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ABSTRACT

Epidemiological early warning systems for dengue fever rely on up-

to-date epidemiological data to forecast future incidence. However,

epidemiological data typically requires time to be available, due to

the application of time-consuming laboratorial tests. �is implies

that epidemiological models need to issue predictions with larger

antecedence, making their task even more di�cult. On the other

hand, online platforms, such as Twi�er or Google, allow us to ob-

tain samples of users’ interaction in near real-time and can be used

as sensors to monitor current incidence. In this work, we propose

a framework to exploit online data sources to mitigate the lack of

up-to-date epidemiological data by obtaining estimates of current

incidence, which are then explored by traditional epidemiological

models. We show that the proposed framework obtains more ac-

curate predictions than alternative approaches, with statistically

be�er results for delays greater or equal to 4 weeks.
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1 INTRODUCTION

Dengue fever is a mosquito-borne viral disease whose pathogen

is mainly transmi�ed by females mosquitoes of the species Aedes

aegypti, the same mosquito that carries the viruses of zika, yellow

fever and chikungunya. As a severe �u-like illness, it may cause

high fever, strong headache, pain behind the eyes, muscles and
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joints, nausea, vomiting, swollen glands and rash, which can last

for one week. �ere is no speci�c treatment for dengue fever nor

widespread available vaccines and, therefore, control of the disease

is mainly performed by suppressing the vector population, as well

as identifying outbreaks as quickly as possible [19]. Although case

fatality rate can be as low as 1% with proper treatment, the disease

comes with great economical and social burden [14].

According to Samir et al. [14], dengue fever is ubiquitous through-

out the tropics. �e study estimates about 390 million dengue in-

fections worldwide every year, with 96 million of these cases being

symptomatic. �e Americas contribute with 14% of the sympto-

matic infections, of which over one fourth occurs in Brazil. �is

scenario motivates the development of appropriate early warning

systems (EWSs) to quickly identify new dengue fever outbreaks

in Brazilian cities. An EWS is a tool capable of quickly identi-

fying/forecasting risks, and plays a major role on disaster risk

reduction by preventing loss of life and mitigating economical

and/or material impact [18]. In the context of epidemiology, an

epidemiological EWS (EEWS) can be a fundamental step on im-

plementing e�ective interventions to control infectious diseases,

reducing mortality and morbidity in human populations, since it

allows authorities to plan ahead and act appropriately.

�e main requirement of an EEWS is the availability of up-to-

date epidemiological data, which will be used in pa�ern extrac-

tion for forecasting of future incidence of the disease under study.

However, epidemiological data cannot be assumed to be provided

in real-time. It is common for this kind of data to require time-

consuming tests for con�rmation of suspected cases. Besides that,

the propagation of information from local health care agents to

national health authorities may also require extra time. �erefore,

it is more reasonable to assume that, at a given moment in time t ,

the most recent epidemiological data available is associated with

time t − γ , where γ is a positive number. �is delay in the report

of epidemiological data can be highly detrimental to EEWS, spe-

cially for infectious diseases, where current incidence is a valuable

information for predicting near future incidence [1, 4, 5].

On the other hand, nowadays a large number of people use

text-based online social networks, such as Twi�er or Facebook, to

discuss various subjects, including personal ma�ers. Similarly, they

use search engines and Wikipedia, looking for information. �ese

platforms are capable of providing samples of users’ interactions in

real-time, leading to the consolidation of useful data sources that

may be exploited in an easy and systematic manner. �ese online

data sources have a�racted the a�ention of many researchers who

have gone on to use the data to predict real-life events [3, 6, 8, 13,
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15], e�ectively using people’s interaction with these platforms as

sensors.

In this work, we combine real-time online data sources with

epidemiological data to deal with this time lag required for epidemi-

ological dengue data to be ready for use. We propose a framework

that exploits data coming from Twi�er to estimate delayed epi-

demiological dengue data, which is then used together with actual

epidemiological data in an EEWS. In our experimental analysis, we

compared the proposed framework with alternative approaches

and veri�ed that the proposed framework leads to more accurate

predictions and that it can be safely applied even on cities for which

Twi�er data is not abundant, as it automatically identi�es scenarios

where online data can be usefully employed to improve accuracy .

2 RELATED WORK

�e real-time nature of online data makes it a�ractive for surveil-

lance tasks, particularly in epidemiological contexts, where many

strategies that explore this kind of data to estimate incidence of

various diseases around the world have been developed. For in-

stance, in [2], the authors used the number of searches on Google

containing a speci�c set of keywords to estimate dengue fever inci-

dence in Singapore and Bangkok, �ailand. Similarly, the authors

of [15] developed a methodology that estimates in�uenza incidence

in American cities based on data provided by Google Flu Trends,

which provides estimates of in�uenza incidence based on search

activity on Google.

Twi�er is also a source of online data frequently exploited for

epidemiological surveillance systems. �e authors of [3] developed

a classi�er capable of accurately identifying tweets indicating in-

�uenza infection and showed that the volume of these tweets over

time presented similar, highly correlated behavior when compared

to epidemiological data. A similar idea was investigated in [8],

which developed a model for classifying dengue-related tweets into

�ve classes: personal experience (indicating infection), opinion,

jokes, information and governmental campaigns. �e volume of

dengue-related tweets, especially those containing personal experi-

ence, was shown to be highly correlated to epidemiological data

from Brazil. �is relationship was further studied in [16, 17], culmi-

nating in the development of models for estimating dengue fever

incidence in Brazilian cities.

�ese works, however, were developed for surveillance, and are

not appropriate for EEWS. Although they are capable of estimating

incidence of diseases in real-time (nowcast), they do not forecast

future incidence. �e reason behind it is that online data is typically

used as input features to (generalized) linear models. �erefore,

in order to estimate future incidence, they would require future

online data. In other words, the fact that online data is obtained in

real-time is not su�cient.

In order to predict future outcomes, alternative ways of using

online data in EEWS are required. In this direction, a possible ap-

proach was evaluated by Generous et al. [6], where access logs of

selected Wikipedia articles were used to estimate a linear model

for 7 diseases in 9 countries. In order to be able to estimate future

incidence, they evaluated the usage of Wikipedia data in a lagged

fashion. �at is, epidemiological data for to time index t would be

associated with Wikipedia data for time index t − α , where α is a

positive integer. By doing so, the model would be capable of fore-

casting incidence with up to α time indices of antecedence. In the

former, they evaluate values for α up to 4 weeks. In this article, we

propose a distinct approach for designing truly predictive models.

We obtain estimates of up-to-date epidemiological data, which can

then be used within EEWS for forecasting future incidence.

3 DATA COLLECTION

Epidemiological data. We obtained the number of weekly con-

�rmed dengue cases for 5566 Brazilian municipalities from January

2011 to October 2016, summing up to 286 weeks, provided by the

Brazilian Ministry of Health. In order to account for di�erent pop-

ulation sizes, we calculated the dengue incidence rate (DIR) as

follows:

DIRs,t = casess,t ∗
100000

pops
(1)

where DIRs,t is the DIR at city s during week t , casess,t is the

number of con�rmed cases at city s during week t and pops is the

population size at city s .

�e Brazilian Ministry of Health has de�ned a system of three

incidence levels for dengue fever: high, medium and low. High

incidence level at a given area occurs when there is more than

300 dengue cases per 100 thousand inhabitants during one month.

Medium incidence, on the other hand, means more than 100 dengue

cases and less than 300 dengue cases per 100 thousand inhabitants

in a month. Finally, low incidence occurs when there is less than

100 cases per 100 thousand inhabitants at the same month. In

this work, however, we deal with weekly dengue data. For that

reason, we rede�ned these incidence levels by dividing the number

of required cases by 4. �erefore, a high incidence week at a given

area implies in a DIR of at least 75, while medium incidence requires

DIR between 25 and 75 and low incidence requires DIR smaller than

25.

In order to reduce the e�ort of evaluating the proposed frame-

work, we consider only cities with more than 100 thousand in-

habitants and that reached at least medium incidence during one

week in the period under study, resulting in 213 cities. Although

small when compared to the initial set of 5566 cities, these cities

account for more than 65% of the number of con�rmed cases in

Brazil. �erefore, cities where an accurate and reliable EEWS is

fundamental for controlling dengue epidemics are included in the

set of cities under study.

Twi�er data. Twi�er messages (tweets) were collected by the au-

thors of [8, 16, 17] through the Twi�er API, obtaining geolocalized

tweets from January 2011 to October 2016 with at least one of the

following keywords: dengue, aedes and aegypti.

We aggregated tweets by city and by week in order to obtain

time series containing the number of dengue-related tweets posted

during each week and at each city under study.

4 INCORPORATING ONLINE DATA INTO
EPIDEMIOLOGICAL MODELS

As previously indicated, in most circumstances it is not reasonable

to assume that epidemiological data is provided in real time. For

this reason, a prediction issued at time t can only explore data
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Figure 1: �e proposed framework for incorporating Twitter data into an EEWS model.

available up to time t − γ , where γ is the delay associated with the

availability of epidemiological data.

Assume that a given EEWS is required to issue predictions with

time antecedence of β , i.e., at time t the system would provide

predictions associated with time t + β . Since it would not have

access to epidemiological data associated with time between t − γ

and t , the EEWS may actually use data up to time t − γ to forecast

incidence at time t + β , e�ectively increasing the antecedence for

which predictions are issued from β to β +γ . We call this approach

the increased antecedence approach. �e major disadvantage of this

approach is that, the larger the antecedence, the more di�cult it is

to produce accurate forecasts, as incidence of infectious diseases

during time t tend to be strongly correlated with incidence in the

recent past of t .

In this section, we describe an alternative to deal with delayed

epidemiological data. We �rst provide few de�nitions key to un-

derstanding our proposal:

• �e current time is denoted by t , while epidemiological

data delay is denoted by γ and predictive antecedence by

β .

• We call delayed epidemiological data any epidemiological

data associated with the time interval t − γ and t .

• We call future epidemiological data any epidemiological

data associated with time t ′ > t .

�e proposed approach for incorporating online data into EEWS

is described in Figure 1. First, it uses a known relationship between

online and epidemiological data (such as a linear or polynomial

association) to estimate delayed epidemiological data up to time t .

�en, it evaluates how reliable are such estimates. If estimates are

considered reliable, they are incorporated into available training

set. Otherwise, they are simply ignored. Based on the potentially

augmented training set, a model is estimated and used to forecast

incidence at time t + β .

As indicated in Figure 1, the proposed framework is composed

of three components. �e �rst component is a predictive model

that takes online data as a covariate (e.g., the number of dengue-

related tweets) and epidemiological data as the response variable,

and outputs estimates of delayed epidemiological data. �e second

component decides whether estimates of epidemiological data are

safe to use, that is, whether the uncertainty associated to estimates

is low. Uncertain estimatesmay introduce extra noise to the training

set of the EEWSmodel, which can be detrimental. �e simplest way

to de�ne whether estimated data is reliable is to use an uncertainty

estimation threshold. Finally, the third component is a traditional

EEWS model that takes as covariates data known to be associated

with the disease (e.g., temperature, rainfall, time of the year) and

epidemiological data as the response variable, and outputs future

epidemiological data.

Figure 2 illustrates the use of the framework. Given two time

series, one corresponding to the epidemiological and the other to

online data, note that the online data is available up to time t , while

epidemiological data stops at t − γ . From these two series, we

estimate the epidemiological data from t − γ to t . Depending on

the con�dence of the estimated data, it can be incorporated to the

training data of our spatial-temporal model or simply ignored.

�e following sections describe how each component of the

framework is de�ned to generate an accurate framework for dengue

fever incidence forecasting.

4.1 EEWS for Dengue Fever Incidence
Forecasting

We begin by de�ning the �nal component of the proposed frame-

work: an epidemiological model to forecast future incidence based

on the available training set, possibly extended by integrating esti-

mated delayed DIR values.

Here, we de�ne a model based on [1], where the authors pro-

posed to model log-transformed DIR values of Brazilian cities using

a GP model equipped with a covariance function capable of exploit-

ing temporal local dependences typical of infectious diseases, as

well as the annual seasonality commonly observed in dengue data



DH ’17, July 02-05, 2017, London, United Kingdom Albinati et al.

Figure 2: An illustrative example of the use of the proposed framework. At the le�most �gure, we have actual DIR values up

to time t − γ and the number of dengue-related tweets up to time t (solid black and red lines, respectively). �en, on the next

�gure, we estimate DIR values from time t − γ to t (dashed black line). Following, we have two possible scenarios: estimated

DIR values are either incorporated into training data (top) or ignored (bottom). Finally, on the rightmost �gure, estimates for

future DIR values are made using the available training data.

[7, 10, 11]. In summary, we propose to use the following two-part

covariance function

ks (t , t ′) = kloc (t − t ′) + kqp (t − t ′) (2)

kloc (τ = t − t ′) = σ 2
loc

(

1 +

√
5τ

`loc
+

5τ 2

`2
loc

)

exp

(

−
√
5τ

`loc

)

kqp (τ = t − t ′) = σ 2
qp

(

1 +

√
5τ

`qp
+

5τ 2

`2qp

)

exp

(

−
√
5τ

`qp

)

exp

(

−2 ∗ sin2(π |τ |/p)
`per

)

where ks (t , t) denotes the covariance between incidence values at

city s during weeks t and t ′ and σloc , `loc , σqp , `qp , `per and p are

hyperparameters learned from likelihood maximization.

�e intuition of the covariance function in Equation 2 is the

following. �e function is formed by two temporal components,

which are used to exploit two temporal pa�erns, namely local

dependences and seasonality. Local dependences are exploited by

kloc , which correlates weeks nearby and is expressed in terms of

a Matérn covariance function, a covariance function commonly

used in the GP literature to enforce smoothness by indicating that

nearby data points are highly correlated, while distant data points

are loosely correlated [12]. Seasonality is exploited using a quasi-

periodic function formulated as the product between aMatérn and a

periodic covariance function. By using this formulation, the model

is capable of using information from incidence of past years, but

is forced to give more relevance to more recent years than very

distant ones. Figure 3 shows the covariance function obtained a�er

hyperparameter optimization (Table 1). Note that covariance is

high for τ close to 0, with smaller peaks for τ around 1 year (52

weeks).

Table 1: Hyperparameters obtained a�er likelihood maxi-

mization

1st �artile Median 3rd�artile

σ 2
loc

0.039 0.101 0.186

σ 2
qp 0.484 1.427 2.311

`loc 1.000 2.000 7.000

`qp 41.000 58.000 99.000

`per 1.000 1.000 2.000

p 54.000 59.000 73.000

Having de�ned the covariance function, the model used in this

work can be expressed as follows:

DIRs,t = exp
(

ys,t + ys
)

− 1 (3)

ys, · ∼ GP
(

0,ks (t , t ′)
)

where DIRs,t denotes the DIR value at city s during week t , ys
indicates the mean of log-transformed DIR values at city s and

ks (t , t ′) is the covariance function indicated in Equation 2.

4.2 Estimating Delayed Epidemiological Data

�e �rst step on the proposed framework is to exploit a known

relationship between online and epidemiological data. Based on

the study provided by Gomide et al. [8], which identi�ed a linear

association between the number of dengue-related tweets and DIR,

and on the results obtained by the Gaussian process-based model
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Figure 3: Covariance function considering temporal com-

ponents in Equation 2 with optimized hyperparameters ac-

cording to Table 1.

proposed by Albinati et al. [1], we opted for a Gaussian process

model equipped with the covariance function indicated in Equation

2, with an additional component designed to exploit the linear

association between Twi�er and epidemiological data.

Following Albinati et al. [1], we �rst applied a logarithmic trans-

formation of DIR values to avoid using Gaussian distributions to

model count data. We then centered the resulting values and esti-

mated the zero-mean Gaussian process model. In summary, this

component is implemented by the following model:

DIRs,t = exp(ys,t + ys ) − 1 (4)

ys, · ∼ GP
(

0,ks (t , t ′) +
xs,t ∗ xs,t ′
`tw

)

where xs,t indicates the log-transformed number of dengue-related

tweets posted during week t at city s and ks (t , t ′) is given by Equa-

tion 2. Note that `tw is an additional hyperparameter, which is also

learned from likelihood maximization using available training data.

4.3 Deciding Whether to Use Estimates

In order to avoid using poorly estimated DIR values, which could

introduce noise into epidemiological data, we de�ned an extra

module responsible for deciding whether estimated epidemiological

data is reliable or not. Since we are assuming a linear relationship

between Twi�er and dengue data, we opted for using a threshold

based on the correlation between epidemiological and Twi�er data.

Whenever the correlation exceeds the threshold, estimated dengue

data is considered. Otherwise, only actual epidemiological dengue

data is used. Details on how to de�ne this threshold are given on

Section 5.

5 EXPERIMENTAL ANALYSIS

In this section, we show empirical results obtained by the proposed

framework. We �rst de�ne our general experimental setup, and

then assess the accuracy of the proposed framework for incorpo-

rating Twi�er data into dengue EEWSs by verifying if it leads to

more accurate predictions than the increased antecedence approach.

�en, we provide some discussion on the predictions obtained and

on the appropriateness of the proposed framework.

5.1 Experimental Setup

Motivated by the incidence levels de�ned by the Brazilian Ministry

of Health, we evaluate each model according to the area under

the receiver operating characteristic curve (AUC) considering inci-

dence levels as labels. �e receiver operating characteristic curve is

created by plo�ing the true positive rate against the false positive

rate at multiple threshold values, used for de�ning whether the

predicted class is positive or negative. In this sense, it indicates

the trade-o� between sensitivity and speci�city. An area close to 1

indicates that one can increase the model’s sensitivity by changing

the threshold incurring in few false positive errors, while smaller

areas indicate more false positive errors when increasing sensitivity.

For each week and city under study, we verify the a�ained and

predicted incidence levels. We calculate the AUC for each level on

an one-against-all strategy and then compute the average over the

three levels.

Predictions were issued always with β = 4 weeks of antecedence.

Choosing the antecedence value implies in dealing with a trade-

o�: shorter antecedence leads to more data and potentially more

accurate predictions, but less time for health authorities to act in

advance to mitigate the impact of future outbreaks. We chose β = 4

weeks as a balance between utility and accuracy, allowing some

time for health authorities to act while still managing to obtain

accurate predictions.

We also de�ned that the �rst two years (weeks 1 to 104) would be

used for training only. Predictions are issued from the third to the

sixth year, always with 4 weeks in advance, as indicated previously.

�is means that our available training set is continuously growing

with time, as we collect more data.

Finally, models are always compared using a paired Wilcoxon

test with 95% con�dence level. Bonferroni corrections were ap-

plied whenever multiple statistical tests were required to ensure

statistical signi�cance.

5.2 Evaluation of Proposed Framework

In order to use the proposed framework, we must de�ne the cor-

relation threshold that de�nes whether estimated DIR values are

going to be integrated into the training set or not. For that, we

instantiated four versions of the proposed framework, each with a

distinct threshold value. We compared the di�erence in accuracy

assuming four values of delay in the epidemiological data for each

threshold used when compared to simply extending predictive an-

tecedence, as shown in Figure 4. Positive values indicate that the

proposed framework achieved be�er results, while negative values

indicate the opposite scenario. Note that, although it is di�cult to

identify the best threshold value, the proposed framework obtained

more accurate predictions for all delays and threshold values used

in the experiment, obtaining statistically superior results for delays

of at least 4 weeks. Besides that, the di�erence seems to grow with
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larger delays, indicating that the proposed framework is indeed

more robust to delays in epidemiological data.

Figure 4: Mean di�erence in accuracy when comparing the

proposed frameworkwith extending predictive antecedence

to deal with epidemiological data delay. Whiskers indicate

95% con�dence intervals.

Having veri�ed that the proposed framework leads to more

accurate predictions in general, we would like to be�er understand

which cities are improved by the proposed methodology and which

cities are not. For this analysis, we considered the threshold value

of 0.5 and �xed the epidemiological delay as 6 weeks to investigate

the role of the amount of Twi�er data available on the accuracy

improvement obtained. Figure 5 shows that cities that obtained

higher improvements in accuracy tend to have more Twi�er data

available. �is result corroborates with the intuitive notion that

more Twi�er data eases the identi�cation of stronger relationships

with epidemiological dengue data.

We now evaluate the spatial distribution of accuracy improve-

ments. Figure 6 shows the spatial distribution of accuracy improve-

ments obtained when applying the proposed framework. Note that

improvements are mostly concentrated within the Southeast region

of Brazil. Since the Southeast region of Brazil is the most developed

region of the country, this distribution re�ects the availability of

Internet access in Brazil. Having more people capable of posting

on Twi�er, this region was the most bene�ted by the proposed

framework. We also highlight that, for only 17 cities out of 213,

applying the proposed framework was detrimental, indicating that

the proposed framework is safe to use regardless of where cities

are located.

Although bigger improvements in accuracy where concentrated

in the Southeast region of Brazil, we did not observe signi�cant

spatial autocorrelation between improvements, as shown in Figure

7.

5.3 Analysis of Predictions

In the last section, we evaluated whether the proposedmethodology

led to more accurate predictions than the increased antecedence

approach. We now evaluate the appropriateness of the proposed

methodology and analyze the �nal predictions issued by it.

Figure 5: Impact of the amount of Twitter data in the ob-

served di�erence of accuracy when considering predictions

provided by the proposed methodology and provided by the

original model with extended predictive antecedence. Each

symbol denotes a city, with its shape and color indicating

the highest incidence level it achieved in the period under

study.

Figure 6: Spatial distribution of the observed di�erence of

accuracy when considering predictions provided by the pro-

posedmethodology and provided by the originalmodelwith

extended predictive antecedence. Each symbol denotes a

city, with its shape and color indicating the gain/loss in ac-

curacy provided by the proposed methodology.

We begin by evaluating two assumptions of the proposed model:

homoscedasticity and normality of residuals. In other words, the

GP-based model assumes that residuals are Gaussian, independent
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Figure 7: Spatial autocorrelation of the observed di�erence

of accuracy when considering predictions provided by the

proposed methodology and provided by the original model

with extended predictive antecedence.

and identically distributed. Figure 8 shows the quantile-quantile

plot of residuals. Note that observed quantiles are associated with

theoretical quantiles in a approximately linear fashion, indicat-

ing that residuals are approximately Gaussian, independent and

identically distributed.

Figure 8: �antile-quantile normal plot of residuals.

Figure 9 shows empirical cumulative distribution function of

AUC. Almost 77% of the cities obtained AUC higher than 0.6, while

about 20% of the cities obtained AUC higher than 0.8.

Figure 10, on the other hand, shows the impact of the volume of

Twi�er data on the accuracy of predictions. Note that the amount

of Twi�er data is not associated with �nal predictions. We believe

this result is mainly due to the module deciding whether to use

estimated DIR values or not, which makes the whole methodology

safe to use even when Twi�er data is scarce.

�e spatial distribution of �nal accuracies is shown in Figure

11. Di�erently from Figure 6, high �nal accuracies are not strongly

Figure 9: Empirical cumulative distribution function of the

observed accuracy when considering predictions provided

by the proposed methodology.

Figure 10: Impact of the amount of Twitter data in the ob-

served accuracy when considering predictions provided by

the proposed methodology.

concentrated only within the Southeast region. In fact, a signi�-

cant number of cities from North and Northeast regions obtained

high AUC values. �ese results suggest that, although Twi�er

was not strongly helpful for cities within these regions, the GP-

based EEWS is still capable of issuing accurate predictions with

increased predictive antecedence. In this direction, one could argue

that the proposed framework is capable of improving predictions

exactly where delays in epidemiological data are more detrimental

to EEWSs.

Figure 12 shows predictions issued by the proposed framework

for all Brazilian capital cities that reached at least medium incidence

from 2013 to 2016. Cities are sorted by the number of dengue-related

tweets collected, where São Paulo was the city the with highest

number of tweets and Palmas was the city with the lowest number

of tweets. Note that, even for cities with low amount of Twi�er data,
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Figure 11: Spatial distribution of the observed accuracy

when considering predictions provided by the proposed

methodology.

the proposed framework typically detects major dengue fever out-

breaks, reaching the correct incidence level (indicated by the dashed

lines). �e city of Belo Horizonte, although being the capital city

with third highest number of dengue-related tweets, demonstrated

to be particularly challenging to forecast, since it exhibited very

low incidence during all period under study, except from the begin-

ning of 2013 and 2016, where very drastic outbreaks were observed.

However, we note that our proposed methodology, although failing

to capture the outbreak in 2013, was able to capture the increase in

incidence associated with the outbreak in 2016, reaching the correct

incidence level.

6 CONCLUSIONS AND FUTUREWORK

Although EEWS can be employed to forecast DIR, they require

up-to-date epidemiological data to work e�ectively. Unfortunately,

epidemiological data requires time to be available, since it may

require time-consuming laboratorial tests. �erefore, at any given

moment in time t , we cannot expect to have epidemiological data

available up to current time. Instead, we would expect to have data

available up to time t − γ . �is lack of up-to-date epidemiological

data can be highly detrimental to EEWS, as data associated to a

recent past is typically very informative, specially for infectious

diseases.

In order to mitigate this issue, this work proposes a framework

that exploits known relationships between epidemiological and

online data, such as data coming from Twi�er or Facebook, to

estimate current epidemiological data. E�ective EEWS can then

be built based on these estimates, without the need of increasing

predictive antecedence.

We show that the proposed framework leads to more accurate

predictions than employing an EEWS with larger predictive an-

tecedence to account for the delay of epidemiological data. In fact,

for delays greater than or equal to 4 weeks, the proposed frame-

work provided statistically more accurate predictions in general.

We also show that, although larger amounts of online data led to

larger improvements in accuracy, the framework is robust in the

sense of being capable of identifying most of the cities for which

it was not worthwhile to use Twi�er data. For these cities, esti-

mating delayed epidemiological data would introduce noise to the

training dataset, thus being detrimental to accuracy. In the end, the

proposed framework was able to obtain accurate predictions, with

majority of cities obtaining an area under the ROC curve higher

than 0.68, when considering that epidemiological data is delayed

by 6 weeks.

Our proposed framework obtained higher improvements in ac-

curacy for cities within the Southeast region. According to a census

conducted by the Brazilian state-run agency IBGE1, in 2014, the

Southeast regionwas the region of more houses with Internet access

(62.9%), while about only 55% of the Brazilian homes have access to

Internet [9]. With more access to the Internet, people within this

region are able to produce more dengue-related tweets, which we

show to be related to the improvement obtained by the proposed

framework. Our experiments, however, suggested that this region

is the most a�ected by the lack of up-to-date epidemiological data.

Besides that, it concentrates the majority of dengue cases in Brazil,

therefore being one of the Brazilian regions where the proposed

framework would be most helpful.

Although improving accuracy in general, the proposed frame-

work has its limitations. First, some cities were not improved due to

a weak relationship between online data and epidemiological data.

We believe this fact is due to two major reasons: (i) data scarcity and

(ii) non-linear associations between dengue and Twi�er data. To

deal with the former issue, as future work, we intend to aggregate

other online data sources, such as data from Google Trends and

Wikipedia access logs, which are already being used to estimate

current epidemiological data of some diseases. For the la�er, we

aim to evaluate other models to estimate delayed epidemiological

data.

It is important to stress that, although we obtained good predic-

tive accuracy for a large set of Brazilian cities, decision making by

public health authorities should not be solely based on estimates

provided by the proposed framework, which can be a�ected by �uc-

tuations on Twi�er, among other e�ects. In fact, our main objective

was to develop a system capable of identifying potential future

outbreaks, focusing the a�ention of specialists to speci�c regions

of the country. By doing so, we hope to facilitate and improve their

work, since they would be able to be�er investigate a smaller subset

of areas, instead of tracking down DIR around the whole country.

Finally, we would like to highlight that we believe that the pro-

posed framework, although evaluated in the scenario of dengue

fever in Brazilian cities, is �exible and may be applied to other sce-

narios without large modi�cations. For addressing this, as future

1Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geogra�a e
Estatstica, in Portuguese) – h�p://www.ibge.gov.br
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Figure 12: Predictions issued for all Brazilian capital cities under study. �e solid black line denotes the observed DIR, while

the cyan line indicates the predicted DIR.�e gray shaded area exhibits the 95% con�dence interval. Dashed lines indicate the

boundaries between incidence levels.
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work, we intend to apply it to other diseases, specially mosquito-

borne diseases, which typically exhibit similar temporal pa�erns

to dengue fever.
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