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1. Introduction

Do points distribute in a region (in time, space or space-time) completely at
random? This question about the dispersion of points in time, space or space-
time frequently appears in astronomy (Mo and White, 1996; Adelberger et al.,
2005; Gladders and Yee, 2000; Kim et al., 2002), image analysis (Haralick and
Dinstein, 1975; Zhang and Zhu, 2012), data mining (Han, Kamber and Tung),
criminology (Murray, Grubesic and Wei, 2014; Sherman and Weisburd, 1995;
Harries, 1999; Eck et al., 2005), ecology (Stohlgren et al., 1999; Myers et al.,
2000), geography (Ord and Getis, 1995; Anselin, 1995; Murray and Estivill-
Castro, 1998; Grubesic, 2006; Yamada and Rogerson, 2008), pattern recogni-
tion (Haralick and Kelly, 1969), biology (Gutteridge, Bartlett and Thornton,
2003), forestry (Culvenor et al., 1998; Bar-Hen, Emily and Picard, 2015; Lee
et al., 2017), epidemiology (Kulldorff, 1997; Duczmal et al., 2011; Wieland et al.,
2007; Xu and Gangnon, 2016; Gangnon and Clayton, 2004; Lee, Gangnon and
Zhu, 2017; Lee et al., 2021; Gangnon and Clayton, 2000, 2003; Yan and Clay-
ton, 2006; Gangnon and Clayton, 2007; Gangnon, 2010a), climate-health (Lee,
Sun and Chang, 2020), and others. The answer to the question depends on
the positions of the observed points. The presence of “extra” individuals or
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objects in some part of space is defined as one or more “clusters”. Cluster de-
tection is very important in daily life. For example, in epidemiological problems
quick detection of spatial clusters of cases can alert the government to take
actions in hot spot areas before occurring an outbreak related to a contagious
disease.

Scan statistics are the most important tool for detecting clusters. A scan
statistic has the objective of detecting and evaluating the statistical significance
of clusters that cannot be explained by the assumption of randomness. This
is done by moving a window over the study region and identifying a region, if
there is one, with a higher concentration of points than should occur by chance.
Detection of such regions is traditionally performed by maximizing a likelihood
ratio as will be shown.

Researchers encounter at least nine types of datasets where they might wish
to identify spatial clusters using scan statistics: 1) point data; 2) case-control
data; 3) aggregated data; 4) spatio-temporal data; 5) spatial survival data; 6)
event data; 7) multinomial data; 8) ordinal data; and 9) time series data.

When Choynowski (1959) studied brain tumors, he considered statistical as-
sumptions for a map and explored whether there was any city on the map with
a statistically significant cluster. Since the occurrence of brain tumors is rare,
he used Poisson distributions to calculate the probability of the number of sick
people in each city. However, at that time, he tested the cities separately, so mul-
tiple testing problems occurred. Moreover, in his method, the border of clusters
must be the same as the border of the cities. To deal with these drawbacks,
Openshaw et al. (1987) proposed a graphical method called Geographical Anal-
ysis Machine (GAM). In their method, they first considered a grid on the map
and then put circles around the grid points such that their radii increased step
by step. Minimum and maximum radii were pre-selected. By Monte Carlo meth-
ods, one could determine which circle contained significantly more sick people in
comparison to those outside the circle. Any significant circle was plotted on the
map. In the end, the algorithm provided a map with some circles on it. These
areas were labelled as spatial clusters. The GAM method raises at least four
concerns: 1) a large number of circles must be checked to find clusters (the size
of the candidate class is too large); 2) it only detects circular clusters, but in
practice, clusters can have irregular shapes; 3) Monte Carlo hypothesis testing is
time-consuming; and 4) due to multiple testing problems, GAM indicates some
areas as clusters even if the points are distributed completely at random. Hence,
researchers should choose a very small α, for example 0.001.

The above-mentioned methods were presented in previous works to detect
spatial clusters. In the next section, we present the well-known spatial scan
statistics. Section 2.2 is devoted to regularly and irregularly shaped spatial
clusters, while Section 2.3 contains an overview of Bayesian scan statistics. In
Section 3, the method of spatial cluster detection without Monte Carlo hypoth-
esis testing is explored. Section 4 covers spatial clustering for event data. In
Section 5, spatial scan statistics for general graphs are presented. Section 6 de-
scribes spatial scan statistics for continuous data. In Section 7, scan statistics
for zero-inflated count data are discussed. Section 8 discusses nonparametric
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methods of spatial cluster detection. Section 9 presents spatio-temporal cluster
detection methods. Section 10 is devoted to regression and spatial clustering.
Multiple spatial cluster detection is discussed in Section 11. Section 12 is de-
voted to recent developments of scan statistics. In Section 13 we summarize
some programs and packages for detecting spatial clusters. Finally, a conclusion
is presented in Section 14.

2. Spatial Scan Statistics

2.1. Regularly Shaped Clusters

Kulldorff and Nagarwalla (1995) introduced a likelihood ratio test (LRT) to
find spatial clusters. Their method uses “variable window scan statistics” and is
sometimes called “moving window analysis” in engineering. In the scan statis-
tics method, the authors called sick people “points” or “cases”. The others
individuals are called “controls”. Under the alternative hypothesis, existence of
a spatial cluster, it is assumed that the probabilities for a point (individual) in
sub-region z or zc to be a case are respectively p and q with p > q where zc is
the complementary sub-region of z in the map, whereas under the null hypoth-
esis all individuals have the same probability p of being a case. Thus, clustering
detection is performed by testing:

H0 : p = q, ∀z ∈ Z vs H1 : p > q, ∃z ∈ Z. (2.1)

Kulldorff and Nagarwalla (1995) considered only circular sub-regions as candi-
dates for z, i.e., the candidate class, Z, is the set of all circles with predefined
maximum radius. Under the binomial or Poisson model, they calculated the like-
lihood of the study region under H0 andH1. Therefore, they were able to use the
LRT to perform the hypothesis testing in (2.1). In particular, they calculated

λ(z) = L(z)
L0

, for each z in Z, where L(z) and L0 are respectively the likelihood
of the data under H1 and H0, and determined the sub-region z which maximizes
λ(z). This z is called the most likely cluster (MLC) and λR = maxz λ(z) was
defined as the scan statistic. Since the distribution of λ(z) is unknown, they
used Monte Carlo methods to decide whether the MLC is a significant cluster
or not. Thus, to calculate the p-value, one can use the following steps. 1) sim-
ulate the number of cases in each cell using multinomial distribution under the
null hypothesis, 2) calculate the scan statistic for the simulated map, 3) repeat

steps 1 and 2, 999 times, and 4) calculate the p-value as
[
∑999

i=1 I(λi > λR)] + 1

1000
where I() is the indicator function.

This scan statistic method has some drawbacks: 1) it detects just one circular
cluster but neither multiple nor irregular ones, 2) if the true cluster is irregu-
larly shaped, circular scan statistics will detect either bigger clusters (overesti-
mation) or smaller clusters (underestimation), and 3) applying Monte Carlo is
time-consuming. Later, Kulldorff et al. (2006) introduced an elliptical spatial
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scan statistic that allows the detection of non-circular clusters. Although more
flexible, this scan statistic cannot detect arbitrary irregular clusters either.

It is important to mention that scan statistics can be extended to deal with
different kinds of data, for example event data (Rosychuk, Huston and Prasad,
2006), ordinal data (Jung, Kulldorff and Klassen, 2007), continuous data (Kull-
dorff, Huang and Konty, 2009; Zhang, Zhang and Lin, 2012), multivariate data
(Cucala et al., 2017), and others.

Zhang and Lin (2014) noticed that the likelihood ratio statistic is a special
case in the family of power divergence (PD) goodness-of-fit statistics, so the
classical spatial scan test can be extended to the family of PD spatial scan
tests. Their method is convenient because it can be combined with generalized
linear models (GLMs). Besides this approach, the Wald-based spatial statistic
(Liu, Liu and Zhang, 2018) is another alternative that can be combined with
GLMs to detect spatial clusters.

The main advantage of scan statistics is specificity. In this context, specificity
means identifying a single cluster responsible for the rejection of the null hy-
pothesis (Gangnon and Clayton, 2004). However, scan statistics can be biased
towards finding clusters in areas with greater spatial resolution. In other words,
they tend to cherry-pick clusters in areas with a large number of geographically
small cells (Gangnon and Clayton, 2004).

The weighted average likelihood ratio (WALR) test (Gangnon and Clayton,
2001) is an alternative method to detect spatial clusters instead of the traditional
maximum likelihood approach. The test has a natural interpretation as the
marginal likelihood ratio of a one cluster model to the no clustering model and
with choice of the correct weights, it identifies clusters with higher power and
less bias. The test is defined as unbiased, if, under the null hypothesis, each cell
in the study region has an equal chance of belonging to the detected cluster.
Furthermore, Gangnon and Clayton (2004) proposed two other scan statistics:
a scan statistic based on a penalized likelihood ratio and a localized version of
the WALR test. In these methods, the authors took advantage of the specificity
of the scan statistic and the unbiasedness of the WALR test.

Based on the studies of Gangnon and Clayton (2001) and Gangnon and Clay-
ton (2004), the spatial scan statistics method has high power in areas with fine
geographic resolution and low power in areas with coarse geographic resolution.
According to Gangnon (2010a), in real applications, there are many overlapping
clusters in urban areas, while rural areas have few. The spatial scan statistic
does not account for these local variations in the multiplicity problem. Hence,
Gangnon (2010a) proposed two new spatially varying multiplicity adjustments
for spatial cluster detection, one based on a nested Bonferroni adjustment and
one based on local averaging. In fact, they proposed the local average likelihood
ratio scan (LALRS) statistic and an unweighted version of the WALRS statistic,
which are applicable in any setting.

Up to now, there are very few methodologies that quantify the uncertainty of
a detected cluster. Along these lines, Lee et al. (2017) develop a new method for
the quantification and visualization of uncertainty associated with a detected
cluster.
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2.2. Irregularly Shaped Spatial Clusters

2.2.1. Minimum Spanning Trees in Spatial Cluster Detection

To find an irregularly shaped cluster, Assunção et al. (2006) proposed the dy-
namic minimum spanning tree (dMST) method. This method can quickly find
irregularly shaped clusters. A spanning tree is a sub-graph of a connected graph.
It is a tree that contains all vertices of the graph. The minimum spanning tree
(MST) for a weighted graph is a spanning tree that has minimum weight. The
dMST method not only detects irregularly shaped clusters but also decreases the
cardinality of the candidate class i.e., Z, from many circles to just I candidates
where I is the number of cells in the study region.

In this method, centroids vi and vj of cells i and j are connected to each other
using an edge if these two cells are neighbors. Hence, corresponding to a map,
we have an undirected graph. Under the Poisson assumption, the Kullback-
Leibler divergence is calculated and used as weight w(i, j) that is allocated to
edge (vi, vj). The weights reflect the dissimilarity in the density of the number
of “points” between two cells. Heavy weight means large dissimilarity between
densities of the cells. Using the algorithm of Prim (1957), the MST can be
found. The elimination of an edge from the MST separates it into two sub-
trees. Assunção et al. (2006) considered the smaller sub-tree as a candidate and
calculated the likelihood ratio for this candidate using the LRT of Kulldorff and
Nagarwalla (1995). Then, they returned the eliminated edge to its place and
removed another edge. Again, the MST is separated into two sub-trees. The
smaller sub-tree is considered the second candidate and the LRT is calculated
for this sub-tree. This procedure goes on for all sub-graphs to find the MLC.
Then, using the Monte Carlo procedure, one decides about the significance of
the MLC as a spatial cluster.

Although the dMST method improves the scan statistic in two aspects (the
flexible shape and reduced number of total candidates), it still has some defi-
ciencies: 1) it detects just one irregularly shaped cluster; 2) it commonly detects
a cluster bigger than the true cluster (overestimation or octopus effect), and 3)
the Monte Carlo procedure is time-consuming.

As mentioned, one of the disadvantages of the dMST is the overestimation
or octopus effect of the detected cluster. To control the overestimation, Costa,
Assunção and Kulldorff (2012) proposed three spatial scan statistics to find
irregularly shaped clusters. Their methods impose ad-hoc constraints on the
cluster shape using three criteria: edMST (early stopping dMST), double con-
nection, and mlink (maximum linkage).

The main difference between the edMST and the unrestricted dMST meth-
ods is that the edMST approach stops when the neighbors of a candidate do
not increase the likelihood function. In the double connected spatial scan statis-
tic, to be considered as a valid area for inclusion in the cluster, the candidate
neighbor must be connected to at least two units of the current candidate and
is aggregated to it if it increases the LRT. There is an exception in the first step
when the current candidate has only one unit. If no neighbor satisfies the con-
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nection condition, then the algorithm stops and starts again from another unit.
The results obtained by this method are more compact clusters than with the
edMST method. Finally, the mlink spatial scan statistic is an alternative that
searches only among neighbors with maximum connections to the current can-
didate and evaluates whether or not it must be included. For all these methods,
Monte Carlo simulation is applied to determine the significance.

Recently, Zhou, Shu and Su (2015) presented another alternative named
Adaptive minimum spanning tree (AMST), which is detailed in the next sub-
section.

2.2.2. Adaptive Minimum Spanning Trees in Detection of Irregularly Shaped

Spatial Clusters

The adaptive minimum spanning tree (AMST) method for cluster detection was
introduced by Goura, Rao and Reddy (2011). In this method, a validity index is
introduced. It helps researchers to find the best partition of a graph. This index
is defined as:

valindex =
Intradist
Interdist

The numerator measures the distance inside partitions of the graph and the
denominator measures the distance between partitions. According to Jain and
Dubes (1988), this criterion is a measure to reflect the graph separation. For-
mally,

Intradist =

K
∑

i=1

∑

j∈C

|λCij − λCi |2/K

Interdist = max |λCi − λCj |2.
Note that λCi is the rate of the points or the cases in the sub-partition Ci

(i.e., the ratio between the total number of cases in sub-partition Ci and its
population) and λCij is the point rate of cell j in the sub-partition Ci (i.e., the
ratio among the number of cases in cell j and the population of sub-partition
Ci). These parameters can be estimated using the maximum likelihood method
where K is the number of sub-graphs (sub-partitions) in the best partition of
the original graph. According to Zhou, Shu and Su (2015), the minimum value
for the validity index corresponds to the best partition of the graph. Thus,
Algorithm 1 describes how to use the AMST to find spatial clusters.

Algorithm 1 Adaptive Minimum Spanning Tree Algorithm
1: find a MST using the Prim algorithm,
2: order the edge weights of the MST,
3: the second lightest weight is considered as a threshold. Remove this edge and all edges

with heavier weight (in this step only two centroids are connected, and they are those
with the lightest edge of the graph),

4: compute the validity index for the obtained partition,
5: add the next lightest edge to the previous partition and go back to step 4 until getting

the initial MST.
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According to Zhou, Shu and Su (2015), a partition with minimum validity
index corresponds to the best partition of the MST, because the smallest validity
index corresponds to the partition in which sub-graphs are more compact and
have larger separation (gap) between sub-graphs.

Algorithm 1 was designed by Zhou, Shu and Su (2015) to control the over-
estimation problem presented in Assunção et al. (2006). Also, using the linear
time subset scan (LTSS) property (Neill, 2012), the cardinality of Z (Zhou, Shu
and Su, 2015) is reduced drastically.

Neill (2012) proved that the scan statistic and some of its extensions satisfy
the LTSS condition. This property makes it possible to find an exact and efficient
optimization over the subsets. LTSS can be used in problems related to scan
statistics. Instead of considering all scan windows to find the MLC, one just
needs to consider ordered windows. Suppose K is the number of sub-partitions
in the best partition of the MST. Also, suppose that PF (i) is a priority function
of sub-partition i = 1, . . . ,K (for example, the incidence rate of the ith sub-
partition). It is necessary to calculate PF (·) for all sub-partitions. Let o(j) be
the index of a sub-partition with j-th greatest priority function PF (·) such that
o(j) ∈ {1, . . . ,K}. Consider subsets oi = {o(1), . . . , o(i)} for i = 1, . . . ,K. LTSS
proves that, instead of checking all 2K candidates to find the MLC, one can just
consider K subsets i.e., {o1, . . . , oK}.

Similar to the other spatial cluster detection methods, after finding the MLC
between ordered windows, Monte Carlo helps researchers to do hypothesis test-
ing in cluster detection. This method is faster than the MST method and tack-
les the overestimation problem. Therefore, Zhou, Shu and Su (2015) improved
the scan method to find irregularly shaped clusters in two ways: 1) by using
AMST they obtained a solution for the overestimation problem of Assunção
et al. (2006); and 2) by the LTSS property, they drastically decreased the cardi-
nality of candidate classes. Furthermore, Yin and Mu (2018), by combining the
MST and restricted likelihood ratio method (Tango, 2008), presented a hybrid
method to detect irregularly shaped clusters more quickly.

It is important to mention the adaptive procedure proposed by Zhang and
Zhu (2012) for irregularly shaped clusters in space. Their method, named spatial
multiresolution cluster detection (MCD), is more effective in the detection of ir-
regularly shaped clusters without the requirement of heavy computation. Hence,
it is suitable for cluster detection for large spatial datasets, for example, images
and fMRI data. Another interesting work is the particle swarm optimization
method to optimize the scanning window for detecting irregular spatial clusters
(Izakian and Pedrycz, 2012). As a side note, for data that can be hierarchically
represented in trees, Prates, Assunção and Costa (2012) proposed a flexible scan
statistic test to detect clusters using minimum description length penalization,
which helps to prevent the detection of oddly shaped clusters.

2.3. Bayesian Scan Statistics

Traditionally, the scan statistics method is based on hypothesis testing and
does not produce useful estimates of disease rates or cluster risks. Gangnon
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and Clayton (2000) developed a Bayesian inferential procedure to fit specific
models for spatial clustering using cell count data. Their strategy incorporates
ideas from image analysis, Bayesian model averaging, and model selection. They
proposed a model for clustering in which the study region is divided into several
components: a large background area and a relatively small number of clusters.
A common rate (or covariate-adjusted risk) within each component is assumed.
As an advantage, with their method, it is possible to obtain estimates for the
disease rates.

Later, Gangnon and Clayton (2003) proposed a hierarchical model for spa-
tially clustered disease rates. They developed a Bayesian approach capable of
estimating the parameters of the hierarchical spatial clustering model. To be
able to perform inference in the model, they implemented and used a reversible
jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 1995). Their
method allows for multiple clusters and produces posterior estimates of cell-
specific and cluster-specific relative risk as well as cell-specific probabilities of
cluster membership. Also, posterior inference about the number of clusters in
the data is possible.

Yan and Clayton (2006) extended the spatial cluster method of Gangnon and
Clayton (2003) to accommodate spatio-temporal cluster data. Again, the infer-
ence is performed using the RJMCMC algorithm. Like Gangnon and Clayton
(2003), their method produces important information about the cluster detec-
tion, such as the number of clusters, the probability of each cell belonging to
a cluster, and cell-specific relative risks. The authors argued that the method
is parsimonious relative to fitting several spatial cluster models over time and
is sensitive in detecting spatio-temporal clusters. Also, they mentioned that the
method is more appropriate for datasets having a cluster structure in compari-
son with some Gaussian Markov random field-based models (e.g., Waller et al.,
1997). Yan and Clayton (2006) suggested extending their method to find irreg-
ularly shaped clusters in big maps.

Gangnon and Clayton (2007) revisited Gangnon and Clayton (2003), includ-
ing both spatial clustering and non-spatial random effects. In the prior work,
the number of clusters was treated as a parameter to be estimated, requiring
the use of the RJMCMC algorithm for inference. As an alternative, they consid-
ered models with a fixed, but overly large, number of clusters. Using the fixed
values for the number of clusters, they were able to estimate the disease risks.
The Bayes factor (the ratio of the posterior odds to the prior odds) was used
to identify the local clusters. Fixing the number of clusters and not estimat-
ing them provides computational advantages since Bayesian inference avoids
the RJMCMC procedure. Moreover, by not using the RJMCMC, it is easier to
monitor convergence of the Markov Chain.

Neill, Moore and Cooper (2005) introduced a natural Bayesian extension of
scan statistics. Their method is based on a Poisson distribution with a conjugate
Gamma-Poisson model. Assume that we have I cells in the map. For cell i, i.e. si,
the number of cases is Ci and the baseline (for example, population at risk) is bi.
The goal is to find if there is any spatial region S (set of locations si) for which
the counts of cases are significantly higher than expected, given the baselines.
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In other words, assume Ci ∼ Poisson(qbi), where q is the (unknown) underlying
disease rate and the aim is to compare the null hypotheses H0 of a uniform
disease rate q = qall to the set of alternative hypothesis H1(S), which is q = qin
for all si ∈ S, and q = qout for all si ∈ G−S for some qin > qout. A hierarchical
Bayesian model where the disease rates qin, qout, and qall are themselves drawn
from Gamma distributions is assumed. Thus, under the null hypothesis H0, q =
qall for all si ∈ G, where qall ∼ Ga(αall, βall). Under the alternative hypothesis
H1(S), q = qin for all si ∈ S and q = qout for all si ∈ G − S, where qin
is drawn from Ga(αin, βin) and qout ∼ Ga(αout, βout). It is also necessary to
choose the priors for α and β, which is the most challenging task in any Bayesian
analysis. To set appropriate priors, the authors assume that they have access
to a large historical data set, and set α and β by matching the moments of
each Gamma distribution to these historical values; for more detail see Neill,
Moore and Cooper (2005). On the other hand, computation of the posterior
probabilities P (H1(S)|D) of an outbreak in each region S, and the probability
P (H0|D) that no outbreak has occurred, given dataset D, can be achieved by:

P (H0|D) =
P (D|H0)P (H0)

P (D)

and

P (H1(S)|D) =
P (D|H1(S))P (H1(S))

P (D)

where P (D) = P (D|H0)P (H0) +
∑

S P (D|H1(S))P (H1(S)). The prior choice
of P (H0) and P (H1(S)) and the calculation of P (D|H1(S)) and P (D|H1(S))
are discussed in detail by Neill, Moore and Cooper (2005). Therefore, one can
return all regions with their posterior probability of belonging to the cluster and
the overall probability of an outbreak.

This Poisson-Gamma Bayesian scan was extended to a multivariate version,
coined the multivariate Bayesian scan statistic (MBSS) by Neill and Cooper
(2010). As shown by the authors, the MBSS presents advantages over previ-
ous event detection approaches, including improved accuracy of detection, easy
interpretation and visualization of results, and the ability to model and accu-
rately differentiate between multiple event types. Next, Neill (2011) extended the
MBSS to detect irregularly shaped clusters in multivariate data. Cançado, Fer-
nandes and da Silva (2017) introduced a Bayesian zero-inflated beta-binomial
scan statistic to handle zero-inflated data (for more details see Section 7.3).
Overall, Bayesian scan statistics have advantages compared to frequentest ap-
proaches: 1) they usually have higher detection power; and 2) are faster (since
there is no need to perform randomization testing).

3. Spatial Cluster Detection without Monte Carlo Hypothesis

Testing

3.1. Cluster Evaluation Permutation Procedure

Turnbull et al. (1989) introduced the cluster evaluation permutation procedure
(CEPP). To detect spatial clusters, they assumed that the map has I cities (cells)
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with N =
∑I

i=1 ni and X =
∑I

i=1 Xi representing the total population and the
total cases, respectively. They built a two-dimensional window for each cell such
that this window contains neighbors of that cell and the total population in that
window is equal to a predefined value R. The procedure for constructing the
window is as follows. For each cell i = 1, 2, . . . , I, if ni < R, then the closest cell
(based on Euclidean distance) is added to cell i. Suppose the closest cell to cell
i is cell j. If ni+nj = R, then it is said that the window is built. If ni+nj < R,
then cell j is completely absorbed in the window. If ni+nj > R, just a fraction

of cell j, i.e.,
R−nj

nj
will be added to build the window. This process continues

until the final construction of the window. Therefore, the i-th window contains
cell i and its nearest neighbors, and there are I windows such that each of them
contains exactly R people. The null hypothesis, H0, is the case that people are
distributed completely at random on the map. With this assumption, Turnbull
et al. (1989) used MR = max(X1R, . . . , XIR) as the test statistic for hypothesis
testing such that XiR, i = 1, 2, . . . , I (the number of cases in i-th window) are
identical but not independent random variables. With this definition they were
able to find the distribution of MR under H0.

Therefore, the CEPP method has at least three advantages in comparison
with the GAM method: 1) there is no need to use Monte Carlo methods to
compute the p-value; 2) it is not necessary to test many circles (the candidate
class is not big); and 3) it is not necessary to apply it to small α values. How-
ever, it depends on specifying the size of R for the window and this is highly
controversial.

3.2. Method of Besag and Newell

The CEPP method (Section 3.1) has some challenges in its computational as-
pects. Thus, Besag and Newell (1991) presented a method that is computation-
ally more efficient. Consider ni, Xi and H0 as before. Besag and Newell (1991)
tried to find a statistic with a known distribution to detect spatial clusters.
They constructed this statistic for hypothesis testing by answering the follow-
ing question: “Starting from an arbitrary cell, what is the minimum number
of cells necessary to add to this cell to achieve a predefined number of sick
people?”. A small value for this statistic means there is a concentration of sick
people in the neighborhood of the starting cell. To formulate this idea mathe-
matically, they selected a sick person and denoted the cell of this person as A0.
Other cells in the map are called A1, A2, . . . based on the Euclidean distance of
their centroids to the center of A0 (that is, the nearest cell to A0 is A1 and so

on). They defined Di =
∑i

j=1 Xj−1 and Ui =
∑i

j=1 nj−1. The test statistic is
defined as M = min{i,Di ≥ k}. Since small values of M mean there is a cluster
around A0, the test’s significance level is: Pr(M ≤ observed value|H0). In turn,
M > m means there are fewer than k sick people among the population with
size Um. The probability of having fewer than k sick people among population
with the size Um is the summation of hypergeometric probabilities. To find the
Pr(M < m + 1), Besag and Newell (1991) used a Poisson approximation to
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the hypergeometric distribution. Using this probability, significant clusters were
determined and plotted on the map.

In this method, no Monte Carlo procedure is needed. However, there are two
criticisms: 1) Euclidean distance may not be a good criterion to order cells —
other distances may be more appropriate to reflect the similarities between cells;
and 2) distributions for the number of cases in a cell are not considered.

3.3. Method of Soltani and Aboukhamseen

Soltani and Aboukhamseen (2015) introduced an alternative way to find spatial
clusters using scan statistics. Consider the hypothesis test in (2.1) and suppose
that G = Z1

⋃

Z2

⋃

. . .
⋃

ZI is the study region. Also assume that Xz,+ and
n+(G) are respectively the number of points (cases) in zone z and the total
number of points (cases) in the study region. For an individual in study region
G, suppose Az denotes that this individual is in zone z and B+ denotes that a
person is labeled as a case. Soltani and Aboukhamseen (2015) defined the count
measure μ on (G,F) such that μ(z) and μ(G) are respectively the number of
individuals in z and G, and F is a sigma field of subsets of G. Both μ(zi), i =
1, ..., I and μ(G) are known and the probability of the event Az is given by

ν(z) = μ(z)
μ(G) . With these assumptions, they proved that the hypothesis test in

(2.1) is equivalent to the hypothesis test

H0 : Pz|+ = ν(z) vs. H1 : Pz|+ > ν(z) (3.1)

where Pz|+ is the probability of belonging to zone z given that the label of the
individual is +. Also, they proved that the exact and asymptotic distribution
of points in zone z under H0 are:

Xz,+ ∼ Bin(n+(G), ν(z)),

and
Xz,+

D−→ N(n+(G)ν(z), n+(G)ν(z)[1− ν(z)]). (3.2)

where
D−→ means convergence in distribution. Hence, using (3.1) and (3.2), zone

z is a significant spatial cluster of level α if

Xz,+

n+(G) − ν(z)
√

ν(z)[1−ν(z)]
n+(G)

> zα. (3.3)

The main advantage of this method is the elimination of the Monte Carlo pro-
cedure to detect significant spatial clusters. Like most other scanning methods,
the method requires the maximum size of the scanning window. When the ap-
propriate size of the cluster is unknown and many cluster areas are expected to
happen, the scanning procedure is repeated by varying the window size. This
practice induces a multiple testing problem that is not considered by the au-
thors.
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3.4. Method of Aboukhamseen

Aboukhamseen, Soltani and Najafi (2016) extended the spatial scan statistic to
the situation where the total population of the study in region G is unknown.
They supposed that n+(G) is a random variable with a Poisson(λ(G)) distri-
bution where λ(G) is unknown and that Xz,+|n+(G) ∼Bin(n+(G), ν(z)). They
proved that Xz,+, X+,zc are independent under null hypothesis with marginal
distribution Poisson(λ(G)ν(z)) and Poisson(λ(G)(1 − ν(z))) respectively. Us-
ing these facts one can prove that the scan window W = {Xz,+, z ⊂ G} fol-
lows a ν homogeneous Poisson point process with rate {λ(G)ν(z), z ⊂ G} on
Z = {z, z ⊂ G}. Since n+(G) has a Poisson distribution, it is possible to find
a one-sided or two-sided confidence interval for λ(G). Also, using the marginal
distribution of Xz,+, it is possible to find confidence intervals for λ(G)ν(z) (Gar-
wood, 1936). Dividing the above-mentioned confidence intervals, one can find
the confidence interval for ν(z). By considering the hypothesis testing (3.1) and
the confidence interval for ν(z), it is possible to determine the significance of
the MLC.

4. Spatial Clustering for Event Data

In most classical problems of scan statistics, researchers consider case-control
data. However, in some problems, the consideration of disease-related events
helps to perform a more adequate analysis. For example, suppose researchers
want to know which hospitals in the study region have a heavy burden. If the
researchers just consider the number of cases, their analysis will be biased be-
cause it is likely there are some cases who visit the hospital once while other
cases may visit more than once. Hence the second group of cases places a higher
burden to the hospital than to the first group. With this in mind, Rosychuk,
Huston and Prasad (2006) considered maps for event data to determine spatial
clusters. They proposed a compound Poisson model to detect spatial clusters for
event data. Their strategy is based on the method of Besag and Newell (1991)
which does not need Monte Carlo simulation.

To find event spatial clusters, they assumed that the number of events in a
study region is a random sum of random individual events and has a compound
Poisson distribution. Suppose that Xia is the number of individuals in cell i
with exactly a events and xia is the observed value of this random variable. Let
Xi =

∑

a Xia be the number of cases in cell i while Vi is the random variable

corresponding to the total number of events in cell i. So, X =
∑I

i=1 Xi and

V =
∑I

i=1 Vi are respectively the total number of cases and the total number
of events in a study region with I cells. The test statistic is similar to the one
presented by Besag and Newell (1991), i.e., to construct a scan window, they
combine cells to include at least k∗ events. The test statistic for cell i is the
number of cells combined with cell i to construct the scan window:

Li
∗ = min

{

q : k∗ ≤
q

∑

p=0

Vip

}

.
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Suppose that li is the observed value for Li
∗. A small value of li means that

one finds more events in small windows and is a sign that those windows form a
spatial cluster. Suppose that ni:l and Xi:l are respectively the total population
and the total number of cases for li nearest neighbors of cell i. Since the number
of events in the window corresponding to cell i follows a Poisson distribution
under the null hypothesis, the estimate of the parameter for this distribution
is λi:li = ni:liX/n where n is the population size of the study region. Let Yj

be the number of events for individual j, j = 1, 2, 3, . . . , Xi:li ; hence; Vi:li , the

total number of events in li nearest neighbor of cell i, is Vi:li =
∑Xj:li

i=1 Yj . For
all a ≥ 1, let = Q(a) = Pr(Y − j = a). Let Pri:li(b) = Pr(Vi:li = b). Then, the

significance level can be written as Pr(Li
∗ < li) = 1 − ∑k∗−1

b=0 Pri:li(b). Using
the following recursive relation (Ross, 2014)

Pri:li(0) = exp(−λi:li)

Pri:li(b) =
λi:li

b

b
∑

a=1

aQ(a)Pri:li(b− a), b ≥ 1, (4.1)

one can determine the p-value by (4.1). Notice that in practice Q(a) is unknown
but can be treated as Q(a) = xa/x. Now it is possible to discuss the hypothesis
testing to detect spatial clusters as before.

The method of Rosychuk, Huston and Prasad (2006) has some benefits: 1) it
is suitable for event data, 2) it can apply to case-control data (assuming that
each case only has one event), and 3) it does not need Monte Carlo simulation.
However, there are serious drawbacks in the strategy of Rosychuk, Huston and
Prasad (2006): 1) computing the given recursive relation is time-consuming even
for a small value of b; 2) to apply this method, one needs a predefined cluster size
which is not known in practice; and 3) the significance level depends on this size.
Castellares, Prates and Abolhassani (2019) noticed that with the relationship
between the compound Poisson distribution and the Neyman type A, there is
no need to use the recursive relation (4.1) to achieve the LRT. This strategy
makes the cluster detection process computationally feasible.

Furthermore, an approximation to the probability of the events using the
negative binomial distribution to detect spatial clusters for events was proposed
by Chang and Rosychuk (2015). Because of the combinatorial coefficients in
the negative binomial probability mass function, calculation of the likelihood
is time-consuming for large datasets. The proposal of Castellares, Prates and
Abolhassani (2019) shows that the execution time for calculating the likelihood
function is faster than the recursive formula (Rosychuk, Huston and Prasad,
2006) and the negative binomial method (Chang and Rosychuk, 2015) in spatial
cluster detection.

5. Scan Statistics for General Graphs

One possible way to explain relationships between nodes in networks is to use
graphs. Sometimes researchers are interested in finding which nodes have com-
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mon features or play a similar role in networks. These kinds of nodes can be
treated as clusters. One of the earliest studies about scan statistics in graphs is
the work of Priebe et al. (2005) on Enron graphs. They applied scan statistics
to detect anomalies in time series of Enron Email graphs.

Marchette (2012) extended the idea of scan statistics in graphs to detect
anomalies in time series of graphs. An anomaly is defined as a small region
of vertices with unusually high connectivity between themselves in comparison
with other regions. Consider a graph G = (V (G), E(G)), where V and E are
respectively vertices and edges. The idea of a graph invariant property is the
main key in the method of Marchette (2012); this is a function ψ : G −→ R

that does not depend on how the graph is presented.
Let the set of k-neighbors of vertex v, be Nk(v); this is the set of all vertices u

in the graph such that the minimum number of edges needed to reach u from v is
less than k+1. Given a subset U of V (G) let Ω(U) = (U,E(U)) be the induced
sub-graph of the original graph G. The locality statistic is defined as Ψk(v) =
ψ(Ω(Nk(v))). The scan statistic at scale k is given by Mk(G) = maxv∈V Ψk(v).

A time aspect can also be added to a graph. Let {Gt} be a collection of
graphs with time index t. In this collection of graphs, only the edges change in
time, so the vertices are fixed for all times. Adding a time index to graphs not
only helps researchers find clusters by comparing sub-graphs but also makes it
possible to find anomalies by comparing regions to their past history. As before
the locality statistic is Ψt

k(v) which is the cardinality of the sub-graph induced
by Nk(v).

Large values of

Ψt
k(v) =

ψt
k(v)− μt

k(v)

max{1, σt
k(v)}

indicate that there is an anomaly. Parameters μt
k(v) and σt

k(v)
2 are respectively

the mean and the variance of ψt−w
k (v), . . . , ψt−1

k (v). Hence, the maximum of
Ψt

k(v) can be used as scan statistic at time t.
To detect the clustering pattern, Wang and Phoa (2016) defined a scan statis-

tic for three different features: 1) Structure (S); 2) Attribute (A); and 3) both
Structure and Attribute (SA), in social networks. These features are defined in
Zhou, Cheng and Yu (2009). To become familiar with them, consider the ex-
ample of “coauthor network” of Zhou, Cheng and Yu (2009). In this network,
each node represents an author and vertex connectivity shows the relationship
between authors. In the structural based cluster concept, in the “coauthor net-
work”, nodes with close connectivity form a cluster (they could have different
topics), but from the standpoint of attribute-based clustering, topics are con-
sidered. Thus, authors in a cluster work on the same topics.

For a network, consider a graph G as before; suppose that k = {k1, . . . , k|V |}
are the degrees of the vertices. Let kG be the sum of all degrees and |E(G)|
be the total number of edges. Based on Erdos and Rényi (1960), the expected
number of edges between any two vertices vi and vj is eij = kikj/(2|E(G)|) for
i �= j and eii = k2i /(4|E(G)|). Wang et al. (2008) introduced the following scan
statistic for detecting spatial clusters based on the “structure” in graphs:
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λS(Z) =

( |Ez|
μ(z)

)|Ez| ( |E(G)| − |Ez|
μ(G)− μ(z)

)|E(G)|−|Ez|

.

where μ(z) =
kz

2

4|E(G)| and μ(G) =
kG

2

4|E(G)| .
Wang and Phoa (2016) considered the “attribute” network. To find spatial

clusters of attributes they considered a graph G in which there is an attributeXi

associated with each vertex. Thus now G = (V,E,X) with (X = x1, ..., x|V |).
Wang and Phoa (2016) considered four possible distributions for each Xi: 1)
binomial; 2) Poisson; 3) normal; or 4) multinomial.

1) binomial distribution:

λA(z) = nz ln

(

p11
p0

)

+ (Nz − nz) ln

(

1− p11
1− p0

)

(5.1)

+(nG − nz) ln

(

p10
p0

)

+ ((NG −Nz)− (nG − nz)) ln

(

1− p10
1− p0

)

where NG and nG are respectively population size inside G and number of
population with the particular attribute under study. The ratio of people with
a particular attribute inside sub-graph z (i.e., inside scanning window) is p10.
Also, p11 is the ratio of that attribute in sub-graph z̄ (i.e., outside scanning
window). Finally, p0 is the ratio of that attribute in G.

2) Poisson distribution:

λA(z) = nz ln

(

p11
p0

)

+ (nG − nz) ln

(

p10
p0

)

(5.2)

where the values for p11, p10 and p0 are similar to previous paragraph.
3) normal distribution:

λA(z) = n ln(
√
σ̂2)− n ln(

√

(2σ̂2
z)) (5.3)

where n is the total number of nodes, σ̂2 is the variance of all the xi’s and
σ̂2
z = (

∑

i∈z(xi − x̄z)
2 −∑

j∈zc(xj − x̄zc)2)/n.
4) multinomial distribution:

λA(z) =
∑

k

(

nzk ln

(

nzk

nz

)

+ (nk − nzk) ln

(

nk − nzk

n− nz

)

− nk ln
(nk

n

)

)

(5.4)

where k is the number of categories, n is the total number of the nodes, nz

is the number of nodes in sub-graph z, nzk is the total number of nodes in z
whose attribute is of category k and finally, nk is the total number of nodes in
the whole graph in category k.

If “attribute” and “structure” are independent, then the scan statistic for
both “structure and attribute” is λSA(Z) = λS(Z) + λA(Z). The sub-graph z
which maximizes the scan statistic is the MLC. To test the significance of the
MLC from the attribute point of view, a randomized permutation procedure is
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applied as follows: for situations in which the underlying distribution is normal,
first, assign observed values to nodes randomly and calculate the scan statistic.
The process is repeated many times (e.g., 999) and the scan statistic is cal-
culated for each repetition. To calculate the p-value, one needs to sort these
999 simulated values with the observed value of the scan statistic from the real
dataset. The p-value is given by (M +1)/1000, where M is the number of simu-
lated values greater than observed value of the scan statistic. In the case of the
binomial and Poisson distributions, the process is similar. Instead of assigning
the observed values to nodes, the values for nodes are generated under the null
hypothesis using a multinomial distribution.

In the case of detecting a spatial cluster of the graph structure, randomly
assigning degrees to vertices is impossible, because if the degree is randomly
assigned to nodes, it is likely that the nodes and edges will not construct a
valid graph (Sierksma and Hoogeveen, 1991). Hence, to obtain the significance
of MLC, it is suggested to apply a probabilistic method and use the expected
degree based on the random graph model (Erdos and Rényi, 1960). Let (ki, kj)
be the degree of nodes i and j respectively. Then the expected number of edges
is eij =

kikj

2|E(G)| and all random graphs are generated with the same expected

degrees. Therefore, it is possible to perform a Monte Carlo hypothesis testing
procedure. Fortunato (2010); Woodall et al. (2017), studied cluster detection in
networks in more detail.

6. Spatial Scan Statistics for Continuous Data

The spatial scan statistics method is commonly applied to count datasets. How-
ever, some researchers are interested in applying methods to find spatial clusters
in the case of continuous spatial datasets where the measurements might have
distributions such as, for example, normal, exponential, Weibull, etc. This sec-
tion discusses how to construct spatial scan statistics for continuous spatial
datasets.

6.1. Normal and Multivariate Gaussian Scan Statistics

To find spatial clusters of low weight infants in New York City, Kulldorff, Huang
and Konty (2009) proposed a normal scan statistic. As before, suppose there are
I cells in a map and the total population in the study region G is N individuals
i.e., N =

∑m
k=1 Nk where Nk is the population of cell k. Suppose each cell has

one or more individuals with spatial location i, i = 1, . . . , I and xs =
∑

i∈s xi,
where xs is the summation of the weights in sub-region s.

Detecting spatial clusters is equivalent to performing the following hypothesis
test: H0: all observations come from the same normal distribution vs. H1: there
is at least one sub-region where the mean of observations is more (less) than
outside of this sub-region. To perform this hypothesis test, Kulldorff, Huang
and Konty (2009) constructed a scan statistic based on the likelihood ratio
test, i.e., maxz(lnLz)/(lnL0), where Lz and L0 are respectively the likelihoods
under H1 and H0. The likelihood ratio depends on sub-region z via the mean
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of the sum of deviations from the mean inside and outside sub-region z, i.e.,
the likelihood ratio will be a maximum when σz is maximized where σz is the
above-mentioned mean of deviations. Hence, the MLC is a sub-region z that
maximizes σz. After finding the MLC the significance of the MLC of the spatial
cluster can be obtained using randomization.

Sometimes it is interesting to consider the correlation between variables in
spatial clustering problems. Cucala et al. (2017) applied a multivariate Gaussian
scan statistic to find spatial clusters. This method is more powerful than its
independent version.

6.2. Weighted Normal Spatial Scan Statistics

Huang et al. (2009) introduced a weighted normal scan statistic to detect spatial
clusters for continuous measures. The weight variable δz is considered to reflect
the uncertainty of the regional measures in zone z. Let δz be a known measure
proportional to the inverse of the uncertainty in zone z. It is possible to measure
different values for studied data from different sources. For example, it is possible
to record different values for pollution data from different locations in a cell and
report their average value as wz. The weight δz can be considered as the inverse
of the variance of the wzs. In some situations it is not possible to calculate the
variance of wz so one can use population size or the number of cases as a proxy
for the inverse variance.

To construct a spatial scan statistic Huang et al. (2009) first assume that for

z ∈ Z, wz|δz ∼ N

(

μz,
σG

2

δz

)

and for z ∈ Zc, wz|δz ∼ N

(

μc
z,

σG
2

δzc

)

. Suppose

that μz is the mean of measurements inside zone z, and
σG

2

δz
= σ2

wz
is the

variance of wz. It is assumed that given δz the wzs are independent normal with
the same mean and different variances. In view of these assumptions,

L(μz, μzc , σG
2) =

∏

z∈Z fz(μz, σwz
)
∏

z∈Zc fzc(μzc , σwzc
).

Hence, the MLEs for the parameters can be found, say μ̂z, μ̂zc and σ̂2
G. Using

these, the estimate σ̂2
wz

is obtained. To construct the spatial scan statistic, it
is necessary to find the MLC by maximizing the likelihood ratio. Therefore, it
is necessary to know for which sub-region z the log likelihood function is maxi-
mized under H1, i.e., by maximizing lnL(μz, μzc , σG

2), the MLC is determined.
Huang et al. (2009) proved that maximizing the log likelihood function is equiv-

alent to maximizing
(
∑

z∈Z δzwz)
2

∑

z∈Z δz
+

(
∑

z∈Zc δzwz)
2

∑

z∈Zc δz
with respect to z in the

candidate class. They used Monte Carlo hypothesis testing to determine the
significance of the MLC.

6.3. Spatial Scan Statistics for Survival Data

To deal with continuous spatial data in spatial clustering problems Huang, Kull-
dorff and Gregorio (2007) presented the exponential spatial scan statistic for
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censored and uncensored continuous survival data. This model is suitable for
finding spatial clusters of lifetimes. The assumptions are as follows: Ti is the
exponentially distributed survival time of individual i, θin is the mean of Ti

inside zone z, and θout is the mean of Ti outside zone z. The goal is to test if
there is at least one sub-region in study region G (with total population N) such
that θin > θout or not. They assumed that for a fixed censoring time Li, Ti is
observed if and only if Ti ≤ Li, otherwise right censoring is present. Hence the
observed time for individual i is ti = min(Ti, Li). To determine which lifetime
observation is censored, they used an N dimensional vector γ such that i-th
element is 1 when censoring happens and 0 otherwise. With this vector, one can
count the number of non-censored individuals in any zone z, i.e., rin =

∑

i∈z γi.
Using this notation the likelihood of a zone z is:

L(z, θin, θout) = (θin)
−rine−

∑

i∈z ti/θin(θout)
−route−

∑

i∈zc ti/θout .

To detect a spatial cluster, as in the other methods mentioned above, the like-
lihood ratio test is used to find the most likely cluster. Any sub-region z which
maximizes

λ(z) =
maxz,θin �=θout

L(z, θin, θout)

maxz,θin=θout
L(z, θin, θout)

,

is the MLC. In the presence of censored data, after estimating parameters, the
likelihood ratio is:

λ(z) =

maxz

(

rin
∑

i∈z ti

)rin ( rout
∑

i∈zc ti

)rout

(

R
∑

t∈G ti

)R
I

(
∑

i∈z ti

rin
>

∑

i∈zc ti

rout

)

.

Since the denominator is independent of z, to find the MLC it is only necessary to
determine for which candidate z the numerator is maximized. After determining
the MLC, it is necessary to generate simulated data under H0 to determine the
significance of the MLC. Since the distribution of survival times is unknown, it
is impossible to generate datasets under the null hypothesis. One way to handle
this limitation is permutation of observed pairs {(ti, γi), i = 1, . . . , n} between
individuals. The position of individuals is fixed in the map since they are in
the real dataset. To find the exact distribution of λ, one needs to calculate
λ for N ! permutations, which is time-consuming even for small N . Therefore,
Huang, Kulldorff and Gregorio (2007) proposed to use random selection of 9999
permutations instead of all N ! permutations. Finally, the MLC is significant at
level α if the p-value is less than α (i.e., RK/(1 + 9999) < α, RK is the rank
of the scan statistic for the real dataset among the original and 9999 permuted
datasets). Similarly, for non-censored data, the scan statistic is constructed to
find spatial clusters.

Because the exponential distribution has just one parameter, it is sensitive to
modest variations (Bhatt and Tiwari, 2014). Therefore, Bhatt and Tiwari (2014)
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proposed a more robust alternative for the exponential distribution using the
Weibull distribution with two parameters. The method constructing the spatial
scan statistic for this distribution is similar to the previous one.

7. Scan Statistics for Zero-inflated Count Data

7.1. Zero-inflated Poisson Scan Statistics

Excess of zeros can be observed in a given dataset. In spatial cluster detection,
the extra zeros can lead to biased inferences (Gómez-Rubio and López-Qúılez,
2010; Cançado, da Silva and da Silva, 2014). Cançado, da Silva and da Silva
(2014) considered the zero-inflated Poisson distribution to detect spatial clusters
for these types of datasets. Suppose that the number of cases in sub-region z
has a zero-inflated Poisson distribution, i.e., Xz ∼ ZIP (p, nzθz) such that nz

and p are respectively the population size in zone z and the probability of being
structurally zero for a cell. The hypothesis test

H0 : ∀z ∈ Z θz = θ0 vs. H1 : ∃z ∈ Z θz > θ0

is used to detect spatial clusters. Following Kulldorff (1997), the likelihood ratio
test is used to perform hypothesis testing. Hence,

L(p, z, θz, θ0) =
∏

i∈z

fi(xi)
∏

i∈zc

fj(xj)

such that fi’s and fj ’s are respectively the probability mass functions (pmf)
of ZIP(p, niθz) and ZIP(p, njθ0). Using the pmf of the zero-inflated Poisson
distribution, it is impossible to find the MLE for the parameters. By applying
the method of Lambert (1992), they constructed a new likelihood, based on the
knowledge of the different kinds of zeros, i.e., structural or sampling zeros. Their
method is as follows.

Suppose that δ = (δ1, . . . , δm) is a vector where δi indicates if the zero in
cell i is structural (δi=1). Hence, δi is a binary variable, δi ∼ Ber(p). To find
the MLE of the parameters, Cançado, da Silva and da Silva (2014) worked with
bivariate data (xi, δi), i = 1, . . . ,m and found the likelihood using the pmf of
(xi, δi), namely,

L1(θz, θ0, p, δ) = p
∑m

i=1
δi(1− p)

m−
∑m

i=1
δie−θz

∑

i∈z
ni(1−δi)θz

∑

i∈z
xi(1−δi)

× e−θ0
∑

i∈zc
ni(1−δi)θ0

∑

i∈zc
xi(1−δi).

Therefore, one can find a closed form for the MLE of the parameters. How-
ever, the vector δ is commonly unknown and needs to be estimated. An EM
algorithm is proposed to estimate δ, so the MLE of the parameters can be
found. Now, one can find the sub-region z which maximizes the likelihood ratio
λ(z). This sub-region is the MLC. Since the distribution of maxz λ(z) is un-
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known, Monte Carlo simulation is used for hypothesis testing to find spatial
clusters.

7.2. Zero-inflated Binomial Scan Statistics

Cançado, Fernandes and da Silva (2017) introduced a zero-inflated binomial scan
statistic. Suppose that m, ni, xi, N , C are respectively, the total number of cells,
the population and cases in cell i, the total population of the study region and
the total cases indicated on the map. The aim is to find sub-region z for which
the probability of being a case in z, i.e., θz, is greater than the probability of
being a case outside z, say θzc , when the dataset has extra zeros. Let Xz be
the number of cases in zone z such that Xz ∼ Bin(nz, θz) where nz is the
population in zone z. To work with datasets with extra zeros, it is necessary to
use a mixture model, i.e., a degenerate distribution at zero and a binomial model
for nonzero counts. But using this mixture, the MLEs do not have closed-form
expressions. Therefore, constructing a scan statistic using the mixed distribution
is not trivial. Then, Cançado, Fernandes and da Silva (2017) proposed to use
the method in Lambert (1992) to construct their scan statistic. They defined
the vector δ = (δ1, . . . , δm) similar to the previous subsection. Hence, δi ∼
Ber(p). To obtain the scan statistic, one needs to maximize the likelihood ratio
function (Kulldorff and Nagarwalla, 1995). So, Cançado, Fernandes and da Silva
(2017) calculated L0(δ,x) and L1(δ,x) to compute zero-inflated binomial scan
statistics. i.e., λ(z). The zero-inflated binomial scan statistic λ(z) is a function
of θz, θz̄, p, θ0 and vector δ. To find the MLC one needs to calculate the MLE
for these unknown parameters and δ. The MLE for the parameters is obtained
easily, but to estimate δ one must rely on the EM algorithm. After estimating
the unknown parameters and vector δ, the MLC is obtained by maximizing
λ(z). As in previous cases, the distribution of λ(z) is unknown; therefore these
authors also used Monte Carlo for hypothesis testing.

Additionally, de Lima et al. (2015) suggested applying a zero-inflated dou-
ble Poisson model to detect spatial clusters for zero-inflated and overdispersed
spatial data. In turn, Zhang et al. (2017) theoretically discussed the asymptotic
properties of spatial scan statistics and considered overdispersion of lung cancer
in Texas.

7.3. Bayesian Beta-binomial Scan Statistics

Cançado, Fernandes and da Silva (2017) proposed the Bayesian zero-inflated bi-
nomial scan statistic to detect spatial clusters. To construct their beta-binomial
scan statistic, they assumed (xi|δi) ∼ Bin(ni, θi) and considered Beta(α0, β0)
as a prior for θ0. The posterior is then Beta(C + α0, N − C + β0) where C and
N are total cases and total population respectively. To find the Bayesian spa-
tial scan statistic it is necessary to find the marginal likelihood under H0 and
H1. After selecting adequate priors P (Hz) and P (H0), which are respectively
the zone prior probability and the prior probability of having no cluster, the
Bayesian beta binomial spatial scan is presented in Algorithm 2.
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Algorithm 2 Bayesian Beta Binomial Algorithm
1: For each candidate sub-region z, calculate Sz = P (x|Hz)P (Hz) and

∑

z
Sz .

2: Compute S0 = P (x|H0)P (H0) and obtain P (x) using
∑

z
Sz and S0.

3: Compute P (Hz |x) for each z in the candidate class.

Any sub-region z which maximizes P (Hz|x) is a MLC. To determine P (Hz),
αz, βz, P (H0), α0, and β0, one can use historical information or non-informative
priors.

The advantage of the Bayesian method in spatial cluster detection problems
is the freedom of this method from Monte Carlo simulation in determining
significance, but computing statistical power makes no sense for this method.
Hence, the authors suggested the use of the Bayes factor (BF) as an alternative
criterion for power which is defined as:

BF =
P (x|Hz)

P (x|H0)
.

A BF > 1 indicates that Hz is more strongly supported by the observed data x.
Thus, after finding the MLC, theBF can be used to decide about the significance
of the MLC. BF > 1 indicates that the detected MLC is significant. There is at
least one drawback of this method: for large values of N and/or C, the method
leads to numerical instability. To mitigate this problem, the logarithm of the
probabilities in the above-mentioned computations can be used.

7.4. Bayesian Zero-inflated Binomial Scan Statistics

In the same paper, Cançado, Fernandes and da Silva (2017) proposed an ex-
tension of the beta-binomial scan statistic presented in the previous subsection.
The Bayesian zero-inflated binomial method is proposed as follows: suppose
(Xi|θi, p) ∼ ZIB(ni, θi, p), θi ∼Beta(αi, βi) and p ∼Beta(αp, βp). The null hy-
pothesis is H0 : θi = θ0, αi = α0 and βi = β0. As in the previous subsection, the
MLC is a sub-region z which maximizes P (Hz|x). Like Algorithm 2, Algorithm 3
below has three steps.

Algorithm 3 Bayesian Beta Binomial Algorithm
1: Compute Sz = P (x|Hz , δ)P (Hz , δ), for each z in the candidate class.
2: Compute P (x|H0, δ)P (H0, δ) and also compute P (x) by adding the values in steps 1 and

2.

3: Obtain P (Hz |x, δ) =
P (x|Hz , δ)P (Hz , δ)

P (x)
.

Any sub region z which maximizes P (Hz|x), is the MLC area. As before the
BF is the criterion chosen to ascertain the significance of the MLC. But since
in practice the vector δ is unknown, it must be estimated. A Gibbs sampler is
used to estimate the δ parameter vector.
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8. Nonparametric Methods in Spatial Cluster Detection

8.1. Distribution-free Scan Statistics Based on the Index of

Concentration

Cucala (2014) extends scan statistics to point processes using a distribution free
scan statistic. He proves that the distribution-free scan statistic is completely
equivalent to the Gaussian-based scan statistic presented by Kulldorff, Huang
and Konty (2009).

The distribution-free scan statistic considered by Cucala (2014) has homosce-
dastic and heteroscedastic versions. It is developed based on the assumption that
{(xi, si), i = 1, . . . ,m} are realizations such that si and xi are respectively the
coordinate of the centroid and the associated measure for cell i.

To construct the distribution-free scan statistic in the homoscedastic version,
it is assumed thatX1, . . . , Xm are independent and identically distributed (i.i.d.)
random variables related to the measure in cell i with E(Xi) = ν, V ar(Xi) = σ2,
for all i, and Cov(Xi, Xj) = 0 if i �= j. Consider that the mean and variance are
unknown. As before any connected sub-region z is a candidate for being a spatial

cluster. If the mean of measures in a candidate region z, μ̄(z) =
∑m

i=1
XiI(si∈z)

∑

m
i=1

I(si∈z) ,

is significantly higher (lower) than the mean outside z, z will be considered a
spatial cluster. Assume D(z) = μ̄(z)−μ̄(zc) is the difference of means inside and
outside z. Under the null hypothesis E(D(z)) = 0 and V ar(D(z)) = σ2( 1

n(z) +
1

n(zc) ), where n(z) is the total number of cells in sub-region z.

Moreover, Cucala (2014) introduced an index of concentration defined by

I(z) =
μ(z)− μ(zc)

√

V ar(D(z))/σ2
.

Since E(I(z)) = 0, V ar(I(z)) = σ2 and these values do not depend on n(z),
I(z) can be used to find potential clusters having different population sizes. The
next step is to determine the MLC, i.e., a connected sub-region which maximizes
(minimizes) the index of concentration to detect spatial clusters of hot spots
(cold spots). Cucala (2014) introduced three scan statistics: 1) the positive scan
statistic, λP = maxz∈ZI(z) which finds hot spots; 2) the negative scan statistic,
λN = minz∈ZI(z), which finds cool spots; and 3) the global scan statistic,
λ = maxz∈Z |I(z)|. After determining the MLC, because the distribution of
the scan statistic is unknown, one needs to use Monte Carlo to determine the
significance level of the spatial cluster. It is impossible to generate datasets
under H0, because it is assumed that this method is distribution-free. Hence,
the author used random labeling to evaluate significance.

To construct the distribution-free heteroscedastic version of the scan statistic,
it is supposed that the variances of measures are not equal and they depend

on the weight related to cell i, i.e., V ar(Xi) = σ2

δi
for all i. As before, σ2 is

unknown. Suppose that xi is the mean of measures in cell i and this mean is the
mean of δi cases. Under these assumptions the population in zone z is n(Z) =
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∑m
i=1 δiI(si ∈ z) and the mean of measures in z is μ̄(z) =

∑m
i=1

δiXiI(si∈z)

n(z) . Note

that I(z), λp, λz, λ are the same as the homoscedastic versions. Again, using
random labeling one can ascertain the significance of the MLC.

8.2. Distribution-free Scan Statistics Based on the Wilcoxon Test

Jung and Cho (2015) presented a nonparametric method to find a spatial cluster
for continuous datasets using the Wilcoxon rank-sum test. This method not only
is an alternative to the normal scan statistic (Kulldorff, Huang and Konty, 2009),
but also can be applied to heavy-tailed and skewed distributions.

Suppose Fin and Fout are CDFs of measures inside and outside a sub-region
z ∈ Z and N is the population size of the study region G. To find a spatial
cluster consider the following hypothesis test:

H0 : Fin = Fout ∀z ∈ Z vs. H1 : Fin(x) = Fout(x−), ∃z ∈ Z
where  is the location shift of the CDF of the outside relative to the inside
candidate. If  > 0, ( < 0), the measurements tend to be higher (lower) inside
candidate z compared to outside it. Since the distribution of measurements is
unknown, it is impossible to define a scan statistic, so the authors suggested
using the Wilcoxon rank-sum test. To apply this test, suppose that the rank
of the measurement i, i.e., the rank of the xi, is oi. The Wilcoxon rank-test
for candidate z is Wz =

∑

i∈z oi. Using the normal approximation for Wz, i.e.,
W−E(Wz)√

V ar(Wz)
is approximately normal(0, 1), a p-value can be calculated. A sub-

region z which has minimum p-value is considered the MLC. The main benefit
of this method is its flexibility in the application for heavy-tailed and skewed
distributions. Another clear advantage is that this method does not require
Monte Carlo simulation and computing the p-value is simple.

9. Spatio-temporal Clusters

Most of the proposed cluster detection methods are based only on the spatial
aspect, without the time dimension. However, the time dimension can be an
important factor in cluster detection problems. Knox and Bartlett (1964) pio-
neered the study of space-time clustering by proposing a test. Their method is
based on counting the number of pairs of events which are close in space and
time simultaneously. A large number of these events indicates that events form
spatio-temporal clusters. The Knox and Bartlett (1964) test was generalized by
Mantel (1967). These tests are appropriate when the interest is to know the
existence of a space-time cluster and sound an alarm without identifying its
location and duration. In other words, these tests are suitable to declare that,
for example, there is a disease outbreak.

To find the location and time period of an occurring cluster, the “space-time
scan statistic” is a common extension of the purely spatial scan. It is a powerful
statistical framework for the analysis of point processes. In this type of scan,
the goal is to detect regions of space-time where the counts are significantly
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higher than expected. Kulldorff et al. (1998) were the first to discuss the time
dimension in cluster detection using scan statistics. In space-time scan statistics,
instead of a circular window, a cylindrical window scans the map such that its
base is for scanning geographical area and its height corresponds to the time
dimension. This window moves in space and time to find the MLC. Afterward,
the significance of the MLC is determined by Monte Carlo simulation. Kulldorff
et al. (1998) tried to find spatio-temporal clusters of brain cancer in New Mexico.

Later, Kulldorff (2001) applied the space-time scan statistic to prospective
disease surveillance. The method was illustrated for thyroid cancer among men
in New Mexico in 1973-1992. Also, Elias et al. (2006) tried to find spatio-
temporal clusters of Meningococcal disease in Germany in a study in which
specimens were obtained during 42 months.

The space-time scan statistic was also applied by Tonini, Tuia and Ratle
(2009) to detect spatio-temporal clusters in fire sequences to find active fires in
the state of Florida (US) during 2003-2006. According to their work, statisti-
cally significant clusters were detected in time and space. Clusters of forest fires
are more frequent in hot seasons (spring and summer). This information helps
authorities to take preventive measures at the correct time and space. Another
application of space-time scan statistics was presented by Carneiro et al. (2007)
involving American visceral leishmaniasis in the state of Bahia, Brazil, covering
the 11-year period from 1994 to 2004.

Although there are many applications of the “space-time scan statistic”,
Tango, Takahashi and Kohriyama (2011); Correa, Assunção and Costa (2015);
Gangnon (2010b); Tango (2016) criticized the use of the prospective space-time
scan statistic. To improve some of its problems, Assunção et al. (2007) pro-
posed a score-based space-time scan statistic which is discussed in the next
subsection. Also, Prates, Kulldorff and Assuncao (2014) presented a simulation
study showing that the relative risk estimates for the space-time scan statistic
must be defined with care and presented bias in its estimation, while the rel-
ative risk estimator is well defined for the purely spatial scan situations being
not biased as the true relative risk of the cluster increases.

9.1. A Score-based Space-time Scan Statistic

To find spatio-temporal clusters, Assunção et al. (2007) proposed a new scan
statistic that detects clusters in time and space in a point process by scanning
three dimensions (two dimensions for space and one dimension for time). As
before, a hypothesis testing method is applied such that the null hypothesis is
that the underlying point process is a homogeneous Poisson point process with
separable space-time intensity versus the alternative hypothesis of the existence
of at least one space-time cluster.

To create the space-time scan statistic, Assunção et al. (2007) assumed a Pois-
son point process in a space-time region A = A × [0, T ], such that A is a two
dimensional area and T stands for the study time. They denote the space-time
intensity by λ(x, y, t). Under the null hypothesis, the intensity is separable, i.e.,
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λ(x, y, t) = λS(x, y)λT (t). Hence, under this hypothesis, the likelihood is a sep-
arable function of time and space, which are (functional) nuisance parameters.
By introducing an alternative to the null model, they obtain a closed form score
test statistic. They choose C = Cs ×CT as a fixed and arbitrary cylinder, such
that CS denotes space and CT is the time period. The alternative hypothesis is:

HC,ε : λ(x, y, t) = λS(x, y)λT (t)
(

1 + εIC(x, y, t)
)

where ε > 0 and I is an indicator function. This hypothesis expresses the devia-
tion of the point process from the separability hypothesis. Considering this alter-
native hypothesis, the likelihood depends on ε, λS(x, y) and λT (t). But λS(x, y)
and λT (t) are unknown, so applying the LRT method of Kulldorff (1997) is im-
possible. Therefore, Assunção et al. (2007) suggested a locally most powerful
test based on the score statistic:

UC =
N(C)−N(CS × [0, T ])N(A× CT )/N(A× [0, T ])

√

N(CS × [0, T ])N(A× CT )/N(A× [0, T ])

whereN(C) ∼ Poisson(E0(N(C))), N(CS×[0, T ]) is the number of events inside
the cylinder in area S with height T , N(A× [0, T ]) is the total number of events
and N(A×CT ) is the number of events in a cylinder with base A and height T .

The most likely spatio-temporal cluster is a cylinder C which maximizes UC

i.e.,
U = sup

C
{UC}. (9.1)

Since the sampling distribution of (9.1) is unknown, Monte Carlo hypothesis
testing is suggested (Dwass, 1957). For this test, the spatial locations of the
events are fixed and by permutation of time ti, i = 1, 2, . . . , n datasets are gen-
erated based on the null hypothesis (n is the total number of events). If the
rank of U obtained by a real dataset is in the k-th largest in comparison to
the values of U in the m − 1 generated datasets under null hypothesis, then
p = k/m is the one-sided significance level. This Monte Carlo hypothesis test to
detect spatio-temporal clusters is naive and time-consuming. Hence, Assunção
et al. (2007) created a more workable test process. Suppose that cylinder C1 is
contained in cylinder C2 i.e.,

C1 = CS1
× CT1

⊂ C2 = CS2
× CT2

.

Thus, N(CS1
× [0, T ])N(A× CT1

) ≤ N(CS2
× [0, T ])N(A× CT2

). On the other

hand, U =
N(C)− μ√

μ
is a decreasing function with respect to μ, so UC1

≤ UC2
.

Therefore, they showed that it is enough to scan all distinct subsets of events
and their associated enveloping cylinders. Based on these facts, an improved
version of the naive Monte Carlo test is presented.

9.2. A Surveillance Method

Assunção and Correa (2009) proposed a method to detect clusters in space-time
based on the Shiryaev-Roberts statistic and its martingale property (Kenett and
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Pollak, 1996). Suppose that λ(x, y, t) is the unknown rate of a Poisson point pro-
cess in R

3 such that this process is observed in A× (0, T ], where A represents
the space component and (0, T ] the time component. Assume that the event
(xi, yi, ti) is observed at time ti. Hence, at time tn, the number of observed
events is exactly n. Imagine a cylinder Ck,n with circular base B(k, ρ) and the
length of the interval (tk, tn] as its height, i.e., Ck,n = B(k, ρ) × (tk, tn], such
that ρ is the radius of its base and tn > tk. Considering N(Ck,n) to be the num-
ber of cases inside the cylinder following a Poisson(μ(Ck,n)), where μ(Ck,n) =
∫

Ck,n
λ(x, y, t)dxdydt, and assuming λA(x, y) and λT (t) are the marginal spatial

and temporal densities, Assunção and Correa (2009) discussed the surveillance
method in space-time. Their assumption is that the intensity function is separa-
ble, i.e., the intensity is proportional to the product of the time and space inten-
sity components. They defined a coefficient of proportionality μ = μ(A× (0, T ])
where μ is the expected number of events in the study space. Therefore, the
intensity in the presence of a cylindrical cluster is as follows:

λ(x, y, t) = μλA(x, y)× λT (t)
(

1 + εICk,n
(x, y, t)

)

(9.2)

such that I is an indicator function which shows whether or not an event belongs
to the cylinder, and the constant ε > 0 is the relative change in event’s intensity
within the cylinder.

Assuming there is no emerging cluster, the likelihood of the space-time Pois-
son process for n observed events is (Streit, 2010):

L∞ =

(

n
∏

i=1

λ(xi, yi, zi)

)

× exp

(

−
∫

R3

λ(x, y, t)dxdydt

)

. (9.3)

The emerging cluster at time tk < tn is calculated by (9.3) using the intensities
in (9.2). Let Lk be the likelihood of the space-time Poisson processes when n

events have been observed. The test statistic is given by RSTCD
n =

∑n
k=1

Lk

L∞
=

∑n
k=1 Λk,n, where Λk,n = (1 + ε)N(Cn,k) exp (−εμ(Cn,k)). To perform the hy-

pothesis test, a value “A” must be defined as threshold. The null hypothesis
(there is no spatio-temporal cluster) is rejected if the test statistic exceeds “A”.
The determination of “A” and ε are further discussed by Veloso et al. (2017).
Since μ(Ck,n) is unknown it is necessary to estimate it. This estimate is given
by:

(events in a cylinder with height tn)× ( events in time interval(tk, tn] inA)

total events
.

(9.4)
This estimation function was proposed by Assunção and Correa (2009). How-
ever, Veloso et al. (2017) identified an error in this estimator and proposed a
modified version. In the Assunção and Correa (2009) version, it was assumed
that if the actual time is tn, then the most recent event is included in the total
number of events in the time interval (tk, tn] and it may be included in the num-
ber of events in the disk B(k, ρ). In the Veloso et al. (2017) version, to preserve
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the martingale property, the parameter estimation at time tn should not de-
pend on the observations at the current time tn. Therefore, Veloso et al. (2017)
modified the estimation of μ(Ck,n) by excluding the actual time tn. Their modi-
fication changes the denominator of (9.4) to the number of total events minus 1
and the numerator by excluding tn from the interval. Besides this modification,
Veloso et al. (2017) proposed an algorithm for automatic detection of multiple
emerging space-time clusters. They also proposed how to automatically estimate
the variable ε instead of fixing it.

10. Regression and Spatial Clustering

10.1. Transformation Method to Detect Spatial Clusters in

Case-control Data

Aggregated data are used for spatial clusters on maps, where detailed infor-
mation is lost in comparison with case-control data. In case-control data, the
coordinate of each case is known on the map, while for aggregated data re-
searchers only know the total number of cases and population in each cell.
Therefore, when case-control data are available, it is recommended to use all
the information available instead of aggregating it.

Dematteı, Molinari and Daurès (2007) presented a method based on regres-
sion models and data transformation to detect multiple irregularly shaped spa-
tial clusters. This method is an extension of the method of Molinari, Bonaldi
and Daurés (2001). Their method selects the best model based on a double
maximum test of H0: uniform distribution of cases vs. H1: there is at least one
spatial cluster. Suppose there are n cases in study region G with total popu-
lation N and X1, . . . , Xn are i.i.d. random variables with density h(x) which
denote the place of cases in G. Using the coordinates of the cases, the authors
introduced two variables, “distance” and “order”. The distance variable is the
distance between a point and its nearest neighbor, and the order variable is the
order of selection of the cases. The order variable is denoted by t. If there is a
cluster in G, cases in this cluster will have consecutive selection order and the
interior distances will be less than the distances outside the cluster.

To find spatial clusters using this method, suppose that xk, k = 1, . . . , n is
an observation of Xk and x(k) is the k-th selection when x1 is chosen arbitrarily
from all observed values of cases and given {x(1), . . . , x(k)}, x(k+1) is the nearest
case from x(k) among the n − k remaining cases which are not selected yet.
Suppose that Dk is the distance between X(k) and X(k+1) and dk is its observed
value. The cumulative distribution and density of Dk are defined as Gk and
gk respectively. Let dwk be the ratio between dk and the expected value of Dk

given that the values of x1, . . . , xk are known. Under the null hypothesis, if
dwk > 1 then the observed distance is greater than its expected value, while for
dwk < 1 the observed distance is less than its expected distance. Therefore, the
null hypothesis will not be rejected if dwk is statistically close to one. The way
to calculate EH0

(Dk|X1 = x1, . . . , Xk = xk) is given in Dematteı, Molinari and
Daurès (2007). Using the ordered weighted distances, it is possible to find the
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location of the spatial clusters.
Consider ordered pairs (k, dwk ) with k = 1, 2, . . . , n− 1. To detect the spatial

cluster bounds, Dematteı, Molinari and Daurès (2007) applied a regression of
weighted distance on the order of selection. Under the no-cluster hypothesis,
the appropriate model will be constant i.e.,

f(t) = d̄ =
1

T

T
∑

k=1

dwk , ∀t = 1, 2, . . . , T,

thus, free of t. If there is one cluster in the dataset, there will be two breaks
(jump and fall) in the model, at points T1 and T2. In other words, from point
1 to point T1 the value of the model is d̄[1:T1], from point T1 + 1 to T2, the
value of the model is d̄[T1+1:T2] and from point T2 + 1 to point T , the value of
the model is d̄[T2+1:T ]. T1 and T2 are called breaks (cluster bounds). At these
points, i.e., T1 and T2, the value of the model rises or falls. d̄ is the mean
weighted distances in the corresponding interval i.e., d̄[a:b] which is the mean
distance based on dwa, d

w
a+1, . . . , d

w
b. The spatial cluster areas are the points

for which the mean distance is low. To determine breaks, i.e., Ti’s, the fol-
lowing strategy is used: consider ε as the minimum ratio of points which are
between two breaks (minimum size of potential cluster), for example, 0.1, and
∆ε = {(T1, . . . , Tm), ∀i = 1, 2, . . . ,m+1, card([Ti−1+1, Ti]) ≥ |Tε|}. The breaks
are the points that minimize the squared error between dwt and f(t). These
points can be found by using the computer program developed by Bai and Per-
ron (2003). After finding the breaks, to visualize the cluster area, Dematteı,
Molinari and Daurès (2007) suggested a disc-based method and a Voronoi tes-
sellation method (Allard and Fraley, 1997), which are complementary to each
other. A researcher may find many models with different breaks, so to select
the best model it is suggested to perform hypothesis testing of no breaks vs. k
breaks using the statistic proposed by Bai and Perron (1998) and to determine
the significant models. To select the best model among the significant models,
they suggested using the double maximum test (Bai and Perron, 1998). After
selecting the best model, it is necessary to determine the p-value associated with
each cluster by Monte Carlo simulation.

Indeed, in this method, when using the ordering of cases the spatial data
are transformed into a one-dimensional point process. This method has at least
two advantages: 1) it can detect irregularly shaped clusters; and 2) it has low
computational demands. However, there are some drawbacks: 1) it is necessary
to determine ε; and 2) it is necessary to select the upper bound for the number
of breaks. It is important to mention that even under the null hypothesis, the
distances may not be distributed identically when their dependency structure
is complex. Hence, Cucala (2009) proposed a method similar to the method of
Dematteı, Molinari and Daurès (2007), based on a specific distribution property
and introduced a flexible spatial scan test for case-control data. The aim of this
method is to detect a sub-region in which the number of cases is abnormally high.

Consider an ordered sample with size n from uniform (0, 1). Suppose {S1 . . . ,
Sn+1} are the length of the intervals constructed from this ordered sample. Let
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A1 be a sub-region of study region G such that the distance of points inside
this sub-region and the border of G is less than D1 (distance between the first
selected point and the border of G). Cucala (2009) assumed that A′

1 is pro-
portional to the population in sub-region A1, and proved that under H0, the
distribution of A′

1 is the same as the distribution of S1. Similarly considering
A2 as a sub-region external to A1, where the distance between points inside it
and the first chosen point (i.e., X1) is less than D2, the distribution of A′

2, is the
same as the distribution of S2 under the null hypothesis. Likewise, A

′
2 is propor-

tional to the population in A2. Under H0, the area spacing {A′
1, . . . , A

′
n+1} has

the same distribution as the uniform spacing i.e., {S1, . . . , Sn+1}. Considering
Ti =

∑i
j=1 A

′
j , 1 ≤ i ≤ n, under H0, {T1, . . . , Tn} are distributed as n ordered

statistics from a uniform (0, 1) (because of the distributional property), so the
cluster detection in {T1, . . . , Tn} corresponds to cluster detection in the study re-
gion. Therefore, Cucala (2009) transformed the spatial cluster detection problem
into a one-dimensional cluster detection problem. This kind of cluster detection
can be done by applying the concentration index method of Cucala (2008).

Zhang and Lin (2009) presented a model-based approach that is equivalent
to the spatial scan statistics method. Their method can be applied to overdis-
persed data. Furthermore, it is interesting for practitioners to identify clusters of
spatial units with distinct patterns in a regression coefficient. Lee, Gangnon and
Zhu (2017) proposed a formal statistical methodology by focusing on spatially
varying coefficient regression methods such as geographically weighted regres-
sion models. They developed this new method for spatial cluster detection with
a covariate. Detection of a single circular cluster and multiple clusters are pos-
sible with this new method. A limitation is that it allows for only one covariate.
Relaxation of this restriction is desirable in order to explore the study region
and allow for the detection of irregularly shaped clusters.

10.2. Spatio-temporal Cluster Detection

Demattei and Cucala (2010) extended the transformation method and spac-
ing method mentioned above to find spatio-temporal clusters. They introduced
a spatio-temporal distance and based on the ordering technique, tried to find
spatio-temporal clusters. Not only did this add time to the spatial cluster de-
tection method but also their method can be applied to find multiple clusters
in case-control data. Multiple cluster detection is discussed in Section 11. In
essence, Demattei and Cucala (2010) presented a method to find multiple clus-
ters in time and space.

It should be mentioned that Kulldorff et al. (1998) pioneered the discussion of
the detection of clusters in time and space. Section 9 presents many alternatives
for spatio-temporal cluster detection.

11. Multiple Spatial Cluster Detection in Study Regions

As discussed before, to find a spatial cluster in the study region, researchers
perform hypothesis testing – H0: there is no spatial cluster vs. H1: there is
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at least one sub-region z classified as a spatial cluster in the study region. In
all of the above-mentioned studies, after finding the MLC, authors discuss the
statistical significance and explore weaker clusters i.e., the second most likely
cluster (SLC) in the study region (which does not overlap with the MLC). To
find the significance of the SLC, it is necessary to apply a sequential method
where cases and populations inside the MLC are removed from the dataset, and
then, the standard spatial scan statistic is applied.

To find multiple spatial clusters, Li et al. (2011) proposed an alternative
method. Under two conditions, the combination of sub-region zi and zj , i.e.,
(zi, zj), is considered as a two-cluster candidate in the case of multiple clusters:

1. zi and zj do not overlap, i.e., in centroids, cases, and controls.
2. The population of zi and zj is less than, for example, 50 percent of the

total population.

In this respect, the study region is divided into three disjoint areas, zi, zj ,
and G ∩ (zj , zi)

c. Suppose that the elements of an ordered triple (x1,m1, p1)
are respectively the number of cases, the population size, and the incidence
probability in zi. The triples (x2,m2, p2) and (x3,m3, p3) are corresponding
triples for sub-region zj and G ∩ (zj , zi)

c. The goal is to perform the following
hypothesis test

H0 : p1 = p2 = p3 vs. H1 : p1 > p3, p2 > p3 in at least for one sub-region z

For any two-cluster candidates, x1, x2 and x3, are observations of an independent
Poisson distribution. Li et al. (2011) found the likelihood ratio to construct the
scan statistic. Any two-cluster sub-regions which maximize the likelihood ration
are called the Most Likely Two-Cluster (MLTC). After finding the MLTC, it is
necessary to check whether or not the two-cluster area is significant as a spatial
cluster. If it is significant, one should investigate which sub-region is the first
suspected cluster and which one is the second suspected one. After detecting the
second suspected sub-region, using a sequential method, its significance should
be tested. To find the second MLC, it is not necessary to search the study region
to detect a sub-region which has the second greatest likelihood ratio given no
overlap with the MLC because the second most likely cluster is exactly the
second suspected sub-region in the two-cluster method.

Others have also investigated this topic, e.g., Zhang, Assunção and Kulldorff
(2010), who also discussed how to determine multiple spatial clusters. Jung,
Kulldorff and Richard (2010) constructed a spatial scan statistic for multino-
mial data. Wu and Glaz (2015) suggested a new adaptive procedure for a multi-
ple window scan statistic. Wan et al. (2012) used an ant colony optimization to
detect multiple spatial clusters. This method was proposed only for regional spa-
tial count data. The ant colony optimization multiple cluster detection method
was compared with three other methods: genetic algorithm-based spatial clus-
ter detection (Duczmal et al., 2007), circular scan (Kulldorff, 1997), and flexible
shape spatial scan statistic (Tango and Takahashi, 2005). The ant colony method
outperformed the competitors in simulations.
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The above-mentioned methods, i.e., Zhang, Assunção and Kulldorff (2010)
and Li et al. (2011), do not allow overlapping clusters. The forward stepwise and
forward stagewise methods proposed by Xu and Gangnon (2016) are effective
in detection of multiple overlapping spatial clusters.

12. Recent Developments of Scan Statistics

Recently, Li et al. (2019) considered two types of scales: the aggregation level
of the input data and the population threshold used in the cluster detection.
They stated that these scales can affect the results of cluster detection using
scan statistics. This effect is called detection inconsistency. To show this, Li
et al. (2019) considered different scale settings and used two measures (i.e.,
the distance between cluster centers and the Jaccard index (Jaccard, 1901)).
They measured the constancy of the detected clusters and studied three levels
of aggregation (county, town, and a 900m grid) and three population thresholds
(10%, 25%, and 50%). Four main results were obtained:

1. For a strong cluster and in a place with the high population density, the
method is not highly sensitive to the data aggregation level. For weak
true clusters and/or for less populous areas, the detection results from the
different scale settings can be inconsistent.

2. The method’s sensitivity to the population threshold is determined by the
actual size of the true cluster.

3. The results show the superiority of a regular grid with fine resolution over
the subjectively defined areal units.

4. When the population threshold is not smaller than 50%, a county-level
analysis may have good quality when the disease has a strong clustering
pattern in a place with high population density. However, county-level
data should not be used to detect small clusters and with small population
thresholds.

Jung (2019) extended scan statistics to matched case-control data. Since
the Bernoulli-based scan statistic (2.1) is for independent observations, and
since the case and control measures within a matched pair are not indepen-
dent, the Bernoulli-based scan statistic is not suitable for matched case-control
data. Hence, Jung (2019) designed hypothesis tests based on the odds ratio and
used McNemar’s test statistic and the Wald-type test statistic to detect spatial
clusters. Their simulation study showed that the proposed methods had higher
power and higher accuracy to detect spatial clusters for matched case-control
data than the Bernoulli-based spatial scan statistic.

Ishioka et al. (2019) used the zero-suppressed binary decision diagram (Mi-
nato, 1993) to handle the large cardinality of the candidate class. This method
can be compared with the method of AMST (Zhou, Shu and Su, 2015) in de-
tecting irregularly shaped spatial clusters. Also, Desjardins, Hohl and Delmelle
(2020) used a prospective space-time scan statistic to detect clusters of Covid-19
in the United States.
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Since the Poisson-based spatial scan statistic detects larger clusters by ab-
sorbing insignificant neighbors with non-elevated risks, Lee and Jung (2019)
suspected that the spatial scan statistic for ordinal data may also have simi-
lar undesirable outcomes. Hence, they applied a restricted likelihood ratio to
the spatial scan statistic for ordinal outcome data to circumvent this problem.
Through a simulation study, they demonstrated not only that original spatial
scan statistic suffer from overdetection but also that their proposed methods
have reasonable or better performance compared with the original methods.

For spatio-temporal count data with an excess of zeros, Allévius and Höhle
(2019) proposed an unconditional space-time scan statistic. Moreover, a func-
tional-model-adjusted spatial scan statistic was presented by Ahmed and Genin
(2020). This new spatial scan statistic is designed to adjust cluster detection
for longitudinal confounding factors indexed in space. This scan statistic was
developed using generalized functional linear models in which the longitudinal
confounding factors were considered to be functional covariates.

In many environmental applications, the response variables are spatially cor-
related. As an extension of the method proposed by Lee, Gangnon and Zhu
(2017), Lee, Sun and Chang (2020) proposed a mixed effect model for spa-
tial cluster detection to take the spatial correlation into account. The method
developed can identify multiple potentially overlapping clusters. Recently, Lee
et al. (2021) introduced a varying coefficient regression method to detect spatio-
temporal clusters. They extended the spatial-only varying coefficient regression
model to the spatio-temporal setting including flexible temporal patterns. The
method relies on the detection of a potential cylindrical cluster of the regres-
sion coefficients, and is based on testing whether the regression coefficient is the
same or not over the entire spatial domain for each time point. Additionally, it
can detect multiple clusters.

13. Software and Packages

Up to this point in the paper we have provided a broad overview of a variety
of scan statistics. We believe it is also important to give a guide to users about
the available implementation tools. Therefore, a short review of software and R

packages that work with scan statistics is now presented.
The package SaTScan (https://www.satscan.org) is one of the most com-

plete programs in scan statistics and implements many methods (Kulldorff and
Nagarwalla, 1995; Kulldorff, 1997, 2001; Kulldorff et al., 2006; Huang, Kulldorff
and Gregorio, 2007; Huang et al., 2009, and others). The rsatscan package
(Kleinman, 2015) uses R to create the files needed to execute the SaTScan soft-
ware. FleXScan (http://www.niph.go.jp/soshiki/gijutsu/index_e.html)
is another free software package for detecting spatial clusters (Tango and Taka-
hashi, 2005; Tango, 2008). The package rflexscan (Otani and Takahashi, 2020)
is a wrapper for the FleXScan software. The software package TreeScan

(https://www.treescan.org/) implements the scan statistic proposed by Kull-
dorff, Fang and Walsh (2003). Finally, ClusterSeer is a program developed at
BioMedware. This software handles many cluster detection methods (Turn-
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bull et al., 1989; Besag and Newell, 1991; Kulldorff, 1997). It is important to
mention that this stand alone program is available for Windows users.

A diversity of R packages also provide independent implementation of scan
methods or introduce new scan statistics as alternatives. DCluster (Gómez-
Rubio, Ferrándiz-Ferragud and Lopez-Qúılez, 2005) implements the traditional
scan (Kulldorff, 1997) with bootstrap and Gumbel alternatives to calculate
the cluster significance. The AMOEBA package (Valles, 2014) includes a func-
tion to detect spatial clusters based on the Getis-Ord statistic. A Bayesian
Dirichlet process for spatial clusters is available at PReMiuM (Liverani et al.,
2015). A version of the scan statistic to detect clusters in social networks is
available at SNscan (Wang, Hsu and Phoa, 2016). The package graphscan

(Loche et al., 2016) implements the distribution free methods of Cucala (2008,
2009). The surveillance package (Meyer et al., 2017) implements many space-
time scan methods. ClustGeo (Chavent et al., 2017) implements hierarchi-
cal clustering with spatial constraints to create spatial partitions of a map.
The scanstatistics package (Allévius, 2018) (https://github.com/BenjaK/
scanstatistics) implements a number of spatial (Poisson, negative binomial,
zero-inflated Poisson), space-time and the negative binomial Bayesian scan statis-
tics. SpatialEpi (Kim and Wakefield, 2018) has an implementation of the
Bayesian cluster method from Wakefield and Kim (2013) and other traditional
scan statistics. SpatialEpiApp (Moraga, 2017) is a package which provides
a Shiny application for spatial and space-time scan statistics. Recently, the
DClusterm package (Gómez-Rubio et al., 2019) implements a model-based ap-
proach using dummy variables in GLMs. A large variety of independent imple-
mentations of scan methods (e.g., Turnbull et al., 1989; Besag and Newell, 1991;
Tango and Takahashi, 2005; Assunção et al., 2006; Kulldorff et al., 2006; Costa,
Assunção and Kulldorff, 2012; Neill, 2012) are available in the smerc package
(French, 2020a). Finally, for case-control data, the package smacpod (French,
2020b) has some spatial cluster methods.

14. Conclusion

In this paper, a detailed review of the development of scan statistics over the
past three decades is presented. Scan statistics were initially proposed in the
sixties and gained greater attention in the nineties with the advance of compu-
tational power. Our main goal here is to provide an up-to-date overview of scan
statistics methods, their diversity of applications and some available software
for practitioners.

The scan statistics method is based on the likelihood ratio test. The work of
Kulldorff and Nagarwalla (1995) is the starting point for using scan statistics to
find circular clusters. Subsequently, detecting non-circular clusters gained im-
portance. The circular scan method was extended to detect non-circular clusters
using MST (Assunção et al., 2006). This extension not only helps researchers in
the detection of non-circular clusters but also increases the speed of cluster de-
tection. AMST (Zhou, Shu and Su, 2015) is an alternative to the MST method
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of Assunção et al. (2006). This alternative made it possible to detect multiple
non-circular clusters.

Monte Carlo hypothesis testing methods play a crucial role in scan statistics,
but are time-consuming. With this in mind, Turnbull et al. (1989); Besag and
Newell (1991); Soltani and Aboukhamseen (2015); Aboukhamseen, Soltani and
Najafi (2016) presented some solutions to eliminate the Monte Carlo procedure
in cluster detection.

The Poisson and binomial models are the most traditional models in the con-
text of scan statistics. But these models are not appropriate for continuous data.
Thus, the normal, multivariate normal and weighted normal scan statistics were
introduced by researchers. Besides these models, the exponential scan statistic
(Huang, Kulldorff and Gregorio, 2007) is constructed to deal with censored and
uncensored survival data.

The inflation of zeros in a given dataset is another challenge in cluster detec-
tion. The need for zero-inflated models led to the construction of zero-inflated
Poisson, zero-inflated binomial, and Bayesian beta-binomial scan statistics. The
variety of these models tempted researchers to introduce nonparametric meth-
ods to detect spatial clusters. Cucala (2014) showed that the distribution-free
scan statistic is equivalent to the Gaussian-based scan method presented by
Kulldorff, Huang and Konty (2009). Another nonparametric method, based on
the Wilcoxon test, was presented by Jung and Cho (2015).

Naturally, spatial scan statistics have evolved to handle spatio-temporal clus-
ters by including the time component in the analysis. Pioneers in this topic
were Knox and Bartlett (1964); their method evolved in many directions, as
described by Mantel (1967); Kulldorff et al. (1998); Kulldorff (2001); Assunção
et al. (2007); Assunção and Correa (2009); Veloso et al. (2017), among others.
Applications of these methods are still relevant, e.g., to the detection of Covid-19
clusters in the United States (Desjardins, Hohl and Delmelle, 2020).

Available software and R packages that implement different types of scan
statistics are presented (Section 13). This section provides a shortcut for prac-
titioners who want to apply the methods discussed as well as researchers who
want to compare new proposals with existing ones.

The supply of networks, graphs, and maps grows daily. Therefore, beyond
the epidemiological applications, the topic of scan statistics is still very active
in networks, trajectories and text streams. Recently, the issue of inference for
networks, trajectories and text streams has gained attention. For example, de-
tecting the busiest nodes in a network and using mobility information to detect
sources of diseases or extract core knowledge from texts are tasks that can use
scan statistics to provide adequate answers (Assunção, Souza and Prates, 2020).

With the increasing collection of data, researchers need to scan ever larger
maps to detect spatial clusters. Although some incipient methods for scanning
large maps are starting to appear (Assunção, Souza and Prates, 2020), we still
see the need to extend scan methods to efficiently find spatial clusters in big
maps. It seems that the use of parallel computation, Bayesian methods, and
graph theory can help researchers to tackle this challenge. On the other hand,
to the best of our knowledge, there is little work on detecting spatial clusters



Scan statistics review 145

for proportional data (de Lima et al., 2016) and no parametric scan method
to detect spatial clusters in the presence of heavy tailed and/or asymmetric
spatial data. We believe that working with stable spatial models can be a way
to improve scan statistics methods.

References

Aboukhamseen, S., Soltani, A. and Najafi, M. (2016). Modelling cluster
detection in spatial scan statistics: Formation of a spatial Poisson scanning
window and an ADHD case study. Statistics & Probability Letters 111 26–31.
MR3474778

Adelberger, K. L., Steidel, C. C., Pettini, M., Shapley, A. E.,
Reddy, N. A. and Erb, D. K. (2005). The Spatial Clustering of Star-forming
Galaxies at Redshifts 1.4 � z � 3.5. The Astrophysical Journal 619 697.

Ahmed, M.-S. and Genin, M. (2020). A functional-model-adjusted spatial
scan statistic. Statistics in Medicine 39 1025–1040.

Allard, D. and Fraley, C. (1997). Nonparametric maximum likelihood esti-
mation of features in spatial point processes using Voronoi tessellation. Jour-
nal of the American Statistical Association 92 1485–1493.
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