications.
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2.1.3 Vector field construction methodologies

In the last decades, several methodologies to construct artificial vector fields were

proposed. They usually consider the simple integrator model system. Thus, in the scope

of robot navigation, the interpretation of a vector field is a velocity to be imposed to

the vehicle. In general, a lower-level controller is responsible to impose the velocity to

the robot, categorizing an SGC approach. In this section, we present a review of such

methodologies.

In [41], vector fields that converge to circular loiters are developed, and convergence

proofs are presented with Lyapunov Theory. Fields that converge to different curve shapes

are obtained through diffeomorphism. The methodology presented in [41] considers only

planar curves, for instance, fields in 2D or fields in 3D converging to curves with a fixed

height. In [26], the authors extend the methodology considering a team of UAVs and

moving curves. In [16], a method is developed to make a group of robots converge to and

circulate a given beacon, which is possibly moving. However, no specific curve is defined

to be circulated in this case.

The authors of [44] propose two static 3D vector field strategies and use them to

guide a UAV. The proposed field is based on the tangent vector associated with a given

point in the curve and a distance measurement. Convergence proofs are also presented.

In [29], vector fields are built based on optimization techniques. In that case, the

user can include constraints such as speed limits and obstacle avoidance into the vector

field as constraints of the optimization problem. The technique can be used to drive

UAVs towards the curve and also to circulate it. However, it requires the user to provide

a function that codifies the target curve as a zero-level set. No constructive methodology

for generating these curves is provided. The vector field was tested on a humanoid robot.

The technique presented in [46] has a similar philosophy, computing the vector field by

solving an optimization problem. In that case, the focus is a surgery application.

In [81], the authors develop a method to construct an artificial vector field from a

parametric curve. The authors already pointed out the simplicity of the use of parametric

representations over the implicit representations in [27]. In [81], contraction analysis

theory is used to provide convergence proofs for time-invariant curves in generic manifolds.

The method proposed in this work gives equivalent results when the manifold is Rn, and

the used metrics is the Euclidean distance. Besides, we consider time-varying curves and

disturbances in the model.

Vector fields are constructed for star-shaped curves in [24] and [25]. The method

is limited to curves embedded in three dimensions. A radial Fourier basis set is used

to represent the curves and convergence proofs are presented. Curves represented by a

sequence of points are also considered, however, the methodology consists in an analyti-
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cal approximation. In consequence, the convergence properties of the resulting field are

dependent on the behavior of these functions, which can be undesirable.

One of the most used methodologies to construct artificial vector fields available in

the literature has been proposed in [27]. Its features include: (i) fields for n-dimensions;

(ii) consideration of time-varying curves; and (iii) formal convergence proofs. As we

anticipated in Section 1.1.1, this strategy considers a curve represented by the intersection

of n – 1 zero-level sets given by αi = 0, i = 1, ..., n – 1, in which αi : R
n×R

+ → R. Figure

2.3 presents two examples of intersection of zero-level sets. Both examples illustrate the

space R3, in which the zero-level sets are two dimensional surfaces, represented by α1 = 0

and α2 = 0. For some particular cases, such as the ones depicted in Figure 2.3, these

functions can be easily obtained, however, for more generic cases, this may be a difficult

task.

Figure 2.3: Examples of closed curves (in black) defined by the intersection of zero-level
sets (blue and red surfaces).

The recent work in [83] presents a vector field methodology for n dimensions and

static curves represented by a parametric equation. The methodology consists of an

extension of the n-dimensional space with another dimension, which is correspondent to

the parameter of the curve’s representation. Then, the authors based on [27] to define

zero-level sets in this extended space of n + 1 dimensions. The curve in R
n is defined by

a vector of parametric equations r(s) = [r1(s), ..., rn(s)]
T. For the original problem in n

dimensions, n functions αi : R
n+1 → R are defined as αi(xi, s) = xi – ri(s), i = 1, ..., n. An

important feature reached by this approach is that the resulting vector field is singularity-

free, meaning that there are no points in the space in which the field is not properly defined

or is the null vector. In addition, the methodology can be applied to curves with self-

intersections, since in the extended dimension the curve does not intersect itself. Figure

2.4 illustrates the idea of the work in [83] for a two dimensional space. On the left, we

show the original curve in dashed black and the curve in the extended dimension in solid

black. On the right, we show the zero-level surfaces of the functions α1 = x1 – r1(s) (red)

and α2 = x2–r2(s) (blue). The level set in red extends to –∞ and +∞ in the x2 direction,

while the set in blue extends analogously in the x1 direction. The sets were limited on
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the figure only for a better visualization. The obtainment of the two level sets may be

visualized as the area swept by the green cross while it moves along the extended curve.

Figure 2.4: Expansion of the curve in two dimensions to R
3 on the left. Zero-level sets in

the extended dimension on the right.

2.1.4 Obstacle avoidance

A recurrent issue in the robot navigation problem is the presence of obstacles.

While some strategies assume a workspace free of obstacles [27, 83], others incorporate

the ability to deviate from these structures.

In general, the methodologies that tackle the presence of obstacles in the robot’s

workspace consider approaches that can be classified either as reactive or deliberative.

A reactive approach considers a navigation free of obstacles in a first moment and takes

an action to avoid a collision when an obstacle appears. It is, in general, detected by a

sensor. A deliberative approach considers some path planning that computes a path free

of collisions. This planning usually requires a knowledge of the map and the geometry of

the obstacles. An advantage of a reactive approach is that it is usually simpler, can be

easily applied to unknown environments, and has a low computational cost. However, it

may lead the robot to undesirable conditions and generate non smooth paths. Deliberative

approaches may solve these issues but, usually, under a higher computational cost.

A simple and widely known reactive strategy is the repulsive field action [38]. It

consists on the addition of a reference velocity component that points in the opposite

direction of a close detected obstacle. In the case this repulsive action points in the

opposite direction of the original reference, and cancels it, the robot is locked. Since this
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methodologies are originated from a scalar potential field, we usually say that the robot

is stuck in a local minimum of this field.

The Bug algorithms [18] are also good examples of navigation algorithms that

incorporate the ability to deviate from obstacles in two dimensions. The navigation

method has the primary objective of taking the robot to a target point. The deviation

strategy consists in the circulation of the detected obstacles. The adopted approach is

then reactive. In fact, the algorithms switch between two behaviors. The first is to follow

the so called m-line, which connects the start and goal points. The second is the obstacle

contouring, referred also as boundary following. Bug 1 and Bug 2 algorithms [45] assume

a contact sensor that allows the robot to detect the obstacle and follow its boundary. The

Tangent Bug [33] uses a range sensor that allows the robot to choose shorter distances

when moving towards the goal and deviating from obstacles. The algorithms are simple

to implement, have a low computational cost and have formal proofs that the goal point

will be reached when it is possible (they are complete algorithms).

The Bug algorithms have the primary objective of reaching a single goal point.

Other obstacle avoidance strategies have been studied when the primary objective of the

navigation is to follow a path. In [31] the authors consider a deliberative approach in

which a vector field together with a Rapidly-exploring Random Tree (RRT) make a fixed-

wing UAV converge to a curve while deviates from obstacles. A RRT [35] is a probabilistic

planner based on randomly sampled points and a tree structure. The work in [31] uses

this planner to contour the obstacles that may be in the robot’s way when it is following

the vector field. In fact, the authors use the Vector Field Rapidly-exploring Random Tree

(VFRRT) [39] to grow the tree that defines a path that deviates from the obstacles. This

algorithm uses the original vector to favor the growth direction of the tree. The authors

in [31] also incorporate a Dubins airplane model [48] to better represent the dynamics of

the UAV.

Adopting a similar idea of [31], in [58], the authors use the RRT∗, cost optimum

version of RRT, together with a vector field approach to make a semi-autonomous robot

execute user defined movements. The commands defined by the human operator are used

to define a simple vector field. The RRT∗ is grown to maximize the alignment of the path

with the field’s trajectories, or integral lines. When obstacles are in the way, the planner

generates a smooth path that attempts to follow the vector field as closely as the obstacle

sets allow, i.e., the path is collision free. Although being a deliberative approach, the

methodology presented in [58] does not require a global localization, but only a local map

and the detection of obstacles.

In [60], the authors consider a reactive approach that makes a fixed-wing UAV

deviate from obstacles when it is following a vector field that converges to a path. The

strategy is close to the one in the Bug algorithms in the sense that the obstacles are

contoured when they are detected in the robot’s way. When the obstacles are detected,
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with a range sensor for instance, the algorithm switches to a secondary vector field that

contours the obstacle until the direction of the original field is safe for navigation. Al-

though the UAV is allowed to move in three dimensions, the obstacles are only circulated

horizontally. In fact, the authors assume that the obstacles are vertical cylinders.

2.1.5 Path following approach in this thesis

The approach used in this thesis to tackle the path following problem is based on

the design of a novel artificial vector field, presented in Chapter 3. Although we later focus

on the control of a quadcopter, this field can be used in the guidance of several robotic

platforms. Its main feature is the use of the Euclidean distance function, which provides

interesting and useful properties. In the following, we emphasize these advantages over

the already discussed methodologies.

The vector field presented here may be considered as an improvement of the work

in [27]. Although they both, basically, consist of three components, associated with

convergence, circulation, and time-feedforward movement, the current approach has the

following advantages: simplicity on the representation of the curves; homogeneous conver-

gence pattern, which comes from the use of the Euclidean Distance; possibility to generate

constant norm time-varying vector fields; and absence of undesirable equilibrium points.

The Euclidean distance field can be constructed from a parametric representation

of the curve, a feature already present in the literature [83, 81]. This is an important

advantage over the implicit definition considered in [27], which may complicate the ob-

tainment of the field for more complex curve shapes. Similar to [44] and [17], we use the

vector tangent to the curve, easily obtained from the parametric representation, as the

traversal component of the field. Although our proposed field can be constructed upon a

parametric representation, it is entirely defined given the unidimensional set that defines

the curve. In other words, the approach is invariant and independent of the parametriza-

tion. This enables an easy computation of the field given a curve represented by a sequence

of points. If a large and smooth sequence of points is available, the method can be easily

applied numerically. If only a few way-points are available, the proposed strategy can be

applied after a simple polynomial interpolation [4, 68].

The feature that characterizes the methodology of this work is that it uses the

n-dimensional Euclidean distance function to encode the path following error, instead of

other analytic Lyapunov functions [27]. In fact, the distance function may be seen as a

Lyapunov function for the problem. This idea is similar to the closest point map projection

considered in [17]. The use of this function originates a homogeneous convergence pattern
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that depends only on the distance from the curve. That means that the field’s convergence

action has an equal intensity along the whole curve. When this homogeneity is not present,

the calibration of the field, i.e. the definition of the convergence gains, may be more

complicated. For instance, the field behavior may be satisfactory around some parts of

the curve and undesirable, too aggressive or too smooth, around others.

As all the other methodologies to construct vector fields, our method assumes an

integrator model. Then, the vector field consists in a velocity reference for the robot.

Our theory presents a disturbance analysis that evaluates the maximum error in the

path following given a limited error on the execution of the commanded velocity. As

in [64], an ultimate bound set is achieved when disturbances are present. In practice,

these disturbances may incorporate several effects, such as wind, and imperfections of

lower-level controllers. One interesting fact about this result is that the boundary of the

invariant set is defined by a level set of the Euclidean distance to the curve. It is more

intuitive than the invariant set that can be computed by using the zero-level sets of [27],

whose size and shape will depend on the analytic properties of the functions. Besides, the

set is isotropic, meaning that the bound of the invariant set has a constant distance to

the curve.

An important and novel property of the vector field presented here is that it has a

constant norm even for time-dependent cases, a useful feature for practical applications.

Of course, this requires the assumption that is possible to match the curve’s speed with

the robot’s speed. The normalization of the field is a common practice in the literature

[27, 81, 83], since it is often desirable to make the robot move at a constant speed.

The normalization problem for time-varying fields is not as trivial as the normalization

of static ones. This is due to the necessity of maintenance of the computed feedforward

component that accounts for the movements of the curve. For example, in [28], a constant

norm vector field is obtained by neglecting the time feedforward component. Although

stability is obtained, asymptotic stability is lost. In our methodology, the normalization of

time-dependent fields is achieved without negative effects on the asymptotic convergence.

The distance function between a point and a curve is defined globally. However,

the closest point on the curve may not be uniquely defined at some particular points in

R
n. Take the center of a circle as an example, the distance function is the circle radius,

but all points in the circle have the same distance to the center. This fact makes our vector

field be non-uniquely defined in a set, proved to have measure zero in R
n. In this sense,

the work in [83] has an advantage over our approach, since they propose a singularity-free

vector field, obtained with the consideration of an extra dimension. However, they do not

consider time-varying curves nor disturbances on the velocity commands.

In fact, we can not say that the Euclidean distance vector field is singularity free

as the one in [83]. In this scope, we provide a discussion section that argues that these

singular points of the vector field do not offer a problem in practice. Besides, as an attempt
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to weaken this issue, we also propose a slightly modification in the original vector field that

deals with these singular points. The approach, is inspired on [83], considers an additional

state variable that represents the parameter of the curve that is being followed. A better

mathematical formulation of this method will be left for a future research, as discussed

in Chapter 6

Regarding the obstacle avoidance strategy, this thesis presents a methodology that

allows the robot autonomously deviate from obstacles. We consider a reactive approach

that makes the robot circulate the obstacle until the direction indicated by the original

vector field is safe for navigation. The approach may be considered as an extension of the

one presented in [60], where the obstacles are assumed to be cylinders. Here, there is no

assumption on the shape of the obstacles. Moreover, the proposed extended vector field

may deviate in all possible directions, not only on the horizontal. First, we show how the

Euclidean distance vector field can be easily applied to contour an obstacle. Basically,

we show how the closest point of an imaginary path around the obstacle can be inferred

from the closest point of the obstacle. Then we use this contouring vector field to define

a composite field that incorporates the ability to guide the robot towards the curve while

deviating from the obstacles.

The proposed Euclidean distance vector field is used in a SGC structure to control

a ground robot in a real world experiment and a 6 DOF manipulator in a simulation.

Besides, simulations and real robot experiments with quadcopters are also performed in

an IGC structure, see the next Section. Other experiments and simulations show the

additional features of obstacle deviation and treatment of singularities on the original

field.

2.2 Control

In this Section, we review some related literature on controllers destined to quad-

copters. Then, we present some works that use artificial vector fields to control specific

robots to follow a given vector field. Finally, we show how the controller presented in this

work fits in the current state-of-the-art.
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2.2.1 Quadcopter controllers

The control of quadcopters has been extensively studied in the last years. The

use of trajectory tracking for the control of quadcopters is much more present in the

literature than the use of path controllers. For instance, in [84], the authors based their

trajectory tracking control on Feedback Linearization. The vehicle is modeled with the

Newton-Euler approach and a cascade connection is used to control the translation and

rotational dynamics.

Backstepping is also a widely used technique to solve the trajectory tracking prob-

lem for quadcopters. In [14], the authors consider a Backstepping approach that is able to

reject constant force disturbances. Two modes of operations are considered, each one con-

siders a different actuation of the rotation dynamics. The first mode assumes the torques

as inputs, while the second assumes the angular velocities. One interesting advantage

of [14] is that actuation laws depend only on bounded functions of the position, which

prevents very aggressive flights when the initial position error is elevate. The authors

present real robot experiments that use a VICON system for localization1.

Recent works have also tackled the quadcopter control with MPC. In [54], an MPC

strategy is used to make a quadcopter reach a given point in minimum time while deviating

from previously unknown obstacles. In [59], an NMPC is developed to make a quadcopter

track a planned trajectory, which provides references for position, velocity, yaw angle and

its derivative. The model assumes the total thrust and the torques as control inputs. The

controller is also able to deviate the vehicle from obstacles whose positions and sizes are

provided. One advantage of the MPC based approaches is that they are able to explicitly

consider the saturation of the actuators.

Trajectory tracking controllers have also been designed by using the differential

flatness property. A given system is said to be differentially flat if there exists a set

of outputs, the flat outputs, from which all states can be derived. In other words, the

evolution of the states up to a system can be obtained from the flat outputs and their

derivatives of a limited order. In [50], the authors show that the vector that contains

the 3D positions and the yaw angle of a quadcopter is a flat output for the system. The

designed controller has a Proportional Derivative (PD) action and needs a linearization

over the hover point. A similar controller is presented in [43], in which a nonlinear tracking

controller is developed on the special Euclidean group SE(3). In [23], the authors show

that the quadcopter model with the inclusion of drag effects is also a flat system. They

design a controller and show that the considerations of drag improve the precision of the

trajectory tracking. In [87], the authors use the differential flatness property to make a

1https://www.vicon.com/
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quadcopter follow a vector field. Their approach will be better discussed in Section 2.2.2.

Recently, the trajectory tracking problem has also been tackled with optimal con-

trol theory. In [15], a controller in the weighted Sobolev Space is formulated via dynamic

programming. The proposed theoretical controllers are synthesized for a quadcopter.

Simulations demonstrate the efficiency of the framework. Another different approach to

the quadcopter control is presented in [11], where the authors prioritize the pitch and roll

angle control over the heading. With this strategy, it is possible to prioritize the tracking

of the position over the yaw. Comparison flights with a physical vehicle illustrate the

achieved improvements.

2.2.2 Vector fields for robot control

When vector fields are used to control a robot, the system may fall into the cat-

egories IGC or SGC. In the IGC approach, the design of the controllers is tied to the

vector field itself. In the SGC approach, there is an independent inner loop controller

that receives the vector field velocity reference and tries to make the robot follow this

command. In this latter case, an extensive variety of controllers are used.

Feedback Linearization is a widely used technique to impose the behavior of a

vector field to robots with the “knife-edge” nonholonomic constraint, such as the unicycle

and the differential drive robot [27, 65]. The SGC method computes a linear velocity, vrob,

and an angular velocity, ωrob, such that a reference F = [Fx Fy]
T is applied to the robot

[75]. The linearization is obtained with inverse dynamics of a point at a distance d in the

forward direction of the robot, the blue point in Figure 2.5. The Feedback linearization

d

!rob

vrob

Arob

F

Figure 2.5: Illustration of a differential drive robot. The dynamic of the blue point is
inverted in the Feedback Linearization approach in order to impose the velocity F to the
robot.

gives a simple law to impose the velocity of a vector field to the robot. The law is given
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by
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]

, (2.1)

in which ψrob is the robot’s yaw angle. One should have in mind that, in practice,

additional inner loop controllers may be necessary. In the case of a differential drive

robot, these loops compute the velocity of the wheels, in the case of a fixed-wing UAV,

they compute the angles associated with the airplane aerodynamic control surfaces (e.g.

ailerons, rudder, and elevators) [56].

The SGC approach is also used to control quadcopters. These vehicles are usually

equipped with low-level PID controllers able to make the vehicle track different types of

reference. Some examples of low-cost commercial hardware able to perform these controls

are the Pixhawk2 and DJI Naza3. Even open source controllers, such as Ardupilot4 and

PX45, are able to operate in the so-called Position mode. In this mode, the vehicle

responds to velocity commands. For small velocities, absence of significant atmospheric

disturbances, and tasks that do not require a high precision, the closed-loop system may

be considered as a simple integrator, which is able to follow the velocity given by the

vector field. In [28] the authors consider a similar structure to make a quadcopter follow

the vector field presented in [27].

When a given vehicle can not be modeled as a single integrator, the vector field

equations cannot be directly applied to control the system. For instance, in [27] the

authors consider a second-order integrator model and derive additional control laws that

impose the dynamics of the vector field to the position states of the system. The structure

of the field was taken into account during the design of the controller for the second-order

model, which characterizes an IGC structure. In general, these laws depend on the field

derivatives, i.e. the Jacobian matrix. Each different robotic platform will require a specific

controller design.

Vector fields are widely used to control fixed-wing UAVs [56, 64]. In these works,

the controllers designed for the airplanes take into account the vector field. In [64], the

structure of the field is incorporated in the controller design by using the field’s deriva-

tives. These approaches are then characterized as IGC structures. In fact, they assume a

simplified nonholonomic model of the vehicle, which is achieved by lower-level PID con-

trollers. From this point of view, one may classify the approach as SGC. Moreover, they

consider that the models are uncertain. This is of great interest because it is important to

evaluate the application of the method in real scenarios, in which uncertainties are always

present. The authors show that in the presence of bounded additive disturbances in the

2https://pixhawk.org/
3https://www.dji.com/naza-m-v2
4https://ardupilot.org/
5https://px4.io/
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model, the robot converges to an invariant set around the desired limit cycle of the vector

field. In [34] the authors use the technique presented in [64] to control a differential drive

robot.

Artificial vector fields have already been used to control quadcopters represented

by their complete model, i.e. not assumed to be well represented by a simple integrator.

In [87], a model with 6 degrees of freedom and 12 states is assumed and has the velocity

of the propellers as control inputs. The authors use the differential flatness property of

the vehicle to design control laws that make the robot behave according to a given vector

field. The considered flat outputs are the positions and the yaw angle. Different types of

vector fields are also considered in [87], not only the ones that admit a limit cycle. The

methodology can then be used to stabilize the system in a given fixed point for example.

A limitation of that work is that it does not consider fields with time dependence.

2.2.3 Control approach in this thesis

The control method proposed in Chapter 4 is a solution to the quadcopter path

following problem based on artificial vector fields. We assume a vector field proposed by

the method presented in Chapter 3. In the following, we compare the properties of our

method to the references discussed.

In the literature review presented in [70], the authors classify vector field method-

ologies for path control as SGC. In fact, the majority of the works that use vector fields

to guide these types of vehicles consider independent lower-level controllers to make the

closed-loop system behave as the simple integrator. The theory that we present in this

text has an IGC structure, which shows an improvement over several existing method-

ologies. To the best of our knowledge, the work in [87] is the only vector field based

methodology to control quadcopters that assumes an IGC structure. However, the au-

thors do not consider time-varying fields nor any type of disturbance. These features are

present in the current work.

The controller presented here may be viewed as an extension of the fixed-wing UAV

controller presented in [64] to quadcopters. While the fixed-wing UAV has a nonholonomic

constraint of first order, the quadcopter has an equivalent constraint but of second order.

In fact, the thrust force can only act in the direction of the z body axis. To deal with that,

the attitude of the robot is controlled to keep its z body axis in the necessary direction.

The z axis of the quadrotor body is aligned with a reference acceleration given by the

vector field. This is an analogous idea to the alignment of the UAV heading with the

velocity field presented in [64].
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In our work, we use the vector field to design control laws that make a double

integrator model converge to an integral line of the vector field [27] and, consequently,

converge to the curve. Finally, controllers are designed to impose the dynamics of the

controlled double integrator to a quadcopter model. The consideration of the field deriva-

tives into these controllers characterizes an IGC structure. This last attitude controller

is similar to the one presented in [50]. However, we do not consider any small angle

assumption, as [50] considered to compute the angular errors.

In fact, we propose a cascade-like control system, [9, 84], which has the vector field

in the external loop. Different from other works, such as [85], we prove that this cascade

system guarantees convergence in scenarios of time-varying curves and disturbed control

inputs. In order to prove asymptotic convergence, the input-to-state stability (ISS) of the

systems is used together with Lyapunov Theory. This stability definition has already been

studied when guiding vector fields are used to control a fixed-wing UAV [86]. In the scope

of a quadcopter, this ISS approach contrasts with some works in the literature, which use

different tools to design the controller for the system, such as differential flatness [87, 50],

optimal control theory [15], and MPC [54, 59].

Some works that consider the control of quadcopters [43] assume that the control

inputs of the model are the velocity of the propellers. In this work, the thrust and

the angular rates are considered as the control inputs [14]. This configuration is called

the Acro mode of operation. It is used in several drone races and is available in many

commercial flight controllers, such as the Ardupilot and PX4, discussed in Section 2.2.2.

We assume the existence of such low-level controllers that will assign the signals for the

propellers given the commands of thrust and angular body speed. This Acro mode has

a much simpler, and accurate, low-level control layer than the Position mode, considered

by the SGC approaches. Consequently, the mathematical model of a quadcopter in the

Acro mode is more trustworthy than the integrator model for the vehicle in the Position

mode. This fact, together with the controller we present, will enable successful maneuvers

in higher speeds. In Section 5.2.5, results in a realistic simulator show that the cascade

connection approach presented here is able to control a quadcopter at high speeds.

To deal with imperfections of the lower-level controllers of the Acro mode, our

theory incorporates a formal disturbance analysis. We prove that norm-bounded distur-

bances in the control inputs cause limited deviation from the curve. The works in [56]

and [64], which focus on a fixed-wing UAV, also present a disturbance analysis when

uncertainties in the model are present. The disturbance analysis presented here, based

on Lyapunov theory, is similar to the one in [64]. Given norm-bounded disturbances on

the control inputs, thrust and angular velocities, we establish an ultimate bound for the

position error.

The proposed controller is originally designed for the Euclidean distance vector

field strategy presented in Chapter 3. Thus, the focus of our analysis is on the following
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of a predefined path, possibly time-varying. Nonetheless, it is important to emphasize

that the quadcopter’s control laws that will be developed here do not depend on this

specific vector field, similar to [87]. In fact, our strategy can be used with any vector

field, as long as this other field structure preserves the ISS, which will be explicitly proved

only for the Euclidean distance field proposed in the next Chapter. Our controller can

also be used to impose the behavior of other recent vector fields [81, 83] to the quadcopter.

The advantage of using the Euclidean distance based vector field is that the boundary

of the invariant set is defined by a level set of the Euclidean distance to the curve, see

Section 2.1.5.

In order to validate our theory, we present numerical simulations where the con-

vergence can be observed, as in [84, 15]. We show indoor experiments with the ESPcopter

and a OptiTrack motion capture system to validate the theory and illustrate the controller

ability to deal with external disturbances. More importantly, we present outdoor experi-

ments with a physical drone to demonstrate the robustness of the system in a real world

scenario with an onboard controller [36] and a GPS based localization system. These

experiments differ from the ones presented in [14, 11, 87, 50], which are performed in-

doors in a structured environment that counts with precise localization systems, such as

the ones based on motion capture technologies. In general, outdoor experiments are less

likely to be successful given the difficulties associated with localization. The presented

results validate the robustness of the vector field controller under noisy pose and velocity

estimations.
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Chapter 3

Euclidean distance vector field

In this Chapter, the novel artificial vector field methodology for robot navigation is pre-

sented. First, in Section 3.1 the problem is formally stated. In Section 3.2 we present the

vector field methodology and an analysis regarding the robustness against input noise. A

brief discussion regarding the points of the domain that have more than one closest point

to the curve is made in Section 3.3. A more detailed analysis is left to Appendix A. Finally,

in Section 3.4, we show how the ability to deviate from obstacles can be incorporated to

the theory.

Some theory presented in this Chapter, in Sections 3.1 and 3.2 specifically, were

published in the IEEE Transaction on Robotics (TRO) journal under the title of “Con-

structive time-varying vector fields for robot navigation” [67]. Results close to the ones

presented in Section 3.4, associated to the obstacle deviation approach, were published in

the IEEE International Conference on Robotics and Automation (ICRA) under the title

of “Collision-free vector field guidance and MPC for a fixed-wing UAV ” [60].

3.1 Vector field problem setup

Henceforth, we assume that all the vectors are column vectors. All vector quantities

are denoted by a bold symbol, as x. The symbol ∥ · ∥ denotes the Euclidean norm of a

n-dimensional vector. If Q is a matrix (or vector), QT denotes its transpose.

Consider a time-varying curve C(t) ⊂ R
n, n > 1. Let r(s, t) : R×R

+ → R
n be a

parametrization for the curve C(t), in which s is the arc-length1 parameter and t is time.

Let x ∈ R
n be a point. There are many possibilities for the curve C(t). It could be, for

instance, a finite straight line, or two disjoint circles. In order to clarify which kind of

curves we will consider in this work, we will use the following assumption.

1The use of the arc-length parameter is only for convenience, since it will simplify our mathematical
analysis. The methodology does not require this special representation to be implemented.
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Assumption 1. We assume that the curve C(t) is such that, for all fixed t, it is either

an unbounded curve homeomorphic to an infinite straight line (“open curve”) or bounded

and homeomorphic to a circle (“closed curve”).

Remark 1. Later in Section 3.3.3 we present an extension of the vector field that will

weaken Assumption 1 by incorporating curves with self-intersection.

The objective is to compute a time-varying vector field Φ(x, t) : Rn×R
+ → R

n

such that the trajectories of the system ẋ = Φ(x, t) converge to and follow the target curve

C(t). The computation of Φ will be made with basis on the parametric representation of

the curve and on the distance to the curve. With this in mind, we then define important

functions for our method.

Definition 1. The parameter of the closest point on the curve s∗(x, t) : Rn×R
+ → R is

given by

s∗(x, t) = argmin
s

∥x – r(s, t)∥2. (3.1)

Definition 2. The closest point map, or closest point projection, x∗(x, t) : Rn×R
+ → R

n

is

x∗(x, t) = r(s∗(x, t), t). (3.2)

Definition 3. The distance vector D(x, t) : R
n×R

+ → R
n and the scalar distance

D(x, t) : Rn×R
+ → R

+ are obtained as

D(x, t) = x – x∗(x, t), (3.3)

D(x, t) = ∥D(x, t)∥. (3.4)

Remark 2. We will omit the dependence on the variable t in the functions (3.1) - (3.4)

when the curve is not time-varying.

The value s∗ is the parameter equivalent to the point on C(t) that is the closest to
x. The vector D(x, t) goes from the closest point on C(t) to the position x, thus its norm

is the scalar distance function D(x, t). Note that, despite the utilization of a parametric

representation of the curve, the functions D and D are independent of the parametrization

used. In fact, function x∗(x, t) is completely defined by purely geometric characteristics

of C(t). The only dependence the field Φ(x, t) will have on the parametrization r(s, t) is

on the direction in which the curve will be followed.

It is important to observe that, for some points (like the center of a circle), function

s∗ is multi-valued: there may be more than one point in the curve that has the smallest

distance from x to the curve. In those points, our proposed vector field would be multiply

defined. Regarding this aspect, the following definition is required.
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Definition 4. Let U ⊆ R
n×R

+ be the set of points (x, t) such that s∗(x, t) is a singleton2.

Therefore, for (x, t) ̸∈ U the expression D(x, t) is also multi-valued. Henceforth,

we will assume that the domain of the functions Φ, s∗, x∗, and D is U , and thus they all

will be single-valued. The vector field will not be defined for points outside of U . We will

soon establish that there are few such points, i.e. for any fixed t the set of points x such

that (x, t) /∈ U has measure zero in R
n. It will be also mathematically shown that, at least

for the time-invariant case, these points are unapproachable if we choose the parameters

of the vector field accordingly (Appendix A). In the time-varying case or in the presence

of disturbances we can simply choose one of the possible vectors. For instance, the one

which is closest to the last velocity vector sent to the robot.

We also need other definitions regarding a traversal term, which will be mostly

responsible for the curve following.

Definition 5. The curve’s tangent vector T(s, t) : R×R
+ → R

n is given by

T(s, t) =
∂r(s, t)

∂s
. (3.5)

Definition 6. The closest point’s tangent T∗(x, t) : U → R
n is defined as

T∗(x, t) = T(s∗(x, t), t). (3.6)

Remark 3. We will omit the dependence on the variable t in T and T∗ when the curve

is not time-varying.

Note that, since s is the arc length, it holds that ∥T(s, t)∥ = 1. In practical

cases, if one uses a parametrization that is not the arc-length, the tangent vector must

be normalized. In fact, the definition of the normalized tangent vector does not depend

on the parametrization either, except for a factor of –1 that may invert the direction in

which the curve is traversed. Geometrically, this vector can be seen as the unit vector

that spans the tangent space of the set C(t) at time t. Now, we also present some auxiliary

definitions regarding the curve’s normal vector and curvature.

Definition 7. The normal vector N(s, t) : R×R
+ → R

n is given by

N(s, t) =
∂2r(s, t)

∂s2

∥
∥
∥
∥

∂2r(s, t)

∂s2

∥
∥
∥
∥

–1

. (3.7)

Definition 8. The curvature κ(s, t) : R×R
+ → R

+ is given by

κ(s, t) =
∂T

∂s
(s, t)TN(s, t). (3.8)

These definitions come from the Frenet-Serret formulas [8]. In order to use them,

a weak assumption is necessary.

2Set with only one element.
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Assumption 2. The function r(s, t) is C2 on s for all t. Furthermore, r(s, t) is also

differentiable with respect to t, for all fixed s.

We may also require that the vector field has a constant norm given by vr, i.e.,

∥Φ(x, t)∥ = vr ∀ (x, t) ∈ U . In order to make this requirement possible, we must assume

that the curve C(t) is slow-varying on time when compared with the robot speed vr. To

understand this necessity, consider a rigid curve that moves sideways with a speed greater

than vr. In such case, if the robot speed is vr, it will not be able to follow the path. With

the purpose to solve this issue, we will need another definition.

Definition 9. The null space of T∗ projection operator, ΠT(x, t) : U → R
n×n, is defined

as the matrix

ΠT(x, t) = In×n – T
∗(x, t)T∗(x, t)T, (3.9)

in which In×n is the identity matrix of order n.

This null space projection matrix is such that ΠT(x, t)h is in the (right) null space

of T∗(x, t)T for all h. In other words, ΠT(x, t)h removes the component in the direction

of T∗(x, t) of the vector h. With this definition, we can formally assume the following.

Assumption 3. For any point x ∈ R
n at any time t ∈ R

+, such that (x, t) ∈ U , the
partial derivative of the distance vector D(x, t), defined in (3.3), with respect to time is

finite. We will impose that when we remove the traversal component from this vector the

resulting vector has a norm smaller than vr. Formally

max
(x,t)∈U

∥
∥
∥
∥
ΠT(x, t)

∂D

∂t
(x, t)

∥
∥
∥
∥
≡ vm < vr, (3.10)

in which vm is called the maximum “local speed” of C(t).

An intuitive interpretation of the term inside the norm operator in equation (3.10)

is that ∂D
∂t is the necessary velocity of a point x(t) ∈ C(t) to continue in the curve at time

t+∆t, i.e. x(t+∆t) ∈ C(t+∆t). However, any component of this velocity on the tangent

direction of the curve just causes an internal movement, as if x(t) is traversing the curve.

For instance, if the time-varying curve is a circle moving in space, ∂D
∂t makes the point

move with the curve from C(t) to C(t + ∆t), but the tangent component of this velocity

only makes the point rotate inside C(t + ∆t). Therefore, we can remove this component

to make the assumption less strict.

Note that Assumption 3 is weak, since it is reasonable that a robot with speed vr

cannot track a curve that moves with a speed greater than vr. In real scenarios, it is also

important to emphasize that the curve C(t) must be feasible to be traversed by the robot

at the desired speed vr. For instance, curves with high curvatures may not be tracked

with high velocities as real robots might be subject to mechanical constraints, such as

maximum accelerations and angular velocities.
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Essentially, the problem addressed in this chapter is:

Problem 1. Given a time-varying curve C(t) embedded in an n-dimensional Euclidean

space, under Assumption 3, defined in the parametric form r(s, t), under Assumption 2,

find a vector field Φ(x, t) : U 7→ R
n such that ∥Φ∥ = vr, and the trajectories of the system

ẋ = Φ(x, t) converge to and traverse (follow, circulate) C(t).

3.2 Vector field formulation

In this section, we will state the solution to Problem 1 defined in the previous

section, announce its properties and then proceed to establish them formally. Before

stating our solution, two definitions are necessary.

Definition 10. A function G : R
+ → [0, 1) is said to be of G-type if it is Lipschitz

continuous, strictly increasing and G(0) = 0, thus G(D) > 0 for D > 0.

Some simple examples of G-type functions include G(D) = (2/π) atan(kfD), for

kf > 0 and G(D) = D/
√

D2 + kf also for kf > 0.

Definition 11. Let G be a G-type function, then H(D) =
√

1 – G(D)2. Henceforth we

will also use the definitions

Ĝ(x, t) ≡ G(D(x, t)), Ĥ(x, t) ≡ H(D(x, t)). (3.11)

Remark 4. We will omit the dependence on the variable t in Ĝ and Ĥ when the curve is

not time-varying.

Note that G, H : R+→R
+, while Ĝ, Ĥ : U→R

+.

Given these definitions, a solution to Problem 1 is the vector field Φ(x, t) defined

by the following components:

Φ(x, t) = –η(x, t)Ĝ(x, t)
D(x, t)

D(x, t)
︸ ︷︷ ︸

convergence

+ η(x, t)Ĥ(x, t)T∗(x, t)
︸ ︷︷ ︸

traversal

–ΠT(x, t)
∂D

∂t
(x, t)

︸ ︷︷ ︸

feedforward

, (3.12)

in which η(x, t) : U → R is a positive scalar chosen so that Φ has a norm equal to vr.

This scalar can be found by obtaining the greatest root of the second-order polynomial

for η: ∥Φ[η]∥2 = v2r .

Note that, since D and T are invariant to the parametrization, i.e. they de-

pend only on the curve’s geometry, the vector field is also purely geometric. The curve’s

parametrization function is only a convenient tool to enable the computation of Φ.
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Likewise [27], the vector field has three components, each one responsible for a

different behavior. Note, however, that the computation of the terms is much more

straightforward in comparison to previous works that consider implicit definitions for the

target curve, requiring no knowledge of zero level sets.

This vector field has the following features, that will be formally shown in the

following subsections:

• Its integral curves converge asymptotically to C(t) for each initial condition (x0, 0) ∈
U . There are no other equilibrium points, stable or unstable (Proposition 2).

• Under Assumption 3, η can always be chosen so that the time-varying vector field

has a constant norm: ∥Φ(x, t)∥ = vr (Lemma 8).

• Points outside of U form a set of measure zero (Proposition 1). Furthermore, for the

normalized time-invariant case, one can choose the parameter Ĝ such that no points

outside of U are approachable (Proposition 6, Appendix A). Nevertheless, even if

these points are reached, which can happen in the case of time-varying curves or

if there are disturbances on the system, one can simply choose one of the possible

values of Φ(x, t) and continue moving along the field (Section 3.3.1). For instance,

a natural choice is the closest to the last vector that has been sent to the robot to

follow.

• It is robust to norm-bounded additive disturbances in the assumed simple integrator

model. In this case, the maximum deviation from the curve is finite and can be

computed from the bound of the disturbance (Proposition 3).

• Its convergence behavior is isotropic on space. It means that the weight of the

convergent component does not depend on the direction of the vector D, but only

on the distance D (also Proposition 3).

3.2.1 Distance function properties

The Euclidean distance function defined in (3.4) has interesting and useful prop-

erties. In this section, they will be presented. We begin by showing that the set U is

“small”. For this purpose, we begin with a Lemma.

Lemma 1. Consider a point x∈Rn, let x∗ be one of the possible closest points on the

curve C to the point x. Let 0 < α < 1. Then the closest point to the curve of the point



3.2. Vector field formulation 60

xα = (1 – α)x∗ + αx is also x∗. Furthermore, this point is unique: there is no other point

on the curve that has the same distance to xα.

Proof. Suppose there is another point on the curve, x∗other ̸= x∗ that is closer to xα (that

is, x∗ is not the closest point at the curve to xα) or has the same distance to xα as x∗

(that is, x∗ is not unique). In the following, we show that this induces a contradiction

and therefore it is false.

Suppose it is true. Let u = x∗ – xα and v = x∗other – x
∗. Then, ∥u+v∥ ≤ ∥u∥, since

x∗other is closer, or at the same distance, to xα than x∗ is. This implies after squaring that

(i) 2uTv + ∥v∥2 ≤ 0, and also that (ii) uTv < 0, because v ̸= 0 since x∗other ̸= x∗.
Since 0 < α < 1, we have from (i) and (ii) that ∥v∥2 + 2uTv/α < 0. Summing

∥u∥2/α2 in both sides it is possible to conclude that (iii) ∥u/α + v∥ < ∥u∥/α.
Finally, note that (x∗ – x) = u/α. Furthermore, that (x∗other – x) = u/α + v.

Therefore, (iii) implies that ∥x∗other – x∥ < ∥x∗ – x∥, which is contradictory with the fact

that x∗ is the closest point at the curve to x.

Now, it is possible to prove that the set is indeed “small”.

Proposition 1. For any curve in R
n, the set of points that have more than one closest

point on the curve has measure zero in R
n.

Proof. The proof comes from contradiction. Suppose there is a set V of points not in U
that has a non-zero measure in R

n. Therefore, it is possible to consider a ball B ⊆ V with

nonzero volume. Let x be the center of such a ball, which is also a point with more than

one closest point on the curve. Let x∗ be one of such points.

Choose an 0 < α < 1 such that the point xα = (1 – α)x∗ + αx lies in B. This is

always possible because it has a non-zero measure. Since it lies in B, xα must also have

more than one point closest to the curve. However, Lemma 1 forbids it. This contradiction

concludes the proof.

Even if this set is small, there is the possibility that the trajectory indeed passes

through it, thus, in such state, the field Φ(x, t) will be multiply defined if we consider

the domain R
n×R

+. Further in this work, we establish two facts: (i) convergence is still

achieved if one of the possible values of the field is chosen (Section 3.3.1); and (ii) there

are sufficient conditions, for the time-invariant case, that guarantee that the trajectory

never reaches these singular points (Appendix A). Also, in Section 3.3.3, we propose a

novel strategy to deal with these issues by saving curve’s parameter as a state variable.

Now we derive other properties of the distance function, and its associated func-

tions, which will be important to prove the convergence of the vector field.

Lemma 2. If s∗(x, t) is defined by (3.1), the following identity holds

T∗(x, t)TD(x, t) = T(s∗(x, t), t)TD(x, t) = 0. (3.13)
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Proof. First, note that, given Assumption 1, the curve C(t) has no borders. Thus, we can

apply the first-order optimality condition to the optimization problem in (3.1) to conclude

that
∂r

∂s
(s∗(x, t), t)T

(

x – r
(
s∗(x, t), t

))

= 0. (3.14)

The first factor of the dot product in (3.14) is the tangent vector T defined in (3.5). The

second factor in (3.14) is the distance vector D(x, t). Using these facts into (3.14), (3.13)

is established.

Lemma 3. It holds that
∂s∗

∂x
(x, t) =

T∗(x, t)
Ω(x, t)

, (3.15)

in which Ω(x, t) : U → R is given by

Ω(x, t) = 1 – κ(s∗(x, t), t)N(s∗(x, t), t)TD(x, t). (3.16)

Proof. Take the optimality condition in equation (3.14), differentiate both sides in x and

solve for ∂s
∗

∂x
. In that case, one needs to remember that since s is the arc-length, ∥∂r

∂s∥ = 1

and ∂2r
∂s2

= κ(s, t)N(s, t) due to Frenet-Serret formulas.

Lemma 4. The vector D(x, t) is in the (right) null space of the matrix ∂x∗

∂x
(x, t). Mathe-

matically
∂x∗

∂x
(x, t)TD(x, t) = 0. (3.17)

Proof. Consider the fact that x∗(x, t) = r(s∗(x, t), t). Differentiate both sides in x, use

the chain-rule, the fact that ∂r
∂s = T(s, t) and Lemma 3 for ∂s∗

∂x
to conclude that

∂x∗

∂x
(x, t) =

T∗(x, t)T∗(x, t)T

Ω(x, t)
. (3.18)

Multiplying both sides by D(x, t) and using Lemma 2, we obtain (3.17).

Lemma 5. For each (x, t) ∈ U with x ̸∈ C(t), ∇D(x, t) is a unit norm vector and is given

by ∇D(x, t) = D(x, t)/D(x, t).

Proof. Consider D = x – x∗(x, t) and D =
√
DTD. It is possible to write

∇D =

(

In×n –
∂x∗

∂x
(x, t)

)T
D

D
=

D

D
, (3.19)

in which In×n is the identity matrix of order n and the second equivalence comes from

Lemma 4. Since (x, t) ∈ U , the point x∗ and vector D are unique. Furthermore, since

x /∈ C(t) =⇒ D ̸= 0 the vector ∇D is well defined.

At last, we will show another Lemma that will be useful to prove convergence for

the proposed field:
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Lemma 6. Let P : R+ → R
+ be defined by P = 1

2D
2. For all (x, t) ∈ U the following

identity holds
∂P

∂t
= ∇PTΠT

∂D

∂t
. (3.20)

Proof. First, note that with the chain rule we obtain ∇P = D∇D. Using Lemma 5 and

noting that ∇P is also defined when D = 0, we conclude that:

∇P(x, t) = D(x, t). (3.21)

Now, note that given the definition of ΠT in (3.9) and that ∇P ∥ D ⊥ T, we have that

(3.20) reduces to:
∂P

∂t
= ∇PT∂D

∂t
. (3.22)

Now, taking the partial derivative of the identity P = 1
2D

TD with respect to time

∂P

∂t
=

1

2

∂D

∂t

T

D+
1

2

∂D

∂t

T

D = DT∂D

∂t
. (3.23)

Using (3.21) in (3.23), equation (3.22), which is equivalent to (3.20), is established.

3.2.2 Normalized vector field methodology

Before presenting the definition of the field Φ, we will discuss its three individual

components: the convergence term, the traversal term and the feedforward term.

First, a field that converges to the curve C(t) is sought. Therefore, the convergent

component ΦG(x, t) : U → R
n is defined as

ΦG(x, t) = –Ĝ(x, t)
∇P(x, t)

∥∇P(x, t)∥ = –Ĝ(x, t)∇D(x, t), (3.24)

in which Ĝ(x, t)≡G(D(x, t)), as in Definition 11, and the second equality is obtained from

equations in (3.19) and (3.21). When D = 0 the vector ∇D is not defined. However,

lim
x→C(t)

Ĝ(x, t)∇D(x, t) = 0, since G(0) = 0 and lim
x→C(t)

∥∇D(x, t)∥ = 1. The intuition

behind this term is that it always points to the curve, more precisely to the closest point

at the curve. Therefore, it guides the point x towards C(t).
Now, a field that provides the tracking of the curve is sought. Therefore, the

traversal component ΦH(x, t) : U → R
n is defined as

ΦH(x, t) = Ĥ(x, t)T∗(x, t), (3.25)

in which T∗(x, t) is the tangent vector computed according to (3.6) and Ĥ is defined as

in Definition 11. The intuition behind this component is that, when we are in C(t) at a
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Figure 3.1: Example showing the components of Φ. In (a) we show some elements neces-
sary to compute the components. In (b) we show the three components.

point x, this component is always tangent to the curve. Therefore, it induces x to follow

the curve.

The time feedforward component ΦT(x, t) : U → R
n, important in time-dependent

scenarios, is defined as

ΦT(x, t) = –ΠT(x, t)
∂D

∂t
(x, t). (3.26)

It is not as easy to have an intuition for this term, but we will see mathematically

that it is necessary to ensure convergence. Furthermore, it is clearly related to the time-

varying properties of the curve, since for static curves it vanishes.

Figure 3.1 illustrates these three components. Except for the norm requirement,

∥Φ∥ = vr, we could sum up all these components and obtain a field that solves Problem

1. If it is desirable to have a constant speed, vr, for time-invariant vector fields, it is usual

to normalize the vector field such that a vector Φ has the same norm for all x. However,

time-varying fields can not be as easily normalized without compromising convergence.

This happens because if we multiply the component ΦT by a scaling factor, the vector

field will not properly compensate for the movement of the curve, thus, the convergence

will be affected. To solve this issue, we propose a different normalization method. It will

scale only part of the vector field to obtain a constant norm of the composite vector. The

component associated with the changes on time of the curve will remain unchanged.

Let us divide the three components into two groups. The first one, ΦS, composed

of ΦG and ΦH, is not dependent on partial derivatives with respect to time, thus, it is the

scalable component. The second one, composed only of ΦT, is dependent on the partial

derivatives with respect to time, thus it is called the not scalable component.

We propose the following field:

Φ = ηΦS + ΦT, (3.27)

in which η is a scaling factor that will be determined soon.

A Lemma is necessary:

Lemma 7. For all (x, t) ∈ U , the vector ΦS = ΦG + ΦH has a unit norm.
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Proof. From Lemma 2, ΦT
GΦH = –ĜĤDTT∗/D = 0. Thus ∥ΦG+ΦH∥2 = ∥ΦG∥2+∥ΦH∥2.

Now, since ∥T∗∥ = 1 and ∥∇D∥ = 1, we have that ∥ΦG + ΦH∥2 = Ĝ
2
+ Ĥ

2
. From

Definition 11, we have that Ĝ
2
+ Ĥ

2
= 1.

Now, we can see, using the fact ∥ΦS∥ = 1 (Lemma 7), that using (3.27) the

condition ∥Φ∥2 = v2r reduces to

η2 +
(

2ΦT
SΦT

)

η +
(

∥ΦT∥2 – v2r
)

= 0. (3.28)

As will be clear later, in order to ensure η > 0, the following root of the second-

order polynomial in (3.28) should be considered

η = –ΦT
SΦT +

√
(
ΦT
SΦT

)2
+ v2r – ∥ΦT∥2. (3.29)

Note that ∥ΦT∥ < vr, due to Assumption 3, ensures that η is real.

The normalized vector field Φ can then be written as

Φ = –ηG∇D+ ηHT∗ – ΠT
∂D

∂t
. (3.30)

Asymptotic convergence of the integral curves to the curve C(t) for this normalized

field will be established, but first, it is necessary to show two lemmas.

Lemma 8. Let

vm = max
(x,t)∈U

∥
∥
∥
∥
ΠT(x, t)

∂D

∂t
(x, t)

∥
∥
∥
∥
. (3.31)

Given Assumption 3, the value of η in (3.29) is such that

0 < vr – vm ≤ η ≤ vr + vm. (3.32)

Proof. From the fact that ∥ΦT∥ ≤ vr, it is clear that η ≥ 0. In addition, from ∥ηΦS +

ΦT∥ = vr, ∥ΦS∥ = 1 and ∥ΦT∥ ≤ vm (given Assumption 3 and equation (3.26)), it can

be inferred, by the triangle inequality ∥a+ b∥ ≤ ∥a∥+ ∥b∥, that

vr = ∥ηΦS + ΦT∥ ≤ η∥ΦS∥+ ∥ΦT∥ ≤ η + vm, (3.33)

from which η ≥ vr – vm is obtained. Furthermore, using the same information and from

the reverse triangle inequality, ∥a+ b∥ ≥ ∥a∥ – ∥b∥, we have

vr = ∥ηΦS + ΦT∥ ≥ η∥ΦS∥ – ∥ΦT∥ ≥ η – vm, (3.34)

from which η ≤ vr + vm is obtained.

Lemma 9. Let z : R 7→ R, a constant γ > 0 and a G-type function G, such that the

differential equation ż(t) = –G(z(t)) holds for any initial condition z(0) = z0 ≥ 0. Then,

lim
t→∞

z(t) = 0.
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Proof. Use the Lyapunov function V(z) = z2

2 . We then have that V̇ = –γzG(z), that, due

to the properties of G in Definition 10, is nonpositive and 0 if and only if z = 0. And the

proof is complete.

And then, an assumption is necessary.

Assumption 4. Given an initial condition (x(t0), t0) ∈ U , the trajectories of the system

ẋ = Φ(x, t) are such that (x(t), t) ∈ U ∀ t > t0.

Assumption 4 is only necessary to formalize our next proposition by excluding

the points x such that x∗(x, t) is not uniquely defined. Later, in Section 3.3, we derive

sufficient conditions to state that Assumption 4 holds for the time-invariant case. We are

now able to state the main result of this subsection.

Proposition 2. Given Assumption 4, the trajectories of the system ẋ(t) = Φ(x, t) con-

verge to C(t).

Proof. Consider the Lyapunov candidate function P = 1
2D

2. Given ẋ = Φ, the time

derivative of the Lyapunov candidate function P can be written as Ṗ = ∇PTΦ+ ∂P/∂t.

Thus, using (3.30), we have

Ṗ = –ηG∇PT∇D+ ηH∇PTT∗ – ∇PTΠT
∂D

∂t
+
∂P

∂t
. (3.35)

From equation (3.21) and Lemma 2, it holds that DTT∗ = ∇PTT∗ = 0. Thus, the second

term in (3.35) is null. From Lemma 6 it is clear that the last two terms in (3.35) cancel

each other. Noting that ∇PT∇D = D∇DT∇D = D, (3.35) becomes

Ṗ = –ηGD. (3.36)

Now, since P = 1
2D

2, Ṗ = DḊ. Furthermore, using Lemma 8 and denoting η > γ =

vr – vm > 0, we have that

Ḋ ≤ –γG(D). (3.37)

Now, we use the strong comparison lemma for ordinary differential equations (see

[49]). It states that if we have two functions z(t) and D(t) such that ż = –γG(z) and

Ḋ ≤ –γG(D), D(0) < z(0) and G being Lipschitz continuous, then D(t) < z(t) for all

(finite) t. Consider any z(0) > D(0), applying Lemma 9, we conclude that z(t) → 0, and

since D(t) ≥ 0 and D(t) < z(t), this forces D(t) → 0 as well.

Note that, in equation (3.35), the last two terms would not cancel each other if we

had applied the standard normalization in the time varying-field. This happens because

the term involving ∇P would be scaled. Consequently, we would not be able to ensure

Ṗ < 0. Note also that, with Proposition 2, we have that, as t → ∞, the convergence term

of (3.30) vanishes as the robot converges to the curve. Since η>0, from Lemma 8, and
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the feedforward component has no projection onto the tangential direction, the traversal

term guarantees that the curve is being traversed.

In conclusion of this section, equation (3.30) represents the solution to Problem 1.

3.2.3 Robustness analysis

Consider a robot model given by ẋ = u + δv, in which u ∈ R
n is the input signal

and δv ∈ R
n is a bounded disturbance with limited norm, i.e. ∥δv∥ < ∆v ∀ t ≥ 0.

In this subsection, we present some robustness results based on ultimate boundedness

arguments. In order to establish an ultimate bound for the function D in this perturbed

system, consider the following Assumption.

Assumption 5. The bound ∆v is such that ∆v < vr – vm.

Now, in the following proposition, we establish the ultimate bound result.

Proposition 3. Given Assumptions 3, 4 and 5, the trajectories of the system ẋ(t) =

u + δv, with ∥δv∥ < ∆v, under the control law u = Φ(x, t), converge to the following

positive invariant set

I(t) =
{

x ∈ R
n | D(x, t) < G–1

(
∆v

vr – vm

)}

. (3.38)

Proof. First, note that Assumption 4 ensures Φ(x, t) is well defined. Assuming the per-

turbed system, the time derivative of the Lyapunov function P becomes

Ṗ = ∇PTẋ+
∂P

∂t
= ∇PTΦ+∇PTδv +

∂P

∂t
. (3.39)

Following the steps of Proposition 2, we have that Ṗ = –ηGD + ∇PTδv. Let

M = max ∥δv∥, then, using the fact Ṗ = DḊ, we have

Ḋ ≤ –ηG+M < –ηG+∆v, (3.40)

in which the last inequality is true given that M < ∆v.

Remember that the function G ≡ G(D) is continuous and strictly increasing, thus,

invertible and G(a) > b if and only if a > G–1(b). Thus, given (3.38), for every x /∈ I(t)
we have

G ≥ ∆v

vr – vm
≥ ∆v

η
, ∀ x(t) /∈ I(t), (3.41)

in which the second inequality comes from Lemma 8. Using (3.41) in (3.40), we conclude

Ḋ ≤ –∆v +M < 0, ∀ x(t) /∈ I(t). (3.42)
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Given the result in (3.42), an initial instant t0 and an initial distance D0 = D(t0),

we can compute a conservative upper bound time T(D0, t0) that ensures x ∈ I(t) for

t > T(D0, t0). It is defined by:

T(D0, t0) = t0 +
D0

∆v – max ∥δv∥
. (3.43)

Thus:

t > T(D0, t0) =⇒ x ∈ I(t). (3.44)

Result in (3.44) is the statement of the ultimate boundedness of the perturbed system.

Note that, according to Proposition 3, the volume of the set I increases as ∆v

increases, as expected. It is also interesting to observe that the faster is the movement of

the curve, represented by the value of vm, the greater is the volume of I. If ∆v = 0, it

follows that I(t) collapses to the curve C(t).
The result in Proposition 3 clarifies one more geometric interpretation of our result.

In the presence of uncertainties, the distance that defines the system’s ultimate bound is

dependent on the function G(D) and on the maximum velocity error ∆v. The faster the

function G approaches 1 as D increases, the smaller is the set I. It also shows the isotropic
property of the field, meaning that deviations from the curve are equally compensated by

the convergent component in all directions perpendicular to the tangent vector.

In conclusion, in the presence of limited disturbances, the state x converges to the

set I(t), which corresponds to a region around the curve C(t). Given the isotropic property

of the field, this region is a circular tube around the curve and its cross-section radius is

given by the bound in (3.38). If the system ẋ = Φ(x, t), is assumed as a nominal system

and δv is assumed as an input of that system, Proposition 3 implies that ẋ = Φ(x, t) + δv

is input-to-state stable3, see [37]. In other words, a norm-bounded perturbation on the

system causes a norm-bounded perturbation on the ultimate value of D. Now consider a

perturbation δv(t) that vanishes over time. Since the perturbed system is ISS, we have

that lim
t→∞

δv(t) = 0 =⇒ x(t) → C(t) as t → ∞, see Chapter 4 of [37]. In the next

Chapter, this property is used to show that the vector field Φ(x, t) can be used to control

a quadcopter.

3.3 Singular points considerations

By using Assumption 4, we avoid a definition problem of Φ(x, t) when the point

x∗, the closest on the curve, is not uniquely defined. In this Section, we first provide some

3For δv < ∆v < vr – vm, as in Assumption 5.
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discussion on how these singular points are not a problem in practice. Then we show how

a constraint on the system’s initial condition can ensure the absence of singularities in

the robot’s trajectory. Finally, we present a novel strategy, inspired in [83], to tackle the

issue of these singularity points by using a memory variable.

3.3.1 Repulsiveness of singular points

It is important to emphasize that Ḋ, in equation (3.37), is negative definite and

has a bound that depends only on D. Thus, even if the trajectory x(t) passes through a

point outside U (those that form a set of measure zero), we can simply choose one vector

Φ computed according to one of the possible minimizers x∗. If we adopt this strategy,

independently of the vector Φ that we choose, the distance D will keep decreasing. Thus,

there is no way the trajectory can get “stuck” on any region other than the curve C(t),
i.e. outside the target curve there are no equilibrium points.

Assuming the incorporation of any criteria that chooses among one of the possible

values of s∗(x, t), when it is not unique, the vector field Φ(x, t) can be defined in R
n×R

+,

instead of only in U . However, it is important to emphasize that, depending on the

choice we make for one of the possible values of s∗, the vector field Φ could be switching,

although this is not observed in practice. In fact, this vector field will be discontinuous

in the points outside U . The importance of this discussion is to show that the trajectory

will not be stuck outside the set U .
In Appendix A we derive, for the time-invariant case, an analysis of the approach-

ability of the points outside U . There, we show a sufficient condition to ensure that, if

(x, 0) ∈ U , no point outside U will be reached. In other words, for any initial condition in

U , Assumption 4 holds. From the result obtained in equation (A.15), a sufficient, and con-

servative, condition to ensure that no point outside U will be reached is Ĝ(x) = 1 ∀ x /∈ U .
We can use this result to establish some interesting G functions.

Let E(x) be the distance between x and the complement of U . If we allow a

Ḡ to be a function of D(x) and E(x), we can obtain a simple result that ensures the

non-approachability of points outside U . Consider the following function:

Ḡ(D, E) =
(eD(x) – 1)eE(x)

eD(x)eE(x) – 1
. (3.45)

The function Ḡ defined in (3.45) is: (i) positive definite; (ii) null if and only if D = 0;

and (iii) one if E = 0. Thus, it has the necessary properties of a G-type like function and

ensures that points outside U will not be approachable. It is important to emphasize that
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3.3.2 Initial condition limitation

A possibility to ensure that Assumption 4 holds is to consider a constraint on the

initial condition of the system ẋ = Φ(x, t). Let δ0 be the smallest distance D(xP, t) to the

curve of any point (xP, t) /∈ U for all t > 0. Now, considering the time varying case, δ0(t)

is redefined as:

δ0 = min
(xP,t)/∈U

D(xP, t). (3.48)

Note that the scalar distance D(x, t) is well defined as D(x, t) = min
s

∥x–r(s, t)∥. Consider
the set X0 given by:

X0 = {x ∈ R
n | D(x, 0) < δ0} . (3.49)

Consider the system ẋ = Φ(x, t) with initial condition x(0) = x0. Assumption 4

can also be ensured if x0 ∈ X0. This is true because D(x(0), 0) < δ0 and since Ḋ ≤ 0 we

have D(x(t), t) ≤ D(x(0), 0) < δ0 ∀ t ≥ 0, which ensures that no point outside U will be

reached.

In addition, note that if Assumptions 1 and 2 hold, we have that δ0 > 0. The

problem with this approach is that the computation of δ0 depends on the computation

of the set U , which is not trivial in the general case. In Section 3.3.3 we show how an

equivalent initial condition can be achieved by considering a slightly different vector field.

3.3.3 Vector field in augmented space

In this Section, we propose a strategy to solve the issue when the point x∗, or the
parameter s∗ equivalently, is not uniquely defined. The idea consists on the consideration

of a virtual variable, let us call it sv, in place of s∗ to compute the vector field. A

propagation law for this variable will attempt to make it converge to s∗ (or at least an

equivalent local optimum). This approach is inspired on the one proposed in [83].

From now on, we assume the time invariant case. Thus, the augmented vector

field will have only a convergent and a tangential component. As we show, the resulting

vector field has many similarities with the one presented in Section 3.2. However, we do

not present formal proofs for this novel strategy as we do in that Section.
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3.3.3.1 Initial definitions

In this modified strategy, the point on the curve used to compute the field is not the

one given by the parameter s∗, achieved via an optimization problem. We now consider

a parameter sv as a virtual variable. This idea may seem dissonant to the original idea of

considering the closest point on the curve C. However, we will attempt to make sv → s∗.
For this new, and slightly different framework, consider the following definitions

Definition 12. The variable sv ∈ R is a virtual state of the system that defines the point

on the curve C, let it be r(sv), that will be used to compute the vector field.

Definition 13. The reference point4 xv(sv) : R → R
n is

xv(sv) = r(sv). (3.50)

Definition 14. The virtual distance vector Dv(sv, x) : R×R
n → R

n and the virtual

scalar distance Dv(sv, x) : R×R
n → R

+ are obtained as

Dv(sv, x) = x – xv(sv), (3.51)

Dv(sv, x) = ∥Dv(sv, x)∥. (3.52)

Note that Definitions 12, 13, and 14 are analogous to Definitions 1, 2, and 3. The

difference is that the definitions above consider the parameter sv instead of the closest

point parameter s∗. Moreover, the time dependence of the variables is not present, since

we are considering static curves.

3.3.3.2 Augmented space vector field proposal

The vector field we propose to tackle the singularities is analogous to the one

defined in equation (3.12). The difference is that instead of using D and T∗, we will use

Dv and T(sv). We define the augmented space vector field as

Φv(sv, x) = –vrG(Dv)
Dv

Dv
+ vrH(Dv)T(sv). (3.53)

Note the similarity between Φv in (3.53) and Φ, in (3.12). When sv = s∗, vector Dv/Dv

corresponds to the gradient of the distance function D(x). The case when Dv = 0 is

4This point xv plays a role of a reference point on the curve. However, it is important to emphasize
that is not the same role as the one of a reference trajectory. This will be formally discussed latter in
this Section.
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not a problem for the same reason discussed before, since G(Dv) vanishes in this case.

The feedforward term, present in (3.12), is out here and η(t) = vr, given that we are

considering a static curve C.

Remark 5. Rigorously, we cannot say that Φv in (3.53) is a vector field in the sense

that it does map the space R
n into itself. It happens because Φv depends on x but also on

sv. In this Section, we overlook this issue. We may consider that Φv is computed via an

algorithm for instance. However, we will keep with the name vector field.

Since sv is now a state variable, it needs to be assigned an initial value. Since it

is a virtual variable, i.e. it does not represent a physical state, we have the freedom to

assign it with the initial condition we desire. A natural choice for sv(0) is the parameter

of any of the closest points x∗ associated with the initial point x(0). Thus, we define

sv(0) = argmin
s

∥x(0) – r(s)∥2. (3.54)

Note that, given equation (3.54), the condition Dv(sv(0), x(0))
TT(sv(0)) = 0 holds.

As discussed in Section 3.2, the original relation DTT∗ = 0 (see Lemma 2) is fundamental

to achieve the convergence of the vector field to the curve C. If we manage to have the

Dv(sv(t), x(t))
TT(sv(t)) = 0 for all t > 0, the vector field Φv will converge to the curve

as the original field Φ in (3.12). We can accomplish that through the definition of the

dynamics of sv.

Consider that we define ṡv as

ṡv =
T(sv)

Ωv
ẋ, (3.55)

in which Ωv ≡ Ωv(sv, x)) = 1 – κ(sv)N(sv)
TDv. Recalling, κ(sv) is the curve’s curvature

computed at the parameter sv and N(sv) is the curve’s unit normal vector, also computed

at sv. Recalling Lemma 3, we have that ṡv in (3.55) is the time derivative of the optimum

parameter s∗ (assuming sv = s∗). Thus, if we start with condition in (3.54), and impose

the dynamics in (3.55) to the virtual parameter, we maintain the orthogonality condition

DT
vT(sv) = 0.

Note that, with this approach, we are not seeking the global optimum anymore,

but only the local one. In fact, the condition DT
vT(sv) = 0 holds for every local optimum

of the distance to the curve. The desired behavior is that the field will not be based

exactly on the Euclidean distance function. It will be based on a distance to the curve

that may be the shortest only locally. Thus, if the current parameter is sv = s∗ and

the trajectory passes through a singularity, sv will no longer correspond to the shortest

distance to the curve, but will still ensure the property of interest, which is DT
vT(sv) = 0.

Also, the variable sv will not be subjected to a discontinuity.
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Remark 6. The computation of Ωv in (3.55) requires that N(sv) is well defined. The

case it is not defined corresponds to a straight path or an inflection point of C. However,
in such cases we have κ(sv) = 0. Since ∥N∥ = 1 we have that Ωv = 1.

Ideally, if we impose the dynamics in (3.55) to sv we can keep the condition

DT
vT(sv) = 0. However, this would be a feedfoward only controller. Any uncertainty

on the variable ẋ would make xv no longer be a local closest point on the curve, and thus,

DT
vT(sv) ̸= 0. In order to solve this issue, we propose a corrective action to maintain the

condition DT
vT(sv) = 0. Thus, we consider the following propagation law for sv

ṡv =
T(sv)

Ωv
ẋ+ ksD

T
vT(sv), (3.56)

in which ks > 0 is a constant. If the condition DT
vT(sv) = 0 holds, we have no corrective

action, and only the first parcel is able to keep the condition true. In the case this

condition does not hold, the term ksD
T
vT(sv) does not vanish. Figure 3.3 illustrates the

control action ksD
T
vT(sv). In the left, it shows a situation in which xv is ahead of x∗. In

this case, the dot product DT
vT(sv) is negative, thus, it will slow down the propagation of

sv. On the right, the opposite situation happens, and the term ksD
T
vT(sv) will accelerate

the propagation of sv. Over time, one may expect that sv → s∗ even if sv(0) ̸= s∗.

x
xv

x$
Dv

T(sv)

C

x

xv

x$

Dv

T(sv) C

Figure 3.3: Illustration of the control action that tries to make sv evolve so thatD
T
vT(sv) =

0. On the left, a situation when sv is ahead of the local optimum. On the right, the
opposite situation, sv is behind s∗.

Now, we need to comment the situation in which Ωv, in (3.56), is zero. If Ωv = 0,

we have a problem in the propagation of sv. Thus, we cannot say that the field Φv is

totally free of singularities. Given the definition Ωv = 1 – κ(sv)N(sv)
TDv, we have that

the condition for Ωv = 0 is

N(sv)
TDv =

1

κ(sv)
. (3.57)

Remember that, by definition, ∥N∥ = 1, which makes Dv = ∥Dv∥ ≥ N(sv)
TDv.

Thus, the condition Ωv = 0 implies Dv ≥ κ(sv)
–1. Mathematically

Ωv = 0 =⇒ ∥Dv∥ ≥ 1

κ(sv)
. (3.58)
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Consider κmax = max
s
κ(s). If we assume Dv < κ–1max we avoid the possibility of

Ωv = 0, and consequently, a singularity in the computation of ṡv. In fact, this argument

corresponds to the contraposition of the sentence in (3.58). Mathematically

∥Dv∥ <
1

κ(sv)
=⇒ Ωv ̸= 0. (3.59)

Given the sentence in (3.59), we can ensure Ωv ̸= 0 if we impose the following

constraint on the initial condition

Xv =

{

x ∈ R
n | D(x) < 1

κmax

}

. (3.60)

The initial set Xv, in (3.60), has a definition similar to the set X0, in (3.49), however

it is much easier to compute. Since κ(s) is a local property, κmax can be computed from

the simple evaluation of κ(s) in the unidimensional curve C.
As we comment in the beginning of this Section, it is not our intention to prove the

stability of the guidance strategy using the augmented vector field Φv, in (3.53), along

with the propagation law in ṡv, in (3.56). The methodology presented in this Section has

a practical purpose. A better mathematical investigation of this theory is left to a future

research. In practice, the use of the augmented field approach proposed in this section

has some advantages. We list them below:

• It provides a vector field, Φv, which is well defined when the set s∗ is not a singleton.

• The field Φv enables the consideration of curves with self intersection, which were

intractable with the original field Φ. See Assumption 1.

• The computation of Φv does not require an optimization problem to be solved every

time step. The cost of propagating the parameter sv is way computationally cheaper.

The optimization problem is solved only once, to compute the initial value of the

virtual variable sv.

• It enables the computation of an initial set, Xv in (3.60), that is only dependent on

the curve’s maximum curvature. Starting on this set singularities on the computa-

tion of Φv are prevented.

The point xv(sv) in Definition 13 may look like as a reference trajectory. However,

note that it is not defined by time, but on the propagation of the virtual variable sv. As we

discussed in Section 2.1.1 of the related works (Chapter 2), the vector field path controller

does not have some issues that may occur in simple trajectory tracking approaches. The

propagation of sv is dependent on the robot’s speed ẋ. If a temporary mechanical problem

makes the robot stop, for instance, the propagation of sv stops as well, since ṡv in (3.56)

will be zero. We emphasize that the computation of ṡv requires a speed measurement ẋ.

This is what enables the propagation to stop when the robot stops. If this measurement
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is not available, we can assume that ẋ = Φv, i.e., the robot is following exactly the field

reference. In this case, if the robot stops, the propagation of sv will continue. In practice,

the system will converge to a situation similar to the one in the left of Figure 3.3, since

the term ksD
T
vT(sv) will start to act. If we choose ks high enough, the distance between

x∗ and xv will be small. Since sv is a virtual variable, the gain ks can be set to a high

value without any practical issue.

This effect that the “reference point” stays in front of the robot when it stops is

also present in the singularity free vector field theory proposed in [83]. However, here we

have an independent parameter, ks, that allows to play with the distance in which the

system will stabilize. Equivalently, how far from s∗ will the parameter sv stop.

To end this Section, we emphasize that the theory presented here shall be further

analyzed. A better mathematical investigation may be done to evaluate the behavior of

the field Φv. For now, it can be used in practical implementations mainly to improve the

computational efficiency of the controller and to incorporate the ability to consider curves

with self intersections.

3.4 Incorporation of obstacles

In this Section, we show how the vector field designed in Section 3.2 can be aug-

mented to incorporate an obstacle deviation feature. Similar to what was proposed in

[60], the approach to deviate from the obstacles will be their circulation. We show how

the specific vector field structure presented in Section 3.2 can be easily applied to define

a field that circulates an obstacle. As the field that converges to a path is computed from

the closest point in this path, the contouring field can be inferred from the knowledge of

the closest point in the obstacle.

In practice, to apply the vector field designed in this Section we can adopt two

approaches. In the first approach, one needs to know the geometry of all obstacles in the

workspace. In this case, an algorithm must compute the closest point of the obstacle set.

The second option is to have a LiDAR attached to the robot, so that it can detect the

obstacle points around it. Then, a simple iteration through these points can provide the

closest one.
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3.4.1 Obstacle contour

In this Subsection, we first establish some basic definitions and then we proceed

to the definition of the vector field that contour an obstacle.

3.4.1.1 Initial definitions

We aim to show how the vector field described in Section 3.2 can be used to make

a robot contour an obstacle while keeping a fixed distance from it. The Euclidean vector

field is computed from the the closest point on the reference curve. In order to contour

an obstacle, its closest point is used with a similar purpose.

Consider the set of collision points O(t). A point xo ∈ O(t) if xo is a collision

point, in other words, a point that belongs to an obstacle. In order to navigate safely, the

robot’s position x must be at a minimum distance from any xo ∈ O(t), ∀ t.

In Section 3.2, the vector field was computed from the closest point on the path,

called x∗. Now, in order to apply the vector field to make the robot contour an obstacle, we

will consider the closest point x∗o on the obstacle. Consider then the following definition:

Definition 15. The closest point x∗o(x, t) : Rn×R
+ → R

n that belongs to an obstacle is

given by

x∗o(x, t) = arg min
xo∈O(t)

∥x – xo∥2. (3.61)

We also define the distance quantities between the robot and the obstacle set:

Definition 16. The distance vector to the obstacle set Do(x, t) : R
n×R

+ → R
n and the

scalar distance to the obstacle set Do(x, t) : R
n×R

+ → R
+ are obtained as

Do(x, t) = x – x∗o(x, t), (3.62)

Do(x, t) = ∥Do(x, t)∥. (3.63)

In order to circulate the obstacle, the robot will attempt to keep a distance λ > 0

from the it. In practice, it is also necessary that λ is greater than the robot’s safety radius.

Thus, we consider the set of points that are a distance λ from the obstacle set O(t).

Definition 17. The equidistant set from the obstacle set is defined as

So(t) = {x ∈ R
n : Do(x, t) = λ} . (3.64)
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Thus, the vector Do can easily be used to achieve the convergent component of

the field. In order to compute a tangent component, we need to respect the requirement

that it is perpendicular to the vector Dλ ∥ Do.

In the case of fields in two dimensions, n = 2, there is only one possible direction

for the tangent component. In the case n > 2 there is more than one possible direction.

We propose an additional vector field to choose among the possible directions. Let A(x, t)

be this additional auxiliary field. Then the tangent component of the field to circulate

the obstacle, let us call it Tλ, is computed by removing the component of A(x, t) in the

direction of ΨG. Let the unit vector ∇Dλ = Dλ/Dλ. Then we have

Tλ(x, t) =
Π∇Dλ

(x, t)A(x, t)

∥Π∇Dλ
(x, t)A(x, t)∥ , (3.67)

in which Π∇Dλ
(x, t) is the projector on the null space of ∇Dλ. Vector Tλ(x, t) is basically

the normalized version of A(x, t) without its component in the direction of ΨG(x, t). For

now, we assume that A(x, t) is such that Π∇Dλ
(x, t)A(x, t) never vanishes.

Now, given thatΨT
GTλ = 0, the tangent component of the vector field that contours

the obstacle is given by

ΨH(x, t) = H(Dλ)Tλ(x, t). (3.68)

In the case of moving obstacles, the following time feed-forward component can be

computed:

ΨT(x, t) = ΠTλ
(x, t)

∂Dλ
∂t

. (3.69)

in which ΠTλ
(x, t) is the projector on the null space of Tλ.

Finally, the vector field Ψ(x, t) that contours an obstacle at a fixed distance is

defined by

Ψ(x, t) = ηΨG(x, t) + ηΨH(x, t) +ΨT(x, t), (3.70)

where η is computed to achieve ∥Ψ(x, t)∥ = vr, as described in Section 3.2.

Note that the vector field defined in (3.70) preserves the structure of the field

presented in Section 3.2. The considered convergence component is not directly defined

from the closest point on the path, but passes through the closest point on the obstacle.

The tangent component preserves its fundamental property, that is the orthogonality with

the convergent one. The difference now it that, for the n dimensional case, the field does

not converge to a path, but to the surface So around the obstacle and moves along it

according to the indication of the auxiliary field A.

Figure 3.5 depicts, for the time independent case and n = 2, two fields that contour

an obstacle. On the left we show the auxiliary fields A(x), and on the right we show the

associated field Ψ(x) that circulates the gray obstacle. In the top example, the field A(x)

is constant. In this case, the field Ψ(x) circulates the obstacle clockwise in the top and
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Ψ(x, t), defined in (3.70), will be called the contouring field, since it is designed to contour

the obstacle.

The idea of the navigation approach is to follow the vector field to the original

path C when there is no eminent collision with any obstacle. When an obstacle is in the

way, the navigation approach will be the circulation of the obstacle.

By eminent collision we mean a situation that respects two conditions. First, the

direction of the original field points in the direction that makes the distance to the obstacle

decrease. Second, the distance between the state x and the closest obstacle is less than a

threshold Din. If these conditions are met, the navigation uses the contouring field and

the robot will attempt to contour the obstacle at a distance λ. It is necessary that the

value of Din is such that λ < Din.

In order to compute the field Ψ(x, t) we use the auxiliary fieldA(x, t) as the original

field Φ(x, t), i.e. A(x, t) = Φ(x, t). With this strategy, the system will attempt to contour

the obstacle as close as possible to the original field that converges to the curve. Note

that, by making A = Φ, we can not ensure that, in equation (3.67), Π∇Dλ
Φ ̸= 0. Deeper

discussions on this issue are left for a future work.

In order to avoid abrupt transitions between the fields Φ and Ψ, we also consider

an intermediate state when the distance between x and the set O is greater than Din but

smaller than a distance D0
in > Din. In this state, the field will be defined as a combination

of the fields. To compute this composite field, consider the parameter θ defined as

θ(x, t) ≡ θ =
Do(x, t) – Din

D0
in – Din

. (3.71)

Note that θ = 1 when Do = D0
in, in other words, when the transition Φ → Ψ starts.

When the transition is complete θ = 0. In the transition state, when Din < Do < D0
in, we

have θ ∈ [0, 1]

The navigation vector field F(x, t) that is able to follow a path while deviating

from the obstacles is defined as

F(x, t) =







Φ(x, t) if DT
o Φ ≥ 0 or Do > D0

in,

vr
θΦ(x, t) + (1 – θ)Ψ(x, t)

∥θΦ(x, t) + (1 – θ)Ψ(x, t)∥ if DT
o Φ < 0, Din ≤ Do ≤ D0

in,

Ψ(x, t) if DT
o Φ < 0, Do < Din,

(3.72)

in which the field A used to compute Ψ is defined as A = Φ. In the transition phase

(Din ≤ Do ≤ D0
in) the composite field is computed through a convex combination of Φ

and Ψ followed by a normalization.

Figure 3.6 illustrates the vector field defined in (3.72). In the figure, the dark

shapes are the obstacles. The field depicted in black converges to the curve in black while

avoiding the obstacles. In the blue region, the original field Φ is totally active. In the

green region, we have the composite field, and in the yellow region the field Ψ is totally
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Chapter 4

Quadcopter control

In this Chapter, we show how the vector field described in Chapter 3 can be used to control

a quadcopter. A controller that takes into account the field’s derivatives is proposed and

its convergence properties formally analyzed. An analogous approach, applied to a fixed-

wing UAV, was presented in [64]. The idea is now extended to a quadcopter model that

takes the thrust force and the angular velocities as control inputs. As we will define,

the position of the aerial vehicle is represented by p. The objective is to make this state

behave as the state x in the simple integrator of the previous Chapter.

A paper with the results presented in this Chapter was published on the Interna-

tional Conference on Robotics and Automation (ICRA), in 2020, with the title “Robust

quadcopter control with artificial vector fields” [63].

4.1 Control problem setup

Consider p ∈ R
3 the position of the robot and v ∈ R

3 its velocity, represented in the

world frame. Assume a world frame with the z axis pointing up and gravity acceleration

pointing down with value g. Let Rw
b ∈ SO(3) be a rotation matrix representing the

attitude of the quadcopter (body) with respect to the world frame. Based on [43], the

following vehicle model is assumed

ṗ = v, (4.1a)

v̇ = Rw
b ẑ

τ

m
– gẑ+

fd(v)

m
+
δτ

m
, (4.1b)

Ṙ
w
b = Rw

b S(ω + δω), (4.1c)

in which ẑ is the vector [0, 0, 1]T, m is the mass of the vehicle, and fd(v) is a known

drag force, which will be specified later, expressed in the world frame. The control inputs

are the total thrust force τ and the angular velocity vector ω ∈ R
3, expressed in the

body frame. The matrix S(ω) is the skew-symmetric matrix associated with the angular
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velocity ω = [ωx, ωy, ωz]
T. The inputs δτ ∈ R

3 and δω ∈ R
3 represent unknown but

bounded disturbances on the thrust and on the angular velocity command. The term

δτ may also account for errors in the model of the drag force. We assume that these

uncertainties are norm-bounded, i.e. ∥δτ∥ ≤ ∆τ and ∥δω∥ ≤ ∆ω.

The goal is to make the vector p converge to a time-varying curve C(t) ⊂ R
3×R

+,

by establishing a control law based on the artificial vector field Φ(p, t) : R3×R
+→R

3,

designed in Chapter 3 (or any other vector field). It is required that the vector field Φ is

twice differentiable, i.e., Φ ∈ C2. Considering the methodology presented in Chapter 3,

a field with such property can be achieved by assuming a curve C(t) that is three times

differentiable, since one degree of continuity is lost with the computation of the tangent

vector. Besides the definition of a control law, it is necessary to analyze the influence of

the bounded disturbances δτ and δω. In other words, how far the robot will be from the

curve when disturbances are present.

The problem addressed in this Chapter can be divided in the following two sub-

problems:

Problem 2. Find control laws for the signals τ and ω such that the position state p of

(4.1), with δτ = 0 and δω = 0, converges to an integral line of the field Φ(p, t) and,

furthermore, p(t) → C(t) as t → ∞.

Problem 3. Given the bounds ∥δτ∥ ≤ ∆τ and ∥δω∥ ≤ ∆ω, find a maximum tracking

error for the state p. In other words, find an ultimate bound for the robot’s position error.

4.2 Control scheme

In this section, we will develop a three-layer controller to solve Problem 2. The

outer loop is the guidance strategy based on the vector field proposed in Chapter 3. The

intermediate layer is a controller that computes the necessary acceleration for the vehicle

to follow the vector field. The inner loop controls the orientation of the vehicle necessary

to impose the computed acceleration. The convergence proofs will rely on the ISS of the

closed loop systems. Figure 4.1 depicts the control that will be presented. Although we

illustrate the controller as a cascade connection, we emphasize that all modules run in the

same frequency. The velocity reference Φ and the acceleration reference ar are internal

variables of the controller.

In this Chapter, we consider the vector field Φ previously presented. However, one

should have in mind that the quadcopter controller presented here can be used along with

the fields Ψ, Φv and F, which are variations of Φ.
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Similar to what was made in the previous Chapter, let us now insert a disturbance

in equation (4.2), which will become v̇ = ad + δa. The disturbance δa is norm-bounded,

i.e. ∥δa∥ ≤ ∆a.

Lemma 10. Given a norm-bounded disturbance δa, ∥δa∥ ≤ ∆a, the error of the velocity

v converges to the set

Iv(p, t) =
{

v ∈ R
3 | ∥Φ(p) – v∥ < ∆a

kv

}

. (4.6)

Proof. Assuming the perturbed system, the time derivative of the Lyapunov function Vv

becomes

V̇v = –kv∥Φ – v∥2 + (Φ – v)Tδa. (4.7)

Using the bound ∥δa∥ ≤ ∆a, we have the following:

V̇v ≤ –kv∥Φ – v∥2 + ∥Φ – v∥∆a. (4.8)

From (4.8), we see that ∥Φ – v∥ > ∆a/kv =⇒ V̇v < 0. Note also that ∥Φ – v∥ = ∆a/kv

represents a closed level set of Vv, since Vv is radially unbounded in v for a fixed p.

Lemma 11. Given a norm-bounded disturbance δa, ∥δa∥ ≤ ∆a, the error of the position

p, from (4.2), converges to the invariant set (3.38) with ∆v = ∆a/kv.

Proof. From Lemma 10, there exists an instant ta > 0 from which the error of velocity

will remain below ∆a/kv for all t > ta. From that instant, an upper bound of δv = v – Φ

is ∆v = ∆a/kv, which can then be used with Proposition 3 when t > ta.

In conclusion, the system in (4.2) is also input-to-state stable when the input is

an additional term δa in the dynamics of v. Given a bounded ∥δa∥ < ∆a, the bounded

disturbances in v and p are given by Lemma 10 and Lemma 11, respectively.

In this section, the controller in (4.3) was used to impose the dynamics ṗ = Φ(p, t)

to a system described by the double integrator model in (4.2). In the coming section,

the same idea will be used to impose the dynamics of the second-order integrator to the

quadcopter model in (4.1).

4.2.2 Quadcopter control

Finally, the complete system in (4.1) can be considered. Now, the objective is to

compute a thrust τ and an angular velocity ω so that the dynamics of p, in (4.1), behaves
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according to Φ(p, t). This will be possible by the imposition of the dynamics in (4.2) to

the model in (4.1). For now, consider that δτ = 0, and δω = 0.

Consider ẑb = Rw
b ẑ, as the z body axis of the vehicle written with respect to the

inertial frame, i.e. the direction where the thrust acts on. From (4.1b) we have that

ẑbτ = mv̇ +mgẑ – fd. (4.9)

In fact, the quadcopter is an underactuated vehicle [85], and equation (4.9) represents a

nonholonomic constraint of second order. Basically, it shows that the total thrust only acts

in one direction, specified by the vehicle’s attitude. Consider now a desired acceleration

ad, defined in (4.3), which we want to impose to the system in (4.1). It is clear that the

dynamics of the double integrator (v̇ = ad) in (4.2) can be instantaneously imposed to

(4.1) if and only if ad is such that ẑbτ ∥ mad+mgẑ– fd, where ∥ indicates that one vector

is parallel to the other.

The idea to solve this problem is to consider an inner control loop in order to align

the vector ẑb with the vector ar = ad+gẑ– fd/m. Thus, if ẑb ∥ ar the desired acceleration

ad can be imposed by selecting τ = m∥ar∥.
In order to align ẑb with ar, consider a reference rotation matrix Rw

r ≡ Rw
r (t).

Then, the input ω will be used in the input of the inner loop to allow the state matrix

Rw
b , the vehicle’s attitude, to track the reference Rw

r . Formally, the objective is to make

Rw
b (t) → Rw

r (t) as t → ∞.

In order to respect constraint (4.9), with v̇ = ad, the third column of Rw
r must be

given by ẑr = ar/∥ar∥. Now, since the final objective is to make the drone converge to

the curve C(t), its heading angle can be freely chosen. Thus, given a continuous reference

of heading ψr, the vector x̂r, first column of Rw
r , can be defined from a vector wψ that

points in the direction with heading angle ψr. Let wψ = [cos(ψr) sin(ψr) 0]
T. The vector

x̂r must be orthogonal to ẑb and have a unit norm, thus, we define

x̂r =
wψ – wT

ψ ẑbẑb

∥wψ – wT
ψ
ẑbẑb∥

. (4.10)

In (4.10) the vector x̂r is computed by removing the component of wψ in the direction of

ẑr and normalizing the result. Given the definitions of ẑr and x̂r, the vector ŷr is computed

according to ŷr = ẑr × x̂r. Finally, Rw
r = [x̂r ŷr ẑr]. Note that ar ∈ C1 =⇒ ẑr ∈ C1,

and since ψr is continuous, x̂r ∈ C1. Given the definition of ŷr, it belongs to class C1 and

then Rw
r ∈ C1.

In the case that Rw
b = Rw

r , the control law for τ should be τ = m∥ar∥. In this way,

the double integrator dynamics is imposed with v̇ = ad. However, when Rw
b ̸= Rw

r , the

law τ = m∥ar∥ is not required. In this case, neither this simple law nor any other will be

able to impose the dynamics of the double integrator instantaneously. Here, the law for

τ will be chosen so that the norm of the difference between the reference acceleration, ar,
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and the applied one, ẑbτ/m, is minimized. Thus, before the definition of a control law for

ω, the control law for τ is defined as

τ = argmin
τ ′

∥
∥
∥
∥
ar –

τ ′

m
ẑb

∥
∥
∥
∥

2

= m(ẑTb ar). (4.11)

Note that if ẑb = ẑr we have τ = m∥ar∥.
Let us now define the control law for ω. In order to do that, consider the error

matrix Re, which represents the misalignment between the reference frame Rw
r and the

body frame Rw
b . Thus, we have Re = (Rw

b )
TRw

r . The control law for ω must make

lim
t→∞

Re = I. The time derivative of Re is:

Ṙe = (Ṙ
w
b )

TRw
r + (Rw

b )
TṘ

w
r . (4.12)

Equation (4.12) can be written as

S(ωe)Re=(S(Rw
b ω)R

w
b )

TRw
r + (Rw

b )
TS(Rw

b ωr)R
w
r , (4.13)

in which ωr ∈ R
3 is the rotation velocity of the reference rotation matrix Rw

r , written

with respect to the body frame. The velocity ωe ∈ R
3 is the rotation of the error matrix

Re, also written in the body frame. In (4.13), note that Rw
b S(ω) = S(Rw

b ω)R
w
b .

Now, let vectors r, s ∈ R
3 and a matrix R ∈ SO(3). Given the facts that

S(Rr)=RS(r)RT, S(r)T= – S(r)=S(–r), S(r) + S(s)=S(r + s), and Re=(Rw
b )

TRw
r , af-

ter applying some algebraic manipulation in (4.13), we obtain the relation S(ωe)Re =

S(–ω + ωr)Re, thus:

ωe = ωr – ω. (4.14)

Now, it is necessary to compute ωr. We know that Ṙ
w
r = S(Rw

b ωr)R
w
r . Using the

fact S(Rr) = RS(r)RT we obtain:

S(ωr) = (Rw
b )

TṘ
w
r (Re)

T. (4.15)

Thus, if we compute the matrix Ṙ
w
r numerically, ωr can be obtained from equation (4.15).

Note that, since Rw
r ∈ C1, it is differentiable and therefore we can obtain ωr.

Now, let us project a law for ωe so that lim
t→∞

Re = I. As stated by the Euler’s

rotation theorem, any orientation displacement can be expressed as a single rotation of

an angle β around a given axis, indicated by a unit vector n̂. Thus, consider the following

map:

Re 7→ (n̂, β). (4.16)

The following lemma establishes the influence of an angular velocity on the angle

parameter β.

Lemma 12. Consider the map R 7→ (n̂, β). If an angular velocity r ∈ R
3 is applied to a

frame represented by the matrix R (such that Ṙ = S(r)R), the following relation holds:

β̇ = n̂Tr. (4.17)
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Proof. Consider a quaternion [22] q = [qw, qx, qy, qz] equivalent to the rotation matrix R.

Given the representation (n̂, β), the element qw of the quaternion can be written as qw =

cos(β/2). Taking the time derivative of qw we obtain (i) q̇w = –(1/2) sin (β/2) β̇. Now, if

an angular velocity r is applied to the quaternion q, we know, by the rule of quaternion

derivative, that the time derivative of qw is given by (ii) q̇w = –(1/2) sin (β/2) n̂Tr.

Comparing (i) and (ii) we obtain (4.17).

We need that lim
t→∞

Re = I, which occurs if and only if β → 0. Consider ωe =

–kβ sin(β)n̂, with kβ > 0. From (4.14), the control law for ω will then be defined as

ω = ωr + kβ sin(β)n̂. (4.18)

Intuitively, the first term in (4.18) is a feedforward that compensates for changes on the

reference rotation matrix Rw
r . The second term acts to decrease the angle error β. Seeking

a formal proof, we establish the following Lemma.

Lemma 13. Given the control law in (4.18), lim
t→∞

Re = I.

Proof. Consider the Lyapunov candidate function Vβ = 1 – cos(β), as in [64]. Note that

Vβ(β) ≥ 0 and Vβ(0) = 0. The time derivative of Vβ is

V̇β = sin(β)β̇. (4.19)

Using the result in Lemma 12 and equation (4.14), we have that

V̇β = sin(β)n̂Tωe = sin(β)n̂T(ωr – ω). (4.20)

Replacing the control law in (4.18) into (4.20), we obtain

V̇β = sin(β)n̂T(–kβ sin(β)n̂) = –kβ sin(β)
2 ≤ 0. (4.21)

We have that –π < β < π =⇒ V̇β ≤ 0 with V̇β = 0 ⇐⇒ β = 0. If β ∼ π we also

have V̇β = 0. However, this corresponds to an unstable equilibrium, since β ∼ π is the

maximizer of Vβ(β) and V̇β(β + ϵ) < 0 for any small ϵ. Thus, we can conclude that

lim
t→∞

β = 0, which corresponds to Re→I.

Note that the law in (4.18) is invariant to shifts of 2π in β. The price we pay is

the existence of a fixed point in β ∼ π. In practice, this is not a big problem, since this

equilibrium is unstable, [64]. Note also that when β ∼ 0 or β ∼ π the vector n̂ is not

defined. This is not a problem because in both cases we have sin(0)= sin(π)=0, thus the

control law is well defined and, in this case, given by ω = ωr.

Proposition 4. The state p of the system in (4.1), under the control law given by (4.11)

and (4.18), converges asymptotically to the curve C(t).
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Proof. From Lemma 13 we know that the control law in (4.18) with ωr from (4.15) ensures

asymptotic convergence of Rw
b to Rw

r . Also, according to (4.11), as Rw
b → Rw

r we have

that mar → τ ẑb and consequently v̇ → ad. Meaning that, given δa = v̇ – ad, there exists

ta > 0 such that ∥δa∥ < ϵ ∀ t > ta, with ϵ > 0 as small as we want, i.e the dynamics

of the controlled double integrator in (4.2) will be imposed to the quadcopter. When the

double integrator has the input ad, defined in (4.3), we know, from Lemma 10 that its

state p converges to C. A direct consequence of Lemma 11 is that the double integrator is

input-to-state stable when the amount δa is considered as an input. If ∥δa∥ → 0, Lemma

4.7 of [37] ensures that the state p of the vehicle also goes to C(t).

Proposition 4 finally states that the control laws in (4.11) and (4.18) are the solution

to Problem 2.

4.3 Disturbance on control inputs

Finally, we now consider the influence of the disturbances δτ and δω on the con-

trolled system. Note that in the previous sections we considered some sort of “virtual

disturbances” on velocity, δv, and on acceleration, δa. However, these disturbances were

only considered with the purpose of proving the convergence of the undisturbed system

by showing that each individual layer is ISS. In this section, we use those results to prove

that disturbances on the control inputs originate bounded disturbances on the position

of the robot.

Consider now the following lemma, which shows that a bounded disturbance on

the angular velocity causes a bounded disturbance on the attitude error.

Lemma 14. If the disturbance δω is considered, with ∥δω∥ ≤ ∆ω, the angle β associated

with the attitude error will converge to the invariant set

Iβ =

{

β ∈ R | β < ∆β(∆ω) ≡ asin

(

∆ω

kβ

)}

, (4.22)

in which ∆β ≡ ∆β(∆ω) is the ultimate bound for β.

Proof. Consider the Lyapunov function Vβ = 1 – cos(β), as in Lemma 13. If we assume

δω ̸= 0, V̇β in (4.21) becomes

V̇β = –kβ sin(β)
2 + sin(β)n̂Tδω. (4.23)
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Given that ∥n̂∥ = 1 and ∥δω∥ < ∆ω we have that ∥n̂Tδω∥ ≤ ∆ω. Thus

β > asin

(

∆ω

kβ

)

=⇒ V̇β < 0. (4.24)

Since V̇β < 0 ∀ β /∈ Iβ , the set Iβ is positively invariant.

Note that, given the result in (4.24) the gain kβ must be such that kβ > ∆ω, as

in [64].

Let us now analyze the influence that the attitude error ∆β and the error δτ have on

the vehicle’s acceleration. Comparing the right side of (4.1b) in the ideal case Rw
b = Rw

r ,

δτ = 0 with the disturbed case Rw
b ̸= Rw

r , δτ ̸= 0, the error on the vehicle’s acceleration

can be written as

δa =

∥
∥
∥
∥

τ

m
ẑr –

τ

m
ẑb –

δτ

m

∥
∥
∥
∥
≤ τ

m
∥ẑr – ẑb∥+

∥
∥
∥
∥

δτ

m

∥
∥
∥
∥
≤ ∥ar∥ ∥ẑr – ẑb∥+

∆τ

m
, (4.25)

in which the inequality is obtained by (i) triangular inequality and (ii) making τ = m∥ar∥.
It holds because, in fact, τ is computed accordingly to (4.11), and it is the value that

minimizes the norm of ẑr – ẑb.

Since the vectors ẑr and ẑb have a unit norm, the law of cosines implies that

∥ẑr – ẑb∥ =
√

2
(
1 – cos(∆β)

)
, which is the length of the chord with angle ∆β in a circle

with unity radius. Using the fact that the arc with angle ∆β is no shorter than the

chord with the same angle, it is true that ∥ẑr – ẑb∥ ≤ ∆β . Using this result in (4.25) and

considering that the thrust force is limited by a maximum τmax, i.e. ∥ar∥ ≤ τmax/m, an

upper bound for the acceleration error is

∆a =
τmax

m
∆β +

∆τ

m
. (4.26)

The first term in (4.26) is an acceleration error due to an attitude error. The second one

is due to the thrust error directly. Now, using the value of ∆β from (4.22) we obtain

∆a =
τmax

m
asin

(

∆ω

kβ

)

+
∆τ

m
. (4.27)

In order to state our final result, let us define functions to compute the ultimate

bounds defined until now. Let γ1(∆v), γ2(∆a) and γ3(∆τ , ∆ω) be the functions that

return the ultimate bounds defined in (3.38), (4.6) and (4.27), respectively. They are

defined as:

γ1(∆v) = G–1
(

∆v

vr – vm

)

,

γ2(∆a) =
∆a

kv
,

γ3(∆τ , ∆ω) =
τmax

m
asin

(

∆ω

kβ

)

+
∆τ

m
.

(4.28)
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Proposition 5. If the uncertainties δτ and δω are present, with ∥δτ∥ ≤ ∆τ , ∥δω∥ ≤ ∆ω,

the position state of the quadcopter will converge to the invariant set given by:

ID(t) =
{

p ∈ R
3 | D(p, t) < γ1 ◦ γ2 ◦ γ3(∆τ , ∆ω)

}

. (4.29)

Proof. Using the function γ3(∆τ , ∆ω), we obtain an upper bound for the quadcopter’s

acceleration error given the control disturbances. This value is then used in function

γ2(∆a), according to Lemma 10, to obtain an upper bound to the vehicle’s velocity error.

Finally, the velocity error ∆v is used in function γ1(∆v), according to Proposition 3,

to obtain an upper bound for the function D, which is a measurement of the vehicle’s

distance to the curve.

Proposition 5 presents a solution to Problem 3.
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Chapter 5

Results

The first content of this chapter is a brief description of how the methodologies proposed in

Chapters 3 and 4 can be implemented. Next, we present some simulations and experiments

that validate the theory. The experiments were performed with the robots described in

Section 1.2.

5.1 Implementation methods

In order to apply the developed vector field methodology to a given parametric

representation r(s, t) of a curve C(t), the optimization problem in (3.1) must be solved,

i.e. s∗(x, t) must be found. A two-stage strategy is proposed for solving this problem. In

the first stage, M equally-spaced samples are computed in the domain of s, i.e., sk, k =

1, 2, ...,M such that sk+1 = sk + ∆s. By iterating over sk, the k∗ that minimizes ∥x –

r(sk∗ , t)∥ is selected. In the second stage, a golden search method is used, which has a

logarithmic complexity [61]. It assumes the domain sk∗ – ∆s ≤ s ≤ sk∗ + ∆s and finally

obtains s∗(x, t). The first stage solves the problem of possible local minima, finding the

region where the global minimum of (3.1) is. The second stage refines the solution of the

first stage assuming a limited domain of s, in which the problem in (3.1) is assumed to

be convex. This two-stage method gives a low computation cost to obtain the distance

function with sufficient precision.

The tangent vector T(s∗, t) is easily computed with equation (3.5). An option is

to compute it numerically as T(s∗, t) ≈ [r(s∗+δs, t) – r(s∗, t)] /δs, for a sufficiently small

δs > 0. If s is not the arc length (most common case), we still need to normalize T(s∗, t).
The computation of the time feedforward term requires the computation of ∂D

∂t . In

order to compute it numerically, the optimization problem in (3.1) is solved once more,

now considering the curve at a time t+δt. Thus, given a small positive δt we can compute
∂D
∂t = –∂r

∂t ≈ [r(s∗(x, t), t) – r(s∗(x, t+δt), t+δt)] /δt .
If the curve C(t) is represented by a sequence of points, the necessary vectors can
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also be computed. Basically, we can use only the first stage described before, since the

second stage requires the function r(s, t). The derivatives associated with the computation

of T and ∂D
∂t can be estimated from the closest point on C(t) and its neighbors. If the

sequence of points is too sparse, a simple interpolation can be used to obtain a function

r(s, t), for instance, the one considered in [4].

In order to implement the quadcopter control method described in Chapter 4,

besides the computation of the vector field, we need to compute the control laws for τ

and ω. Assuming a function that returns the vector field, the Jacobian matrix JΦ, the

compensation ∂Φ
∂t , and the matrix Ṙ

w
r can all be computed numerically. If the quadcopter’s

path is represented by a sequence of points, it is fundamental to obtain an analytic

representation for the curve, with polynomial interpolation for example. This is due to

the higher-order of the derivatives computed numerically. In our quadcopter examples,

we only considered curves defined by parametric equations.

In Section 3.3.3 we commented that the field Φv is based on a local minimum of

the distance to the curve. The parameter sv corresponds to a local optimum. When

the implementation of the vector field departs from a curve represented by a sequence

of points, there is a simple strategy to implement this feature. Instead of looking for

the closest point in the entire curve (whole set of points), this search is performed only

in the vicinity of the current closest point. Considering a cyclic parametrization, this

optimization can be represented mathematically as

sv[k + 1] = arg min
sv[k]–∆s≤s′≤sv[k]+∆s

∥x – r(s′)∥2, (5.1)

for a ∆s > 0. Again, we emphasize that this methodology is not formal. A better

mathematical formulation of this idea is a topic for future research.

5.2 Quadcopter results

In the following, we present simulations and real robot experiments that validate

the theory presented in Chapters 3 and 4.
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5.3.3 Simulations with a manipulator

Up to now, we have only considered the vector field designed in Chapter 3 for

problems in 2 and 3 dimensions. We now apply the methodology for a problem in 6

dimensions and in a non Euclidean space. We consider the control of a 6 degrees of

freedom Kuka KRL4 robot to draw a circle orthogonal to the ground with the tool in the

end-effector parallel to the ground. The vector field was applied directly to the robot’s

joint space. This implementation requires a simple trick, presented in Appendix B, to

compute the distance function, originally designed for the Euclidean space. In the case

of the Kuka robot, we can compute the curve C in the joint space by solving an inverse

kinematic problem. This can be done by using numerical methods.

It may be easier to consider the field in the workspace and use an inverse Jacobian

approach to control the manipulator. However, this would insert those recurrent problems

associated to singular configurations. The application of the field in the joint space does

not suffer with that. Moreover, the intention is to show how the vector field can be applied

in dimensions higher than three.

To simulate the application of the vector field in the control of the manipulator

taking into account its dynamics, we used the CoppeliaSim simulator3. We also used an

interface that allows the user to submit a reference joint speed computed using the distance

field, which is internally converted into torque by a control loop, an SGC structure.

The target curve C, mapped into R
6 using the replication trick (Appendix B),

was defined so that the last link of the robot’s kinematic chain performs a circle in a

plane orthogonal to the ground. Also, the manipulator’s tool should be orthogonal to the

circular face defined by the circle. This can be interpreted as a task of welding a circular

shape in a plane surface or drawing a circle on a whiteboard with a marker pen (either

way, the tool must be aligned with the surface’s normal).

Figure 5.29 shows, on the left, the CoppeliaSim scene used in the experiment. The

ciano trajectory was the one performed by the robot’s tool. On the right, we show a plot

where we can observe that the tool of the end-effector (blue axis) is indeed parallel to the

ground, aligned with the x axis. The initial condition had all joints with a zero value. It

corresponds to the arm stretched out in a singular configuration. Since our vector field

was applied directly on the joints, and no inverse kinematics was necessary to track the

vector field, this singular configuration caused no harm to the task.

3https://www.coppeliarobotics.com/
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Chapter 6

Conclusion and future work

In this thesis, we tackled two problems in the field of robot navigation, the guidance

problem and the control problem. First, we presented a novel vector field based method-

ology to solve the guidance problem. Then, we focused on a specific robot platform, a

quadcopter, and designed a controller that enables it to follow the proposed vector field.

The guidance solution generates vector fields in n dimensions that converge to and

follow time-varying curves. The strategy is based on the Euclidean distance function.

We recall four novel important properties/advantages of the vector fields constructed by

our method in comparison to previous works: (i) it can be easily constructed from a

parametric representation of the curve or even by a curve represented by a sequence of

points; (ii) its convergence pattern is isotropic on space, which facilitates the calibration

of the convergence gain of the field; (iii) it has a constant norm even for time-variant cases,

a novel result regarding fields with asymptotic convergence; and (iv) it does not contain

equilibrium points. All of these important theoretical and practical features emerge from

the use of the Euclidean distance as an error measurement function, instead of a general

analytic function. Disturbance in the assumed simple integrator model was taken into

account in order to evaluate the performance of the technique in real robot applications,

in which imperfections on the lower level controllers and other disturbances are always

present. The proposed field is not single-valuated in a region of measure zero in R
n.

Nevertheless, the simulations and experiments show that this is not a problem in practice.

Slightly modifications on the proposed vector field allowed to incorporate two fea-

tures. The first is the ability to consider curves with self intersections. The second is the

ability to deviate from obstacles while the curve is being followed. These theories are less

mathematically rigorous, and open a branch for future research.

Although the designed vector field methodology can be used in the guidance of

several robot platforms, we focused on the control of a quadcopter. A controller to

make this vehicle follow the designed vector field is then designed. The control laws

were first developed by considering a second-order integrator and then the control laws

for the quadcopter were derived. The whole system has a cascade-like connection, and

the asymptotic stability was proven via the property of input-to-state stability of each

individual loop. This was possible due to the consideration of disturbances in the velocity
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field, which is also a system with the ISS property. The designed path following controller

for the quadcopter incorporates features such as: (i) path controller based on artificial

vector fields; (ii) formal convergence proofs for generic time-varying curve shapes; and

(iii) consideration of disturbed control inputs.

Both the vector field methodology and the quadcopter controller were validated in

simulations and experiments performed with three real robots, both indoors and outdoors.

The simulations exemplify the behavior of the controller at high speeds while the real robot

experiments validate the framework in a real scenario. The vector field methodology

was also tested in a simulation with a robotic manipulator with 6 degrees of freedom.

The experiments with the ground robot, EspeleoRobô, some using a completely onboard

localization system and performed in unstructured environments, corroborate with the

robustness properties argued along the text.

Future work

The vector field proposed in Sections 3.1 and 3.2 has a strong mathematical for-

mulation. However, the augmented field (Section 3.3) and the obstacle deviation strategy

(Section 3.4) do not count with mathematical convergence proofs with the same level of

rigor. These modified versions of the original vector field are extensions that proved to

be effective in practice. However, they lack a better theory to support them. In fact,

those extensions of the vector field point to the future research that can be made upon

this thesis. In the following, we suggest possible directions for this future research and

present some ideas.

• The vector field Φv presented in Section 3.3 showed to behave well both in simulation

and real robot experiments. However, we did not provide a formal convergence proof.

Our arguments rely on the similarity of the field Φv with the original field Φ and

that we initialize the parameter sv with the optimal s∗. A future work may seek for

a rigorous convergence proof even when sv(0) ̸= s∗.

• The vector field Φv was constructed to avoid singularity problems when s∗ is not

unique. Although it serves this purpose, it is not globally free of singularities. We

showed that there is a problem in the propagation of sv when Ωv = 0. A future

research may seek for a different definition of the augmented field, still based on the

Euclidean distance, that is truly singularity free, i.e. for all x ∈ R
n.

• The field with the incorporation of obstacle avoidance property presented good
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results in practice. However, we did not provide convergence proofs for this variant

of the method either. In fact, before presenting convergence proofs, a convergence

definition must be made for the case in which there are obstacles in the curve, or

close to it. The standard asymptotic stability concept can not be used, since the

robot will eventually need to move away from the curve to avoid a collision. The

statement of a proper convergence definition when obstacles are present is also a

topic for future research.

• In possession of a proper definition of convergence in the case obstacles are present,

we may attempt to prove the convergence of the navigation proposed in Section

3.4. We believe that a proof for the generic n-dimensional case may be difficult to

achieve. A good starting point is the bidimensional case. Possibly, a proof based on

the convergence proofs of the bug algorithms may be possible to achieve. Seeking

for the proof, new insights in the definition of the composite vector field may also

appear.

• A better investigation of the presence of singularities in the vector field that deviates

from the obstacle is necessary. This may include a better evaluation of the strategy

to switch between the fields Φ, which converges to the curve C, and Ψ, which

contours the obstacle.

Now, regarding the theory presented in Chapter 4, future research can also be done

to improve the performance of the vector field based quadcopter controller we propose.

The improvement could be the consideration of a more complete vehicle model, which

does not neglect the rotational dynamics. This model may also include, for instance, the

gyroscopic effects of the propellers and other effects. Incorporation of integral action may

also be a good improvement to make the system reject constant disturbances. Regarding

the experiments with the ESPcopter, the setup can be improved to allow higher speeds in

the curve following. The improvement of the lower level PID controllers, responsible for

imposing the acro rate commands, may be a good starting point. These new experiments

may be a good way to better evaluate the performance of the controller and inspire new

ideas to improve it.
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Gonçalves, and G. M. Freitas. Autonomous system for a racing quadcopter. In 2019

19th International Conference on Advanced Robotics (ICAR), pages 547–552, 2019.



REFERENCES 128

[67] Adriano M. C. Rezende, Vinicius M. Goncalves, and Luciano C. A. Pimenta. Con-

structive time-varying vector fields for robot navigation. IEEE Transactions on

Robotics, pages 1–16, 2021.

[68] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning for

aggressive quadrotor flight in dense indoor environments. In Robotics Research, pages

649–666. Springer, 2016.

[69] Ashton Roza and Manfredi Maggiore. Path following controller for a quadrotor

helicopter. In 2012 American Control Conference (ACC), pages 4655–4660. IEEE,

2012.
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Appendix A

Approachability of singular points

analysis

Proposition 2 establishes asymptotic stability. However, the field is only defined in U ,
because outside this set there is no single definition for the vector field, and therefore a

natural question is whether or not the trajectory x(t) approaches these points eventually.

It will be established that for the time-invariant case, under some assumptions, no point

outside U is approachable.

Henceforth, we consider the time-invariant vector field Φ(x) in which we assume,

without loss of generality, that vr = 1. To handle approachability to points of discontinuity

of the vector field, the following convenient definition will be used.

Definition 18. Given a normalized vector field f(x), f : Rn 7→ R
n the point x is said to

be approachable by the direction d, ∥d∥ = 1, if the limit

lim
ϵ→0+

f(x – ϵd) (A.1)

exists and is equal to d.

Figure A.1 shows the intuition behind the result that will be derived in this sub-

section. Let us assume, for the sake of simplicity, that the vector field Φ has only the

convergent component (G = 1, H = 0) and therefore always points towards the clos-

est point. If point xP /∈ U is approachable, the derivative of the trajectory just before

reaching the point should be equal to one of the possible values of Φ(xP). Each one of

these possible values is attached to a point in x∗(xP). Let m be one of these points and

Φ(xP;m) the corresponding vector. The situation described is shown in the left figure.

However, the right figure shows that the situation shown in the left is a contradiction: if

we move backward a little in the trajectory (in the opposite direction of Φ(xP;m)), we see

that the corresponding vector field is attached to another point in x∗: µ(xP;m), because

when we move backward a little we become closer to this point than to m. As we will

show, this different point has an associated Φ which is different from the one related to m.

Therefore, the trajectory on the left could not have been created by following the vector

field. As the picture shows, this is always the case when G = 1. The analysis that will
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be presented in this section will establish sufficient conditions to affirm that these points

are not approachable for the case in which G ̸= 1.

m 7(xP ;m)

)(xP ;m)

x(tf )=xP

x(0)

m 7(xP ;m)

)(xP ;7(xP ;m))

x(tf )=xP

x(0)

x=xP!0)(xP;m)

Figure A.1: Intuition behind our approachability analysis. In the figure, we assume, for
the sake of simplicity, that the vector field Φ has only the convergent component (H = 0)
and therefore always points towards the closest point.

If the point xP is approachable by the direction d, then by following the vector

field, ẋ = f(x), it is possible to have a trajectory x(t) and a finite time tP such that

x(tP) = xP and lim
t→tP–

ẋ(t) = d. In other words, there is a trajectory that approaches the

point xP from the direction d. If f(x) is continuous in x, then it is trivially approachable

by the direction d = f(x), and only from this direction. However, if it is not continuous,

it may or may not be approachable. For instance, it is easy to see using the definition

that for f1(x) = –x/∥x∥ the point x = 0 is approachable by any d (it is possible to reach

the point 0 by following the vector field), whereas f2(x) = x/∥x∥ is not approachable by

any d: the point x = 0 is “unstable”. Thus, the inaccessibility of a point in a vector field

can be proved by establishing that it is not approachable by any direction.

We will need the following definition.

Definition 19. Given a normalized vector field f(x), the limit set at a point x, Rf (x), is

the set of all different values the vector field f(x) can have when we approach x from all

the possible directions. That is, Rf (x) = ∪e∈E(x) lim
ϵ→0+

{f(x – ϵe)}, in which E(x) ∈ R
n is

the set of directions e such that the limit exists.

The next result follows from our definitions.

Lemma 15. If a point x is approachable from a direction d, then d ∈ Rf (x).

Proof. Follows from the definition of approachability: if x is approachable from a direction

d, limϵ→0+ f(x – ϵd) = d. Since Rf (x) is the set of all vectors that can appear in this

limit and d is equal to one of them, the result holds.

Definition 20. Consider the time-invariant vector field Φ(x). For xP ̸∈ U and y ∈
x∗(xP), we define

Φ(xP; y) = –Ĝ(xP)

(
xP – y

D(xP)

)

+ Ĥ(xP)T
∗(y). (A.2)
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The vector Φ(xP; y) is just one of the possible values of the vector field Φ(x) when

approaching xP in different directions, given that xP ̸∈ U . Thus

RΦ(xP) =
⋃

y∈x∗(xP)
{Φ(xP; y)}. (A.3)

equation (A.3) means that in the neighborhood of point xP the vectors in RΦ(xP)

are the ones computed by using each possible closest point projection x∗. Clearly, if a

point x ∈ U we have that RΦ(x) = {Φ(x)}.

Lemma 16. Let xP ̸∈ U . Given the field Φ(x), if the point xP is approachable, then it

should be by a direction d = Φ(xP; y) for y ∈ x∗(xP).

Proof. This comes directly from Lemma 15 and equation (A.3).

Definition 21. Let xP ̸∈ U and y, z ∈ x∗(xP). Let also the operator [u]+ = max(u, 0).

Define

Γ(xP; y) = min
z∈x∗(xP)

2D(xP)[(z – y)
TT∗(y)]+

∥y – z∥2 . (A.4)

Finally, define γ(xP; y) as one of its minimizers.

Note that γ(xP; y) is bounded because we can always choose z ̸= y. This also

implies that γ(xP; y) ̸= y.

Lemma 17. Let xP ̸∈ U . Suppose

Ĝ(xP)

Ĥ(xP)
> Γ(xP; y) (A.5)

for y ∈ x∗(xP) and that xP is approachable.

Then the optimization problem

min
z∈x∗(xP)

lim
ϵ→0+

∥(xP – ϵΦ(xP; y)) – z∥2 (A.6)

has a unique minimizer and z ̸= y.

Proof. Unicity : First, note that equation (A.6) is basically the distance between the point

(xP – ϵΦ(xP; y)) and the curve, because in this case, when ϵ→ 0+, the closest point to the

curve must lie on x∗(xP). Now, by definition, if xP is approachable, the limit Φ(xP – ϵd)

must exist. This limit exists if and only if the limit x∗(xP – ϵd) exists. The possible values

for this limit are given by the minimizers in equation (A.6), therefore, there should be

only one minimizer in order to the limit to exist.

Not y: We will show that there is another z with a strictly smaller objective

function. We will show that, given equation (A.5), with z = γ(xP; y) ̸= y we obtain a

smaller value in equation (A.6) than with z = y. This statement is equivalent to:

∥(xP – ϵΦ(xP; y)) – y∥ > ∥(xP – ϵΦ(xP; y)) – γ(xP; y)∥. (A.7)
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This relation is obtained by comparing the cost function in (A.6) with z = y and with

z = γ(xP; y). After some simplifications, this statement can be written as

(y – γ(xP; y))
TΦ(xP; y) > 0. (A.8)

Now, let GP=Ĝ(xP), HP=Ĥ(xP), and DP=D(xP). Using Definition 20 and after

some algebra, we can see that the previous equation is equivalent to

GP
∥y – γ(xP; y)∥2

2DP
+HP(y – γ(xP; y))

TT∗(y) > 0. (A.9)

To obtain this, we develop the expression ∥γ(xP; y)–y+y–xP∥2 and use ∥y–xP∥ =

∥γ(xP; y) – xP∥ to obtain the equivalence (xP – y)T(y – γ(xP; y)) = –∥y – γ(xP; y)∥2/2.
By noting that the first term in the left-hand side of (A.9) is strictly positive, we see that

condition in (A.9) is equivalent to:

GP

HP
> 2DP

(γ(xP; y) – y)
TT∗(y)

∥y – γ(xP; y)∥2
. (A.10)

This condition is guaranteed by equation (A.5). Note that if (γ(xP; y)–y)
TT∗(y) <

0, the condition is trivially satisfied since GP/HP ≥ 0. This justifies the use of the [u]+

operator in the definition of Γ(xP; y).

Based on Lemma 17, we can define the following

Definition 22. For xP ̸∈ U and when equation (A.5) holds, we define µ(xP; y) as the

unique minimizer of equation (A.6).

Lemma 18. Let xP ̸∈ U . Suppose xP is approachable by a direction and

Ĝ(xP)

Ĥ(xP)
> max

(

Γ(xP;m), Γ(xP;µ(xP;m))
)

(A.11)

holds for a m ∈ x∗(xP). Then the point xP is not approachable by the direction Φ(xP;m).

Proof. Note that equation (A.11) implies equation (A.5) with y = m. This, together with

the assumption that xP is approachable, implies that Lemma 17 holds.

From Lemma 17, we see that when we approach xP by the direction Φ(xP;m), the

closest point to xP is not m, but µ(xP;m) ̸= m. Henceforth, we will write for the sake of

simplicity µ = µ(xP;m). Therefore

lim
ϵ→0+

Φ(xP – ϵΦ(xP;m)) = Φ(xP;µ). (A.12)

It remains to prove that Φ(xP;m) ̸= Φ(xP;µ), i.e., xP is not approachable by the

direction Φ(xP;m). We will show by contradiction that Φ(xP;m) = Φ(xP;µ) does not
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hold. Suppose it is true. Note that equation (A.11) implies equation (A.5) not only with

y = m but also with y = µ as well. Consequently, Lemma 17 also holds when y = µ.

Using y = m on Lemma 17, we conclude that µ is the unique minimizer for equation

(A.6) with y = m. Furthermore, since we are supposing that Φ(xP;m) = Φ(xP;µ), we

conclude that µ is also a minimizer for equation (A.6) with y = µ.

But using y = µ on Lemma 17, we conclude that the minimizer for equation (A.6)

with y = µ can not be µ. This is a contradiction.

We then present a definition and the final result.

Definition 23. We define, for xP ̸∈ U

K(xP) = max
y∈x∗(xP)

Γ(xP; y). (A.13)

Note that K(xP) is finite, since Γ(xP; y) is finite for all y. We can then state our

final result.

Proposition 6. Suppose that

Ĝ(xP)

Ĥ(xP)
> K(xP) ∀ xP /∈ U , (A.14)

holds. Then the point xP is not approachable by any direction.

Proof. The proof follows by contradiction. Suppose it is approachable by a direction.

Then it should be by a direction d = Φ(xP;m) (see Lemma 16) for a m ∈ x∗(xP).
Equation (A.14) implies equation (A.11) for any m ∈ x∗(xP), because we are

taking the maximum overall possible y ∈ x∗(xP), including m and µ(xP;m). Since xP

is also assumed to be approachable, we can use Lemma 18 to conclude that this should

not be by the direction d = Φ(xP;m). This is a contradiction, and therefore the proof is

established.

For any xP ̸∈ U , equation (A.14) can be written, together with the fact that

G2 +H2 = 1, as

Ĝ(xP) >
K(xP)

√

K(xP)
2 + 1

. (A.15)

One could wonder whether or not (A.15) can always be achievable for any xP ̸∈ U ,
since Ĝ(xP) ≤ 1. However, the righthand side of this inequality is always strictly less than

1, because K(xP) is finite, therefore, there always exists a G that achieves this condition.
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Appendix B

Vector field in the Torus space

The state-space formed by the rotation of each joint of a robotic manipulator does not

have a Euclidean topology: a rotation of θ degrees is the same as one of θ + 2πk for all

k ∈ Z. For this reason, the Euclidean distance is not an appropriate metric for this space.

Indeed, a closed curve in the correct topological space of x (that is of the n-dimensional

torus, Sn = S×S...× ...S) can become open and bounded when mapped to the Euclidean

space.

This problem can be addressed by a “replication” trick. Suppose we have the

target curve C, r(s), static in time, as an open, bounded curve in R
n. Assume that s = 0

and s = send are the starting and ending parametrization of the curve. To be a closed

curve in the n-dimensional torus space, it must hold that for all i = 1, 2, .., n, it holds that

|ri(send) – ri(0)| = 2πki ≡ Ti, for a nonnegative integer ki (possibly different for all i). If

the curve is differentiable, it also holds that ∂ri
∂s (0) = ∂ri

∂s (send). Thus, the target curve

can be bounded in a hyperrectangle in R
n whose sides are integer multiples of 2π.

Suppose this curve is replicated across Rn by summing to r(s) constant vectors ∆

in which ∆i is an integer multiple of Ti. See Figure B.1 for an example of this replication.

Now, the space R
n is filled with (disjoint) copies of C, which we call Crep and we can

now apply the traditional Euclidean distance towards Crep because it already takes into

consideration characteristics of the original topology of the state-space (through replica-

tion). Note that, after replication, the curve will not be in accordance with Assumption

1, which is now relaxed to incorporate this new type of curve. We now consider curves C
that consist of the union of disjoint curves of the previously considered types.

Of course, it is not necessary to consider directly the (Euclidean) distance towards

Crep, which is formed by disjoint, non-bounded curves, to compute the (Euclidean) dis-

tance between a state x and Crep. We can compute it from the original version, C, by
solving the following optimization problem not only in the variable s but also in the integer

variables ki:

D(x)2 = min
s∈[0,send]

ki∈Z

n∑

i=1

(

xi – ri(s) – kiTi

)2
. (B.1)
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Note that this construction implies that the source of problematic points, points

not in U , are twofold: first, when s∗red(x) is not uniquely defined, and second, when

rem(xi – ri, Ti) = Ti/2, in which case k∗
S
(xi – ri, T) has two possible choices, implying that

there is more than one choice for the closest point.
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Appendix C

Software registration

The following page is the Certificate of Computer Program Registration associated with

the vectorfield stack library described in Section 1.5. It is emitted by the Brazilian Na-

tional Institute of Industrial Property (Institudo Nacional da Propriedade Industrial).

The authors of the software are listed below:

• Adriano Martins da Costa Rezende

• Victor Ricardo Fernandes Miranda

• Luciano Cunha de Araújo Pimenta

• Vinicius Mariano Gonçalves

• Gustavo Medeiros Freitas

• Héctor Azpúrua

• Gustavo Pessin
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