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Alleviating Spatial Confounding for Areal Data

Problems by Displacing the Geographical

Centroids

Marcos Oliveira Prates∗, Renato Martins Assunção , and Erica Castilho Rodrigues!

Abstract. Spatial confounding between the spatial random effects and fixed ef-
fects covariates has been recently discovered and showed that it may bring mis-
leading interpretation to the model results. Techniques to alleviate this problem
are based on decomposing the spatial random effect and fitting a restricted spatial
regression. In this paper, we propose a different approach: a transformation of the
geographic space to ensure that the unobserved spatial random effect added to
the regression is orthogonal to the fixed effects covariates. Our approach, named
SPOCK, has the additional benefit of providing a fast and simple computational
method to estimate the parameters. Also, it does not constrain the distribution
class assumed for the spatial error term. A simulation study and real data anal-
yses are presented to better understand the advantages of the new method in
comparison with the existing ones.

Keywords: Areal Data, Bayesian Statistics, Spatial Confounding, Spatial
Regression.

1 Introduction

Spatial generalized linear mixed models (SGLMM) for areal data analysis have become a
common tool for data analysis in recent years with the availability of spatially referenced
data sets. Besag et al. (1991) introduced a hierarchical modeling adding random spatial
effects to a generalized linear regression model. The spatial dependence is captured
by a latent Gaussian Markov Random Field (GMRF). One important advantage of
this GMRF approach is to induce a sparse precision matrix that allows for intuitive
conditional interpretation and fast Bayesian computation (Rue and Held, 2005). In the
past 20 years, Besag et al. (1991) model (hereafter ICAR) has become the most popular
areal model for its flexibility and due to its implementation in the WinBUGS software
(Lunn et al., 2000), which is freely available.

Most spatial data are observational rather than experimental and we commonly
observe correlation or multicollinearity between the covariates, also called explanatory or
fixed-effect variables. As a consequence of this multicollinearity, in non-spatial regression
problems, the estimated coefficients are affected by the presence of the other covariates.
This is called confounding and it can lead to implausible estimates. It also affects the
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variance of the covariates’ coefficients estimators which are inflated with respect to what
one would have in case the covariates were orthogonal to each other.

In the spatial context, Clayton et al. (1993) and Reich et al. (2006) identified the
existence of confounding between the fixed and random effects in SGLMM. In their
work, Reich et al. (2006) show that explanatory variables having a spatial pattern may
be confounded with the spatial random effects, resulting in fixed effects estimates that
are counterintuitive. Thus, they propose an alternative model, called hereafter RHZ
model, to alleviate this confounding problem. The RHZ model projects the spatial
effects into the orthogonal space spanned by the explanatory variables.

Another well known shortcoming of SGLMM is the computational burden when
dealing with high dimensional latent effects. Recently, Hughes and Haran (2013) in-
troduce an alternative model (hereafter, HH model) that alleviates spatial confounding
and, at the same time, requires less computational effort. They also consider an orthog-
onal projection of the spatial effects in a way that takes into account the explanatory
variables and the spatial structure. Properties of the HH model was further studied by
Murakami and Griffith (2015).

The main idea behind the Reich et al. (2006) and Hughes and Haran (2013) methods
is to project the unobserved spatial effects vector in the linear space orthogonal to the
explanatory variables. As a consequence, they end up with a precision matrix that is far
from sparse losing one of the main advantages of the Markov random fields. Another
drawback from RHZ and HH methods is that them become computationally expensive
when the spatial effects have parameters. Therefore, it is harder to use them with more
flexible spatial structures (Besag, 1974; Leroux et al., 1999; Rodrigues and Assunção,
2012).

From a geostatistical perspective, Paciorek (2010) dealt with the effects of confound-
ing between the spatial random effects and possible explanatory variables. He showed
that it can lead to bias in the parameter estimation. Hanks et al. (2015) also studied the
effects of spatial confounding in the continuous support situation. They proposed a pos-
terior predictive approach to correct Type-S error on the credibility intervals produced
by RHZ. Recently, Hefley et al. (2017) proposed a regularized spatial regression that
can also deal with spatial confounding and improve the predictive power the model.

In this paper, we adopt a different approach to deal with spatial confounding in
lattice data. Rather than removing the explanatory variables effect from the spatial
random effects, we alter the spatial pattern of the map by purging the covariates from
the geography. We do this by projecting the spatial coordinates of the areas into the
orthogonal space of the covariates, producing a new set of geographical coordinates.
These new coordinates induce a different neighborhood structure for the areas that
are used to define a different precision matrix. The transformed geography retains the
spatial neighborhood that is orthogonal to the covariates. One important consequence
of our approach is that we maintain the sparsity of the spatial effects precision matrix
allowing for very fast Bayesian computation while controlling for spatial confounding.

Our new approach is called SPOCK, an acronym for SPatial Orthogonal Centroid
“K”orrection. SPOCK led us to understand better the role of spatial confounding and
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its effect on parameter estimation. It gives a more clear understanding of the concep-
tual differences between the parameters in models that do and do not alleviate spatial
confounding. In a striking example, Reich et al. (2006) showed that spatial confounding
may provide counter intuitive results in some situations. Sign and relevance of covariates
can change drastically after one adds a spatial random effect in a lattice-data regression
model. Some important questions arise. When does that occur? Is it always necessary to
correct for spatial confounding? If not, when to do so? There is an on-going discussion
among the researchers about the need for spatial confounding correction and the mean-
ing of the resulting fixed-effect parameters (Paciorek, 2010; Hanks et al., 2015; Hefley
et al., 2017). With our model as a framework, in the simulation study of Section 5,
we revisit these questions and try to better understand what are the consequences of
correcting for spatial confounding and when it is adequate to do so.

The contributions of this paper are the following:

• a new conceptual approach, SPOCK, to handle spatial confounding;

• because our approach retains the Markovian property, it is extremely efficient for
Bayesian computation even in high dimension problems generated by maps with
very large number of areas;

• in contrast with the present alternatives, SPOCK deals easily with other spatial
models for the random effects;

• SPOCK is very simple to implement and it can be run in any Bayesian spatial
software such as WinBUGS, CARBayes (Lee, 2013) and R-INLA (Rue et al., 2009).

The paper proceeds as follows. In Section 2 we review the traditional SGLMM model
and present a summary of the RHZ and HH methods. Section 3 introduces SPOCK and
its properties are discussed. Section 4 proposes a diagnostic tool to test the need to cor-
rect for spatial confounding. In Section 5, a simulation study is performed to compare
the proposed method against RHZ and HH methods in terms of precision of estimates
and time. It also provides insights on when to correct for spatial confounding and what
are the consequences of it. In Section 6.1, we revisit three classical real spatial datasets,
the Slovenia dataset (Zadnik and Reich, 2006), the North Carolina SIDS (Cressie, 1991),
and the Scotland lips (Breslow and Clayton, 1993). These examples illustrate that all
three models lead to very similar estimates but SPOCK is one or two orders of magni-
tude faster than the other methods. Finally, the paper concludes with a discussion in
Section 7.

2 Existing methods

2.1 SGLMM

Spatial Generalized Linear Mixed Models (SGLMM) is a wide class of models that
accommodates spatial dependence through a random effect term. Let Yi be the obser-
vation of an area i, i = 1, . . . , n with distribution given by Yi ∼ π(y|µi, δ,Xi, β) with
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g(µi) = Xiβ + θi, where β is the fixed effects coefficients vector and X is a n × q
full-rank design matrix with the covariates. Typically, X includes a first column of con-
stant values equal to 1. We let Xi be its i-th row, g is an appropriate link function,
and µi = E(Yi|Xi). The vector of hyperparameters of the distribution is δ. Finally,
θ represents a vector with spatially structured random variables capturing the spatial
patterns shared by the areas in study.

The most simple instance of this model is the Gaussian model where

Yi|µi, τε ∼ N(µi, τε) with µi = Xiβ + θi. (1)

Traditionally the spatial random effect θ� = (θ1, . . . , θn) is defined as an intrinsic
conditional autoregressive (ICAR) models introduced by Besag et al. (1991). The prior
specification of the ICAR model is given by

π(θ|τθ) ∝ τn−1

θ exp
(

−
τθ
2
θ�Qθ

)

, (2)

where Q is the precision matrix given by Q = D −A where D a diagonal matrix with
the i-th entry equal to the number of neighbors of region i and A is the graph zero/one
adjacency matrix. The parameter τθ is the spatial precision.

2.2 Non-Confounding SGLMM

Clayton et al. (1993) introduced the concept of spatial confounding between the fixed
effects estimates and the spatial random effects in SGLMM. However, only recently,
Reich et al. (2006) revisited the problem motivated by a striking case study where the
credible interval for a certain fixed effect coefficient changes drastically after introduc-
ing the spatial random effects. They proposed an alternative method to alleviate this
confounding problem. The idea proposed is to include in the model a random effect that
belongs to the orthogonal space of the fixed effects predictors. A new R

n basis can be
used to re-express

θ = θX + θ⊥ = Kθ1 +Lθ2, (3)

where K is a n×q matrix that has the same span as X, L is a n× (n−q) matrix whose
columns lie in the orthogonal space of X, and θ1 and θ2 are vectors with dimensions
q and n− q, respectively. Equation (1) can be represented as Yi|µi, τε ∼ N(µi, τε) with
µi = Xiβ+Kiθ1 +Liθ2, where Ki and Li are the i-th rows of K and L, respectively.
The vector θ follows the ICAR distribution in (2). Using this parametrization, it was
shown that K causes a confounding in the estimates of β. Reich et al. (2006) suggested
the removal of the K component leading to the RHZ model:

Yi|µi, τε ∼ N(µi, τε) with µi = Xiβ +Liθ2, θ2 ∼ Nn−q

(

0,L�QL
)

. (4)

Although it alleviates the confounding between the spatial random effects and the
estimates of the fixed effects, Hughes and Haran (2013) noticed that this method is
computationally inefficient. The reason is that the new precision matrix generated by
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(4) is not sparse and has dimension n − q ≈ n. To reduce the computational demand
of the RHZ model they proposed a low-rank alternative model for the L matrix. This
new model uses the so-called Moran operator P⊥AP⊥ and

P⊥ = I −X(X�X)−1X� (5)

is the projection matrix into the orthogonal space of the span of X. They showed that
the Moran operator retains the spatial patterns of the data and it is only necessary to
select the h � n higher positive eigenvalues of the spectrum of the Moran operator,
called attractive eigenvalues. In this way, they were able to reduce the dimension
of the random effect by using a low-rank approximation of P maintaining the spatial
information necessary in model estimation. The HH model is defined as Yi|µi, τε ∼
N(µi, τεI) with µi = Xiβ + Miθ2 and θ2 ∼ Nh(0,M

�QM), where M contains the
first h eingenvectors of the Moran operator.

3 Purging the covariates from the geography

Although Reich et al. (2006) and Hughes and Haran (2013) were successful in alleviating
the confounding and in reducing the dimension of the spatial random effects as presented
in Section 2.2, their approaches have two main drawbacks: (1) the RHZ and HH models
lost the original SGLMM model sparsity of the precision matrix and hence do not take
advantage of the Markov property in the Bayesian calculations; (2) compounding with
(1), their computational cost increases sharply if parameters appear in the precision
matrix Q (e.g., Besag, 1974; Leroux et al., 1999; Rodrigues and Assunção, 2012). In
this case, one needs to recalculate eigenvalues and eigenvectors of Q each time its
parameters are updated.

In order to propose a fast SGLMM that alleviates the confounding problem, we in-
troduce SPOCK, a novel approach to the problem capable of maintaining the Markov
properties of the precision matrix as well as allowing for unknown parameters in the
matrix Q. SPOCK not only produces a fast alternative to RHZ and HH but, more im-
portantly, it also represents a new and rather different conceptual perspective on how
to deal with the problem. We will show that this new way of seeing the spatial con-
founding can help in clarifying the discussion about the need for and the consequences
of the confounding alleviation.

Instead of reparametrizing the random effects vector by decomposing it into two
orthogonal subspaces, we project the neighborhood graph vertices into the orthogonal
space of the covariate matrix X. In geostatistics, Sampson and Guttorp (1992) also
suggested a deformation of the space to transform a non stationary field into stationary
one. Our method requires a coordinate system representing each area by a centroid
point and then we transform these geographical centroids inducing a new neighborhood
structure that is not influenced by the covariates.

SPOCK depends crucially on the fact that the distance between the centroids repre-
sents approximately the graph structure. For example, in the usual maps of counties in
the US and Brazilian states, this assumption is satisfied, as we will show in Table 1. How-
ever, it is possible to imagine situations in which this assumption is not true. Consider
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Figure 1: (a) Original centroids of a pseudo-map where the adjacency neighborhood
structure is represented by a spiral. One area is highlighted with a square symbol as
well as its two neighbors with respect to this graph represented by triangles. (b) The
same graph with the square area is shown with its two nearest neighbors (as triangles)
with respect to the Euclidian distance between the centroids.

a map in which the areas are arranged in such a way that the neighborhood structure
is represented by a spiral graph, as in Figure 1(a). We mark an arbitrary area in this
map with a square. Its neighbors in the spiral neighborhood structure are marked with
triangles. In Figure 1(b), we show the same graph with the same square reference area
but its two neighboring triangles are now those two nearest centroids with respect to the
Euclidean distance between the centroids. Comparing the two graphs, we see that the
nearest neighbors in the spiral neighborhood structure do not coincide with the nearest
neighbors in the structure induced by the distance between the centroids. This type of
situation is adverse for SPOCK. However, in usual geographical maps, it is large the
correspondence between nearest neighbors by the two criteria, as we shall see in Table 1.

Spatial effects defined on this transformed geography will attenuate the confound-
ing with the predictors. The projected image of the original graph (hereafter, projected
graph) allows us to keep the sparsity of the precision matrix Q and the Markov proper-
ties of random effects, making the fitting of our model more efficient than RHZ and HH
(Rue and Held, 2005). Since SPOCK works only by redefining the non-zero pattern of
Q by means of the projected graph, it allows the user to adjust a variety of parameter-
based spatial structure such as Besag (1974); Besag et al. (1991); Leroux et al. (1999);
Rodrigues and Assunção (2012).

To motivate our method, suppose that we can partition the neighborhood graph as
we did with the random effects in Section 2.2. That is, suppose that the neighborhood
graph could also be partitioned into two parts, one related with the covariates and
another one orthogonal to them. It is not clear how to directly partition the graph
in this way. When the distance between the areas centroids reflects the neighborhood
structure of the graph, a projection of the numerical coordinates of these centroids can
produce a partition of the graph into the two desired components: one correlated with
X and another one uncorrelated.
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In a more formal way to provide intuition about spatial confounding and about
our method, we interpolate our lattice data with a smooth surface. Let s = [s1, s2] be
the n × 2 matrix with the areas’ centroids coordinates. We associate each entry of the
random effect θ with a specific location, its area centroid. Conceptually, interpolate the
θi values with a smooth surface ψ(s1, s2) defined for any arbitrary position (s1, s2) in
the continuous map region such that θ = (ψ1, . . . , ψn) with ψi = ψ(si1, si2).

We want to emphasize the purely mathematical nature of this interpolating func-
tion. We are aware that statistical lattice data are not continuous and that each θi is
associated with the entire i-th region rather than with one single location. We do not
attach a substantive interpretation for such function ψ(s1, s2). We are not suggesting
any kind of asymptotic process, where the areas shrink in size until they become a point.
Our interpolating function is simply a convenient mathematical abstraction useful to
explain our method and it does not play any role in our method itself.

Let (s10, s20) be a reference location such as a central position in the map and
∇ψ = (γ1, γ2)

′ be the gradient of ψ evaluated at (s10, s20). When ψ is smooth enough,
a Taylor expansion allows the value ψ(s1, s2) in an arbitrary map position (s1, s2) to be
written as

ψ(s1, s2) = ψ(s10, s20) + (s1 − s10, s2 − s20)∇ψ +R(s1, s2, s10, s20)

= γ0 + γ1(s1 − s10) + γ2(s2 − s20) +R(s1, s2, s10, s20) . (6)

where R(s1, s2, s10, s20)/||h|| goes to zero as h = (s1−s10, s2−s20)
′ → 0. The remainder

R(s1, s2, s10, s20) is a quadratic form given by h′H(r)h where H(r) is the ψ Hessian
matrix evaluated at a point r that lies somewhere between (s1, s2) and (s10, s20). The
value of R(s1, s2, s10, s20) is bounded by the largest eigenvalue modulus of the Hessian
matrix H(r) as we vary (s1, s2) (and hence, r). For smooth surfaces ψ(s1, s2), the
gradient ∇ψ does not change abruptly and hence the Hessian is not expected to vary
substantially and should be small. We stress that these assumptions are not required to
apply our method. Their role is only to provide a motivation to understand the rationale
behind SPOCK.

Evaluating the expression (6) at the centroids s and organizing the result as a vector,
we have

θ = ψ(s) = γ01+ γ1(s1 − s101) + γ2(s2 − s201) +R(s1, s2, s10, s20)

= (γ0 − s10 − s20)1+ γ1s1 + γ2s2 +R(s1, s2, s10, s20)

= [1, s1, s2]γ +R .

In this way, we expressed the spatial random effects with a linear combination of the
coordinates s1 and s2 based on the assumption that θ can be cast on a smooth surface.
Returning to the SGLMM model, we can rewrite (1) as

Y = Xβ + [1, s1, s2]γ +R

= Xβ + P [1, s1, s2]γ + P⊥[1, s1, s2]γ +R

= X
(

β +
(

X�X
)−1

X�[1, s1, s2]γ
)

+ P⊥[1, s1, s2]γ +R
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Figure 2: Graphical model representation of the models: (a) usual ICAR model; (b)
ICAR with some nodes decomposed; (c) RHZ and HH models; (d) SPOCK model.

= Xβ∗ + P⊥[1, s1, s2]γ +R , (7)

where we used that I = P + P⊥ with P⊥ defined in (5). One of the main advantages
of expression (7) is to clearly and intuitively answer to Hodges and Reich (2011) when
they ask how “adding spatially correlated errors can mess up the fixed effect you love”.
The X fixed effect is messed up by the spatial random effect θ when two conditions are
met: (a) the covariates in X have a linear association with s so P [1, s1, s2] is not close
to the zero matrix and (b) γ is not small. Under these two conditions, the difference
between β and β∗ will be large. This motivates our diagnostic tool proposed in Section
4 to verify the need to correct for spatial confounding.

Expression (7) also justifies SPOCK as a method to deal with spatial confounding
in spatial regression. We split the linear component of the spatial random effect θ into
two pieces and remove the component P [1, s1, s2]γ, which can be confounded with
X. In Figure 2, we show a graphical model representation that explains SPOCK and
how it differs from the RHZ and HH concepts. In (a), we have the usual ICAR model.
The node G represents the neighborhood graph, which affects both, the covariates X

and the spatial effects θ. The response node Y is formed according to (1). In (b), we
have a new representation of the same model in (a) but now we decompose some of
the nodes to contrast the different approaches. The node θ is split into two pieces,
θX and θ⊥, following the RHZ solution as in (3). We also introduce a conceptual
decomposition of the graph G into two pieces. The first one is GX , and it carries the
shared information between the graph and X. The second one is G⊥, and it contains
the orthogonal information in G, after extracting GX . We explain in the next paragraph
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Figure 3: (a) Original centroids of the Slovenia. (b) New centroids after projecting the
original centroids coordinates into the vector space orthogonal to the span of X.

what we mean by this decomposition of the neighborhood graph and how it is carried
out in practice. Node G⊥ links directly only to the θ⊥ component of the spatial random
effect, while GX links only to θX . The RHZ and HH models are represented in (c)
and they are obtained by removing the node θX and keeping only the θ⊥, as shown
in (4). The nodes and edges removed are shown with dashed lines in the figure. Our
SPOCK approach is represented in (d). Differently from RHZ and HH, our geography
transformation means the removal of GX and its children. One important additional
difference is that θ⊥ in our model is not the same as that defined by RHZ and HH. In
our case, G⊥ directly induces a new θ⊥ with a sparse precision matrix Q�.

To explain how we construct G⊥, we use the same spatial dataset from Slovenia that
motivated Reich et al. (2006) in their work. Figure 3(a) shows the Slovenia map rep-
resented by its centroids (grey dots). The single predictor variable is a social-economic
status measure (SES). This predictor has a strong spatial pattern, with a gradient cross-
ing from the SouthWest to the NorthEast in the map. Our new geography is given by
the projected centroids s� = P⊥s shown in Figure 3(b). These new set of coordinates
represent the node with the projected graph G⊥ in Figure 2. If there is no spatial con-
founding, we expect s� and s to be approximately the same. In the original map in
the left hand side, we selected one area (black square) and its original neighbors (black
triangles) to show where they are located in the new projected map. We can see that
the neighboring areas in the original map are separated out and may become isolated
from one another in this new geography.

After projecting the original coordinates with P⊥ to obtain the new spatial coordi-
nates s�, we need to specify the neighborhood structure. To define the edges of the G⊥

neighborhood structure, we consider two alternatives: 1) to use the number of neighbors
ki of each area in the original graph (Knn); 2) to use the Delaunay triangulation to au-
tomatically define the number of neighbors. In the first method, we add edges between
areas i and j if area j is among the ki nearest neighbors of area i in the new geography.
In the second method, a Delaunay triangulation is performed over the new centroids
and the vertices connected by the triangles’ edges are considered neighbors.



632 Alleviating Spatial Confounding for Areal Data Problems

avg. Sensitivity avg. Recall

Delaunay Knn Delaunay Knn

48 U.S. state maps 91.9 96.1 80.7 85.3
26 Brazilian state maps 91.9 96.7 80.5 86.6

Table 1: Percentage agreement in the zero-one pattern between the original graph pre-
cision matrix and the projected precision matrices.

To choose between these two methods, we analyzed their ability to reproduce the
true and original map adjacency structure when there is no spatial confounding. After
all, when X is not associated with θ, we expect to see only small changes in the spatial
relationship between the areas. Table 1 shows the result of using the two methods in
two collections of maps totaling 76 widely different geographical structures. The first set
is composed by the 48 maps of counties from each one of the US states but Alaska and
Hawaii. The size and shape of the US states varies widely and hence this collection gives
a good idea of how the method works in different situations. The second set is composed
by 26 maps of counties (indeed, municipalities) of individual Brazilian states. For each
one of these 76 maps, we calculate the sensitivity (or precision) of each method: the
proportion of neighboring pairs of counties in the original state map that is reproduced
into either the Delaunay or Knn neighborhood map in the new geography. Table 1 shows
the average sensitivity over all 76 maps. We also calculate the recall of each method:
the proportion of neighboring pairs of counties in the reconstructed adjacency structure
that is also a neighboring pair in the original map. For both measures, sensitivity and
recall, the higher value, the better. It is clear from the table that the Knn method is
preferred according to this criterion and, from now on, all analysis in this manuscript
is performed using the Knn method to reconstruct the neighborhood structure after
projecting the coordinates.

The new adjacency matrix generated by the Knn method replaces the original ad-
jacency matrix used in the SGLMM model. After that, the user can select his preferred
algorithm to fit the model and carry out inference. For example, he can use the INLA
(Rue et al., 2009) algorithm in order to take advantages of the Markov properties of
the new matrix Q generated by the projected graph and to avoid traditional Markov
chain Monte Carlo (MCMC) convergence problems. For this reason we use R-INLA to
perform our analysis in this paper but since there is no software restriction to fit our
method we also used a SPOCK MCMC version through CARBayes.

To better visualize the impact of different spatial trends in the projected graph we
revisit the Slovenia map example in Figure 4(a) where the map is now centered at the
origin (0, 0) and presents its original neighboring structure. For all areas, we keep the ki
number of neighbors in the original map to reconstruct the Knn neighboring structure
of the projected geography. Different spatial trends are created for one explanatory
variable X. Figure 4(b) is associated with a single covariate given by Xi = s1i + s2i, a
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Figure 4: (a) Original Slovenia map. (b) Reconstructed adjacency matrix when X is a
linear trend of the centroids coordinates. (c) Reconstructed adjacency matrix when X

is a quadratic trend of the centroids coordinates (d) Reconstructed adjacency matrix
when X is a cubic trend of the centroids coordinates.

linear trend based on the centroids’ coordinates. Figure 4(c) has Xi = s2
1i + s2

2i, while

Figure 4(d) has Xi = s3
1i + s3

2i.

The original centroids are projected into the space generated by P⊥. We do not

show this new geography but rather, in Figure 4, we show the original map with

each i-th centroid connected to its new ki neighbors in the projected space. Although

there is some overlap between segments connecting the new neighbors, we can see that

each area in Figure 4(b) has all its ki neighbors approximately in the (1, 1) direction.

As Xi = (1, 1)(si1, si2)
�, it explains the Y variation in the (1, 1) direction and so,

for the spatial effect, it remains to explain the Y variation in the orthogonal (−1, 1)

direction. In the new geography, far away areas (and therefore, with practically in-

dependent spatial effects) are those distant in the (−1, 1) direction. Hence, the new

neighborhood structure must be the ki nearest neighbors in the (1, 1) direction. When

X has a quadratic spatial trend, Figure 4(c), there is almost no effect on the pro-

jected centroids. This happens because the orthogonal component of s in the span

of X. is negligible and thus no confounding correction is necessary. This pattern is

very similar to the one we obtain when X is randomly generated (without any spatial

pattern). Finally, Figure 4(d) presents a cubic pattern for X. In this case, although

not as perfect as in Figure 4(b), the orthogonal projection of s in the span of X is

significant and therefore some correction is needed. From Figure 4, it is clear that

different spatial trends generates different effects over the projected graph. This is ex-

pected since the projected graph should be orthogonal to the information in the span

of X.
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4 When do we need to correct for spatial confounding?

An additional advantage of the SPOCK approach is to provide a diagnostic tool for
detecting the need for spatial confounding alleviation. Hefley et al. (2017) provide a
way to measure spatial multicollinearity through model fitting. However, practitioners
might prefer to use the traditional SGLMM rather than the set of new methods to deal
with spatial confounding, unless it is really necessary. The following diagnostic tool can
be used in an exploratory analysis providing guidance to which model is appropriate
prior to any model fit. As we saw in Figure 4, when the spatial coordinates have no
linear association with the covariates, our methodology has no effect on the geography.
This could lead one to think that we should always correct for spatial confounding as an
insurance policy. However, there is a clear price in using the methods that alleviate spa-
tial confounding. They are more complex and hence epidemiologists and public health
agents have a harder time to interpret them (Hanks et al., 2015). Next, we provide a
tool based on canonical correlation suggesting either one should do the confounding
correction or not.

To verify the degree of linear association between the centroids s and the covariates
X, we apply the canonical correlation technique which measures how much variability
the two sets share and if they have some common linear dimensions.

The main idea of the technique is to find two linear combinations U = sa and V =
Xb, where a and b are 2× 1 and q × 1, respectively, such that the correlation between
U and V is maximized. The solution leads to a maximum correlation given by ρ, the

largest eigenvalue of the matrix S
−1/2
ss SsxS

−1

xx SxsS
−1/2
ss , where S = [Sss Ssx;Sxs Sxx]

is the empirical covariance matrix of [s,X]. The need for spatial confounding correction
is based on a statistical test of the null hypothesis that ρ = 0. There are two possible
approaches, one based on an asymptotic test and another based on a Monte Carlo test.

The asymptotic test is based on the Wilks’ Lambda statistic Λ, which asymptotically
has a distribution F (Wilks, 1935). This statistic is a multivariate generalization of the
coefficient of determination. The basic idea is to fit a multivariate regression model
where the multivariate response variable is s and the covariates are composed by X.
The test statistic measures the proportion of the s variability that can not be explained
by the predictors in X. If this value is small, we have evidence that there is a linear
relationship between the two data sets and a correction for spatial confounding should be
considered. Under the normality assumption for the two matrices, s andX, or if we have
a large number of observations, we have Λ following approximately an F distribution.
In cases where these assumptions are not valid, we carry out a randomization test by
randomly permuting the rows of either s or X.

5 Simulation

In this section, we present three simulation studies. The first one aims to give insights
on the implications of the model assumptions to alleviate spatial confounding when
using SPOCK. It also compares the results obtained by the SPOCK methodology with
the competitor methods and the computational time of the available implementations.
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The second study compares the effect on the spatial confounding problem obtained by
SPOCK and the alternative methods when the spatial coordinates s have a non-linear
dependence on the covariates X. The third, study the Type-S error rate (Gelman and
Tuerlinckx, 2000) and coverage of the proposed methods from an areal data perspective.

5.1 Linear confounding

Using the Slovenia map, we carry out a simulation study with a linear dependence
between the covariates and the space with two main goals: 1) to understand and discuss
what are the implications of the models assumptions and when it is necessary to use
some spatial confounding alleviation method; 2) to compare the results of the SPOCK
methodology with the existing RHZ and HH alternative models. The following model

is selected to generate the data Yi = β0 + β1X1i + β2X2i + θi + ei with ei
ind
∼ N(0, τe)

and i = 1, . . . , n where θ is the spatial effect, n is the number of regions in the Slovenia
map. The coefficients values are β� = (2, 1,−1). We selected 3 simulation scenarios:

1. (ICAR spatial-X) The spatial effect is generated using the ICAR structure (that
is, θ ∼ N(0, τθQ)) with covariate X1i generated as i.i.d. N(0, 1) and covariate X2i

equal to si1, the first coordinate of i-th area centroid;

2. (RHZ) The spatial random effect is generated by the orthogonal RHZ proposal:
θ ∼ N(0, τθP

⊥Q(P⊥)�). The explanatory variables are the same as in scenario
1;

3. (ICAR non-spatial-X) Its is equal to scenario 1 except that the explanatory vari-
able X2i is also generated from independent standard normal distribution without
any spatial information.

For each scenario, we generated 1000 datasets with the following combination of τθ
and τe, the precision of the random effects and error term, respectively: (a) τe = 0.2
and τθ = 1; (b) τe = 1 and τθ = 1; (c) τe = 1 and τθ = 0.2, to study their effects
in model estimation and each running time. For each one of the nine scenarios, the
posterior estimates of the following models were recorded: 1) SPOCK, 2) RHZ, 3) HH,
4) ICAR, 5) linear model (LM), as well as their execution time. The R software (R
Development Core Team, 2011) was used to fit all proposed models. For the RHZ model,
we used the R script freely available in http://www4.stat.ncsu.edu/~reich/Code/.
The HH model was fitted using the R package ngspatial (Hughes and Cui, 2017,
version 1.2) with half of the maximum Moran attractive eigenvectors. To fit the LM and
ICAR models, we used the R-INLA package. Finally, SPOCK was fitted with one INLA
version (SPOCK (R-INLA)) and one MCMC version (SPOCK (CARBayes)). Therefore,
our time comparison is between the available implementation of the methods and not the
computational complexity of the algorithms involved. In the simulation study, to make
the computation time measuring fair between SPOCK (CARBayes) and the competitor
models (RHZ and HH) that are MCMC based, all MCMC models were run with a
single chain of size 15000, a burnin period of 5000 samples ending with a chain of 10000
samples.
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We estimate the posterior mean of the fixed effects in each one of the 1000 replica-
tions. Table 1 in Section S1 in the supplementary material (Prates et al., 2018) presents
the median and 2.5% and 97.5% percentiles of these estimates. We can see that, for
all scenarios, the SPOCK model provides very similar inference compared to the LM,
RHZ, and HH models. The ICAR model has a slightly different behavior. When the
true generating model is the ICAR spatial-X, the ICAR model apparently outperforms
the other models as τθ decreases. However, this is not so simple, as we explain soon.
In the RHZ scenario, the ICAR model clearly has a large variance associated with β2,
specially when τθ = 0.2. This is expected because, as Reich et al. (2006) show, as the
ratio τθ/τe decreases, the confounding problem becomes severe. Finally, in the ICAR
non-spatial-X scenario, with no spatial information in the explanatory variables, all
models seem to present a similar behavior, independently of precision differences. From
Table 1 in Section S1 in the supplementary material, we can get two main conclusions.
First, there is are major differences in the estimates provided by the SPOCK and the
RHZ or HH models, making it a competitive model. The difference of the fitted pa-
rameters between the ICAR model and the other three models is large when the ratio
between the spatial effect precision and the error precision is small (τθ/τe = 0.2). The
second one, is the apparent better behavior of the ICAR model in the ICAR spatial-X
scenario. We discuss that this is not necessarily so in the following.

Hodges and Reich (2011) discuss the interpretation of confounding in spatial regres-
sion and link it with the multicollinearity problem in linear regression. By construction,
the solution proposed by Reich et al. (2006) and more recently by Hughes and Haran
(2013) assigns to X all the spatial variation that θ and X are competing for. That is,
RHZ, HH and our own method aims to estimate β∗ = β + (X�X)−1X�[1, s1, s2]γ
in (7). There is not an universal agreement around this solution. Paciorek (2010) and
Hanks et al. (2015) argue that making the spatial random effects orthogonal to the span
of X is a very strong choice to alleviate the confounding problem.

To gain a better understanding of the effects of alleviating confounding we compare
the β̂ Bayesian estimate (posterior mean) with β∗, rather than with β. To investigate

this issue, we produce Figure 5. We calculate the ratio β̂/β∗ in each one of the 1000
simulations and show them in the box plots for the 3 scenarios with τθ = 0.2 and
τe = 1 fixed. Similar figures appear with the other values for τθ and τe. Each scenario is
shown in a different column. The first and second rows of plots present β̂0/β

∗
0
and β̂1/β

∗
1
,

respectively. Their coefficients β0 and β1 are not associated with spatial covariates. They
have a similar behavior in all scenarios and the main conclusion is that the different
methods produce very similar results, all of them centered around 1. The third row
presents the distribution of the ratio β̂2/β

∗
2
. The first two scenarios, ICAR spatial-X

and RHZ, have β2 associated with a covariate with spatial structure. In this case, the
traditional ICAR method has a much larger variance than the methods that alleviate
spatial confounding. This shows that the ICAR method is not a good choice when
the aim is to assign to X all the variation shared with θ. In the ICAR non-spatial-X
scenario, all methods show a similar behavior, as expected.

After demonstrating that the SPOCK model is able to deal with the spatial con-
founding problem and provide very similar results to RHZ and HH models, we evaluate
the average time to run each algorithm in their current available implementations.
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Figure 5: (a) Posterior estimates for β0 under the different models. (b) Posterior esti-
mates for β1 under the different models. (c) Posterior estimates for β2 under the different
models.
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τe = 0.2, τθ = 1 τe = 1, τθ = 1 τe = 1, τθ = 0.2

Model Time (sec) sd Time (sec) sd Time (sec) sd

SPOCK (R-INLA) 0.466 0.025 0.471 0.033 0.487 0.047
SPOCK (CARBayes) 2.750 0.067 2.758 0.068 2.750 0.069

RHZ 38.911 0.141 38.995 0.153 39.193 0.281
HH 3.700 0.049 3.710 0.050 3.701 0.054

ICAR 0.429 0.033 0.385 0.041 0.353 0.076
LM 0.131 0.002 0.134 0.002 0.131 0.013

Table 2: Median execution time (in seconds) from 1000 replicates in scenario 2 (RHZ)
and the execution standard deviation (sd) of the evaluation time of each method.

Table 2 presents the median execution time of 1000 replicates of each model for sce-
nario RHZ. The LM method is substantially faster than the others. However, the LM
method does not take into account the spatial variation that improves modeling. Among
the spatial models, SPOCK combined with R-INLA clearly outperforms the RHZ and
HH implementations in running time and it has comparable time with the ICAR fit
by R-INLA. The RHZ has the largest median time, while the HH method seems to run
around 10 times slower than SPOCK (R-INLA) and around 35% slower than the SPOCK
(CARBayes).

5.2 Non-linear confounding

The second simulation study is focused on understanding how the methods alleviate
spatial confounding when there is non-linear dependence between the spatial coordinates
s and the covariates. To do so, we keep the Slovenia map and perform a simulation with
the ICAR spatial-X scenario of Section 5.1 fixing τe = 1 and τθ = 0.2 which is the most
severe confounding scheme considered.

The data are generated by the following model Yi = β0+β1X1i+β2g(si1, si2)+θi+ei

with ei
ind
∼ N(0, τe) and i = 1, . . . , n where the coefficients values β� are the same as in

Section 5.1; X1i and θ are generated according to ICAR spatial-X scenario; and X2i =
g(si1, si2) is a non-linear function of the area centroids. To be more specific, a quadratic
and a cubic scenario were created respectively as: (a) X2i = g(si1, si2) = s2i1 + s2i2, and
(b) X2i = g(si1, si2) = s3i1 + s3i2. For each scenario 1000 datasets were generated.

As discussed in Section 5.1 we use the ratio of β̂/β∗ as a more adequate measure of
the spatial confounding. For each one of the 1000 simulations the ratio was calculated
and Figure 1 in Section S2 in the supplementary material presents the box plot of the
posterior bias estimates of β̂/β∗. SPOCK provides very similar results in comparison
to the RHZ and HH models. As expected, the estimates of fixed effects β1 related with
the covariate without spatial information present a similar behavior for all methods
(Figure 1(b) in Section S2 in the supplementary material). All of them alleviate the
spatial confounding for non-linear dependence, as can be seen in Figure 1(c) in Section
S2 of the supplementary material.
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5.3 Type-S error rates

Hanks et al. (2015) conducted a study to examine the Type-S error rate for restricted
spatial regression (RSR) models and SGLMM in a geostatistical perspective. They con-
sider that a Type-S error occurred when the regression parameters are equal to zero
(β = 0 or β∗ = 0) and the 95% equal-tailed posterior credible interval for the regression
parameter does not contain zero. In their study, they concluded that the RSR model
has higher Type-S error than the traditional SGLMM.

In this Section, we present a study to verify the Type-S error as in Hanks et al.
(2015) and also the coverage of the regression coefficients for areal data. We used the
Slovenia map and generate 1000 datasets from the following model: Yi = β0 + β1X1i +

β2X2i + θi + ei with ei
ind
∼ N(0, τe) and i = 1, . . . , n. The number of regions in the

map is n = 192 and θ is the spatial effect following an ICAR model. The coefficients
values are β� = (2, 1, 0) and both explanatory variables, X1 and X2, are generated
from independent standard normal distribution without any spatial information. We
fitted the same combinations of the precision parameters τθ and τe used in Section 5.1.
In this scenario, β = β∗ since there is no spatial information in X.

For each of the three scenarios, we recorded the coverage for β1 and Type-S error
for β2 of the following models: SPOCK, RHZ, HH, ICAR, and LM. Table 3 shows that,
as the precision of the spatial random effects decreases, the RHZ model drastically
increases its Type-S error. This result agrees with the conclusion presented in Hanks
et al. (2015). With a smaller spatial precision, SPOCK and HH slightly overestimates the
Type-S error. The other methods seem to correctly control the nominal 5% Type-S error.
Table 3 also presents the coverage rate of the 95% equal-tailed posterior credible interval
for β1. Only the RHZ model present smaller coverage rate. As previously observed with

τe, τθ

0.2, 1 1, 1 1, 0.2

SPOCK (R-INLA) 6.1% 7.3% 13.8%
SPOCK (CARBayes) 5.9% 7.2% 14.2%

Type-S RHZ 6.5% 15.7% 40.2%
HH 5.6% 6.9% 11.5%

ICAR 5.5% 6.1% 5.8%
LM 5.6% 5.4% 6.4%

SPOCK (R-INLA) 94.0% 94.0% 91.0%
SPOCK (CARBayes) 94.0% 94.0% 91.0%

Coverage RHZ 94.0% 88.0% 65.0%
HH 94.0% 94.0% 92.0%

ICAR 94.0% 94.0% 94.0%
LM 95.0% 96.0% 96.0%

Table 3: Type-S error and coverage rates from 1000 replicates of the regression coeffi-
cients in the three scenarios for the fitted models.
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the Type-S error, the coverage gets worse when the precision of the spatial effect is
smaller. All other methods, including SPOCK, seem to control the coverage rate for the
coefficient.

6 Applications

In this Section, different real data sets studied in the literature are presented to verify
the presence of spatial confounding and the results presented by SPOCK in terms of
estimation and computation time. bf In all real data examples, the HH model was
fitted selecting half of the maximum Moran attractive eigenvectors (HH-Half) and the
maximum Moran attractive eigenvectors (HH-Max). To make a fair comparison in terms
of computation time between SPOCK and the competitor models (RHZ and HH) that
are MCMC based, we also fitted SPOCK using the CARBayes package in addition to
using INLA. To make them time comparable, all MCMC models were run with a single
chain of size 50000, with a burnin period of 15000 samples ending with a chain of 35000
samples.

6.1 Slovenia dataset

The proposed model was adjusted to the same dataset used by Reich et al. (2006). The
response variable Yi is the number of cases of stomach cancer observed in the municipal-
ities of Slovenia during the 1995–2001 period. The single covariate is the standardized
value of a socioeconomic status measure for each area i = 1, . . . , 192. Therefore, we have
the following model Yi|λi,∼ Poisson(λ) with log(λi) = Xiβ + θi and β being the fixed
effect and θ the spatial effect.

Figure 6: (a) Standardized socioeconomic level for the municipalities of Slovenia. (b)
Posterior mean estimates for spatial random effects of the ICAR model. (c) Posterior
mean estimates for spatial random effects of the SPOCK (R-INLA) model.

Using a simple exploratory analysis, the authors noticed that the data show a neg-
ative relationship between the response and the explanatory variable. This is expected
based on the common knowledge of association between health risk and deprivation.
Their first attempt was to fit the data with the traditional SGLMM to capture the spa-
tial heterogeneity. However, from Figure 6(a), it is clear that the explanatory variable
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has a diagonal spatial trend, presenting higher values in the southwest and smaller in
the northeast. This is confirmed by the highly significant Moran index, with I = 0.55
with p-value approximately equal to zero. This is an indication of the presence of con-
founding between the random spatial effects and the socioeconomic level. The pattern
in this dataset is similar to what we simulated in Section 3 when we took Xi = si1+ si2
(see Figure 4(b)). After the SGLMM model was fitted by Reich et al. (2006), the coef-
ficient associated with the socioeconomic level had a very wide credibility interval that
covered even positive values. That is, the negative covariate effect disappeared.

Using our diagnostic test from Section 4, we can verify if there is evidence of spatial
confounding. Calculating the first canonical correlation between the spatial centroids s
and the covariate X, we find it equal to 0.670. This value is highly significant according
to both, the asymptotic and the permutation test, obtained from Menzel (2012). The
value is also high in absolute terms, indicating that the random spatial effects will be
mixed up with the covariate effects.

To better understand the confounding effect between the explanatory variable and
the random effects, we look at the spatial residuals from the ICAR model. From Fig-
ure 6(b), it is clear that both, the spatial random effect and the explanatory variable,
share a southwest to northeast trend and therefore are competing for the spatial vari-
ability contained in the response Yi. Figure 6(c) show the posterior mean estimates
for the spatial effects under our SPOCK (R-INLA) model. After alleviating the spatial
confounding, there is still some spatial trend left in the same southwest to northeast
direction. However, the spatial dependence now is weaker and the spatial effects are
smoothed toward zero. This is expected since, after alleviating the spatial confounding,
we assume that the exploratory variable carries most of the spatial information in Yi.
Although weaker, it is important to notice that the spatial random effect structure from
the SPOCK (R-INLA) model is still coherent with the space under analysis.

Table 4 shows the posterior mean estimates and credible intervals obtained applying
all discussed models. The SPOCKs point estimate and credible interval are similar to
those from the RHZ and HH-Max models. The HH-Half provide slightly different results
than the other models. This could be due to a non adequate choice of the number of
Moran attractive eigenvectors. As it can be seen in the last column of Table 4, SPOCK
outperforms the other non-confounding methods algorithms in terms of running time.

Model β 90% Credible Interval Time (sec)

SPOCK (R-INLA) −0.1214 (−0.1674, −0.0752) 2.64
SPOCK (CARBayes) −0.1186 (−0.1706, −0.0672) 18.10

RHZ −0.1216 (−0.1665, −0.0759) 249.49
HH-Half −0.0798 (−0.1257, −0.0342) 24.45
HH-Max −0.1157 (−0.1556, −0.0749) 25.05
ICAR −0.0380 (−0.0999, 0.0259) 0.42
LM −0.1358 (−0.1682, −0.1032) 0.22

Table 4: Posterior mean estimate and credible intervals of the coefficient associated with
the socioeconomic variable (Se) for the five fitted models.
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6.2 SIDS dataset

As a second example we fitted the models for the sudden infant death syndrome (SIDS)
dataset, collected in the 100 counties of the North Carolina state during the year of 1974.
These data were used by Cressie (1991). Rodrigues and Assunção (2012) extended these
analyzes including covariates that explain the county mortality rate. We include in our
models one of these covariates, the percentage of mothers who had prenatal care. The
Moran index is equal to I = 0.29 with p-value approximately equal to zero, which
indicates the presence of spatial correlation. From Figure 7, the centroids configuration
is somewhat altered after the projection. The canonical correlation with the centroids
is large, 0.394, and this value is significant according to the asymptotic test and the
permutation test.

Figure 7: (a) Original centroids of North Carolina. (b) New centroids after projecting
the original centroids coordinates into the vector space orthogonal to the span of X.

The first two columns of Table 5 show the parameter estimates for all models.
The ICAR and HH-Half models are the ones for which the parameter seemed to be
non-significant. The HH-Half was not able to alleviate the spatial confounding in this
example, while HH-Max provide different estimates from the other methods but at least
a significant one. The confidence intervals obtained for the other models were very close
to each other. The last column of this table shows the required time to fit the models,
and again, SPOCK has a much better performance in both cases than the RHZ and
HH fits.

6.3 Scotland dataset

The models were also fitted to the famous lip cancer dataset recorded in Scotland
districts from 1975 to 1986 (Breslow and Clayton, 1993). The covariate used in this
case was the workforce percentage in each district employed in agriculture, fishing and
forestry. According to the Moran index, this variable does not have a spatial structure
(I = 0.07 and p-value = 0.16). The canonical correlation between the centroids and the
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Model β 90% Credible Interval Time (sec)

SPOCK (R-INLA) −1.2719 (−2.3515, −0.1925) 0.99
SPOCK (CARBayes) −1.2479 (−2.3577, −0.0988) 11.51

RHZ −1.5297 (−2.7348, −0.2748) 78.50
HH-Half −0.7498 (−1.6825, 0.1836) 20.53
HH-Max −0.9476 (−1.8125, −0.0678) 22.52
ICAR −0.6244 (−1.9563, 0.7514) 1.04
LM −1.1499 (−1.9668, −0.3167) 0.20

Table 5: Posterior mean estimate and credible intervals of the coefficient associated with
the prenatal variable for the five fitted models.

covariate is small, 0.196, and not significant, suggesting that spatial confounding may
not be present. Figure 8 shows that the centroids arrangement on the map is practically
unchanged after their projection in the orthogonal space of this covariate.

Figure 8: (a) Original centroids of Scotland. (b) New centroids after projecting the
original centroids coordinates into the vector space orthogonal to the span of X.

Table 6 presents the results obtained after the estimation of the three models. The
values estimated by all models are very similar to each other, as expected. And again, the
proposed model outperforms its competitors implementations with both, using INLA
(R-INLA) and MCMC (CARBayes).

7 Conclusion

In this paper, we introduced an alternative way to alleviate spatial confounding. The
main idea is to construct a graph capable of capturing the spatial dependence orthogonal
to the space generated by the span of X. By doing so, the introduced method maintains
the original sparsity of the precision matrixQ and introduces no restriction in the spatial
modeling setup.
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Model β 90% Credible Interval Time (sec)

SPOCK (R-INLA) 0.0681 (0.0450, 0.0912) 0.86
SPOCK (CARBayes) 0.0574 (0.0326, 0.0823) 8.79

RHZ 0.0697 (0.0531, 0.0864) 37.66
HH-Half 0.0693 (0.0567, 0.0828) 18.82
HH-Max 0.0668 (0.0531, 0.0798) 19.38
ICAR 0.0625 (0.0431, 0.0815) 0.68
LM 0.0737 (0.0639, 0.0835) 0.23

Table 6: Posterior mean estimates and credible intervals of the coefficient associated
with the workforce variable for the five fitted models.

As one reviewer pointed out, “the asymptotics are not clear when the size of the
areal regions shrink toward zero and the density of spatial units increases, leading to
continuous spatial support rather than discrete.” In particular, the type of folding that
Sampson and Guttorp (1992) caution against may also be an issue here. Therefore, it is
not clear to us if our method can be extended to the continuous setting by an asymptotic
argument. However, we think that for many applied researchers dealing with areal data
this asymptotic approach is not of concern because it is artificial to think on a limiting
process in this situation. For example, consider the case of Bayesian disease mapping.
One needs risk population (and cases) in each small area and it does seem awkward to
imagine a limiting process where the area is reduced to zero and hence no population
is possible inside it. This is an interesting mathematical issue but we think that most
areal data researchers will be concerned and limited to work with areas bounded from
below.

From our simulation study and real data examples, we were able to show that the
SPOCK approach provides similar results to the other methods that alleviate confound-
ing. These alternative models project the spatial random effects on the orthogonal space
spanned by X. Instead, SPOCK projects the original geographical structure on that
same vector space. In all simulated scenarios and real data analyses, our method was
faster than the available implementations of the other existing methodologies. This ad-
vantage can make it attractive to researchers in different areas, specially when working
with very large spatial datasets. Another advantage is that our method can be used with
any usual ICAR implementation such as R-INLA, WinBUGS, OpenBUGS, and CARBayes.

We showed that, when no spatial confounding is present, it does not matter which
method one uses. However, when this is not the case, running the usual ICAR produces
different coefficients and inference from those obtained from the three methods to al-
leviate spatial confounding. The reason for this behavior is that these two classes of
models estimate different parameters. While ICAR estimates β, the others estimate β∗.
Specific application considerations should guide which parameter is more meaningful.
In the common situation where the spatial effects θ represent geographically structured
nuisance effects, it may be desirable to assign to X all spatial variation shared with
the random spatial effect θ and hence, to estimate β∗. However, as mentioned by Pa-
ciorek (2010), the data generating system may have a non-observed spatial confounder
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with the observed explanatory variables and setting all spatial variation to the observed
covariates may not be appropriate.

As seen in the simulation study, the SPOCK methodology has coverage close to
the nominal value and controls for the Type-S error, having a slight inflation when the
spatial random effect has large variability. This is a nice property since the RHZ model
can severely inflate the Type-S error and severely deflate the coverage rate. Another
nice property is that SPOCK inspires a diagnostic test to decide when we should carry
out the correction for spatial confounding. It is simple and can be calculated previous
to any model fitting. When there is no spatial confounding, fitting ICAR will lead to
the same inference as the spatial confounding alleviating methods as β and β∗ are the
same. However, fitting ICAR in the other situation, when there is unobserved spatial
confounders, leads to an estimate of β, rather than of β∗. The user should be aware of
these differences so he does not use one believing to have the other.

Supplementary Material

Alleviating spatial confounding for areal data problems by displacing the geographical
centroids: Supplementary Material (DOI: 10.1214/18-BA1123SUPP; .pdf). The supple-
mentary material present some results for the simulation studies of the paper.
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