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Abstract. Robust time series analysis is an important subject in statistical

modeling. Models based on Gaussian distribution are sensitive to outliers,

which may imply in a significant degradation in estimation performance as

well as in prediction accuracy. State-space models, also referred as Dynamic

Models, is a very useful way to describe the evolution of a time series vari-

able through a structured latent evolution system. Integrated Nested Laplace

Approximation (INLA) is a recent approach proposed to perform fast ap-

proximate Bayesian inference in Latent Gaussian Models which naturally

comprises Dynamic Models. We present how to perform fast and accurate

non-Gaussian dynamic modeling with INLA and show how these models can

provide a more robust time series analysis when compared with standard dy-

namic models based on Gaussian distributions. We formalize the framework

used to fit complex non-Gaussian space-state models using the R package

INLA and illustrate our approach with a simulation study and a Brazilian

homicide rate dataset.

1 Introduction

Robust estimation of time series analysis is an important and challenging field of

statistical application from either frequentist (Bustos and Yohai, 1979, Denby and

Martin, 1979) or Bayesian perspectives (West, 1981). Robust methods are useful

when there is a small percentage of data that do not follow a proposed model. Dy-

namic Linear Models (DLM) and Generalized Dynamic Linear Models (DGLM),

also referred as state-space models, are a broad class of parametric models that

generalizes regression and time series models with time varying parameters, where

both the parameter variation and the observed data are described in an evolutionary

structured way (Migon et al., 2005). Dynamic models are composed by an obser-

vational equation and one or more system equations in which the error terms are

usually chosen to follow a Gaussian distribution. However, it is well known that the

Gaussian distribution is very sensitive to outliers, which may produce degradation

in the estimation performance (Fox, 1972). Therefore, one might be interested in
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building a more flexible model based on heavy-tailed distributions rather than the

usual Gaussian. Such models fall into the class of non-Gaussian dynamic models

(see Kitagawa (1987), Durbin and Koopman (2000) for a detailed description as

well as applications of this class of models).

Integrated Nested Laplace Approximation (INLA) is an approach proposed by

Rue, Martino and Chopin (2009) to perform approximate fully Bayesian inference

in the class of latent Gaussian models (LGMs). LGMs is a broad class and in-

clude many of the standard models currently in use by the applied community, e.g.,

stochastic volatility, disease mapping, log-Gaussian Cox process and generalized

linear models. As opposed to the simulation-based methods, like Markov Chain

Monte Carlo (MCMC), INLA performs approximate inference using a series of

deterministic approximations that take advantage of the LGM structure to provide

fast and accurate approximations. Moreover, it avoids known problems with com-

monly used simulation-based methods, e.g., difficulty in diagnosing convergence,

additive Monte Carlo errors, and high demand in terms of computational time.

Even for dynamic models within the class of LGMs, it was not possible to fit most

of them using the available tools in the INLA package for R, hereafter denoted

as R-INLA. Ruiz-Cárdenas, Krainski and Rue (2012) presented a general frame-

work which enabled users to use R-INLA to perform fully Bayesian inference for

a variety of state-space models. However, their approach does not include the class

of non-Gaussian dynamic models where the errors of the system equations have a

non-Gaussian distribution as, for example, the heavy-tailed distributions.

One of the key assumptions of the INLA approach is that the latent field fol-

lows a Gaussian distribution. However, Martins and Rue (2014) have shown a way

to extend INLA to cases where some independent components of the latent field

have a non-Gaussian distribution. Their approach transfer the non-Gaussianity of

the latent field to the likelihood function and it has shown to produce satisfactory

results as long as this distribution is not far from Gaussian. Distributions that add

flexibility around a Gaussian as near-Gaussian distributions are referred as being,

for example, unimodal and symmetric.

The contribution of this paper is three folded: (1) To extend INLA for non-

Gaussian latent models with dependency structure, specifically for non-Gaussian

DLMs; (2) To present in a simple manner how to use R-INLA to perform non-

Gaussian DLMs modelling.

To accomplish these issues, we introduce a reparametrization of the non-

Gaussian DLM and combine it with the computational framework provided by

R-INLA to introduce how to model dependent non-Gaussian latent field in the R-

INLA setup; (3) We analyze the Brazilian homicides rates using a robust approach.

The analysis indicates that, in most of our application scenarios, the robust method

outperforms the traditional Gaussian approach.

The paper is organized as following: Section 2 introduces the methodology of

our approach, presenting how to perform fast Bayesian inference using R-INLA

for non-Gaussian DLMs. Section 3 presents our simulation study to compare two
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competitor models using some quality measures. In Section 4, we present the study

over the Brazilian Homicide data, explaining our findings. Finally, in Section 5 we

discuss some final remarks and future research.

2 Methodology

This section will describe our approach to handle non-Gaussian DLM within R-

INLA. Although valid for DGLM, we have chosen to illustrate our extension using

a DLM to facilitate the presentation. To apply the extension for DGLM, a sim-

ple change in the Gaussian likelihood is necessary, which is a trivial modifica-

tion under R-INLA. Section 2.1 will define a general DLM of interest, and show

that it fits the class of LGM only if the error terms of the system equations are

Gaussian distributed. Section 2.2 will review the INLA methodology, including

the recent extension that allows INLA to be applied to models where some com-

ponents of the latent field have non-Gaussian distribution. Section 2.3 gives an

overview of a generic approach to fit dynamic models using R-INLA through an

augmented model structure. Finally, Section 2.4 extend the approaches presented

in Sections 2.2 and 2.3 and show how this extension can be exploited to fit non-

Gaussian DLM within R-INLA.

2.1 Models

The INLA approach performs approximate Bayesian inference in latent Gaussian

models where the first stage is formed by the likelihood function with conditional

independence properties given the latent field x and possible hyperparameters θ1,

where each data point {yt , t = 1, . . . , nd} is connected to one element in the latent

field xt . In this context, the latent field x is formed by linear predictors, random and

fixed effects, depending on the model formulation. Assuming that the elements of

the latent field connected to the data points, that is, the linear predictors {ηt , t =

1, . . . , nd}, are positioned on the first nd elements of x, we have:

• Stage 1. y|x, θ1 ∼ π(y|x, θ1) =
∏nd

t=1 π(yt |xt , θ1).

The conditional distribution of the x given some possible hyperparameters θ2

forms the second stage of the model and has a joint Gaussian distribution,

• Stage 2. x|θ2 ∼ π(x|θ2) = N (x;µ(θ2),Q−1(θ2)),

where N (·;µ,Q−1) denotes a multivariate Gaussian distribution with mean vec-

tor µ and a precision matrix Q. In most applications, the latent Gaussian field have

conditional independence properties, which translates into a sparse precision ma-

trix Q(θ2), which is of extreme importance for the numerical algorithms used by

INLA. The latent field x may have additional linear constraints of the form Ax = e

for an q × nd matrix A of rank q , where q is the number of constraints and nd
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the size of the latent field. The hierarchical model is then completed with an ap-

propriate prior distribution for the m-dimensional hyperparameter of the model

θ = (θ1, θ2):

• Stage 3. θ ∼ π(θ).

The structure of a non-Gaussian DLM is composed by an observation equation

describing the relationship between the observations y {yt ; t = 1, . . . , nd}, which

are connected to a linear combination of the state parameters a {at ; t = 1, . . . , nd},

and a system of equations describing the evolution of a. For example:

yt = at + vt , vt ∼ N(0, θ1),

at = at−1 + wt , wt ∼ π(·)

in which at is the state vector at time t, θ1 is the Gaussian variance of vt and

the noises wt could follow a non-Gaussian distribution. We emphasize that the

structure described above could be more flexible allowing any linear combination

and addition of covariates. Furthermore, this is an extension over the traditional

DLM where we now can have a non-Gaussian distribution for the noise wt in the

system equation.

If wt is assumed to be Gaussian, this structure falls naturally into the class of

LGMs (see Section 2.3). To help understand the INLA review of Section 2.2, we

can rewrite a LGM using a hierarchical structure with three stages. To elucidate

the understanding of notation in our examples, we highlight that state vector a

does not necessarily corresponds to the latent field x. Since our approach lies in

a augmented likelihood function, the dimension of the latent field x is larger than

the dimension of y and a.

However, if a Gaussian distribution is not assumed for wt , it is no longer pos-

sible to write the model as a hierarchical structure with the Gaussian assumption

in the second stage. To accommodate the non-Gaussian DLM, it is necessary to

expand the class of LGMs defined early to allow that nodes of the latent field have

non-Gaussian distributions. We then rewrite stage 2 of the hierarchical model as

• Stage 2new. (xG,xNG)︸ ︷︷ ︸
x

|θ2 ∼ π(x|θ2) = N (xG;0,Q−1(θ2)) ×
∏

t π(xNGt |θ2),

where xG and xNG represent the Gaussian and independent non-Gaussian terms of

the latent field, respectively. As a result, the distribution of the latent field is not

Gaussian, which precludes the use of INLA to fit this class of models.

Section 2.2 summarizes how to perform inference, within the R-INLA frame-

work, on models where the non-Gaussian components of the latent field belong to

the class of near-Gaussian distributions. Later, in Section 2.4 we introduce how to

perform inference when the non-Gaussian components have a dependent structure,

specifically belonging to the class of non-Gaussian DLMs.
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2.2 INLA review

Using the hierarchical representation of LGMs given in Section 2.1, we have that

the joint posterior distribution of the unknowns is

π(x, θ |y) ∝ π(θ)π(x|θ)

nd∏

t=1

π(yt |xt , θ)

∝ π(θ)
∣∣Q(θ)

∣∣n/2
exp

[
−

1

2
xT Q(θ)x +

nd∑

t=1

log
{
π(yt |xt , θ)

}]
.

The approximated posterior marginals of interest π̃ (xt |y), t = 1, . . . , nd and

π̃(θj |y), j = 1, . . . ,m returned by INLA have the following form

π̃(xt |y) =
∑

u

π̃
(
xt |θ

(u),y
)
π̃

(
θ (u)|y

)
�θ (u), (2.1)

π̃(θs |y) =

∫
π̃(θ |y) dθ−s, (2.2)

where {π̃ (θ (u)|y)} are the density values computed during a grid exploration on

π̃(θ |y), for given approximations of π(xt |θ ,y) and π(θ |y).

Looking at equations (2.1)–(2.2), we can see that the method can be divided

into three main tasks. First, propose an approximation π̃(θ |y) to the joint posterior

of the hyperparameters π(θ |y), second propose an approximation π̃(xt |θ ,y) to the

marginals of the conditional distribution of the latent field given the data and the

hyperparameters π(xt |θ ,y) and last explore π̃(θ |y) on a grid and use it to integrate

out θ in equation (2.1) and θ−j in equation (2.2).

The approximation used for the joint posterior of the hyperparameters π(θ |y) is

π̃(θ |y) ∝
π(x, θ,y)

πG(x|θ ,y)

∣∣∣
x=x∗(θ)

, (2.3)

where πG(x|θ ,y) is a Gaussian approximation to the full conditional of x, and

x∗(θ) is the mode of the full conditional for x, for a given θ . The full conditional

of the latent field when dealing with LGMs is given by

π(x|θ ,y) ∝ exp

{
−

1

2
xT Q(θ)x +

∑

t∈T

gt (xt )

}
, (2.4)

where T is an index set and gt (xt ) = logπ(yt |xt , θ1). The Gaussian approximation

used by INLA is obtained by matching the modal configuration and the curvature

at the mode. The good performance of INLA is highly dependent on the appropri-

ateness of the Gaussian approximation in equation (2.4) and this turns out to be the

case when dealing with LGMs because the Gaussian prior assigned to the latent

field has a non-negligible effect on the full conditional, specially in terms of shape

and correlations. Besides, the likelihood function is usually well behaved and not
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very informative on x. It is very important to note that equation (2.3) is equiv-

alent to the Laplace approximation of a marginal posterior distribution (Tierney

and Kadane, 1986), and it is exact if π(x|y, θ) is Gaussian, in which case INLA

gives exact results up to small integration error due to the numerical integration of

equations (2.1) and (2.2).

For approximating π(xt |θ ,y), three options are available in R-INLA. The so

called Laplace, Simplified Laplace and Gaussian which are ordered in terms of

accuracy. We refer to Rue, Martino and Chopin (2009) for a detailed description of

these approximations and Martins et al. (2012) on how to compute equation (2.2)

efficiently.

Martins and Rue (2014) have demonstrated how INLA can be used to perform

inference in latent models where some independent components of the latent field

have a non-Gaussian distribution, in which case the latent field is no longer Gaus-

sian. Their approach approximates the distribution of the non-Gaussian compo-

nents π(xNG|θ2) by a Gaussian distribution πG(xNG|θ2) and corrects this approx-

imation with the correction term

CT = π(xNG|θ2)/πG(xNG|θ2)

in the likelihood. Taking into consideration the above approximation and correc-

tion term, we can rewrite our latent model with the following hierarchical structure:

• Stage 1. z|x, θ ∼ π(z|x, θ) =
∏nd+k

t=1 π(zt |xt , θ), where

π(zt |xt , θ) =

{
π(yt |xt , θ1), for 1 ≤ t ≤ nd ,

π(xNGt |θ2)/πG(xNGt |θ2), for nd < t ≤ nd + k

and z is an augmented response vector with zt = yt if t ≤ nd and zt = 0 if

nd < t ≤ nd + k, where k is the length of xNG. It is important to emphasize that

Stage 1 above is not the likelihood function, but expressing the model using this

form makes the practical definition of the non-Gaussian latent model within the

R-INLA framework easier to understand.

The latent field has now a Gaussian approximation replacing the non-Gaussian

distribution of xNG,

• Stage 2. (xG,xNG)︸ ︷︷ ︸
x

|θ2 ∼ π(x|θ2) = N (xG;0,Q−1(θ2)) × πG(xNG|θ2),

which means that π(x|θ2) is now Gaussian distributed.

Martins and Rue (2014) have shown that the main impact of this strategy occurs

in the Gaussian approximation to the full conditional of the latent field that now

takes the form

π(x|θ ,y) ∝ exp

{
−

1

2
xT Q(θ)x +

nd∑

t=1

gt (xt ) +

nd+k∑

t=nd+1

ht (xt )

}
, (2.5)
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where gt (xt ) = logπ(yt |xt , θ) as before and

ht (xt ) = log CTt = logπ(xNGt |θ2) − logπG(xNGt |θ2).

The key for a good accuracy of INLA depends on the behavior of ht (xt ) which is

influenced by the distribution π(xNGt |θ2) of the non-Gaussian components and by

the Gaussian approximation πG(xNGt |θ2) to this non-Gaussian distribution. Also

good results are obtained when πG(xNGt |θ2) is chosen to be a zero mean and low

precision Gaussian distribution such that

πG(xNGt |θ2) ∝ constant

and π(xNGt |θ2) is not too far away from a Gaussian, for which they coined the

term near-Gaussian distributions. This means that the application of INLA within

the context of non-Gaussian DLM will yield accurate results as long as these com-

ponents are distributed according to a flexible distribution around the Gaussian, as

in the Student’s t case for example, which is unimodal and symmetric.

2.3 R-INLA for DLM

In this section, we present a simple dynamic model to illustrate the framework to

perform fast Bayesian inference within R-INLA. The INLA approach could be

used to estimate any dynamic structure that could be written as a latent Gaussian

model described in Section 2.1, however the approach presented here is motivated

to overcome some limitations of R-INLA. Suppose as a Toy example the following

first order univariate dynamic linear model

yt = at + vt , vt ∼ N(0, θ1), t = 1, . . . , nd , (2.6)

at = at−1 + wt , wt ∼ N(0, θ2), t = 2, . . . , nd . (2.7)

It is possible to fit the model given by equations (2.6) and (2.7) using the stan-

dard latent models available in R-INLA and we are aware that the corresponding

model could be estimated through the well-known Kalman Filter (Kalman, 1960).

However, this simple model is useful to illustrate the framework used in this paper,

which allow us to fit more complex dynamic models that would otherwise not be

available through R-INLA. The presented approach involves an augmented model

structure in which the system equations are treated as observation equations.

The key step is to equate to zero the system equations of the state-space model,

so that

0 = at − at−1 − wt , wt ∼ N(0, θ2), t = 2, . . . , nd . (2.8)

Then it is possible to build an augmented model by merging the “faked zero obser-

vations” from equation (2.8) to the actual observations {yt , t = 1, . . . , nd} of equa-

tion (2.6). In addition, the “faked observations” are assumed to follow a Gaussian

distribution with high and fixed precision to represent the fact that those artificial
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observations are deterministically known. Instead of using this Gaussian distribu-

tion with high and fixed precision and mean given by φt = at − at−1 − wt for the

artificial observations, as in Ruiz-Cárdenas, Krainski and Rue (2012), we use in

what follows a Gaussian with variance θ2 and mean η∗
t = at − at−1. This is an

equivalent representation and will make it easier to describe in Section 2.4 the ex-

tension of this approach to dynamic models with non-Gaussian error terms in the

system equations.

To complete the model definition, note that there is no information about at be-

yond the temporal evolution given by equation (2.7), and so we only need to know

the perturbations wt , t = 2, . . . , nd to estimate the states at , since {wt } are the only

stochastic term in system equation (equation (2.7)). This characteristic of dynamic

models allow to represent the dependence structure as a function of the indepen-

dent perturbation terms. To represent this within R-INLA, let a = {a1, . . . , and
}

be formed by independent random variables each following a Gaussian distribu-

tion with fixed and low precision and encode the temporal evolution present in

equation (2.8) using the copy feature available in R-INLA (Martins et al., 2012).

Finally, inverse-gamma priors are assigned to the variances θ1 and θ2. The reason

to use this augmented model is that it allows us to encode the dynamic evolution

of equation (2.7) using standard generic tools available in R-INLA, instead of re-

quiring the implementation of a different dynamic structure for each possible type

of dynamic model.

2.4 R-INLA for non-Gaussian DLM

We now present how to perform fast Bayesian inference on non-Gaussian DLM

through the R-INLA package. We first formalize the augmented model described

in Section 2.3 and the likelihood correction described in Section 2.2 in this frame-

work. We then show how our approach can be exploited to fit non-Gaussian DLM

using R-INLA. The results of formalizing our approach overcomes the limitation

assumption of independence for the non-Gaussian components in the latent field

and, moreover, generalizes the DLM class of models.

The augmented model approach described in Section 2.3 can be represented

using a hierarchical framework. Similar to Section 2.2, assume we have an aug-

mented response vector z with zt = yt if t ≤ nd and zt = 0 if n < t ≤ 2nd − 1

and

• Stage 1. z|x, θ ∼ π(z|x, θ) =
∏2nd−1

t=1 π(zt |xt , θ), where

π(zt |xt , θ) =

{
π(yt |xt , θ1), for 1 ≤ t ≤ nd ,

π(zt |xt , θ2), for n < t ≤ 2nd − 1
(2.9)

with π(yt |xt , θ1)
d
= N (yt ;xt , θ1) and π(zt |xt , θ2)

d
= N (0;xt , θ2). Note that, as

mentioned in Section 2.3, we have used a Gaussian distribution with variance given

by θ2 as the likelihood for the artificial zero observations. Internally, for R-INLA,

the (4nd − 1)-dimensional latent field is defined as
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• Stage 2. x = (η1, . . . , ηnd
, ηnd+1, . . . , η2nd−1, a1, . . . , and

),

where a is given independent Gaussian priors with low and fixed precision, ηt =

at + st is the linear predictor connected to the observation yt , for t = 1, . . . , nd

and ηt = at − at−1 + st is the linear predictor connected with the artificial zero

observations, for t = nd + 1, . . . ,2nd − 1, and st is a small noise represented by a

Gaussian distribution with zero mean and high and fixed precision to eliminate a

rank deficiency in the above representation of x. Finally, priors are assigned to the

hyperparameters of the model:

• Stage 3. θ1 ∼ IG(av, bv), θ2 ∼ IG(aw, bw).

By comparing this hierarchical representation with the likelihood correction ap-

proach described in Section 2.2, we note that we are approximating the distribution

of the state vector a = {at , t = 1, . . . , nd}, defined by equation (2.7), which is orig-

inally given by a Gaussian with precision matrix Qa = θ−1
2 R, with

R =

»
¼¼¼¼¼¼¼¼¼½

1 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 1

¾
¿¿¿¿¿¿¿¿¿À

,

by a very low precision independent Gaussian distribution. In the correction ap-

proach

π(a) ∝ constant

and this approximation is corrected in the likelihood function by adding the fol-

lowing correction term

CT =

2nd−1∏

t=nd+1

π(zt |xt , θ2)

with π(zt |xt , θ2) defined in equation (2.9). Note that this representation also cor-

responds to those “faked zero observations” of equation (2.8). once we have iden-

tified this, observe that the log likelihood gt (xt ) and the log correction term ht (xt )

in equation (2.5) both have quadratic forms, which implies that the full conditional

of the latent field π(x|y, θ) is Gaussian distributed, meaning that R-INLA gives

exact results up to a small integration error, as mentioned in Section 2.2.

Next, assume the following non-Gaussian DLM,

yt = at + vt , vt ∼ N(0, θ1), t = 1, . . . , nd , (2.10)

at = at−1 + wt , wt ∼ t (0, τ, ν), t = 2, . . . , nd , (2.11)
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which can be written in a hierarchical structure

yt |at , θ1 ∼ N(at , θ1),

at |at−1, τ, ν ∼ t (at−1, τ, ν),

τ ∼ π(τ), ν ∼ π(ν), θ1 ∼ π(θ1)

highlighting the fact that the latent field is no longer Gaussian. Note that the

θ2 = (τ, ν) and the distribution of vt in equation (2.10) could have a non-Gaussian

distribution as well, since non-Gaussian likelihood functions are already stan-

dard in R-INLA, but using a Gaussian here makes the final impact of the non-

Gaussianity of wt more easily visible and analyzed in Section 3. As mentioned in

Section 1, the motivation of using heavier tailed distributions such as Student-t in

the noise of the latent system is to robustify the model. Robustifying the model

means that the dynamic system is less sensitive to different types of outliers. By

allowing this higher flexibility of wt we can better handle what is called inno-

vative outliers in time series literature (Fox, 1972, Masreliez and Martin, 1977,

Mc Quarrie and Tsai, 2003).

By a similar argument made in Section 2.3, we note that we only need to

know the stochastic terms {wt , t = 2, . . . , nd} and the system dynamics in equa-

tion (2.11) to estimate a = (a1, . . . , and
). Consequently, if we include those pieces

of information in the likelihood function through a correction term, we can assign

independent Gaussian priors with zero mean and low and fixed precisions for a,

which will lead to the following hierarchical model:

• Stage 1. z|x, θ ∼ π(z|x, θ) =
∏2nd−1

t=1 π(zt |xt , θ), where

π(zt |xt , θ) =

{
π(yt |xt , θ1), for 1 ≤ t ≤ nd ,

π(zt |xt , τ, ν), for nd < t ≤ 2nd − 1

with π(yt |xt , θ1)
d
= N (yt ;xt , θ1) and π(zt |xt , τ, ν)

d
= t (0;xt , τ, ν).

• Stage 2. x = (η1, . . . , ηnd
, ηnd+1, . . . , η2dn−1, a1, . . . , and

),

where a and η are the same as defined earlier. Finally, priors are assigned to the

hyperparameters of the model:

• Stage 3. θ ∼ π(θ) with θ = (θ1, τ, ν).

We see that the hierarchical model above is very similar to the one presented by

equation (2.9) and the difference is on the correction term

CT =

2nd−1∏

t=nd+1

π(zt |xt , τ, ν),

which is no longer Gaussian distributed, leading to a full conditional of the form

equation (2.5) with a non-Gaussian log correction term ht (xt ). As we have showed,
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this configuration fits the framework summarized in Section 2.2 and therefore we

can apply the results to the context of non-Gaussian dependent latent fields, specif-

ically DLMs. Thus, R-INLA provides accurate results for non-Gaussian DLM, as

long as the non-Gaussian distribution attributed to the error terms of the system

equations are not too far from a Gaussian distribution, as discussed in Section 1.

This assumption is satisfied by the Student-t distribution, as well as for other dis-

tributions that corrects the Gaussian in terms of skewness and/or kurtosis.

3 Simulation study

In this section, we present the results of a Monte Carlo simulation for the Toy Ex-

ample defined in Section 2.4 (see equations (2.10) and (2.11)) to better understand

the benefits of fitting a non-Gaussian DLM with INLA. Moreover, we investigate

the property of different model selection criteria available from R-INLA in this

context. We have chosen to perform a contamination study similar to the ones

presented in Pinheiro, Liu and Wu (2001) and in Martins and Rue (2014) where

the noise wt from equation (2.11) is contaminated with the following mixture of

Gaussian distributions

wt ∼ (1 − p) × N(0, θ2) + p × f × N(0, θ2), t = 1, . . . , nd ,

where p is the expected percentage of innovative outliers in the latent system and f

is a fixed value indicating the magnitude of the contamination. We have generated

all possible scenarios with nd = 100,250,500, p = 0,0.05,0.1,0.15,0.20,0.25

and f = 2,4,8, resulting in a total of 54 different scenarios. For each of them,

1000 datasets were simulated and analyzed. The true variance parameter of the

observational and system noises are set to θ1, θ2 = 2.

In R-INLA, the Student’s t likelihood is parametrized in terms of its marginal

precision τ and degrees of freedom ν. This is advantageous because the precision

parameter under the Gaussian and the Student’s t distribution possess the same

interpretation allowing the same prior to be used for τ whether we refer to the

Gaussian or to the Student’s t model. In this Monte Carlo experiment, we have

used a Gamma1 prior with shape and rate parameters given by 1 and 2.375 for

both the observational and system noise precision parameters. The prior for ν is

based on the framework of (Martins et al., 2014). In their context, the prior is

design for the flexibility parameters, which in this case is the degrees of freedom

ν, in such way that the basic model plays a central role in the more flexible one. In

our context, it means that the prior for the degrees of freedom is constructed such

that the mode of the prior happens to be in the value that recovers the Gaussian

model and deviations from the Gaussian model are penalized based on the distance

between the basic and the flexible model. The prior specification consists in the

1If X ∼ Gamma(a, b) then E(X) = a
b

.
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choice of the degree of flexibility (df) parameter, 0 < df < 1, which represents the

percentage of prior mass attributed to the degrees of freedom between 2 and 10.

We have set df = 0.3 in our applications. We refer to (Martins et al., 2014) for

more details about priors for flexibility parameters.

As mentioned in the Introduction, a model based on the student’s t distribution

is expected to be more robust with respect to outliers in a contaminated data setup

when compared to a similar model based on Gaussian distributions. To assess the

gain in performance of the more flexible model based on the student’s t distribu-

tion, we will compute the mean squared error (MSE), the conditional predictive

ordinate (CPO) (Gelfand, Dey and Chang, 1992, Dey, Chen and Chang, 1997) and

deviance information criteria (DIC) (Spiegelhalter et al., 2002). The intuition be-

hind the CPO criterion is to choose a model with higher predictive power measured

in terms of predictive density.

For the j th simulated dataset of a given scenario, let atj be the true latent vari-

able at time t . We will denote by âtj,G and âtj,T the posterior mean of atj computed

by the Gaussian and student’s t model, respectively. The student-t model efficiency

over the Gaussian one to estimate atj for each dataset j is defined by

Ej =

∑nd

t=1(âtj,G − atj )
2

∑nd

t=1(âtj,T − atj )2
− 1,

which can be viewed as ratio of the respective MSEs centered at 0.

Figure 1 represents the median over {Ej , j = 1, . . . ,1000} for each scenario.

The results were as expected. There were slight efficiency improvements for close

contamination patterns while the efficiency gains become larger as we move to

Figure 1 Median of efficiencies for magnitude f = 2 (left), f = 4 (center) and f = 8 (right),

nd = 100 (solid line), nd = 250 (dashed line) and nd = 500 (dotted line). We have the percentage of

expected contamination in the x-axis and the median of efficiency in the y-axis.
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higher contamination patterns, reaching efficiency gains greater than 15% for some

critical scenarios. The efficiency gains are higher for moderate expected contami-

nation percentage, around 10% in our case, and this non-monotonic behavior can

be explained by the fact that once the data becomes too much contaminated, not

even the more flexible model based on the student’s t distribution can continue to

give increasingly better results when compared to the Gaussian model, although

the more flexible one continues to improve upon it.

To compare the model fitting, we use the DIC as well as the CPO criteria. First,

we define the relative DIC (RDIC) as

RDICj =
DICGj − DICtj

DICtj

, (3.1)

for each one of the simulated data, j = 1, . . . ,1000. In the top part of Figure 2,

we plot the median of RDIC values obtained by the fitted Gaussian model and by

fitted the student’s t model for each scenario. From this figure, we observe the

same pattern of Figure 1.

The summary statistic provided by the CPO criteria is called logarithm of the

pseudo marginal likelihood (LPML) which evaluates the predictive power of a

model. Therefore, to compare both models the LPML difference is used. To make

it comparable to other goodness-of-fit measures, for example, DIC, we define the

-LPML by

-LPMLj = −

(
nd∑

i=1

log
{
π(yi |y−i)

}
)

j

,

where j is the j th dataset in a given scenario. In this definition, lower values of

-LPML indicates better predictive power. In order to compare both approaches,

we have computed the logarithm of the Pseudo Bayes Factor (lPsBF) (Geisser and

Eddy, 1979) for each iteration. This measure is defined as

lPsBFj = -LPMLtj − (-LPMLGj ) = LPMLGj − LPMLtj .

To make the comparison equivalent to the RDIC presented in equation (3.1), we

define the relative lPsBF (RPsBF) as

RPsBFj =
LPMLGj − LPMLtj

LPMLtj

.

From the bottom part of Figure 2, all conclusions from the MSE and RDIC

can be applied in the context of the RPsBF measure, but the gain becomes more

evident. Moreover, we can see from the bottom part of Figure 2 that when the sim-

ulated scenario is stable with low expected proportion and low contamination, the

median of the RPsBF is small and not significant. However, for larger sample size

and contamination it is showed that the student-t approach is preferable for most

of the scenarios and highlights this choice when the magnitude of the contamina-

tion increase reaching values of this median relative difference even higher than
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Figure 2 Top: Median of RDIC, in the y-axis, for all scenarios; Bottom: Median of RPsBF, in

the y-axis, for all scenarios. We have the percentage of expected contamination in the x-axis and

all scenarios are: f = 2 (left), f = 4 (center) and f = 8 (right), nd = 100 (solid line), nd = 250

(dashed line) and nd = 500 (dotted line).

10% in some cases. One curious fact observed is that in the most critical scenario

where p = 0.25, f = 8 and nd = 500 the RPsBF values pointed incisively to the

Gaussian approach, indicating that, since the generation process has too much con-

tamination and generates to many innovative outliers, even the student-t approach

is not able to control for this behavior producing predictive measures that are less

accurate.

From the simulation study, we can conclude that the more flexible model is

preferred over the traditional one in most of the scenarios analyzed, and the gap
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between the models are higher when a moderate number of innovative outliers are

involved.

4 Data application

The goal of this section is to analyze Brazilian Homicide rates with approximate

Bayesian Inference for Dynamic Models using R-INLA. We have accessed data of

death in Brazilian cities from 1980 to 2010 made freely available by the Brazil’s

public healthcare system—DATASUS.2 This database of homicides, not natural

death,3 has a standard national structure containing age, sex, civil state, occupation,

naturality, local residence of the victim and local of occurrence of the event that

was used to compute the total number of homicides by city. The time series under

study represents the number of events standardized by each city population. R-

INLA applied to this longitudinal data offers a singular opportunity, not common

in studies of this nature in Brazil, of evaluating the impact of safety public policies

on crime pattern, specially on temporal pattern. In addition, numerous international

studies point to the relevance of the impact assessment of crime prevention policies

(Sherman and Weisburd, 1995, Sherman et al., 1997, Sherman, 1998).

Homicides studies is a broad field of sociological research (see, for example,

Jacobs and Richardson (2008)). Homicides represent a specific criminal category

that, although with less cases than property crimes, as burglary and robbery, it gen-

erates strong population demand for public policies of prevention. In this sense,

studies that deal with the temporal dynamic of homicides try to associate, in a

general way, this behavior with economic, social and political factors. For in-

stance, high Brazilian homicide rates could be due to high levels of unemployment,

poverty and economic inequality (Mir, 2004). Other factors, like age structure of

population (Graham and Bowling, 1995, Flood-Page et al., 2000) and disordered

population growth, or inequality in social conditions, are considered in order to

explain these rates, mainly in the largest cities (Mayhew and Levinger, 1976, Blau

and Blau, 1982). Considering disordered population growth as a feasible explana-

tion for criminal raising, researchers from the Chicago sociological school, since

the beginning of the 20th century, have been observing how the urban environment

produces criminogenic conditions as a result of ecological factors (Wirth, 1938,

Burguess, 1925, Harris, 1976). Urbanization and social differentiation produces

an impersonal environment causing weakened social controls and permitting de-

viant behavior to occur more frequently. In this context, it is important the So-

cial Disorganization Theory (Shaw and McKay, 1942) in the political perspective.

While the fast urban growth is linked to social disorganization, Gaviria and Pages

(2002) shows the negative relation between urban growth and trust level of police

2www.datasus.gov.br/.
3External causes.
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and judiciary power. Their results suggest that rapid urbanization can, under some

circumstances, set in motion a dynamic of mutual reinforcement between increas-

ing crime rates and crumbling law enforcement institutions. In addition, alteration

in the criminal historic behavior is associated to law-enforcement elements, such

as increase of the number of police officers, expenses with safety policies and in-

crease of imprisonment rates. Analyzing data from New York City, Zimring (2007)

concluded that “there is a strong evidence that changing the number of cops, as

well policing tactics, has a important impact in crime” (pg. 151).

Specifically in Brazil, Goertzel and Kahn (2009), while studying the behav-

ior of the strong decline of homicides rates in São Paulo state since 2000s, have

concluded that more repressive police models and disarmament policies reduced

substantially homicides and other violent crimes in the state. Statistically, it was

expected that, in regions where some policies of criminal prevention and control

were applied, the rates could suffer from sudden structural changes. This fact re-

quires a robust approach to model them, such as the assumption of heavy-tailed

distribution for the latent system noise to handle possible innovative outliers as

discussed in Section 3.

The model adapted was similar to equations (2.6) and (2.7). However, to model

each time series we considered the state capital cities grouped according to a spe-

cific criterion. Specifically, we have used the following capital division:

• Group 1 (G1)—São Paulo and Rio de Janeiro.

• Group 2 (G2)—Belo Horizonte, Recife, Vitória and Porto Alegre.

• Group 3 (G3)—All the 21 remaining capitals.

The main characteristic that motivated this division consists on the different ur-

banization processes occurred in Brazil. As demonstrated in Santos (2005), the

complex urban and territorial Brazilian organization bears deep differences be-

tween regions in terms of urbanization. In that sense, the cities division groups

were adapted from the study regarding the urbanization process of the Brazilian

society between 1940 and 2010, in particular, concerning the evolution of urban

population in the metropolitan clusters in this period (de Brito and de Pinho, 2012).

For each group created, we have one tendency estimated for the capitals and one

tendency estimated for all first order spatial neighbours (those which share border

with the capital). Thus, for each group, there is a model for the capitals and another

one for the capitals neighbours, totaling six models.

We can see in Figure 3 the homicide rate analysis for G1, G2 and G3. According

to this graph, some features can be pointed such as the presence of unusual rates.

Two cities in G2 between 1995 and 2000 present high level in homicide rates

compared to their usual levels. Moreover, we also highlight unusual values for

some series in G3, first observed in two series close to 1990 and second a sudden

raise after 2005 in one time series. Therefore, since we have these features a robust

approach to estimate such data is justified.
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Figure 3 Capital Homicide Rate data for each group. G1: São Paulo and Rio de Janeiro; G2: Belo

Horizonte, Recife, Vitória and Porto Alegre; G3: All the 21 remaining capitals.

Let Yt il be the Homicide Rate of city i = 1, . . . , nl in group l = 1, . . . ,6 at

time t , then we have the following model:

Yt il = at l + vt il, vt il ∼ N(0, θ1il), t = 1, . . . ,31,

at l = a(t−1)l + wt l, wt l ∼ (0, θ2l), t = 2, . . . ,31,

where wt l is either Gaussian or student-t and nl is the number of cities in group l.

To complete the model specification, it is necessary to specify the priors for

the hyperparameters. In our case, we have to specify priors for the precision of

each group in the observational equation and a single prior for the system equa-

tion precision. The prior of the precision of the observational equation is created

to cover with high probability the variances of all Brazilian cities, setting a prior

θ−1
1il ∼ Gamma(5,500), i = 1, . . . , nl and l = 1, . . . ,6 we cover with 90% of prob-

ability the values between the 25th and 75th quantiles of the cities sample variance.

For the precision prior for the latent equation, a prior θ−1
2l ∼ Gamma(1,0.1) is used

for all cases. Finally, the same prior set in the simulation study for the degrees of

freedom ν assuming 30% of probability of prior mass for ν values between 2 and

10 is used.

It is important to emphasize that the latent state represented by the vector a, can

be interpreted as the non-observed mean tendency of the cities of each modeling.

To understand the temporal trends, sociological literature analyzes the context

of how interpersonal violence spreads. Analyzing a historical time series of more

than 30 years of delinquency and crime, Shaw and McKay (1942) verified that not

only crime, but several social problems were related to a disorganized social envi-

ronment. The theoretical approach developed by these authors helps to understand

the effects of a unplanned urbanization process in criminal behavior. In largest

context like Latin America de urban crime is, to an important extent, a conse-
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Figure 4 Division posterior tendencies, a, for each group of Student-t approach. G1: São Paulo

and Rio de Janeiro; G2: Belo Horizonte, Recife, Vitória and Porto Alegre; G3: All the 21 remaining

capitals.

quence of the inability of many cities in the region to keep up with the increasing

demands for public safety brought about by a hasty and disorderly urbanization

process (Gaviria and Pages, 2002). So, in Brazilian big cities, the economic devel-

opment was followed by the appearance of urban enclaves (such as slums) where

the impairment of the traditional mechanisms of social control promotes an envi-

ronment of differentiated criminal opportunities (Sutherland, Cressey and Lucken-

bill, 1992). For more information about Social Disorganization Theory, we refer

to Shaw and McKay (1942) and Kubrin and Weitzer (2003).

Figure 4 presents the posterior tendency, a, of each group capital and neighbours

for the adjusted student-t model. The tendency of the first group tells us that its

urbanization process started earlier when compared to the other groups because

the homicide rate started to get higher first. Another aspect was that until 2000,

all the tendencies were nearly linear for all groups. However, a reverse tendency

was observed as result of investments and criminal control policies established

in G1 (Goertzel and Kahn, 2009). The other two groups are heading towards the

same behavior, but they still didn’t show it in such an evident way, as seen in

G1, the effect of safety policies. In G2 some states already adopted some safety

measures, for example, Minas Gerais, which capital is Belo Horizonte, with the

creation of Integração da Gestão em Segurança Pública (IGESP) in May 2005,

and Pernambuco, which capital is Recife, with the creation of the Pacto Pela Vida

in May 2007.

In order to assess the goodness of fit of our robust approach, we computed the

-LPMLs and the DICs for every model, as can be seen in Table 1. From Table 1, all

criteria, -LPMLs and DICs, pointed to the robust approach assuming the Student-t

distribution for the system noise. To verify the evidence that the robust approach
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Table 1 Quality measures of the division. G1: São Paulo and Rio de Janeiro; G2: Belo Horizonte,

Recife, Vitória and Porto Alegre; G3: All the 21 remaining capitals

G1 G2 G3

Gaussian Student-t Gaussian Student-t Gaussian Student-t

-LPML Capitals 229.09 227.81 496.72 496.45 2481.70 2473.55

Neighbours 3536.78 3517.38 2379.98 2375.89 3026.54 3002.48

DIC Capitals 460.22 459.64 997.44 996.60 4960.98 4946.32

Neighbours 7063.15 7030.68 4753.67 4746.94 6040.70 6004.27

Table 2 Pseudo Bayes Factor criteria

2PsBF Evidence against Gaussian

(−1,1] Worth mention

(1,5] Positive

(5,9] Strong

(9,∞) Very strong

outperforms significantly the traditional one, in the real data set, we chose to ana-

lyze Table 2 which was proposed and used in Prates et al. (2010). From Table 2,

we can see that the PsBF, which is the -LPML difference as presented in Section 3,

have a positive evidence against the Gaussian model for the capital modeling in G1

(2PsBF = 2.56) and a strong evidence against the Gaussian model for the neigh-

boring modeling in G2 (2PsBF = 8.18). However, the bigger gain in favor of the

Student-t model is verified for the neighboring modeling in G1 and G3 as well

as the capitals in this last group, with all having strong evidence in terms of the -

LPML differences. Since for each group we have many first order neighbours time

series, for G1, G2 and G3 there are 30, 24 and 152 neighbours respectively, anal-

ysis suggests that as the number of cities increases there is a demand for a more

robust approach.

In our real data application, the gain in terms of predictive power was very

clear. We also should point out that there is evidence of deviation from Gaussianity

when we look to the posterior distribution of the ν in the student-t model. From

Table 3, we can see the posterior median and 95% credible intervals (CI). The

median measure indicates that the student-t distribution is concentrated in medium

values of the degrees of freedom but the 95% CI are highly asymmetric reaching

very high values.

5 Conclusions

This paper describes how to perform Bayesian inference using R-INLA to esti-

mate non-Gaussian Dynamic Models when the evolution noise has a non-Gaussian
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Table 3 Posterior measures of the ν of Student-t approach. G1: São Paulo and Rio de Janeiro; G2:

Belo Horizonte, Recife, Vitória and Porto Alegre; G3: All the 21 remaining capitals

Group Type Median 95% Credible interval

G1 Capitals 35.53 (5.84;441.30)

Neighbours 28.46 (6.04;339.38)

G2 Capitals 39.93 (6.73;533.77)

Neighbours 31.69 (5.56;445.12)

G3 Capitals 32.23 (5.14;434.54)

Neighbours 55.91 (21.69;556.67)

distribution. Such models can be viewed as part of latent hierarchical models where

a non-Gaussian Random Field is assumed for the latent field and, therefore, inval-

idates the direct use of the INLA methodology that requires that the latent field

must be Gaussian.

Using a random walk example, we presented how to use an augmented struc-

ture to overcome the Gaussian limitation of INLA for the latent field. The key to

understand why our approach works relies on the fact that we approximate the

non-Gaussian latent field through a Gaussian distribution and corrects this approx-

imation in the likelihood function trying to minimize the loss of this approxima-

tion for dependent models. We discussed and explained the reasons to make this

approximative approach and, specially, where in the R-INLA calculations it will

impact.

Through simulations, we showed the necessity of more robust models when the

time series suffer sudden structural changes. From our results, we observe that

Gaussian models are sensitive to structural changes while our approach assuming

a student-t field is robust. Specifically, our simulation study presented an incisive

demand to avoid the usual Gaussian assumption in most contaminated scenarios.

There are indication that some public policies for crime control can generate a

positive effect in crime’s temporal tendencies allowing the presence of structural

changes identified with our proposed approach. It is evident that other control fac-

tors might help to confirm this hypothesis, however it is very likely that invest-

ments in security policies, such as those implemented in G1 and G2, have con-

tribution in the dynamic observed. Our homicide rate application pointed-out, as

expected, that public policies could play an important role to explain homicides

dynamics through a robust approach due to the characteristic of these kind of data.

Although we analyzed homicide rate because of their sociological impacts, we

are aware that this extension would also be well justified in other fields such as

stochastic volatility models (see, for example, Jacquier, Polson and Rossi, 2003).

As mentioned in Section 2, a natural extension of the model class presented

is the DGLM, where one could assume a non-Gaussian distribution for the ob-

served data and, consequently, impacting equation (2.5) which both gt (xt ) and
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ht (xt ) could have a non-quadratic form. This extension is investigated in a differ-

ent manuscript. The main advantage of the model structure presented here is that it

allows users to fit basically any complex structured non-Gaussian dynamic model

with fast and good accuracy using a friendly tool already available.

We believe that the applied community can make good use of this methodology

when necessary. For real time series data is not rare to observe structural breaks

and a robust approach, as the one presented, may be more adequate to adjust this

type of data. Furthermore, we have formalized how to use the R-INLA software

for non-Gaussian dynamic models in a simple way.
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