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Abstract. Traditionally, in health surveillance, high risk zones are iden-
tified based only on the residence address or the working place of diseased
individuals. This provides little information about the places where peo-
ple are infected, the truly important information for disease control. The
recent availability of spatial data generated by geotagged social media
posts offers a unique opportunity: by identifying and following diseased
individuals, we obtain a collection of sequential geo-located events, each
sequence being issued by a social media user. The sequence of map posi-
tions implicitly provides an estimation of the users’ social trajectories as
they drift on the map. The existing data mining techniques for spatial
cluster detection fail to address this new setting as they require a single
location to each individual under analysis. In this paper we present two
stochastic models with their associated algorithms to mine this new type
of data. The Visit Model finds the most likely zones that a diseased per-
son visits, while the Infection Model finds the most likely zones where a
person gets infected while visiting. We demonstrate the applicability and
effectiveness of our proposed models by applying them to more than 100
million geotagged tweets from Brazil in 2015. In particular, we target the
identification of infection hot spots associated with dengue, a mosquito-
transmitted disease that affects millions of people in Brazil annually,
and billions worldwide. We applied our algorithms to data from 11 large
cities in Brazil and found infection hot spots, showing the usefulness of
our methods for disease surveillance.

Keywords: Hot spots · Spatial cluster detection · Trajectories · Disease
surveillance · Social media

1 Introduction

There is an increasing availability of geolocated data generated by mobile phones,
connected vehicles and geotagged social media, among other sources. This is
enabling a broad spectrum of applications and services that exploit such data
and demand the development of novel data mining models and algorithms that
support those tasks. Building such models and algorithms require that we are
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able to handle novel types of data, such as user’s movement record as well as
the noisy and the incomplete nature of the data. We may glance the problem
complexity by checking the right plot of Fig. 1, which depicts the movement of
Twitter users in 2015 in a Brazilian city, Rio de Janeiro (each line segment shows
a user’s movement – location change – between two consecutive messages).

Fig. 1. Left: Schematic drawing of a potential infection hot spot (shaded area) and the
individuals trajectories of cases (red) and controls (blue). Right: Individuals trajectories
of cases (red) and controls (blue) in the city of Rio de Janeiro during the year of 2015.
(Color figure online)

In this paper we tackle one of these disruptive application scenarios: deter-
mining infection hot spots, that is, the high risk zones where people got infected
by a disease. Our proposal adopts the case-control framework, where, by con-
trasting the case and control individuals’ characteristics, we learn about the
disease dissemination process. The input is composed of trajectories, which are
sequences of user locations that provide an estimate of the users’ movements
as they drift on the map. We depict this application scenario in the left plot
of Fig. 1, where each polygonal line is a trajectory that represents either a case
(red) or a control (blue) individual, and we want to determine whether there are
regions (represented by the shaded area in the left plot of Fig. 1) where infection
is more likely, manifested by a larger number of case trajectories than control
trajectories, among other evidences. Such information may be key to surveillance
and disease mitigation actions.

Although the main idea seems simple, there are a large number of challenging
data mining issues that require the development of novel models and algorithms
to the problem. At first, this task resembles spatial cluster detection, which aims
at detecting localized spatial regions or zones, called spatial clusters, where the
likelihood of some event occurrence is higher than in the rest of the map [8,11,17].
There have been several different proposals for detecting spatial clusters, but all
of them are based on the same premise: each entity is associated with one or at
most two locations. Thus, our proposal differs significantly from current spatial
cluster detection strategies in the sense that there is no limit on the number
of events, and then locations, associated with a person. Further, there are two
other characteristics that make our problem more challenging: (i) the number of
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events per trajectory may vary significantly, and (ii) we do not know in advance
which events represent the actual infection.

In this paper we propose two stochastic models with their associated algo-
rithms to mine this new type of data. The Visit Model finds the most likely zones
that a diseased person visits, while the Infection Model finds the most likely zones
where a person gets infected while visiting. To the best of our knowledge this
is the first work that goes beyond predicting disease incidence rate from social
media data. Our approach leverages the geo-tagged social media messages in
order to discover potentially high infection risk zones. Specifically our contribu-
tions are as follows:

– We describe the problem of detecting infection hot spots from trajectory data
in a case-control framework (Sect. 2).

– We propose two novel models, and the respective algorithms, the Visit Model

and the Infection Model, for the discovery of significant infection hot spots.
Our algorithms address all three aforementioned issues (Sect. 3).

– We propose an extraction and modeling strategy of Twitter data to the hot
spot detection problem in the context of dengue (Sect. 4).

– We present detailed experimental results to illustrate our approach in action
by applying our algorithms to a set of 11 Brazilian municipalities analyzing
more than 100 million tweets issued in 2015 (Sect. 5).

2 Problem Description

Social media data represent a rich and promising source of plenty, cheap, and
timely data that has been only tapped in its usefulness. The excitement involving
the use of social media as a social sensor could be felt by the countless number of
research works using this kind of data [6,16,18]. In our case, we are interested in
probing the usefulness of social data spontaneously generated by users as a way
to identify the location, shape, and size of high risk zones and to determine its
statistical significance. Depending on the application, we believe that these data
may be more precise in the detection of such hot spots than other more standard
data and, in many cases, they may be the only data available. Indeed, this latter
observation is exactly the case of dengue surveillance (see Sect. 4.1), since there
is scarce, if any, information about the place where people are being infected
with dengue by the transmitter mosquito. As dengue usually is a debilitating
disease that causes much pain, our assumption is that infected individuals will
report what they are experiencing in social media [6,19].

In this work we use dengue and Twitter to instantiate our proposal, but
it is obviously general and can be applied to a large range of other situations
(see Sect. 7). Each user in the database is classified either as a case or a con-
trol individual. The separation of cases and controls is based on the content of
tweets text: users mentioning personal experience with dengue are labelled as
cases, otherwise, they are labelled as controls. In the left plot of Fig. 1, we have
N = 6 cases and M = 4 controls identified by the red and blue polygonal lines,
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respectively. The vertices of the polygonal lines correspond to the locations of
tweets issued by each individual. The tweets of a single individual are connected
in chronological order and hence we refer to the polygonal lines as trajectories.
For the cases, the specific dengue-labelled messages are marked by a hatched
ground area. We also show in the same figure a candidate hot spot Z (shaded
area), a spatial zone potentially riskier than other regions in the map.

The mining task is to scan the map varying the position, shape, and size
of the candidate zones, looking for the zone Ẑ that most likely is a higher risk
area. After finding this most likely hot spot Ẑ, we calculate its probability of
occurrence to evaluate whether there is enough evidence to call it a real cluster.
The simple schematic illustration is put in due perspective when we look at
the right-hand map in Fig. 1. The large amount of data and the impossibility
to visually identify any meaningful pattern supports the demand for new data
mining models and algorithms.

Usual approaches [8,11,17] for spatial cluster detection can not be used here.
All spatial detection methods have a single location associated with each case or
control individual, usually their residential addresses or working places. In our
case, we have a completely different spatial data structure. First, each i-th indi-
vidual is not associated with a single location, but with a series of ni successive
positions xi in the map. There is no single unambiguous position to assign each
case or control but rather a sequence of positions. Usual methods are not able
to handle this scenario.

Second, the number ni of positions of each individual is quite variable. For
some individuals, ni is small, with less than 10 positions. Others may contribute
a large number of positions, reaching more than 100 tweets. Clearly, the locations
can not be put on the map ignoring the variable contribution of each individual.
To make this point clearer, imagine an extreme situation where 3 case individuals
contribute each one with two positions, one in a risky zone, and another one
outside. At the same time, an additional case individual has 200 tweets spread
all over the map. This extreme individual would dominate the analysis if we do
not take the sample size ni into account. Again, this is not considered in the
usual techniques, where each individual contributes with a single point.

Third, and more challenging, the positions of the dengue-labelled tweets are
not necessarily those where the infection risk is higher. Indeed, our assump-
tion is that the individual entire trajectory (and not a single position) will be
informative of the risk areas. Someone affected by dengue could tweet about his
condition days after recovery and at a location not associated with its infection
place. This challenge is addressed through sampling the controls. We expect that
contrasting between the spatial pattern of trajectories of the case and the control
individuals, riskier zones should be pinpointed by our algorithms.

3 Mining for Hot Spots from Trajectories

As mentioned, we adopted a case-control framework, where the data consist of
locations, within a specified geographical region, of all known cases of a particular
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disease, and of a random sample of controls drawn from the population at risk.
Each individual carries a set of features corresponding to known or hypothesized
risk-factors for the disease in question.

In our analysis, the key innovation is that the input is a series of locations
rather than a single location for each individual. As in a standard case-control
study, each sampled person is classified either as a dengue case or a non-dengue
(control) individual. We labelled the individuals such that the first N of them
are the cases and the last M are the controls. Let xi = (xi,1, . . . , xi,ni

) be
the point events associated with the ni tweets issued by the i-th individual,
i = 1, . . . , N + M . Each xi,k represents the geographical tweet location such as
a latitude-longitude coordinate pair. For the cases i = 1, . . . , N , at least one
tweet in xi refers to a personal dengue experience and their specific locations
will be denoted dengue-labelled tweets hereafter. Typically, there will be a small
percentage of dengue-labelled tweets for each individual. None of the control
individual tweets are dengue-labelled.

Let Z be a (large) set of geographical zones that are candidates to be infection
hot spots. The left plot of Fig. 1 helps us to describe how our algorithm works.
There are potentially infinite zones in Z and they cover the entire region under
analysis. By varying Z ∈ Z we scan the map looking for the zone Ẑ that most
likely is a higher risk area. After finding this most likely hot spot Ẑ, we calculate
its likelihood to evaluate whether there is enough evidence to identify it as a hot
spot. Secondary clusters are also searched, as we explain later.

Our approach is to contrast the number of cases and controls visiting the
potential zone. With a meaningful contrasting score, we should then scan the
map to find the most likely zone. We considered two different probability scores,
depending on how we calculate conditional probabilities of relevant events. In
the first, we use the probability that someone visits the candidate zone Z given
that she is either a case or a control individual. Intuitively, a risky zone Z should
have this visit probability higher for cases than for controls. This first approach
is called the Visit Model. In the second, we use the probability that someone
gets infected given that it visits the candidate zone Z. Intuitively, we anticipate
that cases visit Z more often than controls. This second approach is called the
Infection Model. We present them formally next.

3.1 Visit Model

Let Vi,z be the random number of tweets in Z among the ni total number of
tweets issued by the i-th individual. Use 1[A] to represent the indicator random
variable that the event A occurs. Hence 1[Vi,z ≥ 1] is the binary random variable
indicating whether the i-th individual ever tweeted inside the candidate zone Z.
These random variables can be assumed independent, but they are not identically
distributed as the success probability depends on the number ni of tweets issued
by each individual. Denote by p = p(Z) the probability that, giving that a
case individual is tweeting, she does it from within Z. Let p̄ = p̄(Z) be the
similar probability for a control individual. We are interested in zones where
p(Z) > p̄(Z).
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For a user who is a case, we have P (Vi,z ≥ 1) equals to 1 − (1 − p)ni and,
for a control user, it is equal to 1 − (1 − p̄)ni . Considering a fixed zone Z, the
visit model likelihood for the observed N + M binary indicators 1[Vi,z ≥ 1] is
given by

L1(Z, p, p̄) =
N
∏

i=1

[

(1 − (1 − p)ni)
�[Vi,zg1]

((1 − p)ni)
�[Vi,z=0]

]

N+M
∏

i=N+1

[

(1 − (1 − p̄)ni)
�[Vi,zg1]

((1 − p̄)ni)
�[Vi,z=0]

]

= (1 − p)
∑

N
i=1 ni�[Vi,z=0]

(1 − p̄)
∑N+M

i=N+1 ni�[Vi,z=0]

N
∏

i=1

[

(1 − (1 − p)ni)
�[Vi,zg1]

]

N+M
∏

i=N+1

[

(1 − (1 − p̄)ni)
�[Vi,zg1]

]

Let N(Z̄) =
∑N

i=1 ni1[Vi,z = 0] and M(Z̄) =
∑N+M

i=N+1 ni1[Vi,z = 0] be the
total number of tweets from users (both cases and controls) who did not visit
zone Z, respectively. Hence, the log-likelihood �1(Z, p, p̄) = log(L1(Z, p, p̄)) for
this first model can be written as

�1(Z, p, p̄) = log(1 − p)N(Z̄) + log(1 − p̄)M(Z̄)

+

N
∑

i=1

1[Vi,z ≥ 1] log(1 − (1 − p)ni) +

N+M
∑

i=N+1

1[Vi,z ≥ 1] log(1 − (1 − p̄)ni) (1)

3.2 Infection Model

We will estimate the probability that someone issues a dengue-labelled tweet
(and becomes a case) given that she visited k times the region Z. Let r = r(Z)
be the infection risk inside the candidate cluster and r̄ = r(Z̄) the infection risk
in Z̄, the region outside Z. We are interested in zones Z where r(Z) > r(Z̄).

Let Ii be the binary indicator that the individual i is a case. We assume
that these binary random variables are independent. They are not identically
distributed since their probability of Ii = 1 depends on the number of visits Vi,z

by the i-th individual to the zone Z. We have

P(Ii = 1|Vi,z = ki) = 1 − P(Ii = 0|Vi,z = k) = 1 − (1 − r)
ki (1 − r̄)

ni−ki

= Ã (ki, r, r̄) (2)

Therefore, the likelihood of the pattern of cases and controls is given by

L2(Z, r, r̄) =

N+M
∏

i=1

(Ã (ki, r, r̄))
Ii (1 − Ã (ki, r, r̄))

1−Ii
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and therefore the log-likelihood expression is given by

�2(Z, r, r̄) =
N+M
∑

i=1

Ii log
(

1 − (1 − r)
ki (1 − r̄)

ni−ki

)

+ (1 − Ii) (ki log(1 − r) + (ni − ki) log(1 − r̄)) (3)

3.3 Evaluating the Data Evidence

Recall that Z is the set of candidate zones to be scanned. The test statistic we
adopt for the Visit Model is

T1 = �1(Ẑ, p̂, ˆ̄p) = sup
Z*Z

p̂(Z)> ˆ̄p(Z)

�1(Ẑ, p̂(Z), ˆ̄p(Z)) (4)

and an analogous formula defines T2 for the Infection Model. In order to verify
its statistical significance, we must use Monte Carlo simulation to obtain the
null hypothesis distribution of T1 and T2 as the exact or asymptotic analytic
calculation is not feasible. The null hypothesis is given by either H0 : p = p̄
or H0 : r = r̄ for all Z ∈ Z for the Visit Model and the Infection Model,
respectively.

The Monte Carlo distribution is determined by randomly permuting the
labels of cases and controls among all individuals. Using this pseudo dataset,
we proceed the entire scan over all Z ∈ Z to obtain a pseudo value for T1 and

T2. As this will be replicated several times, we call these values T
(1)
1 and T

(1)
2 . We

then select another random permutation of the labels, scan the zones and find

T
(2)
1 and T

(2)
2 . Independently, we repeat this procedure a large number B − 1 of

times generating a set of pseudo values plus the values calculated with the actu-

ally observed dataset: T1, T
(1)
1 , T

(2)
1 , . . . , T

(B−1)
1 and T2, T

(1)
2 , T

(2)
2 , . . . , T

(B−1)
2 .

Under the null hypothesis, these values are independent and identically distrib-
uted. Therefore, the rank of the real observed statistics T1 and T2 are uniformly
distributed on the integers 1, . . . , B. This implies that an exact p-value for the
null hypothesis of each model is given by

p1 =
1

B
(1 + #{T

(k)
1 ≥ T1, k = 1, . . . , B − 1})

and

p2 =
1

B
(1 + #{T

(k)
2 ≥ T2, k = 1, . . . , B − 1})

The test is significant at the level ³ ∈ (0, 1) if pm < ³. When either test is signif-
icant, the most likely zone is given by the corresponding maximizing argument
Ẑ in (4).

We also identify secondary clusters, zones with highly significant p-values,
which do not intersect with the most likely zone Ẑ. The non-intersecting restric-
tion is necessary because, if one zone Ẑ is the most anomalous in Z, many other
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sets in Z that are only slightly different from Ẑ will produce very similar likeli-
hood numbers. These zones should be ignored since the most anomalous among
them has already been pinpointed. Among the non-intersection zones, we look
for those whose p-value pm is smaller than ³ where the p-values are calculated
as described above.

3.4 Contrasting the Two Models

In this section, we discuss in more detail the two proposed models aiming at
providing an understanding of the differences between them. In particular, we
want to distinguish between the two approaches in an intuitive way and hence
explain when and how we can have one of the models detecting a certain hot
spot while the other model is insensitive to this same cluster presence.

Avoiding the rigorous mathematical notation, let us define two random
events. The first one is denoted by C and represents the random selection of
an individual from the database that is dengue-affected or simply a case. Its
complementary event is C̄ and represents the selection of a control individual.
Given that a tweet is posted by a user, we denote by WZ the event that it is
issued from Z while WZ̄ means that it is from outside Z.

The visit model considers two conditional probabilities, p = P(WZ |C) and
p̄ = P(WZ |C̄), while the infection model considers the corresponding inverse
conditional probabilities, r = P(C|WZ) and r̄ = P(C|WZ̄). Intuitively, the visit
model scans the map looking for a zone Z where p and p̄ are quite different. The
infection model searches for a zone where the difference between r and r̄ is large.
They can find distinct and separate zones in this process. The main reason is
the usual large difference we find between conditional probabilities P(A|B) and
P(B|A) of events A and B. The connection between the two is given by the
Bayes rule: P(A|B) = P(B|A)P(A)/P(B). Since the factor P(A)/P(B) is the
link between the two, when we have very different values for P(A) and P(B)
we can expect large differences on the two directions for the two conditional
probabilities, P(A|B) and P(B|A).

This is indeed what one can expect in our dengue application. The uncon-
ditional probabilities P(C) and P(WZ) are typically very different. As we take
about 3 times more controls than cases, we anticipate P(C) ≈ 1/4. For a local-
ized zone Z, even if it is highly infectious, we should not expect P(WZ) > 1/20.
Hence, zones detected by one of the models should not be predicted as the likely
output by the other model.

An additional enlightening way to contrast the two models is to consider the
extreme situation in which each user has issued a single tweet (that is, ni = 1).
As a consequence, ki is equal to 0 or 1 and the likelihood for the two models
may be considerably simplified. Remember that N(Z̄) is the number of tweets
from cases posted from outside Z (or Z̄) while M(Z̄) is the analogous count for
the controls. The notation N(Z) and M(Z) has the obvious definition: counts
of tweets from inside Z.
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For the visit and infection models, their respective log-likelihood functions
�

′

1 = �1(Z, p, p̄) and �
′

2 = �2(Z, r, r̄) are reduced to

�
′

1 = N(Z) log(p) + N(Z̄) log(1 − p) + M(Z) log(p̄) + M(Z̄) log(1 − p̄) (5)

�
′

2 = N(Z) log(r) + N(Z̄) log(r̄) + M(Z) log(1 − r) + M(Z̄) log(1 − r̄) (6)

These likelihood functions for this extreme situation show that the two models
use the data differently to search for suspicious zones Z. They both point out to
likely high infection risk areas but they use different approaches in the process
and may spot different potential candidates. The two approaches are logically
consistent and produce meaningful results. They are complementary to each
other and should not be seen as opposites.

3.5 Spatial Scan Statistics as a Particular Case

Expression (6) shows that the usual spatial scan statistic [8,11,17] is a partic-
ular case of our infection model. Assuming that each sampled individual has a
single spatial location (usually her residential address), the notation r represents
now the probability that she is a disease case given that she is within Z. The
probability r̄ is the same probability for someone living outside Z. Then, (6) is
the Bernoulli likelihood used by the original spatial scan statistic. That is, when
there is a single location for each individual, we obtain the classic spatial scan
statistic by applying our infection model.

4 Case Study: Dengue in Brazil

In this section we present the motivation behind our evaluation scenario, dengue
disease surveillance in Brazil. Also, we describe the Twitter data collection
process and how we properly filter the data in order to obtain the case-control
individuals’ trajectories.

4.1 Context

Despite all the progress achieved in the twenty-first century, diseases transmitted
by insects are still challenging our health services and policy makers. The recent
outbreak of Zika virus in Brazil and other Latin American countries, potentially
associated with thousands of microcephalic birth cases, prompted The World
Health Organization (WHO) to declare the Zika Infection a world health threat1.
Other disease that is transmitted by the same mosquito, Aedes aegypti, is dengue.

With an estimated 50–100 million infections globally per year [3], dengue is
currently regarded as the most important mosquito-borne viral disease. Dengue
affects over 100 endemic countries in tropical and sub-tropical regions of the

1 http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee
-zika/en/.

http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/
http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/
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world, mostly in Asia, the Pacific Region and the Americas. Presenting four dis-
tinct viral serotypes, dengue fever may range from severe flu-like illness up to a
potentially lethal complication known as severe (or hemorrhagic) dengue. The
World Health Organization estimates that 3.9 billion people are at risk of infec-
tion with dengue viruses. However, the true impact of the disease is, sometimes,
difficult to assess due to misdiagnosis and underreporting [2]. Global dengue
incidence still grows in number and severity of cases and also in the amount of
new affected areas. This is most due to modern climate changes and to socioe-
conomic, and viral evolution [12]. However, the potential drivers of dengue are
often difficult to detect and factor out. Since there is no current approved vaccine
to protect the population against the virus [12], epidemiological surveillance and
effective vector control are still the mainstay of dengue prevention.

Dengue is a serious concern in Brazil. In 2015, more than US$ 300 million
were spent in surveillance and prevention actions2. This is a significant figure for
Brazilian standards and, despite its magnitude, more than 1.6 million cases were
recorded in 2015. This number represents a rate of 813 cases per 100 thousand
inhabitants, well above the redline indicated by the WHO (300 cases).

Most studies for diseases such as dengue place the cases at individuals’ res-
idential addresses, which may quite often not be the infection location. The
relatively easy to obtain residential address may be a poor indicator of the zones
where humans and infected mosquitoes tend to meet each other. These zones are
hard to determine, since the necessary information about them is scarcely avail-
able. Indeed, such information comprises data on the mosquito prevalence, its
infection rate, and the human movement in each potential zone. Notwithstanding
the task difficulty, identifying the most risky places would be invaluable because
we could focus the expensive and diffuse preventive efforts undertaken until now.

4.2 Data Acquisition and Preprocessing

The data used in our experimental analysis were acquired through the Twitter
streaming application programming interface (API) [1], using a geographic
boundary box that covers the whole Brazilian territory. Consequently, all col-
lected tweets are geo-tagged with lat/long GPS coordinates. The collecting
period comprises from January 1st, 2015 to December 31th, 2015. During this
time we were able to collect 106,784,441 tweets comprising a multitude of sub-
jects. We want to use this data to search for zones that increase the likelihood
that an initially control individual becomes a case.

Since the majority of users usually moves within the same city, we decided to
perform our analysis at the city level. This granularity is also interesting because,
in Brazil, the decision process regarding dengue surveillance actions is under the
responsibility of each city hall. Thus, a fine geographic scale analysis would lead
to focused preventive efforts. Since the messages are geocoded, to obtain the data
from a specific city is straightforward. The Twitter API provides the location

2 http://www.brasil.gov.br/saude/2015/04/orcamento-2015-para-acoes-de-combate-
a-dengue-cresce-37.

http://www.brasil.gov.br/saude/2015/04/orcamento-2015-para-acoes-de-combate-a-dengue-cresce-37
http://www.brasil.gov.br/saude/2015/04/orcamento-2015-para-acoes-de-combate-a-dengue-cresce-37
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Table 1. Data summary: #msg is the total number of tweets from the city; #unq usr
is the number of unique users; #case usr and #ctrl usr are the number of case and
control individuals; #case usr and #ctrl msg are the number of tweets they issued.

City name #msg #unq usr #case msg #case usr #ctrl msg #ctrl usr

Belém 1,049,433 19,611 8,134 23 18,416 65

B. Horizonte 3,134,497 50,360 60,968 104 168,820 302

Curitiba 1,694,301 35,775 3,028 18 9,066 54

Goiânia 566,114 16,849 15,933 54 33,750 147

Natal 522,689 16,689 3,847 15 8,748 42

R. de Janeiro 9,875,435 167,567 71,115 163 213,168 490

São Paulo 6,965,165 174,544 167,772 413 486,264 1229

Campinas 574,226 20,335 37,313 90 64,442 226

Limeira 91,454 2,991 11,614 47 16,830 108

SJ. Campos 407,143 9,697 19,883 58 40,251 148

Sorocaba 230,224 7,471 32,734 91 39,352 206

based on the lat/long coordinates. We use the assigned location by filtering
the corresponding tweet field. We choose 11 municipalities (see Sect. 5 for the
explanation) to analyze. Table 1 summarizes the data for each selected city.

For each city analyzed, we filtered the data indicating whether the user is a
case individual. We defined the keywords dengue and aedes, and started a search
throughout the data. Previous works showed a high correlation between official
dengue reports and Twitter data collected with such keywords [6,19]. We also
check for misspelling and ignore letter case. Since the vocabulary in text-based
social media is very dynamic, the retrieved messages based on keywords may not
be actually associated with people reporting personal experience with the dis-
ease. Hence, we classified the messages according to the sentiment expressed in
the textual content. To classify the messages, we preprocessed texts by filtering
out accents marks and URL’s. Bi-grams were created by joining adjacent words
with a separator, and stop-words were removed as well as bi-grams composed of
two stop-words. The classification was performed in a supervised manner. We
manually labelled a set of tweets from a different Twitter collection specifically
about dengue disease. This collection is performed based on the same keywords.
Similar to [6,19], the tweets were classified into one out of five categories: Per-
sonal Experience, Information, Opinion, Campaign and Irony/Sarcasm, using
the the Lazy Associative Classification algorithm (LAC) [20]. Next, we sepa-
rated the messages assigned to the Personal Experience category, since they may
indicate a closer relationship between the user and the disease. These messages
represent the dengue-labelled tweets for the case individuals.
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4.3 Case-Control Trajectories

Recall that, each user in the database is classified as either a case or a control
individual, and the separation of cases and controls is based on the content of
tweets text, as described above. Then, for each city we build the case-control
trajectories as follows.

Case-trajectories. In order to build the case individuals trajectories we started
by separating all unique users who posted a dengue-labelled message. Then, we
retrieved all other tweets sent by these users. For each case individual, her list
of messages composes the trajectory. Such strategy is interesting because we
are implicitly considering that the users must have been infected at some point
in their daily movements and not exactly where the dengue-labelled messages
were sent. After that, we excluded highly active users to avoid, for instance,
bots. We adopted a 5-message-per-day threshold, which represents a maximum
of 1825 messages per year. The users with total number of messages above this
threshold are excluded from the dataset.

Control-trajectories. The control individuals group comprises all users who never
posted a message containing any of the keywords used to define the case individ-
uals group. Therefore, none of the control individuals tweets are dengue-labelled.
We defined the same threshold to exclude highly active users. The number of
control individuals is much larger than the number of case individuals. Thus, we
sampled the control individuals. We stratified the case individuals according to
the total number of messages in ranges of 10. Then, for each range we sampled
the number of control users as 3 times the number of case users in that same
range. When the number of control users in a given range was not enough to
reach the amount required, we used the total available.

5 Experimental Analysis

After generating the dataset for each selected city as described in the previ-
ous section, we proceeded to the experimental analysis. For each one of the 11
selected cities (see Table 1) we applied the Visit Model and the Infection Model
to search for infection hot spots. Among the selected cities we included 7 state
capitals (Belém, Belo Horizonte, Curitiba, Goiânia, Natal, Rio de Janeiro and
São Paulo) with at least one capital from a major Brazilian region. We also
decided to assess our models using data from municipalities facing high epi-
demics bursts. Therefore, we included 4 other cities: Campinas, Limeira, São
José dos Campos and Sorocaba. For instance, while in 2014 Sorocaba reported
less than 400 dengue cases, in 2015 the same city reported more than 50 thousand
cases.

In order to run the algorithms, the zones Z are defined by overlaying different
grids on the map and each grid cell corresponds to a zone to be scanned. The size
of the grid cells vary in order to accommodate risk zones that present different
characteristics. We set the number of Monte Carlo replicas to B − 1 = 999 and
define the significance level as ³ = 0.05. Among the 11 selected cities, in 4 of
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Table 2. Results obtained by the Visit and Infection models in the respective cities.
We present the log-likelihood value of the zone (Log-Lik); the respective probabilities
considered by the models (r | p and r̄ | p̄); the obtained p-value based on the Monte
Carlo reference distribution; the number of case and control individuals inside the zone
(#cases and #ctrl); and the amount of messages issued inside the zone by case and
control individuals (#case ki and #ctrl ki).

City Log-Lik r | p r̄ | p̄ p-value #cases #case ki #ctrl #ctrl ki

Visit Model

Goiânia −135.32151 0.04379 0.01 0.01 48 6352 115 14600

Limeira −89.51999 0.04379 0.01 0.019 43 5655 80 7940

Infection Model

Limeira −198.51340 0.48310 0.01 0.014 5 11 1 1

−200.16361 0.07759 0.01 0.02 4 8 3 10

−200.35639 0.07759 0.01 0.02 3 97 7 9

SJ. Campos −427.44342 0.14517 0.01 0.055 5 28 2 4

Sorocaba −446.94606 0.04379 0.01 0.002 3 150 8 16

them at least one of the models was able to find one or more significant hot
spots. Table 2 summarizes the results.

First of all, we point out that our models were able to find infection hot spots
in 3 cities that faced the aforementioned strong surges. Despite the significance
level being ³ = 0.05, we considered the borderline region found in SJ. Campos as
significant. In the context of disease surveillance, it would be also important to
check such zones. We observe that, in Goiânia and Limeira, the zones pinpointed
by the Visit Model were visited by most of the case individuals, since the Visit
Model searches for the most likely zones where case individuals visit. On the
other hand, the zones identified by the Infection Model comprise a lower number
of case individuals seeking for more restricted areas. In fact, the size of the
zones found by the models differ. The Visit Model usually finds larger regions
whilst the Infection Model finds smaller regions. Figure 2 depicts the zones found
by each model in the corresponding cities. Notice that in Limeira the models
identified different regions within the same city. These results also point out
the complementarity of the models, so that they may be used together towards
establishing two different levels of surveillance.

After we find the significant zones, we may analyze them in detail to observe
their characteristics. We show this more detailed analysis for Goiânia. Figure 3
displays a zoom in the zone identified by the Visit Model and the respective case-
control trajectories. We point out that there are many places, such as, college
campi, hospitals and parks inside the zone. Since those places are non-residential,
current techniques would never consider them as potential infection hotspots, in
the face of a rise in the number of cases. This is another interesting feature of our
algorithms, they can point out places which represent a better approximation of
where people might have been infected, being worthy to investigate those areas.
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Fig. 2. Maps of the cities with the hot spots found by both models. The cities are
Goiânia, Limeira, São José dos Campos and Sorocaba. The green and black squares
depict the zones found by the Visit and Infection models respectively. We also display
the case and control individuals trajectories as red and blue points, respectively. (Color
figure online)

Fig. 3. Zoom in to the zone found by the Visit Model in Goiânia. Red and blue points
represent the case-control trajectories respectively. (Color figure online)

6 Related Work

Spatial cluster detection is a special class of data mining problem within the
more general anomalous pattern detection problem. The assumed structure of
the input data is a spatial point location, such as latitude-longitude pair, besides
the usual features associated with each of them. The seminal paper [7] originated
a flow of work and its large impact may be explained by a breakthrough contri-
bution. They developed a practical way, the spatial scan statistics, to take into
account the multiple testing involved in the search of anomalous regions. They
showed how a simple Monte Carlo reference distribution could be obtained from
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the data and how it controls the false positive level of the potentially infinite
statistical tests involved. This idea opened the door to many additional develop-
ments [4,5,9,13–15,17,21,24]. While the recent availability of spatial data offers
a unique opportunity, the existing data mining techniques for spatial cluster
detection fail to address this new setting as they require a single location to
each individual under analysis.

On the other hand, there has been fruitful research exploiting spatial data for
a variety of purposes, such as, discovering the spatial dependency of objects [22],
understanding mobility patterns [10] and clustering similar trajectories [23], to
name a few. However, none of the strategies proposed so far focused on searching
for hot spots by contrasting trajectory data of targeted populations with those
from control populations as we have done here. In this sense, this paper has a two-
fold contribution. First, it generalizes the spatial cluster detection approaches
by considering the individual trajectory data instead of a single point. Second,
it describes the aforementioned problem in the context of disease surveillance
and proposes two algorithms to mine the data.

7 Concluding Remarks

Exploiting the large amount of available data for addressing relevant social prob-
lems has been one of the key challenges in data mining. In this paper we attempt
to help on this task by proposing two stochastic models to search for infection
hot spots using social media trajectories. Our application scenario is a major
infectious disease in Brazil and other tropical countries, dengue. We applied our
models to data from 11 Brazilian cities and were able to detect infection hot
spots in 4 of them. This result shows the usefulness of our methods to disease
surveillance. To identify the high risk regions would be invaluable to direct pre-
ventive efforts and mitigation actions. Currently, we are carrying out a validation
procedure of our results with local health officials.

We see our proposal as a first step on the direction of a more general and
comprehensive framework. In fact, future research directions abound, both from
theoretical and practical perspectives. One direction is to incorporate a richer
data structure allowing features to be included at the individual level. In this
paper, we only considered a binary indicator (case or control). However, we could
add other features such as age and sex of the individuals. Another possibility is
to associate features to the events that constitute the trajectories. For instance,
distinguishing whether the event occurred in the summer or winter is poten-
tially useful. A third possible direction is to consider the social links between
the individuals as a means to create a social network between the trajectories.
Notwithstanding these further developments, our models are useful for the dif-
ficult task of infection hot spots detection.
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