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Abstract

We consider the continuous-time quantum walk defined on the adjacency matrix
of a graph. At each instant, the walk defines a mixing matrix which is doubly-
stochastic. The average of the mixing matrices contains relevant information about
the quantum walk and about the graph. We show that it is the matrix of transfor-
mation of the orthogonal projection onto the commutant algebra of the adjacency
matrix, restricted to diagonal matrices. Using this formulation of the average mixing
matrix, we find connections between its rank and automorphisms of the graph.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Let X be a graph. We are interested in continuous quantum walks on X, which we
will define now. The states of the walk are represented by density matrices, positive
semidefinite matrices with rows and columns indexed by the vertex set V (X) of X, and
having trace 1. If A is the adjacency matrix of X, we define the transition matrix U(t)
of the walk by

U(t) = exp(itA).

The continuous-time quantum walk is an important object of study in quantum computing
since it is an universal computational primitive [5]. They were first studied in [7]. Since
then, many aspects of quantum walks have been studied, including state transfer [12, 8,
6, 16], uniform mixing [4, 10, 1] and average mixing [9, 2]. We note that U(t) is unitary
and symmetric. If the initial state of the system is given by a density matrix D, then the
state of the system at time t is

U(t)DU(−t).
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We note that we do not have direct access to states, all that experiment provides is the
value of expressions of the form

tr(DPr)

where P1, . . . , Pn are positive semidefinite matrices such that
∑

r Pr = I. Because of this
we find ourselves using the trace inner product on Matm×n(C):

〈M,N〉 = tr(M∗N).

Unlike classical random walks on a connected graph, a continuous quantum walk does
not reach a steady state. Thus, if the eigenvalues of X are integers (e.g., if X is the
complete graph Kn) then U(t) is a periodic function of t. The focus of this paper, the

mixing matrix M̂ of X, provides a useful substitute for a steady state.
There are two convenient ways to define M̂ . The first is to introduce what we call the

mixing matrices M(t) of the walk, given by

M(t) = U(t) ◦ U(t).

(Here we use M ◦ N to denote the Schur or element-wise product of two matrices of
the same order.) Since U(t) is unitary and symmetric, we see that M(t) is symmetric
non-negative matrix with each row and column summing to one. We can now define

M̂ = lim
T→∞

1

T

∫ T

0

M(t) dt. (1)

The study of this time averaging process dates back to von Neumann’s Quantum ergodic
theorem [17]; for an English translation, see [18]. To see that the first definition makes
sense, we recall that since A is real and symmetric, it has a spectral decomposition

A =
∑

r

θrEr

where θr runs over the distinct eigenvalues of A and Er is the matrix that represents
orthogonal projection onto the θr-eigenspace of A. Given this we also have

U(t) =
∑

r

eitθrEr

and, as U(t) = U(−t),

M(t) =
∑

r,s

eit(θr−θs)Er ◦ Es.

It follows that the limit on the right side of (1) is exists, and

M̂ =
∑

r

E◦2
r ,

that is, the sum of the Schur squares of the spectral idempotents of A. This provides an
alternative definition of M̂ .
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We consider one example. The spectral idempotents of the complete graph Kn are

1

n
J, I −

1

n
J,

(with corresponding eigenvalues n− 1 and −1) and hence its average mixing matrix is

(
1−

2

n

)
I +

2

n2
J.

For large n, this is very close to I. This is unexpected, but we are dealing with quantum
physics, where the unexpected is not uncommon.

If A ∈ Matn×n(R), its commutant Comm(A) is the set of matrices that commute
with A. This is an object of some combinatorial interest—the permutation matrices in
Comm(A) are the automorphisms of A. The first main result of this paper is that, relative

to a natural basis, M̂ is the matrix that represents the restriction to the diagonal matrices
of the orthogonal projection from Matn×n(R) onto Comm(A). We then use this connection

to investigate the relations between properties of the graph X and the rank of M̂ .

2 Projection onto the commutant of the adjacency matrix

Let A be a n × n real symmetric matrix with columns and rows indexed by elements of
a set V . We denote by Matn×n(R) the set of n × n matrices with entries in R. Let the
spectral decomposition of A be given as follows:

d∑

r=1

θrEr,

where θ1, . . . , θm are the distinct eigenvalues of A and Er is the projection matrix onto the
θr eigenspace of A. We denote by Comm(A) the set of all real matrices which commute
with A.

Lemma 1. If the eigenvalues θ1, . . . , θd of A have multiplicities m1, . . . ,md respectively,
them the dimension of Comm(A) is

∑
r m

2
r.

Proof. When A is diagonal, this is immediate. Since A is similar to a diagonal matrix,
the lemma follows.

We consider a map Ψ : Rn×n → Comm(A) such that

Ψ(M) =
d∑

r=1

ErMEr,

for M ∈ Rn×n. We see that Ψ is an endomorphism of Rn×n.
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Lemma 2. The following are true:

(i) Ψ is idempotent.

(ii) The image of Ψ is equal to Comm(A).

(iii) Ψ is self-adjoint; that is 〈M,Ψ(N)〉 = 〈Ψ(M), N〉.

Proof. Since E2
r = Er and ErEs = 0 if r 6= s, it is immediate that Ψ2(M) = Ψ(M) for

any matrix M . As
AErMEr = θrErMEr = ErMErA

we see that Ψ(M) ∈ Comm(A) for any M . Each idempotent Er is a polynomial in A and
consequently if N ∈ Comm(A), then

Ψ(N) =
∑

r

ErNEr =
∑

r

NE2
r =

∑

r

NEr = N
∑

r

Er = NI = N.

Hence each element of Comm(A) lies in the image of Ψ and therefore im(Ψ) = Comm(A).
Finally

〈M,ErNEr〉 = tr(MTErNEr) = tr(ErM
TErN) = 〈ErMEr, N〉,

from which it follows that Ψ is self-adjoint.

Corollary 3. The map Ψ is the orthogonal projection of the n × n real matrices onto
Comm(A).

Proof. This is immediate from the fact that Ψ is idempotent and self-adjoint—but we
simply note that for any two n× n matrices M and N

〈Ψ(M), N −Ψ(N)〉 = 〈M,Ψ(N −Ψ(N))〉 = 〈M,Ψ(N)−Ψ2(N)〉 = 0.

The following is a standard fact in linear algebra, see e.g., [11, Lemma 4.3.1].

Lemma 4. For B,C,N ∈ Rn×n, we have that

vec(CNBT ) = (B ⊗ C) vec(N).

From this we see that, relative to the standard basis of Matn×n(R), the matrix that
represents Ψ is

∑
r Er ⊗ Er. (Since tr(Er) = mr it follows that tr(Ψ) =

∑
r m

2
r; since P

is idempotent tr(P ) = rk(P ) and thus we have a second proof of Lemma 1.)
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3 Average states

Recall that a state D is a positive semidefinite matrix with trace 1. If D is the initial
state of a continuous quantum walk, then the state D(t) at time t is

D(t) = U(t)DU(−t).

Using the spectral decomposition of U(t), we have

D(t) =
∑

r,s

eit(θr−θs)ErDEs

whence

lim
T→∞

1

T

∫ T

0

D(t) dt =
∑

r

ErDEr.

We call this limit (or sum) an average state and denote it by Ψ(D). We see at once that
Ψ(D) is equal to the orthogonal projection of D onto Comm(A).

Since D is positive semidefinite and the idempotents Er are symmetric, we see that
Ψ(D) is a positive semidefinite matrix. As

tr(Ψ(D)) =
∑

r

tr(ErDEr) =
∑

r

tr(DE2
r ) =

∑

r

tr(DEr) = tr(D)

we also see that Ψ(D) is a density matrix. We remark that the map

D 7→
∑

r

ErDEr

is a quantum channel; for more background on quantum channels, see [3, 13, 14].
In the context of quantum walks on graphs, there is a natural class of density matrices

we will focus on. If a ∈ V (X), let ea denote the standard basis vector of CV (X) indexed
by a and define Da = eae

T
a . Then certainly Da is a density matrix, moreover rk(Da) = 1

and D2
a = Da. (Physicists refer to a density matrix with rank 1 as a pure state.)

The following theorem gives one reason why average states are of interest. Given a
set of vectors v1, . . . , vn in an inner product space, the Gram matrix of {v1, . . . , vn} is the
n× n matrix G with jk-entry

Gjk := 〈vj, vk〉.

Theorem 5. Let X be a graph. The average mixing matrix is the Gram matrix of the
average states Ψ(Da) for a in V (X).

Proof. Our claim is that, if a, b ∈ V (X), then

〈Ψ(Da),Ψ(Db)〉 = (M̂)a,b.

Now
Ψ(Da)Ψ(Db) =

∑

r

ErDaEr

∑

s

EsDbEs
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and so
tr(Ψ(Da)Ψ(Db)) =

∑

r

tr(ErDaErDbEr).

Further
ErDaErDbEr = Ereae

T
aErebe

T
b Er = (Er)a,b Ereae

T
b Er

and therefore
tr(Ψ(Da)Ψ(Db)) =

∑

r

(Er)a,b(Er)b,a =
∑

r

(E◦2
r )a,b

and the theorem follows.

Corollary 6. The dimension of the space spanned by the average state Ψ(Da) for a ∈

V (X) is equal to rk(M̂).

Note that a matrix which can be written as the Gram matrix of a set of vectors is
positive semidefinite. If these vectors are themselves positive semidefinite matrices, then
the resulting Gram matrix is called completely positive semidefinite. This concept has
been introduced quite recently and was investigated in the context of conic optimization
for certain quantum parameters of graphs, so we still do not know exactly what to do
with the information. Nevertheless, we state the corollary below.

Corollary 7. The average mixing matrix is completely positive semidefinite.

4 Diagonal matrices in the commutant

In this section, we consider the restriction of Ψ to the set of n×n diagonal matrices. Let
D be the set of n × n diagonal matrices. The standard basis of D is given by {Da}a∈V
where Da := eae

T
a .

The map that sends a matrix M to Ψ(M) ◦ I is a linear map from Matn×n(R) into
the space D of diagonal matrices. We denote the restriction of this map to D by Φ; it is
evidently an endomorphism of D.

Lemma 8. Relative to the standard basis {Da}a∈V of D, the matrix that represents Φ is

M̂ . Hence rk(M̂) = dim(Φ(D)).

Proof. The entries of the matrix representing Ψ are given by the the inner products
〈Da,Ψ(Db)〉 for vertices a and b of X. We have

〈Da,Ψ(Db)〉 =
∑

r

tr(DaErDbEr)

and
tr(DaErDbEr) = tr(eae

T
aErebe

T
b Er) = (Er)a,b(Er)b,a = (E◦2

r )a,b.

Hence
〈Da,Ψ(Db)〉 = M̂a,b.
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Lemma 9. If D is diagonal, then Ψ(D) = 0 if and only if I ◦Ψ(D) = 0.

Proof. Since ker(Ψ) = Comm(A)⊥, we see that Ψ(D) = 0 if and only if D ∈ Comm(A)⊥.
Note that if D is diagonal, then

〈D,N〉 = 〈D, I ◦N〉

Assume D is diagonal and I ◦Ψ(D) = 0. Then for each vertex a of X, we have

0 = 〈Da, I ◦Ψ(D)〉 = 〈Da,Ψ(D)〉 = 〈Ψ(Da),Ψ(D)〉

and so Ψ(D) is orthogonal to each matrix Ψ(Da). Since Ψ(D) lies in the span of the
matrices Ψ(Da), we conclude that Ψ(D) = 0.

Let A0 denote the set of matrices in Comm(A) with all diagonal entries equal to 0;
that is

A0 = {N ∈ Comm(A) : N ◦ I = 0}.

Observe that A0 is always non-empty, since A ∈ A0. Also I ∈ Ψ(D), and therefore the
direct sum decomposition in our next result is always non-trivial.

Lemma 10. Comm(A) = Ψ(D)⊕A0.

Proof. If M ∈ A0, then Ψ(M) = M and so

〈Ψ(Da),M〉 = 〈Da,Ψ(M)〉 = 〈Da,M〉 = tr(eae
T
aM) = Ma,a.

Accordingly M is orthogonal to each matrix Ψ(Da) for a in V (X) if and only if M ◦ I =
0.

5 The rank of some average mixing matrices

There are a number of graph invariants that can be constructed from the average mixing
matrix. In this section we focus on rk(M̂). From [9] we know that if rk(M̂) = 1, then X
is K1 or K2.

Our first two results concern graphs with only simple eigenvalues; we note that almost
all graphs have this property [15].

Lemma 11. Assume X is a graph with simple eigenvalues on n vertices. If n > 2, then
rk(M̂) 6 n− 1. Further, if X is regular and n > 4, then rk(M̂) 6 n− 3.

Proof. Since the eigenvalues of X are simple, dim(Comm(A)) = n and since A ∈ A0, it
follows from Lemma 10 that dim(Ψ(D)) 6 n− 1.

Suppose X is regular with valency k. Then the matrices A, J−I and A2−kI all lie in
A0. If these matrices are linearly dependent, the minimal polynomial of A has degree at
most two and hence A has at most two eigenvalues. Since X has n distinct eigenvalues,
the minimal polynomial of A over 1⊥ has degree n−1. Thus n−1 6 2, which contradicts
our assumption that n > 4.
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Table 1 shows the number of graphs on n vertices whose mixing matrices have given
ranks. The only regular graph with simple eigenvalues on up to 8 vertices is K2, so the
data for regular graphs is not included in this table. Instead, we count cubic graphs with
simple eigenvalues on 10 to 18 vertices, as presented in Table 2.

Lemma 12. Assume X is a graph on n vertices with only simple eigenvalues. If X is
bipartite, then rk(M̂) 6 b(n+ 1)/2c.

Proof. Note that Ak ∈ A0 if and only if k is odd, and for all k < n, these matrices are
independent. Hence dimA0 > bn/2c, and the result follows from Lemmas 8 and 10.

n rk(M̂) # graphs # simple eigenvalues

3 2 1 1
3 3 1 0

4 2 3 2
4 3 1 1
4 4 2 0

5 3 11 8
5 4 6 3
5 5 4 0

6 2 2 2
6 3 27 12
6 4 32 21
6 5 35 19
6 6 16 0

7 3 6 5
7 4 189 121
7 5 240 158
7 6 352 255
7 7 66 0

8 2 3 3
8 3 39 25
8 4 466 236
8 5 1360 776
8 6 2523 1492
8 7 5781 4787
8 8 945 0

Table 1: Number of graphs with given rk(M̂).
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n rk(M̂) # cubic # simple
graphs eigenvalues

10 3 2 2
10 5 8 1
10 6 5 3
10 7 1 0
10 10 3 0

12 3 1 0
12 4 3 0
12 5 8 3
12 6 11 2
12 7 18 6
12 8 14 4
12 9 14 3
12 10 11 0
12 11 2 0
12 12 3 0

14 4 13 12
14 5 19 12
14 6 30 7
14 7 82 37
14 8 97 65
14 9 66 37
14 10 62 45
14 11 117 101
14 12 18 0
14 13 3 0
14 14 2 0

n rk(M̂) # cubic # simple
graphs eigenvalues

16 4 4 3
16 5 45 29
16 6 58 11
16 7 122 49
16 8 252 112
16 9 393 220
16 10 359 144
16 11 311 141
16 12 684 464
16 13 1365 1008
16 14 366 0
16 15 77 0
16 16 24 0

18 5 48 45
18 6 147 59
18 7 226 78
18 8 414 152
18 9 1268 724
18 10 1785 982
18 11 1865 842
18 12 1264 539
18 13 1940 1146
18 14 7254 5819
18 15 19302 16060
18 16 4763 0
18 17 643 0
18 18 382 0

Table 2: Number of cubic graphs with given rk(M̂).

Lemma 13. Let S be a proper subset of the vertices of the graph X, and assume that for
each vertex a in S, there is an automorphism of X with a as its only fixed point. Then
rk(M̂) > |S|+ 1.

Proof. We identify the automorphism group of X with the set of permutation matrices
that lie in Comm(A). If a ∈ S, let Pa be the automorphism of X with a as its only fixed
point. From Lemma 10, for each Pa, there is a matrix in Ψ(D) with the same diagonal.
These matrices and the identity matrix form a set of linearly independent matrices in
Ψ(D).
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Table 3 shows the number of bipartite graphs on n vertices whose mixing matrices
have given ranks.

n rk(M̂) # bipartite graphs # simple eigenvalues

3 2 1 1
3 3 0 0

4 2 2 1
4 3 0 0
4 4 1 0

5 3 3 3
5 4 1 0
5 5 1 0

6 2 1 1
6 3 6 3
6 4 4 0
6 5 4 0
6 6 2 0

7 3 0 0
7 4 23 20
7 5 3 0
7 6 1 0
7 7 3 0

8 2 1 1
8 3 5 2
8 4 43 24
8 5 51 0
8 6 50 0
8 7 21 0
8 8 11 0

Table 3: Number of bipartite graphs with given rk(M̂).

If X is a Cayley graph for an abelian group of odd order, then since the map that
sends each group element to its inverse gives rise to an automorphism of the Cayley
graph with 1 as its only fixed point, it follows that each vertex is the unique fixed point
of an automorphism of X. This implies M̂ must be invertible in this case. One easy
consequence is that the average mixing matrix of a cycle is invertible (although this is
also an a consequence of results in [9]).

Some of our numerical data indicates that for most graphs on n vertices with simple
eigenvalues, the average mixing matrix has rank n−1. In view of Theorem 10, this implies
that, for these graphs, dimA0 = 1. Therefore any matrix that commutes with A and has
zero diagonal must be a scalar multiple of A. The following is an immediate consequence.
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Corollary 14. Suppose X is a connected graph with at least three vertices. If all eigen-
values of X are simple and rk(M̂) = n−1, then any automorphism of X has fixed points.

6 Open problems

As the theory of the average mixing matrix is relatively new, there are many interesting
problems one can ask. We discuss a few below.

One interesting question about the average mixing matrix concerns the non-negative
rank of the average mixing matrix. The non-negative rank of a non-negative n×n matrix
A is the least number k, such that there are k matrices {Mr}

k
r=1 of rank 1 with non-

negative entries, such that A =
∑k

r=1 Mr. If X is a graph on n > 1 vertices with simple

eigenvalues, Lemma 11 gives that M̂ has rank at most n − 1. One can ask when the
non-negative rank of M̂ is equal to n.

We may interpret the (v, v) diagonal entry of M̂ as the average probability of measuring

at vertex v, after starting at vertex v. Thus questions about the trace of M̂ are very
natural. In particular, it is interesting to ask how graph invariants correspond to the
trace of M̂ . Following in the vein of the questions about rank and trace, one can ask
if the spectrum of M̂ determines any graph properties. This gives rise to many natural
questions about the average mixing matrix.
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