
Efficient Strategies for Graph Pattern Mining

Algorithms on GPUs

Samuel Ferraz∗†, Vinicius Dias∗‡, Carlos H. C. Teixeira∗, George Teodoro∗, Wagner Meira Jr.∗

∗ Computer Science Department, Federal University of Minas Gerais (UFMG) — Belo Horizonte, Brazil

Email: {samuel.ferraz, viniciusvdias, carlos, george, meira}@dcc.ufmg.br
† School of Computing, Federal University of Mato Grosso do Sul (UFMS) — Campo Grande, Brazil

Email: samuel.ferraz@ufms.br
‡ Department of Computing and Systems, Federal University of Ouro Preto (UFOP) — João Monlevade, Brazil

Email: viniciusvdias@ufop.edu.br

Abstract—Graph Pattern Mining (GPM) is an important,
rapidly evolving, and computation demanding area. GPM com-
putation relies on subgraph enumeration, which consists in
extracting subgraphs that match a given property from an input
graph. Graphics Processing Units (GPUs) have been an effective
platform to accelerate applications in many areas. However, the
irregularity of subgraph enumeration makes it challenging for
efficient execution on GPU due to typical uncoalesced memory
access, divergence, and load imbalance. Unfortunately, these
aspects have not been fully addressed in previous work. Thus,
this work proposes novel strategies to design and implement
subgraph enumeration efficiently on GPU. We support a depth-
first search style search (DFS-wide) that maximizes memory
performance while providing enough parallelism to be exploited
by the GPU, along with a warp-centric design that minimizes
execution divergence and improves utilization of the computing
capabilities. We also propose a low-cost load balancing layer
to avoid idleness and redistribute work among thread warps in
a GPU. Our strategies have been deployed in a system named
DuMato, which provides a simple programming interface to allow
efficient implementation of GPM algorithms. Our evaluation has
shown that DuMato is often an order of magnitude faster than
state-of-the-art GPM systems and can mine larger subgraphs (up
to 12 vertices).

Index Terms—graph pattern mining, gpu, load balancing

I. INTRODUCTION

Graph pattern mining (GPM) aims to unveal relevant sub-

graph patterns in graphs, being widely used in different

domains and applications from social media [1] to biological

networks analysis [2]. It relies on subgraph enumeration over

an input graph, which consists of visiting subgraphs that match

a desired graph property. Subgraph enumeration incurs in high

computational cost and memory demands as the size of the

mined subgraphs increases [3]–[6]. For example, the small

biological dataset bio-diseasome 1 (516 vertices, 1.2K edges)

contains 112B induced subgraphs with 10 vertices, which

would require around 4 TB of memory with a 4-byte integer

per vertex to store all subgraphs.

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

1https://networkrepository.com

A core operation in subgraph enumeration is the subgraph

extension, in which subgraphs with k+1 vertices are obtained

by the combination of a subgraph s with k vertices with a

set of extensions (vertex ids) derived from the adjacency of

vertices in s. Figure 1 illustrates this process using induced

subgraphs s1 and s2. Subgraph extension of s1 generates

four extended subgraphs while s2, six. The huge amount of

subgraphs to be explored may cause long execution times,

leading the pursuit of massively parallel architectures.

Fig. 1: Subgraph-centric parallel processing of subgraphs.

Parallel implementations of specific GPM algorithms were

proposed for shared and distributed memory machines [7]–

[12]. These solutions usually relax the definition of subgraph

enumeration for each algorithm, reducing the computational

cost and memory demands. Although they have attained good

performance on some settings, the implementation of new

algorithms was still a challenging and laborious process, as

the restrictions used to design one GPM algorithm may not

apply to others. This motivated the development of GPM

systems, which support subgraph enumeration and allow the

implementation of specific GPM algorithms by supporting

custom graph properties. GPM systems offer a good tradeoff

between programmability and performance [5], [6], [13]–[15].

a
rX

iv
:2

2
1
2
.0

4
5
5
1
v
1

[c

s.
D

C
]

 8
 D

e
c
 2

0
2
2

Graphics Processing Units (GPUs) are successful in accel-

erating applications in many domains. However, the paral-

lelization strategies for subgraph enumeration on GPU present

major limitations concerning efficient use of GPU architecture,

especially with regard to memory uncoalescence, divergences

and load imbalance. Pangolin [16] is the only GPM system to

employ GPUs. However, it has a high memory demand and has

not been designed and implemented to fully utilize the GPU

computing power by avoiding divergence, improving memory

access pattern and mitigating load imbalance. Next we detail

the main challenges concerning parallel subgraph enumeration

on GPU addressed in this work.

The first challenge is the high memory demand imposed

by enumeration. As subgraph extension relies on combining

a subgraph with its extensions, it may lead to combinatorial

explosion in the number of subgraphs as the enumeration

progresses.

A breadth-first search (BFS) style, which is used in Pan-

golin [16], is a natural choice for parallel subgraph enumer-

ation as it exports a regular parallelism in the exploration

of adjacency lists. However, BFS materializes all the states

related to extended subgraphs, and the amount of memory

required by this strategy quickly grows with the size of

the subgraph, limiting its usage to enumerate only small

subgraphs. On the other hand, depth-first search (DFS) style

approach reduces the memory demand as only a small portion

of the states (subgraphs being processed) are kept during the

enumeration, but its parallel performance may be severely

affected on GPU by its irregular and strided memory requests.

The second challenge arises from the inherent irregularity

of enumeration. Current GPM systems implement parallel sub-

graph enumeration using a subgraph-centric processing, where

subgraphs are treated as independent tasks [17]. Consequently,

the thread-based parallel exploration of Figure 1 (used in

Pangolin [16]), in which each thread independently explores

distinct subgraphs, results in a reduced GPU performance

due to the intrinsic memory uncoalescence, thread divergences

and load imbalance. Memory uncoalescence and subutilization

of the memory bandwidth arises as different threads within

a warp access strided memory locations/graph portions ac-

cording to their currently processed subgraph. For example,

thread t1 accesses positions [0-5] (dark gray positions) of

graph when performing subgraph extension, while thread t2
accesses positions [13-20] (light gray positions). Divergence in

the execution occurs due to different sizes and processing costs

of the adjacency lists (very common in scale-free graphs),

leading to inefficient utilization of the GPU.

Load imbalance is the third challenge which exists as the

cost of exploring subgraphs may be different and can not be

known in advance. Thus, even if subgraphs s1 and s2 are

assigned to different threads to take advantage of parallelism,

idleness is likely to occur as some threads finish earlier. In this

paper we propose strategies to mitigate these three challenges

and allow efficient implementation of GPM algorithms on

GPUs. Our contributions are summarized as:

• DFS-wide Subgraph Exploration. Subgraph exploration

strategy designed for GPU that reduces memory demands

vs. BFS, and allows massive parallel exploration of sub-

graphs with regular memory accesses. Our DFS-wide strategy

achieved an average speedup of 12× vs DFS. To the best

of our knowledge, we are the first work to use a DFS-style

subgraph exploration on GPU for GPM processing;

• Warp-centric Design. An efficient warp-centric design of

all compute demanding stages of the subgraph enumeration,

improving memory coalescence and minimizing divergences;

• Warp-Level Load-Balancing. A load redistribution strategy

among GPU warps. It is executed by CPU that monitors GPU

occupancy and decides when and how load is redistributed.

This layer leads to an average speedup of 16×;

• DuMato GPU-based GPM System. A runtime system

named DuMato, which offers a high-level API to develop GPU

GPM algorithms used to deploy our optimizations. DuMato is

able to explore larger subgraphs (up to 12 vertices) and is often

an order of magnitude faster than state-of-art GPM systems.

II. BACKGROUND

We assume for sake of simplicity undirected graphs without

labels, but our strategies may be adapted to support directed

graphs and labeled features. The vertices and edges of a graph

G are denoted by V (G) and E(G), respectively. The core of

our problem lies on the enumeration of induced subgraphs,

that is, a subgraph S where, for any vi, vj ∈ V (S), (vi, vj) ∈
E(S) iff (vi, vj) ∈ E(G).

A graph is explored through incremental visits to vertices’

neighbourhood (Definition 1), called traversals (Definition 2).

A traversal can be used to create an induced subgraph from

its vertices, called induced traversal (Definition 2). GPM

algorithms usually traverse the graph starting from each ver-

tex/edge, and traversal strategies are usually categorized as

either breadth-first search (BFS) or depth-first search (DFS).

When two traversals find an isomorphism (Definition 3) be-

tween subgraphs sharing the same vertex set, there is an

automorphism (Definition 3).

Definition 1: Given a graph G and a subgraph S of G,

the neighbourhood of S is defined as N(S) = {v ∈
neighbours(u) | u ∈ V (S)} \ V (S).

Definition 2: A traversal is an array tr = [v1, · · · , vk] of

k unique vertices of a graph G (tr ⊆ V (G)), which stores an

order each vertex v ∈ tr is visited in G. An induced traversal

is accompanied by the existing edges among the vertices.

Definition 3: An isomorphism between two graphs G and

H is a bijective function f : V (G) → V (H) such that,

for all edges (vi, vj) ∈ E(G), (f(vi), f(vj)) ∈ E(H).
An isomorphism between two graphs G and H such that

V (G) = V (H) is an automorphism.

Given a graph G and the set of traversals T such that

each tr ∈ T creates the same induced traversal trind, the

canonical candidate is the only traversal tr ∈ T whose

visiting order of vertices is allowed to reach trind in G. GPM

algorithms generate only canonical candidates, preventing

different traversals from finding the same induced traversal

during exploration, avoiding redundant computation. Canoni-

cal candidates may be converted to a unique representation

called canonical representative (also referred in this work

as patterns). The conversion of an induced traversal to its

corresponding canonical representative is known as canonical

relabeling, which is an operation performed very often in GPM

algorithms to categorize subgraphs.

GPM algorithms rely on enumerating k-vertex subgraphs

that follow a given property. Equation 1 describes enumeration

function E, which can be used to design GPM algorithms.

Given a graph G, an initial traversal tr, and an integer k, the

function E explores traversals with k vertices that satisfy a

given anti-monotonic property P , producing results through

an output function A. Functions P and A enable application-

specific semantics. For instance, motif counting [9] would have

A counting how many canonical candidates exist per canonical

representative and clique counting [11] would have P selecting

only canonical candidates that are fully connected.

E(G, tr, k) =

∅ if |tr| = 0
⋃

u∈N(tr)

E(G,P (tr + u), k) if |tr| < k

A(tr) if |tr| = k

(1)

III. RELATED WORK

This section presents the closest GPM systems available in

the literature. Table I summarizes their main features.

GPM System
Algorithmic

Proc.
Explor. Warp- Load

approach strate. centric bal.

Arabesque [13] Pattern-oblivious CPU BFS n/a X

RStream [15] Relational CPU BFS n/a X

Automine [14] Pattern-aware CPU DFS n/a ×
Fractal [5] Pattern-oblivious CPU DFS n/a X

Peregrine [6] Pattern-aware CPU DFS n/a ×
Pangolin [16] Pattern-oblivious GPU BFS × ×
DuMato Pattern-oblivious GPU DFS X X

TABLE I: Related work. “n/a” stands for “not applicable”.

GPM systems for CPU. Arabesque [13] is one of the

first GPM systems targeting distributed memory machines.

The algorithmic approach adopted by Arabesque is known as

pattern-oblivious because it does not rely on pattern generation

to guide the subgraph enumeration. Arabesque proposes a data

structure to compress subgraphs in-memory and to mitigate the

memory demands of the BFS-style exploration while it also

employs load balancing. RStream [15] is a relational GPM

system that relies on expensive join operations to perform

subgraph enumeration. It presents limitations caused by high

memory consumption as the length of enumerated subgraphs

increases. Fractal [5] is a distributed memory CPU-based

GPM system that uses a DFS exploration strategy to reduce

memory demands. Fractal proposes and implements a hierar-

chical work-stealing mechanism to mitigate load imbalance.

AutoMine [14] proposes an automated code generation for

GPM algorithms on CPU. It employs efficient scheduling

of intersect/subtract operations to automate code generation

for custom patterns. Because this approach is specialized for

specific patterns, it may be too expensive in general-purpose

GPM scenarios, where subgraph exploration typically involves

multiple patterns. Peregrine [6] is a parallel GPM system de-

signed for shared-memory CPU machines. Both Peregrine and

AutoMine use an exploration strategy known as pattern-aware,

where canonical representatives are used to guide the subgraph

enumeration by leveraging specialized execution plans. Al-

though pattern-aware exploration is efficient for enumerating

small subgraphs, it has limitations whenever the application

searches for a large number of canonical representatives (e.g.,

counting large motifs). DuMato adopts a pattern-oblivious

exploration strategy and, thus, is not limited by the number

of patterns mined.

GPM systems for GPU. Pangolin [16] is the only GPM

system designed for GPU and follows a pattern-oblivious enu-

meration using the BFS exploration strategy. Pangolin’s design

enables execution optimizations by pruning the search-space

of subgraphs and by reducing the amount of isomorphism tests

required. Materialized intermediate states generated by the

BFS exploration facilitate the runtime to leverage BSP/CGM

load balancing schemes. However, the BFS high memory

demand limits its applicability to enumerate small subgraphs.

Besides, Pangolin does not leverage optimizations to handle

irregularity of parallel GPM algorithms on GPU and relies on

CPU frameworks to perform isomorphism tests.

As presented in Table I, DuMato is the only GPM system

designed to efficiently use GPU with a DFS-like exploration

strategy. Consequently, the memory demands, compared to

Pangolin, are significantly smaller and larger subgraphs can be

mined. Our system also computes isomorphism tests efficiently

on GPU. DuMato has been optimized to use the warp-

centric execution model, leading to better use of the GPU

computing power due to the reduced thread warp divergence

and optimized (coalesced) memory accesses. Finally, DuMato

also proposes and implements a lightweight load balancing

mechanism to redistribute load among GPU thread warps.

IV. EFFICIENT STRATEGIES FOR GPU GRAPH PATTERN

MINING

In this section we present our strategies for efficient graph

pattern mining algorithms on GPU. We start with an overview

of DuMato, our system that supports high-level implemen-

tation of GPM algorithms on GPU. Next, we use DuMato

execution workflow to present our strategies to reduce memory

demand, improve memory coalescence and divergences, and

mitigate load imbalance.

A. DuMato Execution Workflow

The execution workflow of DuMato (Figure 2) employs

the filter-process model [13], which allows implementation of

GPM algorithms based on the enumeration function E (Eq. 1).

Each circle refers to a phase in the workflow and each diamond

refers to a decision.

The process starts with a call E(G, tr, k, P) to enumerate

and output traversals of size k that satisfy property P extended

from an initial traversal tr. The initial traversal tr is used as

Fig. 2: DuMato execution workflow.

input to a Control phase, which implements the termination

condition (|tr| = 0 in Eq. 1). The output of the Control

phase is a decision on whether the subgraph enumeration

should proceed (traversal is not empty) or terminate (traversal

becomes empty). If enumeration continues, the Extend phase

computes the extensions from the current traversal (|tr| < k

in Eq. 1). These possible extensions are in the neighborhood

of the current subgraph and are obtained from the adjacency

of vertices in the traversal (Def. 1). The Extend phase outputs

the current traversal and its extensions.

Next, application-specific semantics may be employed to

narrow the subgraph search in the Filter phase, which se-

lects subgraphs that satisfy some anti-monotonic property P

(|tr| < k in Eq. 1). For example, a property P may check

whether a subgraph is a clique. This is carried out by passing

over the extensions to invalidate those that do not satisfy

property P . Multiple Filters may be executed depending on

which conditions must be verified to ensure property P . The

Filter phase outputs the current traversal and extensions that

are valid.

The output of the Filter may have several invalidated

(erased) positions in the array of extensions, e.g. v2 and v4
in Figure 2. This array of non-contiguous valid extensions

may cause substantial performance degradation, as the next

Filter may have to pass over and process (or check) invalid

values. Thus, DuMato proposes an optional Compact phase

executed after each Filter to reorganize valid extensions into

a contiguous memory/array.

After all Filter/Compact phases were executed, if traversal

size reaches the target number of vertices, they are forwarded

to the enumeration output A (|tr| = k in Eq. 1). This is

accomplished in the Aggregate phase, in which traversals are

consumed for counting, pattern counting, or buffering. If the

traversal has not reached the target number of vertices, the

Aggregate phase is skipped.

Further, the Move phase decides whether to move forward

or backward in the subgraph enumeration. Moving forward

means that an unprocessed extension is appended to the current

traversal for processing (recursion call). Moving backwards

means that all extensions of the current traversal have been

processed, and that the algorithm can go back on processing

smaller traversals (recursion return). The output of the Move

is a modified traversal that should restart the workflow at the

Control, closing the cycle in Figure 2.

Our task allocation modeling is warp-centric and each warp

receives a traversal to enumerate. Threads within a warp enu-

merate the same traversal cooperatively, alternating between

SIMD and SISD phases throughout the execution workflow.

The next sections detail the design and the implementation

of each phase of the execution workflow, which shows our

strategies to mitigate the memory demand (Section IV-B), the

execution irregularity (Section IV-C), and the load imbalance

(Section IV-D) of GPM algorithms on GPU. We also present

our easily-programmable API (Section IV-E).

B. DFS-wide Subgraph Exploration

We propose a novel DFS-wide subgraph exploration, which

alternates between a BFS and a DFS phase to allow regular

subgraph enumeration on GPU. Figure 3a presents an overview

of the DFS-wide exploration steps and Figure 3b shows

the operations performed in one iteration of BFS and DFS

phases. TE (Traversal Enumeration) is an array that stores

the intermediate states needed for DFS-wide. TE.tr stores

the vertex ids of the current traversal and TE.ext stores the

extensions generated through enumeration.

(a) Overview.

(b) BFS and DFS steps.

Fig. 3: DFS-wide subgraph exploration

In Figure 3a, the enumeration starts with a traversal

TE[i].tr and the BFS phase produces and stores the extensions

efficiently in a contiguous array (TE[i].ext) which will be

cached. The DFS receives the extensions and decides to move

forward or backward in the enumeration, depending on the

length of tr and the extensions. Note that, in both forward

and backward, the DFS phase will access extensions in a

contiguous memory which is probably cached, improving

memory efficiency. Enumeration proceeds alternating between

BFS and DFS steps until the traversal reaches the target size.

Assuming we want to enumerate a traversal tr = {v0, v1},

Figure 3b details the operations performed in BFS and DFS

phases in a single iteration of DFS-wide. In the BFS phase a

warp visits the adjacency lists of vertices in current traversal

(step 1), copies these vertices to extensions, and keeps only the

unique extensions which are not in tr (step 2). Once extensions

are generated, the DFS phase starts by consuming a vertex (v2)

from extensions (step 3) and incrementing the current traversal

(step 4).

The BFS phase is implemented by the warp-centric Extend

phase (described later in Section IV-C1) of DuMato workflow,

and the DFS phase is implemented by the warp-centric Move

phase (Algorithm 1). Move phase allows the warp to move

forward/backward in the enumeration of a traversal. It receives

TE and a flag genedges to indicate whether the edges of

traversals should be generated throughout enumeration. The

edges of traversals are useful in algorithms such as motif

counting, where connectivity information is used to extract

canonical representatives from subgraphs. If necessary, the

Move phase generates edges gradually as enumeration pro-

gresses. If the current traversal still has not reached the size

limit and the current set of extensions is not empty (line 3),

the warp moves forward in the enumeration by consuming an

extension and extending the current traversal (lines 4,5). If

the edges of traversal are needed, induce function (line 6) is a

SIMD step that reuses the edges of current traversal to produce

the edges of the extended traversal. If either the current

traversal has reached the size limit or the current extensions

set is empty, the current traversal can not be extended and the

warp moves backward in the enumeration (line 7). In case the

enumeration of current traversal finishes, the warp pulls a new

traversal from a global queue (line 8). As all threads within

a warp manipulate the same traversal and the main purpose

of Move is to update information about current traversal, it is

mostly a SISD phase, and only induce function that is costly

is a SIMD step.

Algorithm 1: Move primitive

1 SIMD void move(TE, genedges) :
2 SISD extensions← TE[TE.len− 1].ext;
3 SISD if(TE.len 6= k − 1 and extensions 6= ∅) :
4 SISD ext← pop(extensions);
5 SISD TE[level+ 1].tr ← ext;
6 SIMD if(genedges) : induce(TE);
7 SISD else : TE.len−−
8 SISD if(TE.len = 0): TE ← pull trav. from global queue;

The worst-case space complexity of the DFS-wide explo-

ration is O(traversals × max(G) × k2), where traversals

is the number of traversals processed in parallel, max(G)
is the maximum degree of the input graph, and k is the

length of explored subgraphs. All data structures are allocated

in global memory and shared memory was set for caching,

which is used in the BFS phase during the copy of adjacency

lists to the extensions, as well as in the DFS phase to read

an extension to move forward/backward. The cost for BFS

subgraph exploration is O(traversals×max(G)k−1), which

naturally leads to an exponential growth of memory demands

as k increases. The cost for DFS subgraph exploration is

O(traversals×k), as the only intermediate state needed is the

set of vertex ids of current traversal. Although DFS consumes

less memory than DFS-wide, DFS-wide allows more regularity

in execution and memory access pattern throughout subgraph

enumeration.

Previous works have used DFS-like subgraph exploration

for graph analytics algorithms such as PageRank and Con-

nected Components [18], [19]. However, graph analytics al-

gorithms rely on convergence parameters and the amount

of intermediate states does not grows exponentially as in

GPM algorithms, requiring a simpler system design. The

next section explains our efficient warp-centric strategies to

improve memory coalescence and divergences.

C. Efficient Warp-centric Filter-Process

This section describes the warp-centric based design and

implementation of the DuMato phases of the filter-process

workflow. Our goal with this model is to minimize execution

divergence in our irregular algorithms, and to exploit the op-

portunities of parallelism and regular memory access enabled

with the DFS-wide strategy.

1) Extend: This phase is the BFS step that generates the

neighbourhood extensions of a traversal tr by visiting the

adjacency lists of a specific range of vertices. This design is

important to enable algorithms using the adjacency list of all

vertices in the current traversal (e.g. motif counting) or only

the adjacency list of a subset (e.g. clique counting).

Algorithm 2 shows our warp-centric implementation of the

extend phase. Every call to extend returns a boolean value to

indicate whether its extensions had already been filled prior to

the call, and this information is useful to avoid unnecessary

calls to filter-compact. Line 2 is an initial SISD phase, where

all threads in the warp receive the array where extensions

of current traversal are supposed to be written. In case the

extensions have already been generated by previous calls to

extend, the function stops and returns false (line 3). Lines 4-

9 generate the extensions of current traversal by iterating the

adjacency lists of vertices in TE[start · · · end].

Threads in the warp receive the same vertex id in the

current traversal (line 4), whose adjacency will be visited in

parallel. Each thread retrieves a different extension candidate

e by reading the adjacency of id in parallel (line 5). As the

adjacency list of a vertex is contiguous in global memory,

this memory request is coalesced. Next, threads in the same

warp work cooperatively to discover whether their extension

candidates are valid for the current traversal. Threads compare

their extension candidates to each vertex in current traversal to

check whether they are already present in the current traversal

(line 6). In this step, threads in the same warp execute in

lockstep and compare their values to the same position i in

TE[i].tr, allowing broadcast of TE[i].tr to all threads in the

warp using one memory transaction. Next, threads compare

their extension candidates to extensions already generated (line

7). In this step we also take advantage of lockstep execution

and memory broadcasting, providing regular execution and re-

ducing memory transactions. In case the extension candidates

neither are in the current traversal nor in the extensions already

generated, they are written to the current extensions in parallel

through coalesced memory writes (lines 8-9). Note that all

lines of extend function are executed in lockstep by threads

within a warp, minimizing divergences. Besides, each line also

provides regular memory access patterns for all data structures,

allowing memory coalescence and good cache locality. If new

extensions were generated, the function returns true (line 10).

Algorithm 2: Extend primitive.

1 SISDboolean extend(TE, start, end) :
2 SISD len← TE.len− 1 ; extensions← TE[len].ext;
3 SISD if(extensions generated) : return false;
4 SISD for each(id ∈ TE[start · · · end− 1].tr) :
5 SIMD for each(e ∈ adjacency(id)) :
6 SIMD inTraversal← find e in TE[0 · · · len].tr;
7 SIMD inExtensions← find e in extensions;
8 SIMD e← !inTraversal && !inExtensions ? e : −1;
9 SIMD write e to extensions;

10 SISD return true;

2) Filter: Given a traversal tr, filter (Algorithm 3) phase

iterates a set of extensions in parallel and invalidates those

that do not meet a property P . Threads read consecutive

extensions in parallel through coalesced memory accesses (line

3), call a function pointer P to discover whether an extension

satisfies the desired property (line 4), and invalidate (write −1
value) those which do not fulfill the property (line 4). The

implementation of property functions P is also warp-centric

and uses DuMato primitives to access TE data structure.

Algorithm 3: Filter primitive.

1 SIMDvoid filter(TE, P, args) :
2 SISD extensions← TE[TE.len− 1].ext;
3 SIMD for each(ext ∈ extensions) :
4 SIMD if(P (TE, ext, args)) : invalidate(extensions, i);

3) Compact: It is an optional phase that accesses the exten-

sions set of the current traversal and removes invalid positions,

reducing its actual length. As seen in Algorithm 3, a filter

iterates over the entire set of extensions of the current traversal,

even if some positions are invalid. By removing invalid posi-

tions, compaction reduces the costs of sequential filter calls.

We provide an efficient warp-centric implementation of this

function using intra-warp communication primitives such as

ballot and any sync.

4) Aggregate: This phase is executed when a thread warp

has derived traversals with k vertices and, as discussed, it is in

charge of producing the actual GPM algorithm results (A func-

tion of Eq. 1). DuMato provides three aggregation primitives:

aggregate pattern, aggregate counter and aggregate store, as

defined in Table II, which are explained below.

The aggregate pattern is the most challenging primitive

for implementation on GPUs. It is used when the output

of the GPM algorithm relies on counting the occurrence of

canonical representatives (patterns) with k vertices, such as

motif counting. This is executed in a warp basis such that each

warp performs canonical relabeling, converting each subgraph

with k vertices to its canonical representative and incrementing

a counter. This is only possible due to our novel representation

for canonical representatives, which reduces the amount of

memory required to store them. The solution for canonical

relabeling relies on graph isomorphism, and GPM systems

(including Pangolin [16]) perform it on CPU using tools such

as Nauty [20]. To the best of our knowledge, we are the first

work to implement canonical relabeling on GPU.

Figure 4 depicts our strategy for canonical relabeling on

GPU. We use a bitmap to store the edges of the traversal.

For example, assuming k = 4 and a traversal tr, we need

5 bits to store the edges of a traversal. As we handle only

connected traversals, v0 is always connected to v1 and this

edge is not stored. The two least significant bits of the bitmap

store the edges of v2 with respect to {v0, v1}, and the next

three bits store the edges of v3 with respect to {v0, v1, v2}
(the same reasoning may be applied to a subgraph with k

vertices). Using 5 bits we can represent up to 32 possible

traversals, as seen in (a). Each possible traversal with 4 vertices

can be mapped to its canonical representative, shown in (b).

As traversals often produce isomorphic subgraphs, different

traversals may be mapped to the same canonical representative.

The amount of canonical representatives is much smaller than

the amount of possible traversals, as seen in (c), and the bitmap

representation of canonical representatives can be relabeled to

use consecutive bitmaps.

Our implementation creates a dictionary that receives a

traversal tr with k vertices along with its edges encoded using

the bitmap representation (a.k.a. an induced traversal) and

converts tr to a canonical representative that is in a contiguous

range of positions (Figure 4). This is done in two steps: in

(a) → (b) traversal edges are mapped to non-contiguous rep-

resentatives; and in (b) → (c) non-contiguous representatives

are mapped to contiguous identifiers. This conversion allows

each warp to use local counters for canonical representatives

using less memory, as no position in the array of counters

is wasted. This dictionary is a pre-processed data structure,

created once for a range of k values, and that can be used

in any dataset and in any application that requires canonical

relabeling (e.g. frequent subgraph mining [21] and subgraph

matching [7]). DuMato provides this dictionary as an input

file.

Fig. 4: Canonical relabeling on GPU.

The aggregate counter primitive is called when the desired

results/output of the GPM algorithm is a pattern counting, such

Fig. 5: Warp-level load balancing.

as in the clique counting algorithm. Each warp produces its

own counter (based on the length of the extensions for each

traversal with k − 1 vertices) to avoid inter-warp race condi-

tions, and the global counting is produced with a reduction of

the warps counting afterwards, on CPU. This is a simple and

computing inexpensive primitive. Primitive aggregate store

stores the explored subgraphs with k vertices and can be

used in algorithms such as subgraph querying, which lists

all subgraphs that matches a pattern instead of producing

counters. We create an array buffer that stores the connectivity

bitmap of explored subgraphs with k vertices as they are

produced. DuMato then provides a producer-consumer envi-

ronment using the CPU to consume the buffer asynchronously.

D. Warp-Level Load Balancing

The cost of enumerating distinct traversals may vary, which

leads to load imbalance among warps. We propose an asyn-

chronous workload redistribution scheme on CPU to mitigate

this problem, depicted in Figure 5. Our strategy makes de-

cisions based on the warp level activity information, and all

steps are executed on CPU.

The CPU constantly and asynchronously reads the warp

activity information from the GPU to decide whether load

should be redistributed to improve GPU utilization (step 1).

When CPU detects load balancing is to be performed (step 2,

rebalance), the CPU informs the GPU by setting a flag and

the warps stop their execution in a consistent state (step 3).

We propose a rebalance condition such that, if the number

of active warps is found to be lower than a threshold, the

workload balancing is carried out. When all warps stop,

CPU copies TE data structure, performs work redistribution

(step 4, redistribute) and runs kernel again on GPU (step

5). We propose a redistribute algorithm that performs load

balancing by separating warps in donators (those with multiple

traversals) and idle ones. While there are idle warps, a donator

is selected (in a round-robin fashion) and an arbitrary traversal

is migrated from it to the idle warp. We show the effectiveness

of rebalance and redistribute strategies in our performance

evaluation. As long as GPU is active, CPU inspects warp

activity and perform work redistribution.

Rebalance and redistribute steps in our scheme can be

easily customized to implement other approaches. We high-

light that, although it is possible to implement complex load

balancing mechanisms using buffers to store jobs generated by

warps [22], our CPU-only strategy mitigates synchronization

overheads from GPU and more resources can be allocated for

subgraph enumeration.

E. Programming with DuMato

DuMato’s workflow (Fig. 2) is able to represent any GPM

algorithm relying on the enumeration of induced subgraphs.

Table II shows the programming interface that can be used to

create algorithms in DuMato using our efficient strategies. The

functions receive as parameter a data structure holding runtime

information about the active traversal and extension arrays

(TE, detailed in Fig. 3) along with additional parameters.

Functions Phase Scope

[CT] control(TE) Control
Algorithm-independent

[MV] move(TE, genedges) Move

[EX] extend(TE, begin, size) Extend

Algorithm-specific

[FL] filter(TE, P, args) Filter

[CP] compact(TE) Compact

[A1] aggregate counter(TE)

Aggregate[A2] aggregate pattern(TE)

[A3] aggregate store(TE)

TABLE II: DuMato API.

Control and Move phases are responsible for keeping the

workflow active while there are unprocessed traversals in the

search space. Because this loop-based exploration is common

to most GPM algorithms searching for multiple subgraphs, we

say that these phases are independent of algorithm semantics.

Functions [CT] and [MV] implement these two phases.

[CT] allows the underlying runtime to check the termination

conditions of the execution. [MV] implements the traversal

order of exploration and receives an additional parameter

genedges that determines whether the edges of the current

traversal should be generated.

Extend, Filter, Compact, and Aggregate phases enables

a straightforward and efficient representation of application-

specific semantics on GPUs. Function [EX] implements the

Extend phase and generates the extensions array by fetching

the neighborhood of vertices in the traversal at positions in

range [begin, size). This can be used to generate extensions

using alternative strategies that may be more effective to ex-

plore subgraphs having patterns known apriori [6], [11]. [FL]

implements the Filter phase and allows invalidating extensions

that do not satisfy a user-defined property. The input to this

call is a pointer to a function and its arguments (property P

and args, respectively) that is applied to each extension to

maintain only valid ones. This interface can be used to design

custom subgraph filters of extensions based on canonical

candidate generation [13], density [23], subgraph matching [7],

among others. [CP] implements the Compact phase and can

be applied between consecutive [FL] calls to compact the

extensions array. This interface allows a fine-grained control

over the underlying GPU memory organization, which can

be useful to speedup memory access when it is possible to

infer the selective potential of filters from application-specific

semantics [11], [12]. [A1], [A2], and [A3] implement the

Aggregate phase: [A1] counts the number of valid extensions

in the array of extensions; [A2] counts the number of traver-

sals per pattern; and [A3] allows buffering of traversals for

custom semantics and further downstream processing. These

can be used, for instance, for subgraph counting [11] and

scoring [24].

Algorithms are implemented in a loop that processes new

traversals until the termination condition is reached. After

each loop iteration, DuMato moves the exploration to a new

traversal as a preparation to the next iteration. This is common

to most GPM algorithms and can be observed in lines 11

and 20 of Algorithm 4, which presents the implementation

of two representative GPM algorithms using DuMato API:

clique counting and motif counting. Bold lines marked with

represent algorithm-specific semantics that uses DuMato’s

API and, consequently, new algorithms with new extend,

filtering, and aggregation demands may be implemented by

replacing those lines.

Algorithm 4: Clique and motif counting algorithms.

1 void clique counting(TE) :
2 while(control(TE)) :
3 if(extend(TE, 0, 1)) :
4 u← TE[TE.len− 1].id;
5 filter(TE, &lower , [u]);
6 compact(TE);
7 filter(TE,&is clique, []);
8 if(TE.len = k − 1) :
9 aggregate counter(TE);

10 move(TE, false);

11 void motif counting(TE) :
12 while(control(TE)) :
13 if(extend(TE, 0,TE.len)) :
14 filter(TE,&canonical, []);
15 if(TE.len = k − 1) :
16 aggregate pattern(TE);
17 move(TE, true);

Clique counting. A clique of size k is a graph C with k

vertices such that, for every vi ∈ V (C) and vj ∈ V (C),
(vi, vj) ∈ E(C). Given a graph G, the clique counting

problem seeks to count the number of cliques with k vertices

within G. Clique counting represents algorithms whose goal

is searching for subgraphs with the same pattern. Because a

clique extension must be adjacent with every vertex in the

traversal, the Extend phase consists of generating the array

of extensions from the neighbors of a single vertex in the

traversal. [EX] call in line 3 of Algorithm 4 implements

this idea by indicating that the current extensions should be

obtained from the neighbors of the first vertex in the traversal

(represented by the range [0, 1)). Given this set of extensions,

[FL] is used in line 5 to invalidate non-canonical candidates

(extensions lower than the last vertex), [CP] is used in line 6

to reorganize the extensions array by compaction, and [FL]

is used again in line 7 to remove extensions that do not

generate cliques. The custom procedure is clique ensures

that valid extensions are connected to all vertices in the

traversal. Both lower and is clique are simple functions that

must return true or false given a traversal and one of its

extensions. Finally, if the traversal reaches k− 1 vertices then

traversals with k vertices may be aggregated with [A1], which

accumulates the length of the array of extensions in a counter.

Motif counting. A motif of size k is a canonical repre-

sentative subgraph containing k vertices. The motif counting

problem seeks to count the number of each motif of size k in

a graph G. Motif counting represents algorithms whose target

is searching for subgraphs of multiple patterns. Because this

problem requires visiting all induced subgraphs of size k, the

[EX] call in line 15 indicates that the adjacency of each vertex

in the traversal must be considered to produce the extensions

array (i.e. all traversal vertices in range [0, TE.len)). In line

17 the algorithm calls [FL] to invalidate extensions that

combined with the traversal do not represent canonical can-

didates. Custom function is canonical can be implemented

using standard canonical filtering algorithms [13]. Finally, a

[A2] call extracts the canonical representative (pattern) from

traversals combined with last level extensions to increment the

respective pattern-specific counters (line 19).

V. EVALUATION

This section presents the DuMato performance evaluation.

We employ the implementations of clique counting and motif

counting algorithms. The algorithms represent two impor-

tant categories in GPM processing: exploration of subgraphs

sharing a single canonical representative (Clique counting)

and exploration of subgraphs ranging multiple canonical rep-

resentatives (Motif counting). The attributes of five real-

world datasets used in our experiments are presented in

Table III. CPU experiments were conducted on an Amazon

AWS machine with 16 vCPUs optimized for CPU comput-

ing (C5a.4xlarge), 32GB of RAM and Ubuntu 22.04. GPU

experiments concerning execution time were conducted on

an Amazon AWS machine with one NVIDIA Testa V1OO

(p3.2xlarge) with 32 Gb and CUDA 11. GPU profiling ex-

periments were conducted on a local machine with NVIDIA

TITAN V with 12GB and CUDA 10.1. The time limit adopted

for each execution was 24 hours. After a theoretical occupancy

analysis and an empirical evaluation, the configuration of the

experiments was set to 172,032 threads for all datasets. This

amount of threads was enough to keep SMs busy without

overloading GPU registers. For the motif counting we do

not present the results for LiveJournal graph because the

executions exceed our 24 hours limit even for small subgraph

sizes (k > 4).

Dataset V(G) E(G) Avg. Deg. Density Max. Deg.

Citeseer [21] 3.2K 4.5K 2.77 8.51× 10−4 99
ca-AstroPh [25] 18.7K 198.1K 21.10 1.12× 10−3 504

Mico [21] 96.6K 1.08M 22.35 2.31× 10−4 1359
com-DBLP [26] 317K 1.04M 6.62 2.08× 10−5 343

com-LiveJournal [26] 3.9M 34.6M 17.35 4.34× 10−6 14815

TABLE III: Graphs used for evaluation.

A. Impact of Optimizations

This section evaluates the efficiency of our optimization

strategies using three implementations of clique and motif

counting (all implemented with DuMato API): DM DFS

(DuMato Depth-First Search), in which each GPU thread

receives a traversal tr and calculates E(G, tr, k, P) using DFS

exploration; DM WC (DuMato Warp-Centric), in which each

warp receives a traversal and enumerates it using DFS-wide

and the warp-centric design, but with load balancing disabled;

DM OPT (DuMato Optimized), which is DM WC with load

balancing enabled. Table IV shows the execution times for the

three versions of both algorithms as the length of the subgraphs

mined (k) is varied. Cells containing “-” refer to experiments

that have not finished within 24 hours.

Impl. k = 3 k = 4 k = 5 k = 6 k = 7

Clique

Citeseer
DM_DFS 0.01 0.01 0.01 0.01 ∅

DM_WC 0.01 0.01 0.02 0.02 ∅

DM_OPT 0.01 0.01 0.02 0.03 ∅

ca-AstroPh
DM_DFS 0.23 4.75 51.43 430.11 44.78K
DM_WC 0.03 0.36 3.50 28.98 221.75

DM_OPT 0.13 0.28 0.67 2.37 11.46

Mico
DM_DFS 3.28 267.32 19.67K - -
DM_WC 0.26 12.62 593.94 26.31K -
DM_OPT 0.33 1.93 51.98 1.75K -

DBLP
DM_DFS 0.16 4.04 134.13 3.64K -
DM_WC 0.03 0.33 8.04 232.96 5.63K
DM_OPT 0.13 0.28 1.01 7.14 96.22

clique - livejournal
LiveJournal

DM_DFS 337.85 6.65K - - -
DM_WC 16.83 260.25 6.77K - -
DM_OPT 4.30 49.82 897.25 38.50K -

Motifs

Citeseer
DM_DFS 0.01 0.49 10.84 232.11 6.11K
DM_WC 0.01 0.06 1.26 25.90 457.17

DM_OPT 0.11 0.11 0.23 0.68 8.27

ca-AstroPh
DM_DFS 1.59 555.64 - - -
DM_WC 0.09 20.26 5.28K - -
DM_OPT 0.13 1.78 149.43 28.14K -

Mico
DM_DFS 20.58 13.90K - - -
DM_WC 0.95 597.66 - - -
DM_OPT 0.46 33.44 10.56K - -

DBLP
DM_DFS 0.96 178.69 26.69K - -
DM_WC 0.08 8.98 1.35K - -
DM_OPT 0.14 1.05 38.07 2.95K -

∅: no valid subgraphs

TABLE IV: Optimizations performance. Execution time (sec-

onds) for three implementations of algorithms using DuMato.

1) Gains Due to Warp-centric DFS-wide: The DFS version

consumes a small amount of memory, but each thread within

a warp has its own execution path, leading to an irregular

execution and a worse memory access pattern. The DM WC

version increases both memory efficiency and parallelism

regularity, achieving speedups up to 33x (Clique app, Mico

dataset and k = 5) compared to DM DFS, and showing the

efficiency of memory coalescence and divergence reduction.

We also observe that DM WC does not perform better than

DM DFS whenever the amount of parallel work is insufficient,

as in clique counting in Citeseer, which contains few cliques.

To understand the effects of our exploration and optimiza-

tion strategies at hardware level, Table V shows the improve-

ments of DM WC over DM DFS using execution and memory

metrics collected from CUDA NVProf profiling tool [27].

We present the results using DBLP dataset for k up to 4
(GPU profiling is much slower than standard runs). Metrics are

divided into two categories: (i) Execution, which measures the

efficient use of GPU execution model and parallelism and (ii)

Memory, which quantifies the use of the memory hierarchy.

For execution, we chose the metric inst per warp, which

calculates the average number of instructions executed by each

warp. The more regular the execution is, the less divergent

instructions are issued and warps require less instructions.

For memory, we chose the metric gld transactions, which

measures the total amount of load transactions requested to

global memory. The more coalesced is the memory access

pattern, the less transactions are needed to service memory

requests. In our experiments, we observed that the other

metrics were consistent with these two representative choices.

App. k
Memory (load transactions) Execution (inst. per warp)

DM_DFS DM_WC Improvement DM_DFS DM_WC Improvement

Clique
3 618.1M 212.7M 2.9× 3.3M 876.6K 3.8×

4 6.7B 852.4M 7.9× 50.5M 5.1M 9.9×

Motifs
3 3.3B 597.0M 5.53× 17.5M 2.6M 7.36×

4 134.7B 22.8B 5.90× 1.9B 143.2M 13.3×

TABLE V: Improvements of DM_WC over DM_DFS.

Execution metrics: The Warp-Centric DFS-Wide exploration

results in natural lockstep implementation, which fits better

GPU execution model and allows all threads within a warp

to execute the same instruction more often to minimize diver-

gence. This reduces the total number of instructions per warp

for the DM WC version, as they execute mostly in lockstep

and all threads in the warp tend to execute the same instruction.

This regularity is confirmed by the execution metrics, with

improvements ranging from 3.8x and 13.3x, confirming that

our warp-centric design provides more regular execution.

Memory metrics: The Warp-Centric DFS-Wide exploration

with its regular lockstep execution allowed threads to perform

memory requests together using coalesced requests. Therefore,

our DM WC version reduces the total amount of memory

transactions. This reduction is confirmed by the memory met-

ric, with improvements ranging from 2.90x to 7.92x, enhanc-

ing that our memory optimizations reduce wasted bandwidth

and improve memory efficiency.

2) Improvements with Load Balancing: In order to define

the adequate load balancing threshold, we conducted a sensi-

tivity analysis (not shown due to space constraints) varying the

amount of threads and the threshold used for rebalancing. We

found that 172, 032 threads were enough to provide massive

parallelism without overloading register allocation. We also

found that, for this amount of threads, the optimum load

balancing threshold was 40% for clique counting and 10% for

motif counting. As clique counting prunes the search space,

load imbalance occurs earlier than in motif counting, requiring

a larger value of threshold to avoid excessive calls to the load

balancing layer.

Table IV shows that the DM OPT version attained speedups

of up to 65× compared to WC (Motifs app, Citeseer dataset

and k = 8). As the size of enumerated subgraphs increases,

work skewness is intensified because most subgraphs are

extracted from denser regions of the graph associated with

increasingly fewer vertices and, at this point, load balancing

becomes more effective. Hence, DM OPT allowed the explo-

ration of larger subgraphs for all datasets. We also observe

that DM OPT is not always beneficial compared to DM WC,

especially for k ≤ 4 in small datasets. In particular, whenever

the amount of work is insufficient to exhibit a substantial

imbalance or to payoff the overhead of redistributing the load,

DM WC outperforms DM OPT.

B. Comparison to Other GPM Systems

This section compares our optimal DuMato GPU imple-

mentations (DM OPT) against three representative state-of-

the-art GPM systems: Pangolin [16] GPM system designed

for GPU, and Fractal [5] and Peregrine [6] parallel CPU

machines. Table VI also shows the results. DuMato is more

scalable and able to explore larger subgraphs than all baselines

within the same time limit, exploring subgraphs of up to 12

vertices. To the best of our knowledge, this length of explored

subgraphs has not been accomplished by any other GPM

system searching for exact outputs.

System k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12

C
li

q
u
e

C
it

es
ee

r DM 0.01 0.01 0.01 0.01 ∅ ∅ ∅ ∅ ∅ ∅

FRA 4.84 4.83 4.75 4.81 ∅ ∅ ∅ ∅ ∅ ∅

PER 0.01 0.03 0.02 0.02 ∅ ∅ ∅ ∅ ∅ ∅

PAN 0.01 0.01 0.01 0.01 ∅ ∅ ∅ ∅ ∅ ∅

ca
-A

st
ro

P
h DM 0.13 0.28 0.67 2.37 11.46 57.55 297.89 1.47K 6.73K 28.14K

FRA 8.17 9.75 15.89 78.09 439.16 2.30K 12.89K 57.02K - -
PER 0.01 0.10 0.83 6.38 43.56 272.42 1.55K 7.93K 36.26K -
PAN 0.01 0.01 0.02 0.11 0.61 OOM OOM OOM OOM -

M
ic

o

DM 0.42 3.89 57.49 2.22K - - - - - -
FRA 14.17 48.53 1.44K 56.72K - - - - - -
PER 0.09 1.81 82.67 3.66K - - - - - -
PAN 0.01 0.05 2.93 OOM - - - - - -

D
B

L
P

DM 0.13 0.28 1.01 7.14 96.22 1.45K 20.86K - - -
FRA 13.44 14.32 22.72 186.97 2.52K 35.51K - - - -
PER 0.11 0.16 1.36 25.92 531.88 9.35K - - - -
PAN 0.01 0.01 0.03 0.50 OOM OOM OOM OOM OOM OOM

L
iv

eJ
o
u
rn

al DM 4.30 49.82 897.25 38.50K - - - - - -
FRA 394.85 901.05 16.06K - - - - - - -
PER 3.91 26.66 1.06K 64.74K - - - - - -
PAN 0.01 0.53 OOM OOM OOM OOM OOM OOM OOM OOM

M
o
ti

fs

C
it

es
ee

r DM 0.11 0.11 0.23 0.68 8.27 157.97 - - - -
FRA 5.17 5.20 5.69 12.44 163.48 - - - - -
PER 0.01 0.01 0.05 3.47 537.66 - - - - -
PAN 0.01 0.01 INC OOM OOM OOM OOM OOM OOM OOM

ca
-A

st
ro

P
h DM 0.13 1.78 149.43 28.14K - - - - - -

FRA 9.13 435.64 4.72K - - - - - - -
PER 0.01 0.57 132.90 52.80K - - - - - -
PAN 0.01 0.21 INC OOM OOM OOM OOM OOM OOM OOM

M
ic

o

DM 0.46 33.44 10.56K - - - - - - -
FRA 16.43 474.46 - - - - - - - -
PER 0.06 6.57 7.92K - - - - - - -
PAN 0.01 3.31 OOM OOM OOM OOM OOM OOM OOM OOM

D
B

L
P

DM 0.14 1.05 38.07 2.95K - - - - - -
FRA 14.33 37.62 1.43K - - - - - - -
PER 0.07 0.95 78.59 50.95K - - - - - -
PAN 0.01 0.17 INC OOM OOM OOM OOM OOM OOM OOM

DM: DuMato (this work); FRA: Fractal; PER: Peregrine; PAN: Pangolin
OOM: out-of-memory; INC: incomplete results; ∅: no valid subgraphs

TABLE VI: Comparative performance. Execution time (sec-

onds) of DuMato and baselines (GPU and CPU).

Pangolin clearly suffers from scalability issues. Although

it achieves good performance for small datasets and small

enumerated subgraphs, it usually runs out of memory when the

length of explored subgraphs is close to 5 vertices, limiting

its applicability and the discoveries of GPM algorithms. As

compared to Fractal, we obtain significant speedups in all

executions with gains ranging from 17× to 103×. In general,

as length of explored subgraphs increases, the processing cost

is higher and DuMato can take more advantage of GPU’s

massive parallel processing and to achieve better gains.

Regarding Peregrine, DuMato is competitive for small val-

ues of explored subgraphs (up to 5 vertices), and shows

speedups of up to 65x for larger explored subgraphs. Even in

Peregrine’s best case (clique application, which contains only

one pattern), DuMato is able to deliver consistent speedups.

We achieve more expressive gains in motif counting appli-

cation for larger values of k, which can be explained by

the inherent characteristics of pattern-aware enumeration of

Peregrine. As we increase the length of explored subgraphs,

the number of valid patterns and exploration plans grows ex-

ponentially, incurring in two aspects that impact the Peregrine

performance: (i) the cost of generating exploration plans for

each pattern increases and (ii) part of exploration plans does

not generate valid subgraphs, leading to wasted computational

resources.

VI. CONCLUSION

We propose the DuMato GPU based GPM system that inte-

grates novel strategies to address the challenges found in GPM

execution on GPUs: high memory demands, memory uncoa-

lescence, divergences, and load imbalance. These strategies

and optimizations include our DFS-wide subgraph exploration,

warp-centric system design and implementation, and warp-

level load balancing strategy. Our system and optimizations

were evaluated using real-world datasets. We compared Du-

Mato to three state-of-the-art GPM systems, showing that it

is more scalable (up to 12-vertice subgraphs) and often one

order of magnitude faster.

As a future work, we plan to extend our load balancing with

a fine-grained asynchronous workload redistribution, allowing

work redistribution without having to stop and restart the GPU

kernel. Even with our efficient GPU based design, the GPM

algorithms have a long execution time as we increase the

length of datasets and explored subgraphs. Thus, we intend

to propose a multi-GPU version of DuMato to accelerate it

further along with a fault tolerance layer to avoid restarting

long runs from scratch.

REFERENCES

[1] Alexandra Duma and Alexandru Topirceanu. A network motif based
approach for classifying online social networks. SACI ’14, 2014.

[2] Olaf Sporns and Rolf Kötter. Motifs in brain networks. PLOS Biology,
2004.

[3] W. Lin, X. Xiao, X. Xie, and X. Li. Network motif discovery: A gpu
approach. ICDE ’15, 2015.

[4] Parallel discovery of network motifs. Journal of Parallel and Distributed

Computing, 2012.

[5] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira,
and Srinivasan Parthasarathy. Fractal: A general-purpose graph pattern
mining system. SIGMOD ’19, 2019.

[6] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A
pattern-aware graph mining system. EuroSys ’20, 2020.

[7] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and
Kian-Lee Tan. Gpu-accelerated subgraph enumeration on partitioned
graphs. SIGMOD, 2020.

[8] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu
Yang. Scalable distributed subgraph enumeration. VLDB Endow., 2016.

[9] Pedro Ribeiro and Fernando Silva. G-tries: A data structure for storing
and finding subgraphs. Data Min. Knowl. Discov., 2014.

[10] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat,
and Fuad Jamour. Scalemine: Scalable parallel frequent subgraph mining
in a single large graph. SC ’16, 2016.

[11] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques
in sparse real-world graphs. WWW ’18, 2018.

[12] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal
cliques in large sparse real-world graphs. ACM J. Exp. Algorithmics,
2013.

[13] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos
Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A
system for distributed graph mining. SOSP ’15, 2015.

[14] Daniel Mawhirter and Bo Wu. Automine: Harmonizing high-level
abstraction and high performance for graph mining. SOSP ’19, 2019.

[15] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and
Guoqing Harry Xu. Rstream: Marrying relational algebra with streaming
for efficient graph mining on a single machine. OSDI’18, 2018.

[16] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali.
Pangolin: An efficient and flexible graph mining system on cpu and
gpu. Proc. VLDB Endow., 2020.

[17] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil
Nagarkar, Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna.
Goffish: A sub-graph centric framework for large-scale graph analytics.
EuroPar ’14, 2014.

[18] Pingpeng Yuan, Changfeng Xie, Ling Liu, and Hai Jin. Pathgraph: A
path centric graph processing system. TPDS ’16, 2016.

[19] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma,
and Daniel Sanchez. Exploiting locality in graph analytics through
hardware-accelerated traversal scheduling. In MICRO ’18, 2018.

[20] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism,
ii. Journal of Symbolic Computation, 2014.

[21] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos
Kalnis. Grami: Frequent subgraph and pattern mining in a single large
graph. VLDB Endow., 2014.

[22] Daniel Cederman and Philippas Tsigas. On dynamic load balancing on
graphics processors. GH ’08, 2008.

[23] Guimei Liu and Limsoon Wong. Effective pruning techniques for mining
quasi-cliques. ECMLPKDD ’08, 2008.

[24] Bryan Hooi, Kijung Shin, Hemank Lamba, and Christos Faloutsos.
Telltail: Fast scoring and detection of dense subgraphs. AAAI ’20,
2020.

[25] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Trans. Knowl. Discov.

Data, 2007.
[26] Jaewon Yang and Jure Leskovec. Defining and evaluating network

communities based on ground-truth. MDS ’12, 2012.
[27] NVIDIA Corporation. Toolkit Documentation. https://docs.nvidia.com/

cuda/profiler-users-guide/index.html, 2022.

	I Introduction
	II Background
	III Related Work
	IV Efficient Strategies for GPU Graph Pattern Mining
	IV-A DuMato Execution Workflow
	IV-B DFS-wide Subgraph Exploration
	IV-C Efficient Warp-centric Filter-Process
	IV-C1 Extend
	IV-C2 Filter
	IV-C3 Compact
	IV-C4 Aggregate

	IV-D Warp-Level Load Balancing
	IV-E Programming with DuMato
	V Evaluation
	V-A Impact of Optimizations
	V-A1 Gains Due to Warp-centric DFS-wide
	V-A2 Improvements with Load Balancing

	V-B Comparison to Other GPM Systems
	VI Conclusion
	References

