
MIXTAPE: DIRECTION-BASED NAVIGATION IN LARGE MEDIA
COLLECTIONS

João Paulo V. Cardoso Luciana Fujii Pontello Pedro H. F. Holanda

Bruno Guilherme Olga Goussevskaia Ana Paula C. da Silva

Computer Science Department, Universidade Federal de Minas Gerais (UFMG), Brazil

jpcardoso@ufmg.br, lucianafujii@dcc.ufmg.br, holanda@dcc.ufmg.br,

brunoguilherme@dcc.ufmg.br, olga@dcc.ufmg.br, ana.coutosilva@dcc.ufmg.br

ABSTRACT

In this work we explore the increasing demand for novel

user interfaces to navigate large media collections. We im-

plement a scalable data structure to store and retrieve sim-

ilarity information and propose a novel navigation frame-

work that uses geometric vector operations and real-time

user feedback to direct the outcome. In particular, we im-

plement this framework in the domain of music. To eval-

uate the effectiveness of the navigation process, we pro-

pose an automatic evaluation framework, based on syn-

thetic user profiles, which allows to quickly simulate and

compare navigation paths using different algorithms and

datasets. Moreover, we perform a real user study. To do

that, we developed and launched Mixtape 1 , a simple web

application that allows users to create playlists by provid-

ing real-time feedback through liking and skipping pat-

terns.

1. INTRODUCTION

Internet cloud and streaming services have become the

state-of-the-art in terms of storage and access to media col-

lections. Even though the storage problem of media col-

lections seems to have been practically solved with cloud-

based applications, a challenge still remains in conceptu-

alizing and developing novel interfaces to explore them.

User interfaces are expected to be intuitive and easy, yet

flexible and powerful in understanding and delivering what

users expect to see.

In this work we propose a framework that uses real-

time user feedback to provide direction-based navigation

in large media collections. The navigation framework is

comprised of a data structure to store and retrieve similar-

ity information and a novel navigation interface that allows

1 www.projectmixtape.org

c© João Paulo V. Cardoso, Luciana Fujii Pontello, Pedro H.

F. Holanda, Bruno Guilherme, Olga Goussevskaia, Ana Paula Couto da

Silva. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: João Paulo V. Cardoso, Luciana Fu-

jii Pontello, Pedro H. F. Holanda, Bruno Guilherme, Olga Goussevskaia,

Ana Paula Couto da Silva. “Mixtape: Direction-based navigation in large

media collections”, 17th International Society for Music Information Re-

trieval Conference, 2016.

users to explore the content of the collection in a person-

alized way. We begin by focusing on the music domain,

because the intrinsic usage pattern behind listening to mu-

sic is favorable to the design and verification of a dynamic

real-time feedback based system.

We define media item-to-item similarity based on user-

generated data, assuming that two items are similar if they

frequently co-occur in a user’s profile history. Media co-

occurrence information is increasingly available through

many online social networks. For example, in the do-

main of music, such usage information can be collected

from Last.fm, a social music site. Collected co-occurrence

data is usually sparse (not all pairs of items will have co-

occurred at least once in the collected dataset) and never-

theless might occupy a lot of memory space (Ω(n2), where

n is the size of the collection). To guarantee O(n) space

complexity and O(1) query complexity of all-pairs sim-

ilarity information, we transform the collected pairwise

co-occurrence values into a multi-dimensional Euclidean

space, by using nonlinear dimensionality reduction [21].

Our main contribution is a novel randomized naviga-

tion algorithm, based on the geometry of the constructed

similarity space. Each navigation session is modeled as a

Monte Carlo simulation: given a starting item and a set of

close neighbors in the similarity space, each neighbor is

assigned a probability of being the next current item. If

the returned next item is not quite what the user wants to

see, they can skip it, so the previous item is used as the

seed again. To define these probabilities, we propose a

geometric vector-based approach, which explores the no-

tion of direction, using user feedback and the Euclidean

distances between items to establish a concept of “direc-

tion inertia”, which creates a tendency for users to “keep

going” in the direction of the items they enjoy and “turn

away” from items, or regions, they don’t like.

The evaluation of the resulting system is twofold. First,

we propose an automatic evaluation framework, based on

synthetic user profiles, which allows to quickly simulate

and compare navigation paths using different algorithms

and datasets. We also propose two basic metrics: num-

ber of skips per like ratio and smoothness of consecutively

accepted items in a navigation session. Second, we eval-

uate real-user interaction with the system. To do that, we

developed and launched Mixtape, a simple web applica-

tion that allows users to create playlists by providing real-

454

time feedback through liking and skipping patterns. Over-

all, we analyzed over 2, 000 simulated and 2, 000 real-

user navigation sessions in a map comprised of more than

62, 000 songs. Besides analyzing quantitative parameters,

such as the proportion of skipped to accepted songs and

the smoothness of the generated trajectories, we gathered

feedback left by users and analyzed what they expect and

appreciate in a media navigation system.

2. RELATED WORK

A closely related line of research to this work is automatic

playlist generation. There are techniques that use statis-

tical analysis of radio streams [4, 5, 15, 22], are based on

multidimensional metric spaces [2,4,9,13,16,17], explore

audio content [3,8,14,23], and user skipping behavior [18].

In particular, Chen et al [4] model playlists as Markov

chains, which are generated through the Latent Markov

Embedding (LME) machine learning algorithm, using on-

line radio streams as a training set. We use this algorithm

as a baseline in our experiments. The idea to embed co-

occurrence information into a multi-dimensional space has

been explored before, e.g., in [1,2,9,13], where the authors

focus mostly on visual exploration of a collection. The idea

to use skipping behavior to generate playlists has been ex-

plored in [18], however, the presented algorithms do not

scale to large collections. Our work goes beyond playlist

generation, providing a real-time flexible navigation inter-

face that receives immediate user feedback through skip-

ping behavior to guide the user within the music collection

towards directions chosen on-the-fly.

3. NAVIGATION FRAMEWORK

Our goal is to design a media navigation framework com-

prised of two main components: (1) A scalable data struc-

ture to store and retrieve item-to-item similarity informa-

tion; (2) Directed-based navigation functions, that take the

current item and user feedback in real time and return the

next item; moreover, we want the navigation output to be

computationally efficient and nondeterministic, so the user

can be surprised with new items in each navigation se-

quence.

3.1 Item-to-item similarity representation

In this work, we use the assumption that similarity between

two items can be deduced by analyzing usage habits of a

large number of media users. More specifically, we assume

that the more often two items co-occur in the same user’s

profile, the more similar they are. So we define pairwise

similarity between two items by using cosine similarity:

cos(i, j) = coocc(i, j)/
√

occ(i)occ(j), where coocc(i, j)
is the number of co-occurrences between two items and

occ(i) the individual occurrences in the users’ profiles.

Since co-occurrence data is typically sparse, i.e., only a

few pairwise similarities are known, we applied the Isomap

method [21], which extends classical multidimensional

scaling (MDS) [6] by incorporating the geodesic distances

imposed by an (intermediate) weighted graph. We defined

the weight of an edge as the complement of the cosine sim-

ilarity, (w(i, j) = 1 − cos(i, j)) and built a graph G with

these weights.

To generate the map we calculated the complete nXn
distance matrix from G and then applied the classical MDS

algorithm in this matrix. Building a new d-dimensional

Euclidean space such that d << n. The final space is a

nXd matrix. Note that, for larger datasets one can use

approximate algorithms, such as LMDS or LINE [7, 20].

3.2 Navigation functions

In order to guide the navigation process, a navigation ses-

sion is treated as a run of a Monte Carlo simulation, in

which the choice of the next item depends on the current

item and a probability function that assigns different prob-

abilities to each of its neighboring nodes. Given a starting

item, the navigation system retrieves the set K of its near-

est neighbors in the Euclidean space, and uses them as can-

didates to be the next item. Once an item ki ∈ K is chosen

to be next, users can provide immediate feedback to the

system by accepting or skipping it explicitly, through user

interface feedback, or implicitly by skipping it. In case the

new item is accepted, it becomes the current item, and the

process starts again. The probability function should have

a strong influence on the overall outcome of the navigation.

Parameter |K| is used to vary the size of each “step” of

the navigation process. It can be configured as a constant,

or to be variable. In our experiments, good results were

achieved using exponentially growing step size:

|K| =

{

2|K|, if the previous item was skipped

|K0|, otherwise,

where |K0| is configurable minimum neighborhood size.

In our experiments we used |K0| = 10 and |K| ≤ 640.

Map navigation: We start with the following basic ap-

proach, to which we refer as Map, that explores the idea

that users prefer to navigate through items that are close to

each other in the Euclidean space. We define the probabil-

ity of node ki ∈ K to be next as:

PnextMap
i =

{

1/|K|, if ki ∈ K;

0, otherwise,

Vector navigation: Vector navigation explores the notion

of direction of navigation, assuming users would like to

travel through different regions in the space. To do so, it

treats the possible steps in the space as vectors. The hop

vector ~ab of any given hop from item A to item B can

be derived from the straight line between them (see Fig-

ure 1.1).

As the navigation progresses, the system keeps a direc-

tion vector ~V , which is recalculated after every hop. This

vector represents the directions in which the system has

recently moved. As a simplified example, consider the fol-

lowing sequence from item A to item D (see Figure 1.2).
~V0 was derived from the first hop, ~ab. ~V1 is half the sum of
~V0 and ~bc, which was the second hop. ~V2 is half the sum

of ~V1 and ~cd, and the process goes on.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 455

B

ab

ab

A

T
v1

v0 v0

bt

A B
ab

A

B

ab

-ab

v0

v1

A

B
C

θc
θb

ab ac

v0

A

B

C

D

ab
bc

cd

v0

v1

v2

1

2

43 5

Figure 1. Direction-based navigation (Vector algorithm)

In each step, the system calculates the probabilities of

suggesting each neighbor by comparing the current direc-

tion vector ~V to each of the vectors towards the |K| consid-

ered candidates (i.e., to vectors from the current to neigh-

bor nodes). For example, consider the decision to move

from item A with current direction vector ~V0 to two neigh-

bors, B and C (see Figure 1.3).

The more aligned the direction and the candidate vec-

tors are, the smaller the angle θ will be, and the higher

the probability of suggesting that neighbor. In Figure 1.3,

since θc < θb, node C will have a higher probability to be

the next item.

It is also possible to set a target destination T , which is

an arbitrary point on the map, where the navigation should

try to go to. This adds a third element to the direction

vector update procedure, by creating vector ~bt in each up-

date and also adding it to ~V . Let’s consider the situation

in which a hop was accepted from item A to item B, and

the target destination T was configured (see Figure 1.4).

Note that ~V1 is made by adding vectors ~V0, ~ab and ~bt and

dividing the module of the resulting vector by three.

Last but not least, feedback is incorporated by consid-

ering that, when a user skips a suggestion, it would be in-

teresting to increase the probability of suggesting some-

thing different from the skipped item. So, when an item is

skipped, the system does not change the current node, and

the opposite vector is added to ~V . Consider the example

in Figure 1.5, where item B was skipped, and so ~V1 was

calculated by adding ~V0 to − ~ab to reflect the user’s prefer-

ence.

Defining the method formally: Consider a set K of clos-

est neighbors of current node A and the current direction

vector ~V with the respective angles θi between ~V and each

hop vector ~aki, ki ∈ K. Also, consider the optional pa-

rameter with the location of a target destination T . We de-

fine the direction-based navigation function using the fol-

lowing weight variables:

wi = 1 + cos(θi) = 1 +
~aki • ~V

| ~aki||~V |
.

Note that the weight is proportional to the cosine of the

angle between the current direction vector ~V and the di-

rection of each neighbor ki relative to the current node A.

We add 1 to avoid negative values. Finally, we define the

probability of node ki ∈ K to be next as:

PnextV ec
i =

wi
∑|K|

j=1
wj

.

Note that we have a proper probability distribution,

since the sum over probabilities PnextV ec
i , i ∈ K is 1.

After the next item has been returned, say ki, and the

user has provided feedback by accepting or skipping it, we

update the direction vector ~V of node A as follows:

~V =

{

(~aki + ~V)/2, if ki was accepted

(− ~aki + ~V)/2, if ki was skipped.

If target destination T has been defined, then the calcu-

lation also includes the new target vector ~at between the

chosen item and the target destination:

~V =

{

(~aki + ~V + ~at)/3, if ki was accepted

(− ~aki + ~V + ~at)/3, if ki was skipped.

If the item was accepted, node ki becomes the next cur-

rent node. Otherwise, the current node does not change,

and only the direction vector is updated. Note that this

approach is domain-independent and uses nothing but the

coordinates of the embedding itself. It also carries an ex-

plicit dependency on user feedback, since ~V is determined

by the user’s skipping behavior.

4. MUSIC DOMAIN

The navigation framework described in Section 3 can be

applied to different media domains. In this work, we focus

on the domain of music.

4.1 Last.fm Dataset

In order to define music similarity, we assume that the

more frequently two songs co-occur in a user’s listen-

ing history, the more similar they are. We collected co-

occurrence data from Last.fm, a social music site that

tracks user musical tastes, from November, 2014 to March,

2015. More specifically, we collected the top-25 most lis-

tened songs of each user, reaching a total of 372,899 users,

2,060,173 tracks, and 374,402 artists. Moreover, we also

collected a total of 1,006,236 user-generated tags, asso-

ciated with songs. In particular, 75% of songs have had

at least one associated tag in our dataset. We considered

a subset of 983,010 tracks in our dataset with a known

MBID 2 , from which we selected another subset of 83,180

tracks that co-occurred 5 or more times, forming a con-

nected component of 62,352 songs. A detailed characteri-

zation of the dataset can be found in [19].

2 MusicBrainz Identifier (MBID) is a reliable and unambiguous form
of music identification (musicbrainz.org).

456 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

The connected graph with 62,352 vertices enabled us to

run IsoMap [21] and Multidimensional Scaling (MDS) [6]

without any approximations. By parallelizing parts of the

algorithm, we computed the all-pairs shortest path matrix

of size 62, 352 × 62, 352, in 7 minutes on a server with

50 GB of RAM and 16 CPU cores, and computed the em-

bedding into 100 dimensions in approximately 2 hours on

the same server. Note that a larger collection could have

been embedded using a less computationally intensive ap-

proximate algorithm, such as LMDS or LINE [7, 20]. An

evaluation of the embedding process can be found in [12].

4.2 Mixtape

We wanted to collect real user feedback in order to evalu-

ate the navigation framework in the music domain. For this

purpose, we developed Mixtape, a web-based application

with a simple user interface (see Figure 2). On the server

side, a k-d tree was loaded with a 100-dimensional space

of 62, 352 tracks. On the client side, the design goal was

to provide a minimalist user interface that fully explored

the navigation functions defined in Section 3.2. Each user

would choose the starting song and then be presented with

one suggestion at a time, with explicit feedback-generating

actions. The user interface is comprised of a playlist, on

the left, which shows the songs the user has accepted or

skipped, and a Youtube video window, which finds and

plays the current suggested item. Users can then decide

whether they like the song or not, using the like and dis-

like buttons, one of which the user must press in order to

receive the next suggestion. In case the user does not press

anything and listens to the entire song, we assume they

liked it, and consider the song as accepted. There is also

a settings button, which allows the user to switch between

different navigation functions.

5. EXPERIMENTS

The evaluation of the proposed navigation framework in

the domain of music is twofold: Firstly, we propose an

automatic evaluation framework and perform an extensive

analysis based on simulated user profiles. Furthermore,

since real users might behave differently, and the percep-

tion of a song is subjective, we observed how real users

interacted with our Mixtape application. As a result, we

were able to evaluate not only how effective and engaging

the proposed navigation system is, but also how well the

simulated user profiles approximated real user behavior.

5.1 Simulated user profiles

To test the navigation framework, we simulated synthetic

user profiles, in which hypothetical users intend to listen

to 20 songs (about one hour of music), and count the num-

ber of skips (songs that are skipped by the simulated user

profile following the algorithm described below) until 20

songs are accepted. A similar evaluation approach was

used in [18]. We simulated two types of users:

Tag-based user profile: This user profile is based on tag

information and the notion of transition between two re-

gions on the map. Recall from Section 4.1 that we col-

lected over 1,006,236 user-generated tags, associated with

songs. We assume this user wishes to listen to a sequence

of songs that transitions from initial tag Ti to final tag Tf .

To do that, the simulated user accepts all songs asso-

ciated with tag Ti in the first 1/3 of the navigation path

(skips otherwise), accepts songs with tags Ti or Tf in the

second 1/3, and accepts only songs with tag Tf in the last

1/3 of the path, comprised of a total of 20 items. Note that

real users do not necessarily know what tags are associated

to particular tracks. Since these users are hypothetical, we

can use the collected tag information for simulation pur-

poses.

We manually selected tag transitions among the top 200

most popular tags in our dataset. We noticed these tags

could be divided in three categories: Mood tags, such as

Chill, Upbeat, Relaxing, Genre tags, such as such as Rock,

Hip Hop, Folk, and Age tags, such as 60’s, 90’s, 2000’s.

We then paired them up manually, selecting 14 transitions

to experiment with. For each tag transition (Ti ⇒ Tf), we

considered a navigation path starting at the most popular

song associated to tag Ti, and applying the skipping rule

until a path of 20 accepted songs was achieved.

Artist-based user profile: This user profile is based on

artist information and the notion that certain users wish to

listen to songs by artists they already know. Since this user

wishes to listen to preferred artists, whenever the suggested

song is by an artist contained in the user’s history, it is ac-

cepted. Otherwise, it is skipped. We collected the com-

plete listening histories of 20 users to simulate this user

profile, and started the playlist at a random song within

each user’s profile. Moreover, for this experiment only

users whose profiles were not used to construct the em-

bedding were simulated.

5.2 Baselines

As baselines, we tested the following approaches:

LME: Logistic Markov Embedding [4,16], a probabilistic

approach that models sequences in a Euclidean space using

radio streams as a training set. We used the implementation

available at the authors’ homepage, with all parameters set

to default values, except for α = 5 (this value resulted in

superior overall performance), as our dataset did not have

music sequences, only music occurrences in a user profile,

we used the “yes-complete” dataset (also made available

by the authors) in a combination with our dataset, since

LME needs a sequence of items as input, which resulted

in an intersection set of 31,544 items with our dataset. We

made one modification to the LME algorithm by incorpo-

rating user feedback when computing the next item. More

specifically, whenever an item nj has been skipped after a

previously accepted item ni, we recompute the probabili-

ties at ni setting Pr(nj |ni) = 0, and maintaining ni as the

current item.

Random: A random song is returned, considering all

songs in the dataset.

Random Tag: A random song with tag T is returned. This

baseline was used for the tag-based navigation evaluation.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 457

Figure 2. Mixtape screenshot

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
D

F

Playlist Size

Figure 3. Mixtape user study: playlist

length distribution
Figure 4. Total number of skips per like

ratio: simulated versus real-user profiles

5.3 Mixtape user study setup

We collected all user actions on Mixtape over a course of

2 weeks, resulting in the participation of over 800 users,

generating a total of over 2000 navigation sessions. In or-

der to compare the performance of different navigation al-

gorithms, each navigation session was randomly assigned

either Map, Vector or LME algorithms (with undefined tag

parameters), but the user could explicitly change the algo-

rithm in the settings menu as well. Users could also choose

the Random approach, however, since the engagement in

this setting was very low, we did not include it in the plots.

5.4 Results

In our experiments, we measure the effectiveness of the

two navigation approaches proposed in this work (Map and

Vector) and the two baselines (Random and LME) in three

navigation setups: simulated tag-based user profiles, simu-

lated artist-based user profiles, and real users on Mixtape.

We use two main metrics: skipping behavior and playlist

smoothness, defined below. Each scenario was executed

20 times, and all figures show the 95% confidence interval.

Skipping behavior: Figure 3 shows the CDF of playlist

length generated on Mixtape. It can be seen that almost

30% of the playlists 3 contain 10 tracks or more, and al-

most 15% have size 20 or longer, which shows that many

people really engaged with the application.

In Figure 4 we compare the ratio of the total number

of skips (dislikes) and the total number of accepted songs

(likes) in playlists generated by all navigation algorithms

for simulated and real user profiles. Analyzing the sim-

ulated user profiles, we can see that the baseline algo-

rithms present several times more skips per like (LME:

skips/like > 7.5, Random: skips/like > 8) than Map

and Vector (skips/like < 2). Map and Vector have sim-

ilar results and perform especially well in the artist-based

simulated setup (skips/like < 0.5), which shows they are

more effective not only in directing the user between dif-

ferent regions in the space, but also in presenting the user

with music by preferred artists.

Looking at Mixtape results on Figure 4, we can

see that all three approaches perform well on average

3 We refer to the sequence of tracks accepted, or liked, by a user in one
navigation session as a playlist.

(skips/like < 2). LME has still more skips than likes

(skips/like > 1), whereas Map and Vector have signifi-

cantly more likes than skips (Map: skips/like < 0.8, Vec-

tor: skips/like < 0.4), indicating that users enjoyed the

vast majority of the suggested songs, especially by the Vec-

tor algorithm. Note that Vector outperforms Map for real

users, indicating that the direction in the map, provided by

the real-time feedback, does matter for real users.

Comparing real and synthetic user profiles, we note that

LME performed much better with real rather than simu-

lated users. That might be because real users are more

open-minded and accept more diversity in their playlists.

Nevertheless, the number of skips per like for Vector and

Map on Mixtape was similar to the simulated artist-based

user profiles, indicating that in some aspects the simulation

was accurate in portraying a real user.

In Figures 5 through 7 we analyze the number of skips

along each step of the navigation process. In Figure 5

the number of skips per step decreases in the second third

and then reaches a maximum in the beginning of the third

part of the playlist for all algorithms. This illustrates how

the algorithms react to the simulated tag-based navigation

setup. Afterwards, however, we can see that Map and Vec-

tor quickly decrease the number of skips, as opposed to

LME and Random, showing that the former algorithms

succeed in adjusting the direction of the navigation towards

the destination tag.

Playlist smoothness: In Figures 8 through 10 we analyze

how similar consecutive songs are on a navigation path, by

measuring the cosine similarity of the artists of consecu-

tive (accepted) songs. 4 Note that in Figure 8 we plot the

RandomTag baseline instead of Random, to shed light on

the following question: if the objective of tag-based sim-

ulations is to recommend songs with a given tag, why not

simply choose songs from the database that have that tag?

That method might work when we ignore the relationship

between songs in a playlist. However, we argue that a

playlist should be more than a group of songs with a given

tag–it should present a relationship between the songs. We

can see that RandomTag and LME baselines provide al-

most zero similarity along the navigation path, even though

RandomTag only returns songs with accepted tags, i.e.,

4 We define artist similarity as the cosine similarity computed from
artist co-occurrence in our dataset.

458 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

Figure 5. Skips along playlists: simu-

lated tag-based navigation

Figure 6. Skips along playlists: simu-

lated artist-based navigation
Figure 7. Skips along playlists: real-

user navigation (Mixtape)

Figure 8. Playlist smoothness: simu-

lated tag-based navigation

Figure 9. Playlist smoothness: simu-

lated artist-based navigation
Figure 10. Playlist smoothness: real-

user navigation (Mixtape)

makes zero skips in the tag-based simulation setup. Map

and Vector, on the other hand, trace highly smooth nav-

igation paths, offering the user songs with high similar-

ity to the previously chosen songs, especially in the artist-

based simulation setup (Figure 9, artist cosine > 0.4). Fig-

ure 10 5 shows that Map and, especially, Vector playlists

on Mixtape also present high similarity between consecu-

tive items, indicating that people prefer smooth, rather than

abrupt, transitions in their navigation paths.

User feedback: To enhance our perception about how

users perceive our Mixtape application, we created a short

online survey, linked from the Mixtape application, which

was answered by 44 unidentified subjects. The users were

not provided with any information about the navigation al-

gorithms. They were asked to provide feedback on the ex-

perience of using Mixtape, leading to the following num-

bers: 95% enjoyed the songs suggested by Mixtape, and

only 11% of the users were not able to find most of the

songs they were searching for (recall from Section 4.1 that

we used a reduced sample of the map in our experiments:

62,352 songs with co-occurrence at least 5.).

Interestingly, 70% of the participants said they discov-

ered new artists or songs. Most people said they didn’t

change the navigation policy and they didn’t know which

policy they used during their navigation. From those who

did experiment with different policies, they equally en-

joyed Map and Vector approaches (even though, on aver-

age, users skipped less songs when using direction-based

navigation).

5 The CIs in Figures 7 and 10 are high, due to insufficient data for
certain song numbers.

To sum up this first user study, we can conclude that

users enjoyed navigating music collections by giving their

real-time feedback and that the navigation allowed them to

discover previously unknown songs they enjoyed.

6. CONCLUSION

In this work we proposed a navigation framework for large

media collections and evaluated an implementation of the

framework in the domain of music. Potentially, the same

ideas could be applied to other kinds of media, e.g. movies

or TV shows [10, 11]. Rather than creating fixed playlists,

our approach allows users to provide feedback through

skipping behavior and direct the navigation process in real-

time. We evaluated the framework through simulation of

more that 2,000 synthetic navigation paths and performed

a real user study by launching Mixtape, a web application

with a minimalist user interface that allows people to navi-

gate a collection of over 60,000 music tracks. We analyzed

over 2,000 playlists generated by over 800 real users and

received positive feedback about the application. When

comparing playlists generated by Mixtape and simulated

hypothetical users, we could observe several similarities,

indicating that in some aspects the simulation was accu-

rate in portraying a real user. Moreover, not only did this

user study serve as validation of the proposed framework,

but it also provided insights into what users look for and

appreciate in a media navigation system. 6

6 Acknowledgments: This work is supported in part by CNPq,
FAPEMIG and LG Electronics in cooperation with Brazilian Federal
Government through Brazilian Informatics Law (n. 8.2.48/1991).

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 459

7. REFERENCES

[1] E. Bernhardsson. Systems and methods of selecting

content items using latent vectors, August 18 2015. US

Patent 9,110,955.

[2] Lukas Bossard, Michael Kuhn, and Roger Watten-

hofer. Visually and Acoustically Exploring the High-

Dimensional Space of Music. In IEEE International

Conference on Social Computing (SocialCom), Van-

couver, Canada, August 2009.

[3] Pedro Cano, Markus Koppenberger, and Nicolas Wack.

Content-based music audio recommendation. In Pro-

ceedings of the 13th annual ACM international confer-

ence on Multimedia, pages 211–212. ACM, 2005.

[4] Shuo Chen, Josh L Moore, Douglas Turnbull, and

Thorsten Joachims. Playlist prediction via metric em-

bedding. In 18th ACM SIGKDD, 2012.

[5] Shuo Chen, Jiexun Xu, and Thorsten Joachims. Multi-

space probabilistic sequence modeling. In 19th ACM

SIGKDD, 2013.

[6] Trevor F. Cox and M.A.A. Cox. Multidimensional

Scaling. Chapman and Hall/CRC, 2000.

[7] Vin De Silva and Joshua B Tenenbaum. Sparse multi-

dimensional scaling using landmark points. Technical

report, Technical report, Stanford University, 2004.

[8] Arthur Flexer, Dominik Schnitzer, Martin Gasser, and

Gerhard Widmer. Playlist generation using start and

end songs. In Juan Pablo Bello, Elaine Chew, and Dou-

glas Turnbull, editors, ISMIR, pages 173–178, 2008.

[9] Olga Goussevskaia, Michael Kuhn, Michael Lorenzi,

and Roger Wattenhofer. From web to map: Exploring

the world of music. In Web Intelligence and Intelligent

Agent Technology, 2008. WI-IAT’08, volume 1, 2008.

[10] Pedro Holanda, Bruno Guilherme, Joao Paulo V. Car-

doso, Ana Paula Couto da Silva, and Olga Gous-

sevskaia. Mapeando o universo da midia usando dados

gerados por usuarios em redes sociais online. In The

33rd Brazilian Symposium on Computer Networks and

Distributed Systems (SBRC), 2015.

[11] Pedro Holanda, Bruno Guilherme, Ana Paula Couto

da Silva, and Olga Goussevskaia. TV goes social:

Characterizing user interaction in an online social net-

work for TV fans. In Engineering the Web in the Big

Data Era - 15th International Conference, ICWE 2015,

Rotterdam, The Netherlands, June 23-26, 2015, Pro-

ceedings, pages 182–199, 2015.

[12] Pedro Holanda, Bruno Guilherme, Luciana Fujii Pon-

tello, Ana Paula Couto da Silva, and Olga Gous-

sevskaia. Mixtape application: Music map method-

ology and evaluation. Technical report, Department

of Computer Science, Universidade Federal de Minas

Gerais, Belo Horizonte, MG, Brazil, May 2016.

[13] Michael Kuhn, Roger Wattenhofer, and Samuel Wel-

ten. Social audio features for advanced music retrieval

interfaces. In Proceedings of the international confer-

ence on Multimedia, pages 411–420. ACM, 2010.

[14] Beth Logan. Content-based playlist generation: Ex-

ploratory experiments. In ISMIR, 2002.

[15] François Maillet, Douglas Eck, Guillaume Desjardins,

and Paul Lamere. Steerable playlist generation by

learning song similarity from radio station playlists. In

ISMIR, 2009.

[16] Joshua L Moore, Shuo Chen, Thorsten Joachims, and

Douglas Turnbull. Learning to embed songs and tags

for playlist prediction. In ISMIR, pages 349–354, 2012.

[17] Joshua L Moore, Shuo Chen, Douglas Turnbull, and

Thorsten Joachims. Taste over time: The temporal dy-

namics of user preferences. In ISMIR, 2013.

[18] Elias Pampalk, Tim Pohle, and Gerhard Widmer. Dy-

namic playlist generation based on skipping behavior.

In ISMIR, 2005.

[19] Luciana Fujii Pontello, Pedro Holanda, Bruno Guil-

herme, Joao Paulo V. Cardoso, Olga Goussevskaia,

and Ana Paula Couto da Silva. Mixtape application:

Last.fm data characterization. Technical report, De-

partment of Computer Science, Universidade Federal

de Minas Gerais, Belo Horizonte, MG, Brazil, May

2016.

[20] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun

Yan, and Qiaozhu Mei. Line: Large-scale information

network embedding. In 24th International Conference

on World Wide Web, pages 1067–1077, 2015.

[21] J. B. Tenenbaum, V. Silva, and J. C. Langford. A

Global Geometric Framework for Nonlinear Dimen-

sionality Reduction. Science, 290(5500):2319–2323,

2000.

[22] Douglas R Turnbull, Justin A Zupnick, Kristofer B

Stensland, Andrew R Horwitz, Alexander J Wolf,

Alexander E Spirgel, Stephen P Meyerhofer, and

Thorsten Joachims. Using personalized radio to en-

hance local music discovery. In CHI’14, 2014.

[23] Aaron Van den Oord, Sander Dieleman, and Benjamin

Schrauwen. Deep content-based music recommenda-

tion. In Advances in Neural Information Processing

Systems, 2013.

460 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

