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a b s t r a c t

Concerns about meat authenticity are increasing recently, due to great fraud scandals. This paper anal-

ysed real samples (43 adulterated and 12 controls) originated from criminal networks dismantled by

the Brazilian Police. This fraud consisted of injecting solutions of non-meat ingredients (NaCl, phosphates,

carrageenan, maltodextrin) in bovine meat, aiming to increase its water holding capacity. Five physico-

chemical variables were determined, protein, ash, chloride, sodium, phosphate. Additionally, infrared

spectra were recorded. Supervised classification PLS-DA models were built with each data set individu-

ally, but the best model was obtained with data fusion, correctly detecting 91% of the adulterated sam-

ples. From this model, a variable selection based on the highest VIPscores was performed and a new data

fusion model was built with only one chemical variable, providing slightly lower predictions, but a good

cost/performance ratio. Finally, some of the selected infrared bands were specifically associated to the

presence of adulterants NaCl, tripolyphosphate and carrageenan.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Food authenticity and integrity are steadily increasing concerns

throughout the world for both the consumer protection authorities

and the producers and dealers. Considering our food is under con-

stant threat from adulteration, its detection provides a great chal-

lenge to the analytical chemists due to the increasing product

diversity, the continuous development of new production tech-

nologies, and the emergence of new types of fraud. As compared

to the classical authenticity assessment based on the analysis of

specific marker compounds (target analysis), food fingerprinting,

the non-target chemical analysis of food, has clear advantages for

investigating multiple objectives with only one analytical method

(Esslinger, Riedl, & Fauhl-Hassek, 2014). This usually involves spec-

troscopic techniques and multivariate data analysis. The capacity

of detecting food frauds and extracting information can be even

increased by the combination of data from different analytical

techniques or origins, using the chemometric strategy of data

fusion (Borràs et al., 2015).

Food fraud decreases the quality of the products, misleads the

consumers and may imply health risks. It is considered food crime

when it becomes an organized activity by groups which knowingly

set out to deceive those purchasing food, with potential for gener-

ating huge negative impacts both on consumer confidence, and on

the reputation and finances of food businesses (Her Majesty’s

Government, 2014). In the last years, several food adulteration

scandals had great repercussion worldwide, particularly involving

meat adulteration, such as the recent horsemeat scandal in EU

(FSAI, 2013). In Brazil, a major scandal was reported by the Federal

Police in 2012. Several slaughterhouses in the metropolitan region

of Belo Horizonte, capital of Minas Gerais State, were assessed for

frauds in bovine meat in natura by non-meat ingredient addition

(DPF, 2012).

Authentication problems with respect to meat can be catego-

rized into four major areas where fraud is most likely to occur:

meat origin, meat substitution, meat processing and non-meat

ingredient addition (Ballin, 2010). Substitution of one species with

another is the most reported type of meat fraud, such as in

the horsemeat scandal (FSAI, 2013). Most common methods for
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detecting this type of adulteration are based on the analysis of

DNA, such as PCR (polymerase chain reaction) (Iwobi et al.,

2015). Nevertheless, these methods are laborious and time-

consuming, and in the last years alternative methods based on

vibrational spectroscopy, in the majority of cases associated with

chemometric tools, have been developed. Thus, adulterations

involving bovine, pork, horse, turkey and llama meats have been

detected using Raman (Zajac, Hanuza, & Dyminska, 2014), near

infrared (NIR) (Mamani-Linares, Gallo, & Alomar, 2012), mid infra-

red (MIR) (Rohman, Sismindari, Erwanto, & Che Man, 2011) and

data fusion with different spectroscopic techniques (Alamprese,

Casale, Sinelli, Lanteri, & Casiraghi, 2013).

In contrast, addition of non-meat ingredients is the least com-

mon type of fraud described in the literature (Ballin, 2010). One

of the few examples is the development of a method based on

HPLC-MS for detecting enzymes, which take part in the blood clot-

ting, in pork meat products (Grundy et al., 2008). Water can also be

fraudulently added to meat and regulations establish the allowed

amount of exogenous water in meat. A standard method to deter-

mine this type of meat fraud is based on the water/protein ratio

(EC, 2005). If water is added to meat, this ratio may be too high

and can serve as a clear indication of fraud. Nevertheless, proteins

from other sources and salts, such as phosphate, can be added to

meat products aiming to increase water binding and leaving the

water/protein ratio close to its natural value. In that case, detection

of proteins and/or exogenous salts is necessary in order to confirm

the meat fraud (Ballin, 2010).

This work studied frauds by non-meat ingredient addition in a

real case of adulteration (DPF, 2012). Due to complaints the Brazil-

ian Federal Police impounded in the denounced slaughterhouses

mixtures of adulterant substances. Suspicious substances include

salts, such as sodium chloride, phosphate, tripolyphosphate and

acid pyrophosphate, carrageenan (a linear sulphated polysaccha-

ride extracted from red edible seaweeds), maltodextrin (a complex

carbohydrate obtained from starch) and collagen (a structural pro-

tein naturally present in meat tissues). Aqueous solutions of these

substances were injected in bovine meat using specific equipments

also found in these slaughterhouses. Adulteration by addition of

salts aims at increasing the water holding capacity (WHC) of meat

(Cheng & Sun, 2008), providing an economic fraud related to

weight gain, since the meat product will absorb more water. The

increase in WHC enhances the meat’s succulence due to the relax-

ation of muscle fibers, resulting in more tenderness. The addition

of salts reduces the water/protein ratio, however, the higher

WHC restores this ratio close to the normal values. The effect of

the addition of salts, such as NaCl, KCl and MgSO4, in the increase

of WHC of meats is very dependent on the salt concentrations. This

effect has been studied in the range of 1.5–9.0% of salt concentra-

tion (not in situations of fraud) by NIR and MIR spectroscopy

jointly with chemometric methods, such as principal component

analysis (PCA) (Perisic, Afseth, Ofstad, Narum, & Kohler, 2011,

2013). The WHC increase is related to changes in proteins confor-

mation due to the addition of salts. Carrageenan can also increase

the WHC of meats (Ayadi, Kechaou, Makni, & Attia, 2009). Never-

theless, at present there are no studies about meat frauds with

the addition of these substances.

Quality control of bovine meat consumed in Brazil is based on

the determination of physico-chemical and microbiological param-

eters by classical analytical methods (MAPA, 1999). These analyses

generate a great amount of data, but individual parameters are not

appropriate to characterize frauds, because they can vary as a func-

tion of sex, meat cuts, breed, feed intake, slaughter age, among

others (Ballin, 2010). Thus, the use of chemometric tools is neces-

sary. In this paper, detection and characterization of real adulter-

ated bovine meat samples, seized by the Brazilian Federal Police,

were performed by data fusion of five physico-chemical parame-

ters (protein, sodium, chloride, phosphate and ash) and attenuated

total reflectance Fourier transform infrared (ATR-FTIR) spectra.

Supervised classification models using partial least squares dis-

criminant analysis (PLS-DA) were built for differentiating adulter-

ated from control samples. The developed methods were

compared and validated through the estimate of appropriate fig-

ures of merit (FOM).

2. Materials and methods

2.1. Police operation

This operation was carried out by the Brazilian Federal Police in

2012, and five slaughterhouses were assessed in the cities of Belo

Horizonte, Contagem and Ibirité (DPF, 2012). In these places, pack-

ages and industrial products used for meat adulteration were

found and seized. These frauds consisted in injecting in the meats

aqueous solutions of these products, which contained NaCl, phos-

phate, tripolyphosphate, acid pyrophosphate, carrageenan, mal-

todextrin and/or collagen. Specific equipment used for these

frauds were also found in the slaughterhouses, consisting of injec-

tion and tenderizing machines (Fig. 1S, Supplemental materials).

Samples of bovine meat in natura were confiscated, sealed and

sent for analysis in order to characterize their composition. These

samples presented anomalous aspects considered evidences of

adulteration, such as accumulation of frozen liquid in the extrem-

ities of the pieces of meat, excessive exudation of viscous liquids

forming foam, presence of symmetric marks of perforation in the

meat surface, and excessive volume of exudated liquid after thaw-

ing (purge). Adulterated meat samples were also submitted to

organoleptic analysis, such as color, smell, texture and visual iden-

tification of non-meat components, and determination of physico-

chemical parameters. The identification of adulterations was not

relied on individual observations/determinations, but on the entire

group of them. As a result of this investigation, the Brazilian Fed-

eral Police identified all suspected samples as adulterated. In this

paper, the focus was on the chemical analysis, including physico-

chemical parameters and non-destructive ATR-FTIR

measurements.

2.2. Samples

Fifty-five samples were provided by the Federal Police, 43 iden-

tified as adulterated by the Brazilian Federal Police and 12 control

meat pieces. Control samples were guaranteed to be without adul-

teration, since they were sampled during the boning process and

taken directly from the bovine carcass without any contact with

adulteration machines. Samples were originated from five different

seizures and obtained from six different cuts, top inside (semimem-

branosus), eye of the round (semitendinosus), knuckle (rectus

femoris), outside round (gluteus biceps), shank (extensor digitorum)

and top sirloin (longissumus dorsi). Adulterated and control sam-

ples were submitted to exactly the same treatments for analysis.

All the samples were stored in a freezer below �5 �C immediately

after sampling. They were stored for about one month prior to the

analyses.

2.3. Physico-chemical parameters

All reagents used in this work were of analytical grade, pur-

chased from certified suppliers, and used without further purifica-

tion. Five parameters, protein, ash, sodium, chloride and

phosphate, were determined in triplicate by classical methods

according to the regulation of the Brazilian Ministry of Agriculture

and Livestock (MAPA, 1999). Fat was not determined, because the
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natural variation among different meat cuts makes not feasible its

use for evaluating frauds. Protein was determined by the Kjeldahl

method. Ash was determined by calcination at 550 �C. The residues

of calcination were dissolved in 5 mL of deionized water, heated in

water bath for 15 min, and used for determining sodium, chloride

and phosphate by ion exchange chromatography. A Metrohm 761,

Compact IC, chromatograph (Metrohm AG, Herisau, Switzerland)

was used, with electric conductivity detection, a Metrosep A Supp

5–100 column for anion analysis and a Metrosep Cation 1–2 col-

umn for cation analysis.

2.4. ATR-FTIR measurements and data processing

FTIR measurements were obtained in a Nicolet 380 FTIR spec-

trometer (Thermo Fisher Scientific Inc., Madison, USA), equipped

with an attenuated total reflection accessory containing a diamond

crystal of one reflection (Smart Orbit Diamond ATR, Thermo Fisher,

USA). Small portions of thawed meat were put in the ATR acces-

sory, covering the crystal. Spectra were recorded in triplicate from

4000 to 525 cm�1, with a resolution of 2 cm�1 and 32 scans. Mean

spectra of each sample were used for building the models. Data

were processed using MATLAB software, version 8.4 (The Math-

Works, Natick, USA) and PLS Toolbox, version 7.0 (Eigenvector

Technologies, Manson, USA).

2.5. Chemometric methodology

Previous unsupervised PCA models were developed for both the

data sets, physico-chemical parameters and ATR-FTIR spectra. Nev-

ertheless, the main focus of this paper was to develop supervised

PLS-DA models for the data obtained from individual techniques

and also for the fused data. PLS-DA is one of the most used multi-

variate classification methods (Brereton & Lloyd, 2014). It is based

on the traditional PLS regression, correlating a block of indepen-

dent variables, X, with a block of dependent variables, Y. In this

work, PLS1-DA was used and the X matrix was built containing

physico-chemical parameters, FTIR spectra or fused data, while y

is a vector containing the dummy variables 1 or 0, for adulterated

or control samples, respectively. Bayesian threshold was adopted

for the models’ predictions (Botelho, Reis, Oliveira, & Sena, 2015;

Wise et al., 2006). Samples with predicted y values above the

threshold were classified as adulterated.

Data were preprocessed by class centroid centering (Wise et al.,

2006) in order to compensate the unequal sizes of the classes

(Brereton & Lloyd, 2014). Other specific preprocessing will be men-

tioned in the discussion for each data set. The number of latent

variables (LV) was chosen by venetian blinds (4 splits) cross valida-

tion, based on the smallest cross validation classification error

(CVCE). In order to assure the development of robust and unbiased

models, data should be split in training and test sets. This split

should be based on systematic criteria, which assure that the sam-

ples used in the calibration/training step are representative and

homogeneously distributed in the whole analytical range of the

multivariate space. With this aim, the Kennard and Stone (1969)

algorithm was applied for the selection of training samples sepa-

rately in both the classes. Thus, the samples were split in 38 (30

adulterated and 8 control) for the training set and 17 (13 adulter-

ated and 4 control) for the test set. This ratio of the number of

training/test samples corresponds to two thirds/one third, typically

used in multivariate calibration (ASTM & Annual Book of ASTM

Standards, 2012) and supervised classification.

Once the models were built, they were validated and compared

through the estimate of figures of merit (FOM) related to the pres-

ence of errors in the results, such as the numbers of false positives

(FP) and false negatives (FN), sensitivity (SEN), specificity (SPE),

reliability or efficiency rate (EFR) and area under the receiver oper-

ating characteristic (AUROC) (Botelho et al., 2015; Lopez, Colomer,

Ruisanchez, & Callao, 2014). SEN is the rate of true positives (the

ratio between the number of true positives and the sum of true

positives and FN) and SPE is the rate of true negatives. EFR is a

parameter encompassing both the types of errors, which is calcu-

lated as the difference between the total of results (100%) and

the sum of the rates of FP and FN. AUROC is estimated from the

ROC curves, which plot both SEN and SPE as functions of the

threshold (y predicted). AUROC values range between 1.0, which

means perfect discrimination between classes, and 0.0. Values

lower than 0.5 indicate no discriminant models.

Models can be interpreted in order to identify the most predic-

tive variables through the plot of variable importance in the pro-

jection (VIP) scores (Chong & Jun, 2005). VIP scores are weighted

sums of squares of the PLS weights, taking into account the amount

of explained y variance in each dimension. The utility of VIP scores

lies in its intrinsic parsimony, since for a given model there will

always be only one VIP-vector, summarizing all components and

y variables. As VIP scores are a squared function of the PLS weights,

only positive values will be found. Predictors with a large VIP, usu-

ally higher than 1.0, are the most influential for the model and can

be used for variable selection.

2.6. Data fusion

Data fusion is a strategy that combines the outputs of different

analytical instruments (such as NIR, MIR, Raman, UV/vis, mass

spectrometry, nuclear magnetic resonance, fluorescence spectra

or other types), sensors and/or physico-chemical variables. The

large amount of generated data demands the use of chemometric

tools for modeling and interpretation. As compared to a single

technique, data fusion from complementary instruments can pro-

vide classifications with less error rate or predictions with less

uncertainty. Evidently, data fusion is useful when complementary

information is modeled, since its main goal is to increase the syn-

ergy between the fused techniques by merging complementary

inputs (Borràs et al., 2015).

Data fusion can occur at three levels: low, medium and high.

Low-level (measurements level) fusion consists in simply concate-

nating original variables after the preprocessing steps. Medium-

level (feature level) fusion extracts relevant features from each

data source individually and then combines them into a single

matrix, which will be treated by classification or calibration meth-

ods. Commonly, the most significant scores from PCA, PLS or PLS-

DA are fused. High-level (decision level) fusion constructs a sepa-

rated multivariate model for each technique and combines the

individual outputs to produce the final result. This level of fusion

has often provided worse results than the other two levels

(Borràs et al., 2015).

Data fusion is a relatively recent subject in analytical chemistry

and its applications have been increasing in the last years, mainly

in the development of multivariate classification or calibration

methods for analysis of complex food samples, such as beer

(Biancolillo, Bucci, Magri, Magri, & Marini, 2014; Vera et al.,

2011), olive oil (Casale et al., 2012; Pizarro, Rodríguez-Tecedor,

Pérez-del-Notario, Esteban-Díez, & González-Sáiz, 2013), cheese

(Cozzi, Ferlito, Pasini, Contiero, & Gottardo, 2009), meat

(Alamprese et al., 2013) and fish meat (Zotte et al., 2014), but also

to other matrices, such as biological samples in metabolomic stud-

ies (Bro et al., 2013), pigment determination in works of art

(Ramos, Ruisánchez, & Andrikopoulos, 2008) and quality control

of transformer insulating oils (Godinho et al., 2014). In most of

these papers fusion has been limited to spectral or sensor data con-

tinuously concatenated. In the present paper, low- and medium-

level approaches were compared for fusion of continuous spectra

(FTIR) and chemical parameters obtained individually, the latter
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discretely concatenated. Though less common, this strategy has

been used in other papers (Cozzi et al., 2009; Pizarro et al., 2013;

Zotte et al., 2014).

3. Results and discussion

3.1. Unsupervised PCA models

A PCA model was built with the five physico-chemical parame-

ters determined for meat samples. Data were previously auto-

scaled (mean centered and divided by the standard deviation of

each variable). The first two PC accounted for 90.81% of the total

variance. By observing the scores of PC1 � PC2 biplot (Fig. 1), all

the control samples were clearly grouped on PC1 negative values,

while about two thirds of the adulterated samples were projected

on PC1 positive values. Thus, PC1 provided a fairly discrimination

between control and adulterated samples. The loadings (Fig. 1)

indicated that control samples have in general lower contents of

ash, sodium, chloride and phosphate and higher content of protein.

This is coherent with the adulteration by addition of salts to meat

samples, as was observed by the Federal Police in this operation.

Analytical methods employed for determining physico-

chemical parameters are destructive, laborious and slow, consum-

ing reagents and generating chemical waste. Thus, ATR-FTIR is a

simple, rapid, low cost and environmentally friendly alternative

for detecting frauds in bovine meat. The obtained spectra were pre-

processed by Savitzky-Golay smoothing (Savitzky & Golay, 1964)

(15 points in filter and second order polynomial fit), in order to

increase the signal-to-noise ratio, multiplicative scatter correction

(MSC) (Rinnan, van den Berg, & Engelsen, 2009), in order to elimi-

nate non-linear baseline deviations (drifts), and mean centering.

Resultant spectra are shown in Fig. 2. No significant visual differ-

ences between control and adulterated samples were noted. Two

spectral regions were deleted before building the models. In the

region between 2400 and 1800 cm�1, interfering absorptions due

to atmospheric CO2 and diamond ATR crystal (Küpper, Heise, &

Butvina, 2001) were present. The region above 3700 cm�1 pre-

sented only instrumental noise.

For a PCA model built with spectral data, the first two PC

accounted for 79.93% of the variance. Nevertheless, the scores plot

of PC1 � PC2 (not shown) provided no clear discrimination

between adulterated and control samples. Some samples were

grouped as a function of their meat cut, but this was also not a

clear trend. PC3 (14.24%) did not also provide any discrimination.

By comparing both the PCA models, physico-chemical data have

clearly more discriminant power. This is already expected, because

these variables were specifically chosen searching for detecting

adulterations. On the other hand, vibrational spectra provide

non-selective information related to the total chemical composi-

tion of the samples, which depends on other factors, such as meat

cut and animal origin. In the sequence, supervised PLS-DA models

will be developed for both the data sets trying to increase the sam-

ples’ discrimination.

3.2. PLS-DA model for physico-chemical data

Adulterated samples (their pre-classification was based on a

body of evidence described in Section 2.1) were arbitrarily defined

as class 1 and control samples as class 0. As already mentioned in

Section 2.5, Kennard-Stone algorithm was used for selecting train-

ing samples. However, this algorithm was applied separately for

Fig. 1. Biplot of PC1 � PC2 for physico-chemical parameters. Full triangles indicate the scores of the adulterated samples, full circles the scores of the control samples, and

empty squares the loadings.
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each data set: physico-chemical, FTIR and fused data. Thus, the

samples in the training sets were not necessarily the same in each

of these three sets. Data were previously class centroid centered

and divided by the standard deviation of each variable (equivalent

to autoscaling). The best model was chosen by cross-validation

with 3 LV, accounting for 94.16% and 36.58% of variance in X and

Y blocks, respectively.

Predictions for this model are shown in Supplemental material

(Fig. 2S). Estimated FOM are shown in Table 1. This model provided

5 (16.7%) FN, adulterated samples predicted as control ones, in the

training set, and 2 (15.4%) FN in the test set, while no FP was

observed. VIP scores are shown in Fig. 3, in which the importance

of chloride (1.86) as the main discriminant variable can be noted.

Sodium and ash also presented VIP scores near or above 1.00, indi-

cating that these are significant variables. Considering NaCl was

one of the main adulterants used in this fraud, the higher discrim-

inant power of chloride in the model can be associated to the nat-

ural presence of sodium in bovine meats.

3.3. PLS-DA model for ATR-FTIR data

This data set were sequentially preprocessed by Savitzky-Golay

smoothing, MSC and class centroid centering. As for the previous

PCA model, spectral regions between 2400–1800 cm�1 and above

3700 cm�1 were deleted after preprocessing. The best model was

obtained with 4 LV, accounting for 95.70% and 26.71% of variance

in X and Y blocks, respectively. This model, whose predictions are

shown in Fig. 3S, provided 5 (16.7%) FN and 3 FP (37.5%) in the

training set, and 3 (23.1%) FN and 1 (25%) FP in the test set. As

can be observed in Table 1 for all the FOM, this model is clearly

worse than the PLS-DA model built with physico-chemical data.

This was already expected, since FTIR spectra contain less selective

information, which are more susceptible to the influence of other

chemical constituents not related to the adulteration. Neverthe-

less, the results for this model were considered reasonable. Discus-

sion about the most discriminant wavenumbers will be carried out

in the next section, for the data fusion model.

3.4. Low-level data fusion

Physico-chemical and ATR-FTIR data were simply concatenated

and the same preprocessing previously mentioned was used for

each data set. In addition, FTIR spectra were autoscaled. The same

spectral regions previously cited were deleted. Low-level data

fusion provided the best PLS-DA model. Predictions are shown in

Fig. 4, and only 2 (6.7%) FN were observed in the training set and

also (15.4%) in the test set. No FP was observed. Estimated FOM

shown in Table 1 corroborates the superiority of this model, which

was built with 5 LV, accounting for 97.45% and 58.48% of variance

in X and Y blocks, respectively.

VIP scores vector was used for model interpretation and vari-

able selection. When using VIP scores for variable selection, the

threshold value of 1.0 has been suggested (Chong & Jun, 2005).
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Fig. 2. ATR-FTIR spectra of the 55 analysed meat samples preprocessed by Savitzky-Golay smoothing and MSC. Deleted spectral regions are marked in rectangles.

Table 1

Comparison of the five developed PLS-DA models through the estimate of FOM.

Model Training Set Test Set AUROC

FN FP SEN (%) SPE (%) EFR (%) FN FP SEN (%) SPE (%) EFR (%)

Physico-chemical data 5 0 83.3 100 83.3 2 0 84.6 100 84.6 0.846

ATR-FTIR data 5 3 83.3 62.5 45.8 3 1 76.9 75.0 51.9 0.750

Data fusion – low-level 2 0 93.3 100 93.3 2 0 84.6 100 84.6 0.923

Data fusion – mid-level 3 0 90.0 100 90.0 3 0 76.9 100 76.9 0.923

Data fusion – variable selection 5 1 83.3 87.5 70.8 2 0 84.6 100 84.6 0.907

FN = number of false negatives; FP = number of false positives; SEN = sensitivity rate; SPE = specificity rate; EFR = efficiency rate; AUROC = area under the ROC curve.
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Nevertheless, the more stringent value of 1.5 was adopted in this

paper in order to select a smaller number of variables and spectral

regions. VIP scores for physico-chemical data were similar to the

previous model (Fig. 3) and only chloride presented a value above

1.5. VIP scores for spectral variables are shown in Fig. 5, in which

the eight most important regions are marked with letters a–h.

These spectral regions jointly with chloride were used to build a

new PLS-DA model described in Section 3.6.

Fig. 3. VIP scores of the PLS-DA model for physico-chemical data.

Fig. 4. PLS-DA predictions for low-level data fusion. Threshold is indicated by the dashed line. Adulterated and control samples are indicated by down triangles and circles,

respectively. Full symbols represent the training set and empty symbols represent the test set.
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Selected spectral regions were in the wavenumbers between

918–893 cm�1 (a), 1236–1210 cm�1 (b), 1373–1347 cm�1 (c),

1500–1481 cm�1 (d), 1717–1677 cm�1 (e), 1775–1752 cm�1 (f),

2972–2815 cm�1 (g) and 3690–3638 cm�1 (h). The most intense

VIP scores are associated to bands e and g. A peak at 2916 cm�1

can be attributed to CH2 asymmetric bending (Pavia, Lampman,

Kriz, & Vyvyan, 2008). However, some peaks can be specifically

associated to the adulterants used in this meat fraud. FTIR vibra-

tions of aggregated b-sheets of proteins (C@O stretchings in the

amide I region) at 1690 and at 1235 cm�1 are highly correlated

to the additions of NaCl and/or KCl to bovine meat (Perisic,

Afseth, Ofstad, Narum, & Kohler, 2013). These vibrations were in

the selected spectral regions e and b, respectively, and the peak e

(1717–1677 cm�1) is the most discriminant for the model, demon-

strating the effect of NaCl addition in this fraud. Region b also

includes a specific vibration assigned to the stretching of ester sul-

phate group of carrageenan, at 1220 cm�1 (Volery, Besson, &

Schaffer-Lequart, 2004). Region e partly coincides with the spectral

range of 1700–1600 cm�1, which has been the most used mid

infrared region for the analysis of the secondary structure of colla-

gen due to amide I vibrations (Cao & Xu, 2008). Finally, region a is

included in the range between 930 and 890 cm�1 that has been

related to sodium tripolyphosphate vibrations (Khanmohammadi,

Ashori, Kargosha, & Garmarudi, 2007). For the other selected spec-

tral regions specific attributions related to adulterations cannot be

provided. However, general attributions can be suggested: region c

is characteristic of CH3 bending and/or the combination between

OH bending and C–O stretching; region d could be associated to

amine NH bending; region f to carbonyl stretching; and region h

to water OH stretching (Pavia et al., 2008).

3.5. Mid-level data fusion

Mid-level data fusion PLS-DA was built by concatenating the

scores of the LV used for constructing the individual physico-

chemical and ATR-FTIR models. Thus, seven scores were combined,

the first three from the physico-chemical model and the first four

from the ATR-FTIR model. The best model was selected with 3

LV, accounting for 59.49% and 55.02% of variance in X and Y blocks,

respectively. This model, whose predictions are shown in Fig. 4S,

provided 3 (10.0%) FN in the training set and also (23.1%) in the test

set. No FP was observed. These results and the estimated FOM indi-

cated that mid-level data fusion was slightly worse than low-level

data fusion.

3.6. Data fusion with variable selection

As already mentioned, a new low-level data fusion PLS-DA

model was built based on a variable selection using the most sig-

nificant VIP scores (above 1.50). Thus, the original number of vari-

ables was reduced from 1808 to 191, including the most

discriminant physico-chemical variable, chloride, and the eight

spectral bands marked in Fig. 5. This model was built with 4 LV,

accounting for 97.31% and 46.87% of variance in X and Y blocks,

respectively. Predictions are shown in Fig. 5S, in which the pres-

ence of 5 (16.7%) FN and 1 (12.5%) FP in the training set can be

observed. For the test set, only 2 FN (15.4%) were detected.

Model based on variable selection presented higher error rates

than models based on full data fusion. In general, low-level full

data fusion presented the best results, providing only 4 FN (9.3%)

and no FP. The best performance of this model (Table 1) can also

be evaluated by EFR, a global FOM that takes into account both

the FN and FP rates, and AUROC. EFR of 93.3% and 84.6% were

obtained for training and test sets, respectively, while this model

presented the higher AUROC, 0.923, indicating the best discrimi-

nating ability. On the other hand, the model based on variable

selection was particularly cost-effective and provided reasonable

SEN and SPE, above 83%. A method that utilized only one out of

the five physico-chemical parameters presented the advantage of

saving costs related to time and reagents spent in the other four

determinations.

Fig. 5. VIP scores (spectral variables) for low-level data fusion PLS-DA model. Letters a–h indicate the most discriminant spectral bands.
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4. Conclusion

Considering the growing worldwide concern about food adul-

teration and the emergence of new types of fraud, one interesting

aspect of this paper was to analyse real samples originated from a

criminal network dismantled by the Brazilian Federal Police. This

fraud consisted of injecting aqueous solutions of non-meat ingredi-

ents (NaCl, phosphates, carrageenan, maltodextrin, collagen) in

bovine meat in natura, in order to increase its WHC and obtain

an economic fraud.

For meat samples seized by the police, the determination of five

specific physico-chemical parameters allowed to build multivari-

ate classification models that differentiated them from control/

unadulterated samples. Unsupervised PCA provided a fairly dis-

crimination of about two thirds of the samples and supervised

PLS-DA correctly detected 84% (36 out 43) of the adulterations.

The lack of homogeneity in the adulterations, since not all the sam-

ples were injected with all the adulterants at the same levels, may

justify the difficulty in detecting some samples.

On the other hand, ATR-FTIR spectroscopy was an advantageous

alternative for detecting and characterising these adulterated sam-

ples, providing a simpler, more rapid, non-destructive, cleaner and

low cost method. The best classification model was obtained by

merging physico-chemical parameters and FTIR spectra. Low-

level data fusion correctly detected 91% (39 out 43) of the adulter-

ations, while mid-level data fusion provided a slightly worse

model. Nevertheless, a low-level data fusion model based on vari-

able selection using only variables with VIP scores above 1.5 pro-

vided good predictions, similar to the physico-chemical model.

This model was considered particularly cost-effective, since only

the most discriminant chemical variable, chloride, was used in

addition to the eight more discriminant spectral bands selected

by VIP scores. Adulterated samples were also characterised by

the attribution of some of the IR bands to specific adulterants. Par-

ticularly, the most discriminant peak at about 1690 cm�1, which

showed the highest VIP scores, was associated to the effect of NaCl

addition to bovine meat causing specific aggregated b-sheets vibra-

tions of proteins (Perisic et al., 2013).
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