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FIX-AND-OPTIMIZE METAHEURISTICS FOR MINMAX REGRET BINARY

INTEGER PROGRAMMING PROBLEMS UNDER INTERVAL UNCERTAINTY

Iago A. Carvalho1 , Thiago F. Noronha2,∗ and Christophe Duhamel3

Abstract. The Binary Integer Programming problem (BIP) is a mathematical optimization problem,
with linear objective function and constraints, on which the domain of all variables is {0, 1}. In BIP,
every variable is associated with a determined cost coefficient. The Minmax regret Binary Integer
Programming problem under interval uncertainty (M-BIP) is a generalization of BIP in which the cost
coefficient associated to the variables is not known in advance, but are assumed to be bounded by an
interval. The objective of M-BIP is to find a solution that possesses the minimum maximum regret
among all possible solutions for the problem. In this paper, we show that the decision version of M-BIP
is Σp

2-complete. Furthermore, we tackle M-BIP by both exact and heuristic algorithms. We extend three
exact algorithms from the literature to M-BIP and propose two fix-and-optimize heuristic algorithms.
Computational experiments, performed on the Minmax regret Weighted Set Covering problem under
Interval Uncertainties (M-WSCP) as a test case, indicates that one of the exact algorithms outperforms
the others. Furthermore, it shows that the proposed fix-and-optimize heuristics, that can be easily
employed to solve any minmax regret optimization problem under interval uncertainty, are competitive
with ad-hoc algorithms for the M-WSCP.

Mathematics Subject Classification. 68R01, 90C11, 90C17, 90C47, 90C59.

Received April 7, 2022. Accepted November 6, 2022.

1. Introduction

The Binary Integer Programming problem (BIP) is a mathematical optimization problem, with linear objec-
tive function and constraints, on which the domain of all variables is {0, 1}. BIP can be formulated by the
objective function (1) and the constraints (2) and (3), where b and c are n-dimensional vectors of coefficients,
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A is a m×n-dimensional matrix of coefficients, and x is a n-dimensional vector of binary variables. BIP is NP-
Hard [40]. However, for small- to medium-sized instances, it can be solved in many cases by branch-and-bound
based algorithms available in state-of-the-art BIP solvers, such as CPLEX1 and GUROBI2 [4].

(BIP) min cT x (1)

Ax ≤ b (2)

x ∈ {0, 1}n. (3)

In this paper, we focus on a generalization of BIP whose parameters A and b are known, but the coefficients
in c are uncertain. Despite not being known in advance, the cost of each coefficient ci is assumed to be bounded
by an interval [li, ui], with 0 ≤ li ≤ ui. Such uncertainty representation is known as interval uncertainty [44].
We refer to this problem as the Minmax regret Binary Integer Programming problem under interval uncertainty
(M-BIP), which is formally defined in the following.

Definition 1.1. A scenario S is an assignment of a single value cS
i ∈ [li, ui] for each uncertain coefficient ci,

i = 1 . . . n.

Let Γ be the set of all scenarios, and Φ be the set of all feasible solutions to the constraints (2)–(3).

Definition 1.2. The cost of a solution X ∈ Φ in a specific scenario S ∈ Γ is given by

F (X, S) =
∑

i=1...n

cS
i xi.

Definition 1.3. The best possible solution Y S ∈ Φ for the specific scenario S ∈ Γ is the optimal BIP solution
for the scenario S

Y S = arg min
Y ∈Φ

F (Y, S) = arg min
Y ∈Φ

∑

i=1...n

cS
i yi.

Definition 1.4. The regret of a solution X ∈ Φ in a specific scenario S ∈ Γ is the difference between the cost
of X and the cost of Y S in S [44]: F (X,S)− F (Y S , S).

Definition 1.5. The robustness cost Z(X) of a solution X ∈ Φ is defined as the maximum regret of X among
all scenarios in Γ:

Z(X) = max
S∈Γ

{

F (X, S)− F (Y S , S)
}

.

Even if |Γ| =∞, it is proven by [3] and [10] that the scenario on which the regret of X ∈ Φ is the maximum
is the scenario SX ∈ Γ, such that

cSx

i = li + (ui − li)xi

Thus, cSX

i = ui if xi = 1, and cSX

i = li otherwise. From this result, we have

F (X, SX) =
∑

i=1...n

uixi

F (Y SX

, SX) = min
Y ∈Φ

∑

i=1...n

(

li + (ui − li)xi

)

yi

and
Z(X) = F (X,SX)− F (Y SX

, SX).

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
2http://www.gurobi.com
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We refer to this scenario as the worst-case scenario SX induced by solution X.
It is worth noticing that F (Y SX

, SX) is a BIP, as in this case xi is constant. Therefore, the robust cost of a
solution X is computed by solving a single BIP problem in the scenario SX . M-BIP aims at finding a solution
with minimum robustness cost. It is defined as

(M-BIP) min
X∈Φ

Z(X) = min
X∈Φ

{

F
(

X,SX
)

− F
(

Y SX

, SX
)}

.

It can be reformulated as a 0–1 Bilevel Binary Program in (4) by substituting F (X, SX) and F (Y SX

, SX).

(M-BIP) min
X∈Φ

{

∑

i=1...n

uixi − min
Y ∈Φ

∑

i=1...n

(

li + (ui − li
)

xi)yi

}

. (4)

This formulation can be linearized by replacing F (Y SX

, SS) with a free variable θ and adding a new set of

linear constraints that bounds the value of θ to the value of F (Y SX

, SX). The resulting M-BIP formulation
(5)–(9) has an exponentially large number of constraints (6). The constraints (6) are linear since yi is constant.

min
X∈Φ

∑

i=1...n

uixi − θ (5)

θ ≤
∑

i=1...n

(li + (ui − li)xi) yi, ∀ Y ∈ Φ (6)

∑

i=1...n

ajixi ≤ bj , ∀j = 1 . . . m (7)

xi ∈ {0, 1}, ∀i = 1 . . . n (8)

θ ≥ 0. (9)

Proposition 1.6. The decision version of M-BIP is Σp
2-complete

Proof. M-BIP is a generalization of the decision version of the Minmax regret Binary Knapsack problem under
interval uncertainty, which is also known to be Σp

2-complete [29]. �

Therefore, M-BIP is harder to solve than classical NP-Hard problems as its decision version does not belong
to NP, unless Σp

2 = NP [50, 53]. This also means one cannot build a compact ILP formulation for M-BIP.
Finally, it is also NP-Hard to compute the cost of a single solution of M-BIP.

In this paper, we propose two Fix-and-Optimize heuristics (FO) for M-BIP that also can be applied to
solve any minmax regret optimization problem under interval uncertainty. These are the first FO heuristics
in the literature applied to a Σp

2-hard problem under interval uncertainty. They are inspired by the Fix-and-
Optimize metaheuristic framework proposed by [37] for a variant of the Vehicle Routing Problem and successfully
adapted to several other combinatorial optimization problems [20,27,30,38,48,54]. We evaluate the performance
of these heuristics using the Minmax regret Weighted Set Covering problem under interval uncertainty (M-
WSCP) [51] as a test case. It is one of the most studied minmax regret optimization problems under interval
uncertainty [7, 22,23,28].

The remainder of this paper is organized as follows. Related work is reviewed in Section 2. Algorithms for
M-BIP are presented in sections 3 and 4. The former shows exact algorithms for this problem while the latter
presents the Fix-and-Optimize heuristics. In the latter, we also show how a lower bound can be obtained by
using the proposed heuristics. Then, Section 5 formally defines the M-WSCP and reports the computational
experiments. Finally, the concluding remarks are drawn in the last session.
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Table 1. Complexity results for min-max regret optimization problems under interval uncertainty.

Problem Complexity

Assignment Strongly NP-Hard [1]
Binary Knapsack Σp

2-Complete [29]
Binary Programming Σp

2-Complete
Linear Programming Strongly NP-Hard [9]
Min Cut Polynomial [2]
Minimum Spanning Tree Strongly NP-Hard [8]
Min s-t Cut Strongly NP-Hard [2]
Representatives Selection Polynomial [31]
Scheduling 1‖ΣCj NP-Hard [45]
Shortest Path Strongly NP-Hard [8]
Shortest Path Arborescence NP-Hard [20]
Selection Polynomial [10]
Weighted Independent Set NP-Hard [41]
1-median (edge uncertainty) Strongly NP-Hard [11]
1-median (node uncertainty) Polynomial [55]
1-center (edge uncertainty) Strongly NP-Hard [11]
1-center (node uncertainty) Polynomial [55]

2. Related work

Minmax regret optimization problems under interval uncertainty were widely studied in the literature. They
were studied from the theoretical point-of-view, where one is interested in determining the problem’s complexity,
and also from the algorithmic point-of-view, where one is interested in proposing algorithms for solving the
problem. A general result for minmax regret optimization problems under interval uncertainty is that the
uncertain variant is, at least, as hard to solve as the deterministic version of the problem [43]. This is due to the
fact that, for computing the minmax regret of a solution, one must solve the deterministic problem on its worst-
case induced scenario, as presented in Section 1. Table 1 summarizes the complexity studies for several minmax
regret optimization problems under interval uncertainty in the literature displaying, for each problem, its known
complexity. Several classic problems that are solvable in polynomial time, such as the minimum spanning tree
problem and the shortest path problem, turn out to be NP-hard when considering the minmax regret objective
function and the interval uncertainty. Furthermore, classic problems that were known to be NP-hard remain
NP-hard in their minmax regret optimization variant under interval uncertainty. Others become harder to solve,
like the Binary Programming problem and the Binary Knapsack problem.

The Minmax regret Weighted Set Covering problem under interval uncertainty was first studied by [51].
The authors proposed an integer linear programming formulation for this problem, which was solved by three
algorithms based on Benders’ decomposition. Several heuristics were also proposed for this problem. A Genetic
Algorithm and a Hybrid Genetic Algorithm were proposed by [51], a scenario-based heuristic with a path-
relinking strategy was proposed by [22], while a hybrid heuristic based on the Benders’ decomposition algorithm
and a scenario-based heuristic were developed by [23]. The latter heuristic was demonstrated to be the most
efficient of them, see [23].

A fix-and-optimize heuristic was first used to solve minmax regret optimization problems by [20]. In this paper,
the authors considered the Minmax regret Shortest Path Arborescence problem under interval uncertainty and
proposed an ad-hoc fix-and-optimize heuristic. The proposed heuristic consists in solving several Minmax regret
Shortest Path problems under interval uncertainty and uses their solutions to reduce the number of variables
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in the shortest path arborescence problem. Despite the encouraging results obtained by this heuristic, it cannot
be extended to other minmax regret optimization problems under interval uncertainty.

In this research, we propose fix-and-optimize heuristics that can be easily employed to solve any minmax
regret optimization problem under interval uncertainty. Unlike [20], they are based on (i) the linear programming
relaxation of the problems; or (ii) the Scenario-based Heuristic (SBA) [23], which is a well-known heuristic that
can be used to solve any problem within this class.

3. Exact algorithms

The M-BIP formulation (5)–(9) has an exponential number of the constraints (6). Enumerating all these
constraints is a #P-Complete problem [26], since there is one constraint for each feasible solution of the problem.
Therefore, this formulation cannot be explicitly solved by commercial BIP solvers, and more sophisticated
methods are needed. Thus, we present below three exact algorithms for solving M-BIP.

3.1. Benders-like Decomposition (BLD)

The Benders-like Decomposition algorithm (BLD) relies on a cutting plane algorithm inspired by the Benders’
Decomposition [14]. It differs from the classic algorithm because the BLD’ subproblem is not a linear program.
BLD decomposes M-BIP into two problems: (i) the Master Problem (MP); and (ii) the subproblem (SP). The
MP consists in solving the formulation defined by objective function (5) and the constraints in (7)–(10), i.e.
using only a subset of the constraints in (6). The SP consists in solving a BIP where the cost coefficients of
the objective function are given by the worst-case scenario induced by the optimal solution of the MP. BLD
iteratively solves the MP, then the SP. The solution Y of the SP is added to Φ such that Φh+1 ← Φh ∪ {Y }
where h is the current iteration. Initially Φ0 ← ∅. BLD stops when the robustness cost of the solution given by
the MP is equal to the smallest robustness cost of a solution computed by the SP. This algorithm is guaranteed
to obtain the optimal solution for M-BIP [6].

BLD was successfully applied to solve the Minmax regret Traveling Salesman Problem under Interval Uncer-
tainty [46], the Minmax regret Knapsack problem under Interval Uncertainty [35], the Minmax regret Restricted
Shortest Path problem under Interval Uncertainty [7], and the Minmax regret Set Covering problem under Inter-
val Uncertainty [51], among other problems.

θ ≤
∑

i=1...n

(li + (ui − li)xi) yi, ∀ Y ∈ Φh (10)

Algorithm 1 gives a pseudo-code of BLD. It receives as input the matrix A, the vector x, and the vector b
of BIP. Additionally, it receives the vectors l and u of lower and upper bounds for the cost coefficients, such
that ci = [li, ui], i = 1 . . . n. Initially, as suggested by [46] to avoid an unbounded MP, Φ0 is initialized lines
1 to 3 with the solutions z= and z+ of two constructive heuristics for minmax regret optimization problems
under interval uncertainty: the Algorithm Mean (AM) and the Algorithm Upper (AU) [42]. The best solution
and its robustness cost are kept lines 4 and 5. Furthermore, the iteration count is set line 6. The loop lines 7–14
corresponds to an iteration of BLD. It is run until an optimal solution is found. First, the MP is solved line 8
using constraints (10), giving solution X. Then, the SP corresponding to X is solved in line 9, giving solution
Y . Next, the primal bound ϑ of BLD is updated with the cost of Y line 10 and the solution with the smallest
robustness cost is kept line 11. At the end of the loop, the iteration number is updated line 12 and the solution
Y is inserted into Φh line 13. Finally, the best feasible solution X∗ computed is returned line 15.

3.2. Extended Benders-like Decomposition (EB)

The Extended Benders-like Decomposition (EB) uses the methodology introduced by [33] for selecting Ben-
ders’ cuts. It consists in solving one SP for each incumbent solution found by MP, instead of solving a single SP
for the optimal solution of MP. Thus, the number of iterations in EB is expected to be smaller than in BLD.
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Algorithm 1: Benders-like Decomposition (BLD)

input : 〈A, x, b, l, u〉
output: X∗ ∈ Φ

1 X= ← AM(A, x, b, l, u)
2 X+ ← AU(A, x, b, l, u)

3 Φ0 ← {X=, X+}
4 X∗ ← arg minX∈{X=X+} Z(X)

5 ϑ← Z(X∗)
6 h← 0
7 do
8 X ←MP (A, x, b,Φh, l, u)

9 Y ← SP (A, x, b, SX)

10 ϑ← min
(

ϑ, F
(

Y (SX), SX
))

11 X∗ ← arg minX∈{X∗,Y } Z(X)

12 h← h + 1

13 Φh ← Φh−1 ∪ {Y }
14 while (Z(X) < ϑ)
15 return X∗

The pseudo-code for EB is very similar to Algorithm 1 (BLD). The main difference is that, instead of solving
an unique SP on line 10, it solves a SP for each integer solution found by the MP solved in line 8.

3.3. Branch-and-Cut (BC)

The Branch-and-Cut algorithm (BC) was initially proposed by [46] for solving the Minmax regret Traveling
Salesman Problem under Interval Uncertainty. The authors noticed that BLD may be computationally ineffi-
cient, as each iteration runs a branch-and-bound algorithm from scratch to solve the MP. In BC, each incumbent
solution found by the algorithm is processed by a SP (which is identical to SP in BLD and EB) to generate a
new cut on the original branch-and-bound algorithm. BC differs from EB in the fact that the computed cuts
are inserted globally and propagated to all active nodes in the branch-and-bound tree. The MP in BLD and
EB is always reset after each iteration.

Algorithm 2 gives a pseudo-code of BC. It receives as input the matrix A, the vector x, and the vector b of
M-BIP. Additionally, it receives the vectors l and u of lower and upper bounds for the cost coefficients, such
that ci = [li, ui], i = 1 . . . n. Initially, as suggested by [46] and similar to BLD and EB, BC solves M-BIP using
the AM and AU constructive heuristics lines 1 and 2, respectively. Then, it initializes Φ′ ⊆ Φ with solutions
obtained by these heuristics line 3. Next, a branch-and-cut framework is performed line 4, which stops when an
optimal solution is found or when a predefined time limit is met. Finally, the best feasible solution X∗ computed
is returned line 5.

4. Fix-and-Optimize heuristics

This section proposes two fix-and-optimize heuristics for M-BIP. These heuristics work in two steps. The first
one is the preprocessing step, which uses an ad-hoc algorithm to fix the value of some variables in the problem’s
formulation. This leads to a reduced M-BIP, which is solved in the second step (solving step). One expects
Reduced M-BIP to be solved significantly faster than M-BIP as the number of variables in the former will be
much smaller.

The heuristics differ on the ad-hoc algorithm used in the preprocessing step. The first one uses the Scenario-
based Heuristic (SBA) [22] to identify variables that can be fixed to zero and removed from the M-BIP
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Algorithm 2: Branch-and-Cut (BC)

input : 〈A, x, b, l, u〉
output: X∗ ∈ Φ

1 X= ← AM(A, x, b, l, u)
2 X+ ← AU(A, x, b, l, u)
3 Φ′ ← {X=, X+}
4 X∗ ← Branch-and-Cut(A, x, b,Φ′, l, u)
5 return X

formulation, while the second one uses the linear relaxation of the M-BIP formulation to achieve this goal.
Despite being proposed for M-BIP, both heuristics are very general and they can be applied to solve any
minmax regret optimization problem under interval uncertainty. They are described below.

4.1. Fix-and-Optimize through Scenario-based Algorithm (FO-SBA)

The Fix-and-Optimize through Scenario-based Algorithm (FO-SBA) relies on the SBA heuristic [22]. The
intuition behind this heuristic is that the variables whose value is zero in the optimal solution of all scenarios
solved by SBA are less likely to appear in the optimal solution of M-BIP. Therefore, they will be set to zero
and removed from the set of variables, leading to a reduced M-BIP. In this subsection, we first introduce SBA
in Section 4.1.1. Then, we state FO-SBA in Section 4.1.2.

4.1.1. The Scenario-based Algorithm

SBA was first proposed for the Minmax regret Weighted Set Covering problem under Interval Uncertain-
ties [22, 23] and later extended to M-BIP [18] and other minmax regret optimization problems under interval
uncertainties [19, 20, 24]. It consists in investigating a set Q = {q1, q2, . . . , qp} ⊆ Γ of so-called target scenarios.
Each one is a linear combination between the lower scenario sl ∈ Γ (a scenario where the cost of the arcs are

set to their respective lower, i.e. csl

i = li) and the upper scenario su ∈ Γ (a scenario where the cost of the arcs
are set to their respective upper, i.e. csu

i = ui).

The set Q of investigated scenarios is computed using three parameters: (i) the initial scenario α; (ii) the
final scenario β; and (iii) the step size γ. All parameters are real-valued in the interval [0, 1]. The cost of the
uncertain coefficients for each target scenario qj ∈ Q is computed as c

qj

i = li + (α + δ · γ) · (ui − li), δ ∈ N, for
all values of δ such that α + δγ ≤ β.

Algorithm 3 presents the pseudocode of SBA. It receives as input the matrix A, the vector x, and the vector
b of BIP. Additionally, it receives the vectors l and u of lower and upper bounds for the cost coefficients, such
that ci = [li, ui], i = 1 . . . n, and parameters α, β, and γ. Initially, γ is set to α line 1 and the primal bound
vartheta is set to infinity line 2. The algorithm consists in the main loop lines 3–8. In each iteration, a BIP is
solved on scenario qj (which is defined by the current value of δ) line 4. If the regret of the computed solution is
smaller than that of the previous best solution, it updates the value of the best solution found line 6 and stores
the solution found in line 7. The value of γ is incremented line 8. This loop runs until γ is greater than β. The
best solution found X is then returned line 9. It is worth noting that SBA is an exponential-time algorithm,
since the BIP solved in line 4 is NP-Hard.

4.1.2. FO-SBA for the M-BIP

Let V be the set of variables that appear in the optimal solution of at least one of the k = |Q| scenarios
investigated by SBA. Reduced M-BIP consists in the objective function (5) and the constraints in (6)–(9) and
(11). One may observe that constraint (11) fix all variables that are not in V to zero.

xi = 0 ∀i /∈ V. (11)
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Algorithm 3: Scenario-based Algorithm (SBA)

input : 〈A, x, b, α, β, γ, l, u〉
output: X∗ ∈ Φ

1 δ ← α
2 ϑ←∞
3 while δ ≤ β do
4 X ← BIP(A, x, b, δ, l, u) // Solve BIP in the scenario defined by δ
5 if (Z(X) < Z(X∗)) then
6 ϑ← Z(X)
7 X∗ ← X

8 δ ← δ + γ

9 return X∗

Algorithm 4 shows the pseudo-code of FO-SBA. It receives as input the matrix A, the vector x, and the
vector b of BIP. Additionally, it receives the vectors l and u of lower and upper bounds for the cost coefficients,
such that ci = [li, ui], i = 1 . . . n. Besides, is also receives as input the parameters of the SBA heuristic, i.e. α, β,
and γ. Furthermore, it uses set V to maintain all variables that should be kept in the reduced M-BIP. Initially,
γ is set to α in line 1. Then, line 2 initializes the set V as an empty set. The preprocessing step consists of the
loop in lines 3–6. At each iteration of this loop, it solves a BIP on scenario qj on line 4. Then, it stores the
variables which were in the optimal solution of the previously solved problem on line 5 and increases the value
of γ in line 6. The solving step is performed in line 7, which consists in solving the resulting reduced M-BIP
formulation. One may observe that this formulation can be solved with any exact algorithm for M-BIP. Finally,
FO-SBA returns the computed solution X∗ on line 8.

Algorithm 4: FO-SBA

input : 〈A, x, b, α, β, γ, l, u〉
output: X∗ ∈ Φ

1 δ ← α
2 V ← ∅
3 while δ ≤ β do
4 X ← BIP(A, x, b, δ, l, u) // Solve BIP in the scenario defined by δ
5 V ← V ∪ {xi : xi = 1}
6 δ ← δ + γ

7 X∗ ← Reduced M-BIP(A, x, b, l, u, V )
8 return X∗

4.2. Fix-and-Optimize through Linear Relaxation (FO-LR)

The Fix-and-Optimize through Linear Relaxation (FO-LR) relies on the linear relaxation of the M-BIP
formulation defined by Equations (5), (7)–(10). In this case, the integrality of the constraints in (8) is relaxed,
and Φh = Φ0 = {X=, X+}. This approach is the same used in the first iteration of BLD, EB, and BC, where
X= and X+ are the solutions of Algorithm Mean (AM) and Algorithm Upper (AU) [42], respectively.

The intuition behind this heuristic is that the variables whose value is zero in the optimal solution of the LP
relaxation are less likely to appear in the optimal solution of M-BIP than the others. Therefore, one can build
a reduced M-BIP without the null variables in the solution of the linear relaxation.
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FO-LR builds a reduced M-BIP by setting some of the variables of M-BIP to zero. Let V be the set of null
variables in the optimal solution of the linear relaxation of M-BIP. The reduced M-BIP formulation consists in
solving the formulation (5)–(9) and (11).

Algorithm 5 shows the pseudo-code of FO-LR. The preprocessing step consists in lines 1 and 2. The linear
relaxation of M-ILP is solved line 1 using a linear programming solver. V receives the strictly positive variables
in the optimal solution of the linear relaxation of M-BIP line 2. The solving step is performed in line 3. It
consists in solving the reduced M-BIP formulation, which can be done using any exact algorithm for M-BIP.
Finally, the resulting solution X∗ is returned on line 4.

Algorithm 5: FO-LR

input : 〈A, x, b, l, u〉
output: X∗ ∈ Φ

1 X ← Linear relaxation of M-BIP(A, x, b, l, u)
2 V ← {xi : xi > 0}
3 X∗ ← Reduced M-BIP(A, x, b, l, u, V )
4 return X∗

5. Computational experiments

The computational experiments were performed on a 2.4 GHz Intel Xeon E5645 CPU with 32 GB of RAM,
running under Linux Ubuntu. The BIP and the linear programming formulations were solved by the ILOG
CPLEX solver, version 12.6, with default parameter settings and a single thread. All algorithms were imple-
mented in C++, using ILOG Concert Technology, and compiled with GNU g++ 8.2.0. The parameters of SBA
were set accordingly to [22]. In addition, the maximum running time of all algorithms in any of the experiments
was set to 3600 seconds.

5.1. The test case

The Weighted Set Covering Problem (WSCP) [32] is one of the most studied combinatorial optimization
problems. Its decision version was one of the original 21 problems proved to be NP-Complete by [40]. WSCP
applications range from data partitioning [49] to vehicle routing problems [17]. For the reader interested in a
deeper knowledge on this problem, we refer to the annotated bibliography [21].

WSCP is defined by a set N of objects and a set S of non-empty subsets of N . Furthermore, a weight ws is
associated to each subset s ∈ S. The objective of WSCP is to find S∗ ⊆ S such that all objects are covered by
at least one subset s ∈ S∗ and such that the sum of the weights of the sets in S∗ is minimum.

Figure 1 illustrates an WSCP instance with |N | = 16 and |S| = 5. The optimal solution S∗ for this instance
is S∗ = {s1, s3, s5} of cost w∗ = 4 + 7 + 2 = 13. One can note that subsets s2 and s4 are not needed, since the
other subsets cover all of their elements.

WSCP can be formulated as follows. The decision variable xs ∈ { 0, 1 } states if subset s ∈ S belongs to the
optimal WSCP solution (xs = 1) or not (xs = 0). Furthermore, let Ais = 1 if item i ∈ N is covered by subset s
and cis = 0 otherwise. The WSCP formulation consists of the objective function (12) and constraints (13)–(14).
The objective function (12) aims at minimizing the weight of subsets s ∈ S. Inequalities (13) ensure that all
items i ∈ N are covered by at least one subset s ∈ S. The domain of variables xs is defined by constraints (13).
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Figure 1. An WSCP instance.

min
∑

s∈S

wsxs (12)

s.t.
∑

s∈S

Aisxs ≥ 1, ∀i ∈ N (13)

xs ∈ {0, 1}, ∀s ∈ S. (14)

5.1.1. The Minmax regret Weighted Set Covering problem under Interval Uncertainties

The Minmax regret Weighted Set Covering problem under Interval Uncertainties (M-WSCP), as defined by
[51], is a variant of WSCP under uncertainties. In this problem, the weight associated to each subset s ∈ S is
uncertain and it is assumed to be in the interval [ls, us], with 0 ≤ ls ≤ us. The objective of M-WSCP is to find
a solution X∗ with the smallest robustness cost, according to the definitions presented in Section 1.

A BIP formulation for M-WSCP was presented in [51]. It is obtained by linearizing F (Y (SX), SX), as explained
by [3]. It uses binary decision variables {xs ∈ { 0, 1 } } : s ∈ S and parameter {Ais : i ∈ N , s ∈ S } as for the
WSCP. Besides, it also uses an auxiliary variables θ ∈ R

+ to compute the cost of the solution in the worst-case
scenario, as in the formulation (5)–(9) for M-BIP. The resulting formulation is defined by (15)–(19).

min
∑

s∈S

(usxs)− θ (15)

s.t.
∑

s∈S

Aisxs ≥ 1, ∀i ∈ N (16)

θ ≤
∑

s∈S

(ls + (us − ls)xs) ys, ∀ Y ∈ Φ (17)

xs ∈ {0, 1}, ∀s ∈ S (18)

θ ≥ 0. (19)

The objective function (15) aims at minimizing the maximum regret. The constraints (16) ensure that all
items i ∈ N are covered by at least one subset s ∈ S. The inequalities (17) enforce the correct value of θ. The
constraints (18)–(19) define the domain of the variables xs and θ, respectively.

5.1.2. Benchmark instances for the M-WSCP

We used two set of benchmark instances in our computational experiments, namely OR-Library and Shunji.
In both sets, the interval [ls, us], for all s ∈ S, was computed as suggested by [39]. Initially, a random value cs

was obtained from the original instance. Then, we set ls = U
(

(1− b)cs, (1 + b)cs

)

and us = U
(

ls + 1, (1 + b)cs

)

,
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where b ∈ {0.3, 0.6, 0.9} is a parameter that defines the degree of uncertainty of the instance, i.e., the greater is
the value of b, the greater is the difference between us and ls, on average.

The set OR-Library of instances was retrieved from the OR-Library3, a collection of test data sets for a
variety of Operations Research (OR) problems. It was originally described by [13] and encompass instances for
several combinatorial optimization problems. We retrieved the instance sets 4, 5, and 6, which were first used for
experiments for the WSCP by [12] and later adapted for the M-WSCP [7,51]. Set 4 contains 10 instances with
|N | = 200 and |S| = 1000, while set 5 contains 10 instances with |N | = 200 and |S| = 2000 and set 6 contains
5 instances with |N | = 200 and |S| = 1000. The weight values range between 1 and 100 for all instances. For
each instance obtained from the OR-Library, we generated three instances for the M-WSCP, such that each
generated instance use a different value of b. Therefore, there are 75 instances in this set.

The set Shunji of instances was generated using the instances generator for WSCP developed by Shunji
Umetani4. This generator implements the scheme for constructing instances for WSCP proposed by [12] and
guarantees that every elements in N is covered by, at least, two sets in S, and guarantees that every set s ∈ S
covers at least one element in N . The instances within this set have |N | = 1000 and |S| = 2000. The weight
values for all instances range between 1 and 100. Furthermore, it has a parameter D ∈ [0, 1] which controls the
density of the covering matrix. Given the parameters D ∈ {0.02, 0.05, 0.10} and b ∈ {0.3, 0.6, 0.9}, we generated
5 random instances for each combination of these parameters. Therefore, there are 45 instances in this set.

5.2. Results for the exact algorithms

The first set of experiments aims at evaluating the efficiency of BLD, EB, and BC to solve M-WSCP using
the instances in sets OR-Library and Shunji. The results are reported in Tables 2 and 3. The first and second
column respectively report the value of b and the set that the instance belongs. For BLD, the third, fourth,
fifth, and sixth columns show respectively (i) the number of instances solved to optimality; (ii) the average
number of cuts inserted by BLD and its standard deviation; (iii) the average relative optimality gap for the
instances whose optimal solution was not found and the standard deviation of this same value; and (iv) the
average running time (in seconds) for the instances whose optimal solutions were not found and the standard
deviation of this same value. This same data is reported for EB in the seventh, eight, ninth, and tenth columns
and for BC in the eleventh, twelfth, thirteenth, and fourteenth columns. When optimal solutions were not found
for any of the five instances in a group, the fifth column is filled with a ‘−’. We recall that, for each value of b,
sets 4 and 5 have 10 instances, whereas set 6, as so as the instances in Shunji, only have 5 instances each.

Regarding the set OR-Library of instances, it can be seen from Table 2 that all algorithms found optimal
solutions for all evaluated instances. Furthermore, as greater was the value of b, then greater was the average
running time of the algorithms. BLD inserted the smallest average number of cuts for all evaluated instance sets,
whereas EB inserted the greatest number of cuts, on average. One can see that BC was the fastest among the
evaluated algorithms, being able to solve all instance sets within 65 seconds, on average. This smaller running
time may be due to the fact that BC do not reinitialize its branching tree, as presented in Section 3.3, while BLD
and EB restarts their branching tree at each iteration. Regarding the set Shunji of instances, it can be seen from
Table 3 that, as denser is the instance, less time the algorithms need to found the optimal solution. EB found a
smaller number of optimal solutions than BLD and BC. Furthermore, BLD found a greater number of optimal
solutions for instances with b = 0.3, while BC found a greater number of optimal solutions for instances with
b = 0.9. Despite that, the average relative gap achieved by BLD, EB, and BC were up to 0.5%, on average, being
very close to the optimal solution. We choose to use BLD for solving the remaining formulation in FO-SBA and
FO-LR, as it was able to found a greater number of optimal solutions than EB and BC.

3http://people.brunel.ac.uk/~mastjjb/jeb/info.html
4https://sites.google.com/site/shunjiumetani/benchmark
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Table 4. Results for the FAO heuristics on OR-Library instances.

FO-SBA FO-LR

b set |S ′| |S′|
|S| (%) tp (s) tt (s) |S ′| |S′|

|S| (%) tp (s) tt (s)

0.3
4 73.7(85) 7.4 0.6(11) 0.1(03) 68.6(95) 6.9 0.0(00) 0.0(00)
5 76.4(142) 3.8 1.3(18) 0.3(05) 72.0(107) 3.6 0.1(03) 0.1(03)
6 50.0(110) 5.0 8.2(33) 0.8(08) 56.2(77) 5.6 1.4(08) 1.5(16)

0.6
4 86.0(82) 8.6 0.7(08) 0.1(03) 75.0(80) 7.5 0.0(00) 0.1(03)
5 89.0(123) 4.4 1.1(11) 0.2(04) 69.5(70) 3.5 0.0(00) 0.1(03)
6 52.6(95) 5.3 5.8(22) 0.4(05) 47.8(98) 4.8 0.8(08) 0.6(05)

0.9
4 91.6(84) 9.2 0.0(00) 0.0(00) 71.5(57) 7.1 0.0(00) 0.0(00)
5 96.2(137) 4.8 0.6(07) 0.2(04) 70.9(80) 3.5 0.0(00) 0.0(00)
6 53.6(74) 5.4 2.2(16) 0.4(05) 45.6(74) 4.6 0.4(05) 0.0(00)

5.3. Results on the preprocessing step of the fix-and-optimize heuristics

The second set of experiments evaluates how efficient are FO-SBA and FO-LR to fix the value of variables
in the M-WSCP formulation defined by the objective function (15) and the constraints in (16)–(19). As the
number of binary variables is the same as the cardinality of the set S, we measure as |S ′| how many subsets
of S remain in the instance after the preprocessing step of each heuristic and how long it takes to solve the
resulting formulation.

The results of this experiment are presented in Tables 4 and 5 for the OR-Library and Shunji instances,
respectively. The first column reports the value of b, while the second shows the set of the instance (for OR-
Library instances) or the density value D (for Shunji instances). The third column gives the average and the
standard deviation of the number |S ′| of subsets of S that remained in the instance after the preprocessing
step of FO-SBA, while the fourth column presents the average ratio S ′/S, i.e., the proportion of subsets of
S that remained in the instance. The average running times, along with their standard deviations, for the
preprocessing and solving steps of FO-SBA are presented in the fifth and sixth columns, respectively. The same
data is reported for FO-LR in the last four columns. As pointed out in Section 5.2, the solving step of both
FO-SBA and FO-LR employs BLD.

Regarding the OR-Library instances, one can see from Table 4 that both heuristics obtained similar results.
For both FO-SBA and FO-LR, the greatest average reduction was achieved in instances from set 5, while the
smallest average reduction was achieved in instances from set 4. FO-SBA average preprocessing running time
never exceeded 9 seconds and was able to fix more than 90% of the variables of the formulation, on average, for all
evaluated instances. FO-LR was faster than FO-SBA, such that the maximum running time of its preprocessing
step was 1.4 seconds for instances from set 6 with b = 0.3. Using this reduced variable set, the BLD average
running time never exceeded 1 second for FO-SBA and 1.5 second for FO-LR. In addition, one can also see
that the accumulated running times of the preprocessing step and the solving step of FO-SBA and FO-LR,
computed as tp + tt, were significantly smaller than those of the exact algorithms, as reported in Table 2.

Regarding the Shunji instances, one can see from Table 5 that, the denser was the instance, then smaller
was the running time of FO-SBA and FO-LR, on average. Besides, the heuristics also fixed a greater number
of variables in denser instances than on the sparser instances, such that only 2.7% and 2.5% of the original
variables were not fixed for the instances with b = 0.3 and D = 0.10 using FO-SBA and FO-LR, respectively.
The average running time of FO-SBA preprocessing step was up to 1592 seconds on intances with b = 0.6 and
D = 0.05, while that of FO-LR was up to only 430 seconds on instances with b = 0.6 and D = 0.05. However,
the solving step of FO-SBA was faster than that of FO-LR for all evaluated instance subsets, being up to 206
seconds on instances with b = 0.6 and density of 0.05.
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Table 6. Results for the heuristics on OR-Library instances.

SBA LPH FO-SBA FO-LR
b set dev (%) t (s) dev (%) t (s) dev (%) t (s) dev (%) t (s)

0.3
4 4.9(92) 0.6(11) 8.6(97) 0.2(04) 4.6(82) 0.7(11) 6.5(100) 0.0(00)
5 9.0(116) 1.3(18) 13.7(126) 0.1(03) 9.0(116) 1.6(16) 10.1(108) 0.2(04)
6 11.9(76) 8.2(33) 54.4(290) 0.4(05) 9.4(68) 9.0(38) 9.4(68) 3.0(23)

0.6
4 10.4(170) 0.7(08) 10.2(148) 0.3(05) 9.9(172) 0.8(10) 10.7(169) 0.1(03)
5 7.0(63) 1.1(11) 6.6(68) 0.8(06) 7.0(63) 1.3(09) 7.6(78) 0.1(03)
6 2.8(62) 5.8(22) 15.7(24) 0.6(05) 2.8(62) 6.2(22) 5.1(57) 1.4(11)

0.9
4 9.0(113) 0.1(00) 7.2(116) 0.3(05) 9.0(114) 0.0(00) 9.7(111) 0.0(00)
5 2.9(28) 0.6(07) 1.7(26) 0.7(07) 2.9(28) 0.8(06) 3.8(32) 0.0(00)
6 2.7(19) 2.2(16) 2.8(17) 1.0(00) 2.4(22) 2.6(15) 3.5(29) 0.4(05)

5.4. Comparison of the heuristics

The last set of experiments compares the results of the proposed heuristics with those of the best known
heuristics for M-WSCP. Our heuristics are constrated with each other and with two other heuristics for the M-
WSCP: the Scenario-based Algorithm (SBA) [22] and the Linear Programming Heuristic (LPH) [7]. The results
reported in Tables 6 and 7 for the OR-Library and Shunji instances, respectively. The first column reports the
value of b, while the second shows the set of the instance (for OR-Library instances) or the density value D (for
Shunji instances). The third and fourth columns report the results of SBA. Let X̄ the best known solution for
each instance (found by any of the exact or heuristic algorithms used in our experiments), the third column

gives the average relative deviation Z(SBA)−Z(X̄)
Z(X̄)

, where Z(SBA) is the robustness cost of the solution obtained

by SBA, along with the standard deviation of this same metric. The fourth column presents the average and
the standard deviation of the running time of SBA. The same data is reported for LPH in the fifth and sixth
columns, for FO-SBA in the seventh and eighth columns, and for FO-LR in the ninth and tenth columns.

Regarding the OR-Library instances, one can see from Table 6 that the average running time of the heuristics
never exceeded 9 seconds, which was the case of FO-SBA for instances from set 6 with b = 0.3. LPH was the
fastest among the evaluated heuristics. However, it also found the greater average relative deviations among the
evaluated heuristics, being up to 54.4% for instances from set 6 with b = 0.3. The best results for all instances
were obtained by FO-SBA, such that it achieved a maximum average relative deviation of 9.9% for instances
from set 4 with b = 0.6. Besides, one can observe that FO-SBA average running time never exceeds 9 seconds,
and that it was able to improve the average relative deviations of SBA for 4 out of the 9 subset of instances
evaluated. These results indicate that FO-SBA was able to fastly compute near-optimal solutions, since the
optimal solution for all OR-Library instances were given by BLD, EB, and BC, as shown in Table 2.

Regarding the Shunji instances, one can see from Table 7 that the results were very similar to those obtained
for the OR-Library instances. LPH obtained the greatest average relative deviations for all subset of instances.
On the other hand, the FO-SBA solutions had the smallest average relative deviation among the evaluated
heuristics for all instance subsets, except for instances with b = 0.3 and D = 0.05. One can observe that FO-
SBA was able to improve the results of SBA for instances with b = 0.3 and D = 0.10 and for instances with
b = 9 and D = 0.10. Furthermore, FO-LR obtained competitive results, being faster than FO-SBA for 7 out of
the 9 subset of instances evaluated and computing solutions with an average relative deviation at least as good
as those of FO-SBA for 3 out of the 9 subset of instances evaluated.

The results from Tables 6 and 7 point out to the fact that FO-SBA obtained the best results among the
evaluated heuristics. To test this observation for OR-Library and Shunji instances, we analyzed our experimental
data following the statistical procedure of [36], which is composed of three steps. The first step verifies the non-
normality of the relative deviations of SBA, LPH, FO-SBA, and FO-LR. Next, the second step evaluates whether
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Table 8. p-values obtained by the Nemenyi’s test on OR-Library and Shunji instances.

OR-Library Shunji

SBA LPH FO-SBA SBA LPH FO-SBA
LPH 0.52 – – 0.01 – –
FO-SBA 0.93 0.20 – 1.00 0.01 –
FO-LR 0.14 0.86 0.03 0.74 0.01 0.61

there is a statistical significant difference among the four heuristics. Then, in case such a difference exists, the
third step verifies whether the relative deviations of the heuristics are significantly different among them. These
steps are detailed below. They assume a significance level α = 0.05, i.e., the null hypothesis is rejected if the
p-value is smaller than 0.05.

In the first step, we applied a Shapiro-Wilk test of normality [52] to verify whether the relative deviations of
SBA, LPH, FO-SBA and FO-LR follow a normal distribution. With a p-value of 0.001, the test indicated that
the data of the three heuristics does not follow a normal distribution. Thus, a non-parametric test is used in
the next step.

In the second step, we applied the Friedman’s test [34] to verify whether there is a statistically significant
difference between at least two of the evaluated heuristics. The null hypothesis was that SBA, LPH, FO-SBA
and FO-LR have the same relative deviation, on average. The data were ranked according to [18]. With a p-value
of 0.002, the test rejected the null hypothesis for both OR-Library and Shunji instances. Therefore, there is
indeed a significant difference in the relative deviations of SBA, LPH, FO-SBA and FO-LR.

In the third step, we applied a non-parametric two-tailed Nemenyi’s post-hoc test, also known as the Nemenyi-
DamicoWolfeDunn post-hoc test [47], which compares the results of multiple algorithms. This test evaluated
the pair of hypothesis

{

H0 : µi ≥ µj

H1 : µi 6= µj
, ∀(µi, µj) ∈M,

where M = {µsba, µlph, µfo-sba, µfo-lr}, such that µsba, µlph, µfo-sba, and µfo-lr are, respectively, the average of the
rankings obtained by SBA, LPH, FO-SBA, and FO-LR in the second step. The null hypothesis (H0) states that
the average ranking of µi and µj was not significantly different among them, thus implying that the results
of one of the evaluated heuristics is not significantly better than those of the other. On the other hand, the
alternative hypothesis (H1) implies that indeed the results of µi is significantly different than those of µj .

Table 8 presents the results of the Nemenyi’s test for OR-Library and Shunji instances. Each cell of this
table displays the p-value obtained by comparing the heuristics displayed on the top of the column and on the
beginning of the row.

Regarding the OR-Library instances, one can see from Table 8 that only FO-SBA and FO-LR significantly
differ among them, with a p-value of 0.03. For the remaining of the comparisons, the test could not reject the null
hypothesis and, thus, we cannot assume that the average relative deviation of the heuristics significantly differ
among them. Thus, we conclude that SBA, LPH, and FO-SBA results do not significantly differ among them.
For this set of instances, the recommended heuristic is LPH, since it had a smaller running time in comparison
to SBA and FO-SBA, as shown in Table 6.

Regarding the Shunji instances, one can see from Table 8 that LPH was the worst heuristic for these instances,
as the Nemenyi’s test returned a p-value of 0.01 for the comparison of LPH with all other heuristics. The
comparison of SBA and FO-SBA returned a p-value of 1.00, while the comparisons of FO-LR with SBA and
FO-SBA returned a p-value of 0.74 nad 0.61, respectively. Thus, the test could not reject the null hypothesis for
these comparisons and we cannot assume that the average relative deviations of SBA and FO-SBA significantly
differ among them. Additionally, we also cannot assume that the average relative deviations of FO-LR, SBA,
and FO-SBA significantly differ among them. Therefore, for this set of instances, the recommended heuristic is
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FO-LR, since its average running time was smaller than those of SBA and FO-SBA for 7 out of the 9 subset of
instances, as shown in Table 7.

6. Concluding remarks

This paper studied the Minmax regret Binary Integer Programming problem under interval uncertainty (M-
BIP). We demonstrated that he decision version of M-BIP is Σp

2-complete, as it is a generalization of the decision
version of the Minmax regret Binary Knapsack problem under interval uncertainty, which is well-known to be
Σp

2-complete. Furthermore, we proposed three exact and two fix-and-optimize heuristics to solve M-BIP. Compu-
tational experiments evaluated the Minmax regret Weighted Set Covering problem under Interval Uncertainties
(M-WSCP) as a test case. The results indicated that the Benders-like Decomposition outperformed the other
exact algorithms, while the proposed fix-and-optimize heuristics were competitive with ad-hoc heuristics for the
M-WSCP.

The computation results showed that, although FO is a general heuristic for minmax regret optimization
problems under interval uncertainty, it is competitive with the best heuristics in the literature of M-WSCP.
These results encourage the use of fix-and-optimize heuristics for minmax regret optimization problems under
interval uncertainty, as both heuristics can be easily applied to any problem of this class. Therefore, future works
may apply FO-SBA or FO-LR to other of these problems, such as the Minmax Knapsack Problem Problem under
interval uncertainty [35], the Minmax regret Restricted Shortest Path problem under interval uncertainty [5],
the Minmax regret Spanning Arborescence problem under interval uncertainty [25], or the Minmax regret
Weighted Independent Set problem under interval uncertainty [41]. Furthermore, future works can evaluate
fix-and-optimize heuristics for minmax regret optimization problems under different uncertainty sets, such as
the polyhedral uncertainty set [16] or the ellipsoidal uncertainty set [15]. Additionally, one can investigate the
use of different algorithms in the preprocessing step of fix-and-optimize heuristics and its applications to other
problems.
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