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Abstract

We extend the clique-coclique inequality, previously known to hold for graphs in association schemes and
vertex-transitive graphs, to graphs in homogeneous coherent configurations and 1-walk regular graphs. We
further generalize it to a stronger inequality involving the Lovász theta number of such graph, and some
theta variants, including characterizations of the equality.
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1 Introduction

Denote the maximum size of a clique in a graph G by ω(G) and the maximum size

of a coclique by α(G); a coclique is an independent set of vertices, also called a

stable set.

Think of a graph with a large clique and a large coclique. In general, there

seems to be no (non-obvious) restriction on how large these two substructures can

be compared to the size of the graph. However, if the graph displays high regularity

or symmetry, then one soon finds out that large cliques cannot appear together with

large cocliques, and vice-versa. More specifically, for a graph G on n vertices that is

either distance-regular or vertex-transitive, we have α(G)ω(G) ≤ n. This is known

as the clique-coclique bound; see for instance [8, Chapter 3]. In this paper, we

observe that a more general framework in which these graphs and their cliques and

cocliques can be cast is sufficient to prove the clique-coclique bound. This appears

in Theorems 3.1 and 3.2, and Corollary 4.1.

Our setting also allows for an extension of this inequality to a stronger inequality

(which turns out to be an equality) involving the Lovász theta number of a graph

and its complement, and another equality for some theta variants. This is found in

Corollary 4.2. These results were known for vertex-transitive graphs only, therefore

our contribution significantly increases the number of known graphs satisfying the

properties displayed.

Some work has been done in the past in topics strongly related to the topic of

this paper. Godsil and Meagher [8] present a full account of known bounds for the

size of cliques and cocliques in graphs belonging to association schemes. Dukanovic

and Rendl [7] proved some equalities involving generalizations of thetas for a vertex-

transitive graph and its complement. Roberson [14] pointed that we could somehow

relax the requirement of the graph being vertex-transitive. Some of the results in

our paper work in the direction of finding exactly which graphs satisfy this relaxed

condition. The use of positive semidefiniteness to find bounds in combinatorial

structures dates back to Delsarte’s thesis [6]. It was revived more recently by

Schrijver [16] in the context of coding theory and later applied to some coherent

configurations by Hobart [11] and Hobart and Williford [12]. Some surveys can be

found in [1]. In all cases, the main tool is the fact that the projection of a positive

semidefinite matrix in certain algebras of matrices remains positive semidefinite.

We explore this fact in Lemmas 2.5 and 2.6 to build our theoretical framework.

2 Algebras

Equip the complex vector space Mn(C) of complex n × n matrices with the trace

inner-product 〈M,N〉 = trMN∗. We will work on matrix ∗-algebras, which means

a linear subspace of Cn×n that is closed under the conventional matrix product and

under taking the conjugate transpose. A matrix ∗-algebra is simple if it has no

non-trivial proper (two-sided) ideal. We start with the following consequence of

Wedderburn’s Theorem on semisimple algebras ([5, Chapter 5]); see for instance [3,
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Theorem 2.7] for a more self-contained version, or [2, Chapter 1].

Theorem 2.1 If A is a matrix ∗-algebra, then A is the direct sum of simple matrix

∗-algebras

A =

s
⊕

i=0

EiA, (1)

where {E0, . . . , Es} is an orthogonal basis of minimal idempotents of the center of

A.

Here we rely on the fact [1, Theorem 9.3] that every commutative matrix ∗-

algebra B has an orthogonal basis of matrices E0, . . . , Es such that E∗

i = Ei and

E2
i = Ei for each i and EiEj = 0 whenever i �= j; such matrices are called minimal

idempotents of B.

Given a matrix M , we will use M ′ to denote the orthogonal projection of M

onto A. Because of the decomposition from above, it follows that M ′ is the sum of

the projections of M onto each EiA. The following fact is also well-known, see for

instance [1, Corollary 9.1].

Corollary 2.2 The projection of a positive semidefinite matrix onto a matrix ∗-

algebra is positive semidefinite.

From here on, we assume all matrices inA have constant diagonal. This property

shall be referred as A being homogeneous.

Lemma 2.3 If A is a homogeneous matrix ∗-algebra, then all 01 matrices in A

have constant row sums and constant column sums.

Moreover, if A contains an irreducible 01 matrix, then the all 1s matrix J belongs

to A.

Finally, if A contains the all 1s matrix J , then the row sums and the column

sums of all matrices in A are equal, that is, J lies in the center of A.

Proof. Let A ∈ A be a 01 matrix. Then A∗ ∈ A, and so AA∗ ∈ A and A∗A ∈ A.

The diagonal entries of AA∗ are the row sums of A, and the diagonal entries of A∗A

are the column sums of A. Because A is homogeneous, all row sums are equal, and

the same holds for column sums. Now if A is irreducible, and because its row sums

are constant, then by Perron-Frobenius theory the all 1s vector is an eigenvector in

a 1-dimensional subspace, and therefore J is a polynomial in A, hence it belongs

to A. The result now follows from noting that, for all M ∈ A, the diagonal entries

of MJ and JM are, respectively, the row sums and column sums of M . These are

constant diagonals, and because trMJ = tr JM , it follows that these diagonal are,

in fact, equal. �

As M �→ M ′ is a self-adjoint operator, it follows that

〈M,N ′〉 = 〈M ′, N〉,

a fact that we exploit below for two special cases.
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Lemma 2.4 Let M be a matrix, and let A be a homogeneous matrix ∗-algebra that

contains I and J . Then

trM ′ = trM,

and

tr JM ′ = tr JM.

Proof. Since I and J belong to A, we have I ′ = I and J ′ = J . Thus, trM ′ =

〈M ′, I〉 = 〈M, I ′〉 = trM and tr JM ′ = trM ′J = 〈M ′, J〉 = 〈M,J ′〉 = trMJ =

tr JM . �

We show below how to obtain a trace inequality in a special but useful case.

Lemma 2.5 Let A be a homogeneous matrix ∗-algebra that contains I. Let M and

N be positive semidefinite n × n matrices. Let I = P0, P1, . . . , Pd be an orthogonal

basis for the algebra A. Assume that, for all i �= 0, 〈M,Pi〉〈Pi, N〉 ≤ 0. Then

〈M ′, N ′〉 ≤
(trM)(trN)

n
.

Moreover, equality holds if and only if, for all i �= 0, 〈M,Pi〉〈Pi, N〉 = 0.

Proof. It is a straightforward computation:

〈M ′, N ′〉 = 〈M ′, N〉 = tr

(

d
∑

i=0

〈M,Pi〉

〈Pi, Pi〉
Pi

)

N∗

=
d

∑

i=0

〈M,Pi〉〈Pi, N〉

〈Pi, Pi〉

≤
〈M, I〉〈I,N〉

〈I, I〉

=
(trM)(trN)

n
.

The equality characterization follows immediately. �

Lemma 2.6 Let A be a homogeneous matrix ∗-algebra that contains I and J . Let

M and N be positive semidefinite n× n matrices. Then

〈M ′, N ′〉 ≥
(tr JM)(tr JN)

n2
.

Moreover, equality holds if and only if M ′N ′ is a scalar multiple of J .

Proof. By Lemma 2.3 the all 1s vector is an eigenvector of all matrices in A, and

J lies in the center of A. Write A =
⊕s

i=0EiA as in Theorem 2.1. Then EiJ �= 0

for precisely one index i: if EiJ = λiJ and EjJ = λjJ with λi �= 0 �= λj , then

EiEjJ = λiλjJ which implies i = j since E0, . . . , Es are minimal idempotents. We

may assume that E0J �= 0. Since CJ is an ideal of the simple matrix ∗-algebra

E0A, we find that E0A = CJ and so we may assume that E0 = J .
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Let Mi denote the projection of M onto each EiA from Theorem 2.1, and simi-

larly for N and Ni. Then

M ′ =
s

∑

i=0

Mi and N ′ =
s

∑

i=0

Ni,

and the matrices Mi and Ni are positive semidefinite by Corollary 2.2. Moreover,

the orthogonality of the decomposition implies that

M ′N ′ =

s
∑

i=0

MiNi.

Recall that the trace of the product of positive semidefinite matrices is non-negative.

Therefore

trM ′N ′ =
s

∑

i=0

trMiNi ≥ trM0N0 =
(tr JM)(tr JN)

n2
.

Equality holds if and only if MiNi = 0 for all i �= 0, which is equivalent to M ′N ′

being a scalar multiple of J . �

Denote the Schur (componentwise) product of matrices B and C by B ◦ C. In

what follows, we will typically consider positive semidefinite matrices M and N ,

that with respect to the adjacency matrix A of a graph G and the adjacency matrix

A = J − I −A of the complement G, satisfy either of the following two conditions:

M ◦A = 0 and N ◦A = 0, (A)

M ◦A ≤ 0, N ◦A = 0 and N ◦A ≥ 0. (B)

3 Graphs

We now show two classes of examples of matrix ∗-algebras satisfying the properties

of the lemmas above.

3.1 Homogeneous coherent configurations

A coherent configuration is a finite set of non-zero 01 matrices {A0, ..., Ad}, which

satisfies the following properties:

(i)
∑d

i=0Ai = J .

(ii) For all i ∈ {0, ..., d}, if one diagonal entry of Ai is non-zero, then Ai is diagonal.

(iii) The configuration is transpose-closed.

(iv) AiAj is a linear combination of the matrices in the configuration, for all i and

j.

Coherent configurations appear naturally in connection to design theory, finite ge-

ometry, coding theory and representation of finite groups. They were originally
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defined by Higman in [10]. When the identity matrix is one of the matrices form-

ing the configuration, we call such configuration homogeneous. When the matrices

forming the configuration commute, they result in what is known as an association

scheme. The theory of association schemes is vast and rich, and the connections to

combinatorics are overwhelming; see for instance [4].

From here on, we assume {I = A0, . . . , Ad} is a homogeneous coherent config-

uration. These matrices generate a complex algebra, called the coherent algebra,

which we denote by A. Note that this algebra is a homogeneous matrix ∗-algebra

that contains I and J .

A graph belongs to a coherent configuration if its adjacency matrix is a sum

of the matrices forming the configuration. The so-called distance-regular graphs

are standard examples of graphs found in (and generating) association schemes.

Another class of examples comes from vertex-transitive graphs — the permuta-

tion matrices corresponding to the automorphisms of the graph form a group, and

its commutant in Mn(C), which contains the adjacency matrix of the graph, is a

homogeneous coherent algebra.

If A is the adjacency matrix of a graph and belongs to a homogeneous coherent

algebra generated by the configuration {I = A0, . . . , Ad}, it follows that, for some

R ⊆ {1, . . . , d}, we have

A =
∑

r∈R

Ar.

As a consequence,

A =
∑

r∈R

Ar,

where R = {1, . . . , d} \R. Moreover, if A∗

r = Ar∗ , then r ∈ R implies r∗ ∈ R.

Therefore if M and N are positive semidefinite matrices satisfying either of

the conditions (A) and (B), then it follows that 〈M,Ar〉〈Ar, N〉 ≤ 0 for all r ∈

{1, . . . , d}, and thus M , N , A and its basis {A0, . . . , Ad} satisfy the conditions of

Lemma 2.5.

Applying Lemmas 2.3, 2.5 and 2.6, we have the result below.

Theorem 3.1 Let A be the adjacency matrix of a connected graph that belongs to

a homogeneous coherent configuration {I = A0, . . . , Ad}. Let M and N be non-zero

positive semidefinite matrices satisfying conditions (A) or (B). Then

n ≥
(tr JM)(tr JN)

(trM)(trN)
.

Moreover, equality holds if and only if M ′N ′ is a scalar multiple of J , and either

(A) holds or (B) holds in such way that 〈M,Ar〉〈Ar, N〉 = 0 for all r �= 0.

3.2 1-walk regular graphs (and their complements)

A graph G with adjacency matrix A is called 1-walk regular if, for any positive

integer k, Ak is constant in the diagonal and in the entries corresponding to the

M.K. de Carli Silva et al. / Electronic Notes in Theoretical Computer Science 346 (2019) 275–283280



support of A. That is, for any positive integer k, there are constants ak and bk such

that

Ak ◦ I = akI and Ak ◦A = bkA.

Assume G is 1-walk regular, and A is its adjacency matrix. Note for instance

that G must be regular, as the diagonal of A2 is constant. Let A be the algebra

generated by A and I — that is, the adjacency algebra of the graph G. This is

obviously a matrix ∗-algebra. In fact, it is an algebra of symmetric and commuting

matrices, therefore the decomposition of Rn into A-modules is simply its simulta-

neous diagonalization.

Consider an orthogonal basis I = A0, A = A1, A2, . . . , Ad. For instance, this

could have been obtained by applying Gram-Schmidt to I, A,A2, . . . , Ad. The rel-

evant consequence of 1-walk regularity is that Ak ◦ I = 0 and Ak ◦ A = 0 for all

k ≥ 2, as the basis is orthogonal and all matrices of A are constant over the support

of I and A.

Now let M and N be positive semidefinite matrices, and assume that (A) or

(B) holds. Then 〈M,Ak〉〈Ak, N〉 ≤ 0 for all k ≥ 1. Thus M , N , A and its basis

{A0, . . . , Ad} satisfy the conditions of Lemmas 2.5 and 2.6, therefore we have the

following theorem.

Theorem 3.2 Let A be the adjacency matrix of a 1-walk regular graph. Let M and

N be non-zero positive semidefinite matrices satisfying conditions (A) or (B) above.

Then

n ≥
(tr JM)(tr JN)

(trM)(trN)
.

Moreover, equality holds if and only if M ′N ′ is a scalar multiple of J , and either

(A) holds or (B) holds in such way that 〈M,Ar〉〈Ar, N〉 = 0 for all r �= 0, where

I = A0, A = A1, A2, . . . , Ad is an orthogonal basis of the adjacency algebra of G.

4 Thetas

The immediate corollaries to Theorems 3.1 and 3.2 are the so-called clique-coclique

bounds. Assume S is a clique and T is a coclique in a graph which is either in a

homogeneous coherent configuration or is 1-walk regular. Let χS and χT be their

respective characteristic vectors, and define

N = χSχ
∗

S and M = χTχ
∗

T .

It follows that M ◦ A = 0 and N ◦ A = 0. Thus Theorem 3.1 or Theorem 3.2

applies, and we obtain the following result, which has been stated before for graphs

in association schemes or vertex-transitive graphs (see for instance [8, Theorem

3.8.4]).

Corollary 4.1 Assume S is a clique and T is a coclique in a graph on n vertices

which is either in a homogeneous coherent configuration or is 1-walk regular. Then

|S||T | ≤ n.
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Proof. The inequality is immediate from Theorem 3.1 or Theorem 3.2. �

The conditions on M and N being positive semidefinite and satisfying either (A)

or (B) allow for a nice extension of this result. We write X � 0 if X is a positive

semidefinite matrix. The Lovász theta graph parameter ϑ(G) is defined (see [13])

as the optimum value of the following semidefinite program:

ϑ(G) = max {〈J,X〉 : X ◦A = 0, trX = 1, X � 0}.

Upon making small variations in the formulations, one obtains, respectively, the

Schrijver theta [15] and the Szegedy theta [17] functions:

ϑ−(G) = max {〈J,X〉 : X ◦A = 0, trX = 1, X ≥ 0, X � 0}.

ϑ+(G) = max {〈J,X〉 : X ◦A ≤ 0, trX = 1, X � 0}.

It is known since the first respective appearances of these thetas that, for all graphs

G on n vertices, we have

α(G) ≤ ϑ−(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G), (2)

where χ(G) is the chromatic number of G; and that

ϑ(G)ϑ(G) ≥ n and ϑ−(G)ϑ+(G) ≥ n, (3)

with equality in both cases of (3) for vertex-transitive graphs.

The results in this paper extend the equality case in (3) for graphs in homoge-

neous coherent configurations and 1-walk regular graphs.

Corollary 4.2 Let G be graph on n vertices that belongs to a homogeneous coherent

configuration or that is 1-walk regular. Then

ϑ(G)ϑ(G) = n and ϑ−(G)ϑ+(G) = n.

Proof. Let M and N be positive semidefinite matrices that are optimal solutions

for ϑ(G) and ϑ(G), respectively. They satisfy condition (A), and therefore Theorem

3.1 or 3.2 applies. Thus n ≥ ϑ(G)ϑ(G), and then (3) shows that equality holds.

The same conclusion can be reached for matrices N and M which are respective

optimal solutions for ϑ−(G) and ϑ+(G), by noting that they satisfy condition (B).�

Corollary 4.2 implies that, if M and N are optima for ϑ(G) and ϑ(G), or for

ϑ−(G) and ϑ+(G), with G 1-walk regular or in a homogeneous coherent configura-

tion, then the equality characterizations from Lemmas 2.5 and 2.6 hold.

It is interesting to consider if the tools and the framework we developed may be

used to strengthen similar inequalities involving other variants of theta, such as the

ones in [7] and in [14], and also for other hierarchies of semidefinite programs (see,

e.g., [9]).

M.K. de Carli Silva et al. / Electronic Notes in Theoretical Computer Science 346 (2019) 275–283282



References

[1] Anjos, M. F. and J. B. Lasserre, editors, “Handbook on Semidefinite, Conic and Polynomial
Optimization,” International Series in Operations Research & Management Science 166, Springer US,
Boston, MA, 2012.
URL http://link.springer.com/10.1007/978-1-4614-0769-0

[2] Arveson, W., 39, Springer Science & Business Media, 2012.

[3] Bachoc, C., D. C. Gijswijt, A. Schrijver and F. Vallentin, Invariant semidefinite programs, in: Handbook
on semidefinite, conic and polynomial optimization, Internat. Ser. Oper. Res. Management Sci. 166,
Springer, New York, 2012 pp. 219–269.
URL https://doi.org/10.1007/978-1-4614-0769-0_9

[4] Brouwer, A. E., A. M. Cohen and A. Neumaier, “Distance-Regular Graphs,” Springer-Verlag, Berlin,
1989, xviii+495 pp.

[5] Cohn, P. M., “Basic algebra: groups, rings and fields,” Springer Science & Business Media, 2012.

[6] Delsarte, P., “An algebraic approach to the association schemes of coding theory,” Ph.D. thesis,
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