
RAIRO-Oper. Res. 55 (2021) 1197–1212 RAIRO Operations Research
https://doi.org/10.1051/ro/2021049 www.rairo-ro.org

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING

PROBLEM

Natã Goulart1, Thiago F. Noronha2, Martin G. Ravetti2

and Mauricio C. de Souza3,∗

Abstract. In the integrated uncapacitated lot sizing and bin packing problem, we have to couple

lot sizing decisions of replenishment from single product suppliers with bin packing decisions in the

delivery of client orders. A client order is composed of quantities of each product, and the quantities of

such an order must be delivered all together no later than a given period. The quantities of an order

must all be packed in the same bin, and may be delivered in advance if it is advantageous in terms of

costs. We assume a large enough set of homogeneous bins available at each period. The costs involved

are setup and inventory holding costs and the cost to use a bin as well. All costs are variable in the

planning horizon, and the objective is to minimize the total cost incurred. We propose mixed integer

linear programming formulations and a combinatorial relaxation where it is no longer necessary to

keep track of the specific bin where each order is packed. An aggregate delivering capacity is computed

instead. We also propose heuristics using different strategies to couple the lot sizing and the bin packing

subproblems. Computational experiments on instances with different configurations showed that the

proposed methods are efficient ways to obtain small optimality gaps in reduced computational times.

Mathematics Subject Classification. 90B99, 90C11, 90C27.

Received August 6, 2020. Accepted March 26, 2021.

1. Introduction

In this paper, we deal with the Integrated Uncapacitated Lot Sizing and Bin Packing problem (IULSBP, for
short). It has been emphasized in the literature the importance of dealing simultaneously with interdependent
decisions to exploit the optimization potential in integrated systems, see [7,16]. We concentrate on the IULSBP
as it appears in practical situations where an intermediary company or a warehouse buys in bulk or submits
replenishment orders to suppliers of single products to compose client orders. Figure 1 illustrates this situation.
There are three suppliers of single products, identified by p = 1, 2, 3. A warehouse, represented by a circle in

Keywords. Integrated production-delivering problems, lot sizing, bin packing, Heuristics.

1 Departamento de Tecnologia em Engenharia Civil Computação e Humanidades, Universidade Federal de São João del-Rei,
Rodovia MG 443, KM 7, cep: 36420-000, Ouro Branco, MG, Brazil.
2 Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, cep: 31270-901,
Belo Horizonte, MG, Brazil.
3 Departamento de Engenharia de Produção, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, cep: 31270-901,
Belo Horizonte, MG, Brazil.
∗Corresponding author: prof.mauriciodesouza@gmail.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

1198 N. GOULART ET AL.

Figure 1. Schematic representation of the context of application of the IULSBP.

the center of the figure, receives the products from these suppliers and composes orders with them. An order
is composed of quantities of different products to meet client requests. In Figure 1 the warehouse composes
and delivers orders for seven clients, identified by i = 1, . . . , 7. We assume the delivery of client orders to be
made in containers or by trucks, so the company has to manage on one side lot sizing decisions and on the
other side bin packing decisions. An example of such a situation is a company the buys fruits from farmers to
meet restaurants’ demands, the company places orders of mango, ananas, etc., directly to farmers and composes
different orders with these products to be delivered to restaurants. Situations of this kind can found in many
sectors of industry and services.

We are given a set T of periods, a set V of client orders, and a set P of products. An order i ∈ V is composed
by quantities qip of each product p ∈ P to be delivered all together to a client no later than a period ti ∈ T .
We assume a set K of homogeneous bins with capacity Q available at each period t ∈ T , such that |K| is large
enough. The quantities of an order i must all be packed in the same bin k ∈ K. On the other hand, a bin can
be used to pack more than one order if its capacity is not exceeded.

Given the sets V , P , T , and K, as described above, the IULSBP consists of jointly deciding over the planning
horizon (i) the size of the lots of each product p ∈ P to buy at each period t ∈ T , (ii) how to pack the orders
in V , and (iii) when to deliver each bin. There is a setup cost cpt incurred when a lot of product p is bought
at period t, and a holding cost ept for each unit of product p left in inventory at the end of period t. An order
i ∈ V can be packed in any bin to be delivered at t = 1, . . . , ti, as long as the quantities qip of all products
composing the order are available. It is worth noting that even if order i is packed in a bin to be delivered
in a period t < ti, the inventory holding cost will be incurred for quantities qip at periods t, t + 1, . . . , ti − 1,
since capital is tied up as the order due date is ti. We assume a cost ft of delivering a bin at period t ∈ T .
The IULSBP problem consists of meeting all the client orders with the minimum total cost. Figure 2 illustrates
the integration of lot sizing and bin packing decisions occurring in the IULSBP. The central line in the figure
represents the planning horizon divided into time periods. In the upper part of the central line, the lot sizing
decisions are represented by incoming supplying replenishments of three products over the time periods. In the
bottom part of the central line, the packing decisions are represented by outgoing rectangles in solid line. Each
rectangle represents a bin filled with one or more client orders composed of different products. The bins packing
client orders are delivered over the time periods.

To the best of our knowledge, few studies in the literature are directly related to the problem studied in
this paper. Ben-Khedher and Yano [4] address a problem in which demands for items are given in terms of

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING PROBLEM 1199

Figure 2. Schematic representation of the lot sizing and packing decisions over time.

containers, and the containers must be packed into trucks for shipment. There is no setup cost, so items are
bought according to shipping decisions. Molina et al. [12] extend the work of Norden and Velde [13] and propose
models for production lot sizing problems with distribution costs using unit load devices such as pallets and
containers. Lot sizing decisions are subject to capacity constraints, and items must be packed for shipping at
the very period they are produced. Also, the cost of delivering a truck is the same in every period. In the
problem under study in this paper, the fact that (i) the products are tied in the form of client orders to be
delivered as a whole, (ii) the cost of delivering a bin varies from one period to another, and (iii) delivering are
not constrained to occur in the very period a product is bought or produced, makes the integration between lot
sizing and packing decisions more challenging than in those previous approaches.

A few papers are partially related to this work. Stecke and Zhao [17] study the problem faced by a make-
to-order manufacturing company adopting a commit-to-delivery business mode. A third-party company offers
different shipping modes, and the goal is to plan lot sizes with transportation costs. Lee et al. [9] consider lot
sizing subject to a carrying capacity of container constraint. The production orders are shipped by containers
in the very period they occur, and the total freight cost is proportional to the number of containers used in
an aggregate manner. No packing decisions are involved. Sancak and Salman [15] analyze production plans
with minimum transportation and inventory holding costs where transportation costs are given by the number
of trucks delivered. Backlog is allowed since a less-than-full truckload shipment can be postponed to the next
period. Again, no packing decisions are involved. Melega et al. [11] review the literature related to the integration
between the lot sizing and the cutting stock problem. The authors classify the literature into two types of
integration based on the time and on the production level dimensions. Much more attention has been given
in the literature to the integration of lot sizing and vehicle routing. Coelho et al. [6] provide a comprehensive
review of the inventory routing problem, which combines vehicle routing with inventory management decisions.
A more complete version of that problem involves production decisions as well, see [1,3]. More recently, Azadeh
et al. [2] address the particularity of perishable products in the context of the inventory routing problem. Schmid
et al. [16] provide an overview on extensions of the vehicle routing with dealing with lot sizing, scheduling,
packing, batching, inventory and intermodality.

1200 N. GOULART ET AL.

Concerning the IULSBP problem, we propose, in this paper, a mixed integer linear programming formulation
for the problem, and then a reformulation using the so-called multicommodity formulation of the lot sizing
variables. Preliminary computational experiments have shown that even with the multicommodity reformulation
we were able to solve only small instances within a time limit of one hour. So, the aim of this paper is to develop
efficient ways to obtain lower and upper bounds in reduced computational time. To this end, we first propose
a combinatorial relaxation to provide good lower bounds with less computational effort. Then, we propose four
heuristics to obtain good upper bounds. Computational experiments showed that the proposed combinatorial
relaxation was able to provide good lower bounds in reduced computational times. Besides, they showed that
the best of the proposed heuristics obtained solutions with average optimally gaps of at most 3.3% within one
minute of running time, on average.

The paper is organized as follows. In Section 2, we propose mixed linear integer programming formulations
for IULSBP. In Section 3 the combinatorial relaxation to obtain lower bounds. The proposed heuristics are
described in Section 4. We report computational experiments in Section 5, and we draw the concluding remarks
in the last section.

2. MILP formulations and relaxation for IULSBP

In this section, we first propose a mixed integer linear programming (MILP) formulation for IULSBP, called
the Single Commodity Flow formulation (SF). Next, we show a reformulation of SF using the so-called multi-
commodity formulation of the lot sizing variables, see [14]. We refer to this formulation as the Multicommodity
Flow formulation (MF).

2.1. SF formulation

A formulation for IULSBP can be obtained from variables vpt, such that vpt = 1 if product p ∈ P is bought
at period t ∈ T and vpt = 0 otherwise; and yt

ik, such that yt
ik = 1 if order i ∈ V is packed in bin k ∈ K and

delivered at period t ∈ {1, . . . , ti} and yt
ik = 0 otherwise. The following continous variables are also necessary.

Variables xpt hold how many units of p ∈ P are bought in t ∈ T , and variables hpt hold how many units of
p ∈ P are left in inventory at the end of period t ∈ T . Besides, we also use variables zkt, which are naturally 0
or 1, such that zkt = 1 if the bin k ∈ K is delivered at period t ∈ T and zkt = 0 otherwise.

min
∑

p∈P

∑

t∈T

cptvpt +
∑

p∈P

∑

t∈T

epthpt +
∑

k∈K

∑

t∈T

ftzkt (2.1)

xpt 6 Mptvpt ∀p ∈ P, ∀t ∈ T (2.2)

hpt−1 + xpt − hpt =
∑

i∈V : t=ti

qip ∀p ∈ P, ∀t ∈ T (2.3)

t∑

u=1

xpu>

t∑

u=1

∑

i∈V :u∈{1,...,ti}

qip

∑

k∈K

yu
ik ∀p ∈ P, ∀t ∈ T (2.4)

zkt > yt
ik ∀k ∈ K, ∀i ∈ V, t = 1, . . . , ti (2.5)

∑

k∈K

ti∑

t=1

yt
ik= 1 ∀i ∈ V (2.6)

∑

i∈V : t∈{1,...,ti}

∑

p∈P

qipy
t
ik 6 Qzkt ∀k ∈ K, ∀t ∈ T (2.7)

∑

i∈V : t∈{1,...,ti}

yt
ik 6

∑

i∈V : t∈{1,...,ti}

yt
ik−1 ∀k ∈ K, ∀t ∈ T (2.8)

zkt > 0 ∀k ∈ K, ∀t ∈ T (2.9)

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING PROBLEM 1201

yt
ik ∈ {0, 1} ∀k ∈ K, ∀i ∈ V, t = 1, . . . , ti (2.10)

vpt ∈ {0, 1} ∀p ∈ P, ∀t ∈ T (2.11)

xpt > 0 ∀p ∈ P, ∀t ∈ T (2.12)

hpt > 0 ∀p ∈ P, ∀t ∈ T. (2.13)

The resulting formulation, called the single commodity flow formulation (SF), is defined by (2.1)–(2.13).
Given an instance of IULSBP characterized by the tuple 〈V, P, T, K,Q, qip, ti, cpt, ept, ft〉, the objective function
(2.1) minimizes the sum of the setup costs, inventory holding costs, and delivering costs, respectively. The
constraints in (2.2) enforce that a cost vpt is charged if any number of units of product p ∈ P is bought at
period t ∈ T , where the constant Mpt =

∑
i∈V :ti>t qip. The inventory balance constraints are enforced by (2.3).

The constraints in (2.4) guarantee that the quantities of each product p ∈ P to fulfill delivery decisions at
each period t ∈ T are available. The constraints in (2.5) require that a cost ft is charged if a bin k ∈ K is
used to deliver an order i ∈ V at a period t ∈ T . The constraint that an order i ∈ V should be packed in a
single bin is enforced by (2.6), while the bin capacity constraints are imposed by (2.7). The constraints (2.8)
break symmetry, reducing the number of equivalent solutions in the search space. Finally, the constraints in
(2.9)–(2.13) define the domain of the variables zkt, yt

ik, vpt, xpt and hpt, respectively.

2.2. MF reformulation

In this section, we present a reformulation of SF exploiting the fact that the convex hull of the uncapacitated
lot sizing problem can be described with a multicommodity formulation, see [14]. To do this, the inventory
variables hpt, for all p ∈ P and t ∈ T , are suppressed and constraints (2.3) and objective function (2.1) are
rewritten as follows

hpt =
t∑

u=1

xpu −
t∑

u=1

∑

i∈V : u=ti

qip

min
∑

p∈P

∑

t∈T

cptvpt +
∑

p∈P

∑

t∈T

ēptxpt +
∑

k∈K

∑

t∈T

ftzkt

where ēpt =
∑

u∈T :u>t epu, and adding the constant term −
∑

p∈P

∑
t∈T ept

∑t

u=1

∑
i∈V : u=ti

qip.

We then replace variables xpt by variables xip
τt corresponding to the number of units of product p ∈ P bought

at period τ ∈ {1, . . . , ti} to be delivered at period t ∈ {τ, . . . , ti} to meet order i ∈ V . The resulting MF
formulation is defined by the following objective function (2.14) and constraints (2.15)–(2.17), as well as the
constraints (2.5)–(2.11) from the previous formulation. Our aim is to improve the lower bounds provided by the
linear relaxation of SF.

min
∑

p∈P

∑

t∈T

cptvpt +
∑

p∈P

∑

τ∈T

ēpτ

∑

i∈V : τ∈{1,...,ti}

ti∑

t=τ

xip
τt +

∑

k∈K

∑

t∈T

ftzkt (2.14)

xip
τt 6 qipvpτ ∀p ∈ P, ∀i ∈ V, t = 1, . . . , ti, τ = 1, . . . , t (2.15)

t∑

τ=1

xip
τt = qip

∑

k∈K

yt
ik ∀i ∈ V, ∀p ∈ P, t = 1, . . . , ti (2.16)

xip
τt> 0 ∀p ∈ P, ∀i ∈ V, t = 1, . . . , ti, τ = 1, . . . , t. (2.17)

The objective function (2.14) minimizes the sum of the setup costs, inventory holding costs, and delivering
costs, respectively. The constraints in (2.15) enforce that a setup cost vpτ is charged if any number of units of
product p ∈ P is bought at period τ ∈ {1, . . . , t}. The constraints in (2.16) ensure that in case of order i ∈ V

1202 N. GOULART ET AL.

is served at period t ∈ {1, . . . , ti}, the number of units of product p ∈ P , bought at the periods from 1 to t, to
meet this order, is equal its demand for this product. Finally, the constraints in (2.17) define the domain of the
variables xip

τt.

3. Combinatorial Relaxation of SF

We propose a Combinatorial Relaxation (CR) of SF to obtain good lower bounds with less computational
effort. The main point is that the constraints due to packing the orders to be delivered in a period into bins are
relaxed in an aggregate capacity manner. In CR an order has still to be delivered entirely in a single period,
but the products corresponding to an order no longer need to be packed all together in a single bin. Instead,
an aggregated capacity is assigned to each period. Thus, it is no longer necessary to keep track of the specific
bin where each order is packed. The resulting formulation is obtained by removing variables zkt and replacing
the binary variables yt

ik, for all k ∈ K, i ∈ V and t ∈ {1, . . . , ti}, by the variables yit, such that yit = 1 if order
i ∈ V is delivered at period t ∈ {1, . . . , ti} and yit = 0 otherwise. Besides, we add the variables wt > 0 to obtain
an aggregated capacity in terms of Q in each period t ∈ T . The resulting CRwt>0 formulation is defined by
(3.1)–(3.6) and the constraints (2.2), (2.3), and (2.11)–(2.13) from SF.

min
∑

p∈P

∑

t∈T

cptvpt +
∑

p∈P

∑

t∈T

epthpt +
∑

t∈T

ftwt (3.1)

t∑

u=1

xpu >

t∑

u=1

∑

i∈V :u∈{1,...,ti}

qipyiu ∀p ∈ P, ∀t ∈ T (3.2)

ti∑

t=1

yit= 1 ∀i ∈ V (3.3)

∑

i∈V : t∈{1,...,ti}

∑

p∈P

qipyit 6 Qwt ∀t ∈ T (3.4)

yit ∈ {0, 1} ∀i ∈ V, t = 1, . . . , ti (3.5)

wt > 0 ∀t ∈ T. (3.6)

The object function (3.1) minimizes the sum of the setup costs, inventory holding costs, and delivering costs,
respectively. The constraints in (3.2) guarantee that the quantities of each product p ∈ P to fulfill delivery
decisions at each period t ∈ T are available. The constraints that an order i ∈ V should be delivered in a single
period is imposed by (3.3), while the correct value of wt is enforced by (3.4). Finally, the constraints in (3.5)
and (3.6) define the domain of the variables yit and wt, respectively.

4. Heuristics for IULSBP

We propose four heuristics for IULSBP. Each one is based on a different approach to decouple IULSBP
into lot sizing and the bin packing subproblems. The lot sizing subproblems are solved independently for each
product p ∈ P with the algorithm WW of Wagner and Whitin [19], while the bin packing subproblems are
solved with the VPSolver of Brandão and Pedroso [5], which is a stated-of-the-art exact algorithm for the bin
packing problem. We aim at identifying which of these approaches is the most efficient to find good solutions
(upper bounds) for IULSBP, in order to guide future studies of heuristics for this problem.

Given an instance characterized by the tuple 〈V, P, T, K,Q, qip, ti, cpt, ept, ft〉 the heuristics return a solution
characterized by tuple 〈Tp, S〉. The subset Tp ⊆ T represents the periods in which there are purchases of p ∈ P ,
and S is a set of tuples 〈b, t〉, where b ⊆ V is a subset of orders that are packed in the same bin and delivered
at the same period t ∈ T . The value of how many units of product p ∈ P are bought at period t ∈ T can be
directly computed from 〈Tp, S〉.

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING PROBLEM 1203

4.1. Uncoupled Heuristic (UH)

The UH heuristic solves the lot sizing and the bin packing subproblems independently. The orders are always
delivered at their due date, so the solution of the bin packing subproblem has no impact on the lot sizing
subproblem, and vice versa. No effort is made to combine the solutions of both subproblems to find better
solutions for the integrated problem. It is included in this paper so one can assess how good are the solutions
of IULSBP compared with an approach that disregards the relationship between lot sizing and bin packing
decisions.

The pseudo-code of UH is described in Algorithm 1. An instance of the lot sizing problem for each p ∈ P ,
where demands in each period t ∈ T are given by

∑
i∈V :ti=t qip, is solved in line 1. The set S is initialized

in line 2. In the loop from lines 3 to 7, a bin packing instance with the subset Vt ⊆ V of orders i whose due
date ti = t is solved for each t ∈ T . The resulting bin packing solution is stored in Bt ⊂ 2Vt , and the for loop
in lines 6 and 7 inserts each bin b ∈ Bt in the solution S. UH stops in line 8, where the solution 〈Tp, S〉 is returned.

Algorithm 1: UH(V, P, T, K,Q, qip, ti, cpt, ept, ft).

1. Tp ←WW(V, P, T, qip, ti, cpt, ept)
2. S ← ∅
3. for t = 1 to |T | do
4. Vt ← {i ∈ V : ti = t}
5. Bt ← BP(Vt, Q, q̄i)
6. for each b ∈ Bt do
7. S ← S ∪ 〈b, t〉
8. return 〈Tp, S〉

4.2. Lot Sizing and then Bin Packing heuristic (LSBP)

The LSBP heuristic initially solves the lot sizing problem. Then, it solves a number of bin packing subproblems
to decide how to pack and when to deliver the orders. Note that if due to lot sizing decisions the quantities
of an order i are all available before ti, such order can be packed with orders having earlier due dates than i
to reduce unused space and possibly decrease the number of bins. So, differently from UH, the LSBP heuristic
tries to better exploit the structure of the packing subproblem by grouping orders having different due dates.
Another improvement over UH is that LSBP also tries to identify if there is a range of periods a bin can be
delivered at a lower cost.

The pseudo-code of LSBP is described in Algorithm 2. As in UH, the lot sizing subproblem is solved in line
1, and the set S is initialized in line 2. The for loop in lines 3–9 runs for each period t ∈ T . Let t′i ∈ {1, . . . , ti}
be the earliest possible delivering date for order i ∈ V , i.e., the earliest period when all quantities of order i are
available according to the lot sizing solution. For each period t ∈ T , the subset Vt ⊆ V of unpacked orders i
whose earliest possible delivering date is t′i 6 t is identified in line 4. Note that in the LSBP heuristic the set of
orders Vt composing the bin packing instance in each period t is not likely to coincide with the orders having
ti = t. The resulting bin packing solution is stored in Bt ⊂ 2Vt in line 5. Then, in the for loop in lines 6–9,
LSBP evaluates if each bin b of Bt shall actually be delivered in period t or if it is advantageous to unpack the
orders in b to be repacked and delivered in later periods. Let ub be the delivery date of bin b, i.e., the minimum
due date among the orders packed in b. A bin b is delivered in t if ub = t or if, for ub > t, t has the lowest
delivering cost in the set {t, t + 1, . . . , ub}. In this case, the tuple 〈b, t〉 is added to S in line 9. Otherwise, the
bin is discarded and the orders in b are considered unpacked to the next period. LSBP stops in line 10, where
the solution 〈Tp, S〉 is returned.

1204 N. GOULART ET AL.

Algorithm 2: LSPB(V, P, T, K,Q, qip, ti, cpt, ept, ft).

01. Tp ←WW(V, P, T, qip, ti, cpt, ept)
02. S ← ∅
03. for t = 1 to |T | do
04. Vt ← {i ∈ V : t′i 6 t ∧ @〈b, tb〉 ∈ S : i ∈ b}
05. Bt ← BP(Vt, Q, q̄i)
06. for each b ∈ Bt do
07. ub ← min{ti : i ∈ b}
08. if t = ub or ft < ft̄, t̄ ∈ {t + 1, . . . , ub}, then
09. S ← S ∪ 〈b, t〉
10. return 〈Tp, S〉

4.3. Combinatorial Relaxation-based Heuristic (CRH)

The CRH heuristic initially uses the CRwt>0 formulation to decide (i) the periods in which there are purchases
of each product in P and (ii) the delivery date of each order in V . Then, it solves a bin packing subproblem for
each period in T to decide how to pack the orders that are delivered in the same period. The rationale behind
this approach is that CRwt>0 can be efficiently solved to optimality, giving a good partial solution with the
purchase dates of products and the delivery dates of orders. Besides, the remaining decision of how to pack the
items in each order can also be efficiently computed as only one bin packing subproblem problem needs to be
solved, for each period in T , with only the orders that are delivered in that specific period.

The pseudo-code of CRH is described in Algorithm 3. In line 1, the CRwt>0 formulation is solved. The
periods in which there are purchases of product p ∈ P are stored in Tp ⊆ T , and the orders that are
delivered at period t are stored in Vt ⊆ V , for all t ∈ T . The set S is initialized in line 2. The for loop in
lines 3–6 runs for each period t ∈ T , and a bin packing instance is solved whenever there are orders to be
delivered at a period t. The resulting bin packing solution is stored in Bt ⊂ 2Vt in line 4. The for loop in
lines 5 and 6 inserts each bin b ∈ Bt in the solution S. CRH stops in line 7, where the solution 〈Tp, S〉 is returned.

Algorithm 3: CRH(V, P, T, K,Q, qip, ti, cpt, ept, ft〉).

1. 〈Tp, Vt〉 ← Solve-CRwt>0(V, P, T, Q, qip, ti, cpt, ept, ft)
2. S ← ∅
3. for t = 1 to |T | such that Vt 6= ∅ do
4. Bt ← BP(Vt, Q, q̄i)
5. for each b ∈ Bt do
6. S ← S ∪ 〈b, t〉
7. return 〈Tp, S〉

4.4. Bin Packing and then Lot Sizing heuristic (BPLS)

The BPLS heuristic is based on the idea of first deciding how to pack the items and only then deciding when
to buy the lots and when to deliver the orders. To this end, it initially generates the set ∆ with all the partitions
of T into intervals of time periods. For example, for T = {1, 2, 3, 4}, we have ∆ = {δ4} ∪ {δ3a} ∪ {δ3b} ∪ {δ3c} ∪
{δ2a} ∪ {δ2b} ∪ {δ2c} ∪ {δ1}, with

δ4 = {[1, 1], [2, 2], [3, 3], [4, 4]},

δ3a = {[1, 1], [2, 2], [3, 4]},

δ3b = {[1, 1], [2, 3], [4, 4]},

δ3c = {[1, 2], [3, 3], [4, 4]},

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING PROBLEM 1205

δ2a = {[1, 2], [3, 4]},

δ2b = {[1, 1], [2, 4]},

δ2c = {[1, 3], [4, 4]},

δ1 = {[1, 4]},

where [l, u] denotes a subset of consecutive time periods starting with l ∈ T and ending with u ∈ T . For each
partition δ ∈ ∆, BPLS builds a solution as follows. First, it solves a bin packing instance for each subset in δ
with V[l,u] = {i ∈ V : l 6 ti 6 u}. Then, it solves an instance of the lot sizing subproblem where the demands
of each product p ∈ P in each period t ∈ T are set according to how the orders were packed into bins in the
preceding step. Finally, after the lot sizing subproblem has been solved, BPLS delivers each bin at the period,
among those it can be feasibly delivered, with the smallest cost.

As the size of ∆ grows exponentially with |T |, the partitions in ∆ are limited to those whose intervals have
at most β time periods. For example, for β = 3, we have ∆ = {δ4}∪{δ3a}∪{δ3b}∪{δ3c}∪{δ2a}∪{δ2b}∪{δ2c}.
We note that partition δ1 = {[1, 4]} is no longer in ∆ because the number of time periods in [1, 4] is larger than
β. Similarly, for β = 2, we have ∆ = {δ4}∪{δ3a}∪{δ3b}∪{δ3c}. Furthermore, the rationale to limit the number
of consecutive periods to β is not only to reduce the size of the bin packing subproblem, but also that, due to
the holding costs, it is unlikely to have attractive solutions where orders from distant periods of the planning
horizon are packed in the same bin.

The pseudo-code of BPLS is described in Algorithm 4. The for loop in lines 1–10 builds a solution 〈Tp, S〉
for each partition δ ∈ ∆. A bin packing instance is solved for each [l, u] ∈ δ, and in line 2 the union of all the
resulting bin packing solutions is stored in B ⊂ 2V . The latest period ub ∈ T in which the bin b ∈ B can be
delivered is computed in line 3. As all the orders in b must be delivered at the same period, a new due date
t̄i = ub is set for each order i ∈ b in line 4. A lot sizing instance characterized by the tuple 〈V, P, T, qip, t̄i, cpt, ept〉
is solved in line 5. Note that the periods in which the demands of each product p ∈ P occurs in the lot sizing
subproblem are possibly anticipated since we may have t̄i < ti for some orders due to packing decisions. In this
case the cost of holding qip unities of p during periods t̄i, t̄i + 1, . . . , ti − 1 are computed before solving the lot
sizing subproblem. The set S is initialized in line 6. The for loop in lines 7–9 decides the delivery date of each
bin b ∈ B. Let lb be the earliest possible delivery date for the bin b ∈ B, i.e., the earliest period where all the
quantities of orders i ∈ b are available according to the lot sizing solution Tp. The period t∗ with the smallest
delivering cost for bin b is identified in line 8. Then, the tuple 〈b, t∗〉 is added to S in line 9, indicating that b is
delivered at t∗. The best-known solution 〈T ∗

p , S∗〉 is updated in line 10, and returned in line 11.

Algorithm 4: BPLS(V, P, T, K,Q, qip, ti, cpt, ept, ft, β).

01. for each δ ∈ ∆ do

02. B ←
⋃

[l,u]∈δ

BP(V[l,u] = {i ∈ V : l 6 ti 6 u}, Q, q̄i)

03. ub ← min{ti : i ∈ b}, ∀b ∈ B

04. t̄i ← ub, ∀i ∈ b : b ∈ B

05. Tp ←WW(V, P, T, qip, t̄i, cpt, ept)
06. S ← ∅
07. for each b ∈ B do

08. t∗ ← arg minlb6t6ub
ft

09. S ← S ∪ {〈b, t∗〉}
10. update (〈Tp, S〉, 〈T ∗

p , S∗〉)
11. return 〈T ∗

p , S∗〉

1206 N. GOULART ET AL.

5. Computational experiments

We report computational experiments conducted on a set of six groups of instances to cover a variety of
situations. A total of 360 instances were used. The MILP formulations SF and MF and their corresponding linear
relaxation, as well as the combinatorial relaxation CRwt>0, were implemented in the Optimization Programming
Language (OPL), which is supported by the IBM ILOG CPLEX Optimization Studio (version 12.6). Our aim
is to assess the optimality gaps we can get in reduced computational times using lower and upper bounds. The
former with the SF and MF linear relaxation and CRwt>0, and the latter with the proposed heuristics. The
heuristics UH, LSBP, CRH, and BPLS were implemented in C++ and compiled with GCC (version 4.8.4). The
value of β was set to 4 in BPLS. The computational experiments were run on an Intel(R) Xeon(R) Quad-Core
E5405 CPU with 2.00 GHz of clock speed and 16GB of RAM memory, running the Linux Ubuntu operating
system (version 14.04).

5.1. Testbed instances

An instance is characterized by the tuple 〈V, P, T, K,Q, qip, ti, cpt, ept, ft〉. The testbed instances used in the
computational experiments are generated from three parameters: η = |V |, ρ = |P |, µ = |T |. The due date of
each order i ∈ V is set to U [1;µ], where U [a; b] denotes a pseudorandom number generated with an uniform
distribution in the range [a; b], see [10]. The value of Q was fixed in 10 000, and the computation of the values
qip (relative to Q), for each i ∈ V and p ∈ P , was inspired by the well known Triplet instances for the bin
packing problem [8]. These instances are generated such that their optimal solution has three items per bin
and no unused space. Following the methodology proposed by Falkenauer [8], we first build an instance of the
bin packing problem, whose optimal solution has |K| = η/3 bins, by splitting each bin into three pieces. The
size of the first piece is set to U [0.38 · Q; 0.49 · Q], while the size of the second is set to U [0.25 · Q;Q/2]. The
remaining space in the bin corresponds to the size of the third piece. Next, we randomly assign each piece to
the weight q̄i for each order i ∈ V . We have that q̄i =

∑
p∈P qip, and we compute the exactly value of qip as

follows. First, we set qip = 0 for all i ∈ V and p ∈ P . Then, while
∑

p∈P qip 6 q̄i, we iteratively assign a demand
qip = min{q̄i−

∑
p∈P qip, U [0.2 · q̄i; 0.5 · q̄i]} to a randomly chosen product p ∈ P . This approach allows scenarios

where different orders have demands for different subsets of items.

We generated six groups of instances that differ from each other by how the production costs cpt and ept,
and the delivering cost ft, are computed. In the first group of instances, the setup cost was set to cpt =
U [12 000; 13 000], and the inventory holding cost was set to ept = U [0.4; 0.6] for each unity of the product p ∈ P
at period t ∈ T . The delivering cost for each period t ∈ T was set to ft = θ/ log(|K|), where θ = U [11 000; 14 000].
These values of cpt, ept, and ft were chosen so that the contribution in the objective function of the sum of
the production costs is approximately the same as that of the delivering costs. This leads to harder instances,
as both the Lot Sizing and the Bin Packing subproblem must be well solved to find optimal or near-optimal
solutions.

The remaining five groups were generated as those in the first group. However, in the second group, the
values of cpt and ft, for all p ∈ P and all even t ∈ T , were increased by 30%. In addition to this 30% increase in
cpt and ft at the even periods, the instances in the third group had the value of cpt and ept further increased by
20% at all periods in T . The instances in the fourth group had the value of cpt and ept increased by 20%, while
those in the fifth group had the value of the delivering cost increased by 20% at all periods. In the sixth group,
the values of cpt and ft for all p ∈ P and all even t ∈ T were increased by 30% and the value of delivering cost
was further increased by 20% at all periods.

Each of the six groups is divided into six sets of ten instances randomly generated with the following values
of η, ρ and µ. The first and second sets have the same value of ρ = 6 and µ = 4, but have η = 36 and η = 48,
respectively, while the third and forth sets have ρ = 6 and µ = 6, with η = 72 and η = 90, respectively. Besides,
the fifth and sixth sets have the same value of ρ = 8 and µ = 8, with η = 120 and η = 144, respectively. Each
set of instances is identified by the number of the group, and the values of η, ρ and µ. For example, the name
g1-36-6-4 refers to a set of instances from the first group that was generated with η = 36, ρ = 6 and µ = 4.

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING PROBLEM 1207

Table 1 summarizes how the parameters in the six groups of instances are generated. The first line, gives the
six different combinations of η, ρ and µ. Each combination represents a set of 10 instances for each of the six
groups. Next, the following four lines show how to compute the values of Q, ti, ept, and cpt, respectively. Then,
the final line displays how to obtain the value of θ that is used to compute the value of ft, i.e. ft = θ/ log(|K|).
The resulting 360 instances are available online at the link https://ufsj.edu.br/prof_ngoulart/instances_

for_iulsbp.php.

5.2. Results

We first evaluate the performance of our approaches to obtain lower bounds for IULSBP. We evaluate the
quality of the lower bounds and the computational effort to obtain them. Table 2 shows average results of 10
instances per line, which are identified in the first column as follows: the group – the number of orders – the
number of products – the number of periods (for instance, g1-36-6-4 means group 1 with |V | = 36, |P | = 6,
and |T | = 4). Then, results for the SF and MF linear relaxations and for the combinatorial relaxation are
presented in the subcolumns identified with SFLR, MFLR, and CRwt>0, respectively. We report, the average
relative optimality gap ([ub∗ − lb]/ub∗) in percentage between the lower bound lb obtained by each approach
and the cost ub∗ of the best-known solution for each instance (found by any of the heuristics developed in
this paper). At the end of each group, we also show the average relative optimality gap over all instances in
the group. Besides, we give the average running times in seconds over the 10 instances in the set. It can be
observed that the average relative optimality gaps of the lower bounds provided by SF were up to 31.9% (on the
instances in set g4-144-8-8), while that of MF were up to 7.7% (on the instances in set g1-120-8-8). Besides, the
maximum running time of the latter (41.1 s) was less than half of the former (90.7 s), even though the former has
a larger number of variables and constraints. This can be explained by the fact that the CPLEX pre-processing
algorithm is more efficient to reduce the size of MF than that of SF. The best lower bounds were obtained by
the combinatorial relaxation CRwt>0. Its average optimality gaps were never larger than 3.3%, and its average
running time was never larger than 0.5 s. Besides, the performance of CRwt>0 is consistently good over all of
the six groups of instances. The difference between the largest and the smallest average relative gap of CRwt>0

is 0.6%(2.8%− 2.2%), while that of SF and MF was 8.0%(24.1%− 16.1%) and 1.9%(6.2%− 4.3%), respectively.
We then evaluate the performance of the heuristics UH, LSBP, CRH, and BPLS. We aim at assessing the

trade-off between the quality of the upper bounds provided by each heuristic and the corresponding running
times. In Table 3, we report, for each heuristic, the average relative optimality gap ([ub− lb∗]/ub) in percentage
between the upper bound ub obtained by the heuristic and the value lb∗ of the best-known lower bound for
each instance (provided by CRwt>0), as well as its the average running times. At the end of each group, we
also show the average relative optimality gap over all instances in the group. It can be observed that with a
straightforward heuristic, as UH, it is not possible to obtain good quality solutions, as the average optimality
gaps of UH were up to 15.6% (on the instances in the set g6-36-6-4). Much better results were obtained with
the heuristics that attempt to take into account the solution of one subproblem as input to the other. The
average optimality gaps of LSBP were never larger than 6.7% (on the instances in the set g5-36-6-4), while that
of CRH were never larger than 5.5% (on the instances in the set g5-90-6-6). The smallest average optimality
gaps over all sets of instances were obtained with BPLS. Although the running times of CRH were smaller than
those of BPLS, the average optimality gaps of the former were never larger than 3.3% and its average running
times were never larger than one minute. Besides, the performance of BPLS is consistently good over all of
the six groups of instances. The difference between the largest and the smallest average relative gap of BPLS
is 0.4%(2.7% − 2.3%), while that of UH, LSBP and CRH were 7.3%(13.1% − 5.8%), 1.1%(4.8% − 3.7%) and
2.2%(4.8%− 2.6%) respectively.

6. Concluding remarks

We proposed mixed integer linear programming formulations, a combinatorial relaxation, and heuristics for
the integrated uncapacitated lot sizing and bin packing problem. Computational experiments on instances with

1208 N. GOULART ET AL.

T
a
b
l
e

1
.

S
u
m

m
ar

y
on

h
ow

to
ge

n
er

at
e

th
e

si
x

gr
ou

p
s

of
in

st
an

ce
s,

w
h
er

e
η

=
|V
|,

ρ
=
|P
|,

µ
=
|T
|,

a
n
d

U
[a

;b
]
d
en

o
te

s
a

p
se

u
d
or

an
d
om

n
u
m

b
er

ge
n
er

at
ed

w
it

h
an

u
n
if
or

m
d
is

tr
ib

u
ti

on
in

th
e

ra
n
ge

[a
;b

].
T

h
e

va
lu

e
o
f
θ

is
u
se

d
to

co
m

p
u
te

f t
,

i.
e
.
f t

=
θ/

lo
g
(|

K
|)

,
w

h
er

e
|K
|
=

η
/3

.

In
st

a
n
ce

g
ro

u
p
s

D
a
ta

g
1

g
2

g
3

g
4

g
5

g
6

η
-ρ

-µ
3
6
-6

-4
,
4
8
-6

-4
,
7
2
-6

-6
,
9
0
-6

-6
,
1
2
0
-8

-8
,
a
n
d

1
4
4
-8

-8

Q
1
0

0
0
0

t i
U

[1
;|

T
|]

e
p
t

U
[0

.4
;0

.6
]

U
[0

.4
;0

.6
]

U
[0

.4
8
;0

.7
2
]

U
[0

.4
8
;0

.7
2
]

U
[0

.4
;0

.6
]

U
[0

.4
;0

.6
]

c p
t

U
[1

2
0
0
0
;1

3
0
0
0
]

U
[1

2
0
0
0
;1

3
0
0
0
]
fo

r
o
d
d

t
U

[1
4

4
0
0
;1

5
6
0
0
]
fo

r
o
d
d

t
U

[1
4

4
0
0
;1

5
6
0
0
]

U
[1

2
0
0
0
;1

3
0
0
0
]

U
[1

2
0
0
0
;1

3
0
0
0
]
fo

r
o
d
d

t

U
[1

5
6
0
0
;1

6
9
0
0
]
fo

r
ev

en
t

U
[1

8
7
2
0
;2

0
2
8
0
]
fo

r
ev

en
t

U
[1

5
6
0
0
;1

6
9
0
0
]
fo

r
ev

en
t

θ
(f

t
)

U
[1

1
0
0
0
;1

4
0
0
0
]

U
[1

1
0
0
0
;1

4
0
0
0
]
fo

r
o
d
d

t
U

[1
1

0
0
0
;1

4
0
0
0
]
fo

r
o
d
d

t
U

[1
1

0
0
0
;1

4
0
0
0
]

U
[1

3
2
0
0
;1

6
8
0
0
]

U
[1

3
2
0
0
;1

6
8
0
0
]
fo

r
o
d
d

t

U
[1

4
3
0
0
;1

8
2
0
0
]
fo

r
ev

en
t

U
[1

4
3
0
0
;1

8
2
0
0
]
fo

r
ev

en
t

U
[1

7
1
6
0
;2

1
8
4
0
]
fo

r
ev

en
t

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING PROBLEM 1209

Table 2. Performance of the approaches to obtain lower bounds for IULSBP. The first two
approaches consist in solving the linear relaxation of SF and MF, respectively, while the third
consists in solving the combinatorial relaxation CRwt>0.

SFLR MFLR CRwt>0

Name gap(%) t(s) gap(%) t(s) gap(%) t(s)

g1-36-6-4 10.7 0.2 2.8 0.1 1.0 0.1
g1-48-6-4 15.4 0.6 5.8 1.0 2.5 0.1
g1-72-6-6 21.8 4.1 6.5 7.2 2.8 0.2
g1-90-6-6 24.1 9.3 6.4 10.6 3.0 0.2
g1-120-8-8 29.2 39.7 7.7 34.5 3.0 0.4
g1-144-8-8 29.3 59.9 6.8 41.1 2.6 0.4
Average: 21.8 6.0 2.5
g2-36-6-4 8.8 0.2 2.2 0.3 1.5 0.1
g2-48-6-4 11.9 0.9 4.1 1.0 2.6 0.1
g2-72-6-6 18.0 5.5 5.9 3.9 3.1 0.1
g2-90-6-6 19.3 13.1 4.8 7.2 2.9 0.1
g2-120-8-8 23.8 55.4 5.7 19.1 2.3 0.2
g2-144-8-8 24.2 90.7 5.1 33.0 2.1 0.3
Average: 17.7 4.6 2.4
g3-36-6-4 9.3 0.2 2.9 0.4 0.9 0.1
g3-48-6-4 12.6 0.9 5.0 0.9 2.5 0.1
g3-72-6-6 19.9 5.5 5.6 4.4 2.6 0.1
g3-90-6-6 19.8 11.8 4.9 6.9 2.5 0.1
g3-120-8-8 26.4 57.5 7.1 17.9 2.5 0.3
g3-144-8-8 26.4 85.9 5.7 32.0 2.0 0.3
Average: 19.1 5.2 2.2
g4-36-6-4 12.7 0.2 3.7 0.3 1.8 0.1
g4-48-6-4 18.6 0.9 6.1 1.1 3.1 0.1
g4-72-6-6 24.6 4.4 6.4 4.8 2.8 0.1
g4-90-6-6 25.6 8.9 6.6 7.5 3.1 0.2
g4-120-8-8 31.1 42.8 7.2 22.5 2.3 0.4
g4-144-8-8 31.9 61.7 7.0 36.8 2.5 0.4
Average: 24.1 6.2 2.6
g5-36-6-4 13.8 0.4 3.6 0.4 1.3 0.1
g5-48-6-4 13.5 1.0 4.8 0.9 3.0 0.1
g5-72-6-6 19.3 4.1 6.1 4.7 3.3 0.1
g5-90-6-6 21.3 9.1 5.8 7.5 3.0 0.1
g5-120-8-8 27.7 38.9 7.2 20.8 3.0 0.4
g5-144-8-8 30.5 64.8 6.6 34.7 2.9 0.5
Average: 21.0 5.7 2.8
g6-36-6-4 9.7 0.3 2.7 0.4 1.3 0.1
g6-48-6-4 11.1 0.9 3.4 0.9 2.6 0.1
g6-72-6-6 15.9 5.4 4.7 4.4 2.7 0.1
g6-90-6-6 16.9 12.9 4.0 7.8 3.0 0.1
g6-120-8-8 21.9 54.1 5.9 17.5 2.7 0.2
g6-144-8-8 21.3 88.1 5.3 30.7 2.6 0.3
Average: 16.1 4.3 2.5

1210 N. GOULART ET AL.

Table 3. Performance of the heuristics UH, LSBP, CRH, and BPLS.

UH LSBP CRH BPLS
Name gap(%) t(s) gap(%) t(s) gap(%) t(s) gap(%) t(s)

g1-36-6-4 9.1 0.6 4.5 4.5 3.9 0.2 1.0 1.1
g1-48-6-4 7.1 0.8 5.4 0.8 4.8 0.3 2.5 1.3
g1-72-6-6 6.7 2.9 4.4 9.9 4.7 0.5 2.8 7.6
g1-90-6-6 6.0 4.4 4.5 11.3 5.0 0.6 3.0 8.9
g1-120-8-8 5.5 10.9 4.1 12.7 4.5 0.9 3.1 47.9
g1-144-8-8 4.2 14.2 3.6 27.0 3.7 0.9 2.6 58.6
Average: 6.4 4.4 4.4 2.5
g2-36-6-4 13.9 0.4 3.4 0.3 3.2 0.2 1.6 1.1
g2-48-6-4 13.5 2.6 3.1 2.0 3.4 0.2 2.6 1.3
g2-72-6-6 13.0 16.6 5.0 15.2 3.8 0.4 3.3 7.6
g2-90-6-6 12.3 13.5 5.2 23.7 2.9 0.4 2.9 9.0
g2-120-8-8 10.9 14.9 3.6 32.4 2.5 0.6 2.5 48.6
g2-144-8-8 10.1 62.9 4.4 52.2 2.2 0.8 2.1 57.8
Average: 12.3 4.1 3.0 2.5
g3-36-6-4 13.0 0.4 4.4 0.4 2.2 0.2 1.3 1.1
g3-48-6-4 11.2 0.4 3.1 1.0 2.8 0.2 2.5 1.2
g3-72-6-6 10.7 2.4 4.3 14.8 2.9 0.4 2.6 7.6
g3-90-6-6 10.8 4.4 3.8 15.6 2.8 0.4 2.5 9.1
g3-120-8-8 9.6 5.7 4.2 30.5 2.7 0.8 2.5 49.1
g3-144-8-8 9.2 17.7 4.0 34.1 2.1 0.8 2.1 58.2
Average: 10.8 4.0 2.6 2.3
g4-36-6-4 8.4 0.4 4.2 0.2 3.2 0.2 1.8 1.3
g4-48-6-4 6.6 2.4 3.7 7.8 4.3 0.3 3.1 1.3
g4-72-6-6 6.1 1.0 4.1 10.3 4.6 0.6 2.8 8.0
g4-90-6-6 5.1 3.0 3.9 16.8 4.8 0.6 3.3 9.2
g4-120-8-8 4.6 4.1 3.2 15.5 3.5 0.9 2.4 48.9
g4-144-8-8 4.2 28.2 3.3 26.5 3.8 1.0 2.5 60.2
Average: 5.8 3.7 4.0 2.7
g5-36-6-4 9.0 0.1 6.7 9.0 5.0 0.3 1.3 1.1
g5-48-6-4 7.5 0.2 4.2 0.2 4.8 0.3 2.1 1.3
g5-72-6-6 7.6 0.3 4.6 1.1 4.9 0.5 3.3 7.5
g5-90-6-6 7.2 12.3 5.1 15.2 5.5 0.6 3.0 8.9
g5-120-8-8 5.7 14.1 4.5 25.1 4.3 0.8 3.0 48.1
g5-144-8-8 5.1 31.5 3.7 9.2 4.3 0.9 3.0 58.5
Average: 7.0 4.8 4.8 2.6
g6-36-6-4 15.6 0.1 4.1 6.1 3.4 0.2 1.9 1.1
g6-48-6-4 14.4 0.1 3.8 14.2 3.4 0.2 2.6 1.3
g6-72-6-6 13.5 0.2 5.1 6.6 3.6 0.4 2.7 7.5
g6-90-6-6 13.1 1.9 5.0 18.0 3.1 0.4 3.0 8.9
g6-120-8-8 11.3 8.8 4.9 10.0 3.0 0.7 2.7 47.8
g6-144-8-8 10.8 4.5 4.0 29.6 2.6 0.7 2.6 59.2
Average: 13.1 4.5 3.2 2.6

THE INTEGRATED UNCAPACITATED LOT SIZING AND BIN PACKING PROBLEM 1211

different configurations have shown that the best lower bounds were obtained by the CRwt>0 combinatorial
relaxation, which provided lower bounds within 3.3% of the optimal solution, in less than one second, on average.
The best upper bounds were obtained by the BPLS heuristic, whose solutions have a maximum optimality gap
of 3.3% and a maximum running time smaller than 1 min, on average. Besides, The performance of BPLS was
consistently good on all six groups of instances with a maximum average optimality gap of 2.7% on group g4.

BPLS, which solves the bin packing subproblem first and only then solves a lot-sizing subproblem (that
is dependent on the first one), found better results than the other heuristics even on the instance group g4,
where the lot-sizing costs (setup and inventory holding costs) are relatively higher than on the other groups
of instances. In this case, the setup and holding costs have a greater influence on the value of the objective
function. Therefore, algorithms that focus on minimizing the lot-sizing components of the objective function
(such as LSBP) are expected to find better solutions than other algorithms that focus on minimizing the
delivering cost (such as BPLS). The better results of BPLS over LSPB on this group can be explained by the
fact that BPLS packs the items together in the first step, but the decision of when the packs are delivered and
when the corresponding products are bought is optimally solved by the WW algorithm in its second step.

Future works may explore different strategies to formulate the assignment-based bin packing constraints in
(2.7), such as the pattern-based formulation of [18] and the arc-flow formulation of [5]. Alternatively, other
heuristic methods based on Metaheuristics can also be devised for the problem. Another interesting line of
research is to consider the capacitated lot sizing variants of the problem. Although the formulations could be
adapted to the capacitated case, regarding the heuristic development, capacities would force different choices
of building strategies and would have an impact on the algorithms availability to obtain high quality feasible
solutions.

Acknowledgements. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior – Brasil (CAPES), the Brazilian National Council for Scientific and Technological Development (CNPq), and the
Foundation for Support of Research of the State of Minas Gerais, Brazil (FAPEMIG). Ravetti acknowledges partial
support from Fundep.

References

[1] Y. Adulyasak, J. Cordeau and R. Jans, The production routing problem: a review of formulations and solution algorithms.
Comput. Oper. Res. 55 (2015) 141–152.

[2] A. Azadeh, S. Elahi, M.H. Farahani and B. Nasirian, A genetic algorithm-taguchi based approach to inventory routing problem
of a single perishable product with transshipment. Comput. Ind. Eng. 104 (2017) 124–133.

[3] J.F. Bard and N. Nananukul, The integrated production-inventory-distribution-routing problem. J. Scheduling 12 (2009)
257–280.

[4] N. Ben-Khedher and C.A. Yano, The multi-item joint replenishment problem with transportation and container effects. Transp.
Sci. 28 (1994) 37–54.

[5] F. Brandão and J.P. Pedroso, Bin packing and related problems: General arc-flow formulation with graph compression. Comput.
Oper. Res. 69 (2016) 56–67.

[6] L.C. Coelho, J. Cordeau and G. Laporte, Thirty years of inventory routing. Transp. Sci. 48 (2014) 1–19.

[7] K. Copil, M. Wörbelauer, H. Meyr and H. Tempelmeier, Simultaneous lotsizing and scheduling problems: a classification and
review of models. OR Spectr. 39 (2017) 1–64.

[8] E. Falkenauer, A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2 (1996) 5–30.

[9] W.-S. Lee, J.-H. Hana and S.-H. Cho, A heuristic algorithm for a multi-product dynamic lot-sizing and shipping problem. Int.
J. Prod. Econ. 98 (2005) 204–214.

[10] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Trans. Model. Comput. Simul. 8 (1998) 3–30.

[11] G.M. Melega, S.A. de Araujo and R. Jans, Classification and literature review of integrated lot-sizing and cutting stock
problems. Eur. J. Oper. Res. 271 (2018) 1–19.

[12] F. Molina, R. Morabito and S.A. de Araujo, MIP models for production lot sizing problems with distribution costs and cargo
arrangement. J. Oper. Res. Soc. 67 (2016) 1395–1407.

[13] L.V. Norden and S.L.V. d. Velde, Multi-product lot-sizing with a transportation capacity reservation contract. Eur. J. Oper.
Res. 165 (2005) 127–138.

1212 N. GOULART ET AL.

[14] Y. Pochet, Mathematical programming models and formulations for deterministic production planning problems. Computa-
tional Combinatorial Optimization, edited by M. Junger and D. Naddef. In: Vol. 2241 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2001) 57–111.

[15] E. Sancak and F.S. Salman, Multi-item dynamic lot-sizing with delayed transportation policy. Int. J. Prod. Econ. 131 (2011)
595–603.

[16] V. Schmid, K.F. Doerner and G. Laporte, Rich routing problems arising in supply chain management. Eur. J. Oper. Res. 224

(2013) 435–448.

[17] K.E. Stecke and X. Zhao, Production and transportation integration for a make-to-order manufacturing company with a
commit-to-delivery business mode. Manuf. Serv. Oper. Manage. 9 (2007) 123–224.

[18] P.H. Vance, C. Barnhart, E.L. Johnson and G.L. Nemhauser, Solving binary cutting stock problems by column generation and
branch-and-bound. Comput. Optim. App. 3 (1994) 111–130.

[19] H.M. Wagner and T.M. Whitin, Dynamic version of the economic lot size model. Manage. Sci. 5 (1958) 89–96.

	Introduction
	MILP formulations and relaxation for IULSBP
	SF formulation
	MF reformulation

	Combinatorial Relaxation of SF
	Heuristics for IULSBP
	Uncoupled Heuristic (UH)
	Lot Sizing and then Bin Packing heuristic (LSBP)
	Combinatorial Relaxation-based Heuristic (CRH)
	Bin Packing and then Lot Sizing heuristic (BPLS)

	Computational experiments
	Testbed instances
	Results

	Concluding remarks
	References

