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A. Gonçalves☯

Department of Computer Science, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

☯ These authors contributed equally to this work.
* amirkm@dcc.ufmg.br

Abstract

Forecasting is of utmost importance for the Tourism Industry. The development of models

to predict visitation demand to specific places is essential to formulate adequate tourism

development plans and policies. Yet, only a handful of models deal with the hard problem

of fine-grained (per attraction) tourism demand prediction. In this paper, we argue that

three key requirements of this type of application should be fulfilled: (i) recency—forecast-

ing models should consider the impact of recent events (e.g. weather change, epidemics

and pandemics); (ii) seasonality—tourism behavior is inherently seasonal; and (iii) model

specialization—individual attractions may have very specific idiosyncratic patterns of

visitations that should be taken into account. These three key requirements should be

considered explicitly and in conjunction to advance the state-of-the-art in tourism predic-

tion models. In our experiments, considering a rich set of indoor and outdoor attractions

with environmental and social data, the explicit incorporation of such requirements as fea-

tures into the models improved the rate of highly accurate predictions by more than 320%

when compared to the current state-of-the-art in the field. Moreover, they also help to

solve very difficult prediction cases, previously poorly solved by the current models. We

also investigate the performance of the models in the (simulated) scenarios in which it is

impossible to fulfill all three requirements—for instance, when there is not enough histori-

cal data for an attraction to capture seasonality. All in all, the main contributions of this

paper are the proposal and evaluation of a new information architecture for fine-grained

tourism demand prediction models as well as a quantification of the impact of each of the

three aforementioned factors on the accuracy of the learned models. Our results have

both theoretical and practical implications towards solving important touristic business

demands.
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1 Introduction

According to theWorld Travel and Tourism Council (WTTC), as of 2019 annual research cov-

ering 185 countries and economies, the global travel and tourism contribution to the Gross

Domestic Product (GDP: a monetary measure of the market value of all the final goods and

services produced in a specific time period) is at 10.3% supporting 319 million jobs. This corre-

sponds to 10% of the global employment. Considering new jobs across the world, the contribu-

tion of travel and tourism industry is even higher, achieving 25% of all global new jobs created

over the last five years (reported by Global Economic Impact and Trends 2020 accessible at

link https://wttc.org/Research/Economic-Impact). Thus having estimated values of future

tourism demand in the weeks, months, and years ahead can serve as a base for preparing activ-

ities necessary for creating comprehensive tourism policies [1].

The importance of accurate tourism prediction becomes indisputable when ones realizes

that tourism products are generally perishable—unsold flight seats, empty hotel rooms and

unsold tickets of a tourism attraction are just a few examples. In addition, tourism demands

are sensible to factors like exchange rate [2], fuel price, climate changes [3], local and global

financial crises [4] and even epidemics/ pandemics. The new Coronavirus Disease (COVID-

19) (more information about this disease at link https://www.who.int/emergencies/diseases/

novel-coronavirus-2019/technical-guidance) pandemic has completely shut down the Tourism

Industry worldwide. Accurate forecasting could have helped to deal with the crisis letting a

better management of the initial sector’s recovery. There has been a real need to develop robust

prediction models that not only forecast well the future visits by considering seasonal aspects

of tourism behaviour but also show flexibility to recent trends and events and idiosyncratic

aspects of the attractions.

In our previous work [5], the effects of environmental and social media data over tourism

visitation have been studied in two scenarios—indoor and outdoor attractions. Visitation cen-

sus, environmental features and social media data, for 27 museums and galleries in the United

Kingdom (indoor attractions) as well as 76 national parks in the United States (outdoor attrac-

tions) have been exploited. Our proposal showed superior prediction accuracy when com-

pared to the State-Of-The-Art (SOTA) results using features from both social media and

environmental data adopting various prediction models and exploiting different modeling

approaches.

In our previous analysis, it was observed that for outdoor attractions, environmental fea-

tures have better predictive power while the social media features have more influence in the

case of indoor attractions. In any case, best results, in all scenarios, were obtained when using

both types of features jointly as input to a Support Vector Regression (SVR) prediction model

obtaining moderate or highly accurate prediction results for around 93% of the attractions.

In this work, a new tourism prediction methodology is proposed that explicitly incorpo-

rates aspects related to recency, seasonality and specialization into the prediction models.

More than explicitly considering such requirements into our information architecture—some-

thing that previous work has not done—in our current study we quantify the impact of each

one of these effects as well as their interactions for fine-grained high-accuracy tourism demand

prediction task while also improving our previous (state-of-the-art) results in tourism predic-

tion [5]. We do this by arguing and demonstrating that three other key requirements of (1)

recency, (2) seasonality and (3)model specialization should be fulfilled by an accurate model.

These requirements should be captured as explicit features or properties of models for tourism

forecasting, something that the previous state-of-the-art has not explored. Though these char-

acteristics have been considered to different extents in different solutions in isolation, we are

the first to consider them altogether as essential aspects that should be explicitly Incorporated
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in conjunction into prediction model for fine-grained (attraction-level) tourism demand pre-

diction. Our work is the first to measure and quantify the isolated and combined impact of

these factors when incorporated into the models. These requirements are briefly introduced

next.

Recency considers the impact of recent events on the prediction models. Prior work mostly

focuses on the importance of seasonality as the main temporal aspect for tourism prediction.

We argue that other temporal aspects should be considered to assess whether and how recent

events such as financial crises, new trends, epidemics/ pandemics, new infrastructures, may

impact predictions.

A few prior studies analyze the effect of recency on tourism demands. In [6] and [7], the

authors study temporal aspects considered as important to predict tourism visits. Particularly,

in [6], an algorithm for recommending personalized tours is proposed using users’ recent pref-

erences as one of the variables of their model. In their tour recommendation algorithm, they

enhance the models by a weighted update of user interests based on the recency of their visits

giving more emphasis to more recent Point of Interest (PoI: an entity of interest with well-

defined location for example museums, churches, waterfalls and coffee shops) visits. They

show improvements upon earlier tour recommendation work.

Though prediction models such as Auto Regressive Integrated Moving Average—ARIMA-

based [8] ones indirectly exploit recency by means of temporal series modeling, our argument

is that recency should be promoted as an explicit first-class feature to be incorporated into the

prediction models. First-class features are input features that in other models such as ARIMA-

based ones are captured implicitly.

Seasonality focuses on the inherently cyclic behaviour of tourism demands. Several studies

in the literature focus on the importance of seasonality as the main temporal aspect for tourism

prediction. Seasonality has been defined as the inherently cyclic behaviour of tourism

demands. The authors of [9] state that seasonality is one of the main phenomena affecting

tourism. According to them, seasonality is the systematic, although not necessarily regular,

intra-year movement caused by changes in the weather, the calendar, and timing of decisions

made by the agents of the economy, directly or indirectly through the production and con-

sumption decisions. The authors of [10], instead, explain seasonality as a temporal imbalance

in the phenomenon of tourism, which may be expressed in terms of dimensions of such ele-

ments as numbers of visitors, expenditure of visitors, traffic on highways and other forms of

transportation, employment, and admissions to attractions.

In [11], the authors state that, regarding periodicity, the main focus of interest had been

annual seasonality, with studies that show the differences in tourism activity between different

seasons. In contrast, in their work, they perform a decomposition analysis of yearly, monthly

and weekly seasonalities of tourism demand. They do so by conducting an in-depth analysis of

intra-monthly and intra-weekly tourism demands using entropy and relative redundancy

measures. The authors show that seasonality is present in annual, monthly and weekly fre-

quencies using the Balearic Islands airports as their case study. In addition, they show that

monthly and weekly seasonality differs across geographical markets. Since variations during

the year are often caused by the climate or other social factors, intra-monthly and intra-weekly

changes in tourism demand should be more closely associated with institutional or social fac-

tors, due to non-working days during the week, work holidays and other events that take place

at specific times, such as Christmas, school or university holidays and work vacations.

The authors of [12] focus their study on the impact of seasonality on cultural tourism—

defined as tourism focused on cultural motivations, including visits to museums and archaeo-

logical sites. They analyze tourism seasonality in some selected destinations in Sicily, conclud-

ing that cultural destinations are less impacted by seasonality in tourism flows.
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In a recent survey on tourism forecasting [7], the authors state that the most widely adopted

statistical time series prediction method is the seasonal auto-regressive integrated moving

average—SARIMA. They claim that SARIMA is able to capture seasonality and recency

implicitly in their forecasts. SARIMA is one of our baselines serving the purpose of comparing

explicit versus implicit modeling of such requirements.

Our experiments aim to demonstrate that explicitly exploiting seasonality can greatly

improve the prediction accuracy.

Model specialization advocates creating specialized individual models for each touristic

attraction. The main motivation is that particular attractions may have very specific intrinsic

patterns of visitations. Studies such as [13, 14] explore the tourists’ motivations in the process

of attraction selection. For instance, the authors of [13] identify different motivations and

behavioral patterns in visits to different types of museums. For example, tourists visiting the

historic Rembrandt House were more likely to be accompanying other people, more likely to

want to learn new things, as well as more likely to be in search of entertainment or local cul-

ture and history than those interviewed at the Stedelijk museum of modern art. They also

find distance of the visitor from the origin, geographical origin of tourists, their socio-demo-

graphic characteristics, travel form and the period of staying in the destination are also

important factors affecting the choice of attractions to visit. On the other hand, in [14], the

authors study the generation Y preferences (generation Y is the generation born in the 1980s

and 1990s, comprising primarily the children of the baby boomers and typically perceived as

increasingly familiar with digital and electronic technology), finding that this generation has

his own profile and patterns of consumption. They discuss money spending preferences, the

technology facilities in the attractions, the design of the place and the presence of informa-

tion in social media as some of motivational differences. All in all, this serves as another fac-

tor that can affect differently the visitation patterns of different attractions motivating

specialized models of visitation for each attraction. However, creating specialized individual

model for each attraction can be advantageous since individual attractions may have very

specific idiosyncratic patterns of visitations. On the other hand, there may be cases when one

may not have enough data to train an individual model for each site. In this case, it is more

viable to train single models for attractions of a given type to benefit from a vast amount of

available social, climate and official data in the training process. Our experiments analyze

this trade-off in depth.

In our work, we aim to demonstrate that, by explicitly exploiting the three proposed

key requirements of tourism prediction as features, our models can greatly improve predic-

tion accuracy regarding the SOTA results. Indeed, our experimental results, considering a

rich set of indoor and outdoor attractions with environmental and social data, show that

the explicit incorporation of such requirements into the models can improve the rate of

highly accurate predictions by more than 320% against the current SOTA [5]. Our proposed

models can even help to solve difficult prediction cases, poorly solved by the current solu-

tions. For instance, the National Portrait Gallery in the U.K. saw a huge increase in social

media reviews (over 50% by April 2015) but that was not accompanied by real world visits,

causing the models to mistakenly follow the social patterns, ultimately implying in low accu-

racy. Another example is the Bryce Canyon national park in the U.S., in which the visits

experience some period of untypical increases (more than 20% in Feb. to Sep. 2016 in com-

parison with the same period in 2015). That increase was not reflected neither in the envi-

ronmental features nor in the social media reviews, both inputs exploited by the SOTA

model. These situations can be dealt with by explicitly incorporating recency and seasonality

features.
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1.1 Research questions

The main hypotheses of our work, posed as explicit research question to be answered, include:

RQ 1: Do recency, seasonality and model specialization (characteristic of attraction) influ-

ence the accuracy of predicting visits in tourist sites? Adopting our collected rich set of

indoor and outdoor attractions, our specialized and global prediction models explicitly

exploit recency and seasonality features in order to evaluate whether each of the key

requirements of tourism prediction influence the accuracy of the models.

RQ 2: What is the impact of each of recency, seasonality and model specialization in tourism

demand prediction? In order to quantify the isolated and combined impact of each of these

three requirements (recency, seasonality, and specialization), a factorial design analysis [15]

is applied. In this analysis, the impact of each of the three requirements is evaluated in two

different scenarios of attractions: outdoors (parks) and indoors (museums). In both scenar-

ios seasonality, model specialization and the interaction between them have the largest

impact in the prediction accuracy, with seasonality being more important in the case of out-

doors. It was observed that model specialization is the most prominent factor to improve

results, mainly for highly accurate predictions.

RQ 3: How scenarios with data scarcity hinder the accuracy of prediction models while

exploiting recency, seasonality and model specialization?Our results show that the

absence of recency or seasonality features drastically reduces the accuracy of prediction

models in scenarios with data scarcity. Recency features are not as important as the season-

ality ones, but they still have a relevant impact on prediction accuracy, mainly for situations

in which there is not enough historical data to capture seasonality for a given attraction.

1.2 Related work

Table 1 summarizes the main related studies that exploit in one way or another the afore-

mentioned tourism key requirements. The table highlights, for each work; (i) whether the

work applies the proposed techniques in multiple attractions or are concentrated in only one

specific case study such as a country or a single touristic site; (ii) whether the work uses exter-

nal features (data) as a proxy to predict the visitations, for instance, the use of socio-eco-

nomic or environmental features, and (iii) whether they explicitly explore recency and/or

seasonality.

1.3 Contributions and outline of the paper

To summarize, the main contributions of this article are:

• Section 2 presents our collected dataset specification, followed by problem definition,

short description of exploited prediction techniques, experimental methodology, features

exploited in the prediction models, and the evaluation metrics. The investigation of all

proposed RQs requires a rich dataset to permit in-depth analysis of the effects of tourism

requirements in multiple category of attractions.

• Section 3 aims to experimentally answer our posed Research Questions (RQs) for tourism

attractions. Sections 3.1 and 3.2 investigate RQ1 demonstrating that the three tourism key

requirements, i.e. recency, seasonality and model specialization are essential for fine-

grained high-accuracy tourism demand prediction task. More than that, these requirements

should be incorporated as explicit features into the learning models. Our experimental eval-

uation confirms our hypotheses, with observed gains over the other solutions. We also show
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Table 1. Related work and our contributions.

Related
Work

Work Domain Multiple
Attractions

External
Data

Explicit
Recency

Explicit
Seasonality

Our work

[16] Predicting coarse-grained tourism demand for
entire country Turkey using multiple socio-
economic features

✕ ✓ ✕ ✕ Use of environmental and social media features
in a fine-grained prediction level for multiple
attractions

[17] Use of Wikipedia usage trends in order to
forecast tourism demand of Hawaii reporting
the accuracy of their prediction results only by
Root Mean Squared Error (RMSE)

✕ ✓ ✕ ✕ Use of environmental and social media features
in more than 100 outdoor and indoor attractions

[18] Analyses the relationship between the internet
search data (Baidu in China) and the actual
tourist flow only for a single city, Beijing
Forbidden City

✕ ✓ ✕ ✕ Extended study of tens of attractions divided into
two groups, studying the performance of
different classes of features

[19] Use of Location Based Social Networks (LBSN)
to study mobility of tourists and citizens in a
coarse-grained fashion

✕ ✓ ✕ ✕ Fine-grained analysis in social media networks

[20] Uses the locations of photographs in Flickr to
estimate visitation counts in some recreational
sites

✓ ✓ ✕ ✕ Improving the accuracy of prediction models
exploiting environmental features alongside
explicit use of recency and seasonality factors

[21] Analyses the climate and visitation data for the
U.S. national parks using a single model of
third-order polynomial temperature model
with an accuracy of 69%

✓ ✓ ✕ ✕ Use of multiple prediction models exploiting
social media features alongside explicit use of
recency and seasonality factors

[22] Exploits travellers’ Google web search and
history of tourism arrivals to analyze temporal
relationships between search terms and tourist
arrivals in a single attraction (a Swedish
mountain)

✓ ✓ ✕ ✕ Quantification of performance of the explicit use
of recency and seasonality factors for more than
100 attractions while improving the accuracy of
results by adding environmental features and
other types of external data

[23] Use of search engine data with a de-noising
step in order to avoid misleading or invalid
predictions by comparing the performance of
different noise-processing techniques only in
Jiuzhaigou park in China

✓ ✓ ✕ ✕ Analysis of more than 100 attractions with
different characteristics in two categories of
indoors and outdoors in a fine-grained manner

[24] Tourism demand Prediction of top five most
visited museums in London with free
admission evaluating different algorithms
exploiting the Google Trends index as the main
feature

✓ ✓ ✕ ✕ Compared to our work, the former is very
limited in terms of the type of attraction, location
and exploited features. while their main feature
Google Trends index is a black-box with proved
probability of overestimation problem

[9] Analyse seasonality as one of the main
phenomena affecting tourism, i.e systematic,
although not necessarily regular, intra-year
movement caused by changes in the weather,
the calendar, and timing of decisions made by
the agents of the economy

✕ ✕ ✕ ✓ In contrast to this work, our contribution is in
explicit use of recency factor besides exploiting
external data to improve the accuracy of fine-
grained prediction models

[10] Analyse seasonality as a temporal imbalance in
the phenomenon of tourism, which may be
expressed in terms of dimensions of such
elements as numbers of visitors, expenditure of
visitors, traffic on highways, employment, and
admissions to attractions

✕ ✕ ✕ ✓ Fine-grained analysis and quantification of the
effects of the recency factor, isolatedly and
conjointly with seasonal factors in two different
class of indoor and outdoor attractions

[11] Perform a decomposition analysis of yearly,
monthly and weekly seasonalities of tourism
demand showing that seasonality is present in
annual, monthly and weekly frequencies using
the Balearic Islands airports as their single case
study

✓ ✕ ✕ ✓ A complete factorial design analysis for
quantifying the effect of the recency factor in
specialized and global models separately for two
types of attractions

(Continued)
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that the explicit incorporation of such requirements into the models help to solve very

hard-to-solve cases.

Regarding RQ2, a factorial analysis is performed in order to quantify the impact of each

of the three requirements on the accuracy of the learned models in indoor and outdoor

attractions. The analyses show that the most impacting ones are model specialization and

seasonality but recency is effective when there is not enough historical data about a specific

attraction.

To investigate the RQ3, a study on the performance of each of the tourism prediction

requirements is performed for cases with no recent or historical data for a given attraction.

The study shows that the absence of recency or seasonality features drastically reduces the

accuracy of prediction models in different scenarios.

Table 1. (Continued)

Related
Work

Work Domain Multiple
Attractions

External
Data

Explicit
Recency

Explicit
Seasonality

Our work

[12] Study the impact of seasonality on cultural
tourism—defined as tourism focused on
cultural motivations, including visits to
museums and archaeological sites. They
analyze tourism seasonality in some selected
destinations in Sicily, concluding that cultural
destinations are less impacted by seasonality in
tourism flows

✓ ✕ ✕ ✓ our work not only quantifies the effects of
recency and seasonality factors in isolation and
conjointly but also presents improvements in
performance for our predictions exploiting
external features regarding social media and
environmental data using dozens of attractions

[7] Analyse and state that the most widely adopted
statistical time series prediction method is the
SARIMA which is able to capture seasonality
and recency implicitly in forecasts

✕ ✕ ✕ ✕ Analysis of multiple prediction models
exploiting external features of social media and
environmental alongside the explicit use of
recency and seasonality in specialized models.
SARIMA is used as one of our baselines.

[6] Propose an algorithm for recommending
personalized tours based on users’ recent
preferences as one of the variables of their
model enhancing their models by a weighted
update of user interests based on the recency of
their visits giving more emphasis to more
recent visits

✕ ✕ ✓ ✕ Our focus is in the task of tourism demand
prediction and not on recommendation of
touristic sites, though recency and seasonality
features are explored as in that work. Our work
also quantifies the effect of each of the factors for
two classes of indoor and outdoor attractions

[25] Investigate experiences of Chinese economy
hotel guests using online reviews as proxy.
Applies a deep learning fine-grained sentiment
analysis to rank each of positive and negative
sentiments associated with tourists sentiments
such as location, facilities, service, price, image,
sound insulation.

✓ ✓ ✕ ✕ Similarly to our work, the authors use external
data for fine-grained predictions. However, the
focus of our work is on prediction of visits
instead of sentiment analysis. Our work also
exploits recent and seasonal behaviors explicitly
in our feature-set.

[26] Develops a scalable online platform for
extracting, analyzing, and sharing multi-source
multi-scale human mobility flows to assist
human mobility monitoring and analysis
during disaster events such as the ongoing
COVID-19 pandemic in understanding human
mobility dynamics.

✓ ✓ ✕ ✕ The focus of this work is mostly on providing
and monitoring fine-grained spatio-temporal
mobility data while our work analyses multiple
prediction models exploiting external data
alongside explicit use of seasonality and recency
in order to predict tourism demand.

[27] Builds a fine-grained tourist satisfaction
prediction model based on deep learning, using
features such as “location, service, cost
performance, environment, facilities and
others” of the destination, and their division
into several fine-grained dimensions.

✓ ✓ ✕ ✕ Similarly to our work, the authors use external
data for fine-grained prediction. However the
focus of our work is in visits prediction instead
of tourist satisfaction prediction. In addition,
Our work exploits recent and seasonal features to
obtain more accurate results.

https://doi.org/10.1371/journal.pone.0278112.t001
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• Section 4 discusses and analyses our achieved experimental results, connecting them with

the posed Research Questions. It provides insights regarding why our proposed methods

work the way they did based on our interpretations of all performed analyses.

• Section 5 summarizes our results to answer RQs. It emphasizes that the best results are

obtained when using all types of features, i.e. external data features jointly with key tourism

requirements. Conclusions and directions for future work are also provided.

All in all, the main contributions of this paper are (i) a new information architecture that

explicitly incorporates three new factors into the state-of-the-art fine-grained tourism pre-

diction models, greatly improving model accuracy and (ii) a quantification of the impact of

each of the three factors on the accuracy of the learned models. Our results have both theoreti-

cal and practical implications towards solving important touristic business demands.

2 Materials andmethods

In this section, we elaborate our experimental methodology for the task of evaluating the role

of recency, seasonality and model specialization in tourism demand prediction. We first review

the adopted datasets and then present the problem formulation. Next, the exploited prediction

techniques are explained, offering a brief description of each of them. The learning and param-

eterization of the prediction models are discussed next. Finally, the prediction architecture is

illustrated along with the definition of the factors for the factorial design analysis.

2.1 Datasets

Our present work relies on our previously published FISETIO dataset [28] for experimental

analysis. This dataset was collected from five official and governmental sources: (1) the U.S.

National Park Service was selected as the main source for the official data for the outdoor tour-

ism demands; (2) TripAdvisor was used as the source for the social media related features of

the outdoor and indoor dataset; (3) U.S. national climate data center was used as the origin of

the climate data for the outdoor attractions; (4) the Department for Digital, Culture, Media

and Sport of England providing the official visits for the indoor attractions and (5) the U.K.

national weather service (Met Office) to gather weather conditions for indoor dataset.

We collected, cleaned and merged all data into two categories of attractions, namely, out-

doors and indoors. Fig 1 illustrates the data collection phases to obtain the indoor and outdoor

datasets for our analysis. Table 2 provides the sources and features -social media and environ-

mental- in our datasets in brief. The reader is referred to our published dataset paper [28] for a

detailed description of data sources and the data collection, data cleaning and the data integra-

tion processes. The data collection method is in compliance with the terms and conditions of

the data provider in this case Mendeley Repository.

2.2 Problem Definition

The faced problem is forecasting the visitation for fine-grained touristic points. Yet, in addi-

tion to the social media and environmental features exploited in our previous work [5], we

here also incorporate both recency and seasonality requirements. Moreover, we consider per-

attraction model specialization. Given a touristic attraction, the prediction problem is defined

as follows.

First, equally spaced non-overlapping time windows are created with the same temporal

granularity (e.g., a month, a week, a day, an hour, etc) for each time-series of the variables in

social media, environmental data, recency and seasonality features in the format of X = {X1,

X2, . . ., Xm} wherem is the number of features. These time-series (e.g., number of reviews,
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average temperature, visits in the last month, visits in the last year) serve as the input of the

prediction models. A time series Xi is a sequence fx
ð1Þ
i ; x

ð2Þ
i ; :::; x

ðtÞ
i g, where x

ðtÞ
i denotes the

value of variable Ximeasured (time-lagged) in time window t for the specific touristic attrac-

tion that is the target of prediction.Measured variables are social media and environmental

features that have been measured at timestamp t while recency and seasonality features corre-

spond to the history of visitation counts (i.e. response variable) in recent months or last year of

visitation, which have been augmented and time-lagged to the time window t.

The objective function (f) is forecasting y(t), the tourism visitation at timestamp t in a target

attraction with the lowest prediction error, giving the input vector X as the feature-set includ-

ing social media, environmental, recency and seasonality features for each time window in the

interval of [1, t−k] (for k> 0), i.e., fxð1Þ1 ; x
ð1Þ
2 ; :::; xð1Þm ; x

ð2Þ
1 ; x

ð2Þ
2 ; :::; xð2Þm ; :::; x

ðt�kÞ
1 ; x

ðt�kÞ
2 ; :::; xðt�kÞm g

wherem is the number of available features (in some cases the objective function f combines a

input vector X and the response variable y).

Fig 1. Data collection phases.

https://doi.org/10.1371/journal.pone.0278112.g001

Table 2. Overview of indoors (I) and outdoors (O) datasets and features (VIS: visits, SOC: social media features, ENV: environmental features.

Dataset Provider Granularity Features Data Range

I.VIS Department for Digital, Culture, Media and Sport of
England

monthly total number of visitors to museums and galleries 2004-03 to 2018-
07

I.ENV U.K national weather service (Met Office) monthly min and max temperature, rainfall, sunny hours and days of air
frost

1996-01 to 2018-
08

I.SOC TripAdvisor travel website monthly number of reviews, average ratings 2001-08 to 2018-
08

O.VIS U.S. National Park Service monthly total number of visitors 1996-01 to 2016-
08

O.ENV U.S. National Climate Data Center monthly minimum, average, maximum temperature, average
precipitation

2000-01 to 2016-
10

O.SOC TripAdvisor travel website monthly number of reviews, average ratings 2011-01 to 2016-
09

https://doi.org/10.1371/journal.pone.0278112.t002
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2.3 Prediction techniques

This section offers a brief description of the techniques exploited for forecasting fine-grained

tourist visit counts. Building on top of our previous work—the current state-of-the-art in the

field [5], the learning models with the best prediction accuracy were selected, namely Support

Vector Regression (SVR) [29], and the Auto Regressive Integrated Moving Average (ARIMA)

based models -Seasonal ARIMA (SARIMA) [8] and Seasonal ARIMA with eXogeneous vari-

ables (SARIMAX) [30]. In here a Deep Neural-Network based method—Long Short Term

Memory (LSTM) [31]— is also considered, which has not been included in [5] and is currently

a popular method. Finally, we introduce two naive models in which are simple models that are

based exclusively on historical observation [32].

The objective of all techniques is to estimate y(t), the number of visits in a given touristic

place in the timestamp t giving the input vector X as the feature-set including social media,

environmental, recency and seasonality features for each time window in the interval of

[1, t−k]. However, there are some variations in the way each model adopts the features. For

instance SARIMAmodels can exploit only the history of the number of visits, while SARIMAX

exploits not only such history, but also the complete feature-set. The other models use the

complete feature set, i.e. social media, environmental, recency and seasonality features.

2.3.1 Support Vector Regression. Support Vector Regression (SVR) is an extension of

Support Vector Machines (SVM) widely used for regression tasks [29]. SVR performs a “linear

regression” in a high-dimensional feature space resulting from a (nonlinear) mapping pro-

vided by a kernel function. The linear model (in the feature space) is given by:

f ðX;WÞ ¼
X

m

j¼1

WjgjðXÞ þ b; ð1Þ

whereW is the weight vector to be “learned”, gj(X) denotes a set of nonlinear transformations

on the input feature set, and b is the “bias” term. SVR pursues the best trade-off between the

model’s empirical error and the model complexity by constraining SVR regression function

f(,) to the hyper-planes function class, and employing a margin around the hyper-plane. More-

over, f(,) only depends on a reduced set of the training data called the Support Vectors (SV),

those which correspond to the active constraints in the optimization problem [29] defined as:

Lðy; f ðX;WÞÞ ¼
0 if jy� f ðX;WÞj ÿ ÿ

jy� f ðX;WÞj � ÿ otherwise

(

ð2Þ

where y is the value to estimate.

The key parameters of SVR are the kernel function K, the margin of tolerance ÿ, and the

trade-off C between the model complexity and the degree to which deviations larger than ÿ are

tolerated.

2.3.2 Seasonal Auto Regressive Integrated Moving Average (SARIMA). Auto Regres-

sive Integrated Moving Average models (ARIMA), is a classical time series forecasting method

which was firstly proposed by Box and Jenkins [33]. In this model, the future value of a time

series is a linear function of previous values of the original series and random errors. In other

words, ARIMA projects the future values of a series based entirely on its own inertia. Thus, the

set of predictor variables X used by ARIMA consists of the past measurements of the response

variable y(t), that is, X = {y(1), y(2), . . ., y(t−k)}, k> 0. When a seasonal effect is observed, a gener-

alization of the ARIMAmodel is used, i.e. the SARIMAmodel. A SARIMAmodel is an
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equation in the following form:

f ðX; tÞ ¼
Y y ÿ

ðtÞ

F φ D d
; ð3Þ

where Θ, F and Δ are polynomials that compute the seasonal auto-regressive, differences and

moving average components, respectively, θ, φ and δ quantify the respective regular (non sea-

sonal) polynomials and ÿ(t) is the estimation error.

2.3.3 Seasonal Auto Regressive Integrated Moving Average with eXogenous variables

(SARIMAX). Due to the importance of exogenous data (i.e., social media, environmental

data, recency and seasonality features) in our experiments, SARIMAXmodels (SARIMA with

exogenous variables) [30] are applied. SARIMAX in addition to the history of response vari-

able, takes into the account the input features, i.e. the external predictor variables, that is, the

set of time series X ¼ fxð1Þi ; x
ð2Þ
i ; :::; x

ðtÞ
i g where xðtÞi denotes the value of variable Ximeasured

(time-lagged) in time window t. The SARIMAXmodel could be formulated as:

f ðX; tÞ ¼
Y y ÿ

ðtÞ

F φ D d
þ bX; ð4Þ

where the definition of the parameters Θ, F, Δ, θ, φ and δ is as same as Eq 3.

2.3.4 Neural network. Introduced in [31], Long Short-TermMemory (LSTM) neural net-

work models are well-suited to classification and regression as well as prediction tasks based

on time series data. LSTMs have a notion of memory that may help capturing past trends in

the data. The use of LSTMs in the context of tourism prediction is not new; in [34] the authors

apply LSTM to tourism flow prediction, presenting interesting results.

A LSTM network consists of a chain of cells—each LSTM cell is configured by four gates:

input gate, input modulation gate, forget gate and output gate. Input gates take new inputs

from outside and process newly incoming data. Memory gates take inputs from the output of

the LSTM cell in the last iteration. Forget gates decide when to forget the output results, thus

selecting the optimal time lag for the input sequence. Output gates take all results calculated

and generate final output [31].

Consider a time-series input represented as X ¼ fxð1Þi ; x
ð2Þ
i ; :::; x

ðtÞ
i g where xðtÞi denotes the

value of variable Ximeasured (time-lagged) in time window t and hidden state cellsH = {h(1),

h(2), . . ., h(t)} For t = 1, . . ., T LSTM computes:

f ðX; tÞ ¼Whyh
t þ by ð5Þ

ht ¼ HðWhyx
t þWhhh

t�1 þ bhÞ; ð6Þ

whereW and b are respectively weight matrices and bias vector parameters which need to be

learned during model training.

2.3.5 Naive models. In general, naive forecasting models are simple models that are based

exclusively on historical observation [32]. Our work defines two naive models as our baselines

based on seasonality and on recency of tourism activities—Naive-Seasonality and Naive-

Recency. For a naive prediction with seasonality, a simple approach to determine y(t) in a

time window t, is to pick the number of visits at y(t−12) in the available past data. Similarly, for

recency, the naive model predicts y(t) based on the number of visits at y(t−1).

f ðtÞ ¼
yðt�12Þ naive seasonality

yðt�1Þ naive recency

8

<

:

ð7Þ
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Table 3 lists all prediction techniques presented in this section, summarizing their main char-

acteristics. A rich and diverse set of techniques is exploited, aiming at investigating how each

of them performs in our target prediction problem.

2.4 Model learning and parameterization

Note that a specific model is learned (and later evaluated) for each attraction (for each park,

museum or gallery), and thus, there is a different parameter choice for each of them. Nonethe-

less, for the sake of brevity, the values of the best parameters reported next are averages over all

attractions. Parameter tuning for the models was performed as follows.

2.4.1 Support Vector Regression. For Support Vector Regression(SVR), the kernel func-

tion is set to “linear”, because in preliminary experiments it produced the best results, besides

being more efficient (lower execution time). The cost C parameter was varied in the interval of

[2−5, 210], and the best value varied for different attractions; however on average the best value

was C = 116. The tolerance ÿ was tested in the range of (0, 1) with steps of 0.1 and 0.3 was

found to be the best value of ÿ (again on average across all attractions).

2.4.2 Seasonal Auto Regressive Integrated Moving Average and Seasonal Auto Regres-

sive Integrated Moving Average with eXogeneous variables. Regarding Seasonal Auto

Regressive Integrated Moving Average (SARIMA) and Seasonal Auto Regressive Integrated

Moving Average with eXogeneous variables (SARIMAX) models, the forecast package in R

(available at https://github.com/robjhyndman/forecast) was used in order to optimally find the

best parameters (order of each polynomial) of the SARIMA model, as well as to find the sea-

sonality pattern of the data.

2.4.3 Long Short-TermMemory. Related to Long Short-TermMemory(LSTM), different

network architectures were explored, applying the ADAptive Moment estimation (ADAM)

optimizer [35] for parameter optimization. ADAM is an adaptive learning rate optimization

algorithm, designed specifically for training deep neural networks. Best results were obtained

by: (i) normalizing all the variables in the range of (-1,1); (ii) using the mean-squared-error

metric for the loss function; (iii) using a sequential model with one dense layer consisting 100

neurons using the Keras library in python (Keras is an open-source neural-network library

written in Python); and (iv) the following setting: number of epochs was set to 1000, dropout

to 0.2 and batch size of 30.

2.5 Prediction architecture

Fig 2 depicts the methodology, with the division of the datasets into training and test sets, hav-

ing social media, environmental, recency and seasonality features and number of visits as the

response variable (y). Recency features consist of visit counts in the previous last 4 months (y-

1, y-2, y-3, y-4) and their log values (log y-1, log y-2, log y-3, log y-4) while seasonality features

are the number of visits in the last year, same period, i.e. (y-12, y-13, y-14, y-15) and their log

Table 3. Prediction techniques comparison.

Method Exploit history of visits Exploit social media and environmental features Consider temporal dependency among data observations

SVM ✕ ✓ No

SARIMAX ✓ ✓ Yes

SARIMA ✓ ✕ Yes

LSTM ✓ ✓ Yes

Naive Models ✓ ✕ Yes

https://doi.org/10.1371/journal.pone.0278112.t003
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values (log y-12, log y-13, log y-14, log y-15). Furthermore, in our prediction architecture, as it

can be seen in Fig 2, since social media and environmental data may not be available at predic-

tion time, we exploit the values of the input feature in the last year (Xi−12) as the input of the

models in the test case. This strategy has been used because of the annual seasonality behaviour

of the tourism domain, as discussed in Section 1.

Fig 3 illustrates the construction of specialized and global models in order to study the pre-

diction accuracy of the specialized models, with that of a global model trained with all attrac-

tions of each category of attractions (indoors our outdoors). Specialized models train a model

particularly with features of each attraction while for global models, the model receives feature

observations of all attractions of each type building a model.

In our experiments, cross-validation was performed to learn and optimize the prediction

models. For each attraction, each time series was first divided into two parts: the training set,

consisting of the firstmmonths of data (m = 30 for outdoor attractions andm = 76 in indoor

attractions), and the test set, consisting of the remaining months of data (4 months for both

outdoor and indoor attractions). The training set is used to learn the prediction model and

optimize the model’s parameters, while the test set is used for evaluating the learned model

and reporting effectiveness results. For models requiring parameter tuning, the training set is

further split randomly into additional parts.

Cross-validation with k = 10 (k-fold cross validation) was employed. In k-fold cross-valida-

tion, the training data is randomly partitioned into k equal sized sub-samples. Of the k sub-

samples, a single sub-sample is retained as the validation data for testing the model, and the

remaining k-1 sub-samples are used as training data. The cross-validation process is then

repeated k times, with each of the k sub-samples used exactly once as the validation data. The k

results can then be averaged to produce a single estimation. Note that as the process of choos-

ing the validation sets is random, it can cause different models and model parameters (but

very similar) in each execution and consequently slightly different prediction results.

Fig 2. Tourism demand prediction methodology adopting social media, environmental, recency and seasonality features.

https://doi.org/10.1371/journal.pone.0278112.g002
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In order to evaluate the accuracy of the prediction techniques, the Mean Absolute Percent-

age Error (MAPE) [36] is used, being defined as:

MAPEð%Þ ¼
1

M

X

M

t¼1

j
yðtÞ � ŷðtÞ

yðtÞ
j ð8Þ

whereM is the number of forecasting periods, y(t) is the actual visitation count and ŷðtÞ is the

predicted visitation count, both for time window t. A lower MAPE(%) value indicates a smaller

percentage of errors produced by the prediction model. One commonly used interpretation of

MAPE(%) values was suggested by [36] as follows: less than 10% is highly accurate forecasting,

10%-25% is good forecasting, 25%-50% is reasonable forecasting, and 50% or more is inaccu-

rate forecasting.

2.6 Factorial design of tourism key requirements

To further investigate how recency, seasonality and model specialization requirements impact

the prediction accuracy of different techniques, a factorial design analysis is performed over

the correspondent features of each requirement to quantify the relative importance of each

individual feature as well as their interactions on prediction accuracy.

A 2k experimental design technique was employed, since we are interested in determining

the effect of k factors, each of which having two alternatives or levels. Such a design can be ana-

lyzed using a regression model to compute the main effect of a given factor xi, subtract the

average response of all experimental runs for which xi was at its low (False) level from the

Fig 3. Model specialization—illustration of global vs. specialized models.

https://doi.org/10.1371/journal.pone.0278112.g003
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average response of all experimental runs for which xi was at its high (True) level [15]. The

importance of a factor is measured by the proportion of the total variation in the response vari-

able that is explained by this factor.

Specifically, a 2k factorial design was employed with k = 3 factors (i.e.,recency, seasonality

and model specialization), each one with two levels (true or false). This design allows us to esti-

mate the relative importance of each factor as well as all factor interactions on the response

variable. This importance is estimated by the fraction of the total variation observed in the

response that can be explained by each factor (or factor interactions). In the following, we

define the considered factors and factor levels. Note that a 2k factorial analysis is performed for

each type of attraction (indoors and outdoors):

• Recency factor (R): two levels are defined: (1) True, if the visit counts in the previous last 4

months (y-1, y-2, y-3, y-4) and their log values (log y-1, log y-2, log y-3, log y-4) are used for

training the model and; (2) False, otherwise.

• Seasonality factor (S): two levels are defined: (1) True, if the visit counts in last year (y-12, y-

13, y-14, y-15) and their log values (log y-12, log y-13, log y-14, log y-15) are used for training

the model and; (2) False, otherwise.

• Model Specialization factor (M): two levels of are defined: (1) True, if an individual model

for each indoor/outdoor venue is trained and; (2) False, a unique model for all venues of

each attraction class is learned.

3 Experimental results

Our analysis starts by introducing the baselines for both indoors and outdoors attractions.

Then, we discuss the impact on the results of the incorporation of the two tourism require-

ments—seasonality and recency—as features into the current SOTA prediction model (from

[5]). RQ1 is answered at the end of these two sections.

In Section 3.3, RQ2 is investigated by applying a factorial design analysis in order to evalu-

ate the impact of each factor (requirements) as well as of their interactions on the prediction

accuracy of the models. A finer evaluation of the impact of each of the features is provided by

an analysis of the coefficients of those features in the final models (Section 3.4).

In order to answer RQ3, the impact on prediction accuracy of each of the recency and sea-

sonality features in different scenarios of scarcity of historical data is analyzed (Section 3.5).

Finally, in Section 3.6, some examples of attraction are presented for which only by exploiting

the complete set of tourism requirements, good prediction results could be obtained.

3.1 Comparison among baselines

In our previous work [5], we provided evidence of the importance of considering model spe-

cialization as an explicit requirement for tourism prediction. Our proposed prediction model

—a specialized SVR method adopting social media and climate data—outperformed alterna-

tive models in the literature. We also compared the prediction accuracy of the specialized SVR

models trained separately for each attraction with that of a global SVR model trained with all

attractions of each type—indoors and outdoors.

In this section, for the sake of self-contention, the main results from [5] are summarized,

adding to those results a comparison with a new method not exploited in that work—a Long

Short-TermMemory (LSTM) neural network model, a popular method was used as as baseline

for comparison. For the sake of completeness, our analysis also includes naive and classical

models for recency and seasonality, also as baselines. The naive models are included since they
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directly reflect the behaviour of recency and seasonality features without any additional infor-

mation in their predictions. Finally, considering the great popularity of the Neural Network

models in the recent years, our analysis included one of the most successful neural network

models in the domain of time-series and tourism prediction [31] which is LSTM. In the follow-

ing, we elaborate on the baselines and their respective results.

3.1.1 Naive models. Two naive models are defined based on seasonality and on recency

of tourism activities—Naive-Seasonality and Naive-Recency. For a naive prediction with sea-

sonality, a simple approach to determine y(t) in a time window t, is to pick the number of visits

at y(t−12) in the available past data. Similarly, for recency, y(t) is predicted based on the number

of visits at y(t−1).

3.1.2 Classical Models. ARIMAmodels are one of the classical time-series prediction

techniques widely used in the tourism prediction task. Accordingly, results of SARIMAX and

SARIMAmodels are also reported where Seasonal-ARIMA (SARIMA) incorporates the

known seasonality (periodicity) of the data into an ARIMAmodel, enhancing its predictive

power. The SARIMAX baseline adds social media and climate features as the exogenous fea-

tures. Both models were considered in [5], however for the sake of completeness, those results

are replicated in this paper.

3.1.3 State-of-the-art (SOTA) model. In our previous work [5], we observed that, train-

ing specialized models (spe.) for each attraction using SVR outperformed the case where a sin-

gle global model (glo.) is trained for all attractions of each type. We report both results (SVR

spe. and SVR glo.) alongside the other baselines.

3.1.4 Neural network model. In here a robust neural network model—LSTM—which is

actively used in time-series prediction tasks, is also exploited. LSTMmodels are famous for

their memory-based architecture capable of capturing past trends in the data.

Accuracy results for each of these models are presented in Tables 4 and 5 for indoor and

outdoor attractions, respectively. Since our goals is to predict the number of visits with the

best possible accuracy, we focus our attention on the cases where MAPE is lower than 25%

(MAPE< 25%—accurate predictions). In this scenario, the specialized SVR model with Envi-

ronmental and Social features is the best model, predicting accurately for the highest percent-

age of attractions (almost 93% of Museums and 95% of Parks), considerably outperforming

other models. However, best results for MAPE less than 10% (highly accurate results) are

achieved by the naive-recency (26%) for the indoor attractions and by the naive-seasonality

(42%) for the outdoor attractions. The success of the naive methods in highly accurate results

(MAPE< 10%) is one of the reasons that motivates the adoption of recency and seasonality in

Table 4. Baseline results for 27 museums in U.K. (indoors). The values in the table represent the percentage of attractions with MAPE in each specified range.

Museums

MAPE naive recency naive seasonality SARIMAX SARIMA LSTM SVR spe. SVR glo.

MAPE<10 25.93% 18.51% 11.11% 11.11% 11.11% 14.81% 3.7%

MAPE<25 70.37% 81.48% 85.19% 74.07% 74.07% 92.59% 11.11%

https://doi.org/10.1371/journal.pone.0278112.t004

Table 5. Baseline results for 76 national parks in U.S. (outdoors). The values in the table represent the percentage of attractions with MAPE in each specified range.

Parks

MAPE naive recency naive seasonality SARIMAX SARIMA LSTM SVR spe. SVR glo.

MAPE<10 6.58% 42.11% 13.16% 7.89% 23.68% 22.37% 5.26%

MAPE<25 56.58% 82.89% 69.74% 39.47% 84.21% 94.74% 18.42%

https://doi.org/10.1371/journal.pone.0278112.t005
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our specialized models. The success of naive seasonality in parks is associated with the sea-

sonal-cyclic behavior of climate in this type of outdoor attractions, as seasonality has been con-

sidered one of the main phenomena affecting tourism, principally due to changes in the

weather conditions [9]. Climate conditions are less important when inspecting indoor attrac-

tions such as museums and galleries. (Naive) Recency, on its turn, in the case of indoor sites

demonstrated to be a very good predictor for specific cases. Next, the performance of recency

and seasonality is evaluated when explicitly incorporated as features into the specialized SVR

model.

3.1.5 Computational complexity and execution time. The computational complexity of

the Support Vector Machine (SVR) for time complexity is of O(N3) and for space complexity

is of O(N2) where N is the number of points [37]. In our experiments, as few training points

(N = 30 for outdoor attractions and N = 76 in indoor attractions) are used and the model is

trained once a month, the execution time for the prediction task is not a major concern.

The computational complexity of other algorithms is as following: for SARIMA models the

complexity is in the order of O(n) while in the case of neural networks they take more time

due to numerous iterations applying forward and back-propagation—back-propagation, in

the order of O(n5) is much slower than the forward propagation, in the order of O(n4). Finally,

for the case of naive models the complexity is O(1) since they only pick the defined index of

historical data to pass as the naive prediction.

All in all, for specialized SVR models, the mean execution time is about 45 seconds (min

exec. time: 21 seconds and max exec. time: 92 seconds) while for generalized models for differ-

ent sets of features the mean execution time was around 4 hours (min exec. time: 1 hour and

33 minutes and max exec. time: 20 hours). After conclusion of the training step, the prediction

phase is quite fast—average of 4 seconds for all 100 attractions independent of global or spe-

cialized models. The machine used in our experiments was a desktop PC with 4 CPUs and 16

GBs of RAMmemory using the R programming language.

3.2 Augmentation with RECENCY and SEASONALITY

Our focus now shifts to demonstrate how the addition of the other two tourism requirements,

i.e. recency and seasonality, into the state-of-the-art specialized SVR models with Social and

Environmental features, hereafter called SpecES (Specialized with Environmental and Social)),

can improve the accuracy of forecasting the visitations for fine-grained touristic points. Results

of adding recency and seasonality to global models can be found in the Appendix A. Training

specialized models for each individual attraction allows the models to learn specific patterns of

visitation at each touristic point. Tables 6 and 7 show the prediction performance of the mod-

els when all the three tourism prediction requirements are present i.e. model specialization,

seasonality and/or recency. As previously discussed, for indoor attractions, the specialized

models without the new features (SpecES) have a good performance (MAPE< 25%)—over

92% for museums and 95% for parks (column SpecES in Tables 6 and 7 refer to column SVR.

spec in Tables 4 and 5, repeated here to facilitate comparison).

Table 6. SpecES prediction results augmented with the other two tourism requirements—seasonality and/or recency, trained for each of the 27 museums in U.K.
(indoors). The best prediction models are in bold face.

Museums

MAPE SpecES SpecES+recency SpecES+seasonality SpecES+recency+seasonality

MAPE<10 14.81% 29.63% 48.15% 48.15%

MAPE<25 92.59% 96.30% 96.30% 92.59%

https://doi.org/10.1371/journal.pone.0278112.t006
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Considering the results in Tables 6 and 7, it can be noted that the combination of only

seasonality and model specialization for museums (fourth column in Table 6) results in a

slightly higher accuracy (96% for MAPE< 25 and 48% for MAPE< 10) than when all fea-

tures are used. For parks, instead, the combination of all tourism requirements (fifth column

in Table 7) performs the best (96% for MAPE < 25 and 50% for MAPE < 10). This aspect

will be further analyzed in the next section when we perform a factorial analysis over the

tourism requirements.

Regarding the high accuracy cases (MAPE< 10), remind that the combination of SpecES

with the other two key tourism requirements- recency and seasonality- produced the best

overall results. In more details, for the indoor attractions (Table 6), SpecES+recency+seasonal-

ity produced high prediction accuracy for about 48% of the museums compared to 22%

obtained by the naive-recency (Table 4), the best baseline in this category. A similar behavior

is seen for the outdoor attractions—comparing the results in Tables 5 and 7, for (MAPE< 10),

SpecES+recency+seasonality has highly accurate predictions for 50% of the parks compared to

around 42% using the naive-seasonality.

3.3 Factorial analysis

This section investigates the impact of each of tourism prediction requirements, i.e. recency,

seasonality and model specialization by means of a factorial design analysis. Factorial design

techniques help to analyze the effect of each factor (requirement) as well as the effects of their

interactions on the tourism demand (visits count) in each touristic attraction.

We employ a regression analysis for evaluating the amount of variation in the prediction

results that can be explained by each factor (and interaction). A 2k r experimental design tech-

nique was adopted to estimate the effect of k = 3 factors (recency, seasonality and model spe-

cialization), each of which having two levels (requirement is incorporated into the model or

not, for the prediction task) and with r replications per configuration. As reported in Section

2.3, applying cross-validation along with the SVR model produces small variations in predic-

tion results due to the stochastic nature of the task. In order to reduce this variation and

increase the accuracy of results, each experiment was executed several times to calculate the

average and standard deviation of the variation of results. The adequate number of runs was

estimated based on 95% confidence level and accepted error percentage of 2%, as being 5 runs.

In our factorial analysis, the response variable is the % of attractions (indoors/outdoors) that

fall in each MAPE range. The goal is to estimate the importance of each factor (interaction) on

the variation observed in those % of touristic attractions. When all three requirements are

turned off, the global SVR model (non-specialized model trained for all attractions of each

type—indoors and outdoors) is used with only the Environmental and Social media features,

i.e. absence of all three factors. Results of adding recency and seasonality to global models can

be found in the Appendix B in Tables 14 and 15.

Table 8 shows the variation explained by each tourism requirement on the prediction

results in each category of attractions. It can be observed that in both indoors and outdoors

Table 7. SpecES prediction results augmented with the other two tourism requirements—Seasonality and/or recency trained for each of the 76 national parks in U.
S. (outdoors). The best prediction models are in bold face.

Parks

MAPE SpecES SpecES+recency SpecES+seasonality SpecES+recency+seasonality

MAPE<10 22.37% 40.79% 48.68% 50.00%

MAPE<25 94.74% 94.74% 96.05% 96.05%

https://doi.org/10.1371/journal.pone.0278112.t007
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attractions, model specialization and then seasonality have the largest contributions. In the

case of MAPE< 25, there is also a significant contribution of the interaction between these

two factors—seasonality and Model specialization (24.4% for Parks and 13.3% in the case of

Museums). The analysis of the statistical significance of our numerical results are presented in

details in the Appendix B in Tables 16 and 17.

In addition, it can be observed that model specialization, in relative terms, is more impor-

tant to the variation observed for MAPE< 10 than for the results for MAPE< 25 (explains

70% versus 56% of result variation for Museums and 59% versus 46% for Parks). One may say

that if highly accurate prediction results (MAPE< 10%) are needed, the use of specialized

models becomes even more important.

Table 8 also shows that the impact of recency and its interactions with other factors on the

prediction results are almost negligible. Despite that, recency can improve results (look for

instance at the second and third columns in Tables 6 and 7), indicating that it should be used,

mainly if the seasonality features are not available.

Seasonality alone has more than 20% of contribution in both parks and museums, for

MAPE< 25. This indicates that when only the historical data for an attraction is present, sig-

nificant improvements in accuracy can be obtained by injecting seasonality features into the

model as input variables. It can also be observed that seasonality has even a higher impact

(32.6% versus 19.8%) in outdoor attractions for very accurate prediction results (MAPE< 10).

This is in alignment with what was discovered in [5] when we showed that in outdoor attrac-

tions the impact of climate features is much higher than in indoor attractions, considering that

the climate features have a high correlation with seasonality [10].

3.4 A drill down analysis of encapsulated features in recency and
seasonality factors

In the previous section, the impact of each of the tourism prediction requirements was quanti-

fied. In the following, we delve further into the role that each of the recency and seasonality

features (introduced in the Section 2) play regarding the prediction task accuracy. We will do

so by analyzing the learned coefficients of the global models in the indoor and outdoor scenar-

ios. In other words, the global models will be used as an analytical tool (only). This option

was chosen to avoid the complexity of analysing all the 103 models produced with specializa-

tion (one for each attraction).

Table 8. Contribution of each of tourism prediction requirements: Recency, seasonality, model specialization and their interactions into the response variable in
each category of attractions: Parks and museums; results for MAPE< 10 and MAPE< 25 in 5 runs. The contributions higher than 5% are in bold face. The analysis of
the statistical significance of our numerical results are presented in details in the Appendix B in Tables 16 and 17.

Requirements contribution (%)

MAPE< 25 MAPE< 10

Museums Parks Museums Parks

Recency 1.0 1.1 0 1.1

Seasonality 21.1 24.6 19.8 32.6

Model spec. 55.9 46.0 70.0 58.5

Recency, Seasonality 5.5 0.7 1.8 2.0

Recency, Model spec. 0.1 1.2 1.3 2.0

Seasonality, Model spec. 13.3 24.4 2.9 1.8

Recency, Seasonality, Model spec. 0.7 1.8 1.6 0.9

Residuals 2 0.2 3 1

https://doi.org/10.1371/journal.pone.0278112.t008
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As can be seen in Tables 14 (indoors) and 15 (outdoors) (in the Appendix A for the sake

of space, easiness of analysis and flow of discourse), the impact of the incorporation of the

recency and seasonality features into the global models is similar to that of the specialized

models, with significant improvements over the case in which such features are not used, for

MAPE< 10 and MAPE< 25, although results are not as good as with the latter.

Tables 9 and 10 show the learned coefficients of global models in indoor and outdoor sce-

narios, respectively. In more details, for this analysis, global models were built for all attrac-

tions of each type, adopting each time a different feature-set: (I) soc + env: global model

trained having only social media and environmental features in the feature-set; (II) recency

(soc + env + rec): global model having recency features in addition to the social media and

environmental features; (III) seasonality (soc + env + seas): global model having seasonality

features in addition to the social media and environmental features and; (IV) seasonality+-

recency (soc + env + rec) + seas): global model having all features including social media, envi-

ronmental, recency and seasonality features.

A similar pattern can be seen in the learned coefficients of outdoor attractions (Table 10).

The model has larger weights for average temperature and number of reviews in the simple

model; y-1 and average temperature in the recency model; y-12 and y-14 in the seasonality

Table 9. The coefficients of features of global (single) model for all 27 U.Kmuseums adopting each time a different set of features: (I) only social media and environ-
mental features (soc+env), (II) social media, environmental and recency features (soc+env+rec), (III) social media, environmental and seasonality features (soc+env
+seas), (IV) complete feature set: Social media, environmental, seasonality and recency feature (soc+env+rec+seas). The bold face shows the top 2 features in each
column.

Features soc+env soc+env+rec soc+env+seas soc+env+rec+seas

tmin -0.093 0.025 -0.004 -0.031

tavg 0.024 0.005 -0.001 0.001

tmax 0.116 -0.011 0.002 0.026

air_frost_days 0.004 0.005 0.000 0.008

rain -0.022 0.006 0.003 0.018

sunny_hr -0.037 0.020 0.004 0.022

revs 0.517 0.010 0.004 0.002

rating -0.051 -0.001 0.000 -0.004

month -0.007 -0.060 -0.002 -0.026

y-1 - 0.511 - 0.407

y-2 - 0.258 - 0.158

y-3 - 0.156 - 0.033

y-4 - 0.054 - 0.026

log y-1 - 0.025 - 0.089

log y-2 - -0.003 - -0.033

log y-3 - -0.032 - -0.015

log y-4 - 0.003 - -0.017

y-12 - - 0.764 0.658

y-13 - - 0.038 -0.291

y-14 - - 0.084 -0.051

y-15 - - 0.089 0.034

log y-12 - - 0.011 -0.028

log y-13 - - -0.002 -0.027

log y-14 - - -0.003 0.036

log y-15 - - -0.007 0.003

https://doi.org/10.1371/journal.pone.0278112.t009
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model; and finally y-12 and y-1 for complete feature-set model, which is consistent with our

previous discussions in the factorial design analysis.

Regarding indoor attractions (Table 9), the learned coefficients indicate the high impor-

tance of number of reviews and then maximum temperature in the simplest model. In the

recency model (soc + env + rec), instead, higher weights are given to the number of visits in

the last two months (y-1 and y-2 features). The number of visits in the last year (y-12) and in

15 months before (y-15) are more relevant when seasonality is incorporated into the model

(soc + env + seas). Finally, visits in the last year and in the last month (y-12 and y-1) contribute

more to the accuracy of the complete model (soc + env + rec + seas). Interestingly, the impact

of visits in the last year, same period (y-12) has a larger weight than visits in the last month (y-

1) which is aligned with what was observed in the factorial analysis of the impact of tourism

prediction requirements—seasonal features have more contribution to the model than recency

ones.

3.5 Impact of historical data scarcity on the prediction task

As discussed in the previous sections, learning specialized models trained with the complete

information regarding social, environmental, recency, and seasonality information consider-

ably improves the accuracy of the prediction models. However, having full information

Table 10. The coefficients of features of global (single) model for all 76 U.S. National Parks adopting each time a
different set of features: (I) only social media and environmental features (soc+env), (II) social media, environ-
mental and recency features (soc+env+rec), (III) social media, environmental and seasonality features (soc+env+-
seas), (IV) complete feature set: Social media, environmental, seasonality and recency feature (soc+env+rec+seas).
The bold face shows the top 2 features in each column.

Features soc+env soc+env+rec soc+env+seas soc+env+rec+seas

tmin 0.006 -0.290 -0.001 -0.011

tavg 0.021 0.580 0.002 0.022

tmax 0.002 -0.278 0.000 -0.010

temp_dif -0.015 0.003 0.003 0.003

pcp(rain) 0.000 -0.002 -0.003 -0.001

revs 0.278 0.019 0.001 0.000

rating -0.007 0.005 0.009 0.005

month -0.007 -0.038 -0.001 -0.005

y-1 - 1.218 - 0.340

y-2 - -0.297 - 0.014

y-3 - -0.070 - 0.018

y-4 - 0.066 - 0.014

log y-1 - -0.007 - 0.034

log y-2 - 0.023 - 0.004

log y-3 - -0.023 - -0.013

log y-4 - 0.001 - -0.001

y-12 - - 0.947 0.928

y-13 - - 0.026 -0.262

y-14 - - 0.031 -0.018

y-15 - - -0.010 -0.038

log y-12 - - 0.009 -0.013

log y-13 - - -0.003 -0.024

log y-14 - - -0.012 -0.005

log y-15 - - 0.003 0.013

https://doi.org/10.1371/journal.pone.0278112.t010
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regarding recency and seasonality is not always guaranteed. In the following, we further inves-

tigate the individual impact of recency and seasonality in the prediction task in scenarios

without full availability of historical information on (number of) visits, social media and envi-

ronmental data for touristic attractions. For these analyses, we revisit the prediction architec-

ture and redefine the training and test sets when necessary.

3.5.1 Only recency—scarcity in seasonal data. In scenarios in which there is not enough

historical information for an attraction, i.e., there is only very recent data on visits, social

media and environmental data of a touristic place, the model can exploit recency features in

order to improve the prediction of the future visitation. This situation may occur, for instance,

for new attractions or attractions that have only started to collect (visitation) data very recently.

To simulate this scenario in our datasets, the model only uses the last four (4) months of the

historical data of each attraction to train each prediction model while filtering out the rest of

the data. Fig 4 presents our revised prediction architecture to deal with this new prediction

scenario.

Since the features of the last 12 months are not available to evaluate the prediction model,

we adopted two different scenarios for defining the input value of each feature in the test-set:

(i) last month case, in which the previous month information is used as the input of the model

and; (ii)mean of 4-months case, in which the mean of each feature of the train-set is used as

the input feature values of the models. Tables 11 and 12 (two leftmost columns) show the

results. The percentage of parks with an accurate prediction (MAPE<10) is quite low in both

cases (about 2%) while the percentages are a little higher (ÿ 15%) in museums. Regarding

Fig 4. Tourism demand prediction methodology in scarcity of seasonal data adopting social media, environmental and recency features.

https://doi.org/10.1371/journal.pone.0278112.g004

Table 11. Scarcity in seasonal historical and recent data—Evaluation of performance of recency and seasonality features in 27 Museums in U.K.

MAPE Only Recency Only Seasonality

last month case mean of 4-months case unavailable last 4 months unavailable last year

MAPE<10 14.81% 14.81% 44.44% 29.63%

MAPE<25 37.00% 37.00% 81.48% 74.00%

https://doi.org/10.1371/journal.pone.0278112.t011
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good predictions (i.e., MAPE<25), using the last month as the input has the same results as

using the mean of 4-months features (37% in museums in both cases) whereas regarding the

parks, using the last month as the input has a slightly better performance(25%) than using the

mean of 4-months features (21%).

3.5.2 Only seasonality—scarcity in recent data. Likewise the recency features, we analyze

the performance of seasonality features when the most recent data is not available. This may

happen in cases when data collection is periodical (or seasonal) and lasts longer periods and

the most recent data is not yet available for prediction. In this scenario, seasonality features

can be exploited, i.e. number of visits, social media and environmental data in the previous

years in order to predict the future visitation, if this information is available. Fig 5 shows our

revised prediction architecture to deal with this prediction scenario.

For this, the most recent historical data of each attraction are not used and only the remain-

ing historical data are used for training the prediction model. For constructing the training-

set, two cases are defined regarding the unavailability of historical data: (i) unavailable history

of the last 4 months of each feature; (ii) unavailable last 12 months (last year) of each feature.

The first case corresponds to the situation where the previous last 4 months (y-1, y-2, y-3, y-4)

are not available while the second case is when we do not have one complete cycle of historical

data (annual seasonality) [11].

Tables 11 and 12 (two rightmost columns) present the results for indoor and outdoor

attractions. The percentage of museums with an accurate prediction (MAPE<10) is much

Table 12. Scarcity in seasonal historical and recent data—Evaluating performance of recency and seasonality features in 76 national parks in U.S.

MAPE Only Recency Only Seasonality

last month mean of 4-months unavailable last 4 months unavailable last year

MAPE<10 1.32% 2.63% 43.00% 0.00%

MAPE<25 25.00% 21.00% 85.00% 21.00%

https://doi.org/10.1371/journal.pone.0278112.t012

Fig 5. Tourism demand prediction methodology in scarcity of recent data adopting social media, environmental and seasonality features.

https://doi.org/10.1371/journal.pone.0278112.g005
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higher in the first case when only the last 4 months of the historical data is unavailable in com-

parison to the case when the complete historical data of the last year is missing (44% versus

30%). The scenario is even more dramatic for parks (43% versus 0%). This behaviour is similar

for good predictions (MAPE<25) for both, indoor (81% versus 74%) and outdoor (85% versus

21%) attractions. These results again suggest the importance of the historical data. In other

words, having the last trends of visitations besides the periodical/historical behaviors is essen-

tial for an accurate prediction.

3.6 Improving accuracy of difficult cases by incorporating explicit tourism
prediction requirements

In our previous work [5], we have identified a small set of indoor and outdoor tourism attrac-

tions for which their best prediction models performed poorly. In this section, we evaluate

whether the incorporation of seasonality and recency features into the specialized models for

these attractions can help to mitigate the found problems. In particular, we focus on two

attractions—National Portrait Gallery in U.K. and Bryce Canyon National Park in U.S.

In the case of National Portrait Gallery, the social media reviews had a non-typical

major increase by April 2015 but there was a gradual decrease in the number of visits (Fig 6).

This atypical behaviour could be explained considering the annual report published by

National Portrait Gallery available at https://www.npg.org.uk/assets/files/pdf/accounts/

npgaccounts2015—16.pdf), informing that the virtual audience grew on a national and inter-

national level during 2015/16 with an increased number of people having access to exhibitions,

displays and the collection online through the gallery’s website. As a result, more social media

activity is observed but less in-site visitations. The incorporation of the recency and seasonality

features helped to detect this behavior change and consequently improved the model accuracy

(a reduction of 137% mean percentage error to 13% in Table 13).

Regarding the Bryce Canyon national park, the difficulty was that the considerable increase

in number of visits (more than 20% starting in February 2016 until September of the same

year in comparison with the same period in 2015) was not accompanied by social media

reviews (same behavior as previous years plus a slightly decrease in May 2016 compared to

May 2015) (Fig 7). A possible reason was the waiving of the entrance fees in 2016. Again, by

Fig 6. Temporal evolution of number of visits and social media comments in National Portrait Gallery in U.K.—highly more accurate prediction
model using specialized model with all recency and seasonality features.

https://doi.org/10.1371/journal.pone.0278112.g006
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explicitly exploiting seasonality and recency such anomalies can be captured, reducing the

mean percentage error of the models from 35% to 24% (reported in Table 13).

4 Discussion

4.1 Answering the posed research questions

This Section discusses answers to our posed Research Questions in Section 1.1 based on the

experimental results presented in Section 3.

RQ1 focused on analyzing whether key tourism prediction requirements could influence

the prediction accuracy of fine-grained tourists’ visits. Our experimental evaluation confirmed

a positive answer to this question, corroborating our initial hypotheses. Significant gains have

been observed over the previous state-of-the-art (SOTA) results [5], by explicitly incorporating

the three requirements into the models.

In general, our analyses demonstrated a more prominent role of the seasonality features in

the case of outdoor attractions (national parks), which can be explained by the weather´s sea-

sonal behaviour that affects visitors´ decisions in paying a visit to an outdoor attractions. A sig-

nificant importance was also given by the models to recency features, especially for the the

case of indoor attractions (national museums). This fact can be justified by smaller importance

of weather conditions in case of indoor attractions and a relatively significant impact of recent

events such as festivals or pandemics in this type of attraction.

The impact of the incorporation of recency and seasonality as explicit first-class features

into specialized models is perhaps better demonstrated by the capacity of the new models in

Fig 7. Temporal evolution of number of visits and social media comments in Bryce Canyon National Park in U.S.—significant gain using
specialized model with all recency and seasonality features.

https://doi.org/10.1371/journal.pone.0278112.g007

Table 13. Accuracy of difficult cases incorporating explicit tourism prediction requirements in indoor and out-
door attractions.

Attraction MAPE-SOTA results (from [5]) MAPE—our results

U.K. National Portrait Gallery (indoor) 137.90% 13.34%

U.S. Bryce Canyon National Park (outdoor) 35.19% 24.43%

https://doi.org/10.1371/journal.pone.0278112.t013
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dealing with previously unsolvable cases by the SOTA. The National Portrait Gallery in the U.

K., for instance, had a huge increase in social media reviews but that was not accompanied by

real world visits, causing the SOTAmodels to mistakenly follow the social patterns, conse-

quently resulting in low accuracy. The explicit incorporating of recency features helped the

models to capture recent trends in visitations, diminishing the importance of the tendency

observed for the social media.

Another example is the Bryce Canyon national park in the U.S., in which the visits experi-

ence some period of untypical increases. That increase was not explainable by neither the envi-

ronmental features nor the social media reviews, solely inputs exploited by the SOTAmodel.

In this example, the explicit incorporating of seasonality features helped the models to capture

variations in cyclic behaviour of tourists, enhacing the prediction accuracy for this attraction.

RQ2 aimed at quantifying the combined and isolated influence of each of key tourism pre-

diction requirements in improving prediction accuracy. Usually, we observed that our special-

ized models with presence of recency and seasonal features gave a much higher importance for

these features than for social or environmental features exploited by the SOTAmodels. Intui-

tively, recency features capture the impact of recent events on the prediction models that may

deviate from the historical patterns. We have indeed observed that the incorporation of recent

trends allowed small adjustments of the model, helping to avoid high drops in effectiveness.

Let´s take again the hard-to-solve case of outdoor national park in U.S.—Bryce Canyon to

illustrate our argument. An evaluation of features weights of the proposed model for this

attraction showed relatively higher weights for recency (e.g. weight 0.74 for feature y-1: last

month’s number of visits) and environmental features (e.g., weight 0.018 of feature tmax: max-

imum temperature and weight 0.002 for feature revs: number of reviews). This resulted in a

quick response to the deviations in visitations in the testing period, helping to produce a 30%

reduction of prediction error compared to the SOTAmodel.

Similarly, seasonality features capture the inherently cyclic behaviour of tourism demands.

Again, to exemplify, the explicit use of seasonality features was helpful to obtain more accurate

predictions in the case of hard-to-solve case of National Portrait Gallery, UK (indoor). The

specialized model trained for this attraction, could learn the seasonal cyclic behaviour of visita-

tions over many years of historical data, not being mislead by the increase of visitations in a

short period of time. In a drill down analysis of the features´ importance, a relatively higher

weight was given to seasonal feature y-12: last year’s number of visits (weight of 0.63) in com-

parison to social feature revs: number of reviews (weight of 0.46) that had been much impor-

tant for the global model. As a consequence, our model could correct the gradual

disassociation of social media review counts and number of visits, resulting in a model accu-

racy 9 times better than the SOTAmodel in the period of evaluation.

Finally,model specialization allowed us to capture very specific idiosyncratic patterns of

visitations of individual parks that global models could not. For several attractions such as

Aztec Ruins national park, the specialized model could obtain much more accurate results (up

to 8 times better than global model). In these cases, particular recent and seasonal behaviors of

visitations, alongside other social media and environmental features where better captured by

the specialized model, not being confounded by general/global patterns of other attractions

visitations’ patterns. In other words, the weights of features assigned to each individual attrac-

tion, in our example Aztec Ruins national park, was better adjusted to the time-series of visita-

tions for this particular attraction.

An interesting general pattern that deserves attention is the higher improvements for the

high accuracy cases (MAPE< 10), mostly because the easier cases where solvable by the SOTA

models, as explained above. Specialization, recency and seasonality stand out, as discussed
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above, for the hard cases. But there still a lot of room for improvements, as we are still at a rate

of 50% for this very accurate predictions.

To answer RQ3, we explored how scarcity in historical data—recent and seasonal features

—impacted the prediction accuracy of models. This analysis aimed to simulate real world sce-

narios with lack of official census for some periods of time due to intermittent survey of visita-

tion counts in touristic attractions. We observed that absence of recency or seasonality

features drastically reduces the accuracy of prediction models. Although scarcity of recent data

did not jeopardize the results as much as the absence of seasonality data did, recency features

still had a significant impact on prediction accuracy, mainly for situations in which there was

not enough historical data to capture seasonality for a given attraction.

This behaviour can be justified since for most touristic attractions, the seasonal touristic

activities happen repetitively and repetition helps the learned model to emphasize certain

behaviors as captured by the features. The lack of such seasonal data, consequently, may signif-

icantly reduce accuracy.

On the other hand, unusual or unexpected deviations from the historical touristic patterns

because of recent events are rare and may not necessarily cause huge declines in prediction

accuracy. These findings are inline with the good performance of the naive seasonal models.

4.2 Limitations and practical applications

Our analyses, though rich, have limitations. The main one relates to the lack of official data for

some attractions in order to test our methodology on even finer time-grained data (weekly or

daily basis). Predictions were evaluated on a monthly basis. This granularity of time was

selected since the official ground-truth data was available and aggregated at this level. However

some preliminary experiments suggest that there is a strong possibility of successfully applying

the same methodology on a finer granularity of time.

Regarding the practical application of our results in real-word scenarios, although exploit-

ing data from social media is fascinating, especially recent and seasonal data, a critical question

that will determine their utility for forecasting future visitation is: how well do they reflect on-

the-ground visitor surveys and records? In our work, we showed that there is a strong relation-

ship between the number of reviews and visitation field-based records for a large fraction of

the attractions, particularly those that are outdoors. This may provide a powerful new tool for

forecasting tourism demands, helping tourism accommodations to get prepared even when

there is no prior survey for their regions (or one is not even possible), only by using freely

available social media data empowered by environmental records. However, correlating envi-

ronmental and social data, including recent and seasonal, with official visits demonstrated to

be key to motivate the simplicity of our prediction model. One needs to perform such analysis

in a much higher scale in the future to determine the real practical and economical benefits of

the proposed techniques.

5 Conclusions

We have investigated the impact of exploiting recency and seasonality features alongside social

media and environmental data to improve the performance of specialized prediction models

for touristic attractions (indoor and outdoor). Our experiments showed that by using special-

ized SVR models including all the tourism requirements, specially the explicit use of recency

and seasonality features—outperforms all the baselines, including state-of-the-art solutions

[5]. Improvements were obtained in all scenarios, mainly for highly accurate predictions

(MAPE< 10%) with gains of more than 300% over the previous solutions.
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We have also analyzed the impact of each of the tourism prediction requirements individu-

ally and their interactions applying a 2k factorial design analysis. We quantified the perfor-

mance of each of the three tourism prediction factors (requirements) in the learned models,

observing the higher impact of model specialization and seasonality features in model accu-

racy. But even the less impacting recency features can increase the accuracy of the models,

mainly when there is no available seasonal data for a given attraction.

Furthermore, to have a deeper understanding of the impact of the recency and seasonality

aspects, we analyzed how scarcity in historical recent and seasonal data impacts the prediction

accuracy of models. The general observation was that recent trends of visitation are essential in

the accuracy of the models. Finally, we showed how explicit incorporation of seasonality and

recency features into the specialized models of indoor and outdoor attractions could improve

the accuracy of the tourism demand in attractions in which the state-of-the-art models could

not provide an accurate prediction.

5.1 Future work

In future work, we intend to continue improving accuracy, mainly of highly accurate predic-

tions (MAPE< 10%), by evaluating the contents and sentiments of the reviews of each attrac-

tion. We intend to apply text analysis techniques such as Temporal Topic Modeling and

Sentiment Analysis in order to extract useful information from visitors daily reviews and their

possible visiting behaviour trends. Another possible research direction is to cluster attractions

into a few groups in order to create specific prediction models for each cluster, making it sim-

pler and more practical to use our solutions in the real life of business owners. This could

bring a lot of benefits specially by producing robust forecasting models for touristic places

with low availability of visitation census, due to multiple reasons such as high costs of surveys

or difficulty to collect data in remote places.

Appendices

This section includes the results of Global model application in the first part while the second

part presents the statistical analysis of our factorial design experiments.

A. Global model (Model specialization = OFF)

The application of model specialization may be considerably jeopardized when there is not

enough data to train individual models for each site. In this case, it is more viable to train and

apply a single global model taking advantage of the complete social and environmental (train-

ing) data for multiple attractions. In here, we evaluate the prediction power of trained global

models augmented with seasonality and recency tourism features for each type of tourism

attraction—indoors and outdoors. Table 14 and 15 shows these results. In the case of indoor

attractions, the global model with only social and environmental features (global mdl.) has a

good MAPE (MAPE< 25%) only for about 11% of museums with a similar scenario for out-

door attractions, where there is only about 18% of parks with good prediction results using a

global model.

Table 14. Prediction results adopting seasonality and/or recency tourism requirements for a global model trained with 27 museums in U.K. (indoors). The best pre-
diction models are in bold face.

Museums—Global Model

MAPE global mdl. global mdl.+recency global mdl.+seasonality global mdl.+recency+seasonality

MAPE<10 3.7% 7.41% 25.93% 7.41%

MAPE<25 11.11% 48.15% 77.78% 74.07%

https://doi.org/10.1371/journal.pone.0278112.t014
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It can also be observed in the Tables that introducing recency and seasonality as features

into the global models significantly improves the accuracy of the prediction task. Global mod-

els produce good predictions (MAPE< 25) for about 74% of the museums and 87% of the

parks. Those results however, are worse than when specialization is applied (if data availability

allows), mainly for highly accurate predictions (MAPE< 10). In any case, the good accuracy

provided by the global models with recency and seasonality encourage its application for the

cases in which there is a lack of enough training data for specific attractions.

B. Statistical analyses. The statistical significance of our results is presented (according to a

t-test with significance level of α = 0.05). Specifically, we report 95% confidence intervals for the

effect of each tourism requirement factor on the prediction task (according to our factorial anal-

ysis presented in Section 3.3) for both considered scenarios of indoor and outdoor attractions.

These are shown in Tables 16 and 17, respectively. In general terms, we find that, with the speci-

fied statistical significance, model specialization and seasonality have the largest contributions.

Table 16. Contribution of each of tourism prediction requirements: Recency, seasonality, model specialization and their interactions into the response variable in
indoor attractions (U.K. Museums and Galleries); results for MAPE< 10 andMAPE< 25 in 5 runs.Minimum and maximum confidence interval for 95% confidence
are reported.

Requirements/Factors MAPE< 25 MAPE< 10

contri (%) CI min CI max contri (%) CI min CI max

A = recency 1.0 0.1 3.6 0.0 0.0 0.3

B = seasonality 21.1 12.4 38.1 19.8 12.5 31.3

C = model spec. 55.9 36.8 92.2 70.0 51.3 98.2

AB 5.5 4.4 6.8 1.8 0.6 3.3

AC 0.1 0.1 0.6 1.3 0.3 3.9

BC 13.3 13.2 14.0 2.9 1.0 6.5

ABC 0.7 0.0 2.9 1.6 0.3 4.2

error 2 - - 3 - -

https://doi.org/10.1371/journal.pone.0278112.t016

Table 17. Contribution of each of tourism prediction requirements: Recency, seasonality, model specialization and their interactions into the response variable in
outdoor attractions (U.S. National Parks); results for MAPE< 10 and MAPE< 25 in 5 runs.Minimum and maximum confidence interval for 95% confidence are
reported.

Requirements/Factors MAPE< 25 MAPE< 10

contri (%) CI min CI max contri (%) CI min CI max

A = recency 1.1 0.7 1.5 1.1 0.5 2.2

B = seasonality 24.6 21.5 28.3 32.6 26.0 41.2

C = model spec. 46.0 40.9 52.0 58.5 48.1 71.9

AB 0.7 0.5 0.9 2.0 2.8 1.4

AC 1.2 1.0 1.0 2.0 1.1 3.5

BC 24.4 24.0 24.8 1.8 1.2 2.6

ABC 1.8 1.4 2.5 0.9 0.5 1.5

error 0.2 - - 1.0 - -

https://doi.org/10.1371/journal.pone.0278112.t017

Table 15. Prediction results adopting seasonality and/or recency tourism requirements for a global model trained with 76 national parks in U.S. (outdoors). The
best prediction models are in bold face.

Parks—Global Model

MAPE global mdl. global mdl.+recency global mdl.+seasonality global mdl.+recency+seasonality

MAPE<10 5.26% 3.95% 30.26% 30.26%

MAPE<25 18.42% 46.05% 81.58% 86.84%

https://doi.org/10.1371/journal.pone.0278112.t015
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