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Abstract. Observation and parameter driven models are commonly used in

the literature to analyse time series of counts. In this paper, we study the

characteristics of a variety of models and point out the main differences and

similarities among these procedures, concerning parameter estimation, model

fitting and forecasting. Alternatively to the literature, all inference was per-

formed under the Bayesian paradigm. The models are fitted with a latent

AR(p) process in the mean, which accounts for autocorrelation in the data.

An extensive simulation study shows that the estimates for the covariate pa-

rameters are remarkably similar across the different models. However, esti-

mates for autoregressive coefficients and forecasts of future values depend

heavily on the underlying process which generates the data. A real data set of

bankruptcy in the United States is also analysed.

1 Introduction

Models for non-Gaussian time series have been classified in observation driven

and parameter driven models, for a general exponential family formulation (Cox

(1981)). The main difference between the two approaches regards the way the

dependence structure is incorporated to the model and can be illustrated by means

of generalized state-space models, as pointed out in Davis, Dunsmuir and Wang

(1999). Using this formulation, the observation equation remains the same for the

two approaches, while the state equations are distinctly defined. In the observation

driven case, the distribution of the state equation is specified conditional on past

observations, while in the parameter driven approach, it is conditioned on a latent

dynamic process.

The basis for the observation driven models analyzed in this paper was first

introduced in Zeger and Qaqish (1988). They proposed a quasi-likelihood ap-

proach to time series regression, focusing on Poisson and Gamma distributions.

Later, Li (1994) extends the Zeger and Qaqish (1988) procedure by allowing a

moving average structure to be added to the model. More recently, Benjamin,

Rigby and Stasinopoulos (2003) compiled the results of these two works in a more
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general formulation, which they call generalized autoregressive moving average
(GARMA) models. The GARMA model can accommodate non stationary behav-
ior and include a variety of different distributions, such as the Poisson, Binomial
Logistic, Gamma and models of the GARCH class.

Following the same idea of Zeger and Qaqish (1988) but incorporating a
mean correction component to generate stationary processes, Davis, Dunsmuir
and Wang (1999), Davis, Dunsmuir and Streett (2003) propose an alternative ob-
servation driven model, called generalized linear autoregressive moving average
(GLARMA) model. In this direction, they extend the work of Shephard (1995) by
using standardized residuals with various powers of the conditional variance. The
authors also provide maximum likelihood estimation and investigate the properties
of their model, but they only consider the Poisson distribution.

Another group of observation driven models, lately proposed by Creal, Koop-
man and Lucas (2013), is the generalized autoregressive score (GAS) model. The
idea of the GAS model is to use conditional observation densities to explain the
dynamics of the time-varying parameter, which is updated on time via a scaled
version of the score function. An empirical comparison of the relative forecasting
performance of the GAS model with respect to some parameter and observation
driven models was performed by (Koopman, Lucas and Scharth, 2016).

Concerning parameter driven models, in the Bayesian context there is the semi-
nal paper of West, Harrison and Migon (1985), who proposed a dynamic evolution
structure to the parameters of an observation equation governed by distributions
belonging to the exponential family. An important feature of their work is that the
predictive distribution is obtained in closed form, by the use of appropriate con-
jugated priors. Following this line, some papers are devoted to the study of non-
Gaussian models that possess conjugate filtering recursions, such as Smith and
Miller (1986), Harvey and Fernandez (1989) and, more recently, Gamerman, San-
tos and Franco (2013) and Souza and Migon (2018). Estimation of non-Gaussian
state space models can also be performed using sequential Monte Carlo methods
(particle filters), see Andrieu, Doucet and Holenstein (2010).

Considering the classical perspective, the first parameter driven model was pro-
posed by Zeger (1988) for time series of counts. He incorporates latent processes
in the conditional mean function of a log linear regression model which introduces
both, overdispersion and autocorrelation, in the time series. Estimation of the la-
tent process is based on a quasi-likelihood approach and requires methods based
on Monte Carlo integration, as the likelihood cannot be written down in closed
form. Some authors have applied MCMC methods to perform a Bayesian analysis
for the Zeger model, such as Jung, Kukuk and Liesenfeld (2006) and Czado and
Kolbe (2004). State-space models with non-Gaussian observations were also con-
sidered in a few works For example, Shephard and Pitt (1995) have used MCMC
and importance sampling to perform, respectively, Bayesian and classical analy-
sis. Durbin and Koopman (2002) have presented a new, simple and computation-
ally efficient simulation smoother, employing an approach in which only mean



758 G. C. Franco, H. S. Migon and M. O. Prates

corrections for unconditional vectors are required. Creal (2012) has provided an

extensive survey on the use of sequential Monte Carlo methods in non-Gaussian

state space models. Migon et al. (2005) have proposed an alternative way to obtain

a sample from the states (direct multivariate normal sampling) by direct evaluation

of the prior full conditional of the full state vector, combined with the likelihood

in matrix form.

As it can be seen, in the last two decades there has been a burst of new proce-

dures in the area of non-Gaussian time series observations, either for parameter or

observation driven models. But while there are many works devoted to this subject,

few comparative studies have been performed so far. Some authors have attempted

to compare the two classes, focusing on time series of counts, which have a wide

field of practical application. Davis, Dunsmuir and Wang (1999) made a review

of the existing models at that time, aiming to provide statistical properties, model

building and diagnosis for both classes, as well as to compare their performance on

real data set. Jung, Kukuk and Liesenfeld (2006) and Jung and Tremayne (2011)

compare observation and parameter driven models based on real data applications.

The conclusions they draw is that the two approaches fit equally well to the data

set under study, giving similar estimates to the coefficient of the covariates.

One of the main contributions of the paper is towards understanding the dis-

tinction between the observation and parameter driven models for time series of

counts. In order to achieve this, a large and detailed simulation study is presented to

investigate the similarities and differences between the two approaches and studied

models. In the parameter driven case, we adopt the procedure introduced in Zeger

(1988) with an autoregressive latent process in the mean, while the GARMA and

GLARMA models are employed in the observation driven class. The models ad-

dressed here were chosen due to the great similarity presented by the component

which holds the autocorrelation structure of the process, thus making it easier to

evaluate their characteristics.

The paper also provides contribution concerning inference under the Bayesian

framework. In the parameter driven case, as observed by Jung, Kukuk and Liesen-

feld (2006), efficient estimation of the Zeger (1988) model is difficult to perform,

as the likelihood function depends on high-dimensional integrals. The WinBUGS

project (Lunn et al. (2000)), or the parallel version MultiBUGS (Goudie et al.

(2017)), are a flexible alternative to perform Bayesian inference and may be used

to fit parameter driven models, see for example the paper of Meyer and Yu (2000)

with an application to stochastic volatility models. Nevertheless, in this work we

propose to use the integrated nested Laplace approximation (INLA) approach

(Rue, Martino and Chopin (2009)), which provides efficient Bayesian inference for

the marginal posterior densities of the hyperparameters and the latent components.

Concerning observation driven models, as far as the authors know, inference for

the GARMA and GLARMA models was only performed under the classical per-

spective. Thus, we propose in this article a Markov Chain Monte Carlo (MCMC)
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procedure to evaluate the full posterior densities of the model parameters and vari-
ables.

All these topics are presented in the paper as follows: Section 2 outlines the
parameter and observation driven models addressed here. Section 3 presents some
considerations on the computational aspects of INLA and MCMC algorithms. Sec-
tion 4 discusses the results of the Monte Carlo experiments. Section 5 presents a
real application on bankruptcy data in the US. Finally, some conclusions are drawn

in Section 6.

2 Models

This section presents the parameter and observation driven models discussed in
this paper. In an observation driven model, the dependence structure can be added
to the mean function through past information of the observed series, as well as
past and present information obtained from the covariates. In contrast, for a param-
eter driven model the dependency is introduced adding a latent dynamic process
to the mean.

Let {yt }t=1,...,n be a non-Gaussian time series, with conditional distribution be-
longing to the exponential family,

p(yt |Ht ) = a(yt , ϕ) exp

[

1

ϕ

(

ytϑt − b(ϑt )
)

]

, (1)

where ϑt and ϕ are the canonical and scale parameters and a(·) and b(·) are specific
functions. Ht is a σ -field generated either by past values of the observed series
(observation driven models) or by a latent process (parameter driven models), as
well as past and present values of the covariates.

The conditional mean, μt = E(yt | Ht ), is related to the predictor, ηt , by a link
function, g,

ηt = g(μt ) = xxx′
tβββ + Zt , t = 1, . . . , n, (2)

where xxxt = (x1, . . . , xm)′ is a m × 1 vector of covariates, βββ = (β1, . . . , βm)′ and

the structure of Zt , which accounts for the autocorrelation present in the process,
depends on the adopted approach, the parameter or the observation driven model.
Some sub-models for count series include, for example, Poisson, binomial and
negative binomial distributions.

Apart from the Zt component, the main differences between the two approaches
are related to the estimation process and the ability to generate forecasts. Accord-
ing to Diebold and Schuermann (1996), observation driven models are easier to
estimate because they are defined in terms of conditional densities that depend
only on past observations, even though exact maximum likelihood estimation is

still difficult to obtain. By the other hand, inference in parameter driven models
requires a considerable computational effort. Regarding predictions, observation
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driven models present a more natural way of obtaining the forecasts, since in the
parameter driven models the latent process is not directly observable. The advan-
tages of the parameter driven approach relies mainly on two aspects: the natural
way to interpret the effect of covariates and the proof of asymptotic properties,
which are easily demonstrated depending on the latent process assumed. Asymp-
totic properties of the observation driven models are very difficult to establish,
especially those concerning ergodicity and stationarity (see Davis, Dunsmuir and
Wang (1999)).

In the next subsections, we present the procedures in more detail, focusing on
the Poisson and negative binomial distributions, which enable a more straightfor-
ward comparison among the models.

2.1 Parameter driven model

The basis for the parameter driven model described here was first proposed by
Zeger (1988). It states that, conditional on a non-negative weakly stationary latent
process, εt , and on xxxt , the mean of yt is given by

μt = E
(

yt | (εt ,xxxt )
)

= exp
{

xxx′
tβββ

}

εt .

Zeger (1988) imposes the restriction that E(εt ) = 1, so that the unconditional
mean,

λt = E(yt ) = E
(

E
(

yt | (εt ,xxxt )
))

= exp
(

xxx′
tβββ

)

does not depend on moments of the εt series. According to Zeger (1988), the latent
process εt introduces both overdispersion and autocorrelation into yt .

Taking the special cases of the Poisson and negative binomial and assuming
that σ 2 = var(εt ), the marginal variance and the autocorrelation function of yt are
given by,

Poisson:

• var(yt ) = E(var(yt | (εt ,xxxt ))) + var(E(yt | (εt ,xxxt ))) = λt + λ2
t σ

2;

• ρy(t, s) = corr(yt , ys) = ρε(s−t)

[(1+(σ 2λt )−1)(1+(σ 2λt+s)−1)]1/2 .

Negative Binomial:

• var(yt ) = λt + λ2
t ((r + 1)σ 2 + 1)/r ;

• ρy(t, s) = corr(yt , ys) = ρε(s − t)/[((r + 1)/r + (rσ 2)−1 + (σ 2λt )
−1)((r +

1)/r + (rσ 2)−1 + (σ 2λt+s)
−1)]1/2;

where r is the precision parameter and ρε(s− t) is the correlation function between
εt and εs .

In both cases, the degree of overdispersion depends on λt and the autocorrela-
tion in yt should be less than or equal that in εt , since λt > 0.

One possibility to model the latent process, εt , is to to assume that Zt = ln(εt )

in (2) follows a stationary Gaussian autoregressive process of order p, in order to
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ensure that the conditional mean of yt is non-negative. As the logarithmic is the

used link function for Poisson and negative binomial distributions, they are the

natural candidates to be used in this case.

Thus, the parameter driven model stated here, called from now on Zeger-ARp,

is given by

yt | (εt ,xxxt ) ∼ G(μt ), t = 1, . . . , n, (3)

ηt = ln(μt ) = xxx ′
tβββ + Zt , (4)


(B)Zt = ut , ut
i.i.d.
∼ N

(

0, σ 2
u

)

, (5)

where G can be the Poisson or negative binomial distributions, 
(B) = (1 −
∑p

j=1 φjB
j ), B is the backshift operator, p is a positive integer and 
(z), with

a scalar z, is a polynomial with all roots outside the unit circle.

The AR(1) structure has already been considered in the literature, for example,

in the works of Chan and Ledolter (1995), Jung, Kukuk and Liesenfeld (2006) and

Czado and Kolbe (2004).

2.2 Observation driven models

As described earlier in the paper, the literature of time series of counts presents

several options to work in the class of observation driven models. Here we discuss

two of these procedures, which have a similar structure compared to the parameter

driven model described in Section 2.1. The procedures were proposed simultane-

ously by Benjamin, Rigby and Stasinopoulos (2003) and by Davis, Dunsmuir and

Streett (2003). The similarities and differences between the two approaches are

described in the next subsections in more detail.

2.2.1 Generalized linear autoregressive moving average (GLARMA) model.

Davis, Dunsmuir and Streett (2003) provide the basis for the GLARMA model

whose conditional distribution, given the previous information set, belongs to the

exponential family form in Equation (1). In this case, the state equation is com-

posed of a linear model for the explanatory variables plus an error term with an

infinite moving average structure,

ηt = xxx′
tβββ +

∞
∑

i=1

τiut−i, (6)

where ut are the standardized residuals, given by,

ut =
(yt − μt )

(var(yt ))λ
, λ ≥ 0.

Davis, Dunsmuir and Streett (2003) show that, under the initial conditions

us = 0 and ys = 0, for s ≤ 0, the ut form a martingale difference sequence with
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zero mean and variance E(h(μt )), where h(μt ) = μ
(1−2λ)
t , for the Poisson model

and h(μt ) = μ
(1−2λ)
t /ζ , with 0 < ζ ≤ 1, for the negative binomial. In addition,

from the martingale difference property, cov(ut , us) = 0, for t �= s. Then, it fol-
lows that cov(ηt , ηt+j ) =

∑∞
i=1 τiτi+jE(h(μt )), which does not depend on time t

if λ = 0.5, even if μt is not strictly stationary.
In analogy with the ARMA models of Box and Jenkins (1976), Davis, Dunsmuir

and Streett (2003) show that it is possible to write the infinite moving average term
in Equation (6) as an autoregressive-moving average filter, by letting

∞
∑

i=1

τiz
i =

(

1 −

p
∑

i=1

φiz
i

)−1(

1 −

q
∑

i=1

θiz
i

)

− 1,

where φφφ = (φ1, . . . , φp)′ and θθθ = (θ1, . . . , θq)
′ are polynomials with all roots out-

side the unit circle.
Davis, Dunsmuir and Streett (2003) establishes some properties for special

cases of the GLARMA model. For example, the process ηt is ergodic when λ = 1,
q = 1 and xxx′

tβββ = βββ . For other values of λ, they could not prove the uniqueness,
or even the existence (if λ < 1/2), of a stationary distribution. They also show, for
this simple case, that, for λ = 1, the range of ηt does not depend on the value of
ηt−1, which is not true for other values of λ. Therefore, it can be perceived that
the properties of the GLARMA model are severely dependent on the value of λ.
The authors have also implemented the glarma package in R language, to estimate
the parameters of the GLARMA model for the Poisson, binomial and negative
binomial distributions.

Thus the GLARMA(p, q) model, for the Poisson and negative binomial, is
given by,

yt |
(

Y (t−1),xxxt

)

∼ G(μt ), t = 1, . . . , n, (7)

ηt = ln(μt ) = xxx′
tβββ + Zt , (8)

Zt =
∞
∑

i=1

τiut−i =

p
∑

i=1

φi(Zt−i + ut−i) +

q
∑

i=1

θiut−i, (9)

ut =
(

yt − eηt
)

e−ληt , (10)

where Y (t−1) = (y1, . . . , yt−1) and G can be the Poisson or negative binomial.

2.2.2 Generalized autoregressive moving average (GARMA) model. Benjamin,
Rigby and Stasinopoulos (2003) have compiled the results of Zeger and Qaqish
(1988) and Li (1994) to propose a more general class of observation driven models,
called GARMA models. Following their approach, the predictor is given by the
following general form,

ηt = g(μt ) = xxx′
tβββ +

p
∑

j=1

φj

(

g(yt−j ) − xxxt−jβββ
)

+

q
∑

j=1

θj

(

g(yt−j ) − ηt−j

)

. (11)
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The second component in the right hand side of (11) represents the autoregres-
sive term and consists of a function of the past values of yt and xxxt . The third com-
ponent represents the moving average term and can be calculated using any sort of
residuals computed from the fitted model. In their work, they opt for residuals on
the predicted scale, ln(yt ) − ηt .

Benjamin, Rigby and Stasinopoulos (2003) prove some properties of the
GARMA model, such as stationary conditions of the marginal means and vari-
ances, but only for the identity link. For other link functions, they could only per-
form some Monte Carlo simulation to investigate the stationary regions, as it seems
it is not possible to obtain the first two moments of the marginal distributions.

Although the procedures proposed in Benjamin, Rigby and Stasinopoulos
(2003) can accommodate any model in which the conditional distribution of yt ,
given a previous information set, belongs to the exponential family in Equation
(1), in this paper we present only the results for the Poisson and negative binomial
GARMA models, to keep in line with the other procedures addressed here. Thus,
in our specific case,

yt |
(

Y (t−1),μ(t−1),xxxt

)

∼ G(μt ), t = 1, . . . , n, (12)

ηt = ln(μt ) = xxx′
tβββ + Zt , (13)

Zt =

p
∑

j=1

φj

(

ln
(

y∗
t−j

)

− xxxt−jβββ
)

+

q
∑

j=1

θj

(

ln
(

y∗
t−j/μt−j

))

, (14)

where G can be the Poisson or negative binomial distributions, μ(t−1) = (μt−1,

. . . ,μ1) and y∗
t−j = max(yt−j , c) with 0 < c < 1. This last restriction is necessary

because of the logarithm link function, as yt can present zero values, which in this
case are replaced by the threshold parameter c.

3 Estimation and computational aspects

In this work, inference for the models described in Section 2 are performed under
the Bayesian framework. The integrated nested Laplace approximation (INLA)
approach and the Metropolis–Hastings algorithm are used, respectively, for esti-
mation in the parameter and observation driven models.

3.1 Inference in the parameter driven model

Several methods to estimate parameters and latent variables in parameter driven
models have been proposed in the literature. Zeger (1988) proposes estimating βββ

and φφφ separately. Given consistent estimates for φφφ and σ 2
u , which can be achieved
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by a method of moments, the βββ’s are estimated using quasi-likelihood. Davis, Dun-
smuir and Wang (1999) use Taylor expansions to build an approximate likelihood,
which is maximized through numerical algorithms. Another proposal is given in
Jung, Kukuk and Liesenfeld (2006), using efficient importance sampling to ap-
proximate the complete likelihood, under the classical and Bayesian framework.

In this work, we propose to use the INLA approach (Rue, Martino and Chopin
(2009)) to obtain efficient estimates for the parameter vector ψψψ = (βββ ′,φφφ′, σ 2

u ). The
likelihood function, L(ψψψ;Y (n),ZZZ) =

∏n
t=1 f (yt | Zt )p(Zt | ψψψ), can be approxi-

mated by

LP

(

ψψψ;Y (n),ZZZ
)

∝
∣

∣VVV −1
∣

∣

1/2
exp

{

n
∑

t=1

(

ηtyt − eηt
)

−
1

2
ZZZ′VVV −1ZZZ

}

for the Poisson model and

LNB

(

ψψψ;Y (n),ZZZ
)

∝
∣

∣VVV −1
∣

∣

1/2
exp

{

n
∑

t=1

(

ηtyt − ln
(

r + eηt
))

−
1

2
ZZZ′VVV −1ZZZ

}

for the negative binomial model, where ZZZ = (Z1, . . . ,Zn)
′, VVV is the covariance

matrix of ZZZ and r is the precision parameter.
The INLA approach relies on a hierarchical structure, where the response yt is

assumed independent, conditional on some Gaussian latent field www and a vector
of hyperparameters ςςς = (φφφ′, σ 2

u ). These models are called latent Gaussian models
(LGM). The LGM class assumes that the observation (or response) variable has
a likelihood whose mean, μt , is linked to a structured additive predictor, ηt . In
our setup, the link function is ln(μt ) = ηt , as can be seen in (4) and the Gaussian
assumption is also satisfied in (5). Therefore, these characteristics clearly allow for
the use of the INLA framework.

The INLA method approximates the posteriors of interest with a closed form
expression, which provides a substantial gain in computational time if compared
with MCMC methods. Moreover, INLA does not have problems of convergence
and mixing, inherent to MCMC runs. In our specific framework, the latent field
is composed by the linear predictor and the regression coefficients, wwwt = (ηt ,βββ

′),
and the AR coefficients and the noise variance define the hyperparameter vector
ςςς = (φφφ′, σ 2

u ).
For the model proposed in (4) and (5), we are interested in the following poste-

rior marginals

π
(

wtj |Y
(n)) =

∫

π
(

wtj |Y
(n),ςςς

)

π
(

ςςς |Y (n))dςςς, (15)

π
(

ςk|Y
(n)) =

∫

π
(

ςςς |Y (n))dςςς−k, k = 1, . . . , p + 1, (16)

where ςςς−k denotes vector ςςς without the kth component and wtj is the j th entry of
vector wwwt .
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The posterior marginals presented in (15) and (16) are calculated based on a

Laplace approximation to the full conditionals π(ςςς |Y (n)) and π(wt |Y
(n),ςςς), t =

1, . . . , n, and numerical integration routines to integrate out the hyperparameters ςςς .

In order to do so, INLA first approximates π(ςςς |Y (n)), using a Gaussian approx-

imation to the full conditional distribution of www = {www1, . . . ,wwwt }, by a multivariate

Gaussian density π̃G(www|Y (n),ςςς) evaluated at its mode www�(ςςς). Then the posterior

density of ςςς is approximated by using the Laplace approximation (Tierney and

Kadane (1986))

π̃
(

ςςς |Y (n)) ∝
π(www,Y (n),ςςς)

π̃G(www|Y (n),ςςς)

∣

∣

∣

∣

www=www�(ςςς)

. (17)

The second step is to compute the Laplace approximation of π(wtj |Y
(n),ςςς)

for selected values of ςςς , which will be used to perform a numerical integration to

obtain the posterior marginals of wtj presented in (15). The density π(wtj |Y
(n),ςςς)

is approximated by

π̃LA

(

wtj |Y
(n),ςςς

)

∝
π(www,Y (n),ςςς)

π̃G(www−tj |wtj , Y (n),ςςς)

∣

∣

∣

∣

www−tj=www�
−tj (wtj ,ςςς)

, (18)

where www−tj denotes the vector www without the j th component of vector wwwt ,

π̃G(www−tj |wtj , Y
(n),ςςς) is the Gaussian approximation of π(www−tj |wtj , Y

(n),ςςς),

treating wtj as observed and www�
−tj (wtj ,ςςς) is the mode of π(www−tj |wtj , Y

(n),ςςς).

The approximation π̃LA(wtj |Y
(n),ςςς) in (18) can be quite expensive, since it is

necessary to recompute π̃G(www−tj |wtj , Y
(n),ςςς) for all wtj and ςςς . Rue, Martino

and Chopin (2009) propose two alternatives to obtain these full conditionals in

a cheaper way. We focus our analysis in the simplified Laplace approximation

defined as the third order Taylor expansion of π̃LA(wtj |Y
(n),ςςς) around wtj and

approximated by a skew-normal distribution (for more details see Rue, Martino

and Chopin (2009)).

Finally, the full posterior approximations obtained previously are combined and

the marginal posterior densities of wtj and ςk are obtained by numerically in-

tegrating out the irrelevant terms. Therefore, the marginal approximation of the

latent variables can be obtained by

π
(

wtj |Y
(n)) =

∫

π
(

wtj |Y
(n),ςςς

)

π
(

ςςς |Y (n))dςςς

≈
∑

l

π̃
(

wtj |Y
(n), ςl

)

π̃
(

ςl|Y
(n),

)

�l,

which is evaluated using a finite sum on a set ςl of grid points, with area weights l

for l = 1,2, . . . ,L. Rue, Martino and Chopin (2009) argue that because the points

ςl are selected in a regular grid, it is feasible to take all the area weights l to be

equal. In a similar way, the posterior marginal of π(ςl|Y
(n)) is obtained.
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The INLA procedure directly calculates the posterior marginal of interest mak-
ing posterior inference over ψψψ very efficient. More details can be found in Rue,
Martino and Chopin (2009).

3.2 Inference in the observation driven model

In the observation driven approach, the only quantity to be estimated is the pa-
rameter vector δδδ = (βββ ′,φφφ′,θθθ ′). In the GARMA model, the log-likelihood func-
tion is conditional on the first s > max(p, q) observations and on ln(y∗

t ) for
t = 1, . . . ,max(p, q). For the GLARMA model, the likelihood function is com-
puted by conditioning on values of u0, u−1, . . . , u1−q being equal to zero.

For both approaches, in the case of a Poisson distribution, the log-likelihood
function is given by

lP
(

δδδ;Y (n)) ∝
n

∑

t=s+1

{(

xxx′
tβββ + Zt

)

yt − exxx′
tβββ+Zt

}

, (19)

while for the negative binomial it is given by

lNB

(

δδδ;Y (n)) ∝

{

n
∑

t=s+1

((

xxx′
tβββ + Zt

)

yt − ln
(

r + e(xxx′
tβββ+Zt )

))

}

, (20)

where Zt is given by (9) for GLARMA and by (14) for GARMA.
For GLARMA models, Davis, Dunsmuir and Streett (2003) provide parameter

estimation through maximum likelihood, using the Newton–Raphson algorithm.
In Davis, Dunsmuir and Streett (2005), the authors show the asymptotic normality
of the maximum likelihood estimator (MLE) of δδδ when λ = 1. For the GARMA
approach, Benjamin, Rigby and Stasinopoulos (2003) compute the MLE for δδδ us-
ing iteratively reweighted least squares and partial likelihood. Maximization of
l(δδδ;Y (n)) is done using the Fisher scoring algorithm.

In this work, the estimation is performed using MCMC algorithms. The
Bayesian approach initially requires the specification of a prior distribution, π(δδδ),
for the parameter vector δδδ. One possibility for π(δδδ) is to use normal priors with
zero mean and variance σ 2

φ , σ 2
θ and σ 2

β for φφφ, θθθ and βββ , respectively. Assuming
independence among the parameters, the joint prior is

π(δδδ) ∝
1

(σφ)p(σθ )q(σβ)m
exp

[

−

∑p
i=1 φ2

i

2σ 2
φ

−

∑q
i=1 θ2

j

2σ 2
θ

−

∑m
k=1 β2

k

2σ 2
β

]

. (21)

A simpler alternative, obtained as the limit of the prior distribution in (21), is the
uniform prior, given by π(δδδ) = c ∈ � for all possible values of δδδ, and 0 otherwise.

Prediction of future values can be obtained through the predictive distribution,
given by

p
(

yn+h | Y (n)) =

∫

p
(

yn+h | Y (n),δδδ
)

π
(

δδδ | Y (n))dδδδ.
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Once a sample δδδ(1), . . . ,δδδ(M) is available, the h-step-ahead predictive distribu-
tion can be approximated by

p
(

yn+h | Y (n)) ∼=
1

M

M
∑

i=1

p
(

yn+h | Y (n),δδδ(i)).

As the posterior distribution does not have a closed form, a Metropolis–Hastings
(M-H) algorithm will be employed to estimate the parameter vector. The cho-
sen kernel is based on a random walk chain, with a multivariate normal den-
sity,

δδδ(r) = δδδ(r−1) + ωr ,

where ωr ∼ N(0, cH), H is given by the Hessian matrix of the maximum likeli-
hood estimates and c is the tuning parameter, designed to optimize the convergence
of the algorithm.

In this procedure, all the components of parameter vector δδδ are updated in a
single block. Besides, the use of the hessian matrix enables the algorithm to walk
in the right direction in a faster way. The definition of the tuning parameter is also
an important feature to attain, for instance, a reasonable acceptance rate. If ωr is
large, the acceptance rate can be small, while if ωr is too small, it will be necessary
many steps to reach convergence.

The convergence of the algorithm can be checked through the Gelman and Ru-
bin method Gelman (1996), in which multiple chains with different initial values
are used. It is also possible to analyze the trajectory (trace) and histogram plots of
the generated chain, as suggested by Gamerman and Lopes (2006).

4 Empirical results

An extensive Monte Carlo (MC) experiment was conducted to compare the per-
formance of the observation and parameter driven approaches using the Poisson
model. The generation and estimation steps were performed in the 3.0.2 R pack-
age (R Core Team (2018)). The Zeger-ARp model, in this section abbreviated to
ZEG, was fitted using R-INLA and the GARMA and GLARMA models were fit-
ted using MCMC algorithms (available upon request).

Series of sizes n = 100, 500 and 1000 were generated under each one of the
models described in Section 2, and the three models were fitted to all series. As
the results do not have a significant change for different sample sizes, only the
n = 100 case is presented here. Thus, we have the following scenarios for the data
generating process (DGP) using a conditional Poisson distribution for yt :

Scenario 1: (ZEG) The DGP is the Zeger model.
Scenario 2: (GARMA) The DGP is the GARMA model.
Scenario 3: (GLARMA) The DGP is the GLARMA model.



768 G. C. Franco, H. S. Migon and M. O. Prates

The next subsections present the results for 1000 MC replications, considering two

structures for the mean process, μt : a pure autoregressive or an autoregressive plus

a covariate. In all cases, the parameter estimators are the posterior means.

4.1 Model with a pure autoregressive in the mean

Series were generated for the 3 scenarios with μt = exp(Zt ), where Zt in each

model is given by

ZEG: Zt = φZt−1 + ut , ut
i.i.d.
∼ N(0,1).

GARMA: Zt = φ(ln(y∗
t−1)), where y∗

t−j = max(yt−j ,0.1).

GLARMA: Zt = φ(Zt−1 + et−1), where et = (yt − μt )μ
−λ
t and λ = 0.5.

Table 1 shows the results for series of size n = 100. As expected, the estimates

closer to the real value and the smallest mean squared error (MSE) are obtained

when the fitted model is the same as the DGP. The only exception are the results

for the series generated under the GLARMA process with φ = 0.95, where the

ZEG procedure provided better results.

In general, there is not one approach that is better in all situations. The ZEG

and GARMA procedures seem to be more reliable when φ = 0.7 and 0.95, and

the GLARMA gives good estimates when φ = 0.4 (except for the ZEG DGP).

In fact, the GLARMA model undergo many problems for large values of φ. For

example, when φ = 0.7, the GLARMA approach seems to perform very well, but

a close inspection revealed that the log-likelihoods for the generated series under

this process can present local maximums far from the real value and only a very

Table 1 Mean and MSE of φ̂ in 1000 MC replications, for models generated from an AR(1) process

in the mean (n = 100)

Real value of parameter φ

φ = 0.4 φ = 0.7 φ = 0.95

DGP Fitted model φ̂ MSE φ̂ MSE φ̂ MSE

ZEG ZEG 0.398 0.029 0.698 0.013 0.916 0.022

GARMA 0.195 0.073 0.699 0.045 0.973 0.103

GLARMA 0.128 0.074 0.152 0.295 0.043 0.754

GARMA ZEG 0.001 0.157 0.783 0.211 0.915 0.139

GARMA 0.397 0.008 0.693 0.009 0.933 0.008

GLARMA 0.409 0.012 0.638 0.018 0.641 0.137

GLARMA ZEG 0.001 0.144 0.840 0.025 0.952 0.012

GARMA 0.017 0.135 0.836 0.023 0.984 0.028

GLARMA 0.398 0.006 0.683 0.043 0.049 0.696

Obs.: In bold are the estimates closer to the real values and the smallest MSE.
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few points around the exact value. Thus, it is very difficult to reach the global

maximum, unless the initial value in the optimization algorithm is very close to

the real value.

A detailed analysis on the behavior of the generated series and the fitted models

reveals some interesting characteristics (results not presented here, but available

upon request). Concerning the generation process, the ZEG DGP produces series

with a few very large values. Another comment regarding the generation process

is that, although all the series were generated by an AR(1) process in the mean,

the GARMA DGP is the only approach which results in an AR(1) process in the

data, yt .

In relation to model fitting (once again, results not presented, but available upon

request), residual analysis does not show, in general, any inadequacies concerning

the assumptions of zero mean and homoscedasticity. The problem, however, arises

in the independence assumption. The GARMA and GLARMA models, when ap-

plied to the series generated by their respective DGP’s, return white noise resid-

uals. Nevertheless, the ZEG procedure always produces autocorrelated residuals.

This fact was already noticed by Zeger (1988), which observed a statistically sig-

nificant autocorrelation in the residuals of the model fitted to the real data of polio

infection in the U.S.

4.2 Models with a covariate plus autoregressive terms in the mean function

Series of size n = 100 were generated for the three scenarios with

μt = exp(α + βxt + Zt ).

We allowed the covariate xt to take one of the following forms: xt ∼ N(0,1) or xt

is an AR(1) process with φ = 0.4. The component Zt in each model is given by

ZEG: Zt =
∑p

i=1 φiZt−i + ut , ut
i.i.d.
∼ N(0,1).

GARMA: Zt =
∑p

i=1 φi(ln(y∗
t−i) − α − βxt−i), where yt−i = max(yt−i,0.1).

GLARMA: Zt =
∑p

i=1 φi(Zt−i + et−i), where et = (yt − μt )μ
−λ
t .

Two sets of simulations were performed in this case. The first one with AR(1)

components in the mean process and the second one with AR(2) components.

Case 1: AR(1) (p = 1)

In this case, φ = 0.4 or 0.7, α = 1.0, β = 0.3 and λ = 0.5. We also provide

the mean squared error of the conditional mean (MSE(μ̂)) and prediction mean

square errors (PMSE) for forecasts 1, 5 and 15 steps-ahead, to compare the proce-

dures in all scenarios. The GLARMA DGP when φ = 0.95 presented many prob-

lems, with series composed entirely of zero values, or series with outliers of a very

large magnitude. Thus, it was not possible to perform the MC replications in this

case.
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In what follows, only the results for the covariate xt ∼ N(0,1) are presented.

The conclusions were very similar when the covariate is a time series (xt ∼ AR(1)

process).

Figure 1 presents boxplots for the estimation of α, β and φ under the three

DGP’s. The first conclusion we can draw concerns the estimation of α, which

seems to be best estimated by the method which generated the data, as expected.

We can also notice that the GARMA and GLARMA procedures overestimate this

parameter for the ZEG DGP, while α is underestimated by the ZEG and GLARMA

procedures when the true DGP is GARMA. For the GLARMA DGP, only the

GARMA methodology seems to overestimate α.

Analysing the estimation of the coefficient of the covariate, β , it is interesting

to note that all the procedures are robust with respect to the estimation of this

parameter, regardless the magnitude of the autocorrelation structure introduced

in the mean function. This fact has already been noticed by Jung, Kukuk and

Liesenfeld (2006) and Jung and Tremayne (2011) when applying similar param-

eter and observation driven models to some real data set. Nevertheless, it should

be pointed out that the variability is larger when the data are generated by the

ZEG model, and the GLARMA procedure produces the largest variability in this

case.

Estimates of φ are shown at the bottom of Figure 1. It is clear from this fig-

ure that the best estimates are obtained by the same DGP from which the data

were generated. Analyzing the cases φ = 0.4 and 0.7, we see that the GARMA

approach always underestimates the real φ when the observations are generated

from other DGP’s, while the ZEG procedure tends to overestimate φ from other

DGP’s. The GLARMA, in general, underestimates the real φ, unless φ = 0.4

and observations are generated by the GARMA or the own GLARMA proce-

dure.

Table 2 shows mean estimates of MSE(μ̂) and PMSE for forecasts h = 1, 5

and 15 steps-ahead for each procedure. The smallest MSE(μ̂)’s are obtained when

the estimation procedure is the same as the DGP. Concerning the predictions, the

GLARMA approach presents a very good performance when data are generated

by the ZEG and GLARMA DGP’s, and it still gives some reasonable results when

the DGP is the GARMA procedure.

Case 2: AR(2) (p = 2)

For the AR(2) case, we fixed (φ1, φ2) = (0.25,0.25) or (0.5, 0.25) and α and

β again equal to 1 and 0.3, respectively. As observed in Section 3.2, parameter

estimation in the GLARMA procedure is very sensitive to the value of λ. It seems

that, in the AR(2) case, λ = 1 is a better choice compared to λ = 0.5, as the esti-

mates are closer to the real values, and the likelihood is more well behaved. Thus

in this section, we have used λ = 1 in the simulations. Once again, only the results

for covariate xt ∼ N(0,1) are presented.
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Figure 1 Boxplot for the estimates of α, β and φ1, in 1000 MC replications, for series of size

n = 100. GA means GARMA and GL means GLARMA. A straight horizontal line is placed on the

real value of the parameters. In the left-hand side are the results for models generated with φ = 0.4,

while the right-hand side presents the results for φ = 0.7.
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Table 2 Mean of MSE(μ̂) and PMSE in 1000 MC replications (n = 100)

PMSE

DGP Fitted model MSE(μ̂) h = 1 h = 5 h = 15

φ = 0.4

ZEG ZEG 4.436 7.500 12.292 11.251

GARMA 39.043 7.228 16.313 13.653

GLARMA 39.790 6.131 10.378 9.345

GARMA ZEG 0.626 1.409 1.698 1.399

GARMA 0.080 1.110 1.681 1.334

GLARMA 0.277 1.501 1.588 1.453

GLARMA ZEG 0.627 1.694 1.456 1.994

GARMA 0.227 1.555 1.490 2.029

GLARMA 0.098 1.475 1.457 1.859

φ = 0.7

ZEG ZEG 5.594 8.881 32.184 31.690

GARMA 87.087 8.874 51.772 52.766

GLARMA 95.032 11.283 21.437 18.143

GARMA ZEG 0.858 0.770 1.637 2.216

GARMA 0.093 0.427 1.680 2.881

GLARMA 0.503 0.612 2.011 2.031

GLARMA ZEG 1.762 1.690 3.629 3.717

GARMA 0.998 1.452 3.384 3.534

GLARMA 0.225 1.223 3.161 3.742

Obs.: In bold are the smallest MSE(μ̂) and PMSE.

Table 3 presents the mean values, over MC = 1000 replications for the esti-
mates, with MSE, of parameters α, β , φ1 and φ2. The main features observed in
the AR(1) case are also perceived here. The first conclusion is that the best model
to estimate the parameters is the one that generated the data. The second distinctive
characteristic is that the procedures are robust to the estimation of β , the covariate
parameter. That is, regardless the DGP used, the β estimates are always close to the
real value of this parameter, for all fitted models. The main differences among the
methods occur generally in the intercept parameter, α, especially when φ1 = 0.50,
φ2 = 0.25. The parameter driven approach (ZEG) also presents some difficulties
in estimating the autoregressive parameters, φ1 and φ2, when the DGP is GARMA
or GLARMA.

5 Application to the bankruptcy series

This example refers to the UCLA-LoPucki Bankruptcy Research Database, a set
of monthly data of bankruptcy in United States companies, in the period from
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Table 3 Mean and MSE of α̂, β̂ , φ̂1 and φ̂2 in 1000 MC replications, for models generated from an

AR(2) process in the mean (n = 100)

φ1 = 0.25, φ2 = 0.25 φ1 = 0.50, φ2 = 0.25

DGP Fitted Model α̂ β̂ φ̂1 φ̂2 α̂ β̂ φ̂1 φ̂2

ZEG ZEG 1.009 0.295 0.246 0.226 1.010 0.300 0.493 0.218

(0.043) (0.014) (0.018) (0.020) (0.151) (0.014) (0.022) (0.024)

GARMA 0.294 0.295 0.158 0.147 1.705 0.298 0.346 0.185

(1.034) (0.019) (0.019) (0.021) (0.772) (0.024) (0.044) (0.115)

GLARMA 1.446 0.291 0.148 0.146 1.593 0.291 0.254 0.211

(0.304) (0.024) (0.021) (0.023) (0.617) (0.032) (0.071) (0.095)

GARMA ZEG 0.353 0.302 1.420 −0.536 0.353 0.302 0.956 −0.158

(1.061) (0.011) (097) (0.347) (0.149) (0.010) (0.573) (0.275)

GARMA 0.966 0.301 0.253 0.236 0.819 0.307 0.477 0.229

(0.030) (0.005) (0.006) (0.006) (0.396) (0.007) (0.010) (0.082)

GLARMA 0.601 0.299 0.230 0.222 −0.013 0.308 0.385 0.250

(0.211) (0.005) (0.006) (0.006) (1.281) (0.010) (0.018) (0.069)

GLARMA ZEG 0.962 0.311 1.420 −0.536 0.980 0.303 0.935 −0.280

(0.090) (0.003) (0.886) (0.652) (0.017) (0.004) (0.822) (0.419)

GARMA 1.148 0.306 0.169 0.160 1.411 0.314 0.406 0.143

(0.037) (0.003) (0.012) (0.014) (0.207) (0.003) (0.027) (0.140)

GLARMA 0.982 0.300 0.240 0.234 1.010 0.303 0.464 0.238

(0.018) (0.003) (0.008) (0.008) (0.085) (0.003) (0.009) (0.077)

Obs.: In bold are the estimates closer to the real values. In parentheses are the MSEs.

Jan/1980 to Sep/2014. This dataset contains bankruptcy cases on all American

public companies that have declared assets of more than US$100 million (mea-

sured in 1980 dollars), the year before the firm went bankrupt. The covariates

comprise macroeconomic and financial data obtained online from the Federal Re-

serve Bank of St. Louis (https://www.stlouisfed.org/).

The Poisson and negative binomial observation and parameter driven models

were used to fit the number of companies that went bankrupt, shown in Figure 2(a).

The last 12 observations were excluded from the fit with the purpose of comparing

the forecasts. The final set of covariates, after excluding non-significant variables,

were the Moody’s Seasoned Baa Corporate Bond Yield (BAA) and 10-Year Trea-

sury Constant Maturity Rate (GS10).

Figure 2(a) also reveals some peaks around 1991, 2001 and 2009. The last peak

can be credited to the Financial crisis of 2007–2010, which has caused a large num-

ber of companies going bankrupt, such as Lehman Brothers (Sep/2008), Chrysler

(Apr/2009) and General Motors (Jun/2009), among others. The increased number

of bankruptcy in 2001 can be explained by the Western energy crisis of 2000–2001.
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Figure 2 Fitted models and forecasts for the Bankruptcy series. Full and dashed lines represent,

respectively, the Bankruptcy time series and the fitted model. Dotted lines represent 95% credibility

intervals. The vertical line separates the fitted data points from the forecast horizon.

This crisis has affected mainly the state of California, and has produced large-

scaled blackouts and an increase of electricity prices, causing the collapse of some

important energy companies, such as the Pacific Gas & Electric Co (Apr/2001)

and Enron (Dec/2001). With respect to the large number of bankrupt around 1991,

a possible explanation is that, in this period, credit was very tight so it was difficult

for firms to refinance debt. Thus, it was not the recession, but the overspending

that has caused the main bankrupt cases at that time. These events were added to

the model using dummy variables (Ind1991, Ind2001 and Ind2009) to account for

interventions in these periods.
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Table 4 shows the fit of the Poisson and negative binomial models to the data.

These two models, under the three approaches (ZEG, GARMA and GLARMA),

are compared using the DIC statistic. We can perceive that the Poisson model pre-

sented the smallest values of DIC for all approaches. Comparing the observation

and parameter driven models, the ZEG procedure presented the smallest DIC, ei-

ther for the Poisson or the negative binomial.

The fit was very similar for both Poisson and negative binomial models. The

estimates of the parameters related to the covariates BAA and GS10 were sig-

nificant for all models. The coefficient for BAA, an indicator of the interest rate,

showed a positive relation with the number of companies that went bankrupt, while

GS10, used as a reference for pricing debt securities issued by entities such as cor-

porations and institutions, presented a negative relationship. The dummy variable

Ind1991 was significant for all models, the Ind2001 was significant in the GARMA

and negative binomial GLARMA models and the Ind2009 was only significant in

the GLARMA model. An AR process of order 6 was included in order to whiten

the residuals, although some lags were not significant for the ZEG and GARMA

models. The precision parameter, r , was estimated with large values for the nega-

tive binomial regression, which corroborates with the similar estimates obtained in

both regression analyses. As it is known, a large r estimate indicates that there is

no need for overdispersion when modeling the data and thus the negative binomial

model recovers the Poisson.

The residual analysis for the two models are very similar and, since the estimate

of r was large and the Poisson presented the smallest DICs, we only show the re-

sults for this model (see Figure 3). The assumptions of independence and constant

variance seem to be achieved in the observation models, while the ACF and PACF

plots of the ZEG model show some peaks in the first lags. This behaviour of the

ZEG model was already pointed out in Section 4.1 and Zeger (1988).

The fitted models and forecasts for the last 12 observations (Oct/2013 to

Sep/2014) are presented again only for the Poisson model (Figures 2(b), 2(c) and

2(d)). It can be seen that the ZEG procedure produces estimates for the process

mean which seem more smoothed, compared to the observation driven models.

Regarding the predictions, the GARMA and GLARMA models present an increas-

ing trend for the future observations, while the ZEG procedure shows a decreasing

behaviour, with smaller credibility intervals.

The prediction mean square error (PMSE) was also computed (see Table 4).

The negative binomial presented smaller PMSE than the Poisson model only for

the ZEG approach, even though the values are fairly comparable. However the

opposite occur in the GARMA and GLARMA cases, where the Poisson model

presented smaller PMSE. Regarding the three procedures, the ZEG presented the

smallest PMSE for both Poisson and negative binomial.
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Table 4 Poisson and negative binomial fit for the bankruptcy series

Poisson Negative Binomial

Model ZEG GARMA GLARMA ZEG GARMA GLARMA

Intercept −0.18 1.10 0.87 −0.01 1.17 0.80

(−1.91; 1.17) (0.37; 1.85) (0.11; 1.70) (−1.29; 0.23) (0.42; 1.96) (−0.14; 1.66)

BAA 0.39 0.29 0.29 0.40 0.28 0.30

(0.20; 0.57) (0.13; 0.43) (0.09; 0.46) (0.22; 0.57) (0.11; 0.44) (0.10; 0.51)

GS10 −0.44 −0.35 −0.43 −0.47 −0.35 −0.44

(−0.60; −0.28) (−0.48; −0.22) (−0.60; −0.25) (−0.63; −0.31) (−0.50; −0.20) (−0.63; −0.26)

Ind1991 1.11 0.89 0.95 1.11 0.94 1.00

(0.23; 1.90) (0.10; 1.54) (0.28; 1.56) (0.02; 2.18) (0.14; 1.65) (0.16; 1.78)

Ind2001 0.62 0.88 0.58 0.73 0.93 0.60

(−0.03; 1.23) (0.33; 1.34) (−0.02; 1.11) (−0.20; 1.69) (0.35; 1.52) (0.04; 1.27)

Ind2009 0.53 0.49 0.56 0.54 0.52 0.61

(−0.11; 1.13) (−0.06; 0.96) (0.14; 0.99) (−0.42; 1.52) (−0.12; 1.12) (0.04; 1.15)

AR(1) 1.26 0.22 0.20 0.48 0.22 0.20

(0.02; 0.98) (0.14; 0.29) (0.14; 0.27) (0.99; 1.52) (0.16; 0.29) (0.14; 0.26)

AR(2) −0.49 0.16 0.10 0.23 0.16 0.10

(−1.13; −0.09) (0.08; 0.23) (0.04; 0.15) (−0.41; 0.50) (0.08; 0.23) (0.03; 0.16)

AR(3) 0.55 0.06 0.11 0.17 0.05 0.11

(0.15; 1.41) (−0.01; 0.12) (0.05; 0.18) (−0.24; 0.41) (−0.02; 0.12) (0.04; 0.18)
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Table 4 (Continued)

Poisson Negative Binomial

Model ZEG GARMA GLARMA ZEG GARMA GLARMA

AR(4) −0.17 0.03 0.07 0.18 0.03 0.06

(−0.92; 0.31) (−0.04; 0.10) (0.01; 0.12) (−0.36; 0.33) (−0.04; 0.10) (0.01; 0.12)

AR(5) −0.66 0.11 0.06 0.17 0.11 0.07

(−1.20; 0.29) (0.03; 0.18) (0.01; 0.12) (−0.22; 0.43) (0.04; 0.19) (0.00; 0.13)

AR(6) 0.50 0.08 0.09 0.14 0.08 0.09

(−0.20; 0.85) (0.01; 0.15) (0.03; 0.15) (−0.10; 0.43) (0.01; 0.15) (0.03; 0.15)

r 10.46 26.24 19.05

(6.59; 15.76) (24.51; 27.80) (14.20; 25.41)

DIC 1330.56 1338.42 1384.64 1375.07 1388.32 1384.97

PMSE 3.328 4.115 3.902 3.289 4.258 4.715

Obs.: In bold are the significant parameters.
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Figure 3 Residual analysis for the three models fitted to the Bankruptcy series (Poisson).

6 Conclusions

This study was motivated by the increasing use of generalized linear models with

autoregressive components in the mean to model the autocorrelation present in

time series of counts. We believe this is the first attempt to compare the two ap-

proaches based on a Monte Carlo experiment.

Moreover, a Bayesian approach based on MCMC to estimate the parameters

of the observation driven models, GARMA (Benjamin, Rigby and Stasinopoulos

(2003)) and GLARMA (Davis, Dunsmuir and Streett (2003)) and an INLA ap-

proach to estimate the parameters of a model with a latent autorregressive process

in the mean (Zeger (1988)) were introduced in the paper.

An extensive simulation study was performed in models with and without a

covariate, using the Poisson distribution. The main conclusion that can be drawn

is that the parameter of the covariate is not affected by the model chosen to fit the

data, regardless the process which generates the data. This can be an indication

that the methods are robust with respect to the estimation of this parameter. The
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same inference can not be taken with respect to the autoregressive and intercept, as
they seem to be well estimated only using the same model that generates the data.

With respect to the parameter driven model, we have observed some prob-
lems regarding the residual series. After properly estimating the parameters, the

residuals, which should be a white noise, still present an autocorrelated struc-
ture.
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